
C++ by Dissection

Ira Pohl

University of California

Santa Cruz

Boston San Francisco New York

London Toronto Sydney Tokyo Singapore Madrid

Mexico City Munich Paris Cape Town Hong Kong Montreal

Senior Acquistions Editor Maite Suarez-Rivas
Project Editor Katherine Harutunian
Executive Marketing Manager Michael Hirsch
Production Supervisor Marilyn Lloyd
Project Management Argosy Publishing
Copyeditor Jeannie Smith
Proofreader Janet Renard
Composition and Art Debra Dolsberry and Argosy Publishing
Text and Cover Design Leslie Haimes
Design Manager Gina Hagen
Prepress and Manufacturing Hugh Crawford

Access the latest information about Addison-Wesley titles from our World Wide Web site:
http://www.aw.com/cs

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
tradmarks. Where those designations appear in this book, and Addison-Wesley was aware of a trademark
claim, the designations have been printed in initial caps or all caps.

Borland C/C++ is a registered trademark of Borland International, Inc.
GNU C/C++ is a registered trademark of Free Software Foundation, Inc.
Microsoft C/C++ is a registered trademark of Microsoft, Inc.
Turbo C/C++ is a registered trademark of Borland International, Inc.
MS-DOS is a registered trademark of Microsoft, Inc.
OS/2 is a registered trademark of International Business Machines, Inc.
UNIX is a registered trademark licensed through X/Open Company, Ltd.
Windows is a registered trademark of Microsoft, Inc.
FrameMaker is a registered trademark of Frame Technology, Inc.
PostScript is a registered trademark of Adobe Systems, Inc.

The programs and applications presented in this book have been included for their instructional value.
They have been tested with care, but are not guaranteed for any particular purpose. The publisher does
not offer any warranties or representations, nor does it accept any liabilities with respect to the pro-
grams or applications.

Library of Congress Cataloging-in-Publication Data

Pohl, Ira
C++ by Dissection / Ira Pohl.

p. cm.
ISBN 0-201-74396-5 (pbk.)
1. C++ (Computer program language) I. Title.

QA76.73.C153 P58 2002
005.13’3--dc21 2001045829

CIP
Copyright © 2002 by Addison-Wesley

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher. Printed in the United States of America.

ISBN 0-201-74396-5

http://www.aw.com/cs

About Ira Pohl

Ira Pohl, Ph.D., is a professor of Computer Science at the University of Cali-
fornia, Santa Cruz. He has over 30 years of experience as a software meth-
odologist. His teaching and research interests are in the areas of artificial
intelligence, programming languages, practical complexity problems, heu-
ristic search methods, deductive algorithms, and educational and social
issues. He originated error analysis in heuristic search methods and deduc-
tive algorithms.

He is an ACM Fellow and has lectured at Berkeley, Stanford, the Vrije Uni-
versity in Amsterdam, the Courant Institute, Edinburgh University in Scot-
land, and Auckland University in New Zealand.

When not programming, he enjoys riding bicycles in Aptos, California, with
his wife Debra and daughter Laura.

http://www.cse.ucsc.edu/~pohl

Other Publications by Ira Pohl

Ira is the sole author of the following Addison-Wesley or Benjamin Cum-
mings publications:

C++ for C Programmers
C++ for Pascal Programmers
C++ for Fortran Programmers
Turbo C++
Object Oriented Programming Using C++
C++ Distilled

Ira is coauthor with Al Kelley for a series of books published by Addison-
Wesley and Benjamin Cummings on the C programming language:

A Book on C: An Introduction to Programming in C
C by Dissection Turbo C: The Essentials of C Programming

Ira is also coauthor with Charlie McDowell of the following Addison-Wesley
publication:

Java by Dissection: The Essentials of Java Programming

Ira’s first book, coauthored with Alan Shaw, was a pioneering text on com-
puter science (Computer Science Press, 1981):

The Nature of Computation: An Introduction to Computer Science

Dedicated to

Philip Pohl (1932–2001)

who gave me my first computer

(a slide rule).

Today, the ANSI C++ programming language is widely used throughout the world in
both academia and industry. In many educational institutions it is the language of
choice for a first programming course and for a language to be used for computer sci-
ence instruction. A key reason for this is that C++ has drifted down the curriculum
from more advanced courses to more introductory courses. Further, C++ comes with
many useful libraries, and is supported by sophisticated integrated environments. It is
a language that efficiently supports object-oriented programming (OOP) the dominant
contemporary programming methodology.

C++ by Dissection presents a thorough introduction to the programming process by
carefully developing working programs to illuminate key features of the C++ program-
ming language. Program code is explained in an easy-to-follow, careful manner through-
out. The code has been tested on several platforms and is found on the bundled CD-
rom accompanying this text. The code in C++ By Dissection can be used with most C++
systems, including those found in operating systems such as MacOS, MS-DOS, OS/2,
UNIX, and Windows.

C++, invented at Bell Labs by Bjarne Stroustrup in the mid-1980s, is a powerful, mod-
ern, successor language to C. C++ adds to C the concept of class, a mechanism for pro-
viding user-defined types, also called abstract data types. C++ supports object-oriented
programming by these means and by providing inheritance and runtime type binding.
Preface

Ira Pohl’s C++ by Dissection Dissections vii
Dissections

This book presents readers with a clear and thorough introduction to the programming
process by carefully developing working C++ programs, using the method of dissection.
Dissection is a unique pedagogical tool first developed by the author in 1984 to illumi-
nate key features of working code. A dissection is similar to a structured walk-through
of the code. Its intention is to explain to the reader newly encountered programming
elements and idioms as found in working code. Programs and functions are explained
in an easy-to-follow step-by-step manner. Key ideas are reinforced throughout by use in
different contexts.

No Background Assumed

This book assumes no programming background and can be used by students and first
time computer users. Experienced programmers not familiar with C++ will also benefit
from the carefully structured presentation of the C++ language. For student use, the
book is intended as a first course in computer science or programming.

It is suitable for a CS1 course or beginning programming course for other disciplines.
Each chapter presents a number of carefully explained programs, which lead the stu-
dent in a holistic manner to ever-improving programming skills. From the start, the stu-
dent is introduced to complete programs, and at an early point in the text is introduced
to writing functions as a major feature of structured programming. The function is to
the program as the paragraph is to the essay. Competence in writing functions is the
hallmark of the skilled programmer and hence is emphasized. Examples and exercises
are plentiful in content and level of difficulty. They allow instructors to pick assign-
ments appropriate to their audiences.

Ira Pohl’s C++ by Dissection Special Features viii
Special Features

C++ by Dissection: The Essentials of C++ Programming incorporates a number of special
features:

■ A CD-Rom with a working compiler.

■ A website with and the full electronically searchable text of this book. Also included
are active links to useful web-sites and complete working code for this text

■ Software engineering practice is described throughout

■ Dr. P’s prescriptions are concise programming tips provided for the beginner for
each chapter

■ Early explanation of simple recursion to reflect its earlier introduction in beginning
computer science courses

■ Coverage of program correctness and type-safety

■ In-depth explanation of functions and pointers because these concepts are typically
stumbling blocks for the beginner

■ Object-oriented programming concepts are emphasized

■ Generic programming and STL are carefully described

■ UML diagrams are introduced as an aid to understanding object-oriented program-
ming

■ Comparison to Java, optional Java exercises and coordinating references to Java by
Dissection (with Charlie McDowell)

■ Active links to online code by clicking on the infile line above each major program
section.

■ Active links to online sites via clicking on blue underlined text.

Chapter Features

Each chapter contains the following pedagogical elements:

Dissections. Major elements of the important example programs are explained by the
method of dissection. This step-by-step discussion of new programming ideas helps the
reader encountering these ideas for the first time to understand them.

Object-oriented programming. The reader is led gradually to the object-oriented style.
Chapter 4, Classes and Abstract Data Types, introduces classes, which are the basic
mechanism for producing modular programs and implementing abstract data types.
Class variables are the objects being manipulated. Chapter 8, Inheritance and OOP,
develops inheritance and virtual functions, two key elements in this paradigm. Chapter
11, OOP Using C++, discusses OOP programming philosophy. This book develops in the
programmer an appreciation of this point of view.

http://www.cse.ucsc.edu/~pohl

Ira Pohl’s C++ by Dissection Classroom Usage ix
Programming Style and Software Engineering. Programming style and software method-
ology is stressed throughout. Important concepts such as structured branching state-
ments, nested flow of control, top-down design, and object-oriented programming are
presented early in the book. A consistent and proper coding style is adopted from the
beginning with careful explanation as to its importance and rationale. The coding style
used in the book is one commonly used by working programming professionals in the
C++ community.

Working Code. Right from the start the student is introduced to full working programs.
With the executable code, the student can better understand and appreciate the pro-
gramming ideas under discussion. Many programs and functions are explained through
dissections. Variations on programming ideas are often presented in the exercises.

Common Programming Errors. Many typical programming bugs, along with techniques
for avoiding them, are described. Much of the frustration of learning a programming
language is caused by encountering obscure errors. Many books discuss correct code
but leave the reader to a trial-and-error process for finding out about bugs. This book
explains how typical errors in C++ are made and what must be done to correct them.

Dr. P’s Prescriptions. A series of programming tips is based on wide experience. A con-
cise rationale is given for each tip.

Comparison to Java. An optional section describes the programming elements of Java
that are comparable to the C++ examples. Exercises supporting these sections are
included as well. For the most part, C++ and Java have equivalent elements. The text
aids the student already conversant in Java to migrate to C++. Also the C++ student who
later takes up Java will benefit from this section. Furthermore, as the book is a compan-
ion volume to Java by Dissection (with Charlie McDowell) the reader has access to com-
plete explanations of the Java concepts fully utilizing this book’s pedagogy.

Summary. A succinct list of points covered in the chapter serves as a review for the
reader, reinforcing the new ideas that were presented in the chapter.

Exercises. The exercises test the student’s knowledge of the language. Many exercises
are intended to be done interactively while reading the text. This encourages self-paced
instruction by the reader. In addition to exercising features of the language, some exer-
cises look at a topic in more detail, and others extend the reader’s knowledge to an
advanced area of use.

Classroom Usage

This book can be used as a text in a one-semester course that teaches students how to
program. Chapters 1 through 5 cover the C++ programming language through the use
of arrays, pointers, and basic object programming. A second-semester course can be
devoted to more advanced data types, OOP, generic programming and STL, file process-
ing, and software engineering as covered in Chapters 6 through 11. In a course designed
for students who already have some knowledge of programming, not necessarily in
C++, the instructor can cover all the topics in the text. This book can also be used as a
text in other computer science courses that require the student to use C++. In a compar-
ative language course, it can be used with companion volumes for C, Java, and C# that

Ira Pohl’s C++ by Dissection Interactive Environment x
follow the same dissection approach and share many of the same examples done
uniquely in each language.

Interactive Environment

This book is written explicitly for an interactive environment. Experimentation via key-
board and screen is encouraged throughout. For PCs, there are many vendors that sup-
ply interactive C++ systems, including Borland, IBM, Metroworks, Microsoft, and
Symantec.

Professional Use

While intended for the beginning programmer, C++ by Dissection: The Essentials of C++
Programming is a friendly introduction to the entire language for the experienced pro-
grammer as well. In conjunction with A Book on C, Fourth Edition by Al Kelley and Ira
Pohl (Addison Wesley Longman, Inc., Reading, MA, 1998, ISBN 0-201183994), the com-
puter professional will gain a comprehensive understanding of both languages. As a
package, the two books offer an integrated treatment of the C/C++ programming lan-
guage and its use that is unavailable elsewhere. Furthermore, in conjunction with Java
by Dissection by Ira Pohl and Charlie McDowell (Addison Wesley Longman, Inc., Reading,
MA, 1999, ISBN 0-201-61248-8), the student or professional is also given an integrated
treatment of the object-oriented language Java.

This book is the basis of many on-site professional training courses given by the author,
who has used its contents to train professionals and students in various forums since
1986. The text is the basis for Web-based training in C++ available from www.digi-
talthink.com.

Supplements

Support materials are available to instructors adopting this textbook for classroom use
and include the following:

■ Solutions to exercises

■ Code for example programs

■ Powerpoint slides of all the figures

Please check on-line information for this book at www.aw.com/cssupport for more
information on obtaining these supplements.

http://www.digitalthink.com
http://www.digitalthink.com
http://www.aw.com/cssupport

Ira Pohl’s C++ by Dissection Acknowledgments xi
Acknowledgments

Our special thanks go to Uwe F. Mayer, George Belotsky, and Bruce Montague, who were
careful readers of the technical content of this work and suggested numerous improve-
ments, without being responsible for my errors. Thanks to our reviewers, Charles
Anderson, Colorado state University; Parris Egbert, Brigham Young University; Chris
Eagle, Naval Postgraduate School; Nigel Gwee, Louisiana State University; Stephen P.
Leach, Florida State University; and Steven C. Shaffer, Penn State University. Thanks also
to John dePillis, Debra Dolsberry and Laura Pohl who developed and drew many of the
cartoons. Most importantly further thanks to Debra Dolsberry, who acted as the chief
technical editor for much of the material in this book and the CD-Rom. In addition, she
was largely responsible for using FrameMaker to create files suitable for typesetting
this book. Thanks also to Charlie McDowell and Al Kelley for writing companion vol-
umes in C and Java.

We would also like to thank Maite Suarez-Rivas, Acquisitions Editor, Katherine Harutu-
nian, Project Editor, and Patty Mahtani, Associate Managing Editor for their enthusiasm,
support, and encouragement; and we would like to thank Caroline Roop and Sally Boy-
lan at Argosy, for the careful attention to the production of this book.

 Ira Pohl
 University of California, Santa Cruz

1 Writing an ANSI C++ Program 1
1.1 Getting Ready to Program . 2
1.1 A First Program . 3
1.2 Problem Solving: Recipes . 7

1.2.1 Algorithms—Being Precise. 8
1.3 Implementing Our Algorithm in C++ 10
1.4 Software Engineering: Style . 12
1.5 Common Programming Errors . 13
1.6 Writing and Running a C++ Program 14

1.6.1 Interrupting a Program . 16
1.6.2 Typing an End-of-File Signal . 16

1.7 Dr. P’s Prescriptions . 16
1.8 C++ Compared with Java . 17

Summary . 20
Review Questions . 21
Exercises . 22
Table of Contents

Ira Pohl’s C++ by Dissection xiii
2 Native Types and Statements 25
2.1 Program Elements . 26

2.1.1 Comments . 26
2.1.2 Keywords . 27
2.1.3 Identifiers . 27
2.1.4 Literals . 29
2.1.5 Operators and Punctuators . 31

2.2 Input/Output . 31
2.3 Program Structure . 34

2.3.1 Redirection . 36
2.4 Simple Types . 37

2.4.1 Initialization . 39
2.5 The Traditional Conversions . 40
2.6 Enumeration Types . 43

2.6.1 typedef Declarations . 44
2.7 Expressions. 44

2.7.1 Precedence and Associativity of Operators 45
2.7.2 Relational, Equality, and Logical Operators 47

2.8 Statements . 50
2.8.1 Assignment and Expressions. 51
2.8.2 The Compound Statement. 52
2.8.3 The if and if-else Statements 52
2.8.4 The while Statement . 55
2.8.5 The for Statement . 56
2.8.6 The do Statement . 57
2.8.7 The break and continue Statements 58
2.8.8 The switch Statement . 59
2.8.9 The goto Statement . 62

2.9 Software Engineering: Debugging . 62
2.10 Dr. P’s Prescriptions . 65
2.11 C++ Compared with Java . 67

Summary . 69
Review Questions . 70
Exercises . 71

3 Functions, Pointers, and Arrays 75
3.1 Functions . 75
3.2 Function Invocation . 76
3.3 Function Definition . 78
3.4 The return Statement. 79
3.5 Function Prototypes. 80
3.6 Call-By-Value . 81
3.7 Recursion . 83
3.8 Default Arguments . 84
3.9 Functions as Arguments . 86

3.10 Overloading Functions. 88
3.11 Inlining . 89

3.11.1Software Engineering: Avoiding Macros 89

Ira Pohl’s C++ by Dissection xiv
3.12 Scope and Storage Class . 90
3.12.1The Storage Class auto . 92
3.12.2The Storage Class extern . 92
3.12.3The Storage Class register . 93
3.12.4The Storage Class static . 94
3.12.5Header Files and Linkage Mysteries 95

3.13 Namespaces . 98
3.14 Pointer Types . 99

3.14.1Addressing and Dereferencing 100
3.14.2Pointer-Based Call-By-Reference. 100

3.15 Reference Declarations . 102
3.16 The Uses of void. 104
3.17 Arrays . 105

3.17.1Subscripting . 106
3.17.2 Initialization . 106

3.18 Arrays and Pointers . 106
3.19 Passing Arrays to Functions . 107
3.20 Problem Solving: Random Numbers 108
3.21 Software Engineering: Structured Programming 111
3.22 Core Language ADT: char* String . 114
3.23 Multidimensional Arrays . 117
3.24 Operators new and delete . 120

3.24.1Vector Instead of Array . 123
3.24.2String Instead of char* . 124

3.25 Software Engineering: Program Correctness. 124
3.26 Dr. P’s Prescriptions . 127
3.27 C++ Compared with Java . 128

Summary . 130
Review Questions . 132
Exercises . 133

4 Classes and Abstract Data Types 139
4.1 The Aggregate Type class and struct. 140
4.2 Member Selection Operator . 141
4.3 Member Functions . 143
4.4 Access: Private and Public . 146
4.5 Classes . 147
4.6 Class Scope . 150

4.6.1 Scope Resolution Operator . 150
4.6.2 Nested Classes . 152

4.7 An Example: Flushing . 153
4.8 The this Pointer . 158
4.9 static Members. 159

4.10 const Members. 161
4.10.1Mutable Members . 163

4.11 A Container Class Example: ch_stack. 164

Ira Pohl’s C++ by Dissection xv
4.12 Software Engineering: Class Design 166
4.12.1Trade-Offs in Design . 168
4.12.2Unified Modeling Language (UML) and Design 169

4.13 Dr. P’s Prescriptions . 170
4.14 C++ Compared with Java . 171
4.15 Advanced Topics . 172

4.15.1Pointer to Class Member . 172
4.15.2Unions . 174
4.15.3Bit Fields . 175
Summary . 177
Review Questions . 178
Exercises . 179

5 Ctors, Dtors, Conversions, and Operator Overloading 183
5.1 Classes with Constructors . 184

5.1.1 The Default Constructor . 186
5.1.2 Constructor Initializer . 187
5.1.3 Constructors as Conversions. 187
5.1.4 Improving the point Class . 189
5.1.5 Constructing a Stack . 190
5.1.6 The Copy Constructor . 193

5.2 Classes with Destructors . 195
5.3 Members That Are Class Types . 195
5.4 Example: A Singly Linked List . 196
5.5 Strings Using Reference Semantics 201
5.6 Constructor Issues and Mysteries . 204

5.6.1 Destructor Details . 205
5.6.2 Constructor Pragmatics. 206

5.7 Polymorphism Using Function Overloading 206
5.8 ADT Conversions. 207
5.9 Overloading and Signature Matching 208

5.10 Friend Functions . 211
5.11 Overloading Operators . 213
5.12 Unary Operator Overloading . 214
5.13 Binary Operator Overloading . 217
5.14 Overloading the Assignment Operator 219
5.15 Overloading the Subscript Operator. 220
5.16 Overloading Operator () for Indexing 221
5.17 Overloading << and >> . 222
5.18 Overloading -> . 223
5.19 Overloading new and delete. 224
5.20 More Signature Matching . 227
5.21 Software Engineering: When to Use Overloading 228
5.22 Dr. P’s Prescriptions . 229
5.23 C++ Compared with Java . 231

Summary . 235
Review Questions . 236
Exercises . 237

Ira Pohl’s C++ by Dissection xvi
6 Templates and Generic Programming 243
6.1 Template Class stack . 246
6.2 Function Templates . 248

6.2.1 Signature Matching and Overloading 250
6.2.2 How to Write a Simple Function: square(). 252

6.3 Generic Code Development: Quicksort. 253
6.3.1 Converting to a Generic quicksort(). 256

6.4 Class Templates . 260
6.4.1 Friends . 260
6.4.2 Static Members . 260
6.4.3 Class Template Arguments . 261
6.4.4 Default Template Arguments. 261
6.4.5 Member Templates . 262

6.5 Parameterizing the Class vector. 262
6.6 Using STL: string, vector, and complex 265

6.6.1 string and basic_string<> 265
6.6.2 vector<> in STL . 267
6.6.3 Using complex<> . 267
6.6.4 limits and Other Useful Templates. 268

6.7 Software Engineering: Reuse and Generics. 269
6.7.1 Debugging Template Code . 269
6.7.2 Special Considerations . 270
6.7.3 Using typename . 271

6.8 Dr. P’s Prescriptions . 272
6.9 C++ Compared with Java . 272

Summary . 276
Review Questions . 277
Exercises . 278

7 Standard Template Library 280
7.1 A Simple STL Example . 280
7.2 Containers. 283

7.2.1 Sequence Containers. 285
7.2.2 Associative Containers . 288
7.2.3 Container Adaptors . 293

7.3 Iterators . 296
7.3.1 Iterators for istream and ostream 297
7.3.2 Iterator Adaptors. 300

7.4 Algorithms . 302
7.4.1 Sorting Algorithms . 302
7.4.2 Nonmutating Sequence Algorithms 305
7.4.3 Mutating Sequence Algorithms 307
7.4.4 Numerical Algorithms . 310

7.5 Numerical Integration Made Easy . 311
7.6 STL: Function Objects . 315

7.6.1 Building a Function Object . 317
7.6.2 Function Adaptors. 318

7.7 Allocators . 320

Ira Pohl’s C++ by Dissection xvii
7.8 Software Engineering: STL Use. 320
7.8.1 Syntax Bugs . 321

7.9 Dr. P’s Prescriptions . 322
7.10 C++ Compared with Java . 323

Summary . 324
Review Questions . 325
Exercises . 326

8 Inheritance and OOP 328
8.1 A Derived Class . 329

8.1.1 More Unified Modeling Language (UML). 333
8.2 A Student ISA Person . 334
8.3 Virtual Functions: Dynamic Determination 337

8.3.1 Overloading and Overriding Confusion 340
8.3.2 A Canonical Example: Class shape 342

8.4 Abstract Base Classes . 343
8.5 Templates and Inheritance. 350
8.6 Multiple Inheritance. 351
8.7 RTTI and Other Fine Points . 353

8.7.1 Finer Points . 354
8.8 Software Engineering: Inheritance and Design 355

8.8.1 Subtyping Form. 356
8.8.2 Code Reuse . 357

8.9 Dr. P’s Prescriptions . 358
8.10 C++ Compared with Java . 358

Summary . 361
Review Questions . 362
Exercises . 363

9 Input/Output 366
9.1 The Output Class ostream . 366
9.2 Formatted Output and iomanip . 367
9.3 User-Defined Types: Output. 372
9.4 The Input Class istream. 374
9.5 Files . 375
9.6 Using Strings as Streams . 379
9.7 The Functions and Macros in ctype 380
9.8 Using Stream States. 380
9.9 Mixing I/O Libraries. 383

9.10 Software Engineering: I/O . 384
9.11 Dr. P’s Prescriptions . 386
9.12 C++ Compared with Java . 386

Summary . 389
Review Questions . 390
Exercises . 391

Ira Pohl’s C++ by Dissection xviii
10Exceptions and Program Correctness 394
10.1 Using the assert Library. 394
10.2 C++ Exceptions . 397
10.3 Throwing Exceptions . 398

10.3.1Rethrown Exceptions. 400
10.3.2Exception Expressions . 401

10.4 try Blocks. 404
10.5 Handlers . 405
10.6 Converting Assertions to Exceptions 405
10.7 Exception Specification . 408
10.8 terminate() and unexpected() . 409
10.9 Standard Exceptions and Their Uses 409

10.10 Software Engineering: Exception Objects 411
10.11 Dr. P’s Prescriptions . 413
10.12 C++ Compared with Java . 414

Summary . 417
Review Questions . 418
Exercises . 419

11OOP Using C++ 421
11.1 OOP Language Requirements. 422

11.1.1ADTs: Encapsulation and Data Hiding 423
11.1.2Reuse and Inheritance . 423
11.1.3Polymorphism . 424

11.2 OOP: The Dominant Programming Methodology 425
11.3 Designing with OOP in Mind . 432
11.4 Class-Responsibility-Collaborator. 434

11.4.1CRC Cards. 435
11.5 Design Patterns . 436
11.6 A Further Assessment of C++ . 437

11.6.1Why C++ Is Better Than Java 438
11.6.2A Short Rebuttal . 439

11.7 Software Engineering: Last Thoughts 439
11.8 Dr. P’s Prescriptions . 440
11.9 C++ Compared with Java . 441

Summary . 447
Review Questions . 448
Exercises . 449

Ira Pohl’s C++ by Dissection xix
AASCII Character Codes 451

B Operator Precedence and Associativity 453

C String Library 455
C.1 Constructors . 456
C.2 Member Functions . 457
C.3 Global Operators . 460

DThe tio Library 462
D.1 Console . 462
D.2 FormattedWriter . 463
D.3 PrintFileWriter . 472
D.4 ReadException. 472
D.5 ReadInput . 473

Index 482

This chapter introduces the reader to the ANSI C++ programming world. Some gen-
eral ideas on programming are discussed, and a number of elementary programs are
thoroughly explained. The basic ideas presented here become the foundation for more
complete explanations that occur in later chapters. An emphasis is placed on the basic
input/output functions of C++. Getting information into and out of a machine is the
first task to be mastered in any programming language.

C++ uses the operators << and >> for output and input, respectively. The use of both of
these operators is explained. Other topics discussed in this chapter include the use of
variables to store values and the use of expressions and assignments to change the
value of a variable.

Throughout this chapter and throughout the text, many examples are given. Included
are many complete programs, which often are dissected. This allows the reader to see
in detail how each construct works. Topics that are introduced in this chapter are seen
again in later chapters, with more detailed explanation where appropriate. This spiral
approach to learning emphasizes ideas and techniques essential for the C++ program-
mer.

C++ is largely a superset of C. By learning C++, you are also learning the kernel language
C. A companion book, C by Dissection: Fourth Edition, by Al Kelley and Ira Pohl
(Addison-Wesley, 2000), teaches the rest of C that is not found here.

Most chapters also have a comparison between C++ and Java programs. Java is partly
based on C++. However, unlike C++, some C concepts do not work in Java or have a dif-
ferent meaning. Increasingly, people who begin to program in C++ have started from a
Java background. An introduction to the Java programming process can be found in the
companion volume Java by Dissection, by Ira Pohl and Charlie McDowell (Addison-
Wesley, 1999). The modern programmer needs to be comfortable in all three C-based
languages.
CHAPTER 1
Writing an ANSI C++ Program

Ira Pohl’s C++ by Dissection 1.1 Getting Ready to Program 2
1.1 Getting Ready to Program

Programs are written to instruct machines to carry out specific tasks or to solve specific
problems. A step-by-step procedure that accomplishes a desired task is called an algo-
rithm. Thus, programming is the activity of communicating algorithms to computers.
We have all given instructions to someone in English and then had that person carry out
the instructions. The programming process is analogous, except that machines have no
tolerance for ambiguity and must have all steps specified in a precise language and in
tedious detail.

The Programming Process
1. Specify the task.

2. Discover an algorithm for its solution.

3. Code the algorithm in C++.

4. Test the code.

A computer is a digital electronic machine composed of three main components: pro-
cessor, memory, and input/output devices. The processor is also called the central pro-
cessing unit, or CPU. The processor carries out instructions that are stored in the
memory. Along with the instructions, data also is stored in memory. The processor typ-
ically is instructed to manipulate the data in some desired fashion. Input/output
devices take information from agents external to the machine and provide information
to those agents. Input devices are typically terminal keyboards, disk drives, and tape
drives. Output devices are typically terminal screens, printers, disk drives, and tape
drives. The physical makeup of a machine can be quite complicated, but the user need
not be concerned with the details.

The operating system consists of a collection of special programs and has two main pur-
poses. First, the operating system oversees and coordinates the resources of the
machine as a whole. For example, when a file is created on a disk, the operating system
takes care of the details of locating it in an appropriate place and keeping track of its
name, size, and date of creation. Second, the operating system provides tools to users,
many of which are useful to the C++ programmer. Two of these tools are of paramount
importance: the text editor and the C++ compiler.

We assume the reader can use a text editor to create and modify files containing C++
code. C++ code is also called source code, and a file containing source code is called a
‘source file. After a file containing source code (a program) has been created, the C++
compiler is invoked. This process is system-dependent. (Section 1.6, Writing and Run-
ning a C++ Program, on page 14.) For example, on many UNIX systems, we can invoke
the C++ compiler with the command

CC pgm.cpp

where pgm.cpp is the name of a file that contains a program. If there are no errors in
pgm.cpp, this command produces an executable file—one that can be run, or executed.
Although we think of this as compiling the program, what actually happens is more
complicated.

1.1

Ira Pohl’s C++ by Dissection 1.1 A First Program 3
When we compile a simple program, three separate actions occur: First the preproces-
sor is invoked, then the compiler, and finally the linker. The preprocessor modifies a
copy of the source code by including other files and by making other changes. The com-
piler translates this into object code, which the linker then uses to produce the final exe-
cutable file. A file that contains object code is called an object file. Object files, unlike
source files, usually are not read by humans. When we speak of compiling a program,
we really mean invoking the preprocessor, the compiler, and the linker. For a simple
program, this is all done with a single command.

After the programmer writes a program, it has to be compiled and tested. If modifica-
tions are needed, the source code has to be edited again. Thus, part of the programming
process consists of this cycle:

When the programmer is satisfied with the program performance, the cycle ends.

1.1 A First Program

A first task for anyone learning to program is to print on the screen. Let us begin by
writing the traditional first C++ program which prints the phrase Hello, world! on the
screen. The complete program is

In file hello1.cpp

// Hello world in C++
// by Olivia Programmer

#include <iostream> // I/O library
using namespace std;

int main()
{

cout << "Hello, world!" << endl;
}

Using the text editor, the programmer types this code into a file ending in .cpp. The
choice of a file name should be mnemonic. Let us suppose hello.cpp is the name of the
file in which the program has been written. When this program is compiled and exe-
cuted, it prints the following message:

Hello, world!

compile executeedit

1.1

http://www.cse.ucsc.edu/~pohl/C++BD/01Chap/hello1.cpp

Ira Pohl’s C++ by Dissection 1.1 A First Program 4
Dissection of the hello Program

■ // Hello world in C++
// by Olivia Programmer

The // symbol is used as a rest-of-line comment symbol. Also, the
program text can be placed in any position on the page, with white
space between tokens being ignored. White space are characters such
as blanks, tabs, and new lines. White space, comments, and indenta-
tion of text are all used to create a well-documented, readable pro-
gram but do not affect program semantics.

■ #include <iostream> // I/O library

The C++ program is compiled after the preprocessor executes #-des-
ignated directives. The preprocessor precedes the compiler transla-
tion of the resulting program into machine code. The #include
directive found in the example program hello.cpp imports any needed
files, usually library definitions. In this case, the I/O library for a typi-
cal C++ compiler system is found in the file iostream. The compiler
knows where to find this and other system files.

■ using namespace std;

On C++ systems, standard C++ I/O header files are wrapped in
namespace std. The using declaration allows names to be used
without std:: prepended to each name. The include files could have
been coded without namespace and using, as follows:

#include <iostream.h> // I/O library

Most systems provide older style library_name.h header files. These
libraries do not require the using namespace std; statement.

Hey, Heidi, Alpha Centauri says ‘Hello’ and it’s in C++!

+HOOR�
ZRUOG�

+L� +HOOR
" cout << “Hello,
world!” :H¶UH
IURP $OSKD

Ira Pohl’s C++ by Dissection 1.1 A First Program 5
The expression cout << some string is used to print across the screen. It moves to a
new line when a newline character is read or it sees the endl. The screen is a two-
dimensional display that prints from left to right and top to bottom. To be readable,
output must appear properly spaced on the screen.

Let us rewrite our program to make use of two cout statements. Although the program
is different from our first one, its output is the same.

■ int main()
{

A C++ program is a collection of declarations and functions that
begins executing with the function main().

■ cout << "Hello, world!" << endl;

The identifier cout is defined in iostream as the standard output stream con-
nected by most C++ systems to the screen. The identifier endl is a standard
manipulator that flushes the output buffer, printing everything to that point
and going to a new line. The operator << is the put-to output operator, which
writes out what comes after it to cout.

Note that without the using std statement, we could have written

std::cout << "Hello, world!" << std::endl;

The :: operator is called the scope resolution operator. It tells the
compiler what scope to examine to understand identifier cout. The
scope of an identifier is the program text where the name may be
used.

■ }

This ends the function main(). In C++, braces are paired, an open
brace { can be understood as a begin construct and a closing brace }
means end construct. A function in C++ has a return type that can be
void, indicating that no value is to be returned. The special function
main() returns an integer value to the runtime system. Implicitly the
function main() returns 0, meaning that termination was normal.
This could have been written explicitly,

return 0;

just before the closing brace.

Ira Pohl’s C++ by Dissection 1.1 A First Program 6
In file hello2.cpp

// Hello world in C++
// by Olivia Programmer
// Version 2

#include <iostream> // I/O library
using namespace std;
int main()
{

cout << "Hello, ";
cout << "world!" << endl;

}

Notice that the string in the first statement ends with a blank character. If the blank
were not there, the words Hello, world! would have no space between them in the
output.

As a final variation to this program, let us add the phrase Hello, universe! and print the
statements on two lines:

In file hello3.cpp

// Hello universe in C++
// by Olivia Programmer

#include <iostream> // I/O library
using namespace std;
int main()
{

cout << "Hello, world!" << endl;
cout << "Hello, universe!" << endl;

}

When we execute this program, the following appears on the screen:

Notice that the two cout statements in the body of main() could be replaced by the sin-
gle statement

cout << "Hello, world!\nHello, universe!" << endl;

In this version, the special character \n is the newline character. This has the same
effect as an endl.

Hello, world!
Hello, universe!

http://www.cse.ucsc.edu/~pohl/C++BD/01Chap/hello2.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/01Chap/hello3.cpp

Ira Pohl’s C++ by Dissection 1.2 Problem Solving: Recipes 7
1.2 Problem Solving: Recipes

Computer programs are detailed lists of instructions for performing a specific task or
solving a particular type of problem. Instruction lists, called algorithms, are commonly
found in everyday situations. Examples include instructions for cooking a meal, knitting
a sweater, and registering for classes. Examining one of these examples is instructive.
Consider this recipe for preparing a meat roast.

The recipe is typically imprecise—what does sprinkle mean, where exactly is the ther-
mometer to be inserted, and what is a sufficient amount of pan drippings? However, the
recipe can be formulated more precisely as a list of instructions by reading between the
lines.

Cooking a Roast
1. Sprinkle roast with 1/8 teaspoon salt and pepper.

2. Turn oven on to 150ºC.

3. Insert meat thermometer into center of roast.

4. Wait a few minutes.

5. If oven does not yet register 150ºC, go back to step 4.

6. Place roast in oven.

7. Wait a few minutes.

8. Check meat thermometer. If temperature is less than 80ºC, go back to step 7.

9. Remove roast from oven.

10. If there is at least 1/2 cup of pan drippings, go to step 12.

11. Prepare gravy from meat stock and go to step 13.

12. Prepare gravy from pan drippings.

13. Serve roast with gravy.

These steps comprise three categories of instructions and activities—those that involve
manipulating or changing the ingredients or equipment, those that just examine or test
the state of the system, and those that transfer to the next step. Steps 1 and 6 are exam-
ples of the first category; the temperature test in step 8 and the pan drippings test in

Sprinkle the roast with salt and pepper. Insert a meat
thermometer and place in oven preheated to 150ºC.
Cook until the thermometer registers between 80ºC
and 85ºC. Serve roast with gravy prepared from either
meat stock or from pan drippings, if there is a suffi-
cient amount.

1.2

Ira Pohl’s C++ by Dissection 1.2 Problem Solving: Recipes 8
step 10 are instances of the second category; and transfers in steps 5 and 8 (go to step
x) are examples of the last category.

By using suitable graphical symbols for each of these categories, a simple two-dimen-
sional representation of our cooking algorithm can be obtained, as shown in the follow-
ing illustration:

Such a figure is called a flowchart. To perform the program (prepare the roast), just fol-
low the arrows and the instructions in each box. The manipulation activities are con-
tained in rectangles, the tests are shown in diamonds, and the transfer or flow of
control is determined by the arrows. Because of their visual appeal and clarity, flow-
charts are often used instead of lists of instructions for informally describing pro-
grams. Some cookbook authors even employ flowcharts extensively.

1.2.1 Algorithms—Being Precise
Our recipe for preparing a roast can’t be executed by a computer because the individual
instructions are too loosely specified. Let’s consider another example—one that manip-
ulates numbers instead of food. You need to pay for some purchase with a dollar bill
and get change in dimes and pennies. The problem is to determine the correct change
with the fewest pennies. Most people do this simple, everyday transaction unthinkingly.
But how do we precisely describe this algorithm?

In solving such a problem, trying a specific case can be useful. Let’s say that you need to
pay 77 cents and need change for a dollar. You can easily see that one dollar minus the
77 cents leaves you with 23 cents in change. The correct change having the fewest coins
in dimes and pennies would be two dimes and three pennies. The number of dimes is
the integer result of dividing 23 by 10 and discarding any fraction or remainder. The
number of pennies is the remainder of dividing the 23 cents by 10. An algorithm for
performing this change for a dollar is given by the following steps.

Sprinkle roast

Set oven to 150º

Insert

Wait a few

Oven at

Place roast

Wait a few

Roast at 80º

Remove roast

1/2 cup

Prepare gravy
from stock

Prepare gravy
from drippings

Serve roast

thermometer

in oven

drippings

YesNo

Yes

No

Yes

No

 150º

 minutes

 minutes

Ira Pohl’s C++ by Dissection 1.2 Problem Solving: Recipes 9
Change-Making Algorithm
1. Assume that the price is written in a box labeled price.

2. Subtract the value of price from 100 and place it in a box labeled change.

3. Divide the value in change by 10, discard the remainder, and place the result
in a box labeled dimes.

4. Take the integer remainder of change divided by 10 and place it in a box
labeled pennies.

5. Print out the values in the boxes dimes and pennies with appropriate labels.

6. Halt.

This algorithm has four boxes, namely, price, change, dimes, and pennies. Let’s exe-
cute this algorithm with the values given. Suppose that the price is 77 cents. Always
start with the first instruction. The contents of the four boxes at various stages of exe-
cution are shown in Table 1.1.

To execute step 1, place the first number, 77, in the box price. At the end of instruc-
tion 2, the result of subtracting 77 from 100 is 23, which is placed in the box change.
Each step of the algorithm performs a small part of the computation. By step 5, the cor-
rect values are in their respective boxes and are printed out. Study the example until
you’re convinced that this algorithm works correctly for any price under one dollar. A
good way to do so is to act the part of a computer following the recipe. Following a set
of instructions in this way, formulated as a computer program, is called hand simula-
tion or bench testing. It is a good way to find errors in an algorithm or program. In com-
puter parlance, these errors are called bugs, and finding and removing them is called
debugging.

We executed the change-making algorithm by acting as an agent, mechanically following
a list of instructions. The execution of a set of instructions by an agent is called a com-
putation. Usually, the agent is a computer; in that case, the set of instructions is a com-
puter program. In the remainder of this book, unless explicitly stated otherwise, we use
program to mean computer program.

The algorithm for making change has several important features that are characteristic
of all algorithms.

Table 1.1 Making Change

Box Step 1 Step 2 Step 3 Step 4 Step 5

price 77 77 77 77 77

change 23 23 23 23

dimes 2 2 2

pennies 3 3

Ira Pohl’s C++ by Dissection 1.3 Implementing Our Algorithm in C++ 10
Algorithms
■ The sequence of instructions will terminate.

■ The instructions are precise. Each instruction is unambiguous and subject to
only one interpretation.

■ The instructions are simple to perform. Each instruction is within the capabil-
ities of the executing agent and can be carried out exactly in a finite amount
of time; such instructions are called effective.

■ There are inputs and outputs. An algorithm has one or more outputs
(answers) that depend on the particular input data.

Our description of the change-making algorithm, although relatively precise, is not writ-
ten in any formal programming language. Such informal notations for algorithms are
called pseudocode, whereas real code is something suitable for a computer. Where
appropriate, we use pseudocode to explain an algorithm or computation to you without
all the necessary detail needed by a computer.

The term algorithm has a long, involved history, originally stemming from the name of
a well-known Arabic mathematician of the ninth century, Abu Jafar Muhammed Musa
al-Khwarizim. It later became associated with arithmetic processes and then, more par-
ticularly, with Euclid’s algorithm for computing the greatest common divisor of two
integers. Since the development of computers, the word has taken on a more precise
meaning that defines a real or abstract computer as the ultimate executing agent—any
terminating computation by a computer is an algorithm, and any algorithm can be pro-
grammed for a computer.

1.3 Implementing Our Algorithm in C++

In this section, we implement our change-making algorithm in the C++ programming
language. You need not worry about following the C++ details at this point; we cover all
of them fully in the next two chapters. For now, simply note the similarity between the
following C++ program and the informal algorithm presented earlier. You not only have
to be able to formulate a recipe and make it algorithmic, but you also have to express it
in code.

1.3

Ira Pohl’s C++ by Dissection 1.3 Implementing Our Algorithm in C++ 11
In file change.cpp

// Change in dimes and pennies

#include <iostream>
using namespace std;

int main ()
{

int price, change, dimes, pennies;

cout << "Enter price (0:100): ";
cin >> price;
change = 100 - price; // how much change
dimes = change / 10; // number of dimes
pennies = change % 10; // number of pennies
cout << "\n\nThe change is :"

<< dimes << " dimes ";
cout << pennies << " pennies." << endl;

}

Dissection of the MakeChange Program

■ int price, change, dimes, pennies;

This program declares four integer variables. These hold the values to
be manipulated.

■ cout << "Enter price (0:100): ";

This line is used to prompt you to type the price. Whenever a pro-
gram is expecting a user to do something, it should print out a
prompt telling the user what to do. The part in quotes appears on the
user’s screen when the program is run.

■ cin >> price;

This statement obtains the input typed in from the keyboard. The
value read is stored in the variable price. The symbol >> is called the
insertion operator. At this point, you must type in an integer price.
For example, you would type 77 and then hit Enter.

■ change = 100 - price; // how much change

This computes the amount of change from one dollar.

http://www.cse.ucsc.edu/~pohl/C++BD/01Chap/change.cpp

Ira Pohl’s C++ by Dissection 1.4 Software Engineering: Style 12
1.4 Software Engineering: Style

A good coding style is essential to the art of programming. It facilitates the reading,
writing, and maintenance of programs. A good style uses white space and comments so
that the code is easier to read and understand, and is visually attractive. Another impor-
tant stylistic point is to choose names for variables that convey their use in the program
to further aid understanding. A good style avoids error-prone coding habits.

Software needs to be maintained. Frequently, maintenance costs are higher than the
cost of initially writing the code. Good programming style is part of good documenta-
tion, and programs need to be readable. This includes commenting the code, choice of
identifiers, and associated documentation, such as a manual page or online help.

In this text, we are following the Bell Laboratories industrial programming style. We
place all #includes, int main()s, and braces { and } that begin and end the body of
main() in the leftmost position on the line:

#include <iostream>

int main()
{

·····
}

■ dimes = change / 10; // number of dimes
pennies = change % 10; // number of pennies

The number of dimes is the integer or whole part of the result of
dividing change by 10. The symbol /, when used with two integers,
computes the integer part of the division. The number of pennies is
the integer remainder of change divided by 10. The symbol % is the
integer remainder, or modulo operator. So if change is 23, the integer
divide of 23/10 is 2 and the integer remainder, or modulo, of 23 % 10
is 3.

■ cout << "\n\nThe change is :"
<< dimes << " dimes ";

cout << pennies << " pennies." << endl;

The quoted string prints out the characters between the quotation
marks. This includes two newlines advancing the cursor down the
screen. Then the value in dimes is printed followed by the string
" dimes ". Finally, the value of pennies is printed. For an input
value of 77, the output would be

The change is : 2 dimes 3 pennies

The endl in the last print statement indicates that a newline should
be sent to the console, ending the line of output.

1.4

Ira Pohl’s C++ by Dissection 1.5 Common Programming Errors 13
The declarations and statements in the body of main() are indented three spaces. This
visually highlights the beginning and ending of the function body. There is one blank
line following the #includes, and one between the declarations and statements in the
body of main().

An indentation of two, three, four, five, or eight spaces is common. We use three spaces.
Whatever is chosen as an indentation should be used consistently. To heighten readabil-
ity, we put a blank space on each side of the binary operators. Some programmers do
not bother with this, but it is part of the Bell Labs style.

There is no single agreed-upon good style. As we proceed through this text, we often
point out alternate styles. Once you choose a style, use it consistently. Good habits rein-
force good programming. Caution: Beginning programmers sometimes think they
should dream up their own distinctive coding style. This should be avoided. The pre-
ferred strategy is to choose a style that is already in common use.

1.5 Common Programming Errors

When you first start programming, you make many frustrating, simple errors. One such
error is to leave off a closing double quote character to mark the end of a string. When
the compiler sees the first ", it starts collecting all the characters that follow as a string.
If the closing " is not present, the string continues to the next line, causing the compiler
to complain. Error messages vary from one compiler to another. Here is one possibility:

Unterminated string or character constant

Another common error is to misspell a variable name or forget to declare it. Compilers
readily catch this kind of error and properly inform you of what is wrong. However, if
you misspell the name of a function, such as sqr() instead of sqrt(), the compiler
informs you that the function cannot be found. If you do not notice that the error mes-
sage refers to sqr instead of sqrt, you may be quite mystified.

Even elementary errors, such as forgetting to place a semicolon at the end of a state-
ment or leaving off a closing brace, can result in rather mystifying error messages from
compilers. As you become more experienced, some of the error messages produced by
your compiler will begin to make sense. Exercise 4 on page 23 suggests some program-
ming errors you may want to introduce on purpose to experiment with the error mes-
sage capability of your compiler.

1.5

Ira Pohl’s C++ by Dissection 1.6 Writing and Running a C++ Program 14
1.6 Writing and Running a C++ Program

The precise steps you have to follow to create a file containing C++ code and to compile
and execute it depend on three things: the operating system, the text editor, and the
compiler. However, in all cases, the general procedure is the same. We first describe in
some detail how it is done in a UNIX environment. Then we discuss how it is done in a
Windows environment.

In the discussion that follows, we use the CC command to invoke the C++ compiler. In
reality, however, the command depends on the compiler that is being used. For exam-
ple, if we were using the command line version of the Borland C++ compiler, we would
use the command bcc or bcc32.

Steps for Writing and Running a C++ Program
1. Using an editor, create a text file—say pgm.cpp—that contains a C++ pro-

gram. The name of the file ends with .cpp, indicating that the file contains
C++ source code. To use an editor, the programmer must know the appropri-
ate commands for inserting and modifying text. For example, to use the vi
editor on a UNIX system, we would give the command

vi pgm.cpp

2. Compile the program. This can be done with the command

CC pgm.cpp

The CC command invokes the preprocessor, the compiler, and the linker in turn. The pre-
processor modifies a copy of the source code according to the preprocessing directives
and produces what is called a translation unit. The compiler translates the translation
unit into object code. If there are errors, the programmer must start again at step 1, edit-
ing the source file. Errors that occur at this stage are called syntax errors or compile-time
errors. If there are no errors, the linker uses the object code produced by the compiler,
along with object code obtained from various libraries provided by the system, to create
the executable file a.out. The program is now ready to be executed.

3. Execute the program. This is done with the command

a.out

Typically, the program completes execution, and a system prompt reappears on the
screen. Any errors that occur during execution are called runtime errors. If, for some rea-
son, the program needs to be changed, the programmer must start again at step 1.

If we compile a different program, the file a.out is overwritten and its contents lost. If
the executable file a.out is to be saved, the file must be moved or renamed. Suppose we
give the command

CC hello.cpp

This causes executable code to be written automatically into a.out. To save this file, we
can give the command

mv a.out hello

1.6

Ira Pohl’s C++ by Dissection 1.6 Writing and Running a C++ Program 15
This moves a.out to hello. Now the program can be executed with the command

hello

In UNIX, it is common practice to give the executable file the same name as the corre-
sponding source file, except to drop the .cpp suffix. If we wish, we can use the -o option
to direct the output of the CC command. For example, the command

CC –o hello hello.cpp

causes the executable output from CC to be written directly into hello, leaving intact
whatever is in a.out.

Different kinds of errors can occur in a program. Syntax errors are caught by the com-
piler, whereas runtime errors manifest themselves only during program execution. For
example, if an attempt to divide by zero is encoded into a program, a runtime error may
occur when the program is executed.

Let us now consider the Windows environment. Here, some other text editor would
most likely be used. Some C++ systems, such as Borland C++, have both a command line
environment and an integrated environment. The integrated environment includes both
the text editor and the compiler. In Windows, the executable output produced by a C++
compiler is usually written to a file that has the same name as the source file, but with
the extension .exe instead of .cpp. Suppose, for example, we are using the command line
environment in Borland C++. If we give the command

bcc hello.cpp

then the executable code is written to hello.exe. To execute the program, we give the
command

hello.exe

or, equivalently,

hello

To invoke the program, we do not need to type the .exe extension. If we wish to rename
this file, we can use the rename command.

No, mother, I didn’t say “our secret pizza sauce
code would make us rich,” I said “our secret piece

of source code would make us rich.”

Ira Pohl’s C++ by Dissection 1.7 Dr. P’s Prescriptions 16
1.6.1 Interrupting a Program
The user may want to interrupt, or kill, a program that is running. For example, the pro-
gram may be in an infinite loop. (In an interactive environment, it is not necessarily
wrong to use an infinite loop in a program.) Throughout this text, we assume that the
user knows how to interrupt a program. In Windows and in UNIX, a control-c is com-
monly used to effect an interrupt. On some systems a special key, such as delete or
rubout, is used. Make sure you know how to interrupt a program on your system.

1.6.2 Typing an End-of-File Signal
When a program is taking its input from the keyboard, it may be necessary to type an
end-of-file signal for the program to work properly. In UNIX, this is done by typing a
control-d. In Windows, a control-z is typed instead.

1.7 Dr. P’s Prescriptions

■ Dr. P’s first rule of style is Have a style.

■ Be consistent in whatever style you choose.

■ Check that your compiler supports full, modern C++

In this book, we follow the traditional C and C++ style pioneered by Bell Laboratories
programmers, such as Brian Kernighan, Dennis Ritchie, and Bjarne Stroustrup. Several
elements of this style can be seen in our programs. Beginning and ending braces for
function definitions line up under each other and under the first character of the func-
tion definition. Beginning braces after keywords, such as do and while, follow the key-
word with the ending brace under the first character of that line. This style is in
widespread use and makes it easy for others to read your code. The style allows us to
distinguish key elements of the program visually, enhancing readability. Style should
aim for clarity for both ourselves and others who need to read our code. Cleverness by
its nature is usually obscure, and is the enemy of clarity. Hence, Kernighan and
Plauger’s maxim Write clearly—don’t be too clever. Also, inconsistent style tends to
obscure.

C++ compilers for ANSI C++, as described here, may still be incomplete. Make sure you
know what the vendors support, especially when it comes to recent changes in the use
of namespaces, exception handling, templates, and libraries.

1.7

Ira Pohl’s C++ by Dissection 1.8 C++ Compared with Java 17
1.8 C++ Compared with Java

Increasingly, beginning programmers start by studying Java. The roots of C++ and Java
both are found in C. Most serious programmers will end up learning all three languages.
This book is coordinated in its treatment with the book Java by Dissection, by Pohl and
McDowell, (Addison-Wesley, 1999) and with the book C by Dissection, Fourth Edition, by
Kelley and Pohl (Addison Wesley, 2000). These comparison sections are an enrichment
for those readers who already know or wish to know Java. If they are a distraction to
others, they can be skipped.

In this section, we implement our change-making algorithm from Section 1.2.1, Algo-
rithms—Being Precise, on page 9, in the Java programming language. This is taken from
Java by Dissection, pages 5–7.

In file MakeChange.java

// Change in dimes and pennies
import tio.*; // use the package tio

class MakeChange {
public static void main (String[] args) {

int price, change, dimes, pennies;

System.out.println("type price (0:100):");
price = Console.in.readInt();
change = 100 - price; //how much change
dimes = change / 10; //number of dimes
pennies = change % 10; //number of pennies
System.out.print("The change is :");
System.out.print(dimes);
System.out.print(" dimes ");
System.out.print(pennies);
System.out.print(" pennies.\n");

}
}

1.8

http://www.cse.ucsc.edu/~pohl/C++BD/01Chap/MakeChange.java

Ira Pohl’s C++ by Dissection 1.8 C++ Compared with Java 18
Dissection of the MakeChange Program

■ import tio.*; // use the package tio

A package is a library or collection of previously written program
parts that you can use. This line tells the Java compiler that the pro-
gram MakeChange uses information from the package tio. We devel-
oped this package especially for Java by Dissection to simplify
keyboard input for you. It allows you to write Console.in.read-
Int(), which we explain shortly. The source code is presented in
Appendix D, The tio Library, and is available for download on the Web
at ftp://ftp.awl.com/cseng/authors/pohl-mcdowell/. You can also
view it at http://www.cse.ucsc.edu/~charlie/java/tio/.

■ int price, change, dimes, pennies;

This program declares four integer variables. These hold the values to
be manipulated.

■ System.out.println("type price(0 to 100):");

This line is used to prompt you to type the price. Whenever a pro-
gram is expecting a user to do something, it should print out a
prompt telling the user what to do. The part in quotes appears on the
user’s screen when the program is run.

■ price = Console.in.readInt();

The Console.in.readInt() is used to obtain the input from the
keyboard. The value read is stored in the variable price. The symbol
= is called the assignment operator. Read the first line as the variable
price is assigned the value obtained from the input command Con-
sole.in.readInt(). At this point, you must type in an integer price.
For example, you would type 77 and then hit Enter.

■ change = 100 - price; // how much change

This line computes the amount of change.

■ dimes = change / 10; // number of dimes
pennies = change % 10; // number of pennies

The number of dimes is the integer or whole part of the result of
dividing change by 10. The symbol /, when used with two integers,
computes the whole (nonfraction) part of the division. The number of
pennies is the integer remainder of change divided by 10. The
symbol % is the integer remainder, or modulo, operator in Java. So if
change is 23, the integer divide of 23/10 is 2 and the integer remain-
der, or modulo, of 23 % 10 is 3.

ftp://ftp.awl.com/cseng/authors/pohl-mcdowell/
http://www.cse.ucsc.edu/~charlie/java/tio/

Ira Pohl’s C++ by Dissection 1.8 C++ Compared with Java 19
Throughout this book we use the tio package in order to simplify the input and output
required for Java. The source code is presented in Appendix D, The tio Library, and is
available for download on the Web at ftp://ftp.awl.com/cseng/authors/pohl-mcdowell/.
You can also view it at http://www.cse.ucsc.edu/~charlie/java/tio/.

■ System.out.print("The change is : ");
System.out.print(dimes);
System.out.print(" dimes ");
System.out.print(pennies);
System.out.print(" pennies.\n");

In this example, the System.out.print() statements cause the val-
ues between the parentheses to be printed on the computer console.
The first one just prints out the characters between the quotation
marks. The second one converts the value in dimes to the sequence of
digits and prints those digits. The other print statements are similar.
For an input value of 77, the output would be

The \n in the last print statement indicates that a newline should be
sent to the console, ending the line of output.

The change is : 2 dimes 3 pennies

ftp://ftp.awl.com/cseng/authors/pohl-mcdowell/
http://www.cse.ucsc.edu/~charlie/java/tio/

Ira Pohl’s C++ by Dissection Summary 20
Summary

■ An algorithm is a computational procedure consisting of elementary steps. Program-
ming is the art of communicating algorithms to computers.

■ When we compile a simple program, three separate actions occur: First the prepro-
cessor is invoked, then the compiler, and finally the linker.

■ A simple program consists of optional preprocessing directives and the function
main(). The body of the function is made up of declarations and statements written
between the braces { and }. All variables must be declared. The declarations must
occur before the statements that use the variables.

■ The statement

cout << "Hello, world!" << endl;

prints output to the terminal. The endl places the cursor on a new line. It also
flushes the output buffer, printing everything to that point.

■ Following a set of instructions by writing out the results is called hand simulation or
bench testing. It is a good way to find errors in an algorithm or program. Errors are
called bugs, and finding and removing them is called debugging.

■ An algorithm is a sequence of instructions that will terminate. The instructions are
precise. Each instruction is unambiguous. The instructions are simple. Each instruc-
tion is within the capabilities of the executing agent and can be carried out exactly in
a finite amount of time. There are inputs and outputs. An algorithm has one or more
outputs that depend on the particular input data.

■ Informal notations for algorithms are called pseudocode, whereas real code is some-
thing suitable for a computer. Before coding in C++, it is useful to write pseudocode
and simulate its execution.

Ira Pohl’s C++ by Dissection Review Questions 21
Review Questions

1. C++ uses the operators << and >> for and , respectively.

2. A step-by-step procedure that accomplishes a desired task is called an .

3. The operating system has two main purposes. First, the operating system oversees
and coordinates of the machine as a whole. Second, the operating system pro-
vides .

4. The compiler takes code and produces code.

5. In the code std::cout, cout is , :: is the operator, and std is .

6. A is a graphical means for displaying an algorithm.

7. int price, change, dimes, pennies;
This declares four . These hold the ____ to be manipulated.

8. The text uses style. There is following the #includes, and between the decla-
rations and statements in the body of main(). An of two, three, four, five, or
eight spaces is common.

9. In Windows and in UNIX, a is commonly used to effect an interrupt.

10. A common error is variable name or forget to it.

Ira Pohl’s C++ by Dissection Exercises 22
Exercises

1. Write on the screen the words

she sells sea shells by the seashore

(a) all on one line, (b) on seven lines, and (c) inside a box.

2. Here is part of a program that begins by having the user input three integers:

#include <iostream>
using namespace std;

int main()
{

int a, b, c, sum;

cout << "Enter three integers: ";
·····

Complete the program so that when the user executes it and types in 2, 3, and 7, this
is what appears on the screen:

3. The following program is Laura Pohl’s first program:

// Print L A U R A

#include <iostream.h>
int main()
{
cout << "L A U U RRRRR A" << endl;
cout << "L A A U U R R A A" << endl;
cout << "L A A U U R R A A" << endl;
cout << "LLL A A UUUUU R R A A "<<endl;
cout << endl;

Enter three integers: 2 3 7
Twice the sum of your integers plus 7 is 31 - bye!

Ira Pohl’s C++ by Dissection Exercises 23
// Print P O H L

cout << "PPPP OOOOO H H L " << endl;
cout << "P P O O H H L " << endl;
cout << "P P O O HHHHH L " << endl;
cout << "P O O H H L " << endl;
cout << "P OOOOO H H LLLLL" << endl;
cout << endl << endl;
cout << " By Laura Michelle Pohl " << endl << endl;
}

Rewrite this program so that it prints your name instead.

4. The purpose of this exercise is to help you become familiar with some of the error
messages produced by your compiler. You can expect some error messages to be
helpful and others to be less so. Correct each syntax error.

// Full of syntax mistakes.

#include <iostreem>
using namespace st;

int main()
{

int a = 1, b = 2, c = 3,

cout << a + b * << " = a + b";
cout <<"\nc = " << c;

}

5. Here is part of an interactive program that computes the sum of the value of some
coins. The user is asked to input the number of half dollars, quarters, dimes, etc.

#include <iostream>
using namespace std;

int main()
{

int h, // number of half dollars
q, // number of quarters
d, // number of dimes
n, // number of nickels
p; // number of pennies

·····
cout << "Your change will be computed."<< endl;
cout << "Enter how many half dollars.";
cin >> h;
cout << "\nEnter how many quarters.";
cin >> q;
·····

Ira Pohl’s C++ by Dissection Exercises 24
Complete the program, causing it to print out relevant information. For example,
you may want to create output that looks like this:

Notice that pennies is plural, not singular as it should be. After you learn about the
if-else statement in Section 2.8.3, The if and if-else Statements, on page 52,
you can modify your program so that its output is grammatically correct.

6. Modify the program that you wrote in the previous exercise so that the last line of
the output looks like this:

7. The purpose of this exercise is to find out what happens on your system when a
runtime error occurs. Try the following code:

int a = 1, b = 0;
cout << "int division by zero:" << a/b << endl;

On a UNIX system, you might get a core dump. That is, the system might create a file
named core that contains information about the state of your program just before it
ended abnormally. This file is not meant to be read by humans. A debugger can use
the core dump to give you information about what your program was doing when it
aborted. (Do not leave core dumps lying around. Because they are rather large, they
eat up valuable disk space. Also, George Belotsky points out that core dump files can
also be a security problem; someone could search in the core dump for potentially
exploitable information.)

On some systems, dividing by a floating zero does not result in a runtime error. On
other systems, it does. What happens on your system with the following code? If Inf
or NaN gets printed, you can think of the value as infinity or not a number.

double x = 1.0, y = 0.0;
cout << "double division by zero:" << x/y << endl;

You entered: 0 half dollars
3 quarters
2 dimes
17 nickels
1 pennies

The value of your 23 coins is
equivalent to 181 pennies.

The value of your 23 coins is $1.81

Native Types and Statements

CHAPTER 2
This chapter, together with Chapter 3, Functions, Pointers, and Arrays, provides an
introduction to programming in C++ using its native types and its nonOOP (object-ori-
ented programming) features. C++ was designed to expand on the C language.

A native type is one provided by the language directly. In C++, this includes the simple
types such as character, integer, and floating-point types; the boolean type; and derived
types such as array, pointer, and structure types, which are aggregates of the simple
types. This chapter focuses on the native simple data types and statements.

The intent of this and the next chapter is to enable programmers to use the kernel or
core language, that subset of C++ that comes closest to forming a traditional imperative
language such as C, Pascal, or FORTRAN. With the improvements to C in the kernel lan-
guage of C++, it is now possible to use the C language without its more extensive addi-
tional object-oriented features. Three critical enhancements are type-safety, an
improved input/output library iostream, and the generic programming feature tem-
plate. For example, in type-safety, the compiler checks that a value of correct type is
used within a statement or expression. Type-safety enables the programmer to readily
discover subtle errors.

An important object-oriented feature is type extensibility. This is the ability within the
programming language to develop new types suitable to a problem domain. For this
extensibility to work properly, the new type should work like the native types of the
kernel language. Object-oriented design of user-defined types should mimic the look
and feel of the native types. This is one reason why it is important to understand the
design and use of the native types.

For the experienced C programmer, most of this chapter’s material should be skimmed
and read mainly with an eye for differences between C and C++. For a programmer com-
ing from another language, such as Java or Pascal, or for rusty C programmers, this and
the next chapter review the C++ core language.

I told you I had Cs at my core!

C++
Farms

Ira Pohl’s C++ by Dissection 2.1 Program Elements 26
2.1 Program Elements

A program is composed of elements called tokens, which are collections of characters
that form the basic vocabulary the compiler recognizes. Table 2.1 shows the C++ char-
acter set.

In C++, tokens can be interspersed with white space and with comment text that is
inserted for readability and documentation. There are five kinds of tokens: keywords,
identifiers, literals, operators, and punctuators.

C++ distinguishes between uppercase and lowercase. As we shall see, C++ uses lower-
case in its keyword list.

As a historical note, ALGOL60 was an ancestor language to C and C++, but it has not
been used in any substantial way since the 1970s. It was the core language of Simula67,
which was the first real object-oriented language.

2.1.1 Comments
C++ has a single-line comment, written as // rest of line.

// C++ by Dissection Chapter 2 - Example

#include <vector> // vector is in STL

A multiline comment is written as /* possibly multiline comment */. Everything
between /* and */ is a comment. Multiline comments do not nest.

Table 2.1 C++ Character Set

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9

+ = _ - () * & % $ # ! | <> . , ; : " ' / ? { } ~ \ [] ^

white space and nonprinting characters, such as newline, tab, blank

2.1

I’m the most
popular token in

C++!

I’m glad that ALGOL had
unemployment benefits, but
are there any openings in

C++?

I still have lots of
work with TV game
shows, Monopoly,

and currency
exchanges.

Token Convention
Las Vegas

Ira Pohl’s C++ by Dissection 2.1 Program Elements 27
/* Multiline Comments Are Frequently Introductory
Programmer: Laura Pohl
Date: January 1, 1989
Version: DJD v4.2

*/

2.1.2 Keywords
Keywords in C++ are explicitly reserved words that have a strict meaning and may not
be used in any other way. They include words used for type declarations, such as int,
char, and float; words used for statement syntax, such as do, for, and if; and words
used for access control, such as public, protected, and private. Table 2.2 shows the
keywords in current C++ systems.

2.1.3 Identifiers
An identifier in C++ is a sequence of letters, digits, and underscores. An identifier can-
not begin with a digit. Uppercase and lowercase letters are treated as distinct. It is good
practice to choose meaningful names as identifiers. One- or two-letter identifiers can be
used when it is obvious what the name is being used for. Avoid using identifiers that
are distinguished only by case differences. In principle, identifiers can be arbitrarily
long, but many systems distinguish only up to the first 31 characters. Table 2.3 shows
examples of identifiers.

Table 2.2 Keywords

asm else new this

auto enum operator throw

bool explicit private true

break export protected try

case extern public typedef

catch false register typeid

char float reinterpret_cast typename

class for return union

const friend short unsigned

const_cast goto signed using

continue if sizeof virtual

default inline static void

delete int static_cast volatile

do long struct wchar_t

double mutable switch while

dynamic_cast namespace template

Ira Pohl’s C++ by Dissection 2.1 Program Elements 28
Table 2.4 has examples of illegal identifiers.

Table 2.3 Valid Identifiers

n Typically an integer variable

count Meaningful as documentation

buff_size C++ style—underscore separates words

bufferSize Java and Pascal style—capital separates words

q2345 Obscure

cout Used in the standard library iostream

_Sysfoo Underscore capital is for system use

too__bad Double underscore is for system use

Table 2.4 Illegal as Identifiers

for Keyword

3q Cannot start with digit

-count Do not mistake - for _

No wonder she never gets asked out:
no one can remember name or what she does!

Dee
Coder

Ann
Analyst XY1432

ACM Singles Club

Ira Pohl’s C++ by Dissection 2.1 Program Elements 29
2.1.4 Literals
Literals are constant values, such as 1 or 3.14159. There are literals for each C++ data
type. String literals are also allowed, as illustrated in Table 2.5.

Character literals are written between single quotes. Special characters can be repre-
sented with the backslash character \. (See Appendix A, ASCII Character Codes, for the
full character set.) Table 2.6 has examples of character literals.

String literals are stored as a series of characters terminated with the null character,
whose value is 0. String literals are static char[] constants. The character '"' can
be represented inside strings by escaping it with the backslash character \. Table 2.7
shows literals that contain characters requiring a backslash.

Table 2.5 Literals

5 An integer literal

5u u or U specifies unsigned

5L l or L specifies long

05 An integer literal written as octal

0x5 An integer literal written as hexadecimal

true A bool literal

5.0 A floating-point literal treated as double

5.0F f or F float—typically single precision

5.0L l or L specifies long double

Table 2.6 Character Literals

'5' Character literal—ASCII value 53

'A' Letter capital A—ASCII value 65

'a' Letter small a—ASCII value 97

'\0' Null character—terminates strings

'\t' Character printing a tab space

'\n' Character printing a new line

Table 2.7 Special Character Literals

"a" 2 bytes 'a' '\0'

"a\tb\n" 5 bytes 'a' '\t' 'b' '\n' '\0'

"1 \\" 4 bytes '1' ' ' '\\' '\0'

"\"" 2 bytes '"' '\0'

Ira Pohl’s C++ by Dissection 2.1 Program Elements 30
When printed, these strings would produce effects required by the special characters.
Thus, the second string prints an a followed by a number of white-space characters as
determined by the tab setting, and then a b followed by a newline character.

String literals that are separated only by white space are implicitly concatenated into a
single string.

"This is a single string, "
"since it is separated only "
"by white space."

The character literals are usually represented as themselves. So the character 'A'
stands for the uppercase letter A. It also has an integer representation of 65. This can
be written as the octal representation '\101' or the hexadecimal representation
'\x041'.

Some nonprinting and special characters, such as blank or newline, require an escape
sequence, as shown in Table 2.8.

Floating-point literals can be specified either with or without signed integer exponents,
as illustrated by Table 2.9.

Table 2.8 Character Constants

'\a' Alert

'\\' Backslash

'\b' Backspace

'\r' Carriage Return

'\"' Double Quote

'\f' Formfeed

'\t' Tab

'\n' Newline

'\0' Null character

'\'' Single quote

'\v' Vertical tab

'\101' Octal 101 in ASCII ‘A’

'\x041' Hexadecimal ASCII ‘A’

L'OO' wchar_t constant

Table 2.9 Floating-Point Literals

0.1234567 double is default floating-point literal

1.234F float is smallest floating-point literal

0.123456789L long double is longest floating-point literal

3. 3.0 0.3E1 All express double 3.0

300e-2 Also 3.0

Ira Pohl’s C++ by Dissection 2.2 Input/Output 31
2.1.5 Operators and Punctuators
C++ allows operators, punctuators, and white space to separate language elements. C++
gives special meaning to many characters and character sequences, illustrated in Table
2.10.

Operators are used in expressions and are meaningful when given appropriate argu-
ments. C++ has many operators. Certain symbols stand for different operators, depend-
ing on context; for instance, - can be either unary or binary minus. A unary operator is
an operator on one argument, and a binary operator is an operator on two arguments.
The unary minus expression -(expression) is equivalent in value to the binary minus
expression 0 - expression. C operators are all available in C++, but C++ has operators
that are not found in C, such as the scope resolution operator ::.

Punctuators include parentheses, braces, commas, and colons and are used to structure
elements of a program. For example, the following contain punctuators in C++:

foo(a, 7, b + 8) // comma-separated argument list
{ a = b; c = d; } // { starts statement list or block

2.2 Input/Output

C++ input/output is not directly part of the language but rather is added as a set of
types and routines found in a standard library. The C++ standard I/O library is iostream
or iostream.h. The file name without the .h extension is the official ANSI standard name.
Officially, the ANSI standard libraries that are taken from C libraries are c followed by
their names without the .h extension. The ANSI C standard library stdio.h can be used as
the ANSI C++ library cstdio. We use iostream because we are illustrating C++ practice.
This section is introductory, intended to give the bare minimum of detail to get the
reader up and running.

The iostream library overloads the two bit-shift operators.

<< // "put to" output stream, normally left shift
>> // "get from" input stream, normally right shift

This library also declares three standard streams:

Table 2.10 C++ Operators

+ - * / % Arithmetic operators

-> ->* Pointer and pointer-to-member operators

&& || Logical operators

= += *= Assignment operators

:: Scope resolution operator

new delete Free-store operators

2.2

Ira Pohl’s C++ by Dissection 2.2 Input/Output 32
cout // standard out
cin // standard in
cerr // standard error

The use of the stream in conjunction with values and variables is analogous to assign-
ment. C++ can use existing C library functions, such as printf() and scanf(), but the
iostream library is type-safe and easier to use. For example, in the expression cout <<
x, the type of the variable x determines how it is to be printed. Therefore, there are
fewer annoying formatting mismatch errors usually found in C, where with
printf("%format", x), the expression value x can be printed incorrectly when the for-
mat is mismatched.

The following example program io.cpp uses iostream. This ANSI C++ standard library is
in namespace std. This means that all the identifiers defined in this scope are consid-
ered to have as their full name std::identifier. So the full name for the standard out-
put stream is std::cout. We avoid having to use the std:: prefix by inserting the
using namespace std statement at the beginning of each program that uses files from
the standard library. Some compilers provide a .h file where this is unnecessary.

In file io.cpp

#include <iostream>
using namespace std;

int main()
{

int i;
double x;

cout << "\nEnter a double: ";
cin >> x;
cout << "Enter a positive integer: ";
cin >> i;
while (i < 1){

cerr << "error i = " << i << endl;
cout << "Enter a positive integer: ";
cin >> i;

};
cout << "i * x = " << i * x << endl;

}

Here is some sample output:

In this example, the user entered the double 1.2 and the integer 3 with the result being
outputted as the double value 3.6.

Enter a double: 1.2
Enter a positive integer: 3
i * x = 3.6

http://www.cse.ucsc.edu/~pohl/C++BD/02Chap/io.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/02Chap/io.cpp

Ira Pohl’s C++ by Dissection 2.2 Input/Output 33
Dissection of the io Program

■ int i;
double x;

The program uses two variables, one for integer input and the other
for floating-point input. It is usual in short programs to place declara-
tions at the head of the block. In longer programs, variables are often
declared near to their first use.

■ cout << "\nEnter a double: ";
cin >> x;

If we run this program, the first output statement in the preceding
code places a string on the screen. This string, "Enter a double: ",
first prints a newline character and then prompts the user for an
input value of appropriate type. The second statement expekcts the
double variable x to get a value converted from string input typed at
the keyboard. The string represents a value that is either a double or
assignment-convertible to a double. Other typed input fails. C++ I/O
is type-safe.

■ cout << "Enter a positive integer: ";
cin >> i;
while (i < 1){

cerr << "error i = " << i << endl;
cout << "Enter a positive integer: ";
cin >> i;

};

Notice how the while statement insists on getting a positive integer
value for input. When programs are to be heavily used, it is important
to test that the input is correct. For example, if -1 was entered the fol-
lowing would be printed:

The endl is a specially recognized identifier called a manipulator. It
flushes the cerr output stream and adds a newline character to the
output.

■ cout << "i * x = " << i * x << endl;

The last statement prints the string i * x = , followed by the dou-
ble value of the expression i * x.

error i = -1
Enter a positive integer:

Ira Pohl’s C++ by Dissection 2.3 Program Structure 34
2.3 Program Structure

A program in C++ is a collection of functions and declarations. The language is block-
structured, and variables declared within blocks are allocated automatically on block
entry and are freed on block exit. Unless otherwise specified, parameters are call-by-
value. The following C++ program computes the greatest common divisor of two inte-
gers.

In file gcd.cpp

// GCD greatest common divisor program

#include <iostream>
using namespace std;

int gcd(int m, int n) // function definition
{ // block begin

int r; // declaration of remainder

while (n != 0) { // not equal
r = m % n; // modulus operator
m = n; // assignment
n = r;

} // end while loop
return m; // exit gcd with value m

}

int main()
{

int x, y, howMany;

cout << "\nPROGRAM GCD C++";
cout << "\nEnter how many GCD computations? ";
cin >> howMany;
for (int i = 0; i < howMany; ++i) {

cout << "\nEnter two integers: ";
cin >> x >> y;
cout << "\nGCD(" << x << ", " << y << ") = "

<< gcd(x, y) << endl;
}

}

As you can see, C++ is very terse. C++ compilers can compile multifile programs. Large
C++ programs are prepared as separate files. Each file is conceptually a module that
contains related program declarations and definitions. On many systems, C++ source
files have as their suffix either .c, .cc, or .cpp. One popular freely available compiler for
UNIX systems is the GNU C++ translator. It is invoked with the command g++. So,

g++ module1.cpp module2.cpp my_main.cpp

2.3

http://www.cse.ucsc.edu/~pohl/C++BD/02Chap/gcd.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/02Chap/gcd.cpp

Ira Pohl’s C++ by Dissection 2.3 Program Structure 35
is the GNU C++ compile command g++, acting on three files: module1.cpp, module2.cpp,
and my_main.cpp. If compilation shows no errors, an executable a.out is produced. It is
important to rename the executable to something other than a.out , such as
program_name. Otherwise, further compilation overwrites the previous a.out. It is con-
venient to be able to directly compile to an executable, such as program_name. As men-
tioned in Section 1.6, Writing and Running a C++ Program, on page 15, this can be done
using -o program_name in the compile command. So,

g++ -o my_program module1.cpp module2.cpp my_main.cpp

compiles directly to an executable named my_program.

Dissection of the gcd Program

■ int gcd(int m, int n)

The core language relies on functional encapsulation to produce well-
designed modular programs. The function name should be chosen to
be meaningful. In this case, gcd is a standard abbreviation for great-
est common divisor. The function has two integer arguments passed
by value. More on this in Section 3.2, Function Invocation, on page 76.

■ { // block begin
int r; // declaration of remainder

Function definitions are blocks. A block begins with an open (left)
brace and includes declaration and executable statements. In C++,
declaration statements can occur anywhere in a block. In small
blocks, it is usual to place all declarations at the head of the block. In
large blocks, it is often the case that declarations appear just before
the first use of the associated variable.

■ while (n != 0) { // not equal
r = m % n; // modulus operator
m = n; // assignment
n = r;

} // end while loop

The while statement is a basic looping construct controlled by a
bool expression. In this case, as long as the expression “n is not
equal to zero” is true, the compound statement after the while
expression is executed. The compound statement is any number of
contiguous statements between a matching set of braces. In this case,
there are three assignment statements that constitute the heart of the
greatest common divisor algorithm. The operator % is the integer
modulo operator, meaning in this case, r is assigned m modulo n.

■ return m; // exit gcd with value m
}

The return statement terminates the function. Here, the return
statement returns an integer value as the value of gcd() at the point
the function was called in main().

Ira Pohl’s C++ by Dissection 2.3 Program Structure 36
2.3.1 Redirection
On most systems, input can be redirected from a file. Assume that the gcd program has
been compiled into an executable file called gcd. The command

gcd < gcd.dat

takes its input from the file gcd.dat and writes the answers to the screen. Test this with
a file containing

4 4 6 6 21 8 20 15 20

On most systems, output can also be redirected to a file. The command

gcd > gcd.ans

places its output in the file gcd.ans, taking its input from the keyboard. Note that the
messages prompting the user for input also go to that file, and the user will have to
know what to do without being prompted on the screen.

Enter the same data as before and check the file gcd.ans to see that it has the four cor-
rect answers. The two redirections can be combined as follows:

■ int main()
{

int x, y, howMany;

cout << "\nPROGRAM GCD C++";

The main() function initiates the running of a C++ program calling
any subsidiary program, such as gcd(). Here, main() prints out to
the user a message calling attention to its use. It is important to have
input/output be clear and robust so that an untrained user of a pro-
gram can readily use it without detailed knowledge of the program’s
components.

■ cout << "\nEnter how many GCD computations? ";
cin >> howMany;
for (int i = 0; i < howMany; ++i) {

The for statement is a loop that is executed howMany times. Here,
just before the loop, the user is prompted for the value of howMany.
Note that the for loop variable is declared inside the for statement;
this is not possible in C.

■ cout << "\nEnter two integers: ";
cin >> x >> y;
cout << "\nGCD(" << x << ", " << y << ") = "

<< gcd(x, y) << endl;
}

Inside the loop, the user is asked for two integer values. These are
then used as arguments to gcd(). The final brace ends the loop.

Ira Pohl’s C++ by Dissection 2.4 Simple Types 37
gcd < gcd.dat > gcd.ans

This takes its input from the file gcd.dat and places its output in the file gcd.ans. Test
this on your system. Redirection is a very useful system feature.

2.4 Simple Types

The simple native types in C++ are bool, int, double, char, and wchar_t. These types
have a set of values and representation that is tied to the underlying machine architec-
ture on which the compiler is running. Both the bool and the wchar_t types are new to
C++ and are not in C and early C++ systems. The bool type provides a native boolean
type, and wchar_t provides a wide character type, used for representing character sets
requiring more than the standard 255 characters.

C++ integral simple types can often be modified by the keywords short, long, signed,
and unsigned, to yield further simple types. The floating-point types are float, dou-
ble, and long double. Table 2.11 lists these types, shortest to longest. Length here
refers to the number of bytes used to store the type.

This basic type list runs from the conceptually shortest type, bool, to the conceptually
longest type, double. Each longer type must be at least as long as its predecessor type.
On most machines, a bool or a char is stored in a single byte. The basic types may have
modifiers short or long that can change the range of values that they can represent.
For example, on many machines a short int is 2 bytes and represents the range (-
32,768, 32,767). The unsigned modifier also changes the range by making the values
represented greater than or equal to zero. For example, on many machines an unsigned
short is 2 bytes and represents the range (0, 65,535). On many current systems, int
and float are each stored in 4 bytes. The longer types such as long int and double
are often stored in 4 bytes also, but on some systems they might be stored in 8 bytes.
The wchar_t, or wide character type, can represent distinct codes for any element of
the largest extended character set in any language’s alphabet, such as Japanese. A
wchar_t type is often the same size as an int type.

C++ also has the sizeof operator, which is used to determine the number of bytes a
particular object or type requires for storage.

Table 2.11 Fundamental Data Types

Basic Type Modifier Modifier

bool

char signed char unsigned char

wchar_t

int short int long int

unsigned unsigned short unsigned long

double float long double

2.4

Ira Pohl’s C++ by Dissection 2.4 Simple Types 38
// how many bytes it takes to store int and long

cout << "int size = " << sizeof(int) << endl;
cout << "long size = " << sizeof(long) << endl;

Using a Sun Microsystems compiler and system, this prints:

This is not a mistake but an implementation decision for Sun Microsystems. The long
type must be at least the size of the int type.

The range of integral values that can be represented on your system is defined in the
standard header file limits. Some examples from our system are shown in Table 2.12.

The range of floating-point values that can be represented on your system is defined in
the standard header file cfloat. Some examples from our system are illustrated in Table
2.13.

In Table 2.13, FLT_EPSILON is the smallest number that when added to 1 in that data
type yields a result different from 1. The C++ standard library file limits contains the
template numeric_limits, which allows the user to query the system about character-
istics of different types. For example:

int size = 4
long size = 4

Table 2.12 Range of Integral Values

#define CHAR_BIT 8 Bits per char

#define SCHAR_MIN (-128) signed char minimum

#define SCHAR_MAX 127 signed char maximum

#define UCHAR_MAX 255 unsigned char maximum

#define INT_MAX 2147483647 int maximum

#define INT_MIN (-2147483648) int minimum

#define UINT_MAX 4294967295U unsigned int maximum

Table 2.13 Range of Floating-Point Values

#define FLT_EPSILON ((float)1.19209290e-07) Float

#define FLT_MIN ((float)1.17549435e-38) Float min

#define FLT_MAX ((float)3.40282347e+38) Float max

#define DBL_EPSILON 2.2204460492503131e-16 double

#define DBL_MIN 2.2250738585072014e-308 double min

#define DBL_MAX 1.7976931348623157e+308 double max

Ira Pohl’s C++ by Dissection 2.4 Simple Types 39
// determine the maximum value for int and float

cout << numeric_limits<int>::max()
<< " is the maximum int.\n";

cout << numeric_limits<float>::max()
<< " is the maximum float.\n";

Using a Borland compiler on a Windows system, this prints:

As a rule, use the int type for most integer arithmetic and double for most floating-
point arithmetic. These types are the most efficient for their particular machines and
compilers. Shorter types can be used if memory space is a priority. Longer types should
be used when range of values or precision is needed.

2.4.1 Initialization
A variable declaration associates a type with the variable name. An important concep-
tual distinction is the following: A declaration of a variable constitutes a definition, if
storage is allocated for it. In effect, the definition creates the object.

A definition can also initialize the value of the variable. Initialization is expressed by
following the identifier name with an initializer. For simple variables, this is usually

type id = expression

Some examples of definitions are shown in the following code:

In file simple_variables.cpp

#include <iostream>
using namespace std;

int main()
{

int i = 5; // i is initialized to 5
char c1 = 'B', c2; // c2 is uninitialized
double x = 0.777, y = x + i;

cout << "i = " << i << endl; // print i = 5
cout << "x = " << x // print x = 0.777

<< "\ty = " << y << endl; // print y = 5.777
cout << "c1 = " << c1 << endl; // print c1 = B
cout << "c2 = " << c2 << endl; // print c2 = ???

}

2147483647 is the maximum int.
3.40282e+38 is the maximum float.

http://www.cse.ucsc.edu/~pohl/C++BD/02Chap/simple_variables.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/02Chap/simple_variables.cpp

Ira Pohl’s C++ by Dissection 2.5 The Traditional Conversions 40
Initialization can involve an arbitrary expression, provided that all of the variables and
functions used in the expression are defined. In the preceding example, y is initialized
in terms of the just-defined x. The uninitialized variable c2 cannot be relied on to have
any particular value associated with it. Using it in the computation before a well-defined
value is assigned to it is a mistake. As a rule of thumb, when there is a choice, it is bet-
ter to initialize a variable than to define it as uninitialized and later assign it a value. Ini-
tialization makes the code more readable, less error-prone, and more efficient.

Syntactically, C++ declarations are themselves statements and can occur intermixed
with executable statements. This differs from C, in which declarations are not syntacti-
cally statements and must either be in global scope or at the head of a block. In the pre-
vious code, we could have placed the char declarations after the first cout statement
without affecting the output.

·····
cout << "x = " << x // x = 0.777 << "\ty = "

<< y << endl; // y = 5.777
char c1 = 'B', c2; // c2 uninitialized
·····

2.5 The Traditional Conversions

The expression x + y has both a value and a type. For example, if x and y are both vari-
ables of type int, x + y is also an int. However, if x and y are of different types, x + y
is a mixed expression. Suppose that x is a short and y an int. The value of x is con-
verted, or coerced, to an int, and the expression x + y has type int. The value of x as
stored in memory is unchanged. It is only a temporary copy of x that is converted dur-
ing the computation of the value of the expression. Now suppose that both x and y are
of type short. Even though x + y is not a mixed expression, automatic conversion
again takes place; both x and y are promoted to int, and the expression is of type int.
The general rules are straightforward.

Automatic Arithmetic Expression Conversions
1. Any bool, char, short, or enum is promoted to int. Integral values that can-

not be represented as int are promoted to unsigned.

2. If, after the first step, the expression is of mixed type, the following applies,
according to the hierarchy of types:

int < unsigned < long < unsigned long
< float < double < long double

The operand of the lower type is promoted to that of the higher type, and the
value of the expression has that type.

To illustrate implicit conversion, we make some declarations and list a variety of mixed
expressions along with their corresponding types in Table 2.14.

2.5

Ira Pohl’s C++ by Dissection 2.5 The Traditional Conversions 41
An automatic conversion can occur with an assignment. For example, d = i causes the
value of i, which is an int, to be converted to a double and then assigned to d; double
is the type of the expression as a whole. A promotion, or widening, such as d = i, is
usually reliable, but a demotion, or narrowing, such as i = d, can lose information.
Here, the fractional part of d is discarded.

In addition to implicit conversions, which can occur across assignments and in mixed
expressions, there are explicit conversions, called casts. If i is an int,

static_cast<double>(i)

casts the value of i so that the expression has type double. The variable i itself
remains unchanged. The static_cast is available for a conversion that is well-defined,
portable, and essentially invertible. This makes it a safe cast, namely, one with predict-
able and portable behavior. Some more examples are

y = static_cast<char>('A' + 1)
x = static_cast<double>(static_cast<int>(y) + 1)

Casts that are representation- or system-dependent use reinterpret_cast. For exam-
ple:

i = reinterpret_cast<int>(&x) // system-dependent

System-dependent casts are undesirable and should be avoided. They are considered
unsafe.

Two other special casts exist in C++: const_cast and dynamic_cast. The const modi-
fier means that a variable’s value is nonmodifiable. Very occasionally, it is convenient to
remove this restriction, by casting away constness. This is accomplished with the
const_cast, as in

const int c_var = 5;
foo(const_cast<int&>(c_var)); // invoke foo(int&)

The type in const_cast<type> must be pointer, reference, or pointer-to-member type.
Note that in the preceding example, c_var remains unchanged outside of foo(). The
effect of the const_cast<type> (arg) is that a modifiable copy of its argument is cre-
ated and passed as an argument to the called function.

Table 2.14 Declarations

char c; long lg; double d;

short s; float f; unsigned u; int i;

Expression Type Expression Type

c - s / i int u * 3 - i unsigned

u * 3.0 - i double f * 3 - i float

c + 1 int 3 * s * lg long

c + 1.0 double d + s double

Ira Pohl’s C++ by Dissection 2.5 The Traditional Conversions 42
To use dynamic_cast, we must have an inheritance hierarchy, which is studied in Sec-
tion 8.7, RTTI and Other Fine Points, on page 353.

Older C++ systems allow an unrestricted form of cast with the following forms:

(type)expression or type(expression)

Some examples are

y = i / double(7); // does division in double
ptr = (char*)(i + 88); // C style int to pointer

The C cast notation (type) is considered obsolete and is not used in the text. The older
casts do not differentiate among relatively safe casts, such as static_cast, and sys-
tem-dependent unsafe casts, such as reinterpret_cast. The newer casts also are self-
documenting; for example, a const_cast suggests its intent through its name.

The next program converts pounds to kilograms and then computes the body mass
index.

In file body_fat.cpp

// Pounds to Kilograms and Body Mass Index BMI

#include <iostream>
using namespace std;

// conversion constants

const double lbs_to_kg = 2.2046,
inches_to_meter = 39.370;

int main()
{

int weight, height; // in pounds and inches
double kilograms, meters;

cout << "\nEnter weight in pounds: ";
cin >> weight;
kilograms = weight / lbs_to_kg;
cout << "\nThis is approximately "

<< static_cast<int>(kilograms) << "kg."
<< endl;

cout << "\nEnter height in inches: ";
cin >> height;
meters = height/inches_to_meter;
cout << "\nYour BMI is approximately "

<< "body fat ratio is "
<< kilograms/(meters * meters)
<< ". Under 25 is good."
<< endl;

}

http://www.cse.ucsc.edu/~pohl/C++BD/02Chap/body_fat.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/02Chap/body_fat.cpp

Ira Pohl’s C++ by Dissection 2.6 Enumeration Types 43
2.6 Enumeration Types

The keyword enum is used to declare a distinct integer type with a set of named integer
constants called enumerators. Consider the following declaration:

enum suit { clubs, diamonds, hearts, spades };

This declaration creates an integer type with the four suit names—clubs, diamonds,
hearts, and spades—as integer constants, whose values are 0, 1, 2, and 3, respectively.
These values are assigned by default, with the first enumerator being given the constant
integer value 0. Each subsequent member of the list is one more than its left neighbor.
The identifier suit is now its own unique type, distinct from other integer types. This
identifier is called a tag name.

Enumerators can be defined and initialized to arbitrary integer constants.

enum ages { laura = 11, max, debra = 39,
ira = debra + 7, robin };

The enumerators can be initialized to constant expressions. Note that the default rule
applies when there is no explicit initializer; therefore, in the example, max is 12 and
robin is 47.

Dissection of Casting in the body_fat Program

■ // conversion constants

const double lbs_to_kg = 2.2046,
inches_to_meter = 39.370;

The variables lbs_to_kg and inches_to_meter are global and are
initialized to the values 2.2046 and 39.370, respectively. The const
modifier means these values are nonmodifiable. As a result, the iden-
tifiers are mnemonic and provide useful documentation. A const
variable must be initialized on definition.

■ int weight, height; // in pounds and inches
double kilograms, meters;

The variable names are chosen for the specific meanings they convey.

■ cout << "\nThis is approximately "
<< static_cast<int>(kilograms) << "kg."
<< endl;

The double value of the variable kilograms is narrowed to an int.
The safe cast static_cast<int>(kilograms) truncates the double
value to an int value. Without this explicit cast, the variable kilome-
ters would have printed as a double.

2.6

Ira Pohl’s C++ by Dissection 2.7 Expressions 44
The tag name and the enumerators must be distinct identifiers within scope. The values
of enumerators need not be distinct. Enumerations can be implicitly converted to ordi-
nary integer types, but not vice versa.

enum signal { off, on } a = on; // a initialized on
enum answer { no, yes, maybe = -1 } b;
enum neg { no, off} c; // illegal: no off redeclared
int i, j = on; // legal: on converted to 1

a = off; // legal
i = a; // legal: i becomes 0
b = i; // illegal
b = static_cast<answer>(i); // legal: explicit cast

Enumerators can be declared anonymously, without a tag name. Some examples are

enum { LB = 0, UB = 99 };
enum { lazy, hazy, crazy } why;

The first declaration is a common means of declaring mnemonic integer constants. The
second declares a variable why of enumerator type, with lazy, hazy, and crazy as its
allowable values. Enumerators are useful to collect a small number of integral values
and turn them into a type. This is good for program documentation, and for program
safety as well. Type-checking allows the compiler to check that an appropriate type is
used in a given context.

2.6.1 typedef Declarations
Synonyms for type declarations can be provided with typedef declarations.

typedef int miles; // miles synonym for int
typedef char* c_string; // pointer to char
typedef void* gen_ptr; // generic pointer type
typedef point* point_ptr; // pointer to point

Besides providing a form of documentation, typedef declarations reduce complicated
declarations to simple identifiers.

2.7 Expressions

In C++, there are many special characters with particular meanings. Examples include
the arithmetic operators:

+ - * / %

which stand for the usual arithmetic operations of addition, subtraction, multiplication,
division, and modulus, respectively. In mathematics, the value of a modulus b is
obtained by taking the remainder after dividing a by b. Thus, for example, 5 % 3 has

2.7

Ira Pohl’s C++ by Dissection 2.7 Expressions 45
the value 2, and 7 % 2 has the value 1. In a program, operators can be used to separate
identifiers. Although not required, for style reasons we put white space around binary
operators to heighten readability.

a + b // a added to b
-a // -a is unary minus equal to 0 - a

Some special characters are used in different ways in different contexts, and the con-
text determines which way is intended. For example, parentheses are sometimes used
to indicate a function name; at other times, they are punctuators. Another example is
given by the expressions

a + b // + binary operator add
++a // ++ unary operator increment
a += b // += add-assignment operator means a = a + b

All of these expressions use + as a character, but ++ is a single operator, as is +=. Having
the meaning of a symbol depend on context makes for a small symbol set and a terse
language.

2.7.1 Precedence and Associativity of Operators
Operators have rules of precedence and associativity that determine precisely how
expressions are evaluated. Because expressions inside parentheses are evaluated first,
parentheses can be used to clarify or change the order in which operations are per-
formed. Consider the expression

1 + 2 * 3

The operator * has higher precedence than +, causing the multiplication to be per-
formed first, followed by the addition. Hence, the value of the expression is 7. An equiv-
alent expression is

1 + (2 * 3)

On the other hand, because expressions inside parentheses are evaluated first,

(1 + 2) * 3

is different; its value is 9. Now consider the equivalent expressions

1 + 2 - 3 + 4 - 5 and (((1 + 2) - 3) + 4) - 5

Because the binary operators + and - have the same precedence, the associativity rule
left to right is used to determine how an expression is evaluated. This means the opera-
tions are performed from left to right. Thus, they are equivalent expressions.

Table 2.15 gives the rules of precedence and associativity for the operators of C++ and
is an important reference. We break out pieces of this table when dealing with subcate-
gories of expressions, such as the logical expressions.

All operators in a given table entry, such as ++, new, and &, have equal precedence with
respect to one another but have higher precedence than all the operators in the entries

Ira Pohl’s C++ by Dissection 2.7 Expressions 46
below them. The associativity rule for all the operators in a given entry appears on the
right side of the table. These rules are essential information for every C++ programmer,
and this table is repeated in Appendix B, Operator Precedence and Associativity.

The operators include all the C operators but also have the following operators not
found in C: the scope resolution operator ::; the memory management operators new
and delete ; the modern casting operators static_cast dynamic_cast
reinterpret_cast const_cast; the member selection operators .* ->*; the throw
expression for exception handling throw; and the runtime type identifier operator
typeid.

From Table 2.15, we see that the unary operators have higher precedence than binary
plus and minus. In the expression

- a * b - c

Table 2.15 Operator Precedence and Associativity

Operators Associativity

:: (global scope)
:: (class scope)

Left to right

func() [] -> . (postfix) ++ (postfix) --
typeid(e) type(e)
dynamic_cast<type>(e)
static_cast<type>(e)
reinterpret_cast<type>(e) const_cast<type>(e)

Left to right

++ (prefix) --(prefix) ! ~
& (address) sizeof(e) + (unary) - (unary)
*(indirection) delete new (type)e

Right to left

.* ->* Left to right

* / % Left to right

+ - Left to right

<< >> Left to right

< <= > >= Left to right

== != Left to right

& Left to right

^ Left to right

| Left to right

&& Left to right

|| Left to right

?: Right to left

= += -= *= /= %= >>= <<= &= ^= |= Right to left

throw(e) Left to right

, (comma operator) Left to right

Ira Pohl’s C++ by Dissection 2.7 Expressions 47
the first minus sign is unary, and the second, binary. Using the rules of precedence, we
see that

((- a) * b) - c

is an equivalent expression.

C++ has many operators and expression forms. Arithmetic expressions in C++ are con-
sistent with C practice. For example, in both C++ and C, the results of an operator, such
as the division operator /, depend on its argument types.

a = 3 / 2; // evaluates to integer value 1
a = 3 / 2.0; // evaluates to double value 1.5

2.7.2 Relational, Equality, and Logical Operators
Just as with other operators, the relational, equality, and logical operators have rules of
precedence and associativity that determine precisely how expressions involving them
are evaluated. C++ systems use the bool values true and false to direct the flow of
control in the various statement types. Table 2.16 contains the C++ operators that are
most often used to affect flow of control.

The negation operator ! is unary. All of the other relational, equality, and logical
operators are binary, operate on expressions, and yield the bool value, either false or
true. Where a boolean value is expected, an arithmetic expression is automatically con-
verted, in each case converting zero to false and nonzero to true.

One pitfall in C++ is that the equality operator and the assignment operator are easily
confused because they are visually similar. The expression a == b is a test for equality,
whereas a = b is an assignment expression. A common C++ programming mistake is to
code something like

if (i = 1)
// do something

Table 2.16 C++ Relational, Equality, and Logical
Operators

Relational operators Less than <

Greater than >

Less than or equal to <=

Greater than or equal to >=

Equality operators Equal to ==

Not equal to !=

Logical operators (Unary) negation !

Logical and &&

Logical or ||

Ira Pohl’s C++ by Dissection 2.7 Expressions 48
intending

if (i == 1)
// do something

The first if statement assigns 1 to i and evaluates to 1, so it is always true. This error
can be very difficult to find. It is correct C++, and in certain very rare situations may be
the code the programmer intends to write. Some compilers do provide a warning when
they see a simple assignment expression as the controlling expression of a selection
statement. To prevent this error, C++ programmers can adopt the style

if (1 == i) // constant term on the left-hand side
// do something

The logical operators !, &&, and ||, when applied to expressions, yield the bool value
true or false. Logical negation can be applied to an arbitrary expression. If an expres-
sion has value false, its negation yields true.

The precedence of && is higher than ||, but both operators are of lower precedence
than all unary, arithmetic, and relational operators. Their associativity is left to right.

In the evaluation of expressions that are the operands of && and ||, the evaluation pro-
cess stops as soon as the outcome true or false is known. This is called short-circuit
evaluation. For example, suppose that expr1 and expr2 are expressions and that expr1
has value false. In expr1 && expr2, the expression expr2 is not evaluated, because the
value of the logical expression is already determined to be false. Similarly, if expr1 is
true, then expr2 in expr1 || expr2 is not evaluated, because the value of the logical
expression is already determined as true. Table 2.17 shows some examples in C++.

Short-circuit evaluation is an important feature. The following code illustrates its
importance in a typical situation:

Table 2.17 Declarations and Initialization

int a = 1, b = 2, c = 0;

C++ Parenthesized Equivalent Value

a + 5 && b ((a + 5) && b) true
!(a < b) && c ((!(a < b)) && c) false
(a == b) || c ((a == b)|| c) false

Ira Pohl’s C++ by Dissection 2.7 Expressions 49
// Compute the roots of: a * x * x + b * x + c
·····
cin >> a >> b >> c;
assert(a != 0);
discr = b * b - 4 * a * c;
if (discr == 0)

root1 = root2 = -b / (2 * a);
else if ((discr > 0) && (sqrt_discr = sqrt(discr))) {

root1 = (-b + sqrt_discr) / (2 * a);
root2 = (-b - sqrt_discr) / (2 * a);

}
else if (discr < 0) { // complex roots

·····
}
·····

The sqrt() function would fail on negative values, and short-circuit evaluation protects
the program from this error.

Of all the operators in C++, the comma has the lowest precedence. It is a binary opera-
tor with expressions as operands. In a comma expression of the form

expr1 , expr2

expr1 is evaluated first and then expr2. The comma expression as a whole has the value
and type of its right operand. For example, in

sum = 0, i = 1

if i has been declared an int, this comma expression has value 1 and type int.

The comma operator typically is used in the control expression part of an iterative
statement, when more than one action is required. The comma operator associates from
left to right.

The conditional operator ?: is unusual in that it is a ternary operator. It takes three
expressions as operands.

expr1 ? expr2 : expr3

In this construct, expr1 is evaluated first. If it is true, then expr2 is evaluated, and that
is the value of the conditional expression as a whole. If expr1 is false, expr3 is evalu-
ated, and that is the value of the conditional expression as a whole. The following exam-
ple uses a conditional operator to assign the smaller of two values to the variable x:

x = (y < z) ? y : z;

Because the conditional operator has precedence over the assignment operator, the
parentheses are not necessary, but they help make clear the nature of the test.

The type of the conditional expression

expr1 ? expr2 : expr3

Ira Pohl’s C++ by Dissection 2.8 Statements 50
is determined by expr2 and expr3. If they are different types, the usual conversion rules
apply. The conditional expression’s type cannot depend on which of the two expres-
sions expr2 or expr3 is evaluated. The conditional operator ?: associates right to left.

C++ provides bit-manipulation operators, shown in Table 2.18, which operate on the
machine-dependent bit representation of integral operands. For example, the operand ~
changes an integral operand bit-representation into its one’s complement. These
operators can be ignored by programmers who don’t manipulate underlying bit repre-
sentations.

C++ considers function call () and indexing or subscripting [] to be operators. C++
also has an address & operation and an indirection *, or dereferencing, operation. The
unary address operator yields the address, or location, where an object is stored. The
unary indirection operator is applied to a pointer that retrieves the value from the loca-
tion it is pointed at. This operation is also known as dereferencing.

In C++, we overload the shift operators to perform I/O.

C++ also has a sizeof operator, which is used to determine the number of bytes a par-
ticular object or type requires for storage. This operator is important for obtaining an
appropriate amount of storage for dynamically allocated objects.

2.8 Statements

C++ has a large variety of statement types, including an expression statement. For
example, the assignment statement in C++ is syntactically an assignment expression
followed by a semicolon. C++ and C both have assignment statements, procedure state-

Table 2.18 Bitwise Operators

~ Unary one’s complement

<< Left shift

>> Right shift

& And

^ Exclusive or

| Or

I know we were here first, but he has higher precedence!

Evaluation Center

2.8

Ira Pohl’s C++ by Dissection 2.8 Statements 51
ments, transfer statements, conditional statements, selection statements, and iterative
statements. A key difference is that, syntactically, C++ treats declarations as state-
ments, allowing them to be most anywhere in blocks, but C allows declarations only at
the head of blocks, before executable statements. In C++, declarations can also occur in
the initializer part of the for loop.

2.8.1 Assignment and Expressions
In C++, assignment occurs as part of an assignment expression, which can occur in sev-
eral forms.

a = b + 1;

This expression evaluates the right-hand side of the assignment and converts it to a
value compatible with the variable on the left-hand side. This value is assigned to the
left-hand side. The left-hand side must be an lvalue, a location in memory where a value
can be stored or retrieved. Simple variables are lvalues.

C++ allows multiple assignments in a single statement.

a = b + (c = 3);

C++ provides assignment operators that combine an assignment operator and some
other operator.

a += b; is equivalent to a = a + b;
a *= a + b; is equivalent to a = a * (a + b);

C++ also provides increment (++) and decrement (--) operators in both prefix and post-
fix form. In prefix form, the increment operator adds 1 to the value stored at the lvalue
it acts on and returns the result. Similarly, the prefix form decrement operator sub-
tracts 1 from the value stored at the lvalue it acts on and returns the result.

++i; is equivalent to i = i + 1;
--x; is equivalent to x = x - 1;

The postfix form behaves differently from the prefix form, changing the affected lvalue
after the value has been returned.

j = ++i; is equivalent to i = i + 1; j = i;
j = i++; is equivalent to j = i; i = i + 1;
i = ++i + i++; // awful practice, system-dependent

Note: These are not exact equivalencies. The compound assignment operators evaluate
their left-hand side expression once. Therefore, for complicated expressions with side
effects, results of the two forms can be different.

The null statement is written as a single semicolon and causes no action to take place. A
null statement is usually used where a statement is required syntactically but no action
is desired. This situation sometimes occurs in statements that affect the flow of control.

Ira Pohl’s C++ by Dissection 2.8 Statements 52
2.8.2 The Compound Statement
A compound statement in C++ is a series of statements surrounded by braces { and }.
The chief use of the compound statement is to group statements into an executable
unit. The body of a C++ function, for example, is always a compound statement. In C,
when declarations come at the beginning of a compound statement, the statement is
called a block. This rule is relaxed in C++, and declaration statements may occur
throughout the statement list. Wherever it is possible to place a statement, it is also
possible to place a compound statement.

2.8.3 The if and if-else Statements
The general form of an if statement is

if (condition)
statement

If condition is true, then statement is executed; otherwise, statement is skipped. After
the if statement has been executed, control passes to the next statement. A condition is
an expression or a declaration with initialization that selects flow of control. Here is an
example of an if statement:

if (temperature > 32)
cout << "Above Freezing!\n";

cout << "Fahrenheit is " << temperature << endl;

Above Freezing! is printed only when temperature is greater than 32. The second
statement is always executed.

The expression in an if statement is usually a relational, equality, or logical expression.
Here is an example with a logical-and expression:

if (grade > 70 && grade < 80) {
cout << " you passed ";
letter_gr = 'C';

}

Notice how the statement that is executed is a compound statement. This allows one
controlling if expression to execute a sequence of statements. In C++, condition evalu-
ates as a bool. In C, there is no bool type, and the controlling expression depends on a
nonzero value being considered true, and a zero value being considered false.

Closely related to the if statement is the if-else statement, which has the general
form

if (condition)
statement1

else
statement2

Ira Pohl’s C++ by Dissection 2.8 Statements 53
If condition is true, then statement1 is executed and statement2 is skipped; if condition
is false, then statement1 is skipped and statement2 is executed. After the if-else
statement has been executed, control passes to the next statement. Consider the follow-
ing code:

if (x < y)
min = x;

else
min = y;

cout << "min = " << min;

If x < y is true, then min is assigned the value of x; if x < y is false, min is assigned
the value of y. After the if-else statement is executed, min is printed.

In the next program, we show how these statements can be used in a complete program.
The program takes as input an integer grade and prints out a message and the equiva-
lent letter grade. If the entered grade was outside the normal range, a grade of Z is
printed. Notice how the if-else structure works to designate a series of logical cases.
The last if is the error case. This is a frequent coding idiom, and the good programmer
must master this form of decision making.

In file if_test.cpp

// For printing out grade meanings

#include <iostream>
using namespace std;

int main()
{

int grade; // from 0 to 100
char letter_grade = 'Z'; // A, B, C, D, F, or Z

cout << "Enter Your Number Score:" << endl;
cin >> grade;

if (grade == 100) {
cout << " First in Class!\n";
letter_grade = 'A';

}
else if (grade >= 90 && grade < 100) {

cout << " Congratulations!\n";
letter_grade = 'A';

}
else if (grade >= 80 && grade < 90) {

cout << " Very Good\n";
letter_grade = 'B';

}

http://www.cse.ucsc.edu/~pohl/C++BD/02Chap/if_test.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/02Chap/if_test.cpp

Ira Pohl’s C++ by Dissection 2.8 Statements 54
else if (grade >= 70 && grade < 80) {
cout << " Okay\n";
letter_grade = 'C';

}
else if (grade >= 60 && grade < 70) {

cout << " Work harder\n";
letter_grade = 'D';

}
else if (grade >= 0 && grade < 60) {

cout << " Sorry you failed\n";
letter_grade = 'F';

}
else

cout << " Not a recognizable grade" << endl;
cout << " Your grade was " << letter_grade

<< endl;
}

Dissection of the if_test Program

■ {
int grade; // from 0 to 100
char letter_grade = 'Z'; // A, B, C, D, F or Z

cout << "Enter Your Number Score:" << endl;
cin >> grade;

The program converts an integer grade to a letter grade. The letter
grade Z is reserved for an illegal integer grade. When asking a user for
input, always prompt the user properly.

■ if (grade == 100) {
cout << " First in Class!\n";
letter_grade = 'A';

}
else if (grade >= 90 && grade < 100) {

In a nested if-else statement, we have an initial if-expression fol-
lowed by a series of if-else expressions. Here, each if-else
expression brackets a particular grade range.

■ else if (grade >= 0 && grade < 60) {
cout << " Sorry you failed\n";
letter_grade = 'F';

}
else

cout << " Not a recognizable grade" << endl;

The very last clause is an else part. This frequently takes care of
irregular or illegal values. Here, it is an action for grades outside the
range 0 to 100.

Ira Pohl’s C++ by Dissection 2.8 Statements 55
2.8.4 The while Statement
The general form of a while statement is

while (condition)
statement

First, condition is evaluated. If it is true, statement is executed, and control passes back
to the beginning of the while loop. The result: The body of the while loop, namely,
statement, is executed repeatedly until condition is false. At that point, control passes
to the next statement. In this way, statement can be executed zero or more times.

An example of a while statement follows.

In file while_test.cpp

#include <iostream>
using namespace std;

int main()
{

int i = 1, sum = 0;

while (i <= 10) {
sum += i;
++i;

}
cout << "\nSum for i " << i << " is "

<< sum << endl;
}

The while loop increments the value of sum by the current value of i and then incre-
ments i by 1. After the body of the loop has been executed 10 times, the value of i is
11, and the value of the condition i <= 10 is false. Thus, the body of the loop is not
executed, and control passes to the next statement. When the while loop is exited, the
value of sum is 55.

■ cout << " Your grade was " << letter_grade <<
endl;
}

The if selection picks a grade of A, B, C, D or F and assigns it to the
variable letter_grade. If no grade is selected, the default value Z
prevails. The output statement prints the grade in an understandable
phrase.

http://www.cse.ucsc.edu/~pohl/C++BD/02Chap/while_test.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/02Chap/while_test.cpp

Ira Pohl’s C++ by Dissection 2.8 Statements 56
2.8.5 The for Statement
Consider the general form of a for statement:

for (for-init-statement; condition; expression)
statement

First, the for-init-statement is evaluated and may be used to initialize variables used in
the loop. Then condition is evaluated. If it is true, statement is executed, expression is
evaluated, and control passes back to the beginning of the for loop again, except that
evaluation of for-init-statement is skipped. This iteration continues until condition is
false, at which point control passes to the next statement.

The for-init-statement can be an expression statement or a simple declaration. If it is a
declaration, the declared variable has the scope of the for statement.

The for statement is an iterative statement, typically used with a variable that is incre-
mented or decremented. As an example, the following code uses a for statement to
sum the integers from 1 to 10:

In file for_test.cpp

// Use of typical for statement

#include <iostream>
using namespace std;

int main(){
int sum = 0;

for (int i = 1; i <= 10; ++i)
sum += i;

cout << " sum of 1 to 10 is " << sum << endl;
}

Any or all of the parts inside the parentheses of a for statement can be missing, but the
two semicolons must remain. If for-init-statement is missing, no initialization step is
performed as part of the for loop. If expression is missing, no incrementation step is
performed as part of the for loop. If condition is missing, no testing step is performed
as part of the for loop. The special rule for when condition is missing is that the test is
always true. Thus, the for loop in the code

for (int i = 1, sum = 0; ; ++i)
sum += i;

is an infinite loop.

http://www.cse.ucsc.edu/~pohl/C++BD/02Chap/for_test.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/02Chap/for_test.cpp

Ira Pohl’s C++ by Dissection 2.8 Statements 57
The for statement is one common case in which a local declaration is used to provide
the loop control variable, as in

for (int i = 0; i < N; ++i)
sum += a[i]; // sum array a[0] + ····· + a[N - 1]

Here, the int variable i is local to the given loop. This form of local declaration is not
possible in C, but it can be simulated as follows:

{
int i; /*local to block*/
for (i = 0; i < N; ++i)

sum += a[i];
}

2.8.6 The do Statement
The do statement can be considered a variant of the while statement. However, instead
of making its test at the beginning of the loop, the do statement makes it at the end.
The do statement always executes its body at least once. An example is

sum = i = 0;
do { // execute

sum += i;
cin >> i;

} while (i > 0); // then test

Sartre was right; there is no exit.

Ira Pohl’s C++ by Dissection 2.8 Statements 58
Consider the general form of a do statement:

do
statement

while (condition);

First, statement is executed, and then condition is evaluated. If it is true, control passes
back to the beginning of the do statement, and the process repeats itself. When the
value of condition is false, control passes to the next statement. As an example, sup-
pose that we want to add 10 positive numbers, such as the last 10 readings of your
blood pressure. We need to read in each integer and require that it be positive. The fol-
lowing code accomplishes this:

In file do_test.cpp

// Use of typical do statement

#include <iostream>
using namespace std;

int main() {
int sum = 0, n;

cout << "\nYou must enter 10 positive integers";
for (int i = 0; i < 10; ++i) {

// loop until a positive integer is entered
do {

cout << "\nEnter a positive integer: ";
cin >> n;

} while (n <= 0);
sum = sum + n;

}
cout << "Sum of 10 positive numbers is "

<< sum << endl;
}

The user is prompted for a positive integer. A negative or zero value causes the loop to
be executed again, asking for another value. Control exits the inner do loop only after a
positive integer has been entered.

2.8.7 The break and continue Statements
In C++, the break and continue statements are used to interrupt ordinary iterative
flow of control in loops. In addition, the break statement is most importantly used
within a switch statement, which can select among several cases. To interrupt the nor-
mal flow of control within a loop, the programmer can use the two special statements

break; and continue;

http://www.cse.ucsc.edu/~pohl/C++BD/02Chap/do_test.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/02Chap/do_test.cpp

Ira Pohl’s C++ by Dissection 2.8 Statements 59
The following example illustrates the use of a break statement. A test for a negative
value is made. If the test is true, the break statement causes the for loop to be exited.
Program control jumps to the statement immediately following the loop.

for (i = 0; i < 10; ++i) {
cin >> x;
if (x < 0.0) {

cout << "All done" << endl;
break; // exit loop if value is negative

}
cout << sqrt(x) << endl;

}

// break jumps to here
 ·····

In this use of a break statement, a special condition is tested for inside the loop and if
met, the loop is exited.

The continue statement causes the current iteration of a loop to stop and causes the
next iteration of the loop to begin immediately. The following code processes all charac-
ters except digits:

for (i = 0; i < MAX; ++i) {
cin.get(c);
if (isdigit(c)) {

cout << c; // echo digit
····· // do more stuff
continue; // terminate current iteration

}
// process other characters

count_non_digits++;
····· // do more stuff

}

When the continue statement is executed, control jumps to just before the closing
brace, causing the loop to begin execution at the top again. Notice that the continue
statement ends the current iteration, whereas a break statement would end the loop.

A break statement can occur only inside the body of a for, while, do, or switch state-
ment. The continue statement can occur only inside the body of a for, while, or do
statement.

2.8.8 The switch Statement
The switch statement is a multiway conditional statement generalizing the if-else
statement. The general form of the switch statement is given by

switch (condition)
statement

Ira Pohl’s C++ by Dissection 2.8 Statements 60
where statement is typically a compound statement containing case labels, and option-
ally a default label. Typically, a switch is composed of many cases, and the condition
in parentheses following the keyword switch determines which, if any, of the cases are
executed.

A case label is of the form

case constant integral expression:

In a switch statement, each case label must be unique. Typically, the action taken after
each case label ends with a break statement. If there is no break statement, execution
falls through to the next statement in the succeeding case or default. If no case label
is selected, control passes to the default label, if there is one. No default label is
required, but including one is recommended. If no case label is selected, and if there is
no default label, the switch statement is exited. The keywords case and default can-
not occur outside a switch. To detect errors, include a default, even when all of the
expected cases have been accounted for.

The Effect of a switch Statement
1. Evaluate the integral expression in the parentheses following switch.

2. Execute the case label having a constant value that matches the value of the
expression found in step 1. If no match is found, execute the default label. If
there is no default label, terminate the switch.

3. Terminate the switch when a break statement is encountered, or by falling
off the end.

The following switch statement replaces the earlier if-else nested statement in the
program if_test.cpp.

In file switch_test.cpp

// Program for printing out grade meanings

#include <iostream>
using namespace std;

int main()
{

int grade; // from 0 to 100
char letter_grade = 'Z'; // A, B, C, D, F, or Z

cout << "Enter Your Number Score:" << endl;
cin >> grade;
grade = (grade > 100) ? -1 : grade;

http://www.cse.ucsc.edu/~pohl/C++BD/02Chap/switch_test.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/02Chap/switch_test.cpp

Ira Pohl’s C++ by Dissection 2.8 Statements 61
switch (grade/10) {
case 10: cout << " First in Class!\n";

letter_grade = 'A';
break;

case 9: cout << " Congratulations!\n";
letter_grade = 'A';
break;

case 8: cout << " Very Good\n";
letter_grade = 'B';
break;

case 7: cout << " Okay\n";
letter_grade = 'C';
break;

case 6: cout << " Work harder\n";
letter_grade = 'D';
break;

case 5: case 4: case 3: case 2: case 1: case 0:
cout << " Sorry you failed\n";

letter_grade = 'F';
break;

default: cout << " Not a recognizable grade"
<< endl;

}
cout << "Your grade was " << letter_grade

<< endl;
}

Dissection of the switch_test Program

■ switch (grade/10) {

The switch expression must be an integral expression. The various
cases are a selection of the possible values computed here. In this
case, the expression should evaluate to the integers from 0 to 10.
Other values are considered illegal.

■ case 8: cout << " Very Good\n";
letter_grade = 'B';
break;

A typical case: The case label is followed normally by one or more
actions and ended by the break statement. A switch case can be
written without a break, but this is a dangerous practice. In that
instance, there is a falling through to the next case. This logic can be
confusing: It can result in error-prone, unmanageable code.

Ira Pohl’s C++ by Dissection 2.9 Software Engineering: Debugging 62
2.8.9 The goto Statement
The goto statement, the most primitive method of interrupting ordinary control flow, is
an unconditional branch to an arbitrary labeled statement in the function. The goto
statement is considered a harmful construct in most accounts of modern programming
methodology. Thus, the statement can undermine all of the useful structure provided
by other flow of control mechanisms (for, while, do, if, and switch).

A label is an identifier. By executing a goto statement of the form

goto label;

control is unconditionally transferred to a labeled statement.

label:statement

Both the goto statement and its corresponding labeled statement must be in the body
of the same function. In general, goto should be avoided.

2.9 Software Engineering: Debugging

Getting your code to work correctly is a crucial skill. Much of software engineering is
about how to avoid or how to find errors. The general term for finding errors in pro-
gramming is debugging.

Correct choice and use of type is one of the programmer’s key techniques in avoiding
errors. Languages that are strongly typed are usually safer to program in than lan-
guages that are weakly typed. C is considered a weakly typed, and therefore error-
prone, language. C++ is a more strongly typed language than C but is less so than Java.
C++ allows many different types to be mixed together in expressions with various con-
versions happening silently.

A classic C or C++ error is an expression of the form

■ case 5: case 4: case 3: case 2: case 1: case 0:
cout << " Sorry you failed\n";

letter_grade = 'F';
break;

It is permissible to have a series of case labels. Here, the program
gives the same grade for scores less than 60.

■ default: cout << " Not a recognizable grade"
<< endl;

}

The default case usually takes care of irregular or illegal values.

2.9

Ira Pohl’s C++ by Dissection 2.9 Software Engineering: Debugging 63
double x, y = 2.5;
int i = 5;

x = y + i / 3;
cout << "x = " << x << endl; // prints x = 3.5

when the programmer’s intention was to have i / 3.0. With the denominator being a
double the division would be double, and x would equal 4.13333. All C++ expressions
should be examined for suspicious conversions. Also, the programmer should test code
on some simple data for which the results are already known.

C++ has greatly improved on C’s primitive form of cast. In general, it is best to avoid
explicit casting, also known as coercion or conversion. Type logic is a safety check that
the compiler can perform statically to detect coding mistakes. However, if you must
cast, try to stay with the most benign form of conversion, static_cast<>. A true, por-
tab le convers ion is performed. At the other end of the spectrum is
reinterpret_cast<>, with nonportable, system-dependent effects. This cast should
be avoided.

C++ has changed C’s rule on where declarations can occur. Use of local declarations is
allowed in the for loop, for example. Because these rules have changed in C++ since its
introduction in 1985, some legacy code is wrong and must be updated to conform to
ANSI rules. In earlier compilers, variables that were declared in the initializer-statement
part of the for statement had scope that extended beyond the for statement. This dec-
laration would be in conflict with the same variable name declared at the head of the
block.

It is perfectly acceptable to declare simple variables, including variables used for loop-
ing, at the head of a block, most likely the beginning of a function definition. Following
this advice yields code that works in both C and C++. For example, here is an iterative
version of the Fibonacci function:

In file fibonacci_1.c

// Fibonacci series compatible with C

unsigned fibonacci(unsigned n)
{

unsigned i, sum = 0, f0 = 0, f1 = 1;

for (i = 0; i < n - 1; ++i) {
sum = f0 + f1;
f0 = f1;
f1 = sum;

}
if (n > 1)

return sum;
else

return n;
}

Using the fact that declarations are allowed in the for-init-statement we recode this pro-
gram as follows:

http://www.cse.ucsc.edu/~pohl/C++BD/02Chap/fibonacci_1.c

Ira Pohl’s C++ by Dissection 2.9 Software Engineering: Debugging 64
In file fibonacci_2.cpp

// Idiomatically correct C++
// Fibonacci series incompatible with C
// Code follows the rule of smallest enclosing scope

unsigned fibonacci(unsigned n)
{

unsigned sum = 0;

for (unsigned i = 0, f0 = 0, f1=1; i < n-1; ++i) {
sum = f0 + f1;
f0 = f1;
f1 = sum;

}
if (n > 1)

return sum;
else

return n;
}

Notice what happens if we make the following coding error:

Dissection of the fibonacci Program

■ unsigned fibonacci(unsigned n)

By using unsigned, we get a larger range of integer values that can be
correctly calculated without causing overflow.

■ {
unsigned sum = 0;

for (unsigned i=0, f0=0, f1=1; i < n-1; ++i) {

In this version of fibonacci(), we have declarations both at the
head of the block and inside the for statement. It is usual to declare
and initialize the loop counter variable i as the first part of a for
statement.

■ if (n > 1)
return sum;

else
return n;

The variable sum was declared outside of the for loop because the
return statement is outside of the for loop.

http://www.cse.ucsc.edu/~pohl/C++BD/02Chap/fibonacci_2.c
http://www.cse.ucsc.edu/~pohl/C++BD/02Chap/fibonacci_2.cpp

Ira Pohl’s C++ by Dissection 2.10 Dr. P’s Prescriptions 65
In file fibonacci_3.cpp

// ERROR because of scopes

unsigned fibonacci(unsigned n)
{

unsigned sum;

for (unsigned i=0, f0=0, f1=1, sum=0; i<n-1; ++i){
sum = f0 + f1;
f0 = f1;
f1 = sum;

}
if (n > 1)

return sum;
else

return n;
}

In this last piece of code, an error was introduced by initializing sum in the for loop.
This declares a second variable sum because it is interpreted by the compiler as part of
the list of variables declared following the keyword unsigned. The program compiles
and runs, but with system-dependent results, because there are two sum variables in
fibonacci(). The variable sum declared at the head of the block is not initialized, and
its value is the one that gets returned.

2.10 Dr. P’s Prescriptions

■ Use parentheses to make expressions readable.

■ Use one statement to a line, except very short statements that are conceptually
related, which can be on the same line.

■ A compound statement brace comes on the same line as its controlling condition. Its
matching terminating brace is lined up under the initial letter of the keyword start-
ing the statement. A function body is a compound statement and starts on its own
line.

■ Everything after the opening (left) brace is indented a standard number of spaces—
for example, as in this text, three spaces. The matching, closing (right) brace causes
subsequent statements to be lined up under it.

■ Global statements or declarations start in column 1.

■ For readability, a space is added after each token, except for the semicolon and
unary operators.

■ Declarations at the head of a block are followed by a blank line.

■ Parenthesize the return expression whenever it is not a simple expression.

2.10

http://www.cse.ucsc.edu/~pohl/C++BD/02Chap/fibonacci_3.c

Ira Pohl’s C++ by Dissection 2.10 Dr. P’s Prescriptions 66
■ The return from main() of the integer constant 0 is considered implicit. The prac-
tice of explicitly returning 0—or not—is discretionary.

■ To detect errors, include a default in the switch statement, even when all the
expected cases have been accounted for.

■ Avoid side-effect operators, such as ++, in complex expressions, unless they are
used in a known idiomatic style.

■ Use prefix increment and prefix decrement in preference to postfix when either can
be used.

■ Avoid casting expressions.

■ When possible, use the break or continue statement, rather than a goto.

These spacing and layout guidelines conform to standard industry practice and are
used to enhance readability. For example, a uniform indentation standard makes it eas-
ier to follow flow of control. One statement to a line gives adequate white space for easy
readability.

Parentheses in expressions can be used to aid clarity by making grouping and prece-
dence clear. For example, if the return expression statement is complicated, it should be
parenthesized for readability. Within expressions, spaces around operators make them
easier to read. Parentheses clarify associativity and precedence in expressions where
these can be difficult to follow. They can also aid readability.

It is customary in C, and usual in C++, to place an opening brace on the same line as the
starting keyword for a statement, such as an if or for. The closing brace lines up with
the first character of this keyword. In the ALGOL and Pascal community, the practice
was to put the equivalent to braces (begin - end tokens) on their own line, which is also
acceptable. Whichever brace policy is adopted should be adhered to by the entire pro-
grammer team at a project or company.

Starting global statements and preprocessing directives in column 1 is consistent with
historic practice, where in the earliest C systems, preprocessor directives had to be in
column 1. Also, because of indentation and rest-of-line comments, this gives the most
room to neatly lay out code.

The function main() is an integer function with the return value being passed to the
system. Zero indicates correct termination and is implicitly assumed. Historically, it was
required explicitly, so contemporary practice is to have a return 0 inside main(). The
ANSI committee endorses the new practice of not requiring it. Either practice is accept-
able, but be consistent.

Write short function definitions. Keeping all declarations at the head of such blocks
makes it easy to see what variables the function employs. These declarations should be
separated for visual clarity from executable statements that follow them.

As previously mentioned, using both the prefix and postfix increment operators can be
confusing. Stick to prefix most of the time. The same applies to the decrement
operators. Avoid multiple use of these operators on the same variable within the same
expression or statement, because the various increments, and when they occur, can be
easily misunderstood. One reason for staying with prefix is that they can sometimes be
more efficient than postfix on nonnative types.

Ira Pohl’s C++ by Dissection 2.11 C++ Compared with Java 67
In general, avoid casting. When using casts, try to use only the static_cast<>, as it is
the safest of the casts. While casts can be convenient and efficient shortcuts in code,
they are error-prone and often system-dependent.

The goto is unnecessary in C++. Other structured flow of control statements can better
be used to maintain clear flow of control. In many instances, break and continue state-
ments can be used. These also can be avoided by properly constructing if-else state-
ments.

2.11 C++ Compared with Java

The primitive types in a Java program can be boolean, char, byte, short, int, long,
float, and double. These types are always identically defined regardless of the
machine or system they run on. For example, the int type is always a signed 32-bit inte-
ger, unlike in C++, where int can vary from system to system. The boolean type is not
an arithmetic type and cannot be used in mixed arithmetical expressions. The char type
uses 16-bit Unicode values. The byte, short, int, and long are all signed integer
types, with length in bits of 8, 16, 32, and 64, respectively. Unlike in C++, unsigned
types are not provided. The floating types comply with IEEE754 standards and are
float, a 32-bit size, and double, a 64-bit size.

Java has the same basic set of operators as C++, with a few exceptions. For example,
Java does not have the comma operator, scope resolution operator, or delete operator.
Java added two operators: the instanceof and >>> operators.

The flow of control statements—if, if-else, while, for, and switch—available to
C++ are also available in Java. Although goto is a reserved word in Java, the goto state-
ment was not implemented. However, Java extended the break and continue state-
ments so that they can use labels.

We write a program, Moon, to convert to kilometers the distance in miles from Earth to
the Moon. In miles, this distance is, on average, 238,857 miles. This number is an inte-
ger. To convert miles to kilometers, we multiply by the conversion factor 1.609, a real
number. Our conversion program uses variables capable of storing integer values. The
variables in the following program are declared in main(). Java cannot have variables
declared as extern (in other words, as global or file scope variables).

In file Moon.java

// Distance to the moon converted to kilometers
public class Moon {

public static void main(String[] s) {
int moon = 238857;
int moon_kilo;
System.out.println("Earth to moon = " + moon + " mi.");
moon_kilo = (int)(moon * 1.609);
System.out.println("Kilometers = " + moon_kilo +" km.");

}
}

2.11

http://www.cse.ucsc.edu/~pohl/C++BD/02Chap/Moon.java
http://www.cse.ucsc.edu/~pohl/C++BD/02Chap/Moon.java

Ira Pohl’s C++ by Dissection 2.11 C++ Compared with Java 68
The output of the program is

Note that narrowing conversions that are implicit in C++ are not done in Java. Java, in
this case, is more type-safe than C++. Also, in Java, all the primitive types are implemen-
tation-independent. So, numerically, a Java program gets the same answer regardless of
the system it is running on. C++ continues C’s tradition of having implementation-
dependent choices of primitive types, so as to optimize performance on a given
machine.

Earth to moon = 238857 mi.
Kilometers = 384320 km.

Dissection of the Moon.java Program

■ int moon = 238857;

Variables of type int are signed 32-bit integers. They can be initial-
ized as in C.

■ System.out.println("Earth to moon = " + moon
+ " mi.");

The println() method prints a string. Either the string is a given lit-
eral string, or it is a string expression formed by concatenation. Here,
the value of moon is printed as an integer. The symbol + represents
string concatenation. By using the addition operator, println() can
print a list of arguments. Each nonstring argument is converted from
its specific type to an output string that is concatenated together and
printed along with a newline character.

■ moon_kilo = (int)(moon * 1.609);

The mixed expression moon * 1.609 is a double and must be explic-
itly converted to int. Java cast operators are notationally the same as
in C, namely, (type).

Ira Pohl’s C++ by Dissection Summary 69
Summary

This summary emphasizes, in order of appearance, changes and differences from C in
the C++ language.

■ C++ comments include the // rest of line comment while retaining the multiline
bracketed comments of C /* comment here */.

■ C++ has many new tokens not found in C. In the keyword list in Section 2.1.2, Key-
words, on page 27, there are 63 keywords, compared to 29 in C. New types include
bool and wchar_t. New operators exist in C++, such as the free-store operators new
and delete, and the scope resolution operator ::. New constructs exist, such as
exception handling, which uses throw, catch, and try. Object-building keywords
include class, private, public, and protected.

■ C++ has the new native types bool and wchar_t and literals appropriate to each
type.

■ The new ANSI header file names, such as iostream, are embedded in the namespace
std. In these cases, the construct using namespace std; allows access to the
names in this library without the need for scope-resolved names, such as
std::cout.

■ At the conclusion of the execution of main(), there is an implicit return 0. Thus, it
is proper C++ style to omit writing this explicitly, as is required by C.

■ C++ relies on an external standard library to provide input/output. The information
the program needs to use this library resides in the iostream.h or the iostream file.
This library is type-safe and requires no formatting specifications, as found in C’s
use of printf() and scanf(). In C++, a typical output expression is

cout << expression1 << expression2 << endl;

Note that cin and cout are not keywords. They are identifiers used in a standard
library. They should not be declared for other use.

■ In addition to implicit conversions, which can occur across assignments and in
mixed expressions, there are explicit conversions, called casts. New keywords intro-
duced in C++, modern casts are static_cast, reinterpret_cast, const_cast, and
dynamic_cast. Old-style C casts (type) should be avoided.

■ The keyword enum is used to declare a distinct integer type with a set of named inte-
ger constants, called enumerators. In C++, the enumerator tag name is automatically
a user-defined type.

■ Both C++ and C have assignment, procedure, transfer, conditional, selection, and
iterative statements. Two important differences are (1) C++ uses bool expressions
to control flow of control statements; and (2) C++ allows declarations as statements
instead of just being at the head of blocks or global.

■ The general form of a for statement is different from that in C.

for (for-init-statement; condition; expression)
statement

Ira Pohl’s C++ by Dissection Review Questions 70
First, the for-init-statement is evaluated and may be used to initialize variables used
in the loop. Then condition is evaluated. It is of type bool. If it is true, statement is
executed, expression is evaluated, and control passes back to the beginning of the
for loop again, except that evaluation of for-init-statement is skipped. This iteration
continues until condition is false, whereupon control passes to the next statement.
The for-init-statement can be an expression statement or a simple declaration. Where
it is a declaration, the declared variable has the scope of the for statement.

for (int i = 0; i < N; ++i)
sum += a[i]; // sum a[0] + ····· + a[N - 1]

The semantics are that the int variable i is local to the given loop. This form of
local declaration is not possible in C.

Review Questions

1. A type in C++ that C and early C++ does not have is .

2. Three keywords in C++ that are not in C are , , and . Describe their use as
far as you currently understand it.

3. What token does the new comment style in C++ involve? Why should it be used?

4. What two literal values does the bool type have? Can they be assigned to int vari-
ables? With what result?

5. What is the distinction between static_cast<> and reinterpret_cast<>? Which
is the more dangerous? Why?

6. C++ uses the semicolon as a statement .

7. The general form of a for statement is

for (for-init-statement; condition; expression)
statement

There are two important differences between the C++ for and the C for. What are
they? Explain with an example.

8. The goto should be used.

9. What happens when the condition part of the for statement is omitted?

10. It is customary in C++, to place an opening brace line as the starting keyword
for a statement, such as an if or for. The closing brace of this keyword.

Ira Pohl’s C++ by Dissection Exercises 71
Exercises

1. Rewrite the gcd() function from Section 2.3, Program Structure, on page 34, with a
for loop replacing the while loop.

2. Write a program that finds the maximum and minimum integer value of a sequence
of inputted integers. The program should first prompt the user for how many values
will be entered. The program should print this value out and ask the user to confirm
this value. If the user fails to confirm the value, she must enter a new value.

3. Short-circuit evaluation is an important feature. The following code illustrates its
importance in a typical situation:

// Compute the roots of: a * x * x + b * x + c
·····
cin >> a >> b >> c;
assert(a != 0);
discr = b * b - 4 * a * c;
if (discr == 0)

root1 = root2 = -b / (2 * a);
else if ((discr > 0) && (sqrt_discr = sqrt(discr))) {

root1 = (-b + sqrt_discr) / (2 * a);
root2 = (-b - sqrt_discr) / (2 * a);

}
else if (discr < 0) { // complex roots

·····
}
·····

The sqrt() function would fail on negative values, and short-circuit evaluation pro-
tects the program from this error. Complete this program by having it compute
roots and print them out for the following values:

a = 1.0, b = 4.0, c = 3.0
a = 1.0, b = 2.0, c = 1.0
a = 1.0, b = 1.0, c = 1.0

4. Use the complex library to provide the C++ complex number type, and rewrite the
preceding root-finding program to print out roots as complex numbers when appro-
priate. Compare this to a C implementation. In ANSI C++, use #include <complex>.
In the main program, declare such variables as

complex<double> root1, root2; // template type

5. What does the following program print? The last expression will cause an error on
most machines.

Ira Pohl’s C++ by Dissection Exercises 72
// What is printed?

int main()
{

char c = 'A';
int i = 3, j = 1, m = 0;
bool p = false, q = true;

cout << c << " is integer value " << int(c)
<< " and !'A' is " << !c << endl;

cout << "i = " << i << ", !i = " << !i << endl;
cout << "!!i = " << !!i << ", !m = " << !m

<< endl;
cout << "p = " << p << ", q = " << q << endl;
cout << "!p = " << !p << ", !q = " << !q

<< endl;
cout << "!(i + j) || m = " << (!(i + j) || m)

<< endl;
cout << "q || (j / m) = " << (q || (j / m))

<< endl;
cout << "(j / m) || q = " << ((j / m) || q)

<< endl;
}

6. The C++ switch statement allows two or more cases to be executed for the same
value by allowing the code to fall through.

switch (i) {
case 0: case 1:

++hopeless; // fall through
case 2: case 3:

++weak;
case 4: case 5:

++fails; break;
case 6: case 7:

++c_grades; break;
case 8:

++b_grades; break;
case 9:

++a_grades; break;
default:

cout << "incorrect grade " << i << endl;
}

Hand simulate this statement for i equals 1. Write the equivalent if-else state-
ments.

7. (George Belotsky) Rewrite the if_test program to avoid printing the Z grade. First, it is
possible to print just the letter grade along with the descriptive message in every if
clause. This will prevent the Z grade from being printed. Another alternative is to

Ira Pohl’s C++ by Dissection Exercises 73
wrap the final output in an if statement that ensures the grade is not Z before
printing. A common variant of the last alternative is to use a boolean variable as a
flag to decide whether or not to print.

8. Use sizeof to determine the number of bytes each of the following requires on your
local system: bool, char, short, int, long, float, double, and long double. Also
do this for the enumerated types

enum bounds { lb = -1, ub = 511 };
enum suit { clubs, diamonds, hearts, spades };

9. Write a program to convert from Celsius to Fahrenheit. The program should use
integer values and print integer values that are rounded. Recall that zero Celsius is
32 degrees Fahrenheit and that each degree Celsius is 1.8 degrees Fahrenheit.

10. Write a program that prints whether water at a given Fahrenheit temperature would
be solid, liquid, or gas. In the computation, use an enumerated type:

enum state { solid = STMP, liquid = LTMP,
gas = GTMP };

11. Write a program that accepts either Celsius or Fahrenheit and produces the other
value as output. For example, input 0C, output 32F; input 212F, output 100C.

12. Simplify the following code:

for (sum =i = 0, j = 2, k = i+j; i < 10 || k < 15;
++i, ++j, ++k)

sum += (i < j)? k : i;

Remember that comma expressions are sequences of left-to-right evaluations, with
each comma-separated subexpression evaluated in strict order.

13. In the C world, more flexible file I/O is available by using the FILE declaration and
file operations found in stdio. The C++ community uses fstream, as discussed in Sec-
tion 9.5, Files, on page 375. Familiarize yourself with this library. Convert the gcd
program in Section 2.3, Program Structure, on page 34, to use fstreams. The pro-
gram should get its arguments from the command line, as in

gcd gcd.dat gcd.ans

Ira Pohl’s C++ by Dissection Exercises 74
14. The following code prints 100 random numbers:

int main()
{

int how_many = 100;

cout << "Print " << how_many
<< " random integers." << endl;

for (int i = 0; i < how_many; ++i)
cout << rand() << '\t';

cout << endl;
}

Add code that determines average, maximum, and minimum values generated. Note
that the rand() function is found in the C stdlib library.

15. Alter the previous program to ask the user how many numbers should be generated.
Have this be an outer loop. Exit this program when the user answers with zero or a
negative number.

16. The constant RAND_MAX is the largest integer that rand() generates. Use RAND_MAX/
2 to decide whether a random number is to be heads or tails. Generate 1,000 ran-
domly generated heads and tails. Print out the ratio of heads to tails. Is this a rea-
sonable test to see whether rand() works correctly? Print out the size of the longest
series of heads thrown in a row.

17. The conditions in selection and iterative statements can be declaration statements,
such as if (bool d = test()) , where scope is restricted to the statement.
Write a program that tests whether your compiler conforms to this latest ANSI rule
change.

18. Rewrite fibonacci(), found in Section 2.9, Software Engineering: Debugging, on
page 64, as a recursive function. Test it against the iterative form to see which is
faster. Useful timing functions can be found in the ctime library.

19. (Java) Rewrite the convert from Celsius to Fahrenheit program in exercise 9 on page
73, in Java.

20. (Java) Rewrite the C++ Fibonacci program in Section 2.9, Software Engineering:
Debugging, on page 64, in Java. Have it print out the first 40 Fibonacci numbers.
Investigate the for loop scope rules in Java.

CHAPTER 3
Functions, Pointers, and Arrays
This chapter focuses on functions, pointers, and arrays. It continues a discussion
from Chapter 2, Native Types and Statements, on how to program classically in C++. In
C++, a primary unit for structuring a program is the function. Aggregate data in C++ are
either arrays or structures. In both cases, a pointer type is used as a mechanism for
accessing such data.

3.1 Functions

A programmer can solve a simple problem in C++ with a single function. More difficult
problems can be decomposed into subproblems, each of which can be either coded
directly or further decomposed. Decomposing difficult problems until they are directly
codable as single C++ functions is the software engineering method of stepwise refine-
ment. The function construct in C++ is used to write code for these directly solvable
subproblems. These functions are combined into other functions and are ultimately
used in main() to solve the original problem.

C++ has C at its core.

C++
Farms

3.1

Ira Pohl’s C++ by Dissection 3.2 Function Invocation 76
The function mechanism is provided in C++ to perform distinct programming tasks.
Some functions, such as strcpy() and rand(), are provided by libraries; others can be
written by the programmer. C++ has default arguments, function overloading, and inlin-
ing of functions, features not available in C.

3.2 Function Invocation

A C++ program is made up of one or more functions, one of which is main(). Program
execution always begins with main(). When program control encounters a function
name, the function is called, or invoked. This means that program control passes to the
function. The place at which a function is called is known as its calling environment.
After the function does its work, program control is passed back to the calling environ-
ment, which continues execution from that point.

As a simple example, consider the following program, echo, which uses the string
library and echoes an input word.

In file echo1.cpp

#include <iostream>
using namespace std;

void echo(const string message)
{

cout << message << endl;
}

int main()
{

string word;

cout << "Enter your word: ";
cin >> word; // reads to white space
echo(word);

}

3.2

NORAD C
COMMAND

WAR ROOM

OUTSIDE
LINE

CNN

The pressure is getting to him. He doesn’t want to get called.

http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/echo1.cpp

Ira Pohl’s C++ by Dissection 3.2 Function Invocation 77
If the word entered is taxonomy, the following appears on the screen:

Enter your word: taxonomy
taxonomy

Dissection of the echo Program

■ void echo(const string message)
{

cout << message << endl;
}

This very simple function performs the action of printing out a mes-
sage and advancing to a new line on the screen. The keyword void as
the function return type means no value is expected back from this
function. A function without a return value is called a pure procedure.
The const keyword indicates that the string message will not be
modified by echo(). A discussion of this use of const is given in Sec-
tion 3.15, Reference Declarations, on page 103.

■ string word;

cout << "Enter your word: ";
cin >> word; // reads to white space

The string type is found in the standard library but is not a native
type. The user is prompted for the word that is to be echoed. The
word is read in after the user hits the enter key.

■ echo(word);

At this point, the function main() calls, or invokes, the function
echo(). Echo has as a parameter the variable word. The code defined
by the echo() function is executed at this point using the variable
word’s value.

Ira Pohl’s C++ by Dissection 3.3 Function Definition 78
3.3 Function Definition

The C++ code that describes what a function does is called the function definition. Its
form is

function header
{

statements
}

Everything before the first brace makes up the header of the function definition, and
everything between the braces makes up the body of the function definition.

In its simplest form, the syntax of a function header is

type name(parameter-declaration-list)

The type specification that precedes the function name is the return type and deter-
mines the type of the value that the function returns, if any. We will see more involved
functions headers in Section 10.7, Exception Specification, on page 408.

In the function definition for echo() in the echo program, the parameter list has one
parameter. The body of the function consists of a block. Because the function does not
return a value, the return type of the function is void.

Parameters are syntactically identifiers, and they can be used within the body of the
function. The parameters in a function definition are called formal parameters to
emphasize their role as placeholders for the values that are passed to the function
when it is called. When the function is invoked, the value of the argument correspond-
ing to a formal parameter is used within the body of the executing function. These
parameters are call-by-value, meaning that only the values from the calling environment
are passed, and not the variables themselves. This implies that if the called function
changes the value of its formal parameters, the variables in the calling environment
remain unchanged.

C++ functions can have declarations at the head of the block or elsewhere, as long as
the variable is declared before its use. This differs from C, where variable declarations
must be at the head of a block. So in the echo program, main() could have been written
as

In file echo2.cpp

int main()
{

cout << "Enter your word: ";
string word; // place declaration near its use
cin >> word;
echo(word);

}

3.3

http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/echo2.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/echo2.cpp

Ira Pohl’s C++ by Dissection 3.4 The return Statement 79
In ANSI C++, the empty parameter list is always equivalent to using void. Thus, main()
is equivalent to main(void). The function main() implicitly returns the integer value 0
if no explicit return expression statement is executed.

3.4 The return Statement

The return statement is a flow of control statement. When a return statement is exe-
cuted, the current function terminates, and program control is immediately passed
back to the place where the function was invoked. In addition, if an expression follows
the keyword return, the value of the expression is returned to the calling point as well.
This value must be assignment-convertible to the return type of the function definition
header.

A return statement has one of the following two forms:

return;
return expression;

Some examples are

return;
return (a + b);

Using parentheses in the return expression is optional, a stylistic device that some pro-
grammers use to enhance readability. Here is an example used to find the maximum of
two values:

int maximum(int value1, int value2)
{

if (value1 > value2)
return value1;

else
return value2;

}

Hey, I’m not a blockhead! I’m the head { } of a block.”

3.4

Ira Pohl’s C++ by Dissection 3.5 Function Prototypes 80
Notice how there are two return expressions. Some programming experts prefer that
there be only one exit to a function. This is to simplify flow of control analysis of the
program. We can rewrite the preceding code and avoid using two returns:

int maximum(int value1, int value2)
{

int answer;

if (value1 > value2)
answer = value1;

else
answer = value2;

return answer;
}

This makes the program longer and less efficient by requiring an additional variable
answer to be allocated and assigned. We can rewrite the preceding code and avoid this
inefficiency by using the conditional operator:

int maximum(int value1, int value2)
{

return (value1 > value2 ? value1 : value2);
}

Note that the return value from int main() is a special case. Modern C++ does not
require a return statement from this int function but instead acts as if return 0 is the
last statement in main().

3.5 Function Prototypes

The syntax of functions in C++ is type-safe, with the types of parameters listed inside
the header parentheses. By explicitly listing the type and number of arguments, strong
type-checking and assignment-compatible conversions are possible.

A function can be declared before it is defined. It can be defined later in the file or come
from a library or user-specified file. Such a declaration is called a function prototype and
has the general form

type name(argument-declaration-list);

The argument-declaration-list is typically a comma-separated list of types. If a function
has no parameters, the preferred style for such an empty parameter list is
function_name(). The function’s argument list can include the argument identifiers.
This information allows the compiler to enforce type compatibility. Arguments are con-
verted to these types as if they were following rules of assignment.

The use of the empty parameter list differs from that in traditional C, in which an
empty parameter list can indicate an unknown number of arguments. Frequently, C pro-
grammers indicate an empty parameter list by using function_name(void). In C++, the

3.5

Ira Pohl’s C++ by Dissection 3.6 Call-By-Value 81
empty parameter list is the same as the use of void. We used in the echo program the
function echo(). Its prototype in main() would be

void echo(string);

Both the function return type and the argument-list types are explicitly mentioned. The
definition of echo() that occurs in the file must match this declaration. The function
prototype can also include the identifier names of the arguments. In the case of echo(),
this is

void echo(const string message);

C++ uses the ellipsis symbol (...) for an unspecified argument list. The stdio function
printf() is declared as the prototype:

int printf(const char* cntrl_str, ...);

Such a function can be invoked on an arbitrary list of parameters. This practice should
be avoided because of loss of type-safety. Type-safety is when the compiler checks that
appropriate values are used in an expression. The ellipsis deliberately avoids this check
and places the onus on the programmer to provide correct arguments.

3.6 Call-By-Value

Functions are invoked by writing their name and an appropriate list of arguments
within parentheses. These arguments match in number and type (or compatible type)
the parameters in the parameter list in the function definition. The compiler enforces
type compatibility. The basic argument-passing mechanism inherited from the C lan-
guage is call-by-value. That is, each argument is evaluated and its value is used locally in
place of the corresponding formal parameter. Thus, if a variable is passed to a function,
the stored value of that variable in the calling environment will not be changed. Here is
an example that clearly illustrates the concept of call-by-value:

In file compute_sum.cpp

#include <iostream>
using namespace std;

int compute_sum(int n) // sum from 1 to n
{

int sum = 0;
for (; n > 0; --n) // value of n is changed

sum += n;
return sum;

}

3.6

http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/compute_sum.cpp

Ira Pohl’s C++ by Dissection 3.6 Call-By-Value 82
int main()
{

int n = 3, sum;

cout << n << endl; // 3 is printed
sum = compute_sum(n);
cout << n << endl; // 3 is printed
cout << sum << endl;

}

Even though n is passed to compute_sum() and the value of n in the body of that func-
tion is changed, the value of n in the calling environment remains unchanged. It is the
value of n that is being passed, not n itself.

This call-by-value mechanism is in contrast to that of call-by-reference. In Section
3.14.2, Pointer-Based Call-By-Reference, on page 100 we explain how to accomplish call-
by-reference using pointers. In Section 3.14.2, Reference Declarations, on page 102, we
show how to achieve call-by-reference using reference declarations. Call-by-reference is
a way of passing addresses (references) of variables to a function that then allows the
body of the function to make changes to the values of variables in the calling environ-
ment.

Function invocation with call-by-value means:
1. Each expression in the argument list is evaluated.

2. The value of the expression is converted, if necessary, to the type of the for-
mal parameter, and that value is assigned to its corresponding formal param-
eter at the beginning of the body of the function. This means a local copy is
made.

3. The body of the function is executed using the local copy of the parameter.

4. If a return statement is executed, then control is passed back to the calling
environment.

5. If the return statement includes an expression, then the value of the expres-
sion is converted, if necessary, to the type given by the type specifier of the
function, and that value is passed back to the calling environment, too.

6. If the return statement does not include an expression, then no useful value
is returned to the calling environment.

7. If no return statement is present, then control is passed back to the calling
environment when the end of the body of the function is reached. No useful
value is returned.

8. All arguments are passed call-by-value. A change in the value of the local copy
does not affect the passed in arguments value.

Ira Pohl’s C++ by Dissection 3.7 Recursion 83
3.7 Recursion

A recursive function calls itself as part of its definition. A simple recursive function has
two main parts: the base-case part, where it computes a value and terminates, and the
recursive part, where it calls itself. Recursion is often used to define mathematical func-
tions, such as the factorial function. Having recursive functions in C++ allows the pro-
grammer to use a simple code body to define these functions.

In file factorial.cpp

// Recursive factorial function

long factorial(int n)
{

if (n <= 1)
return 1;

else
return n * factorial(n - 1);

}

Notice how the recursive call is with the expression n - 1. This guarantees that the
function factorial() terminates. Each recursion reduces the called expression by 1
until the termination condition n <= 1 is true. In running this computation, be aware
that for even relatively small values of n (such as 13), the computation fails because of
integer overflow.

Let us look at another simple example of recursion:

In file blast_off.cpp

// Recursive blast_off function

void count_down(unsigned int n)
{

if (n <= 0)
cout << "BLAST OFF" << endl;

else {
cout << "Count_down at time " << n << endl;
count_down(n - 1);

}
}

3.7

http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/factorial.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/blast_off.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/factorial.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/blast_off.cpp

Ira Pohl’s C++ by Dissection 3.8 Default Arguments 84
If count_down(5) were executed, the output would be:

A pseudocode prescription for writing a simple recursion is

// base-case part

if (base-case condition)
return base-case computed value;

// general case as a recursion

else
return recursively computed expression;

The greatest common divisor of two integers is recursively defined in pseudocode as
follows:

GCD(m,n) is:
if m modulo n equals 0 then n;
else GCD(n, m mod n);

Recall that the modulo operator in C++ is %. To test your understanding, do exercise 4
on page 133.

3.8 Default Arguments

A formal parameter can be given a default argument, usually a constant that occurs fre-
quently when the function is called. Use of a default argument saves writing this default
value at each invocation. The ability to provide default values to arguments does not
exist in C or Java.

The default argument is placed in the function header by using initializing syntax
within the argument list for one or more of its right-most parameters. Here are some
examples:

Count_down at time 5
Count_down at time 4
Count_down at time 3
Count_down at time 2
Count_down at time 1
BLAST OFF

3.8

Ira Pohl’s C++ by Dissection 3.8 Default Arguments 85
// Function headers with default arguments

void print_banner(string s = "PohlsBerry Inc.");
int add_increment(int i, int increment = 1);
int echo(const string s, int how_many = 2);
int compute_age(int year, month mth,

int birth_year = 1989,
month birth_month = january);

In the case of print_banner(), we expect to mostly print the default string Pohls-
Berry Inc. In the case of add_increment(), we expect to mostly add 1 to the argu-
ment substituted for i. In the case of echo(), we expect to repeat the argument string s
twice. In the case of compute_age(), we expect to mostly use it for someone born in
January 1989.

Where invoked, a function with a default argument can either substitute an actual argu-
ment for the default or omit the argument.

// Calls to the corresponding functions

void print_banner("Produced by ABC"); // not default
int add_increment(x); // default and 1 is added
int echo("Boo Hoo", n); // not default echo n times
int compute_age(2005, april); // both args default
int compute_age(2005, april, 1954); // 1 arg default
int compute_age(2005, may, 1954, july); // not default

The use of default values is a convenience. As a rule of thumb, use such a value when
the majority of the calls to a function involve the default value. An example might be a
printing function for printing authorship of the program. Because you are most likely
the author, it can make sense to use your own name for the default.

void author_ship(string date,
string version,
string programmer = "Albie B. Coder")

{
cout << programmer << endl;
cout << "Version Number is " << version << endl;
cout << date << endl;

}

Here are two calls with and without a programmer value:

author_ship("1/1/2005", "1.3");
// Albie B. Coder is the programmer

author_ship("1/1/2003", "2.7", "L.M.P.");
// L.M.P. is the programmer

Another example is the following recursive function:

Ira Pohl’s C++ by Dissection 3.9 Functions as Arguments 86
In file powers.cpp

int sqr_or_power(int n, int k = 2) // k=2 is default
{

assert(k > 1); // if false program aborts
if (k == 2)

return (n * n);
else

return (sqr_or_power(n, k - 1) * n);
}

We assume that most of the time the function is used to return the value of n squared.
The assert is discussed in Section 3.24.2, Software Engineering: Program Correctness,
on page 124.

sqr_or_power(i + 5) // computes (i + 5) squared
sqr_or_power(i + 5, 3) // computes (i + 5) cubed

Only trailing parameters of a function can have default values. This rule allows the com-
piler to know which arguments are defaulted when the function is called with fewer
than its complete set of arguments. The rule substitutes the explicit arguments for the
leftmost arguments and then uses defaults for any of the remaining contiguous unspec-
ified arguments. Some examples are

void foo(int i, int j = 7); // legal
void goo(int i = 3, int j); // illegal
void hoo(int i, int j = 3, int k = 7); // legal
void noo(int i, int j = 2, int k); // illegal

3.9 Functions as Arguments

Functions in C++ can be thought of as the addresses of the compiled code residing in
memory. Functions are therefore a form of pointer and can be passed as a pointer-value
argument into another function. Using this idea, we write code that prints n values of a
mathematical function f(x), starting at an initial value using a specific increment. This
plotting routine can be used to generate a function map that later is used to find prop-
erties of f(x), such as a root of the function f(x).

In file plot.cpp

double f(double x) { return (x * x + 1.0 / x); }

void plot(double fcn(double), double x0, double incr, int n)
{

for (int i = 0; i < n; ++i) {
cout << " x :" << x0 << " f(x) : " << fcn(x0) << endl;
x0 += incr;

}
}

3.9

http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/plot.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/powers.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/plot.cpp

Ira Pohl’s C++ by Dissection 3.9 Functions as Arguments 87
int main()
{

cout << "mapping function x * x + 1.0 / x " << endl;
plot(f, 0.01, 0.01, 100);

}

Dissection of the plot Program

■ double f(double x) { return (x * x + 1.0 / x); }

This is a function that returns a double. The function has a single
argument that is also a double. Functions are considered pointer val-
ues. They are the addresses in memory that store the function’s code.
A pointer has a type. In this case, this is a function of one argument
that is double returning a double.

■ void plot(double fcn(double), double x0,
double incr, int n)

Notice that the first argument to plot() is a function of a specific
type. Functions as arguments are strongly typed. In this case, plot()
takes a function with one argument that is double whose return type
is double.

■ for (int i = 0; i < n; ++i) {
cout << " x :" << x0

<< " f(x) : " << fcn(x0) << endl;
x0 += incr;

}

The heart of plot() is a loop that prints out at intervals of size incr
the value of the fcn() function.

■ int main()
{

cout << "mapping function x * x + 1.0 / x "
<< endl;

plot(f, 0.01, 0.01, 100);
}

The plot() function is called with f() inside main(), so there are
three layers of function call. First, main() is called. Inside main(), the
function plot() is called. Finally, inside the loop within plot(), the
function f() is called repeatedly.

Ira Pohl’s C++ by Dissection 3.10 Overloading Functions 88
3.10 Overloading Functions

Function overloading is the ability to have multiple definitions for the same function
name within the same scope. The usual reason for picking a function name is to indi-
cate the function’s chief purpose. Readable programs generally have a diverse and liter-
ate choice of identifiers. Sometimes different functions are used for the same purpose.
For example, consider a function that averages a sequence of double values versus one
that averages a sequence of int values. Both are conveniently named average(), as in
the following code. An overloaded function can be written in which there are distinct
argument lists. The list of arguments must differ in either type or number or both.

In file average.cpp

double average(const int size, int& sum)
{

int data;
cout << "\nEnter " << size << " integers: " << endl;

for (int i = 0; i < size; ++i) {
cin >> data;
sum += data;

}
return static_cast<double>(sum) / size;

}

double average(const int size, double& sum)
{

double data;
cout << "\nEnter " << size << " doubles: " << endl;

for (int i = 0; i < size; ++i) {
cin >> data;
sum += data;

}
return sum / size;

}

The following code shows how average() is invoked:

int main()
{

int isum = 0;
double dsum = 0.0;

cout << average(10, isum) << " int average" << endl;
cout << average(10, dsum) << " double average" << endl;

}

The compiler chooses the function with matching types and arguments. The signature-
matching algorithm gives the rules for performing this. By signature, we mean the list

3.10

http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/average.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/average.cpp

Ira Pohl’s C++ by Dissection 3.11 Inlining 89
of types that are used in the function declaration. The rules for this match are very
detailed. We discuss them in more detail in Section 5.9, Overloading and Signature
Matching, on page 208. Conceptually, the algorithm picks the best available match.
Therefore, if the arguments are exactly matched to the signature, that is the match
selected. In the preceding code, the arguments exactly matched the two versions of the
overloaded function average().

It is important not to abuse this feature. Multiple functions with the same name can
often be confusing. It is not readily apparent to the programmer which version is being
called. The use of function overloading is good design when each version of the over-
loaded function conceptually performs the same computation. In the previous example,
the same computation of summing a sequence is done as discussed in Chapter 6, Tem-
plates and Generic Programming.

3.11 Inlining

The keyword inline can be placed at the beginning of a function declaration. It tells
the compiler to attempt to replace the function call by the function body code. This
avoids function call invocation. On most computers, this leads to a substantial speed-
up when executing simple functions. This speed improvement can come at the expense
of an increase in the size of the executable code.

In file inline.cpp

inline double cube(double x)
{

return (x * x * x);
}

The compiler parses this function, providing semantics that are equivalent to a nonin-
line version. Compiler limitations prevent complicated functions, such as recursive
functions, from being inlined.

3.11.1 Software Engineering: Avoiding Macros
Macro expansion is a scheme for placing code inline that would normally use a function
call. The #define preprocessor directive supports general macro substitution, as in the
following:

#define SQR(X) ((X) * (X))
#define CUBE(X) (SQR(X)*(X))
#define ABS(X) (((X) < 0) ? -(X) : X)

·····
y = SQR(t + 8) - CUBE(t - 8);
cout << sqrt(ABS(y));

3.11

http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/inline.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/inline.cpp

Ira Pohl’s C++ by Dissection 3.12 Scope and Storage Class 90
The preprocessor expands the macros and passes on the resulting text to the compiler.
So the preceding is equivalent to

y = ((t+8) * (t+8)) - (((t-8) * (t-8)) * (t-8));
cout << sqrt((((y) < 0)? -(y) : y));

One reason for all the parentheses is to avoid precedence mistakes, as would occur in
the following:

#define SQR(X) X * X
·····
y = SQR(t + 8); // expands to t + 8 * t + 8

Macro expansion provides no type-safety as is given by the C++ parameter-passing
mechanism. Because the macro argument has no type, no assignment type conversions
are applied to it, as they would be in a function. Although careful definition and use of
macros can prevent such mistakes, C++ programmers avoid macro definitions by using
inlining for purposes of code efficiency. Macros using #define are a holdover from C
methodology.

3.12 Scope and Storage Class

The core language has two principal forms of scope: local scope and file scope. Local
scope is scoped to a block. Compound statements that include declarations are blocks.
Function bodies are examples of blocks. They contain a set of declarations that include
their parameters. File scope has names that are external (global). There are also class
scope rules, which are discussed in Section 4.6, Class Scope, on page 150. Every variable
and function in C++ has two attributes: type and storage class. The four storage classes
are automatic, external, register, and static, with corresponding keywords

auto extern register static

Inlining makes you so much faster.

3.12

Ira Pohl’s C++ by Dissection 3.12 Scope and Storage Class 91
The basic rule of scoping is that identifiers are accessible only within the block in which
they are declared. Thus, they are unknown outside the boundaries of that block. A sim-
ple example follows.

In file scope_test.cpp

// Examples of scope rules

#include <iostream>
using namespace std;

int b = 15; // file scope

int main()
{

int a = 2; // outer block a
cout << a << endl; // prints 2
{ // enter inner block

int a = b; // inner block a
cout << a << endl; // prints 15

} // exit inner block
cout << ++a << endl; // 3 is printed

}

Each block introduces its own nomenclature. An outer block name is valid unless an
inner block redefines it. If redefined, the outer block name is hidden, or masked, from
the inner block. Inner blocks may be nested to arbitrary depths that are determined by
system limitations. In the preceding example, there is a global variable b, which is avail-
able throughout the code. Similarly, the output stream identifier cout is available as it
is declared in the file iostream. The local variable a is declared in the outer block and
redeclared in the inner block. In the inner block, the inner declaration of a masks the
outer block variable a.

In C++, declarations can be almost anywhere in a block. An example shows this:

int max(int size)
{

cout << "Enter " << size << " integers" << endl;

int comp, data;
cin >> comp;
for (int i = 1; i < size; ++i) { // declare i

cin >> data;
if (data > comp)

comp = data;
}
return comp;

}

In C++, the scope of an identifier begins at the end of its declaration and continues to
the end of its innermost enclosing block.

http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/scope_test.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/scope_test.cpp

Ira Pohl’s C++ by Dissection 3.12 Scope and Storage Class 92
Even though C++ does not require that declarations be placed at the head of blocks, it is
frequently good practice to do so. Because blocks are often small, this practice provides
a good documentation style for commenting on their associated use.

Sometimes it is appropriate to declare variables later on in a block. One circumstance is
when placing declarations within blocks allows a computed or input value to initialize a
variable. A second circumstance is when large objects need to be allocated for a short
time toward the end of a block.

3.12.1 The Storage Class auto
Variables declared within function bodies are by default automatic, making automatic
the most common of the four storage classes. An automatic variable is allocated within
a block, and its lifetime is limited to the execution of that block. Once the block is
exited, the value of such a variable is lost. If a compound statement contains variable
declarations, these variables can be used within the scope of the enclosing compound
statement. Recall that a compound statement with declarations is a block.

Declarations of variables within blocks are implicitly of storage class automatic. The
keyword auto can be used to explicitly specify the storage class. An example is

auto int a, b, c;
auto float f = 7.78;

Because the storage class is automatic by default, the keyword auto is seldom used.

3.12.2 The Storage Class extern
One method of transmitting information across blocks and functions is to use external
variables. When a variable is declared outside a function at the file level, storage is per-
manently assigned to it, and its storage class keyword is extern. A declaration for an
external variable can look just like a declaration for a variable that occurs inside a func-
tion or a block. Such a variable is considered to be global to all functions declared after
it. On block exit or function exit, the external variable remains in existence. Such vari-
ables cannot have automatic or register storage class.

The keyword extern is used to tell the compiler “Look for it elsewhere, either in this
file or in some other file.” Thus, two files can be compiled separately. The use of extern
in the second file tells the compiler that the variable is to be defined elsewhere, either in
this file or in another one. The ability to compile files separately is important for writ-
ing large programs.

Since external variables exist throughout the execution life of the program, they can be
used to transmit values across functions. They may, however, be hidden if the identifier
is redefined. Another way to conceive of external variables is as being declared in a
block that encompasses the whole file.

Information can be passed into a function two ways: by external variables and by the
parameter mechanism. The parameter mechanism is the preferred method, although

Ira Pohl’s C++ by Dissection 3.12 Scope and Storage Class 93
there are exceptions. This tends to improve the modularity of the code and reduce the
possibility of undesirable side effects.

Here is a simple example of using external declarations for a program that sits in two
separate files.

In file circle.cpp

const double pi = 3.14159;
double circle(double radius)
{

return (pi * radius * radius);
}

In file circle_main.cpp

double circle(double); // function of scope extern

int main()
{

double x;
·····
cout << circle(x) << " is area of circle of radius "

<< x << endl;
}

With the GNU system, this is compiled as g++ circle.c circle_main.c.

The const modifier causes pi to have local file scope, so pi cannot be directly
imported into another file. When such a definition is required elsewhere, it must be
modified explicitly with the keyword extern.

3.12.3 The Storage Class register
The storage class register tells the compiler that the associated variables should be
stored in high-speed memory registers, provided it is physically and semantically possi-
ble to do so. Since resource limitations and semantic constraints sometimes make this
impossible, the storage class register defaults to automatic whenever the compiler
cannot allocate an appropriate physical register. Therefore, the register declaration
can be used in place of an automatic declaration.

When speed is of concern, the programmer may choose a few variables that are most
frequently accessed and declare them to be of storage class register. Common candi-
dates for such treatment include loop variables and function parameters. Here is an
example:

{
for (register i = 0; i < LIMIT; ++i) {

·····
}

}

http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/circle.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/circle_main.cpp

Ira Pohl’s C++ by Dissection 3.12 Scope and Storage Class 94
The declaration register i; is equivalent to register int i;. If a storage class is
specified in a declaration and the type is absent, the type is int by default.

The storage class register is of limited usefulness. It is taken only as advice to the
compiler. Furthermore, contemporary optimizing compilers are often more astute than
the programmer.

3.12.4 The Storage Class static
Static declarations have two important and distinct uses. The more elementary use is to
allow a local variable to retain its previous value when the block is reentered. By con-
trast, ordinary automatic variables lose their value on block exit and must be reinitial-
ized. The second, more subtle use is in connection with external declarations and is
discussed below.

As an example of the value-retention use of static, we write a function that maintains
a count of the number of times it is called:

int f()
{

static int called = 0;

++called;
·····
return called;

}

The first time the function is invoked, the variable called is initialized to 0. On func-
tion exit, the value of called is preserved. When the function is invoked again, called
is not reinitialized; instead, it uses its retained value from the previous time the func-
tion was called.

In its second, more subtle use, static provides a privacy mechanism that is very
important for program modularity. By privacy, we mean visibility or scope—restrictions
on otherwise accessible variables or functions.

This use restricts the scope of the function. Static functions are visible only within the
file in which they are defined. Unlike ordinary functions, which can be accessed from
other files, a static function is available throughout its own file but in no other. Again,
this facility is useful in developing private modules of function definitions. Note that in
C++ systems with namespaces, this mechanism should be replaced by anonymous
namespaces (see Section 3.12.5, Namespaces, on page 98).

// C scheme of file privacy using static extern
// C++ should replace this with anonymous namespaces

static int goo(int a)
{

·····
}

Ira Pohl’s C++ by Dissection 3.12 Scope and Storage Class 95
int foo(int a)
{

·····
b = goo(a);
// goo() is available here but not in other files
·····

}

In C++, the system initializes to 0 both external variables and static variables that are
not explicitly initialized by the programmer. Such variables include arrays, strings,
pointers, structures, and unions. For arrays and strings, this means that each element is
initialized to 0; for structures and unions, it means that each member is initialized to 0.
In contrast, automatic and register variables usually are not initialized by the system
and can start with garbage values.

3.12.5 Header Files and Linkage Mysteries
Typically, a large program is written in a separate directory as a collection of .h and .c
files, with each .c file containing one or more function definitions. Each .c file can be
recompiled as needed, saving time for both the programmer and the machine. Let us
suppose we are developing a large program called pgm. At the top of each of our .c files,
we put the line

#include "pgm.h"

When the preprocessor encounters this directive, it looks first in the current directory
for the file pgm.h. If there is such a file, it is included. If not, the preprocessor looks in
other system-dependent places for the file. If the file pgm.h cannot be found, the pre-
processor issues an error message and compilation stops.

Our header file pgm.h may contain #includes, #defines, declarations of enumeration
types, declarations of class types, other programming constructs, and a list of function
prototypes at the bottom. Thus pgm.h contains program elements that are appropriate
for our program as a whole. Because the header file pgm.h occurs at the top of each .c
file, it acts as the “glue” that binds our program together.

#includes

#defines
·····

list of fct prototypes

multi_main.cpp
pgm.h

#include "pgm.h"
·····

multi_fct.cp

#include "pgm.h"
·····

multi_print.cpp

#include "pgm.h"
·····

Ira Pohl’s C++ by Dissection 3.12 Scope and Storage Class 96
We show a very simple example of how this works. We write our program in a separate
directory. It consists of a .h file and three .cpp files. Typically, the name of the directory
and the name of the program are the same. Here is our multi_main program:

In file pgm.h:

#include <iostream>
#include <cstdlib>
using namespace std;

#define N 3

void fct1(int k);
void fct2();
void prn_info(const string& pgm_name);

In file multi_main.cpp:

#include "pgm.h"

int main()
{
 char ans;
 int k, n = N;

 cout << "This program does not do very much.\n";
 cout << "Do you want more information? ";

cout << "Enter either y or Y if yes. " << endl;
 cin >> ans;

if (ans == 'y' || ans == 'Y')
 prn_info("multi_main");
 for (k = 0; k < n; ++k)
 fct1(k);

cout << "Best Regards!" << endl;
}

In file multi_fct.cpp:

#include "pgm.h"

void fct1(int n)
{
 int i;

 cout << "Hello from fct1()" << endl;
 for (i = 0; i < n; ++i)
 fct2();
}

http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/pgm.h
http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/multi_main.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/multi_fct.cpp

Ira Pohl’s C++ by Dissection 3.12 Scope and Storage Class 97
void fct2()
{
 cout << "Hello from fct2()" << endl;
}

In file multi_prn.cpp:

#include "pgm.h"

void prn_info(const string& pgm_name)
{
 cout << "Usage: " << pgm_name << endl;
 cout << "This program illustrates a " << endl;
 cout << "program in more than one file." << endl;
 cout << "In this example, a single" << endl;
 cout << ".h file is included at the" << endl;
 cout << "top of our three .cpp files." << endl;
 cout << "Thus pgm.h acts as the \"glue\"" << endl;
 cout << "that binds the program." << endl;
}

We compile the program with the command

cc -o multi_main multi_main.cpp multi_fct.cpp multi_prn.cpp

The compiler creates the executable file multi_main along with three .o files that corre-
spond to .cpp files. In Windows, they are .obj files.

Multifile programs require proper linkage. C++ requires some special rules to avoid hid-
den inconsistencies. As already indicated, a name declared at file scope as explicitly
static is local and is hidden from other files. This form of linkage is called internal
linkage. By default, const and typedef declarations have internal linkage. A const
variable that is at file scope but is not static can be given external linkage by declaring it
extern. Finally, linkage to C code is possible using the form

extern "C" { code or included file }

Linkage to languages other than C is system-dependent. For example, some systems
might allow "Java".

It is the coder’s responsibility to make sure that all names referring to the identical con-
struct are consistent. It is beyond the scope of this text to discuss all the nuances of
linkage.

http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/multi_prn.cpp

Ira Pohl’s C++ by Dissection 3.13 Namespaces 98
Tips for Avoiding Linkage Problems
■ Use header files for function prototypes, class definitions, constants, type-

defs, templates, inline functions, and named namespaces.

■ Use these header files with an #ifdef __filename as a guard against multiple
inclusion.

■ Think in terms of the one-definition rule (ODR), which states that classes, enu-
merations, templates, and so forth must be defined exactly once in the pro-
gram.

■ As a heuristic, envision writing the code into one monolithic file and seeing
whether this causes conflicts.

3.13 Namespaces

C++ inherited C’s single global namespace. Programs written by two or more parties can
have inadvertent name clashes when combined. C++ encourages multivendor library
use. This motivates the addition of a namespace scope to ANSI C++.

namespace LMPinc {
class puzzles { ····· };
class toys { ····· };
·····

}

The namespace identifier can be used as part of a scope-resolved identifier, which has
the form

namespace_id::id

A using declaration lets a client have access to all names from that namespace.

using namespace LMPinc;
toys top; // LMPinc::toys

Namespaces can also nest.

namespace LMPinc{
int n;
namespace dolls { // inner namespace

int sq(){ return n * n; } // LMPinc::n
void pr_my_logo();

}
void LMPdolls::pr_my_logo()

{ cout << "Dolls by Laura" << endl; }
}

3.13

Ira Pohl’s C++ by Dissection 3.14 Pointer Types 99
As mentioned in Section 3.12.4, The Storage Class static, on page 94, namespaces can
be used to provide a unique scope that replaces static global declarations. This is done
by an anonymous namespace definition, as in

namespace { int count = 0; } // count unique here

// count is available in the rest of the file
void chg_cnt(int i) { count = i; }

Library headers conforming to the ANSI C++ standard no longer use the .h suffix. Files
such as iostream and complex are declared within the namespace std. Vendors no
doubt will continue shipping old-style headers, such as iostream.h or complex.h, as well,
so that old code can run without change.

3.14 Pointer Types

C++ pointers, used to reference variables and machine addresses, are intimately tied to
array and string processing. C++ arrays can be considered a special form of pointer
associated with a contiguous piece of memory for storing a series of indexable values.

Pointers are used in programs to access memory and to manipulate addresses. If v is a
variable, &v is the address, or location in memory, of its stored value. The address oper-
ator & is unary and has the same precedence and right-to-left associativity as the other
unary operators. Pointer variables can be declared in programs and then used to take
addresses as values. The following declares p to be of type “pointer to int”:

int* p;

The legal range of values for any pointer always includes the special address 0, as well
as a set of positive integers that are interpreted as machine addresses on a particular
system. Some examples of assignment to the pointer p are

p = &i; // address of object i
p = 0; // special sentinel value
p = static_cast<int*>(1507);// absolute address

In the first example, we think of p as “referring to i,” “pointing to i,” or “containing the
address of i.” The compiler decides what address to assign the variable i. This varies
from machine to machine and most likely differs for various executions on the same
machine. The second example is the assignment of the special value 0 to the pointer p.
This value is typically used to indicate a special condition. For example, a pointer value
of 0 is returned by a call to the operator new when free storage is exhausted. By conven-
tion, a pointer value of 0 is also used to indicate the end of a dynamic data structure,
such as a tree or a list. In the third example, the cast is necessary to avoid a type error,
and an actual memory address is used.

3.14

Ira Pohl’s C++ by Dissection 3.14 Pointer Types 100
3.14.1 Addressing and Dereferencing
As in C, the dereferencing, or indirection, operator * is unary and has the same prece-
dence and right-to-left associativity as the other unary operators. If p is a pointer, *p is
the value of the variable that p points to. The direct value of p is a memory location,
whereas *p is the indirect value of p—namely, the value at the memory location stored
in p. In a certain sense, * is the inverse operator to &. Here is code showing some of
these relationships:

int i = 5, j;
int* p = &i; // pointer p is init to address of i

cout << *p << " = i stored at " << p << endl;
j = p; // illegal pointer not convert to int
j = *p + 1; // legal
p = &j; // p points to j

3.14.2 Pointer-Based Call-By-Reference
The addresses of variables can be used as arguments to functions so that the stored val-
ues of the variables can be modified. Experienced C programmers should skip this dis-
cussion and go to Section 3.14.2, Reference Declarations, on page 102. In pointer-based
call-by-reference, pointers must be used in the parameter list in the function definition.
Then, when the function is called, addresses of variables must be passed as arguments.
For example, let us code a function order() that exchanges two values if the first value
is greater than the second value:

In file order1.cpp

// Pointer-based call-by-reference

void order(int*, int*);

int main()
{

int i = 7, j = 3;

cout << i << '\t' << j << endl; // 7 3 printed
order(&i, &j);
cout << i << '\t' << j << endl; // 3 7 printed

}

http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/order1.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/order1.cpp

Ira Pohl’s C++ by Dissection 3.14 Pointer Types 101
void order(int* p, int* q)
{

int temp;

if (*p > *q) {
temp = *p;
*p = *q;
*q = temp;

}
}

Most of the work of this program is carried out by the function call to order(). Notice
that the addresses of i and j are passed as arguments. As we shall see, this allows the
function call to change the values of i and j in the calling environment.

The rules for using pointer arguments to achieve call-by-reference can be summarized
as follows:

Call-By-Reference Using Pointers
1. Declare a pointer parameter in the function header.

2. Use the dereferenced pointer in the function body.

3. Pass an address as an argument when the function is called.

Dissection of the order() Function

■ void order(int* p, int* q)
{

int temp;

The parameters p and q are both of type pointer to int. The variable
temp is local to this function and is of type int.

■ if (*p > *q) {
temp = *p;
*p = *q;
*q = temp;

}

If the value of what is pointed to by p is greater than the value of what
is pointed to by q, the following is done. First, temp is assigned the
value of what is pointed to by p; second, what is pointed to by p is
assigned the value of what is pointed to by q; and third, what is
pointed to by q is assigned the value of temp. This interchanges in the
calling environment the stored values of whatever p and q are point-
ing to.

Ira Pohl’s C++ by Dissection 3.15 Reference Declarations 102
3.15 Reference Declarations

Reference declarations, a C++ feature not available in C, declare the identifier to be an
alternative name, or alias, for an object specified in an initialization of the reference.
Reference declarations allow a simpler form of call-by-reference parameters. Some
examples are

int n;
int& nn = n; // nn is alternative name for n
double a[10];
double& last = a[9]; // last is an alias for a[9]

Declarations of references that are definitions must be initialized and are usually initial-
ized to simple variables. The initializer is an lvalue expression, which gives the vari-
able’s location in memory. In these examples, the names n and nn are aliases for each
other; that is, they refer to the same object. Modifying nn is equivalent to modifying n,
and vice versa. The name last is an alternative to the single array element a[9]. These
names, once initialized, cannot be changed.

When a variable i is declared, it has an address and memory associated with it. When a
pointer variable p is declared and initialized to &i, it has an identity separate from i.
The pointer p has memory associated with it that is initialized to the address of i. When
a reference variable r is declared and initialized to i, it is identical to i. It does not have
an identity separate from the other names for the same object. In effect, r is just
another name for i, that is, an alias.

The following definitions are used to demonstrate the use of dereferencing and alias-
ing. The definitions assume that memory at location 1004 is used for integer variable a
and that memory at 1008 is used for pointer variable p.

int a = 5; // declare and define a
int* p = &a; // p points to a
int& ref_a = a; // alias for a
*p = 7; // *p is lvalue of a, so a is assigned 7
a = *p + 1; // rvalue 7 added to 1 and a assigned 8

Notice in the preceding figure of pointer declarations that any change to the value of a
is equivalent to changing ref_a. Such a change affects the dereferenced value of p. The

3.15

5 7 8

ad
dr

es
s
10

04

ad
dr

es
s
10

08

p

1004 a, ref_a

Pointer Declarations

Ira Pohl’s C++ by Dissection 3.15 Reference Declarations 103
pointer p can be assigned another address and lose its association with a. However, a
and ref_a are aliases and within scope must refer to the same object. These declara-
tions can be used for call-by-reference arguments, which allows C++ to have call-by-ref-
erence arguments directly. The function order(), using this mechanism, is recoded as
follows:

In file order2.cpp

void order(int& p, int& q)
{

int temp;

if (p > q) {
temp = p;
p = q;
q = temp;

}
}

The function would be prototyped and invoked in main() as follows:

void order(int& p, int& q);

int main()
{

int i, j;
·····
order(i, j);
·····

}

If i and j are int variables, then order(i, j) uses the reference to i and the refer-
ence to j to exchange, if necessary, their two values. In traditional C, this operation
must be accomplished by using pointers and dereferencing.

When function arguments are to remain unmodified, it can be efficient and correct to
pass them const call-by-reference. This is the case for types that are structures. The
const is not strictly necessary, but it indicates the programmer’s intent not to modify
these values and allows the compiler to check this.

struct large_size {
int mem[N];
·····

};

http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/order2.cpp

http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/order2.cpp

Ira Pohl’s C++ by Dissection 3.16 The Uses of void 104
void print(const large_size& s) // efficient
{

// when invoked only a pointer value is passed
·····
}

int add(large_size s) // inefficient
{

// when invoked a local copy of s is made
·····
}

3.16 The Uses of void

The keyword void is used to declare the generic pointer type—pointer to void. The
keyword void is also used as the return type of a function not returning a value. In pro-
gramming, such a function is sometimes called a pure procedure. In addition, void can
be used in a cast to indicate that a value is unneeded.

Most interesting is the use of void* as a generic pointer type. A pointer declared as
type pointer to void, as in void* gp, may be assigned a pointer value of any type but
may not be dereferenced. Dereferencing is the operation * acting on a pointer value to
obtain what is pointed at. It would not make sense to dereference a pointer to a void
value.

void* gp; // generic pointer
int* ip; // int pointer
char* cp; // char pointer

gp = ip; // legal conversion
ip = reinterpret_cast<int*>(gp);// legal conversion
cp = ip; // illegal conversion
*ip = 15; // legal dereference of pointer to int
*ip = *gp; // illegal generic pointer dereference

A key use for this type is as a formal parameter. For example, the library function mem-
cpy() is declared in cstring:

void* memcpy(void* s1, const void* s2, size_t n);

On older C++ systems or on C systems, this is declared in string.h. This function copies
n characters from the object based at s2 into the object based at s1. The function works
with any two pointer types as arguments. The type size_t is defined in cstddef and is
often a synonym for unsigned int.

A further use of void given as the parameter list in a function declaration means that
the function takes no arguments. Thus, int foo() is equivalent in C++ to int
foo(void).

3.16

Ira Pohl’s C++ by Dissection 3.17 Arrays 105
3.17 Arrays

An array is a data type used to represent a large number of values of the same type. An
array might be used to represent all the salaries in a company or all the weights of par-
ticipants in a fitness program. Each element in an array has a position, with the initial
element having position zero. An array element’s position can be used as an index or
subscript to access that element. The elements of an array are randomly accessible
through the use of subscripts. Arrays of all types are possible, including arrays of
arrays. A typical array declaration allocates memory starting from a base address. An
array name is, in effect, a pointer constant to this base address. In C++, only one-dimen-
sional arrays are provided, with the first element always indexed as element zero.

To illustrate some of these ideas, let us write a small program that fills an array, prints
out values, and sums the elements of the array:

In file sum_array1.cpp

// Simple array processing

const int SIZE = 5;

int main()
{

int a[SIZE]; // get space for a[0],·····,a[4]
int sum = 0;

for (int i = 0; i < SIZE; ++i) {
a[i] = i * i;
cout << "a[" << i << "] = " << a[i] << " ";
sum += a[i];

}
cout << "\nsum = " << sum << endl;

}

The output of this program is

The preceding array requires enough memory to store five integer values. Thus, if a[0]
is stored at location 1,000, the remaining array elements on a system needing 4 bytes
for an int are successively stored at locations 1004, 1008, 1012, and 1016. It is consid-
ered good programming practice to define the size of an array as a constant. Since
much of the code may depend on this value, it is convenient to be able to change a sin-
gle const int SIZE declaration to process various size arrays. Notice how the various
parts of the for statement are neatly tailored to provide a terse notation for dealing
with array computations.

a[0] = 0 a[1] = 1 a[2] = 4 a[3] = 9 a[4] = 16
sum = 30

3.17

http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/sum_array1.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/sum_array1.cpp

Ira Pohl’s C++ by Dissection 3.18 Arrays and Pointers 106
3.17.1 Subscripting
Assume that a declaration has the form

int i, a[size];

We can write a[i] to access an element of the array. More generally, we may write
a[expr], where expr is an integral expression, to access an element of the array. We call
expr a subscript, or index, of a. The value of a C++ subscript should lie in the range 0 to
size – 1. An array subscript value outside this range often causes a runtime error. When
this happens, the condition is called “overrunning the bounds of the array,” or “sub-
script out of bounds.” It is a common programming error. The effect of the error in a
C++ program is system-dependent and can be quite confusing. One frequent result is
that the value of an unrelated variable is returned or modified. Thus, the programmer
must ensure that all subscripts stay within bounds.

3.17.2 Initialization
Arrays can be initialized by a comma-separated list of expressions enclosed in braces:

int array[4] = { 9, 8, 7 }; // a[0]=9, a[1]=8, a[2]=7

When the list of initializers is shorter than the size of the array, the remaining elements
are initialized to 0. If uninitialized, external and static arrays are automatically initial-
ized to 0. This is not so for automatic arrays, which start with undefined values.

An array declared with an explicit initializer list and no size expression is given the size
of the number of initializers. The following two arrays are equivalent:

char laura[] = { 'l', 'm', 'p' };
char laura[3] = { 'l', 'm', 'p' };

3.18 Arrays and Pointers

An array name by itself is an address, or pointer value, and pointers and arrays are
almost identical in terms of how they are used to access memory. However, there are
subtle and important differences. A pointer is a variable that takes addresses as values.
An array name is a particular fixed address that can be thought of as a constant pointer.
When an array is declared, the compiler must allocate a base address and a sufficient
amount of storage to contain all of the elements of the array. The base address of the
array is the initial location in memory where the array is stored; it is the address of the
first element (index 0) of the array. Suppose that we write the declaration

const int N = 100;

int a[N], *p;

3.18

Ira Pohl’s C++ by Dissection 3.19 Passing Arrays to Functions 107
and the system causes memory bytes 300, 304, 308, . . . , 696 to be the addresses of
a[0], a[1], a[2], . . . , a[99], respectively, with location 300 being the base address
of a. We are assuming that each byte is addressable and that 4 bytes are used to store
an int. The two statements p = a; and p = &a[0]; are equivalent and would assign
300 to p. Note that [] has higher precedence than &, so &a[0] is equivalent to &(a[0]).

Pointer arithmetic provides an alternative to array indexing. The two statements p = a
+ 1; and p = &a[1]; are equivalent and would assign 304 to p. Assuming that the ele-
ments of a have been assigned values, we can use the following code to sum the array:

In file sum_array2.cpp

sum = 0;
for (p = a; p < &a[N]; ++p)

sum += *p;

is equivalent to

sum = 0;
for (i = 0; i < N; ++i)

sum += a[i];

In this loop, the pointer variable p is initialized to the base address of the array a. Then
the successive values of p are equivalent to &a[0], &a[1], . . . , &a[N-1]. In general, if i
is a variable of type int, p + i is the ith offset from the address p. In a similar man-
ner, a + i is the ith offset from the base address of the array a. Here is another way to
sum the array:

sum = 0;
for (i = 0; i < N; ++i)

sum += *(a + i);

Just as the expression *(a + i) is equivalent to a[i], the expression *(p + i) is
equivalent to p[i]. In many ways, arrays and pointers can be treated alike, but there is
one essential difference. Because the array a is a constant pointer and not a variable,
and we thus cannot change the address of a, expressions such as the following are ille-
gal:

a = p ++a a += 2

3.19 Passing Arrays to Functions

In a function definition, a formal parameter that is declared as an array is a pointer.
When an array is being passed, its base address is passed call-by-value. The array ele-
ments themselves are not copied. As a notational convenience, the compiler allows
array bracket notation to be used in declaring pointers as parameters. This notation
reminds the programmer and other readers of the code that the function should be
called with an array. To illustrate this, we write a function that sums the elements of an
array of type int:

3.19

http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/sum_array2.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/sum_array2.cpp

Ira Pohl’s C++ by Dissection 3.20 Problem Solving: Random Numbers 108
In file sum_array3.cpp

int sum(int a[], int n) // n is the size of a[]
{

int s = 0;

for (int i = 0; i < n; ++i)
s += a[i];

return s;
}

As part of the header of a function definition, the declaration int a[] is equivalent to
int *a. In other contexts, the two are not equivalent.

Suppose that v has been declared to be an array with 100 elements of type int. After
the elements have been assigned values, we can use the function sum() to add various
elements of v. Table 3.1 illustrates some of the possibilities.

The first call sums all 100 elements of the array v[]. The second call sums the first 88
elements. The third function call again illustrates the use of pointer arithmetic. The
base address of v is offset by 7, and sum() initializes the local pointer variable a to this
address. This causes all address calculations inside the function call to be similarly off-
set. The number of elements summed is the value of the variable k. If the value of k is
10, then we sum elements from v[7] up to and including v[16].

In C++, a function with a formal array parameter can be called with an array argument
of any size, provided the array has the right base type.

3.20 Problem Solving: Random Numbers

Random numbers have many uses in computers. One use is to serve as data to test
code; another use is to simulate a real-world event that involves a probability. The
method of simulation is an important problem-solving technique. Programs that use
random number functions to generate probabilities are called Monte Carlo simulations.
The Monte Carlo technique can be applied to many problems that otherwise would have
no possibility of solution.

A random number generator is a function that returns integers that appear to be ran-
domly distributed in some interval 0 to n, where n is system-dependent. The function
rand() in the standard library cstdlib is provided to do this. This function generates a
pseudorandom sequence. It is called pseudorandom because the numbers are generated

Table 3.1 Summing Elements of an Array

Invocation What Gets Computed and Returned

sum(v, 100) v[0] + v[1] + . . . + v[99]

sum(v, 88) v[0] + v[1] + . . . + v[87]

sum(v + 7, k) v[7] + v[8] + . . . + v[k+6]

3.20

http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/sum_array3.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/sum_array3.cpp

Ira Pohl’s C++ by Dissection 3.20 Problem Solving: Random Numbers 109
by a deterministic algorithm but appear to be random. In order to start the pseudoran-
dom sequence at different points, you should use the cstdlib function srand(n) to start
the sequence with the number seed n.

Let us write a program that displays some random numbers generated by rand(). Here
is the first part of the program:

In file random.cpp

#include <iostream>
#include <cstdlib>
using namespace std;

void prn_random_numbers(int k);

int main(void)
{

int n, seed;

cout << "\nSome random numbers will be printed.";
cout << "\nEnter how many you want? " << endl;
cin >> n;
cout << "Enter seed number: ";
cin >> seed;
srand(seed);
prn_random_numbers(n);

}

Because the function prototype for rand() is in the standard header file cstdlib, we
have included it at the top of the file.

The user is asked to enter how many random numbers are wanted. In order not to
repeat the same sequence each time the program is run, the user is asked for a seed.
The seed is used to start rand() at different points in the pseudorandom sequence.
The va lue entered for n is passed as an argument to the funct ion
prn_random_numbers().

In the remainder of the f i le , we wr i te the funct ion def in i t ion for
prn_random_numbers(). Here is the function:

void prn_random_numbers(int k)
{

int r, biggest, smallest;

r = biggest = smallest = rand();
cout << endl << r;

http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/random.cpp

Ira Pohl’s C++ by Dissection 3.20 Problem Solving: Random Numbers 110
for (int i = 1; i < k; ++i) {
if (i % 5 == 0)

cout << endl;
else

cout << '\t';
r = rand();
biggest = r > biggest ? r : biggest;
smallest = r < smallest ? r : smallest;
cout << r;

}
cout << endl << "\n\nCount: " << k

<< "\nMaximum: " << biggest
<< "\nMinimum: " << smallest << endl;

}

We want to dissect this function definition, but before we do so, let us see what the out-
put of the program looks like. Suppose we run this program and input 23 when
prompted. Here is what appears on the screen:

Some random numbers will be printed.
Enter how many you want?
15

Enter seed number:
6

31820 32473 17167 31717 17190
4449 16050 7311 6478 29467
9562 14170 21117 29323 14006

Count: 15
Maximum: 32473
Minimum: 4449

Dissection of the prn_random_numbers() Function

■ void prn_random_numbers(int k)
{

int i, r, biggest, smallest;

The variable k is a parameter declared to be an int. The local vari-
ables i, r, biggest, and smallest are all declared to be of type
int.

Ira Pohl’s C++ by Dissection 3.21 Software Engineering: Structured Programming 111
3.21 Software Engineering: Structured Programming

Let us write a program that will find the maximum, minimum, and average value of an
array of doubles. This could be part of package of routines that does data analysis. The
key to simplifying this project is to use a single function for each part of the problem.
This is the heart of structured programming. A large problem is decomposed or refined
into a series of small problems.

Another key problem-solving technique is to reuse already tested code. We already pro-
grammed the routine for summing an array of int, as we saw in Section 3.19, Passing
Arrays to Functions, on page 108.

■ r = biggest = smallest = rand();
cout << endl << r;

The function rand() from the standard library is used to generate a
random number. That number is assigned to the variables r, big-
gest, and smallest. Then is we print the value of r after the screen
cursor advances to a new line.

■ for (i = 1; i < k; ++i) {
if (i % 7 == 0)

 cout << endl;
r = rand();
biggest = max(r, biggest);
smallest = min(r, smallest);
cout << ‘\t’ << r;

}

This for loop is used to print the remaining random numbers.
Because one random number has already been printed, the variable i
at the top of the loop is initialized to 1 rather than 0. Whenever i is
divisible by 7 (the values 7, 14, 21, . . .), the expression

i % 7 == 0

controlling the if statement is true, causing a newline to be printed.
The effect of this is to print at most seven random numbers on each
line.

3.21

Ira Pohl’s C++ by Dissection 3.21 Software Engineering: Structured Programming 112
In file sum_array3.cpp

// n is the size of a[]
int sum(const int a[], const int n)
{

int s = 0;

for (int i = 0; i < n; ++i)
s += a[i];

return s;
}

This can be readily modified to produce an average of an array of double.

In file average_array1.cpp

double average(const double a[], const int n)
{

double s = 0.0;

for (int i = 0; i < n; ++i)
s += a[i];

return s / n;
}

Notice how little was changed. Problem solving is greatly aided by mastering key pro-
gramming idioms. Here, the key idiom is the use of the for loop to process the ele-
ments of a one-dimensional array.

Writing minimum() also follows this idiom.

double minimum(const double a[], const int n)
{

double min = a[0];

for (int i = 1; i < n; ++i)
if (min > a[i])

min = a[i];
return min;

}

We leave as an exercise the writing of maximum(). (See exercise 11 on page 136.)

Another important part of software engineering is to have a testing strategy. When test-
ing array routines, it is appropriate to first test the program with a small data set that
the programmer can easily bench-check. This allows the programmer to readily find
logical errors.

http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/sum_array3.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/average_array1.cpp

Ira Pohl’s C++ by Dissection 3.21 Software Engineering: Structured Programming 113
// Simple test of our program

const int size = 6;

int main()
{

double a[size] = {0.5, 1.5, 6.0, 7.5, 2.3, 4.6 };

cout << "Test array data processing" << endl;
cout << "average = " << average(a, size) << endl;
cout << "minimum = " << minimum(a, size) << endl;
cout << "maximum = " << maximum(a, size) << endl;

}

Obviously we expect as output:

Now, to test this on a large amount of data, we can call on our random number genera-
tor to fill up a large array.

In file average_array2.cpp

void fill(double a[], const int n)
{

for (int i = 0; i < n; ++i)
a[i] = (2.0 * rand()) / RAND_MAX;

}

The constant RAND_MAX is the largest integer random number that rand() generates.
Therefore, the double expression used to fill the array will range between 0.0 and 2.0.

// Generate data using fill()

const int size = 20000;

int main()
{

double a[size];

fill(a, size);
cout << "Test array data processing" << endl;
cout << "average = " << average(a, size) << endl;
cout << "minimum = " << minimum(a, size) << endl;
cout << "maximum = " << maximum(a, size) << endl;

}

Test array data processing
average = 3.7333
minimum = 0.5
maximum = 7.5

http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/average_array2.cpp

Ira Pohl’s C++ by Dissection 3.22 Core Language ADT: char* String 114
We expect as output something like:

Note that the minimum is very nearly 0 and the maximum approaches 2, and that the
output will vary from run to run. Random number generators are very useful for pro-
ducing large data sets that have predictable properties when used for testing.

3.22 Core Language ADT: char* String

The C++ community has agreed to treat the type char* as a form of string type. The
understanding is that such strings are terminated by the char value '\0', and that the
cstring (or string.h on older systems) package of functions is called using this represen-
tation. In ANSI C++, the library string provides as a template class a standardized string
type that is preferred to this use of char*. The language partly supports this abstrac-
tion by defining string literals as being null-terminated. A char* or char[] can be ini-
tialized with a literal string. Note that the terminating '\0' is part of the initializer list.
Also, a char[] cannot be assigned to and is a constant, while a char* can be assigned
to.

char* s = "c++"; // s[0] = 'c', s[1] = '+',
// s[2] = '+', s[3] = '\0';

The cstring package contains more than 20 functions.

Test array data processing
average = 0.998711
minimum = 0.000244148
maximum = 1.8990750

3.22

How smart can humans be if strings give them trouble?

Ira Pohl’s C++ by Dissection 3.22 Core Language ADT: char* String 115
Some Functions in the cstring Library
■ size_t strlen(const char* s);

Computes the string length. The number of characters terminated by '\0' is
returned.

■ char* strcpy(char* s1, const char* s2);
Copies the string s2 into s1. The value of s1 is returned.

■ int strcmp(const char* s1, const char* s2);
Returns an integer that reflects the lexicographic comparison of s1 and s2.
When the strings are the same, 0 is returned. When s1 is less than s2, a nega-
tive integer is returned. When s1 is greater than s2, a positive integer is
returned.

By adhering to these conventions, the programmer can reuse a lot of string code. The
library routines ensure that portable, readily understood code is available.

In file string_func.cpp

// String function implementations

size_t strlen(const char* s)
{

int i;
for (i = 0; s[i] != '\0'; ++i)

continue;
return i;

}

int strcmp(const char* s1, const char* s2)
{

int i;
for (i=0; s1[i] && s2[i] && (s1[i]==s2[i]); ++i)

continue;
return (s1[i] - s2[i]);

}

char* strcpy(char* s1, const char* s2)
{

for (int i = 0; s1[i] = s2[i]; ++i)
continue;

return s1;
}

Dissection of the cstring Library Functions

■ size_t strlen(const char* s)

This function does not modify its argument, so it is declared as
const. The return type size_t is defined as an unsigned int in our
library cstddef, and is convertible to size_t, in any case.

http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/string_func.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/string_func.cpp

Ira Pohl’s C++ by Dissection 3.22 Core Language ADT: char* String 116
The following function implements a string-equality test. Note its use of pointer arith-
metic. The construct *s1++ means “dereference the pointer s1, and after using this
value in the expression, add sizeof(char) to its pointer value.” Because of operator
precedence, *s1++ is equivalent to *(s1++). This pointer calculation gets us the next
element address.

■ for (i = 0; s[i] == '\0'; ++i)
continue;

Notice how these functions use the convention that a string is null-
terminated to end their major loops. The function strlen() termi-
nates this loop when s[i] == '\0'. Pointers to char strings are by
convention terminated with the value '\0'. The continue statement
could have been omitted. It is the equivalent here to an empty state-
ment. However, an empty statement is less readable and more enig-
matic.

■ return i;

The value is 0 if the empty string is the argument. Note that this can
be readily hand-simulated as a check on the code. The variable i
could not have been declared inside the loop because it needs to be in
scope in this return statement.

■ int strcmp(const char* s1, const char* s2)
{

int i;
for(i=0; s1[i] && s2[i] && (s1[i]==s2[i]); ++i)

continue;

Again const declarations are good practice to indicate that the
pointer arguments are not used to change underlying contents of the
memory they point at. The major loop relies on short-circuit evalua-
tion of the logical and expression. The test on equality of the two
string characters relies on both strings not yet being terminated.

■ return (s1[i] - s2[i]);

The difference in the final tested characters is returned, with 0 indi-
cating string equality.

■ char* strcpy(char* s1, const char* s2)
{

for (int i = 0; s1[i] = s2[i]; ++i)
continue;

Here, we have a signature where s1 is not declared as const. This is
the pointer to which the copying occurs, so it cannot point at non-
modifiable memory. Notice that loop termination occurs when s2[i]
is value '\0'. Here, the expression is an assignment and is a highly
unusual coding practice. No checking is done as to whether s1 points
to allocation big enough to contain s2.

Ira Pohl’s C++ by Dissection 3.23 Multidimensional Arrays 117
bool streq(const char* s1, const char* s2)
{

while (*s1 != 0 && *s2 != 0)
if (*s1++ != *s2++)

return false;
return (*s1 == *s2);

}

To better understand the relationship between arrays and pointers, we reimplement the
preceding function using array notation:

bool streq2(const char s1[], const char s2[])
{

int i;

for (i = 0; (s1[i] != 0) && (s2[i] != 0); ++i)
if (s1[i] != s2[i])

return false;
return (s1[i] == s2[i]);

}

Finally, it is also natural to implement these functions as recursions. Here is the recur-
sive form of strlen():

// Recursive string function implementations

size_t strlen(const char* s)
{

if (*s == '\0')
return 0; // the end

else // add 1 and recur on the rest
return (1 + strlen(s + 1));

}

While recursion is an elegant coding technique, it is not usual, for efficiency reasons, to
find heavily used functions coded this way. (See exercise 3 on page 133.)

3.23 Multidimensional Arrays

C++ allows arrays of any type, including arrays of arrays. With two bracket pairs, we
obtain a two-dimensional array. This idea can be iterated to obtain arrays of higher
dimension, as shown in Table 3.2. With each bracket pair, we add another array dimen-
sion.

A k-dimensional array has a size for each of its k dimensions. If we let si represent the
size of its ith dimension, the declaration of the array allocates space for
s1 × s2 × . . . × sk elements. In Table 3.2, b has 3 × 5 elements, and c has 7 × 9 × 2 ele-
ments. Starting at the base address of the array, all the array elements are stored con-
tiguously in memory, row by row.

3.23

Ira Pohl’s C++ by Dissection 3.23 Multidimensional Arrays 118
Initialization of multidimensional arrays can be done using a brace-enclosed list of ini-
tializers, where each row is initialized from a brace-enclosed list. There are a number of
ways to initialize a two-dimensional array. The following three initializations are equiv-
alent:

int a[2][3] = {1, 2, 3, 4, 5, 6};
int a[2][3] = { {1, 2, 3}, {4, 5, 6} };
int a[][3] = { {1, 2, 3}, {4, 5, 6} };

If there are no inner braces, then each of the array elements a[0][0], a[0][1], . . .,
a[1][2] is initialized in turn. Note that the indexing is by rows. If there are fewer ini-
tializers than elements in the array, then the remaining elements are initialized to zero.
If the first bracket pair is empty, then the compiler takes the size from the number of
inner brace pairs. All sizes except the first must be given explicitly. This data structure
is an important scientific abstract data type and is central to all of linear algebra.

Even though array elements are stored contiguously one after the other, it is often con-
venient to think of a two-dimensional array as a rectangular collection of elements with
rows and columns. For example, if we declare

int a[3][5];

then we can think of the array elements arranged as in Table 3.3:

To illustrate these ideas, let us write a program that fills a two-dimensional array, prints
out values, and sums the elements of the array:

In file sum_2d_array1.cpp

#include <iostream>
using namespace std;

const int M = 3; // number of rows
const int N = 4; // number of column

Table 3.2 Declarations of Arrays

int a[100]; One-dimensional array

int b[3][5]; Two-dimensional array

int c[7][9][2]; Three-dimensional array

Table 3.3 Array Elements

col 1 col 2 col 3 col 4 col 5

row 1 a[0][0] a[0][1] a[0][2] a[0][3] a[0][4]

row 2 a[1][0] a[1][1] a[1][2] a[1][3] a[1][4]

row 3 a[2][0] a[2][1] a[2][2] a[2][3] a[2][4]

http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/sum_2d_array1.cpp

Ira Pohl’s C++ by Dissection 3.23 Multidimensional Arrays 119
int main()
{

int a[M][N], i, j, sum = 0;

for (i = 0; i < M; ++i) // fill the array
for (j = 0; j < N; ++j)

a[i][j] = i + j;

for (i = 0; i < M; ++i) { // print array
for (j = 0; j < N; ++j)

cout << "a[" << i << "][" << j
<< "] = " << a[i][j] << '\t';

cout << endl;
}
for (i = 0; i < M; ++i) // sum the array

for (j = 0; j < N; ++j)
sum += a[i][j];

cout << "\nsum = " << sum << endl;
}

The output of this program is

In processing every element of a multidimensional array, each dimension requires a sin-
gle for loop.

Because of the relationship between arrays and pointers, there are numerous ways to
access elements of a two-dimensional array, as shown in Table 3.4.

a[0][0] = 0 a[0][1] = 1 a[0][2] = 2 a[0][3] = 3
a[1][0] = 1 a[1][1] = 2 a[1][2] = 3 a[1][3] = 4
a[2][0] = 2 a[2][1] = 3 a[2][2] = 4 a[2][3] = 5

sum = 30

Table 3.4 Expressions Equivalent to a[i][j]

*(a[i] + j)

(*(a + i))[j]

(((a + i)) + j)

*(&a[0][0] + 5*i + j)

Ira Pohl’s C++ by Dissection 3.24 Operators new and delete 120
The parentheses are necessary because the brackets [] have higher precedence than
the indirection operator *. We can think of a[i] as the ith row of a (counting from 0),
and we can think of a[i][j] as the element in the ith row, jth column of the array
(counting from 0). The array name a by itself is equivalent to &a[0]; it is a pointer to an
array of five ints. The base address of the array is &a[0][0], not a. Starting at the base
address of the array, the compiler allocates contiguous space for 15 ints. For any array,
the mapping between pointer values and array indices is called the storage mapping
function. For the array a, the storage mapping function is specified by noting that

a[i][j] is equivalent to *(&a[0][0] + 5*i + j)

When a multidimensional array is a formal parameter in a function definition, all sizes
except the first must be specified, so that the compiler can determine the correct stor-
age mapping function. After the elements of the array a just given have been assigned
values, the following function can be used to sum the elements of the array. Note care-
fully that the column size must be specified.

In file sum_2d_array2.cpp

int sum(int a[][5])
{

int i, j, sum = 0;

for (i = 0; i < 3; ++i)
for (j = 0; j < 5; ++j)

sum += a[i][j];
return sum;

}

In the header of the function definition, the following parameter declarations are equiv-
alent:

int a[][5] int (*a)[5] int a[3][5]

Because of operator precedence, the parentheses are necessary. The constant 3 acts as a
reminder to human readers of the code, but the compiler disregards it.

The for loop and the output statement in main() can be replaced by an output state-
ment:

cout << "\nsum = " << sum(a) << endl;

3.24 Operators new and delete

The unary operators new and delete are available to manipulate free store. They are
more convenient than, and replace, the C standard library functions malloc(), cal-
loc(), and free() in most applications. Free store is a memory pool for objects whose
lifetime is directly managed by the programmer. The programmer creates an object
using new and destroys the object using delete. This is important for dynamic data
structures, such as lists and trees.

3.24

http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/sum_2d_array2.cpp

Ira Pohl’s C++ by Dissection 3.24 Operators new and delete 121
In C++, the operator new is typically used in the following forms:

new type-name
new type-name initializer
new type-name[expression]

In each case, there are at least two effects. First, an appropriate amount of store is allo-
cated from free store to contain an object of the named type. Second, the base address
of the object is returned as the value of the new expression.

The operator new can either throw a bad_alloc exception or return the value 0, when
memory is unavailable.

The following example uses new:

int* p, *q, *r;
p = new int(5); // allocation and initialization
q = new int[10]; // gets q[0] to q[9] with q = &q[0]
r = new int; // allocate int but uninitialized

In this code, the pointer to int variable p is assigned the address of the store obtained
in allocating an object of type int. The location pointed at by p is initialized to the
value 5. This use is not usual for a simple type, such as int, in that it is far more conve-
nient and natural to automatically allocate an integer variable on the stack or globally.
Usually, an array of elements is allocated, as is done in the example with the pointer q.
The array values are uninitialized. Some compilers may choose as an implementation
decision to initialize elements to 0, but this is not a language specification and should
not be relied on.

The operator delete destroys an object created by new, in effect returning its allocated
storage to free store for reuse. The operator delete is used in the following forms:

delete expression
delete [] expression

The first form is used when the corresponding new expression has not allocated an
array. The second form has empty brackets, indicating that the original allocation was
an array of objects. The operator delete does not return a value. Equivalently, one can
say that its return type is void. The following example uses these constructs to dynam-
ically allocate an array:

In file dynamic_array.cpp

// Use of new to dynamically allocate an array
// assumes older-style return of 0 for
// allocation error

int main()
{

int* data;
int size;

http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/dynamic_array.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/dynamic_array.cpp

Ira Pohl’s C++ by Dissection 3.24 Operators new and delete 122
cout << "\nEnter array size: ";
cin >> size;
assert(size > 0);

data = new int[size]; // allocate array of ints
assert(data != 0); // data != 0 allocation OK
for (int j = 0; j < size; ++j)

cout << (data[j] = j) << '\t';
cout << "\n\n";
delete[] data; // deallocate an array

}

This introductory discussion of the free-store operators treats the basic cases. The free-
store operators are addressed in greater detail in Section 5.19, Overloading new and
delete, on page 224.

Dissection of the dynamic_array Program

■ int* data;
int size;

cout << "\nEnter array size: ";
cin >> size;
assert(size > 0);

data = new int[size]; // allocate array of ints
assert(data != 0); // data != 0 allocation OK

The pointer variable data is used as the base address of a dynami-
cally allocated array whose number of elements is the value of size.
The user is prompted for the integer valued size. The new operator is
used to allocate storage from free store capable of storing an object
of type int[size]. On a system on which integers take 4 bytes, this
would allocate 4 × size bytes. At this point, data is assigned the base
address of this store. The second assert guarantees that allocation
succeeded. In newer C++ systems, if the new operator fails, it can
throw an exception of type bad_alloc, automatically aborting the
program.

■ for (int j = 0; j < size; ++j)
cout << (data[j] = j) << '\t';

This statement initializes the values of the data array and prints
them.

■ delete[] data; // deallocate an array

The operator delete returns the storage associated with the pointer
variable data to free store. This can be done only with objects allo-
cated by new. The bracket form is used because the corresponding
allocation was of an array.

Ira Pohl’s C++ by Dissection 3.24 Operators new and delete 123
It is becoming a standard practice to use C++ libraries for accessing both char* arrays
and general arrays instead of coding the array functions directly. Here, we discuss two
such libraries: one for vectors and one for string processing.

3.24.1 Vector Instead of Array
The standard C++ library contains the template for the vector data structure. In almost
all cases, the vector is an improvement over the simple C++ array but can be used
essentially as an array. Many writers, including myself, recommend that the vector be
used in place of arrays for most programming. For example, the function in Section
3.19, Passing Arrays to Functions , on page 108, for summing an array uses
int sum(int a[], int n). We can trivially change this to use vector as follows:

In file sum_array4.cpp

int sum(vector<int> a, int n)
{

int s = 0;

for (int i = 0; i < n; ++i)
s += a[i];

return s;
}

Notice that the only change was to transform the array declaration to a vector declara-
tion. Without investigating the details of template syntax, we can use a simple rule:

Type id[] is replaced by vector<Type> id

If the declaration requires an array size, we can extend the rule as follows:

Type id[size] is replaced by vector<Type> id(size)

One improvement of vector is that it knows the number of elements associated with it.
The expression id.size() gives the current number of elements contained in the vec-
tor. Using this information improves the sum() function by making it simpler and by
avoiding errors that come about in C and C++ when the wrong size is passed as a
parameter. This prevents out-of-range errors that are the bane of C array programmers.

In file sum_array5.cpp

// Sum written to use a.size() in place of N

int sum(vector<int> a)
{

int i, s = 0;

for (i = 0; i < a.size(); ++i)
s += a[i];

return s;
}

http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/sum_array4.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/sum_array4.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/sum_array5.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/sum_array5.cpp

Ira Pohl’s C++ by Dissection 3.25 Software Engineering: Program Correctness 124
3.24.2 String Instead of char*
In C++, the standard library provides both cstring and string. Both libraries can be used
for string processing, and they can be used jointly. However, C++ style is to prefer the
use of the string type, which is more robust and has a more extensive interface. In cer-
tain cases, it is both more efficient and more elegant.

The following simple program uses string. The program is easy to understand and
easy to use, because the operator + provides concatenation.

In file pr_statements.cpp

// Print a string with a line number

void pr_numbered_statement(const string& statement)
{

static int ln = 0;

ln++; // start the line numbers at 1
cout << "line " << ln << ":" + statement + "\n";

}

// Test pr_numbered_statement() using two strings

int main()
{

string s1, s2;

cout << "Enter two words: " << endl;
cin >> s1 >> s2;
pr_numbered_statement(s1);
pr_numbered_statement(s2);
cout << endl;

}

3.25 Software Engineering: Program Correctness

An assertion is a program check for correctness that, if violated, forces an error exit.
One point of view is that an assertion is a contractual guarantee among the provider of
a piece of code, the code’s manufacturer, and the code’s client or user. In this model,
the client needs to guarantee that the conditions for applying the code exist, and the
manufacturer needs to guarantee that the code works correctly under these provisions.
In this methodology, assertions provide various guarantees.

Program correctness can be viewed in part as a proof that the computation terminated
with correct output dependent on correct input. The user of the computation has the
responsibility of providing correct input. This is a precondition. The computation, if
successful, satisfies a postcondition. Such assertions can be monitored at runtime to

3.25

http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/pr_statements.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/pr_statements.cpp

Ira Pohl’s C++ by Dissection 3.25 Software Engineering: Program Correctness 125
provide very useful diagnostics. Indeed, the discipline of thinking out appropriate
assertions frequently allows the programmer to avoid bugs and pitfalls.

In the C++ community, there is an increasing emphasis on the use of assertions. The
standard library assert provides the macro assert and is invoked as though its func-
tion signature were

void assert(expression);

If the expression evaluates as false, execution is aborted with diagnostic output. The
assertions are discarded if the macro NDEBUG is defined. The following program pro-
vides assertions to demonstrate this. The program examines a slice of an array for its
minimum element and places that element in the first examined array position.

In file order3.cpp

// Find minimum element in array slice

void order(int& p, int& q)
{

int temp = p;

if (p > q) {
p = q;
q = temp;

}
}

int place_min(int a[], int size, int lowbnd = 0)
{

assert(size >= 0); // precondition
assert(lowbnd >= 0); // precondition
for (int i = lowbnd; i < lowbnd + size - 1; ++i)

order(a[lowbnd], a[i + 1]);
return a[lowbnd];

}

int main()
{

int a[9] = { 6, -9, 99, 3, -14, 9, -33, 8, 11 };

cout << "Minimum = " << place_min(a, 3, 2)
<< endl;

assert(a[2]<=a[3] && a[2]<=a[4]); // postcondition
}

http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/order3.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/orders3.cpp

Ira Pohl’s C++ by Dissection 3.25 Software Engineering: Program Correctness 126
Assertions and general exception handling are discussed at length in Chapter 10, Excep-
tions and Program Correctness.

Dissection of the place_min() Function

■ int place_min(int a[], int size, int lowbnd = 0)
{

The function finds the minimum element from a number of adjacent
array elements and by swapping the minimum element into the first
examined array position lowbnd. Normally, lowbnd is 0, making it a
default parameter candidate.

■ assert(size >= 0); // precondition
assert(lowbnd >= 0); // precondition

for (int i = lowbnd; i < lowbnd + size - 1; ++i)
order(a[lowbnd], a[i + 1]);

The precondition assertions in place_min() guarantee that a nonne-
gative number of elements at a nonnegative index is searched.

■ int main()
{

int a[9] = { 6, -9, 99, 3, -14, 9, -33, 8, 11};

cout << "Minimum = " << place_min(a, 3, 2)
<< endl;

assert(a[2]<=a[3] && a[2]<=a[4]); //
postcondition
}

The place_min(a, 3, 2) call is supposed to place the minimum of
three elements, starting at position 2, into position 2. The postcondi-
tion in main() checks that the minimum element was found and
placed in the correct position. The assert states that a[2] is the
smallest of the three elements. Therefore, the value of a[2] should be
-14.

Ira Pohl’s C++ by Dissection 3.26 Dr. P’s Prescriptions 127
3.26 Dr. P’s Prescriptions

■ Functions should be short.

■ Functions should do one job.

■ Avoid subtle type conversions in overloading.

■ Use explicit conversions to provide an exact match.

■ Avoid the use of ellipsis notation.

■ Overload only conceptually coherent function definitions.

■ In C++, use explicit call-by-reference.

■ Use const in your declarations.

■ Use string in preference to char*.

■ Use vector<> in preference to array.

A large part of the art of writing code is properly writing functions. Think of functions
as the paragraph elements in an essay and statements as sentences. Structured pro-
gramming is a methodology that decomposes parts of a program into elements that are
readily coded as functions. Keeping functions short makes them easier to test for cor-
rectness, maintain, and document. Like a paragraph in writing, they are meant to be a
basic coherent unit that is easily grasped.

A function should have a readily grasped purpose as indicated by the function name;
for example, print(), which is clear as to intent. Do not obscure what a function does
by giving it unrelated tasks. For example, if you want to print an array and find its max-
imum element, write two different functions.

In C++, there is little need for untyped functions with the ellipsis signature. Functions
of appropriate type can be overloaded or generated from templates. This leads to type-
safety, which the compiler can statically test for.

Overloading is frequently overused, making code difficult to follow and debug. In the
extreme, by using function foo() with different signatures, one can produce any com-
putation—clearly a poor programming practice.

In C++, we usually have two choices for a call-by-reference parameter declaration. It can
be either a pointer declaration or a reference declaration. Our advice is to stay primarily
with reference declarations. These require less notation, such as the use of the address-
of operator in the actual argument and the dereferencing operator inside the code body.
Less notation leads to fewer mistakes.

The keyword const is an important type constraint. It allows the compiler to check
your code automatically for critical errors. It also allows a smart compiler to further
optimize your code.

The string type found in the standard template library is much safer and more flexible
than the char* type. It should be used in preference to the traditional C use of char*
for strings.

The vector container type found in the standard template library is much safer and
more flexible than the native array type. It should be used in preference to traditional C
arrays.

3.26

Ira Pohl’s C++ by Dissection 3.27 C++ Compared with Java 128
3.27 C++ Compared with Java

Java does not have pointers but instead has nonprimitive variables that are references.
Java avoids much of the direct programmer management of memory that causes so
many bugs in C and C++. Java does have arrays, which are reference types. Java does
not have functions that are outside the scope of a class. Java’s term for functions is
methods, which indicates that all functions are members of a class. The closest con-
struct to an ordinary C or C++ function is a static method. Java can overload methods
but does not allow default arguments or inlining.

The following program initializes an array, prints its values, and computes its sum and
average value.

In file SumArray.java

class SumArray {
public static void main(String[] args)
{

int[] data = {1, 2, 3, 4, 5, 6, 7};
int sum = 0;
double average;

for (int i = 0; i < 7; ++i) {
sum = sum + data[i];
System.out.print(data[i] + ", ");

}
average = sum / 7.0;
System.out.println("\n\n sum = " + sum

+ " average = " + average);
}

}

Dissection of the SumArray.java Program

■ int[] data = {1, 2, 3, 4, 5, 6, 7};

The variable data is declared to refer to an array of integers. It is allo-
cated seven integer elements, which are initialized to the values 1
through 7.

3.27

http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/SumArray.java
http://www.cse.ucsc.edu/~pohl/C++BD/03Chap/SumArray.java

Ira Pohl’s C++ by Dissection 3.27 C++ Compared with Java 129
Note: In this example, main() is static. In Java, a static method more or less corre-
sponds to an ordinary C function. This example is nearly identical to one found on
pages 145 to 146 of Java by Dissection, Pohl and McDowell (Addison-Wesley 1999). A
complete explanation of Java arrays that is consistent with our treatment here can be
found in that text. It is also available as an eBook through MightyWords at http://
www.mightywords.com/.

■ for (int i = 0; i < 7; ++i) {

The for statement declares the local variable i to be used as an index
or a subscript variable. This for statement is the most common array
code idiom. The initial subscript for array objects in Java is 0, so the
subscript variable is usually initialized to 0. The array length is 7, so
the terminating condition is usually i < 7 so that the array index
stops at 7 - 1. The last part of the for statement header is the incre-
ment of the index variable, so that each array element gets processed
in turn.

■ sum = sum + data[i];
System.out.print(data[i] + ", ");

The element data[i] is selected by computing the index value. A
common error that results in an exception is for this to be out of
range. These subscripted or indexed elements can be used as simple
variables of type int. In this code, each element’s integer value is
added to the variable sum. Then, in turn, each element’s value is
printed.

http://www.mightywords.com/
http://www.mightywords.com/

Ira Pohl’s C++ by Dissection Summary 130
Summary

■ In ANSI C++, the empty parameter list is always equivalent to using void, so main()
is equivalent to main(void). The function main() implicitly returns the integer
value 0 if no explicit return expression statement is executed.

■ A formal parameter can be given a default argument, usually a constant that occurs
frequently when the function is called. Use of a default argument saves writing this
default value at each invocation. The following function header shows the syntax:

int sqr_or_power(int n, int k = 2); // k=2 default

■ Overloading refers to using the same name for multiple meanings of an operator or
a function. The meaning selected depends on the types of the arguments used by
the operator or function. In the following code, we overload average():

// Average the values in an input sequence

double average(int size, int sum);
double average(int size, double sum);

■ Reference declarations allow an object to be given an alias, or alternative name.
These declarations can be used for call-by-reference arguments. For example, the
function order(), using this mechanism, is declared as

void order(int &p, int &q);

■ C++ provides the keyword inline to preface a function declaration when the pro-
grammer intends the code replacing the function call to be inline. In most cases, this
should be used in place of #define macros.

■ C++ inherited C’s single global namespace. Programs written by various parties can
inadvertently have name clashes when combined. C++ adds namespace scope, as in

namespace StellarSoft {
class S_widget { ····· };
class update{ ····· };
·····

}

■ The namespace identifier can be used as part of a scope-resolved identifier. This has
the form

namespace_id::id

There is also a using declaration, which lets a client have access to all names from
that namespace.

using namespace StellarSoft;
S_widget w; // StellarSoft::S_widget

Ira Pohl’s C++ by Dissection Summary 131
Namespaces can be used to provide a unique scope that replaces static global decla-
rations.

■ The declaration void* is a generic pointer type. A pointer declared as type pointer
to void, as in void* gp, can be assigned a pointer value of any underlying base
type, but it may not be dereferenced. Unlike in C, a generic pointer may not be
assigned to a nonvoid pointer type without an explicit cast. In this regard, C++ is
again more type-safe than C.

■ The C and C++ communities have agreed to treat the type char* as a form of string
type. The understanding is that these strings are terminated by the char value '\0',
and that the cstring (or string.h on older systems) package of functions is called on
this abstraction. In ANSI C++, the library string provides as a template class a stan-
dardized string type that is preferred over the use of char*.

■ The unary operators new and delete are available to manipulate free store. Free
store is a memory pool for objects whose lifetime is directly managed by the pro-
grammer. The programmer creates an object by using new and destroys the object
by using delete. This is important for dynamic data structures, such as lists and
trees.

■ The standard library contains the template for the vector data structure. In almost
all cases, the vector is an improvement over the simple C++ array but can be used
essentially as an array. Many experts recommend that it be used in place of arrays
for most programming.

Ira Pohl’s C++ by Dissection Review Questions 132
Review Questions

1. If not explicitly returned, the value is returned by main().

2. Replace #define ABS(X) ((X <0) ? -X: X) with inline code.

3. Discuss the difference between using the macro ABS(f(y)) and the equivalent
inline call. Assume that f(y) calls a nontrivial function.

4. What is wrong with overloading int foo(); and void foo(); in the same scope?
Note that the only difference in their declarations is the return types.

5. The C++ STL vector can be used to replace in C and C++ programs.

6. In C, control of an if statement depends on whether an if statement expression is
zero or nonzero. In C++, this condition is type .

7. In C, the function strlen() is found in ; in C++, it is found in . Can you
think of a reason for this difference?

8. The exception is thrown when fails to properly allocate memory.

9. The operator is used in place of the cstdlib function free() to return memory
to free store.

10. In C, call-by-reference requires the use of pointers, but in C++, may be used as
well.

Ira Pohl’s C++ by Dissection Exercises 133
Exercises

1. Pointers to char strings are by convention terminated with the value 0. The follow-
ing function implements a string-equality test. Note its use of pointer arithmetic.
The construct *s1++ means “dereference the pointer s1, and after using this value
in the expression, add sizeof(char) to its pointer value.” Here is streq() from
Section 3.22, Core Language ADT: char* String, on page 117:

bool streq(const char* s1, const char* s2)
{

while (*s1 != 0 && *s2 != 0)
if (*s1++ != *s2++)

return false;
return (*s1 == *s2);

}

Write and test a function

bool streq_n(const char* s1, const char* s2, int n);

that returns true if the first n characters of the two strings are the same and that
otherwise returns false. It should also return true if the strings are shorter than n
characters and equal.

When testing this code, use a technique called boundary condition testing. For each
control structure in the code, such as an if statement or a while loop, test right at
these boundaries that the code works properly. For example, on a small piece of
data the loop should execute the correct number of times. It easiest to check on an
empty or length 1 string in this example. It is observed in practice that most mis-
takes are made at these boundaries.

2. Reimplement the preceding functions using array notation, both in the header and
the body of the code. So the header for streq() is

bool streq(char s1[], char s2[]);

3. Write a recursive version of

bool streq(const char* s1, const char* s2);

Discuss and, if necessary, run tests to see which version is more efficient. Will your
system allow these functions to be inlined?

4. The greatest common divisor of two integers is recursively defined in pseudocode as
follows, as seen in Section 3.7, Recursion, on page 84:

GCD(m,n) is:
if m mod n equals 0 then n;
else GCD(n, m mod n);

Ira Pohl’s C++ by Dissection Exercises 134
Recall that the modulo operator in C++ is %. Code this routine using recursion in
C++. We have already done this iteratively.

5. We wish to count the number of recursive function calls by gcd(). It is generally bad
practice to use globals inside functions. In C++, we can use a local static variable
instead of a global. Complete and test the following C++ gcd() function:

int gcd(int m, int n)
{

static int fcn_calls = 1; // happens once
int r; // remainder

fcn_calls++;
·····

}

6. The following C program uses traditional C function syntax:

/* Compute a table of cubes. */
#include <stdio.h>
#define N 15
#define MAX 3.5

int main()
{

int i;
double x, cube();

printf("\n\nINTEGERS\n");
for (i = 1; i <= N; ++i)

printf("cube(%d) = %f\n", i, cube(i));
printf("\n\nREALS\n");
for (x = 1; x <= MAX; x += 0.3)

printf("cube(%f) = %f\n", x, cube(x));
return 0;

}

double cube(x)
double x;
{ return (x * x * x); }

The program gives the wrong answers for the integer arguments because integer
arguments are passed as if their bit representation were double. It is unacceptable
as C++ code. Recode, as a proper function prototype, and run, using a C++ compiler.
C++ compilers enforce type compatibility on function argument values. Therefore,
the integer values are properly promoted to double values.

7. Predict what the following program prints:

Ira Pohl’s C++ by Dissection Exercises 135
int foo(int n)
{

static int count = 0;

++count;
if (n <= 1) {

cout << " count = " << count << endl;
return n;

}
else

foo(n / 3);
}

int main()
{

foo(21);
foo(27);
foo(243);

}

8. The static storage class is useful in multifile compilation. Predict what the follow-
ing program prints:

// file A.c

static int foo(int i)
{

return (i * 3);
}

int goo(int i)
{

return (i * foo(i));
}

// file B.c

int foo(int i)
{

return (i * 5);
}

int goo(int i); // imported from file A.c

int main()
{

cout << "foo(5) = " << foo(5) << endl;
cout << "goo(5) = " << goo(5) << endl;

}

Ira Pohl’s C++ by Dissection Exercises 136
The program is compiled as follows: g++ A.c B.c. File-scope functions are by default
extern. The foo() in file A.c is private to that file, but goo() is not. Thus, redefin-
ing foo() in file B.c does not cause an error. Try this again, this time dropping
static, to see what error message your compiler gives. Then try a third time, mak-
ing goo() inline in A.c, to see what error message your compiler gives. Recode
these files, using anonymous namespaces to replace the static declarations.

9. C++ provides a method to pass command line arguments into the function main().
The following code prints its command line arguments:

// Print command line arguments rightmost first

int main(int argc, char **argv)
{

for (--argc; argc >= 0; --argc)
cout << argv[argc] << endl;

}

Compile this into an executable called echo. Run it with the following command line
arguments:

echo a man a plan a canal panama

The argument argc is passed the number of command line arguments. Each argu-
ment is a string placed in the two-dimensional array argv.

10. Modify the previous program to print the command line arguments from left to
right and to number each of them.

11. Write the function double maximum(double a[], int n). This is a function that
finds the maximum of the elements of an array of double of size n. (See Section
3.21, Software Engineering: Structured Programming, on page 112.)

12. The problem with using void* is that it cannot be dereferenced. Thus, to perform
useful work on a generic pointer, one must cast it to a standard working type, such
as a char*. Write and test

void* memcpy(void* s1, const void* s2, unsigned n)
{

char* from = s2, *to = s1; // uses char type
·····

}

13. Write a program that performs string reversal. Assume that s1 ends up with the
reverse of the string s2 and that s1 points at enough store that is adequate for
reversal. (See Section 3.22, Core Language ADT: char* String, on page 115, for some
examples of string-handling functions.)

char* strrev(char* s1, const char* s2);

Ira Pohl’s C++ by Dissection Exercises 137
14. Write a program that performs string reversal, using storage allocated with new.
Assume that s1 ends up with the reverse of the string s2, and use new to allocate s1
of length strlen(s2) + 1, which is adequate store for s1.

char* strrev(char*& s1, const char* s2);

15. (Uwe F. Mayer) Rewrite

void order(int& p, int& q)
{

int temp = p;

if (p > q) {
p = q;
q = temp;

}
}

to make it more efficient. This can be done by reordering some of the operations.
This can be important in an application that calls this simple routine repeatedly.

16. Write a function

double findmin(double fcn(double),
double x0, // initial point
double x1, // terminal point
double incr, // increment
double& xmin)

that returns the value fcn(xmin), where f(xmin) is the minimum value of fcn(x)
in the interval (x0, x1), evaluated at increments of incr, and xmin is an argument
producing that minimum. Rewrite the function findmin() so that the range (0, 1.0)
and the increment 0.00001 are used by default, unless explicitly passed in. Note that
to do this, the preceding function arguments should be used but in a different order.
Why?

17. Write a function

double plot(double y[], double fcn(double),
double x0 = 0.0, double x1 = 1.0,
double incr = 0.001)

that computes y[i] = fcn(xi), where xi is in the interval (x0, x1), evaluated at
increments of incr. Use the defaults (0, 1.0) and an increment of 0.001, with y
expected to have 1,000 elements.

18. Redo the previous exercise to use vector<double> y.

19. Write a function findzero() that finds xzero, the value of x for which the function
fcn(x) is closest to zero in a specified interval. The function findzero() should

Ira Pohl’s C++ by Dissection Exercises 138
have the same arguments as findmin(). Again write it to have standard default val-
ues for its parameters.

20. Modify the dynamic array program in Section 3.24, Operators new and delete, on
page 121, so that it is initialized by pseudorandom numbers in the range (0,
RAND_MAX). For 5,000 such random numbers, find their average value. See whether,
while using the operator new, you can do this problem for 50,000, 500,000,
5,000,000, . . ., until you find a value on your system that causes new to fail. If you
rewrote this code to use ordinary stack-allocated arrays, at what size on your system
did it fail to allocate the array? Also try the same problem using vector<int>, and
see how large a problem can be run.

21. Write a program that simulates a roulette wheel with the numbers 0 to 35. This is
where the wheel has the numbers 0–35. You should use a random number generator
that gets you one of these values with equal probability. Test your simulation by
spinning the wheel 36, 360, 3,600, and 36,000 times. Store the results in an array of
36 integer values, one for each wheel location. Print the results. Were your results in
agreement with what you expected? In order to start the pseudorandom sequence at
different points, you should use the cstdlib function srand(n) to start the sequence
with the number seed n.

22. Using the functions written in the previous exercise, simulate a gambler making
1,000 bets of one dollar at odds of 35 to 1. Notice that the real odds should be 36 to
1. This favors the casino running the roulette wheel and is why casinos are so profit-
able. The gambler starts with 1,000 dollars. Print out how much the gambler has at
the end of her 1,000 bets. Consider this one trial. Now do this 1,000 times and see
what the average bankroll is after each 1,000 bets. Does this conform with what you
expected?

23. When a gambler persists at a game that favors the casino, it is likely that the gam-
bler will lose his shirt—this is called gambler’s ruin. Give your gambler 100 dollars.
Let him keep betting until he runs out of money. Count how many bets this took.
Notice that if you are very unlucky, this might take only 100 bets. Store this number
in an array, call it ruinLength[]. Do this for 1,000 trials and see what the mini-
mum, maximum, and average length to ruin was. Notice that by using a structured
programming approach, you should be able to easily design your program and com-
plete this exercise.

24. Write a function index (BMI) to compute body mass as follows:

BMI = (weight in kilograms) / (height in meters)2

25. If the BMI is over 25, you are considered overweight; if it is over 40, you are consid-
ered obese. Test the program on data taken from at least five individuals, printing
out for each name a weight, height, BMI, and BMI category of normal, overweight, or
obese. Store the data in arrays or in vectors.

26. (Java) Recode the BMI program in Java. Use Java arrays to store values for each indi-
vidual.

Classes and Abstract Data Types

CHAPTER 4
This chapter introduces the reader to classes. The original name given by Bjarne
Stroustrup to his language was “C with classes.” The name C++ was coined by Rick Mas-
citti in 1983, being a pun on the ++ increment operator. Stroustrup had extensive expe-
rience with Simula67, the first object-oriented language. It was developed in 1967 to be
a simulation language and added the construct class to its base language, ALGOL60.

A class in C++ is an extension of the idea of struct found in C. A class packages a data
type with its associated functions and operators. This in turn can be used to implement
abstract data types (ADTs). An abstract data type, such as a stack, is a set of values and
operations that define the type. The type is abstract in that it is described without its
implementation. It is the job of the C++ programmer to provide a concrete representa-
tion of the ADT. This is usually done with the class.

C++ classes bundle data declarations with function declarations, thereby coupling data
with behavior. The class description also has access modifiers public and private
that allow data hiding. Allowing private and public visibility for members gives the pro-
grammer control over what parts of the data structure are modifiable. The private parts
are hidden from client code, and the public parts are available. It is possible to change
the hidden representation, but not to change the public access or functionality. If this is
done properly, client code need not change when the hidden representation is modi-
fied. A large part of the object-oriented programming (OOP) design process involves
thinking up the appropriate ADTs for a problem. Good ADTs not only model key fea-
tures of the problem but also are frequently reusable in other code.

Ira Pohl’s C++ by Dissection 4.1 The Aggregate Type class and struct 140
4.1 The Aggregate Type class and struct

The class or struct type allows the programmer to aggregate components into a sin-
gle named variable. A class has components, called members, that are individually
named. Since the members of a structure can be of various types, the programmer can
create aggregates that are suitable for describing complicated data.

As a simple example, let us define a structure that describes a point. We can declare the
structure type as follows:

struct point {
double x, y;

};

In C++, the structure name, or tag name, is a type. In the preceding declaration, struct
is a keyword, point is the structure tag name, and the variables x and y are members of
the structure. The declaration point can be thought of as a blueprint; it creates the type
point, but no instances are allocated. The declaration

point pt;

allocates storage for the variable pt. To access the members of pt, we use the member
access operator, represented by a period, or dot. It is a construct of the form

structure_variable.member_name

The construct is used as a variable in the same way that a simple variable or an element
of an array is used. Suppose that we want to assign to pt the value (–1, +0.5). To do this,
we can write

pt.x = -1;
pt.y = 0.5;

The member name must be unique within the specified structure. Since the member
must always be prefaced or accessed through a unique structure variable identifier,

4.1

Student Cards Stack

Ira Pohl’s C++ by Dissection 4.2 Member Selection Operator 141
there is no confusion between two members that have the same name in different struc-
tures, as in

struct fruit {
char name[15];
int calories;

};

struct vegetable {
char name[15];
int calories;

};

fruit a; // struct fruit a; in C
vegetable b; // struct vegetable b; in C

Having made these declarations, we can access a.calories and b.calories without
ambiguity.

In general, a structure is declared with the keyword struct, followed by an identifier
(tag name), followed by a brace-enclosed list of member declarations, followed by a
semicolon. The tag name is optional but should be expressive of the ADT concept being
modeled. When there is no tag name, the structure declaration is anonymous and can
be used only to declare variables of that type immediately:

struct {
int a, b, c;

} triples [2] = { {3, 3, 6}, {4, 5, 5} };

Note: Omitting the semicolon at the end of a declaration is a typical syntax error.

We use two-dimensional point example in much of this chapter. You should see at dif-
ferent places in the text whether you can extend these ideas to a three-dimensional
point. To test your understanding, do exercise 2 on page 179.

4.2 Member Selection Operator

Now we introduce the member selection operator ->, which provides access to the
members of a structure via a pointer. This operator is typed on the keyboard as a minus
sign followed by a greater-than sign. If a pointer variable is assigned the address of a
structure, a member of the structure can be accessed by a construct of the form

pointer_to_structure -> member_name

An equivalent construct is given by

(*pointer_to_structure).member_name

4.2

Ira Pohl’s C++ by Dissection 4.2 Member Selection Operator 142
The operators -> and ., along with () and [], have the highest precedence, and they
associate left to right. In complicated situations, the two accessing modes can be com-
bined. Here is the point structure:

struct point {
double x, y;

};

Table 4.1 illustrates its use:

The member w.x was assigned 1. Therefore, the equivalent expression “pointer p
accessing member x” is 1. The assignment v[0] = w assigns values member by mem-
ber. Therefore, v[0].x is 1. A more complete example using point is the following:

In file struct_point1.cpp

// Compute an average point

struct point { double x, y; };

point average(const point* d, int size)
{

point sum = {0, 0};

for (int i = 0; i < size; i++) {
sum.x += d->x;
sum.y += d->y;
d++; // d is iterator accessing each point

}
sum.x = sum.x / size;
sum.y = sum.y / size;
return sum;

}

Table 4.1 Declarations and Initialization

point w, *p = &w; point v[5];

w.x = 1; w.y = 4; v[0] = w;

Expression Equivalent Expression Value

w.x p -> x 1

w.y p -> y 4

v[0].x v -> x 1

(*p).y p -> y 4

http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/struct_point1.cpp

Ira Pohl’s C++ by Dissection 4.3 Member Functions 143
int main()
{

point data[5] = { {1.0, 2.0}, {1.0, 3.3},
{5.1, 0.5}, {2.0, 2.0}, {0, 0} };

point average_point;

average_point = average(data, 5);
cout << "average point = (" << average_point.x

<< ", " << average_point.y << ") " << endl;
}

4.3 Member Functions

C++ allows functions to be members. C allows only data members. The function decla-
ration is included in the structure declaration. The idea is that the functionality
required by the structure or class should often be directly included in the class or
struct declaration. Such functions are called class methods. This term method, mean-
ing member function, comes from object-oriented programming methodology. This con-
struct improves the encapsulation of the ADT point operations by packaging it
directly with its data representation. An informal idea for designing an object is to
think of the object as a noun, such as point, and to think of methods as verbs that
apply to the noun, such as print(). Let us add a printing operation and an initializing
operation to the ADT point:

In file point1.cpp

struct point {
double x, y;
void print() const { cout << "(" << x << ","

<< y << ")"; }
void set(double u, double v) { x = u; y = v; }

};

The member functions, or methods, are written in much the same way that other func-
tions are. One difference is that they can use the data member names directly. Thus, the
member functions in point use x and y in an unqualified manner. When invoked on a
particular object of type point, they act on the specified member in that object.

Let us use these member functions in an example:

4.3

http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/point1.cpp

Ira Pohl’s C++ by Dissection 4.3 Member Functions 144
int main()
{

point w1, w2;
w1.set(0, 0.5);
w2.set(-0.5, 1.5);
cout << "\npoint w1 = ";
w1.print();
cout << "\npoint w2 = ";
w2.print();
cout << endl;

}

This prints

point w1 = (0,0.5)
point w2 = (-0.5,1.5)

Dissection of the point Structure

■ struct point {
double x, y;

In classical programming, structures are user-defined data types that
bundle previously defined data types into a new type. In this case, the
new type is point. Its constituents are two doubles, the coordinates
represented by variables x and y.

■ void print() const { cout << "(" << x << ","
<< y << ")"; }

void set(double u, double v) { x = u; y = v;}

Object-oriented programming requires that functions be bundled
with data and become the actions available to the type. These mem-
ber functions are also called methods. Here is a simple print()
method that prints out a value for a point. The set() method is
used to change the values of the point’s coordinates. As we shall see
in further examples, it is part of the object-oriented programming
style to use member functions to access the data representation of an
object type. It is considered poor programming practice to directly
manipulate these values in an unrestrained fashion. The const modi-
fier after the function declaration indicates that the function will not
modify any class members. (See Section 4.10, const Members, on
page 161.)

Ira Pohl’s C++ by Dissection 4.3 Member Functions 145
Member functions that are defined within the struct are implicitly inline. As a rule,
only short, heavily used member functions should be defined within the struct, as in
the example just given. To define a member function outside the struct, the scope res-
olution operator is used (see Section 4.6, Class Scope, on page 150). Let us illustrate this
by adding a member function, point::plus(). We write it out fully, using the scope
resolution operator. In this case, the function is not implicitly inline.

In file point1.cpp

struct point {
·····
void plus(point c); // function prototype
·····

};

// offset the existing point by point c

void point::plus(point c) // definition not inline
{

x += c.x;
y += c.y;

}

Member functions within the same struct can be overloaded. Consider adding to the
data type point a print operation that has a string parameter printed as the name of
the point. The print operation could be added as the following function prototype
within the struct.

■ int main()
{

point w1, w2;

The newly defined type looks like any of the native types. Here, two
points are declared in main().

■ w1.set(0, 0.5);
w2.set(-0.5, 1.5);
cout << "\npoint w1 = ";
w1.print();

Notationally, to call methods of type point requires a point variable
dotted to the method name. In the first line, the point w1 is set to
the coordinates (0, 0.5). In the last line, these coordinates would be
printed out by the method print().

http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/point1.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/point1.cpp

Ira Pohl’s C++ by Dissection 4.4 Access: Private and Public 146
In file point1.cpp

struct point {
·····
void print(const string& name) const;
·····

};

void point::print(const string& name) const
{

cout << name << " (" << x << "," << y << ")";
}

The definition that is invoked depends on the arguments to print():

w1.print(); // standard print
w1.print("\npoint w1 = "); // print with name

A member function is conceptually part of the type. The inline specification can be
used explicitly, with member functions defined at file scope, which avoids having to
clutter the class definition with function bodies. The grouping of operations with data
emphasizes their objectness. Objects have a description and a behavior. Thinking of an
object as a noun and its behavior as the verbs that are most often associated with that
noun is key to good object design. OOP is a data-centered design approach.

4.4 Access: Private and Public

In C++, structures have public and private members. The keyword private followed
by a colon is used to declare subsequent members to have private access. The private
members can be used by only a few categories of functions. Class member functions
can use private members, and friend functions of the class can use private members.
Friend functions are discussed in Section 5.10, Friend Functions, on page 211.

The keyword public followed by a colon is used to declare subsequent members to
have public access. The public members can be used by any code.

We modify our example of point to hide its data representation, as follows:

In file point2.cpp

struct point {
public:

void print() const { cout << "(" << x << ","
<< y << ")"; }

void print(const string& name) const;
void set(double u, double v) { x = u; y = v; }
void plus(point c);

private:
double x, y;

};

4.4

http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/point1.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/point2.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/point1.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/point2.cpp

Ira Pohl’s C++ by Dissection 4.5 Classes 147
In the following code, an attempt by a nonmember function, foo(), to access the now
private members x and y results in a syntax error:

void foo(point w)
{

·····
cout << " x coordinate = " << w.x; // syntax error
·····

}

The keyword protected followed by a colon is used to declare subsequent members to
have protected access. The protected members can be thought of as private members
but with special rules when they are used by a derived class. This is not used here but is
explained in Section 8.1, A Derived Class, on page 330.

Hiding data is an important component of OOP. It allows for more easily debugged and
maintained code because errors and modifications are localized. Client programs need
be aware only of the type’s interface specification. This is also known as the black box
principle. A good design hides unnecessary implementation detail and presents the sim-
plest possible useful user interface to the client.

4.5 Classes

Classes in C++ are introduced by the keyword class. A form of struct, classes have a
default privacy specification of private, in contrast to structures defined with struct,
which have a default privacy specification of public. Thus, struct and class can be
used interchangeably with the appropriate access specifications. In the following exam-
ple, we modify point to use class:

The interface is great, but what does it do?

4.5

Ira Pohl’s C++ by Dissection 4.5 Classes 148
In file point3.cpp

class point {
double x, y; // implicitly private

public:
void print() const { cout << "(" << x << "," << y << ")"; }
void print(const string& name) const;
void set(double u, double v) { x = u; y = v; }
void plus(point c);

};

Contemporary C++ style is to use access specifiers explicitly rather than rely on
defaults. The use of implicit features is labor-saving but error-prone. Therefore, it is
better style to declare point as follows:

In file point4.cpp

class point {
public: // place public members first

void print() const { cout << "(" << x << "," << y << ")"; }
void print(const string& name) const;
void set(double u, double v) { x = u; y = v; }
void plus(point c);

private:
double x, y;

};

When access keywords are used, struct and class are interchangeable. Stylistically,
professional C++ programmers use class in preference to struct unless the struct
has only public data members. This text uses access keywords explicitly and places
public members first and private members last. In this need-to-know style, everyone
needs to know the public interface, but only the class provider needs to know the pri-
vate implementation details.

At this point, you should at this point be able to write a class pair. The class pair,
like point, has two fundamental values; for example, the first value might be a name
and the second value a telephone number. Such a pair could provide you an online way
of keeping your personal phone list.

I’m sorry, sir, but I really cannot let you have accessunless you are a member.

You must show your
membership card to get in

http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/point3.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/point3.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/point4.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/point3.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/point4.cpp

Ira Pohl’s C++ by Dissection 4.5 Classes 149
As a second example, let us write an ADT for customer, which many business applica-
tions require. As part of this representation, we will use the Standard Template Library
(STL) string type. This type overloads the binary operator + to produce string concate-
nation.

In file customer.cpp

enum c_kind { general, wholesale, retail };

class customer {
public:

void set_name(const string& l, const string& f)
{ last_name = l; first_name = f; }

c_kind get_kind() const { return t; }
void set_kind(c_kind k) { t = k; }
void print() const { cout << (first_name + " "

+ last_name) << endl; }
double price_discount() const;

private:
string last_name, first_name;
int id_number;
c_kind t;

};

double customer::price_discount() const
{

if (t == wholesale)
return 0.20;

else
return 0.1;

}

The class customer is an ADT in which the enum type c_kind distinguishes among
three categories of customer so that a different pricing structure can be applied for
each category.

Let us write a main() that tests the use of this new type:

int main()
{

customer c, d;

c.set_name("Pohl", "Ira");
c.set_kind(wholesale);
c.print();
cout << "\nYour PC costs "

<< 900 * (1 - c.price_discount())
<< " dollars." << endl;

}

http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/customer.cpp

Ira Pohl’s C++ by Dissection 4.6 Class Scope 150
Here is the output from this test program:

4.6 Class Scope

Classes add new scope rules to those of the kernel language. Classes provide an encap-
sulation technique. Conceptually, it makes sense that all names declared within a class
be treated within their own scope, as distinct from external names, namespace names,
function names, and other class names, creating a need for a scope resolution operator.

4.6.1 Scope Resolution Operator
The scope resolution operator, the highest-precedence operator in the language, comes
in two forms. The unary form is used to uncover or to access a name that has external
scope and has been hidden by local or class scope. The binary form places the class or
namespace identifier before the operator and the identifier after the operator.

Ira Pohl
Your PC costs 720 dollars.

Dissection of the customer Class

■ enum c_kind { general, wholesale, retail };

Simple ADTs are expressible as an enum type. The enumeration can
be declared inside or outside the class.

■ private:
string last_name, first_name;
int id_number;
c_kind t;

};

Implementation is almost always hidden in accord with the black box
principle.

■ c_kind get_kind() const { return t; }
void set_kind(c_kind k) { t = k; }

These are typical member functions. There is usually a set() and a
get() method for each data member of the internal representation.
This is part of the public interface for the ADT. It allows, in a con-
trolled fashion, access to key values for the customer type.

4.6

Ira Pohl’s C++ by Dissection 4.6 Class Scope 151
::i // unary - refers to external scope
point::x // binary - refers to class scope
std::cout // binary - refers to namespace scope

In file how_many1.cpp

int count = 0; // global count

void how_many(double w[], double x, int& count)
{

for (int i = 0; i < N; ++i)
count += (w[i] == x); // local count

++::count; // global count tracks calls
}

To understand this program fragment, change the parameter int& count to int& cnt.
Now there is no need for the scope resolution operator, as the two identifiers are dis-
tinct.

In file how_many2.cpp

int count = 0; // global count

void how_many(double w[], double x, int& cnt)
{

for (int i = 0; i < N; ++i)
cnt += (w[i] == x);

++count; // global count tracks calls
}

Binary scope resolution is used to clarify names that are reused within classes.

class widgets { public: void f(); };
class gizmos { public: void f(); };

void f() { ····· } // ordinary external f
void widgets::f() { ····· } // f scoped to widgets
void gizmos::f() { ····· } // f scoped to gizmos

One way to think about the scope resolution operator is to view it as providing a path to
the identifier. If there is no scope modifier, normal scope rules apply. Continuing with
the previous example:

widgets w;
gizmos g;

g.f();
w.f();
g.gizmos::f(); // legal but redundant
g.widgets::f(); // illegal-widgets can’t act on gizmo

http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/how_many1.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/how_many1.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/how_many2.cpp

Ira Pohl’s C++ by Dissection 4.6 Class Scope 152
4.6.2 Nested Classes
Like blocks and namespaces, classes are scopes and can nest. Nesting allows local hid-
ing of names and local allocation of resources. This is often desirable when a class is
needed as part of the implementation of a larger construct. The following nested
classes illustrate current C++ rules:

In file nested.cpp

char c; // external scope ::c

class X { // outer class declaration X::
public:

char c; // X::c
class Y { // inner class declaration X::Y::
public:

void foo(char e) { X t; ::c = t.c = c = e; }
private:

char c; // X::Y::c
};

};

In class Y, the member function foo(), when using ::c, references the global variable c;
when using X::c, it references the outer class variable; when using c, it references the
inner class variable X::Y::c. All three variables named c are accessible using the scope
resolution operator. Furthermore, purely locally scoped classes can be created within
blocks. Their definitions are unavailable outside their local block context.

void foo()
{

class local { ····· } x;
}

local y; // illegal:local is scoped within foo()

Notice that C++ allows you to nest function definitions by using class nesting, which is a
restricted form of function nesting. The member functions must be defined inside the
local class and cannot be referred to outside this scope.

So which nest is mine?

http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/nested.cpp

Ira Pohl’s C++ by Dissection 4.7 An Example: Flushing 153
Avoid unnecessary nesting as it creates hard-to-follow, complex designs. Good choice of
distinct names is preferable to distinguishing identifiers by scope.

4.7 An Example: Flushing

We want to estimate the probability of being dealt a flush in poker. A flush occurs when
at least five cards are of the same suit. We simulate shuffling cards by using a random
number generator. This is a form of Monte Carlo calculation, named after the famous
gambling resort. As was already mentioned in Section 3.20, Problem Solving: Random
Numbers, on page 108, a Monte Carlo calculation is a computer simulation program
requiring a probability calculation. The program uses classes to represent the necessary
data types and functionality. The key data type is card, which consists of a suit value
and a pips value. A pips value is between 1 and 13. On an actual card, these 13 pips
values are ace, 2, 3, ·····, 10, jack, queen, and king.

In file poker.cpp

enum suit { clubs, diamonds, hearts, spades };

class pips {
public:

void set_pips(int n) { p = n % 13 + 1; }
int get_pips() const { return p; }
void pr_pips() const { cout << p; }

private:
int p; // meant to hold values [1,13]

};

class card {
public:

void set_card(int n)
{ s = static_cast<suit>(n/13); p.set_pips(n); }

void pr_card() const;
suit get_suit() const { return s; }
pips get_pips() const { return p; }

private:
suit s;
pips p;

};

4.7

http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/poker.cpp

Ira Pohl’s C++ by Dissection 4.7 An Example: Flushing 154
class deck {
public:

void set_deck();
void shuffle();
void deal(int, int, card*);
void pr_deck() const;

private:
card d[52];

};

void deck::set_deck()
{

for (int i = 0; i < 52; ++i)
d[i].set_card(i);

}

void deck::shuffle()
{

for (int i = 0; i < 52; ++i) {
int k = i + (rand() % (52 - i));
card t = d[i]; // swap cards
d[i] = d[k];
d[k] = t;

}
}

void deck::deal(int n, int pos, card* hand)
{

for (int i = pos; i < pos + n; ++i)
hand[i - pos] = d[i];

}

Dissection of the deck Class

■ enum suit { clubs, diamonds, hearts, spades };

class pips {
public:

void set_pips(int n) { p = n % 13 + 1; }
·····

private:
int p; // meant to hold values [1,13]

};

The class pips and the enum suit are used to build the card type.
The set_pips() method uses integers 0 to 51 to set an appropriate
pips value for a card. The clustering of member functions and the
data members they act on improves modularity. Behavior and
description are logically grouped together.

Ira Pohl’s C++ by Dissection 4.7 An Example: Flushing 155
■ class card {
public:

void set_card(int n)
{s=static_cast<suit>(n/13); p.set_pips(n);}

·····
private:

suit s;
pips p;

};

Each level of declaration hides the complexity of the previous level.
The class card uses suit and pips in its representation. The
set_card() method uses integer division to generate an enumerator
value. To recode suit as a class type, you could have a set_suit()
method do the same computation.

■ class deck {
public:

void set_deck();
void shuffle();
void deal(int, int, card*);
void pr_deck() const;

private:
card d[52];

};

The class deck declares only the class member functions; defini-
tions come later.

■ void deck::set_deck()
{

for (int i = 0; i < 52; ++i)
d[i].set_card(i);

}

The set_deck() function calls card::set_card() to map the inte-
gers into card values. Again we notice how each part of the design
enables us to segregate function and description into appropriate
object types.

Ira Pohl’s C++ by Dissection 4.7 An Example: Flushing 156
We now write main() to test these classes by computing the odds of getting a dealt-out
flush in a poker game. We allow the user to decide how many cards to play, as there are
many poker variants that require between five and nine cards per hand.

#include <iostream>
#include <ctime> // needed for time()
#include <cstdlib> // needed for rand() and srand()
using namespace std;

int main()
{

card one_hand[9]; // max hand is 9 cards
deck dk;
int i, j, k, flush_count = 0, sval[4];
int ndeal, nc, nhand;

do {
cout << "\nEnter no. cards in a hand (5-9): ";
cin >> nc;

} while (nc < 5 || nc > 9);
nhand = 52 / nc;
cout << "Enter no. of hands to deal: ";
cin >> ndeal;
srand(time(NULL)); // seed rand() from time()
dk.set_deck();
for (k = 0; k < ndeal; k += nhand) {

if ((nhand + k) > ndeal)
nhand = ndeal - k;

dk.shuffle();
for (i = 0; i < nc * nhand; i += nc) {

for (j = 0; j < 4; ++j) // zero suit counts
sval[j] = 0;

dk.deal(nc, i, one_hand); // deal next hand
for (j = 0; j < nc; ++j)

sval[one_hand[j].get_suit()]++; // +1 to suit

void deck::shuffle()
{

for (int i = 0; i < 52; ++i) {
int k = i + (rand() % (52 - i));
card t = d[i]; // swap cards
d[i] = d[k];
d[k] = t;

}
}

The shuffle() function uses the library-supplied pseudo-random
number generator rand() in stdlib to exchange two cards for every
deck position.

Ira Pohl’s C++ by Dissection 4.7 An Example: Flushing 157
for (j = 0; j < 4; ++j)
if (sval[j] >= 5) // 5 or more is flush

flush_count++;
}

}

cout << "\nIn " << ndeal << " ";
cout << nc << "-card hands there were ";
cout << flush_count << " flushes\n";

}

Dissection of the poker Program

■ do {
cout << "\nEnter no. cards in a hand (5-9): ";
cin >> nc;

} while (nc < 5 || nc > 9);
nhand = 52 / nc;
cout << "Enter no. of hands to deal: ";
cin >> ndeal;

We first ask the user to enter a number of cards per hand. We insist
with a do loop that we get an integer between 5 and 9. We then input
the number of hands to run the computation on. For a relatively rare
hand, such as a flush, we need a high number of hands to get a rea-
sonable estimate of the probability of flushing. Notice we did not
insist on checking that the number of hands dealt was between some
integer values. A more robust program might also use a do loop for
this input as well.

■ srand(time(NULL)); // seed rand() from time()
dk.set_deck();
for (k = 0; k < ndeal; k += nhand) {

if ((nhand + k) > ndeal)
nhand = ndeal - k;

dk.shuffle();

The deck is initialized and then shuffled using the random number
generator. Each time the deck is dealt, the number nhand represents
how many poker hands per shuffle can be arranged. If we were deal-
ing six-card hands, this would be 8, as 6*8 is 48, but 7*8 is 56 (too
many cards for a 52-card deck). Also note that the library ctime needs
to be included for the call to time().

■ for (j = 0; j < nc; ++j)
sval[one_hand[j].get_suit()]++; // +1 to suit

For each card, we get its suit value. The suit value is an enumerator
that can be used as an index into the sval array. Each of the four ele-
ments of sval stores how many of each suit is found in a given hand.
If one of these values is at least 5, the hand is a flush.

Ira Pohl’s C++ by Dissection 4.8 The this Pointer 158
You can test your understanding of the poker program by modifying it to compute the
probability of other poker hands. It is straightforward to compute whether a hand has a
straight. A straight is a hand that has five cards whose pips value are in sequence, such
as having a (3, 4, 5, 6, 7).

4.8 The this Pointer

The keyword this denotes an implicitly declared self-referential pointer that can be
used in a nonstatic member function. Later, we discuss static member functions, where
the this pointer is not available. A simple illustration of the pointer’s use follows.

In file point5.cpp

// Class illustrating the use of the this pointer

class point {
public: // place public members first

void print() const { cout << "(" << x << ","
<< y << ")"; }

void print(const string& name) const;
void set(double u, double v) { x = u; y = v; }
void plus(point c);
point inverse() {x = -x; y = -y; return (*this);}
point* where_am_I() { return this; }

private:
double x, y;

};

// Offset the existing point by point c

void point::plus(point c)
{

x += c.x;
y += c.y;

}

A Bold Bluff

One of a series of
Dogs Playing Poker
by C. M. Coolidge

4.8

http://www.coteindustries.com/dogs/
http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/point5.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/point5.cpp

Ira Pohl’s C++ by Dissection 4.9 static Members 159
int main()
{

point a, b;

a.set(1.5, -2.5);
a.print();
cout << "\na is at " << a.where_am_I() << endl;
b = a.inverse();
b.print();
cout << "\nb is at " << b.where_am_I() << endl;

}

The output on our system is

Note that machine addresses are displayed in hexadecimal and are system-dependent.
In this case, the two addresses differ by hexadecimal 0x10, or decimal 16 bytes, the size
of the two doubles required to represent a point.

4.9 static Members

C++ allows static members. Using the modifier static when declaring a data member
means that the data member is independent of any given class variable. The data mem-
ber is part of the class but separate from any single class object. Nonstatic data mem-
bers are created for each instance of the class. A static data member is commonly
accessible by all instances of its class; it is a global member within class scope. Another

(1.5,-2.5)
a is at 0x0064fdd4
(-1.5,2.5)
b is at 0x0064fdc4

Dissection of the this Pointer

■ point inverse() { x = -x; y = -y; return (*this);}

The member function inverse() inverts the value of the point it
acts on. It then uses the built-in self-referential this pointer to return
the value of that point.

■ point* where_am_I() const { return this; }

The member function where_am_I() returns the address in memory
of the given object. In the output from main(), we see how it can be
used for tracing the program execution by showing the address of the
point object that it is applied to.

4.9

Ira Pohl’s C++ by Dissection 4.9 static Members 160
difference between static and nonstatic members is that static members cannot use
the this pointer.

Since a static member is independent of a particular instance, it can be accessed in the
form

class-name :: identifier

Note the use of the scope resolution operator. A static member of a global class must be
explicitly declared and defined in file scope. For example, if we want a counter to keep
track of how many points are declared at any time, we can add to class point as fol-
lows:

class point {
public:

static int how_many; // declaration
·····

};

int point::how_many = 0; // initialization
·····

++point::how_many; // use independent of any instance

The static member point::how_many needs a definition separate from an ordinary
point variable, since it exists independently from these variables. The static member
can be used with scope resolution, since it exists independent of point objects. Syntac-
tically, a static member function has the modifier static precede the return type
inside the class declaration. The preferred style for accessing static members is to use
scope resolution. Pointer and dot operator access are misleading and give no indication
that the member is static. The definition outside the class must not have this modi-
fier.

class point {
·····
static print_how_many(); // static goes first
·····

};

int point::print_how_many() // no static keyword here
{ cout << "How many points " << how_many << endl; }

The next section discusses the const modifier applied to member functions and shows
a further example using static members.

Ira Pohl’s C++ by Dissection 4.10 const Members 161
4.10 const Members

A data member declared with the const modifier cannot be modified after initializa-
tion. A nonstatic member function can also have the const modifier. Syntactically, a
const member function has the modifier const follow the argument list inside the
class declaration, and its definition outside the class must also have this modifier. A
const member function is not allowed to modify any of its implicit arguments.

class person {
·····
int print_age() const;

private:
int age;

};

int person::print_age() const // age unmodifiable
{ cout << "age is " << age << endl; }

An ordinary member function invoked as

x.method(i, j, k);

has an explicit argument list i, j, k and an implicit argument list that includes the mem-
bers of x. The implicit arguments can be thought of as a list of arguments accessible
through the this pointer. A const member function cannot modify its implicit argu-
ments. Writing out const member functions and parameter declarations is called const-
correctness and is an important aid in writing code. In effect, it is an assertion that the
compiler should check that an object does not have its values modified. Const-correct-
ness can also allow the compiler to apply some special optimizations, such as placing a
const object in read-only memory. The following example illustrates these ideas:

In file salary.cpp

// Calculate salary using static members

class salary {
public:

void set(int b) { b_sal = b; your_bonus = 0; }
void calc_bonus(double perc)

{ your_bonus = b_sal * perc; }
static void set_all_bonus(int p)

{ all_bonus = p; }
int comp_tot() const

{ return (b_sal + your_bonus + all_bonus); }
private:

int b_sal;
int your_bonus;
static int all_bonus; // declaration

};

4.10

http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/salary.cpp

Ira Pohl’s C++ by Dissection 4.10 const Members 162
// declaration and definition
int salary::all_bonus = 100;

int main()
{

salary w1, w2;

w1.set(1000);
w2.set(2000);
w1.calc_bonus(0.2);
w2.calc_bonus(0.15);
salary::set_all_bonus(400);
cout << " w1 " << w1.comp_tot() << " w2 "

<< w2.comp_tot() << endl;
}

Dissection of the salary Program

■ class salary {
·····

private:
int b_sal;
int your_bonus;
static int all_bonus; // declaration

};

There are three private data members. The static member
all_bonus requires a file-scope declaration and can exist indepen-
dently of any specific variables of type salary being declared.

■ void set(int b) { b_sal = b; your_bonus = 0; }

This assigns the value of b to the member b_sal. This member func-
tion initializes the base salary. The variable your_bonus is also ini-
tialized. Although our small example did not require this, it is a good
habit to initialize all member variables. As we see in Section 5.1,
Classes with Constructors, on page 184, special functions called con-
structors are used when initialization and object creation are needed.

■ void calc_bonus(double perc)
{ your_bonus = b_sal * perc; }

The right hand side of the assignment is a calculation of an int
times a double. This results in a double. The assignment to an int
causes a narrowing conversion resulting in the value for your_bonus.

■ static void set_all_bonus(int p) { all_bonus = p; }

The modifier static must come before the function return type.

Ira Pohl’s C++ by Dissection 4.10 const Members 163
Also allowed in C++ is static const initialization within a class declaration.

class salary {
·····

private:
const static int all_bonus = 1000; // initializer
·····

};

const int salary::all_bonus; // declaration required

Note: This is ANSI C++, but the GNU compiler g++ allows a user to avoid the further dec-
larat ion outs ide the c lass . I f all_bonus i s in i t ia l ized in this way , then
set_all_bonus() no longer works, because all_bonus is now a constant.

4.10.1 Mutable Members
The keyword mutable allows data members of class variables that have been declared
const to remain modifiable. It also allows const member functions to modify that data
member. This reduces the need to cast away constness using const_cast<>. The key-
word is used as follows:

■ int comp_tot() const
{ return (b_sal + your_bonus + all_bonus); }

The const modifier comes between the end of the argument list and
the beginning of the code body. This modifier indicates that no data
member has its value changed. Thus, it makes the code more robust.
In effect , the se l f - referent ia l po inter i s passed as
const salary* const this.

■ salary::set_all_bonus(400);

A static member function can be invoked by using the scope resolu-
tion operator. The member function could also have been invoked as
w1.set_all_bonus(400), but this is misleading since there is noth-
ing special about the class variable w1.

Ira Pohl’s C++ by Dissection 4.11 A Container Class Example: ch_stack 164
In file person.cpp

class person { // Class with mutable members
public:

person(const string namep, int agep, unsigned long ssn)
: name(namep), age(agep), soc_sec(ssn) { }

void bday() const { ++age; }
void print() const { cout << name << " is " << age

<< " years old. SSN = " << soc_sec << endl; }
private:

mutable int age; // always modifiable
const unsigned long soc_sec;
const string name;

};

int main()
{

const person ira("ira pohl", 38, 1110111);

ira.print();
ira.bday(); // okay, ira.age is mutable
ira.print();

}

The key point is that without the mutable modifier on the declaration of age, bday()
could not modify ira’s age normally because ira was declared const. To fully under-
stand this example, you will need to read about constructors and initializer syntax in
Chapter 5, Ctors, Dtors, Conversions, and Operator Overloading.

4.11 A Container Class Example: ch_stack

A container is a data structure whose main purpose is to store and retrieve a large num-
ber of objects. In the kernel language, an array acts as such a structure. In this section,
we develop code that is used to store character values in a stack, which is a last-in-first-
out (LIFO) container. We code the stack class ch_stack that stores characters.

In file ch_stack1.h

class ch_stack {
public:

void reset() { top = EMPTY; }
void push(char c) { +s[++top] = c; }
char pop() { return s[top--]; }
char top_of() const { return s[top]; }
bool empty() const { return (top == EMPTY); }
bool full() const { return (top == FULL); }

4.11

http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/ch_stack1.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/person.cpp

Ira Pohl’s C++ by Dissection 4.11 A Container Class Example: ch_stack 165
private:
enum { max_len = 100, EMPTY = -1, FULL = max_len - 1 };
char s[max_len];
int top;

};

The basic operations on a stack are push and pop. The push operation places a value on
the top of the stack, and the pop operation removes the value at the top of the stack.
We use a fixed-length char array to implement the stack. Later, we talk about other,
more flexible implementations.

We now write main() to test the same operations.

In file ch_stack1.cpp

// Reverse a string with a ch_stack

int main()
{

ch_stack s;
char str[40] = { "My name is Don Knuth!" };
int i = 0;

cout << str << endl;
s.reset(); // s.top = EMPTY; is illegal
while (str[i] && !s.full())

s.push(str[i++]);
while (!s.empty()) // print the reverse

cout << s.pop();
cout << endl;

}

The output from this version of the test program is

My name is Don Knuth!
!htunK noD si eman yM

Dissection of the ch_stack Class

■ private:
enum { max_len = 100, EMPTY = -1,

FULL = max_len - 1 };
char s[max_len];
int top;

As usual, we hide the implementation details. In this case, we repre-
sent the stack of characters with a fixed-length array.

http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/ch_stack1.cpp

Ira Pohl’s C++ by Dissection 4.12 Software Engineering: Class Design 166
4.12 Software Engineering: Class Design

The access order for classes has traditionally been private first:

class ch_stack {
// private by default
int top;
enum { max_len = 100, EMPTY = -1,

FULL = max_len - 1 };
char s[max_len];

public:
void reset() { top = EMPTY; }
void push(char c) { s[++top] = c; }
char pop() { return s[top--]; }
char top_of() const { return s[top]; }
bool empty() const { return (top == EMPTY); }
bool full() const { return (top == FULL); }

};

The reason is that in the original form of C++, only the access keyword public was
present. The access keywords private and protected did not exist. By default, mem-
ber access for class was private; therefore, the private members had to come first.

The style of public first is becoming the norm. It follows the rule that the widest audi-
ence needs to see the public members. More specialized information is placed later in
the class declaration. This can be thought of as a need-to-know principle or newspaper

■ bool empty() const { return (top == EMPTY); }
bool full() const { return (top == FULL); }

These functions do not modify the stack, hence we declare them
const. They are known as accessor functions. They access informa-
tion describing the stack.

■ void push(char c) { s[++top] = c; }
char pop() { return s[top--]; }

These functions manipulate and change the stack. They are known as
mutator functions and cannot be declared const.

■ s.reset(); // s.top = EMPTY; is illegal
while (str[i] && !s.full())

s.push(str[i++]);

As the comment in main() states, access to the hidden variable top is
controlled. The variable can be changed by the member function
reset() but cannot be accessed directly. Also, notice how the vari-
able s is passed to each member function, using the member access
operator form, as in s.function.

4.12

Ira Pohl’s C++ by Dissection 4.12 Software Engineering: Class Design 167
principle. In a newspaper, the first sentence gives the most important and most widely
disseminated information. Details are left for later.

Data members should in general be private. This is an important coding heuristic. Gen-
erally, data are part of an implementation choice and should be accessed through pub-
lic member functions. Such member functions are called accessor functions when they
do not change, or mutate, the data. This is not necessarily inefficient because simple
accessor member functions can be inline. In the class ch_stack, the member functions
top_of(), empty(), and full() are all inline accessor functions. Accessor functions
should be declared const. The member function reset() is a mutator. It allows a con-
strained action on the hidden variable top. Notice how much safer such a design is. If
top were directly accessible, it would be easy for it to be inappropriately changed.

In OOP design, the public members are usually functions and are thought of as the
type’s interface. These are the actions, or behaviors, publicly expected of an object. If
we think of the object type as a noun, the behaviors are verbs. In the implementation,
data members are generally placed in private access. This is a key data-hiding principle;
namely, that implementation is kept inside a black box that cannot be directly exploited
by the object’s user.

There is a way through indirection to provide additional data hiding. This is through the
use of a separate class for the underlying data representation. This technique is called
the Cheshire Cat technique, in honor of Lewis Carroll’s cat that disappeared leaving
only a smile. Let us recode class ch_stack to use this technique:

class ch_stack {
public:

void reset() { ptr -> reset(); }
void push(char c)

{ ptr->push(c); }
char pop() { return ptr->pop(); }
char top_of() const { return ptr->top_of(); }
bool empty() const

{ return ptr -> empty(); }
bool full() const

{ return ptr -> full(); }
private:

ch_stk_rep* ptr; // opaque pointer
};

All the data and underlying operations are handled through the ch_stk pointer. The
class ch_stack is therefore known as a wrapper class. The relationship between the
wrapper class and the underlying representation class is called the handle design pat-
tern. We will illustrate this relationship when we introduce Unified Modeling Language
(UML) diagrams in Section 4.12.2, Unified Modeling Language (UML) and Design, on page
169.

Ira Pohl’s C++ by Dissection 4.12 Software Engineering: Class Design 168
class ch_stk_rep {
public:

void reset() { top = EMPTY; }
void push(char c)

{ s[top++] = c; }
char pop() { return s[top--]; }
char top_of() const { return s[top]; }
bool empty() const

{ return (top == EMPTY); }
bool full() const

{ return (top == FULL); }
private:

enum { max_len = 100, EMPTY = -1,
FULL = max_len - 1 };

int top;
char s[max_len];

}

4.12.1 Trade-Offs in Design
Design is all about trade-offs. Recall our poker example and our use of an enum type to
describe suit. What if this were recoded as a class?

Change the suit declaration from an enumerated type to a class as follows:

class suit {
public:

void set(int n) { s = n / 13; }
int get_suit() const { return s; }
void print() const;

private:
enum suit_val

{ clubs, diamonds, hearts, spades } s;
};

Noun: Ball Verbs: Bounce Hit Throw

Ira Pohl’s C++ by Dissection 4.12 Software Engineering: Class Design 169
We add the member function get_suit() to access the hidden integer value of a suit
variable. The advantage is that suit and pips are now treated symmetrically, with both
being given class definitions. The disadvantage is that we have added more code and a
layer of methods to access what is basically a simple type having four unique values.
There is no clear answer as to which choice for suit is better. In one sense, the curse of
C++ is that there are too many opportunities, but this is also its great benefit over sim-
pler languages such as Java.

4.12.2 Unified Modeling Language (UML) and Design
The Unified Modeling Language (UML) is a graphical depiction of class relationships that
helps the coder design, document, and maintain object-oriented code. The simplest dia-
gram is a rectangle that represents a class. Generally, the class has three things
depicted: its name, placed at the top; its data members, placed in the middle; and its
methods, placed at the bottom. The following UML diagram corresponds to the person
class in Section 4.10.1, Mutable Members, on page 164.

A class diagram describes the types and relationships in the system. It is very useful
documentation, and a number of systems, such as Rational Rose, now provide auto-
mated tools to develop such documentation along with coding. A relationship that can
be depicted by UML includes the part-whole, or aggregation, relationship (HASA). For
example, a handle type such as ch_stack has a representation class class
ch_stk_rep pointer.

person

name
age

soc_sec

bday()

UML Diagram for Class person

ch_stack

ptr

push()

ch_stk_rep

top
s[]

push()

Handle Class in UML

Ira Pohl’s C++ by Dissection 4.13 Dr. P’s Prescriptions 170
The representation class is used to concretely implement the handle class. This rela-
tionship recurs in many object-oriented coding schemes. It is called the bridge or han-
dle design pattern. A design pattern is a recurring software solution to a problem,
usually involving several classes collaborating to solve the problem. The book Design
Patterns: Elements of Reusable Object-Oriented Software, by Gamma, et al. (Addison-
Wesley, 1995) popularized this approach by listing over 20 such patterns with catchy
names, such as the bridge pattern.

4.13 Dr. P’s Prescriptions

■ Indentation is as follows: class, access keywords, and closing brace all line up and
are placed on separate lines. Member declarations are indented and line up verti-
cally.

■ Access privileges are in order: public, protected, and private.

■ Data members should be private.

■ const your member functions where possible.

■ Provide a uniform set of methods, such as set(), get(), and print().

■ Use inlining only when vital to performance.

The indentation rules are consistent with industry practice. The idea behind placing
more visible members first is based on the same logic used in newspaper articles—
namely, what everyone needs to know comes first. What everyone needs to know are the
public members. This is the interface available to all users of the class.

In most designs, it is appropriate to make data members private. As we explained, this
is the black box principle. The builder (read: programmer) hides the details of the
implementation. The client benefits by having to see and understand fewer details and
being protected from obvious misapplications.

Many member functions, such as print methods, are accessor but not mutator func-
tions. This means they do not change values of the object they are using. In these cases,
the methods should be declared const. This is good programming methodology. It
allows the compiler to check for key correctness attributes of the code. It also allows
the compiler to perform certain optimizations that come from knowing the object’s
value is not changed by the method. Note: const does not have an effect on what the
function computes, so many lazy programmers choose to not use it.

A client expects to print information about a data type, so almost all data types need
print methods in their interface. A client expects to retrieve and change key values of
the object. A proper choice of set and get methods allows the class programmer to pro-
vide these services. Providing these functions with like names and uses makes it easier
to code new types and have clients easily use them.

Inlining comes at a cost. The inline function is expanded to a body of code rather than
just a function call. This can cause code bloat. More important, inlining forces develop-
ers to recompile their entire code base when these functions are rewritten. Changing a

4.13

Ira Pohl’s C++ by Dissection 4.14 C++ Compared with Java 171
non-inline function requires only a relink as long as the interface remains the same.
(George Belotsky mentioned this in a private note.)

4.14 C++ Compared with Java

Java classes are based on the C++ aggregate type class. A class provides the means
for implementing a user-defined data type and associated functions. Therefore, a class
can be used to implement an ADT. Unlike in C++, however, functions, or methods, as
they are called in Java, cannot exist outside a class construct. Also Java class types are
always reference types. The Java primitive types, such as int or char are value types.
Let us write a class called Person that is used to store information about people:

In file Person.java

// An elementary Java implementation of type Person

class Person {
public void setName(String nm) { name = nm; }
public void setAge(int a) { age = a; }
public void setGender(char b) { gender = b; }
public String toString()

{ return (name + " age is " + age
+ " gender is " + gender); }

private String name;
private int age;
private char gender; // male 'M', female 'F'

};

As with C++ classes, Java has two important additions to the structure concept of tradi-
tional C. First, Java has members called class methods that are functions, such as set-
Age(). Second, Java has both public and private members. The keyword public
indicates the visibility of the members that follow it. Without this keyword, the mem-
bers are private to the class. Private members are available for use only by other mem-
ber functions of the class. Public members are available anywhere the class is available.
Privacy allows part of the implementation of a class type to be hidden and prevents
unanticipated modifications to the data structure. Restricted access, or data hiding, is a
feature of object-oriented programming.

The declaration of methods inside a class allows the ADT to have actions, or behaviors,
that can act on its private representation. For example, the member function
toString() has access to private members and gives Person a string representation
used in output. This method is common to many class types.

We can now use this data type Person as if it were a basic type of the language. Other
code that uses this type is a client. The client can use only the public members to act on
variables of type Person.

4.14

http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/Person.java

Ira Pohl’s C++ by Dissection 4.15 Advanced Topics 172
// PersonTest.java uses Person

public class PersonTest {
public static void main (String[] args)
{

System.out.println("Person test:");
Person p1 = new Person(); // create Person
p1.setAge(20);
p1.setName("Alan Turing");
p1.setGender('M');
System.out.println(p1.toString());

}
}

The output of this example program is

Notice the use of new Person() to create an instance of Person. The new operator goes
off to the heap, as it does in C++, and obtains memory for creating an instance of object
Person. The value of p1 is a reference to this object. In effect, this is the address of the
object. For a more detailed look of a similar example, and explanation of the nuances of
Java classes, read Java by Dissection (Addison-Wesley) by Ira Pohl and Charlie McDowell,
pages 234 to 242.

4.15 Advanced Topics

This section can be omitted on a first reading, as it is about less used and arcane facili-
ties.

4.15.1 Pointer to Class Member
A pointer to class member is distinct from a pointer to class. A pointer to class mem-
ber’s type is T::*, where T is the class name. C++ has two operators that act to derefer-
ence a pointer to class member. The two pointer-to-member operators are .* and ->*.
Think of obj.*ptr_mem and pointer->*ptr_mem as first accessing the object and then
accessing and dereferencing the member that is specified. The following code shows
how to use these operators.

Person test:
Alan Turing age is 20 sex is M

4.15

Ira Pohl’s C++ by Dissection 4.15 Advanced Topics 173
In file show_hide.cpp

//Pointer to class member

class X {
public:

int visible;
void print() const

{ cout << "\nhide = " << hide
<< " visible = " << visible; }

void reset() { visible = hide; }
void set(int i) { hide = i; }

private:
int hide;

};

typedef void (X::*pfcn)();

int main()
{

X a, b, *pb = &b;
int X::*pXint = &X::visible;
pfcn pF = &X::print;

a.set(8); a.reset();
b.set(4); b.reset();
a.print();
a.*pXint += 1;
a.print();
cout << "\nb.visible = " << pb ->*pXint;
(b.*pF)();
pF = &X::reset;
(a.*pF)();
a.print();
cout << endl;

}

The output is as follows:

The typedef void (X::*pfcn)(); statement says that pfcn is a pointer to class X
member whose base type is a function with no arguments that returns void. Member
functions X::print and X::reset match this type.

hide = 8 visible = 8
hide = 8 visible = 9
b.visible = 4
hide = 4 visible = 4
hide = 8 visible = 8

http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/show_hide.cpp

Ira Pohl’s C++ by Dissection 4.15 Advanced Topics 174
The declaration

int X::*pXint = &X::visible;

declares pXint to be a pointer to class X member whose base type is int. It is initialized
by pfcn pF = &X::print to point at the member X::visible. The pointer pF is ini-
tialized to point at the member function X::print. Given the pointer assignments in
the program, the following equivalencies hold:

a.*pXint += 1 is equivalent to ++a.visible
pb ->*pXint is equivalent to pb -> visible
b.*pF() is equivalent to b.print()
(a.*pF)() is equivalent to a.reset().

Consider the memory layout for representing an object. The object has a base address,
and the various nonstatic members are offset relative to this base address. In effect, a
pointer to class member is used as an offset and is not a true pointer; a true pointer has
general memory addresses as values. A static member is not offset and, as such, a
pointer to a static member is a true address.

4.15.2 Unions
This section is about a dangerous type-construction facility, the union. A union is a
derived type whose syntax is the same as for structures except that the keyword union
replaces struct. The member declarations share storage, and their values are overlaid.
Therefore, a union allows its value to be interpreted as a set of types that correspond to
the member declarations.

A union initializer is a brace-enclosed value for its first member. Consider the following
declaration:

In file union.cpp

union int_dbl {
int i;
double x;

} n = { 0 }; // i member is set to zero

Now we write main() to show how the variable n can be used as either an integer type
or a double type.

int main()
{

n.i = 7; // int value 7 is stored in n
cout << n.i << " is integer. ";
cout << n.x << " is double-machine dependent.\n";
n.x = 7.0; // double value 7.0 in n
cout << n.i << " is integer - machine dependent.";
cout << n.x << " is double." << endl;

}

http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/union.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/union.cpp

Ira Pohl’s C++ by Dissection 4.15 Advanced Topics 175
This example also illustrates why unions can be dangerous and are often system-depen-
dent. On some systems, it is possible that not all bit patterns are legal values for the
overlaid types. In that case, a legal value with one type might, when accessed as the
other type, lead to an exception.

A union can be anonymous, as in the following code:

In file weekend.cpp

enum week { sun, mon, tues, weds, thurs, fri, sat };

static union {
int i;
week w;

};

int main()
{

i = 5;

if (w == sat || w == sun)
cout << " It's the weekend! ";

}

The anonymous union allows the individual member identifiers to be used as variables.
The member names must be unique within scope, and no variables of the anonymous
type can be declared. Note that an anonymous union declared in file scope must be
static.

4.15.3 Bit Fields
This next topic is also arcane and system-dependent, and it may be omitted by readers
who do not use bit manipulation in their programs.

A member that is an integral type can consist of a specified number of bits. Such a
member is called a bit field, and the number of associated bits is called its width. The
width is specified by a nonnegative constant integral expression following a colon.

struct pcard { // packed representation of card
unsigned s : 2;
unsigned p : 4;

};

The compiler attempts to pack the bit fields sequentially within memory, but it is at lib-
erty to skip to a next byte or word for purposes of alignment. Arrays of bit fields are not
allowed. Also, the address operator & cannot be applied to bit fields.

Bit fields are used to address information conveniently in packed form. On many
machines, words are 32 bits, and bit operations can be performed in parallel. In this
case, bit manipulation is an implementation technique for sets that contain up to 32
elements, as shown next.

http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/weekend.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/weekend.cpp

Ira Pohl’s C++ by Dissection 4.15 Advanced Topics 176
In file set.cpp

struct word {
unsigned w0:1, w1:1, w2:1, w3:1, w4:1, w5:1, w6:1,

w7:1, w8:1, w9:1, w10:1, w11:1, w12:1, w13:1,
w14:1, w15:1, w16:1, w17:1, w18:1, w19:1, w20:1,
w21:1, w22:1, w23:1, w24:1, w25:1, w26:1, w27:1,
w28:1, w29:1, w30:1, w31:1;

};

We can overlay word and unsigned within a union to create a data structure for manip-
ulating bits.

union set {
word m;
unsigned u;

};

int main()
{

set x, y;

x.u = 0x0f100f10;
y.u = 0x01a1a0a1;
x.u = x.u | y.u; // set union
cout << "element 9 = "

<< ((x.m.w9)? "true" : "false") << endl;
}

The set operation union is performed as a word-parallel operation on most systems. A
word-parallel operation means an operation that executes simultaneously on all the dis-
tinct bits contained in the machine word. This is far more efficient than processing each
bit sequentially.

C++ provides bit-manipulation operators (see Table 4.2). They operate on the machine-
dependent bit representation of integral operands. It is customary that the shift
operators be overloaded to perform I/O.

Table 4.2 Bitwise Operators

~ Unary one’s complement

<< Left shift

>> Right shift

& And

^ Exclusive or

| Or

http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/set.cpp

Ira Pohl’s C++ by Dissection Summary 177
Summary

■ The original name Stroustrup gave to his language was “C with classes.” A class is an
extension of the idea of structure in traditional C. A class is a way of implementing a
data type and associated functions and operators. It is the mechanism in C++ for
implementing ADTs, such as complex numbers and stacks.

■ The structure type allows the programmer to aggregate components into a single
named variable. A structure has components, called members, that are individually
named. Critical to processing structures is the accessing of their members. This is
done with either the member access operator . or the member selection operator
-> . These operators, along with () and [], have the second-highest precedence.
Highest precedence belongs to scope resolution, ::.

■ The concepts of structure and class are augmented in C++ to allow functions to be
members. The function declaration is included in the structure declaration and is
invoked using access methods for structure members. The functionality required by
the struct data type should often be directly included in the struct declaration.

■ Member functions defined within the structure or class are implicitly inline. As a
rule, only short, heavily used member functions should be defined within the struc-
ture. When defined outside the structure, the scope resolution operator is used.

■ The scope resolution operator allows member functions of various structure types
to have the same names; which member function is invoked depends on the type of
object it acts on. Member functions within the same struct can be overloaded.

■ Structures have public and private members that provide data hiding. Inside a struc-
ture or class, the keyword private followed by a colon restricts the access of the
members that follow it. The private members are used by only a few categories of
functions, whose privileges include access to these members. These functions
include the member functions of the class.

■ Classes in C++ are a form of struct, whose default access specification is private.
Thus, struct and class can be used interchangeably with the appropriate access
specification.

■ Data members can be declared with the storage class modifier static. A data mem-
ber that is declared static is shared by all variables of that class and is stored in
one place only. Therefore, the data member can be accessed using the form

class-name :: identifier

■ Classes can be nested. The inner class is inside the scope of the outer class. This is
not in accordance with C semantics.

Ira Pohl’s C++ by Dissection Review Questions 178
Review Questions

1. In C++, the structure name, or , is a type.

2. Member functions that are defined within class are implicitly .

3. A function invocation w1.print(); means that print is a function.

4. A private member (can or cannot) be used by a member function of that class.

5. The static modifier used in declaring a data member means that the data member
is .

6. The preferred style is to have members of given first and members of
access declared last in a class declaration.

7. A stack is a LIFO container. A container is a data structure whose main purpose is
.

8. LIFO means .

Ira Pohl’s C++ by Dissection Exercises 179
Exercises

1. Design a C++ structure to store a dairy product name, portion weight, calories, pro-
tein, fat, and carbohydrates. Twenty-five grams of American cheese have 375 calo-
ries, 5 grams of protein, 8 grams of fat, and 0 carbohydrates. Show how to assign
these values to the member variables of your structure. Write a function that, given a
variable of type struct dairy and a weight in grams (portion size), returns the
number of calories for that weight.

2. Write a structure point that has three coordinates x, y, and z. How can you access
the individual members?

3. Use the structure card defined in the poker program in Section 4.7, An Example:
Flushing, on page 153, to write a hand-sorting routine. In card games, most players
keep their cards sorted by pip value. The routine places aces first, kings next, and so
forth, down to twos. A hand is five cards.

4. The following declarations do not compile correctly. Explain what is wrong.

struct brother {
char name[20];
int age;
struct sister sib;

} a;

struct sister {
char name[20];
int age;
struct brother sib;

} a;

5. In this exercise, use the class ch_stack, defined in Section 4.11, A Container Class
Example: ch_stack, on page 164. Write the function

void reverse(char s1[], char s2[]);

The strings s1 and s2 must be the same size. String s2 should become a reversed
copy of string s1. Internal to reverse, use a ch_stack to perform the reversal.

6. Rewrite the functions push() and pop() discussed in Section 4.11, A Container
Class Example: ch_stack, on page 164, to test that push() is not acting on a full
ch_stack and that pop() is not acting on an empty ch_stack. If either condition is
detected, print an error message, using cerr, and use exit(1) (in cstdlib) to abort
the program. Contrast this to an approach using asserts.

7. Write reverse() as a member function for type ch_stack, discussed in Section
4.11, A Container Class Example: ch_stack, on page 165. Test it by printing nor-
mally and reversing the string

Ira Pohl’s C++ by Dissection Exercises 180
Gottfried Leibniz wrote Toward a Universal Characteristic

8. For the ch_stack type in Section 4.4, Access: Private and Public, on page 146, write
as member functions

// Push n chars from s1 onto the ch_stack

void pushm(int n, const char s1[]);

// Pop n chars from ch_stack into char string

void popm(int n, char s1[]);

Hint: Be sure to put a terminator character into the string before outputting it.

9. Explain the difference in meaning between the structure

struct a {
int i, j, k;

};

and the class

class a {
int i, j, k;

};

Explain why the class declaration is not useful. How can you use the keyword pub-
lic to change the class declaration into a declaration equivalent to struct a?

10. Recode as a class the data type deque, which is a double-ended queue that allows
pushing and popping at both ends.

class deque {
public:

void reset() {top=bottom = max_len / 2; top--; }
·····

private:
char s[max_len];
int bottom, top;

};

Declare and implement push_t(), pop_t(), push_b(), pop_b(), print_stack(),
top_of(), bottom_of(), empty(), and full(). The function push_t() stands for
push on top and pop_t() for pop on top; push_b() stands for push on bottom and
pop_b() for pop on bottom. The print_stack() function should output the stack
from bottom to top. An empty stack is denoted by having the top fall below the bot-
tom. Test each function. Draw the UML diagram for this class.

11. Extend the data type deque by adding a member function relocate(). If the deque
is full, relocate() is called, and the contents of the deque are moved to balance

Ira Pohl’s C++ by Dissection Exercises 181
empty storage around the center max_len/2 of array s. Its function declaration
header is

// Returns true if it succeeds, false if it fails
bool deque::relocate()

12. Recode deque to hide the representation in a class deque_rep. Draw an appropri-
ate UML diagram for this handle class design.

13. Write a function that swaps the contents of two strings. If you pushed a string of
characters onto a ch_stack and popped them into a second string, they would come
out reversed. In a swap of two strings, we want the original ordering. Use a deque to
do the swap. The strings are stored in character arrays of the same length, but the
strings themselves may be of differing lengths. The function prototype is

void swap(char s1[], char s2[]);

Write the following member functions and add them to the poker program found in
Section 4.7, An Example: Flushing, on page 153. Let pr_deck() use pr_card() and
pr_card() use print(). Print the deck after it is initialized.

void pips::print() const;
void card::pr_card() const;
void deck::pr_deck() const;

14. Write a function pr_hand() that prints out card hands. Add it to the poker program
and use it to print out each flush.

15. In Section 4.7, An Example: Flushing, on page 153, main() detects flushes. Write a
function

bool isflush(const card hand[], int nc) const;

that returns true if a hand is a flush.

16. Write a function

bool isstraight(const card hand[], nc) const;

that returns true if a hand is a straight. A straight is five cards that have sequential
pip values. The lowest straight is ace, 2, 3, 4, 5, and the highest straight is 10, jack,
queen, king, ace. Run experiments to estimate the probability that dealt cards result
in a straight, and compare the results of five-card hands with results of seven-card
hands. Hint: You may want to set up an array of 15 integers to correspond to
counters for each pip value. Be sure that a pip value of 1 (corresponding to ace) is
also counted as the high card corresponding to a pip value of 14.

17. Use the previous exercises to determine the probability that a poker hand results in
a straight flush. This is the rarest poker hand and has the highest value. Note that, in
a hand of more than five cards, it is not sufficient to merely check for the presence
of both a straight and a flush to determine that the hand is a straight flush.

Ira Pohl’s C++ by Dissection Exercises 182
18. Change the suit declaration from an enumerated type to a class:.

enum suit_val { clubs, diamonds, hearts, spades };

class suit {
public:

void assign(int n) { s = n / 13; }
int getsuit() const { return s; }
void print() const;

private:
suit_val s;

};

We add the member function getsuit() to access the hidden integer value of a
suit variable. Now recode all references to suit throughout the program.

19. Change class ch_stack to int_stack by substituting type int for type char in the
class definition as appropriate. In Section 6.1, Template Class stack, on page 246,
we see how to use templates to automate this process.

20. Redesign the roulette simulation problem of Chapter 3, Functions, Pointers, and
Arrays 3, exercise 21 on page 138, through exercise 23 on page 138, to be a class-
based program. You might have a roulette class and a gambler class. Recompute an
estimate of the gambler’s ruin length for a gambler whose initial capital is 2,000 dol-
lars. Draw the UML for this program.

21. (Java) Recode point in Section 4.5, Classes, on page 148, as a Java class.

22. (Java) Recode and test ch_stack in Section 4.11, A Container Class Example:
ch_stack, on page 164, as a Java class. Add a method reverse() that does the
same basic operation as the code in main() in Section 4.11, A Container Class Exam-
ple: ch_stack, on page 165 and test it.

23. (Java to C++) Recode the Java program PersonTest.java in Section 4.14, C++ Com-
pared with Java, on page 171, to run as C++.

Ctors, Dtors, Conversions,
and Operator Overloading

CHAPTER 5
Objects are class instances. An object requires memory and an initial value, which
C++ provides through declarations that are definitions. Variables of any type require
memory and an initial value. For example, in

void foo()
{

int n = 5;
double z[10] = { 0.0 };
struct gizmo { int i, j; } w = { 3, 4 };
·····

}

all of the variables are created at block entry when foo() is invoked. A typical imple-
mentation uses a runtime system stack. Thus, the int variable n on a system with 4-
byte integers gets its space allocated off the stack and initialized to the value 5. The
gizmo variable w requires 8 bytes to represent its two-integer members. The array of
double variable z requires 10 times sizeof(double) to store its elements. In each
case, the system provides for the construction and initialization of these variables. On
exit from foo(), deallocation occurs automatically.

In creating complicated aggregates, the user expects similar management of a class-
defined object. The class needs a mechanism to specify object creation and destruction
so that a client can use objects like native types.

A constructor (ctor) is a member function whose name is the same as the class name; it
creates objects of the class type. This process involves initializing data members and,
frequently, allocating storage from the heap by using new. A destructor (dtor) is a mem-
ber function whose name is the class name preceded by the tilde character, ~. A
destructor’s usual purpose is finalizing or destroying objects of the class type. Finaliz-
ing objects involves retrieving resources allocated to the object. Frequently this
requires using delete to deallocate store assigned to the object.

Whereas constructors can be overloaded and take arguments, destructors can do nei-
ther. A constructor is invoked when its associated type is used in a definition, when
call-by-value is used to pass a value to a function, or when the return value of a function

Ira Pohl’s C++ by Dissection 5.1 Classes with Constructors 184
must create a value of associated type. Destructors are invoked implicitly when an
object goes out of scope. Constructors and destructors do not have return types and
cannot use return expression statements.

5.1 Classes with Constructors

The simplest use of a constructor is for initialization. In this and later sections, we
develop some examples that use constructors to initialize the values of the data mem-
bers of the class. Our first example is an implementation of a data type counter to
store numbers that are computed with a modulus of 100. A car’s trip odometer is a
counter.

In file counter.cpp

// Counter and constructor initialization

class counter {
public:

counter(int i); // ctor declaration
void reset() { value = 0; }
int get() const { return value; }
void print() const { cout << value << '\t'; }
void click() { value = (value + 1) % 100; }

private:
int value; // 0 to 99

};

// Constructor definition

inline counter::counter(int i) { value = i % 100; }

Hey, you must have the wrong address for demolition.
We don’t need a destructor yet! We are still

constructing this thing!

5.1

http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/counter.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/counter.cpp

Ira Pohl’s C++ by Dissection 5.1 Classes with Constructors 185
Some examples of this are

counter a(0); // a.value = 0;
counter b(1); // b.value = 1;

Dissection of the counter Class

■ class counter {
public:

counter(int i); // ctor declaration

The class counter is to be used as a simple data type that counts
from 0 to 99. It has a constructor that initializes variables to a value
between these limits. Here, we have the constructor declared but not
defined.

■ void reset() { value = 0; }
int get() const { return value;}
void print() const { cout << value << '\t'; }
void click() { value = (value + 1) % 100; }

Here, we have a typical group of methods. The counter’s click opera-
tion is implemented by adding 1 and using the modulus operator to
guarantee that the value of the counter stays inside its limits.

■ private:
int value; // 0 to 99

};

The integer value is restricted in value to 0, 1, 2, . . . , 99. It is the
class implementer’s responsibility to enforce this restriction by hav-
ing all member functions guarantee this behavior.

■ // Constructor definition

inline counter::counter(int i){ value = i % 100; }

The member function counter::counter(int) is a constructor. It
does not have a return type. This constructor is invoked when objects
of type counter are declared. It is a function of one argument. When
invoked, the constructor requires an expression that is assignment-
compatible with its int parameter. It then creates and initializes the
declared variable. Notice we have placed the definition of the con-
structor outside the class braces. We can then define it by using the
scope resolution operator :: . Methods defined inside the class
brackets are automatically inlined. When defining a method outside
the class braces, we can indicate that is to be inlined by using the key-
word inline explicitly in the definition. When providing an inline
function definition outside of the class brackets, you must include it
in any file with code that uses it.

Ira Pohl’s C++ by Dissection 5.1 Classes with Constructors 186
but not

counter a; // illegal: no parameter list

Since this class has only the one constructor of argument list int, a counter declara-
tion must have an integral expression passed as an initializing value. Not allowing a
counter variable to be declared without an initializing expression prevents runtime
errors due to uninitialized variables. In the next section, we provide a constructor that
remedies the preceding illegal declaration. This is a constructor, termed the default con-
structor, that does not require an initializing value. Such a constructor should perform
initialization of a class variable to a default value.

5.1.1 The Default Constructor
A constructor requiring no arguments is called the default constructor. It can be a con-
structor with an empty argument list or one whose arguments all have default values. It
has the special purpose of initializing arrays of objects of its class.

It is often convenient to overload the constructor with several function declarations. In
the preceding example, it could be desirable to have the default value be 0. If the default
constructor

counter() { value = 0; }

is added as a member function of counter, the following declarations are possible:

counter s; // initializes s.value to 0
counter d[5]; // arrays properly initialized

In both of these declarations, the empty parameter-list constructor is invoked.

If a class has no constructor, the system provides a default constructor. If a class has
constructors but not a default constructor, array allocation causes a syntactic error.

In our counter example, the following constructor could serve as both a general initial-
izer and a default constructor:

inline counter::counter(int i = 0) { value = i % 100 }

Man, oh, man, I wish I could automate this counting!

Ira Pohl’s C++ by Dissection 5.1 Classes with Constructors 187
This initializes counter variable’s value to 0 by default, unless the user provides in an
argument list an explicit initial value.

5.1.2 Constructor Initializer
A special syntax is used for initializing subelements of objects with constructors. Con-
structor initializers for structure and class members are specified by a colon and a
comma-separated list that follows the constructor parameter list and that precedes the
code body. A constructor initializer is a data member identifier followed by a parenthe-
sized expression. Using this syntax, the counter constructor can be recoded as

// Default constructor for counter

inline counter::counter(int i = 0) :
value(i % 100) { }

The member variable value is initialized by the expression i % 100. The constructor
definition has a compound statement that is empty. Notice that initialization replaces
assignment. The individual members must be initializable as

member-name (expression list)

It is not always possible to assign values to members in the body of the constructor. An
initializer list is required when a nonstatic member is either a const or a reference
type.

5.1.3 Constructors as Conversions
Constructors of a single parameter are used automatically for conversion unless
declared with the keyword explicit. For example, Metal::Metal(Ore) provides code
that can be used to convert an Ore object to a Metal object. Consider the following
class, whose purpose is to print invisible characters with their ASCII designation; for
example, the code 07 (octal) is alarm or bel. (See Appendix A, ASCII Character Codes
for the full character set.)

In file printable.cpp

// ASCII printable characters

class pr_char {
public:

pr_char(int i = 0) : c(i % 128) { }
void print() const { cout << rep[c]; }

private:
int c;
static const char* rep[128];

};

http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/printable.cpp

Ira Pohl’s C++ by Dissection 5.1 Classes with Constructors 188
const char* pr_char::rep[128] = { "nul", "soh", "stx",
·····// filled in with table of ASCII characters
"w", "x", "y", "z","{", "|", "}", "~", "del" };

int main()
{

pr_char c;
for (int i = 0; i < 128; ++i) {

c = i; // or: c = static_cast<pr_char>(i);
c.print();
cout << endl;

}
}

Dissection of the printable Program

■ class pr_char {
public:

pr_char(int i = 0) : c(i % 128) { }

The constructor creates an automatic conversion from integers to
pr_char. Its signature is of type int.

■ static const char* rep[128];
};
const char* pr_char::rep[128] = { "nul", "soh",
“stx”,

·····// filled in with table of ASCII characters
"w", "x", "y", "z","{", "|", "}", "~", "del" };

The table of characters is declared static. This is important here. We
want the representation to not be attached to a given object. Being
declared static means that there is only one such array rep[] and
it is independent of any given class variable.

■ pr_char c;

The declaration invokes the default constructor and is equivalent to
pr_char c(0).

■ for (int i = 0; i < 128; ++i) {
c = i; // or: c = static_cast<pr_char>(i);
c.print();

The integer value of i is converted implicitly by calling the construc-
tor of signature int, namely pr_char::pr_char(int), to produce
the equivalent pr_char value and assign it to c. You need to be care-
ful with such conversions and assignments. In cases where the
objects that are converted use significant resources, there can be con-
siderable overhead in this technique.

Ira Pohl’s C++ by Dissection 5.1 Classes with Constructors 189
5.1.4 Improving the point Class
The class point from Section 4.5, Classes, on page 148, is readily improved by adding
constructors. It is also the case that usually there are several constructors per class.
Each constructor signature represents a useful way to declare and initialize an object of
that type. Notice that the class contains the ordinary member function point::set(),
which can be used to change the value of a point object but cannot be used to create a
point object.

In file parabola.cpp

class point {
public:

point() : x(0), y(0) { } // default
point(double u) : x(u), y(0) { } // double to point
point(double u, double v) : x(u), y(v) { }
void print() const { cout << "(" << x << ","

<< y << ")"; }
void set(double u, double v) { x = u; y = v; }
void plus(point c);

private:
double x, y;

};

// Offset existing point by point c

void point::plus(point c)
{

x += c.x;
y += c.y;

}

This class has three individually coded constructors. They could be combined using
default arguments as follows:

%$#\n\b !!!

Gee, we’d better use printable characters in
a family publication.

http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/parabola.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/parabola.cpp

Ira Pohl’s C++ by Dissection 5.1 Classes with Constructors 190
inline point::point(double u = 0, double v = 0) :
x(u), y(v) { }

Many scientific problems require producing a table of points or a graph by using a func-
tion. For example, a parabola can be coded as

double parabola(double x, double p)
{ return(x * x) / p; }

We produce a table of points graphing the parabola from 0 to 2 in increments of 0.1.

In file parabola.cpp

void graph(double a, double b, double incr,
double f(double, double), double p, point gr[])

{
double x = a;
for (int i = 0; x <= b; ++i, x += incr)

gr[i].set(x, f(x, p));
}

const int no_of_pts = 20;

int main()
{

point g[no_of_pts]; // uses default ctor

graph(0, 2, 0.1, parabola, 5, g);
cout << "First 20 samples:" << endl;
for (int i = 0; i < no_of_pts; ++i) {

g[i].print();
if (i % 5 == 4)

cout << endl;
else

cout << " ";
}

}

5.1.5 Constructing a Stack
A constructor can also be used to allocate space from the heap also known as free store.
We shall modify the ch_stack type from Section 4.11, A Container Class Example:
ch_stack, on page 164, so that its maximum length is initialized by a constructor. The
length of the stack is a parameter to a constructor. This parameter is used to call the
operator new, which can allocate storage dynamically.

The design of the object ch_stack includes hidden implementation detail. Data mem-
bers are placed in the private access region of class ch_stack. The public interface
provides clients with the expected stack abstraction. These are all public member func-
tions, such as push() and pop(). Some of these functions are accessor functions that

http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/parabola.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/parabola.cpp

Ira Pohl’s C++ by Dissection 5.1 Classes with Constructors 191
do not change the stack object, such as top_of() and empty(). It is usual to make
these const member functions. Some of these functions are mutator functions that do
change the ch_stack object, such as push() and pop(). The constructor member func-
tions have the job of creating and initializing ch_stack objects.

In file ch_stack2.h

class ch_stack {
public:
// public interface for ch_stack

explicit ch_stack(int size) :
max_len(size), top(EMPTY)
{ assert(size > 0); s = new char[size];

assert(s != 0); }
void reset() { top = EMPTY; }
void push(char c) { s[++top]= c; }
char pop() { return s[top--]; }
char top_of() const { return s[top]; }
bool empty() const { return (top == EMPTY); }
bool full() const { return (top == max_len-1); }

private:
enum { EMPTY = -1 };
char* s; // changed from s[max_len]
int max_len;
int top;

};

Dissection of ch_stack Class

■ explicit ch_stack(int size) :
max_len(size),top(EMPTY)
{ assert(size > 0); s = new char[size];

assert(s != 0); }

The keyword explicit is used with a constructor of one argument.
Normally, this would be a conversion constructor, but the keyword
explicit disables this feature. It is clear that we do not want an int
type to be inadvertently turned into a stack.

For example, if this constructor did not have the keyword explicit,
then

ch_stack s(200); // s is size 200
int n = 5;
·····
s = n; // s assigned a stack of size 5;
·····

This would be an unwanted behavior, which is prevented by using the
keyword explicit.

http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/ch_stack2.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/ch_stack2.h

Ira Pohl’s C++ by Dissection 5.1 Classes with Constructors 192
Constructors are important because they create possibilities for conveniently initializ-
ing the abstract data type. For example, we can code two additional constructors for
ch_stack. One would be a default constructor to allocate a specific-length ch_stack,
and a second would be a two-parameter constructor whose second parameter would be
a char* to initialize the ch_stack. The two constructors are as follows:

// Default constructor for ch_stack

ch_stack::ch_stack() : max_len(100), top(EMPTY)
{

s = new char[100];
assert(s != 0);

}

// Copy a char* string into the ch_stack

ch_stack::
ch_stack(int size, const char str[]) : max_len(size)
{

int i;
assert(size > 0);
s = new char[size];
assert(s != 0);
for (i = 0; i < max_len && str[i] != 0; ++i)

s[i] = str[i];
top = --i;

}

The corresponding function prototypes would be included as members of the class
ch_stack. We show the use of these constructors:

In the preceding code and in the rest of this chapter, we use asser-
tions to test whether a pointer value is 0. This is done after calling
new and indicates that new has failed. The assert technique requires
that a debug option be turned on for the compiler. Also, we are
assuming that memory allocation exception handling is turned off.
An alternative scheme is to have the bad_alloc exception thrown.
This is discussed in detail in Section 10.9, Standard Exceptions and
Their Uses, on page 409. This code has no destructor and leads to
memory leaks. We show an appropriate destructor in Section 5.1.6,
Classes with Destructors, on page 195. It should also have a copy con-
structor and assignment operator overloaded.

■ enum { EMPTY = -1 };
char* s; // changed from s[max_len]
int max_len;
int top;

Here is the ch_stack implementation for a dynamically sized array.
We use a base pointer s rather than a fixed-length array.

Ira Pohl’s C++ by Dissection 5.1 Classes with Constructors 193
ch_stack data; // creates data.s[100]
ch_stack d[N]; // creates N 100 element ch_stacks
ch_stack w(4, "ABCD"); // w.s[0]='A'·····w.s[3]='D'

5.1.6 The Copy Constructor
The semantics of call-by-value for functions require that a local copy of the argument
type be created and initialized from the value of the expression passed as the actual
argument. For example:

int cube_plus(int i)
{

i = i + 1;
return i * i * i;

}

when called as in

int j = 2;
cout << cube_plus(j + 2) << endl;

is equivalent to placing a block of code

{ int i_local = j + 2; // call by value copy
i_local = i_local + 1;

 return i_local * i_local * i_local;
}

In this example, the local variable i_local is initialized to 4. One is then added to the
local variable, and a value of 125, or 5 cubed, is returned.

For a native type, a local copy is made and the value inside the block of the local copy is
not passed back after function execution.

For class types, call-by-value requires a copy constructor. The compiler provides a copy
constructor whose signature is

class_name::class_name(const class_name&);

The compiler copies by memberwise initialization. This is usually correct for simple
classes that have nonpointer data members, such as class point. This is incorrect in
other circumstances, such as for classes with members that are pointers. In many cases,
the pointer is the address of an object. The act of duplicating the pointer value but not
the object pointed at can lead to buggy code. This form of copying is called shallow
copying. Shallow copying is wrong for classes such as ch_stack. In these cases, deleting
the original object may cause the copied object to incorrectly disappear.

The class ch_stack explicitly defines its own copy constructor, as is appropriate.

Ira Pohl’s C++ by Dissection 5.1 Classes with Constructors 194
In file ch_stack2.h

// Copy ctor for ch_stack of characters

ch_stack::ch_stack(const ch_stack& stk) :
max_len(stk.max_len), top(stk.top)

{
s = new char[stk.max_len];
assert(s != 0);
memcpy(s, stk.s, max_len);

}

The stdlib routine memcpy() copies max_len characters from the base address stk.s
into memory, starting at base address s. This is called a deep copy. The character arrays
are distinct because they refer to different memory locations. If instead the body of this
routine were s = stk.s; this would be a shallow copy, with ch_stack variables shar-
ing the same representation. Any change to one variable would change the other.

Suppose that we wish to examine our stack and count the number of occurrences of a
given character. We can repeatedly pop the stack, testing each element in turn, until the
stack is empty. But what if we want to preserve the contents of the stack? Call-by-value
parameters accomplish this.

In file ch_stack2.cpp

// Count the number of c’s found in s

int cnt_char(char c, ch_stack s)
{

int count = 0;

while (!s.empty()) // done when empty
count += (c == s.pop()); // found a c

return count;
}

In this case, the explicitly written copy constructor does a deep copy. If we had allowed
the compiler to provide a default copy constructor, we would have potentially buggy
code. A copy constructor is invoked when there is call-by-value of the object, return-by-
value for the object, or initialization of one object by another of the same type.

Shallow Copy Needs to Copy Deep Copy

http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/ch_stack2.h
http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/ch_stack2.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/ch_stack2.h
http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/ch_stack2.cpp

Ira Pohl’s C++ by Dissection 5.2 Classes with Destructors 195
5.2 Classes with Destructors

A destructor is a member function whose name is the class name preceded by a tilde, ~.
Destructors are almost always called implicitly, usually at the exit of the block in which
the object was declared. They are also invoked when a delete operator is called on a
pointer to an object having a destructor or where needed to destroy a subobject of an
object being deleted.

Let us augment our ch_stack example with a destructor:

In file ch_stack2.h

// Implementation with ctors and dtor

class ch_stack {
public:

ch_stack(); // default ctor
explicit ch_stack(int size) :

max_len(size), top(EMPTY)
{ assert(size > 0); s = new char[size];

assert(s != 0); }
ch_stack(const stack& stk); // copy ctor
ch_stack(int size, const char str[]);
~ch_stack() { delete []s; } // dtor
// rest of the methods ·····

private:
enum { EMPTY = -1 };
char* s;
int max_len;
int top;

};

The addition of the destructor allows the class to return unneeded heap-allocated mem-
ory during program execution. All of the public member functions perform in exactly
the same manner as before. However, the destructor is implicitly invoked on block and
function exit to clean up storage no longer accessible.

5.3 Members That Are Class Types

In object-oriented programming (OOP) methodology, complicated objects are built from
simpler objects. For example, a house is built with a foundation, rooms, and a roof. The
house has a roof as a subobject. This part-whole relationship is called in OOP the HASA
relationship. Complicated objects can be designed from simpler ones by incorporating
them with the HASA relationship. In this section, the type address is used as a member
of the class person.

5.2

5.3

http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/ch_stack2.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/ch_stack2.h

Ira Pohl’s C++ by Dissection 5.4 Example: A Singly Linked List 196
In file address.cpp

class address {
public:

address(string street, string city)
:street_name(street),city_name(city) { }

void print() const;
string get_street() const { return street_name; }
string get_city() const { return city_name; }

private:
string city_name;
string street_name;

};

class person {
public:

person(string n, address h);
void print() const;
void set_address();

private:
address home;
const string name;

};

person::person(string n, address h) :
name(n), home(h) { }

Notice that the person constructor is a series of initializers. The initializers of the
address member invoke the address copy constructor. Also, the methods
get_street() and get_city() could be written to return a const reference as fol-
lows:

const string& get_street() const
{ return street_name; }

For large objects, this is more efficient, as it does not require making a copy. Making the
return type const also keeps the user of the class from altering the data member with-
out an access function.

5.4 Example: A Singly Linked List

The singly linked list data type is the prototype of many useful dynamic abstract data
types (ADTs) called self-referential structures. These data types have pointer members
that refer to objects of their own type and are the basis of many useful container
classes. The following declaration implements such a type:

5.4

http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/address.cpp

Ira Pohl’s C++ by Dissection 5.4 Example: A Singly Linked List 197
In file slist.cpp

struct slistelem {
char data;
slistelem* next;

};

class slist { // singly linked list
public:

slist() : h(0) { } // 0 denotes empty slist
~slist() { release(); }
void prepend(char c); // adds to front of slist
void del();
slistelem* first() const { return h; }
void print() const;
void release();

private:
slistelem* h; // head of slist

};

Note that slist is really only an interface for slistelem*.

Selected List Operations
1. prepend: Adds to front of list

2. first: Returns first element

3. print: Prints list contents

4. del: Deletes first element

5. release: Destroys list

The link member next points to the next slistelem in the list. In this example, data is
a simple variable, but it could be replaced by a complicated type capable of storing a
range of information. The constructor initializes the head of slist pointer h to the
value 0, which is called the null-pointer constant and can be assigned to any pointer
type. In linked lists, this constant typically denotes the empty list or end-of-list value.
The member function prepend() builds the list structure as follows:

. . .slist

Singly Linked List

http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/slist.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/slist.cpp

Ira Pohl’s C++ by Dissection 5.4 Example: A Singly Linked List 198
void slist::prepend(char c)
{

slistelem* temp = new slistelem;// create element

assert(temp != 0);
temp -> next = h; // link to slist
temp -> data = c;
h = temp; // update head of slist

}

A list element is allocated from the heap, and its data member is initialized from the
single argument c. Its link member next is set to the old list head. The head pointer h is
updated to point at this element as the new first element of the list.

The member function del() has the inverse role.

void slist::del()
{

slistelem* temp = h;

h = h -> next; // presumes nonempty slist
delete temp;

}

This function returns the first element of the list to the heap by using the delete oper-
ator on the head of slist pointer h. The new head-of-list is the value of the next mem-
ber. This function can be modified to work on the empty list without aborting.

Much of list processing consists of repetitively chaining down the list until the null-
pointer value is found. The following two functions use this technique.

In file slist.cpp

void slist::print() const // object is unchanged
{

slistelem* temp = h;

while (temp != 0) { // detect end of slist
cout << temp -> data << " -> ";
temp = temp -> next;

}
cout << "\n###" << endl;

}

// Elements returned to the heap

void slist::release()
{

while (h != 0)
del();

}

http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/slist.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/slist.cpp

Ira Pohl’s C++ by Dissection 5.4 Example: A Singly Linked List 199
The following code demonstrates the use of this type. The destructor has been modified
to print a message.

Dissection of the print() and release() Functions

■ void slist::print() const // object is unchanged
{

slistelem* temp = h;

An auxiliary pointer temp chains down the list. The pointer is initial-
ized to the address of the slist head h. The pointer h cannot be used
because its value would be lost, in effect destroying access to the list.

■ while (temp != 0) { // detect end of list
cout << temp -> data << " -> ";
temp = temp -> next;

}

The value 0 is guaranteed to represent the end-of-list value because
the constructor slist::slist() initialized it as such and the
slist::prepend() function maintains it as the end-of-list pointer
value. Notice that the internals of this loop could be changed to pro-
cess the entire list in another manner.

■ void slist::release()

The release function is used to return all list elements to the heap. It
does this by continually removing the head of the list until there are
no more elements.

■ while (h != 0)
del();

Each element of the list must be returned to the heap in sequence by
slist::del(), which manipulates the hidden pointer h. Since we are
destroying the list, it is unnecessary to preserve the original value of
po inter h . This funct ion is the body of the destructor
slist::~slist(). The following incorrect destructor deletes only
the first element in the list.

slist::~slist()
{

delete h;
}

Ira Pohl’s C++ by Dissection 5.4 Example: A Singly Linked List 200
In file slist.cpp

slist::~slist()
{

cout << "destructor invoked" << endl;
release();

}

int main()
{

slist* p;
{

slist w;
w.prepend('A');
w.prepend('B');
w.print();
w.del();
w.print();
p = &w;
p -> print();
cout << "exiting inner block" << endl;

}
// p -> print(); gives system-dependent behavior
cout << "exiting outer block" << endl;

}

Notice that main() contains an inner block, which is included to test that the destruc-
tor is invoked on block exit, returning storage associated with w to the heap. The output
of this program is

The first print() call prints the two-element slist, which stores A and B. After a del
operation is performed, the list contains one element, which stores A. The outer block
pointer to slist p is assigned the address of the slist variable w. When the list is
accessed through p in the inner block, it prints A. This output shows that the destructor
works at block exit on the variable w.

The behavior of the commented-out invocation of slist::print() is system-depen-
dent. It is a runtime error to dereference p here because the address it refers to may
have been overwritten at block exit by the deletion routine.

B -> A ->
###
A ->
###
A ->
###
exiting inner block
destructor invoked
exiting outer block

http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/slist.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/slist.cpp

Ira Pohl’s C++ by Dissection 5.5 Strings Using Reference Semantics 201
5.5 Strings Using Reference Semantics

Allocation at runtime of large aggregates can readily exhaust memory resources. The
list example in Section 5.4, Example: A Singly Linked List, on page 198, shows one
scheme for handling this: The system reclaims memory by traversing each list and dis-
posing of each element. This model of reclamation is a form of garbage collection. In
Java, LISP, and SmallTalk, the system itself is responsible for this reclamation. Such sys-
tems periodically invoke a garbage collector to identify all memory locations currently
accessible by the executing program and reclaim those that are inaccessible. Most such
schemes require traversal and marking of memory locations accessible from pointers
with a computationally expensive procedure.

A disposal scheme that avoids this is reference counting, in which each dynamically
allocated object tracks its active references. When an object is created, its reference
count is set to 1. Every time the object is newly referenced, the reference count is incre-
mented; every time it loses a reference, the count is decremented. When the reference
count becomes 0, the object’s memory is disposed of.

The following example creates a my_string class that has reference semantics for
copying. The class uses both the cstring and the assert libraries. This class has shallow
copy semantics because pointer assignment replaces copying. The techniques illus-
trated are common for this type of aggregate. We use the class str_obj to create object
values. The type str_obj is a required implementation detail for my_string. It could
not be directly placed in my_string without destroying the potential many-to-one rela-
tionship between objects of type my_string and referenced values of type str_obj.
The values of my_string are in the class str_obj, which is an auxiliary class for
my_string’s use only. The publicly used class my_string handles the str_obj
instances and is called a handler class.

In file my_string.cpp

// Reference counted my_strings

class str_obj {
public:

int ref_cnt;
char* s;
str_obj() : ref_cnt(1), len(0)

{ s = new char[1];
assert(s != 0); s[0] = 0; }

str_obj(const char* p) : ref_cnt(1)
{ len = strlen(p); s = new char[len + 1];

assert(s != 0); strcpy(s, p); }
~str_obj() { delete []s; }

private:
int len;

};

The str_obj declares objects that are used by my_string. For now, we leave the data
members ref_cnt and s public. They are needed in some of the methods of class

5.5

http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/my_string.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/my_string.cpp

Ira Pohl’s C++ by Dissection 5.5 Strings Using Reference Semantics 202
my_string. We explain later how data members can be made private and accessed
using the friend mechanism. Notice how the str_obj class is used for construction
and destruction of objects using the heap. On construction of a str_obj, the ref_cnt
variable is initialized to 1.

class my_string {
public:

my_string() { st = new str_obj; assert(st != 0); }
my_string(const char* p)

{ st = new str_obj(p); assert(st != 0); }
my_string(const my_string& str)

{ st = str.st; st -> ref_cnt++; }
~my_string();
void assign(const my_string& str);
void print() const { cout << st -> s; }

private:
str_obj* st;

};

my_string::~my_string()
{

if (--st -> ref_cnt == 0)
delete st;

}

void my_string::assign(const my_string& str)
{

if (str.st != st) {
if (--st -> ref_cnt == 0)

delete st;
st = str.st;
st -> ref_cnt++;

}
}

Dissection of the my_string Class

■ str_obj(const char* p) : ref_cnt(1)
{ len = strlen(p); s = new char[len + 1];
assert(s != 0); strcpy(s, p); }

This constructor initialized the ref_cnt variable to 1. It used the
cstring library function strcpy() to copy the characters in the string.
It needs an internal array s of length len + 1, because the last char-
acter stored is the null character \0.

Ira Pohl’s C++ by Dissection 5.5 Strings Using Reference Semantics 203
■ my_string() { st = new str_obj; assert(st != 0); }

The default constructor creates a str_obj and asserts that new
worked. Recall that this is tested by checking that the assigned
pointer value is not 0.

■ my_string(const char* p)
{ st = new str_obj(p); assert(st != 0); }

This C-style string constructor relies on the conversion constructor in
str_obj.

■ my_string(const my_string& str)
{ st = str.st; st -> ref_cnt++; }

The copy constructor is particularly efficient. It is here that you see
shallow copying. Only the pointer value, an address, is copied, and
the reference count is incremented. In a deep copy, the entire string,
character by character, needs to be copied. This requires space and
time proportional to the length of the string.

■ my_string::~my_string()
{

if (--st -> ref_cnt == 0)
delete st;

}

The destructor acts when ref_cnt of the associated str_obj goes to
0. Otherwise, my_string variables still reference the underlying
str_obj representation.

■ void my_string::assign(const my_string& str)
{

if (str.st != st) {
if (--st -> ref_cnt == 0)

delete st;
st = str.st;
st -> ref_cnt++;

}
}

The semantics of assign() show some of the subtleties of using ref-
erence counting. The assignment occurs if the my_string is not being
assigned its same value. The assignment causes the assigned variable
to lose its previous value. This is equivalent to decrementing the ref-
erence count of the pointed-at str_obj value. Whenever an object’s
reference count is decremented, it gets tested for deletion. The advan-
tage of this over normal copying is clear. A very large aggregate is
copied by reference, using a few operations and a small amount of
storage for the reference counter. Also, each possible change to a
pointer adds a reference-count operation. The destructor must also
test the reference count before deletion.

Ira Pohl’s C++ by Dissection 5.6 Constructor Issues and Mysteries 204
5.6 Constructor Issues and Mysteries

Object creation for native types is usually the task of the compiler. The writer of a class
wishes to achieve the same ease of use for the class. Let us reexamine some issues in
simple terms. Does every class need an explicitly defined constructor? Of course not. If
no constructor is written by the programmer, the compiler provides a default construc-
tor, if needed.

In file tracking.cpp

// Personal data tracking

struct pers_data {
int age; // in years
int weight; // in kilograms
int height; // in centimeters
char name[20]; // last name

};

void print(pers_data d)
{

cout << d.name << " is " << d.age
<< " years old\n";

cout << "weight : " << d.weight
<< "kg, height : " << d.height << "cm."
<< endl;

}

Don’t shut me off, fool. There are still 3 users attached!

5.6

http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/tracking.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/tracking.cpp

Ira Pohl’s C++ by Dissection 5.6 Constructor Issues and Mysteries 205
int main()
{

pers_data laura = { 3, 14, 88, "POHL" };
// construction off the stack

print(laura); // calls copy ctor
}

What if we use constructors and allow the copy constructor to be provided by the com-
piler? Recall that this means that the copy constructor does member-by-member copy,
which can result in the wrong semantics—namely, shallow copy semantics—in which no
new value is created; instead, a pointer variable is assigned the address of the existing
value.

Take the case of reference semantics, whereby a copy implies that the reference counter
is incremented. This does not happen with the compiler-provided copy constructor.
Thus, objects copied in this manner are undercounted and prematurely returned to the
heap. As a rule of thumb, the class provider should explicitly write out the copy con-
structor unless it is self-evident that memberwise copy is safe. Be cautious if the aggre-
gate has any pointer-based members.

The union data type is little used in C++ and need not be studied at first. Recall, it is a
struct-like type in which the members share the same memory. This means that the
same storage can be interpreted as different types without using a cast. There are spe-
cial rules for unions. This should not be surprising, since unions are a technique for
having various objects share space. Unions cannot have members that have construc-
tors or destructors, nor can they have static data members. Anonymous unions can
have only public data members, and a global anonymous union must be declared
static.

5.6.1 Destructor Details
A destructor is implicitly invoked when an object goes out of scope. Common cases
include block exit and function exit.

my_string sub_str(char c, my_string b)
{

my_string temp;
·····
return temp;

}

In sub_str(), we have b, a call-by-value argument of type my_string. Therefore, the
copy constructor is invoked to create a local copy when the function is invoked. Corre-
spondingly, a destructor is called on function exit. A local my_string variable, temp, is
constructed on block entry to this function and therefore must have its destructor
invoked on block exit. Finally, the return argument must be constructed and passed
back into the calling environment. The corresponding destructor is invoked, depending
on the scope of the object to which it is assigned.

Ira Pohl’s C++ by Dissection 5.7 Polymorphism Using Function Overloading 206
5.6.2 Constructor Pragmatics
In constructors, initialization is preferred to assignment:

ch_stack::ch_stack(int size)
{ s = new char[size]; assert(s != 0);

max_len = size; top = EMPTY; }

is better written as

ch_stack::ch_stack(int size) : max_len(size), top(EMPTY)
{ s = new char[size]; assert(s != 0); }

The compiler is often more efficient about initialization. Initialization order follows
declaration order inside the class and not the ordering of the initializer list.

In classes that use new to construct objects, a copy constructor should be explicitly pro-
vided. The default compiler-provided copy constructor usually has the wrong semantics
for such an object. Usual practice is to provide a default and a copy constructor with
any class that uses pointers in its implementation. As we shall see in Section 5.14, Over-
loading the Assignment Operator, on page 219, such classes should have their own
explicit definition of operator=(). This ensures that copying and assignment are done
safely.

5.7 Polymorphism Using Function Overloading

Polymorphism is a means of giving different meanings to the same function name or
operator, dependent on context. The appropriate meaning is selected on the basis of the
type of data being processed. We have encountered one form of polymorphism when
writing expressions of mixed type. Depending on the type of the operands, the division
operator on native types might be either an integer division or a floating-point division.

Object orientation takes advantage of polymorphism by linking behavior to the object’s
type. Operators, such as + and <<, have distinct meanings overloaded by operand type.
For example, the expression cout << x is by convention expected to display an appro-
priate representation of x, depending on the type of object x.

Overloading of functions gives the same function name different meanings. The name
has several interpretations that depend on function selection. This is called ad hoc poly-
morphism. The remainder of this chapter discusses overloading, especially operator
overloading, and conversions of data types.

Operators are overloaded and selected based on the signature-matching algorithm.
Overloading operators gives them new meanings. For example, the meaning of the
expression a + b differs depending on the types of the variables a and b. Overloading
the operator + for user-defined types allows them to be used in addition expressions in
much the same way native types are used. The expression a + b could mean string con-
catenation, complex-number addition, or integer addition, depending on whether the
variables were the user-defined ADT my_string, the standard library class complex, or

5.7

Ira Pohl’s C++ by Dissection 5.8 ADT Conversions 207
the native type int. Mixed-type expressions are also made possible by defining conver-
sion functions.

One principle of OOP is that user-defined types must enjoy the same privileges as
native types. Where the C++ standard library adds the complex number type, the pro-
grammer expects the convenience of using it without regard to a native/nonnative dis-
tinction. Operator overloading and user-defined conversions let us use complex
numbers in much the same way as we can use int or double.

Later, we will discuss two other powerful forms of polymorphism, namely, parametric
polymorphism using templates and pure polymorphism using virtual functions.

5.8 ADT Conversions

Explicit type conversion of an expression is necessary when either the implicit conver-
sions are not desired or the expression is not otherwise legal. One aim of OOP using
C++ is the integration of user-defined ADTs and built-in types. To achieve this, C++
makes a constructor of one argument a type conversion from the argument’s type to
the constructor’s class type. For example:

point::point(double u);

is automatically a type conversion from double to point, unless it is disabled by
declaring such a conversion constructor with the modifier explicit. The conversion is
available both explicitly and implicitly. Explicitly, it is used as a conversion operation in
either cast or functional form. Thus,

point s;
double d = 3.5;

s = static_cast<point>(d);

and

s = d; // implicit invocation of conversion

both work.

These are conversions from an already defined type to a user-defined type. However, it
is not possible for the user to add a constructor to a built-in type such as int or dou-
ble. A conversion function for a user-defined type can be created by defining a special
conversion function inside the class. The general form of such a member function is

operator type() { ····· }

Such a member function must be nonstatic, cannot have parameters, and does not have
a declared return type. It must return an expression of the designated type.

In the point example, one may want a conversion from point to double. This can be
done for the point class, as follows:

5.8

Ira Pohl’s C++ by Dissection 5.9 Overloading and Signature Matching 208
point::operator double() // use distance from origin
{

return sqrt(x * x + y * y);
}

Notice that we used a specific conversion that is by no means unique or universally
understood. Another possibility is to return the x value only. A class having a particular
meaning for a conversion should be fully documented and intended for custom use.
When such a class is intended for general use, it is best to omit such conversions, as
they can readily lead to unintended results.

5.9 Overloading and Signature Matching

Overloaded functions are an important polymorphic mechanism in C++. The overloaded
meaning is selected by matching the argument list of the function call to the argument
list of the function declaration. When an overloaded function is invoked, the compiler
must have a selection algorithm with which to pick the appropriate function. The algo-
rithm that accomplishes this depends on what type conversions are available and is
called the signature matching algorithm. A best match must be unique, must be best on
at least one argument, and must be as good as any other match on all other arguments.
The following list shows the signature matching algorithm for each argument.

Basic Signature Matching Algorithm
1. Use an exact match if found.

2. Try standard type promotions.

3. Try standard type conversions.

4. Try user-defined conversions.

5. Use a match to ellipsis if found.

Standard promotions—conversions from float to double and from bool, char, short,
or enum to int—are better than other standard conversions. Standard conversions also
include pointer conversions.

An exact match is clearly best. Casts can be used to force such a match. The compiler
complains about ambiguous situations. Thus, it is poor programming practice to rely on
subtle type distinctions and implicit conversions that obscure the overloaded function.
When in doubt, use explicit conversions to provide an exact match.

Let us write an overloaded function greater() and follow our algorithm for various
invocations. In this example, the user type rational is available.

5.9

Ira Pohl’s C++ by Dissection 5.9 Overloading and Signature Matching 209
In file rational.cpp

// Overloading functions

class rational {
public:

rational(int n = 0) : a(n), q(1) { }
rational(int i, int j) : a(i), q(j) { }
rational(double r) : a(static_cast<long> (r * BIG)),

q(BIG) { }
void print() const { cout << a << " / " << q; }
operator double()

{ return static_cast<double>(a) / q; }
private:

long a, q;
enum { BIG = 100 };

};

inline int greater(int i, int j)
{ return (i > j ? i : j); }

inline double greater(double x, double y)
{ return (x > y ? x : y); }

inline rational greater(rational w, rational z)
{ return (w > z ? w : z); }

int main()
{

int i = 10, j = 5;
float x = 7.0;
double y = 14.5;
rational w(10), z(3.5), zmax;

cout << "\ngreater(" << i << ", " << j << ") = "
<< greater(i, j);

cout << "\ngreater(" << x << ", " << y << ") = "
<< greater(x, y);

cout << "\ngreater(" << i << ", ";
z.print();
cout << ") = "

<< greater(static_cast<rational>(i), z);
zmax = greater(w, z);
cout << "\ngreater(";
w.print();
cout << ", ";
z.print();
cout << ") = ";
zmax.print();
cout << endl;

}

The output from this program is

http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/rational.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/rational.cpp

Ira Pohl’s C++ by Dissection 5.9 Overloading and Signature Matching 210
A variety of conversion rules, both implicit and explicit, are being applied.

greater(10, 5) = 10
greater(7, 14.5) = 14.5
greater(10, 350 / 100) = 10
greater(10 / 1, 350 / 100) = 10 / 1

Dissection of the rational Program

■ rational(double r) : a(static_cast<long>(r * BIG),
q(BIG) { }

This constructor converts from double to rational.

■ operator double()
{ return static_cast<double>(a) / q; }

This member function converts from rational to double. This is
only approximately an arithmetically correct conversion.

■ inline int greater(int i, int j)
{ return (i > j ? i : j); }

inline double greater(double x, double y)
{ return (x > y ? x : y); }

inline rational greater(rational w, rational z)
{ return w > z ? w : z); }

Three distinct functions are overloaded. The most interesting has
rational type for its argument list variables and its return type. The
conversion member function operator double() is required to eval-
uate w > z. Later, we shall show how to overload operator>() to
take rational types directly.

■ cout << "\ngreater(" << i << ", " << j << ") = "
<< greater(i, j);

cout << "\ngreater(" << x << ", " << y << ") = "
<< greater(x, y);

The first statement selects the first definition of greater() because
of the exact-match rule. The second statement selects the second def-
inition because of a standard widening promotion float to double
where variable x is widened to double.

Ira Pohl’s C++ by Dissection 5.10 Friend Functions 211
5.10 Friend Functions

The keyword friend is a function specifier that gives a nonmember function access to
the hidden members of the class and provides a method of escaping the data-hiding
restrictions of C++. However, we must have a good reason for escaping these restric-
tions, as they are important to reliable programming.

One reason for using friend functions is that some functions need privileged access to
more than one class. A second reason is that friend functions pass all of their argu-
ments through the argument list, and each argument value is subject to assignment-
compatible conversions. Conversions apply to a class variable passed explicitly and are
especially useful in cases of operator overloading, as seen in the next section.

A friend function must be declared inside the class declaration to which it is a friend.
The function is prefaced by the keyword friend and can appear in any part of the class
without affecting its meaning. The preferred style is to place the friend declaration in
the public part of the class. Since access has no effect on friend declarations, they are
conceptually public. A friend function to one class could be a private member of
another class, and hence not be public. Member functions of one class can be friend
functions of another class. In this case, they are written in the friend’s class, using the
scope resolution operator to qualify its function name. In order to specify that all mem-
ber funct ions of one c lass are fr iend funct ions of a second class , wr i te
friend class class-name.

The following declarations illustrate the syntax.

void alice()
{

// use some private stuff from tweedledee
·····
cout << "Have some more tea.\n";

}

■ << greater(static_cast<rational>(i), z);

The third definition of greater() is selected because of the best
match rule. The explicit conversion of i to a rational is necessary to
avoid ambiguity. Then the rational is implicitly converted to dou-
ble.

■ zmax = greater(w, z);

This is an exact match for the third definition.

5.10

Ira Pohl’s C++ by Dissection 5.10 Friend Functions 212
class tweedledee {
·····
friend void alice(); // friend function
int cheshire(); // member function
·····

};

class tweedledum {
·····
// friend member function
friend int tweedledee::cheshire();
·····

};

class tweedledumber {
·····
// all member functions of tweedledee have access
friend class tweedledee;
·····

};

The global function alice() has access to all members of tweedledee. The member
function tweedledee::cheshire() is given access to all the members of tweedledum.
All member functions of tweedledee are given access to all the members of tweedle-
dumber.

Let us revisit our implementation of my_string and make the data variables private.
This is appropriate, as objects should hide their implementation.

Tweedledee
and

Tweedledum

by
Sir John
Tenniel

(1820-1914)

Ira Pohl’s C++ by Dissection 5.11 Overloading Operators 213
In file my_string.cpp

class str_obj {
public:

friend class my_string;// my_string access members
str_obj() : len(0), ref_cnt(1)

{ s = new char[1]; assert(s != 0); s[0] = 0; }
str_obj(const char* p) : ref_cnt(1)

{ len = strlen(p); s = new char[len + 1];
assert(s != 0); strcpy(s, p); }

~str_obj() { delete []s; }
private:

int len, ref_cnt;
char* s;

};

The friend declaration gives my_string privileged access to the private members of
str_obj. Its member functions would not otherwise be able to use the variables
ref_cnt and s.

The OOP paradigm is that objects (in C++, class variables) should be accessed through
their public members. Only member functions should have access to the hidden imple-
mentation of the ADT. This is a neat, orderly design principle. The friend function, how-
ever, straddles this boundary. The friend function has access to private members but is
not itself a member function. The friend function can be used to provide quick fixes to
code that needs access to the implementation details of a class. But the mechanism is
easily abused.

5.11 Overloading Operators

The keyword operator is used to define a type-conversion member function, as well as
to overload the built-in C++ operators. Just as a function name such as print() can be
given a variety of meanings depending on its arguments, so can an operator such as +
be given additional meanings. Overloading operators allows infix expressions of both
ADTs and built-in types to be written. In many instances, this important notational con-
venience leads to shorter, more readable programs.

Unary and binary operators can be overloaded as nonstatic member functions. Implic-
itly, they are acting on a class value. Most unary operators can be overloaded as ordi-
nary functions, taking a single argument of class or reference-to-class type. Most binary
operators can be overloaded as ordinary functions, taking one or both arguments of
class or reference-to-class type. The operators =, (), [], and -> must be overloaded
with a nonstatic member function. Here, we expand our rational class from Section
5.9, Overloading and Signature Matching, on page 209.

5.11

http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/my_string.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/my_string.cpp

Ira Pohl’s C++ by Dissection 5.12 Unary Operator Overloading 214
In file rational.cpp

// Overloading operators

class rational {
public:

friend bool operator>(rational w, rational z);
};

bool operator>(rational w, rational z)
{

return (static_cast<double>(w.a) / w.q >
static_cast<double>(z.a) / z.q);

}

Although meanings can be added to operators, their associativity and precedence
remain the same. For example, the multiplication operator remains of higher prece-
dence than the addition operator. Almost all operators can be overloaded. The excep-
tions are the member operator ., the member object selector .*, the ternary
conditional expression operator ? :, the sizeof operator, and the scope resolution
operator ::.

Available operators include all of the arithmetic, logical, comparison, equality, assign-
ment, and bit operators. Furthermore, the increment and decrement operators, ++ and -
-, can have distinct prefix and postfix meanings. The subscript or index operator []
and the function call () can also be overloaded. The structure pointer operator -> and
the member pointer selector operator ->* can be overloaded. It is also possible to over-
load new and delete. The assignment, function call, subscripting, and class pointer
operators can be overloaded only by nonstatic member functions.

5.12 Unary Operator Overloading

To continue the discussion of operator overloading, we demonstrate how to overload
unary operators, such as !, ++, ~ and []. For this purpose, we develop the class
my_clock, which can be used to store time as days, hours, minutes, and seconds. We
shall develop familiar operations on my_clock.

In file my_clock.cpp

class my_clock {
public:

my_clock(unsigned long i = 0);// ctor & conversion
my_clock set(unsigned long i = 0);
void print() const; // formatted printout
void tick(); // add one second
my_clock operator++() { tick(); return *this; }

private:
unsigned long tot_secs, secs, mins, hours, days;

};

5.12

http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/rational.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/my_clock.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/my_clock.cpp

Ira Pohl’s C++ by Dissection 5.12 Unary Operator Overloading 215
inline my_clock::my_clock(unsigned long i) :
tot_secs(i), secs(i % 60),
mins ((i / 60) % 60),
hours((i / 3600) % 24),
days(i / 86400) { }

my_clock my_clock::set(unsigned long i)
{

tot_secs = i;
secs = i % 60;
mins = (i / 60) % 60;
hours = (i / 3600) % 24;
days = i / 86400;
return *this;

}

void my_clock::tick()
{

*this = static_cast<my_clock>(++tot_secs);
}

void my_clock::print() const
{

cout << days << " d :" << hours << " h :"
<< mins << " m :" << secs << " s" << endl;

}

Dissection of the my_clock Class

■ inline my_clock::my_clock(unsigned long i) :
tot_secs(i), secs(i % 60),
mins ((i / 60) % 60),
hours((i / 3600) % 24),
days(i / 86400) { }

This is both the default constructor and the conversion constructor
from unsigned long to my_clock. It is the default constructor
because inside the class it is declared as

my_clock(unsigned long i = 0);

Therefore, if no argument is passed into the constructor, everything
is set to 0. Notice also that there are conversion opportunities for any
type convertible to unsigned long. So an ordinary int or a double
would also convert where necessary to a my_clock time.

Ira Pohl’s C++ by Dissection 5.12 Unary Operator Overloading 216
Let us test this class to check that everything works:

In file my_clock.cpp

// my_clock and overloaded operators

int main()
{

my_clock t1(59), t2(172799); // t2=2 days-1 sec

cout << "initial times are" << endl;
t1.print();
t2.print();
++t1; // invokes the overloaded member function
++t2;
cout << "after one second times are" << endl;
t1.print();
t2.print();

}

■ my_clock my_clock::set(unsigned long i)
{

tot_secs = i;
secs = i % 60;
mins = (i / 60) % 60;
hours = (i / 3600) % 24;
days = i / 86400;
return *this;

}

This set() function mimics the constructor logic. It cannot use the
special initializing syntax allowed of constructors.

■ void my_clock::tick()
{ *this = static_cast<my_clock>(++tot_secs); }

The member function advances the my_clock time by 1 second. We
could have, after adding 1 to tot_secs, used the set() method to
recompute time. But here we use some of the sophistication found in
C++. The cast expression causes the conversion constructor to prop-
erly compute my_clock time. The use of assignment to the derefer-
enced self-referential pointer this is a common idiom when the code
needs to affect the entire object. This is a subtle concept and one you
should study carefully.

■ my_clock operator++() { tick(); return *this; }

The overloaded operator++() also updates the implicit my_clock
variable and returns the updated value as well. The return of the
dereferenced this pointer is needed to return the proper my_clock
value. Note that operator ++() always denotes the prefix version.

http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/my_clock.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/my_clock.cpp

Ira Pohl’s C++ by Dissection 5.13 Binary Operator Overloading 217
The output is

It is also possible to overload prefix ++ using an ordinary function.

my_clock operator++(my_clock& cl)
{

cl.tick();
return cl;

}

Notice that the my_clock variable must advance by 1 second, so we can use call-by-ref-
erence to accommodate this change.

The decision to choose between a member function representation and a nonmember
function typically depends on whether implicit conversion operations are available and
desirable. Explicit argument passing allows the argument to be automatically coerced, if
necessary and possible. When overloaded as a member function, ++c is equivalent to
c.operator++(), and implicit conversions to c do not happen. When overloaded as a
nonmember function, ++c is equivalent to operator++(c). This allows implicit con-
versions to c. See exercise 21 on page 241 on how to overload the postfix versions of
the increment and decrement operators.

5.13 Binary Operator Overloading

We continue with our my_clock example and show how to overload binary operators.
The same principles hold: When a binary operator is overloaded using a member func-
tion, it has as its first argument the implicitly passed class variable and as its second
argument the lone argument-list parameter. Friend functions and ordinary functions
have both arguments specified in the parameter list. Of course, ordinary functions can-
not access private members.

Let us create an addition operation for type my_clock that adds two values:

In file my_clock.cpp

class my_clock {
·····
friend my_clock operator+(my_clock c1,

my_clock c2);
};

initial times are
0 d :0 h :0 m :59 s
1 d :23 h :59 m :59 s
after one second times are
0 d :0 h :1 m :0 s
2 d :0 h :0 m :0 s

5.13

http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/my_clock.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/my_clock.cpp

Ira Pohl’s C++ by Dissection 5.13 Binary Operator Overloading 218
my_clock operator+(my_clock c1, my_clock c2)
{

return (c1.tot_secs + c2.tot_secs);
}

The int return expression is implicitly converted to a my_clock by the conversion con-
structor my_clock::my_clock(unsigned long). Both my_clock values are passed as
function arguments, and both are candidates for assignment conversions. Because
operator+() is a symmetric binary operator, the arguments should be treated identi-
cally. Thus, it is normal for symmetric binary operators to be overloaded by friend func-
tions.

In contrast, let us overload binary minus with a member function:

class my_clock {
·····
my_clock operator-(my_clock c);

};

my_clock my_clock::operator-(my_clock c)
{

return (tot_secs - c.tot_secs);
}

Remember that there is an implicit first argument. This takes some getting used to. It is
better to use a friend function for binary minus because of the symmetric treatment of
the arguments.

We define a multiplication operation as a binary operation, with one argument an
unsigned long and the second a my_clock variable. The operation requires the use of
a friend function. It cannot be done with a member function because, as was already
stated, member functions have as their implicit first argument the this pointer.

my_clock operator*(unsigned long m, my_clock c)
{

return (m * c.tot_secs);
}

This requirement forces the multiplication to have a fixed ordering that is type-depen-
dent. In order to avoid this, it is common practice to write a second overloaded func-
tion. The second function is defined in terms of the first, as follows:

my_clock operator*(my_clock c, unsigned long m)
{

return (m * c);
}

Defining the second implementation in terms of the first implementation reduces code
redundancy and maintains consistency.

Ira Pohl’s C++ by Dissection 5.14 Overloading the Assignment Operator 219
5.14 Overloading the Assignment Operator

The assignment operator for a class type is by default generated by the compiler to
have member-by-member assignment. This is fine for many user-defined types such as
rational or point. For types such as my_string and slist, which need deep copying,
this is incorrect. As a rule of thumb, anytime a class needs an explicit copy constructor
defined, it also needs an assignment operator defined. As we have seen with copy con-
structors, this is usually the case when the object allocates its own memory.

We augment my_string with an assignment operator. This is in accord with the OOP
design principle that user-defined types should have the look and feel of native objects.
The class programmer can specify the behavior of assignment by overloading it. It is
good style to be consistent with standard usage. The following member function over-
loads assignment for class my_string:

In file my_string.cpp

my_string& my_string::operator=(const my_string& str)
{

if (str.st != st) {
if (--st -> ref_cnt == 0)

delete st;
st = str.st;
st -> ref_cnt++;

}
return *this;

}

Dissection of the my_string::operator=() Function

■ my_string& my_string::operator=
(const my_string& str)

The operator=() function returns reference to my_string and has
one explicit argument of type reference to my_string. The first argu-
ment of the assignment operator is the implicit argument. If the func-
tion had been written to return void, it would not have allowed
multiple assignment.

■ if (str.st != st) {

This tests for the case a = a, in other words, self-assignment. Don’t
do anything if assignment is to the current variable.

■ if (--st -> ref_cnt == 0)
delete st;

This implements reference-counting semantics. The old value of the
left-hand variable is reduced in reference count by 1, which can cause
its underlying string representation to be deleted.

5.14

http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/my_string.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/my_string.cpp

Ira Pohl’s C++ by Dissection 5.15 Overloading the Subscript Operator 220
The preceding definition of assignment allows ordinary and multiple assignment of
my_string objects. Here are some examples:

// Code fragment using overloaded assignment

my_string a, b("do "), c("do not "), d;

a = b; // a is now "do "
d = b = c; // these are "do not "
c = "do not but"; // invoke conversion ctor
d = c.assign(b); // illegal-assign() returns void
d += c; // illegal even if + exists

Notice that overloading both the assignment and plus operators does not imply that
operator+= is overloaded. Indeed, it is the class designer’s responsibility to make sure
that the various operators have consistent semantics. It is customary to overload
related sets of operators consistently.

Note: When the assignment operator and the copy constructor are not needed, they can
be disabled by declaring them without definitions in the private section of a class. If
necessary, they can be coded later, if required.

5.15 Overloading the Subscript Operator

The subscripting operator is usually overloaded where a class type represents an aggre-
gate for which indexing is appropriate. The index operation is expected to return a ref-
erence to an element contained within the aggregate. Overloading assignment and
subscripting share several characteristics. Both must be done as nonstatic member
functions, and both usually involve a reference return type.

An overloaded subscript operator can have any return type and any argument list type.
However, it is good style to maintain the consistency between a user-defined meaning
and standard usage. Thus, the most common function prototype is

element-type& operator[](integral type);

■ st = str.st;
st -> ref_cnt++;

The right-hand side of the assignment str.st is the new left-hand
side string representation.

■ return *this;

The self-referential pointer is dereferenced and passed back as the
value of the expression. This allows multiple assignment with right-
to-left associativity to be defined.

5.15

Ira Pohl’s C++ by Dissection 5.16 Overloading Operator () for Indexing 221
Such functions can be used on either side of an assignment. Let us continue with our
my_string example. We overload operator[] to return the reference to the ith charac-
ter in the my_string. If there is no such character, the reference to the null string char-
acter is returned.

In file my_string.cpp

char& my_string::operator[](int position)
{

char* s = st -> s;
for (int i = 0; i != position; ++i) {

if (*s == 0)
break;

s++;
}
return *s;

}

5.16 Overloading Operator () for Indexing

The function call operator () can be overloaded as a nonstatic member function with
respect to various signatures. It is frequently used to provide an operation requiring
multiple indices. For example, we can code a substring operation for my_string by
overloading as a member function my_string::operator(). It has two arguments so
that my_string(from, to) returns a substring, with from being the beginning of the
substring and to the end.

my_string my_string::operator()(int from, int to)
{

my_string temp(to - from + 1);

for (int i = from; i < to + 1; ++i)
temp.st -> s[i - from] = st -> s[i];

temp.st[to - from + 1] = 0;
return temp;

}

It is also possible to use the function call operator to develop other methods requiring
multiple arguments. For example:

// Search substring for the character c
// and return true if it is found and false if not

bool my_string::operator()(int from, int to, char c)

5.16

http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/my_string.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/my_string.cpp

Ira Pohl’s C++ by Dissection 5.17 Overloading << and >> 222
5.17 Overloading << and >>

In keeping with the spirit of OOP, it is important to overload << to output user-defined
types. The operator << has two arguments—an ostream& and the ADT—and must pro-
duce an ostream&. Whenever overloading << or >>, you want to use a reference to a
stream and return a reference to a stream, because you do not want to copy a stream
object. Let us write these functions for the type rational:

In file rational.cpp

class rational {
public:

friend ostream&
operator<<(ostream& out, const rational& x);

friend istream& operator>>(istream& in,rational& x);
·····

private:
long a, q;

};

ostream& operator<<(ostream& out, const rational& x)
{

return (out << x.a << " / " << x.q << '\t');
}

When the operator >> is overloaded to produce input to a user-defined type, its typical
form is

istream& operator>>(istream& p, user-defined type& x)

If the function needs access to private members of x, it must be made a friend of its
class. A key point is to make x a reference parameter so that its value can be modified.
To do this for rational requires placing a friend declaration for this operator in the
class rational and providing its function definition.

5.17

I wanted to make ‘rational’ be a more complete ADT,
so I overloaded ‘<<‘ to operate on my ‘rational’ data
type. Now I just use a regular ‘cout’ statement and

voila! The output is just what I wanted.

http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/rational.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/rational.cpp

Ira Pohl’s C++ by Dissection 5.18 Overloading -> 223
istream& operator>>(istream& in, rational& x)
{

return (in >> x.a >> x.q);
}

You can improve on this input function by allowing it to read the input a/q where the
“/” acts a separator for the two integer values.

5.18 Overloading ->

The structure pointer operator -> is overloaded as a nonstatic class member function.
The overloaded structure pointer operator is a unary operator on its left operand. The
argument must be either a class object or a reference of this type. The function should
return a pointer to a class object, an object of a class for which operator -> is defined,
or a reference to a class for which operator -> is defined. The idea is to provide addi-
tional functionality to a pointer type. This type of object is a smart pointer. This tech-
nique is used for implementing the proxy design pattern.

We overload the structure pointer operator inside class t_ptr in the following example.
Objects of type t_ptr act as controlled-access pointers to objects of type triple. The
template class auto_ptr is an example of a smart pointer that is defined in the stan-
dard library.

In file triple.cpp

// Overloading the structure pointer operator

class triple {
public:

triple(int a, int b, int c) : i(a), j(b), k(c) { }
void print() const { cout << "i = " << i << ", j = " << j

<< ", k = "<< k << endl; }
private:

int i, j, k;
};

5.18

 One smart pointer

http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/triple.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/triple.cpp

Ira Pohl’s C++ by Dissection 5.19 Overloading new and delete 224
triple unauthor(0, 0, 0);

class t_ptr {
public:

t_ptr(bool f, triple* p) : access(f), ptr(p) { }
triple* operator ->();

private:
bool access;
triple* ptr;

};

triple* t_ptr::operator->()
{

if (access)
return ptr;

else {
cout << "unauthorized access" << endl;
return &unauthor;

}
}

The overloaded operator -> tests the variable t_ptr::access. If it is true, access is
granted. The following code illustrates this:

int main()
{

triple a(1, 2, 3), b(4, 5, 6);
t_ptr ta(false, &a), tb(true, &b);

ta -> print(); // access denied
tb -> print(); // access granted

}

The output of this program is

5.19 Overloading new and delete

Most classes involve free-store memory allocation and deallocation. Sometimes, more
sophisticated use of memory than is provided by simple calls to operators new and
delete is needed for efficiency or robustness.

Operator new has the general form

unauthorized access
i = 0, j = 0, k = 0
i = 4, j = 5, k = 6

5.19

Ira Pohl’s C++ by Dissection 5.19 Overloading new and delete 225
::opt new placementopt type initializeropt

Some examples are

::new char[10]; // insist on global new
new(buff) X(a); // call with buff using X::X(a)

Up to now, we have been using the global operator new() to allocate free store. The sys-
tem provides a sizeof(type) argument to this function implicitly. Its function proto-
type is

void* operator new(size_t size);

The operators new and delete can be overloaded. This feature provides a simple mech-
anism for user-defined manipulation of the heap. For example, traditional C program-
ming uses malloc() to access the heap and to return a void* pointer to the allocated
memory. In this scheme, memory is deallocated by the stdlib function free(). We use
operator overloading of new and delete to allow an X object to use C’s traditional free-
store management.

class X {
public:

void* operator new(size_t size)
{ return (malloc(size)); }

void operator delete(void* ptr) { free(ptr); }
X(size_t size);
~X() { delete(p); }
·····

private:
char* p;

};

X::X(size_t size)
{

p = reinterpret_cast<char*>(operator new(size));
assert(p!= 0);

}

In this example, the class X has provided overloaded forms of new() and delete().
When a class overloads operator new(), the global operator is still accessible using
the scope resolution operator ::.

One reason to overload these operators is to give them additional semantics, such as
providing diagnostic information or being more fault-tolerant. Also, the class can have a
more efficient memory-allocation scheme than that provided by the system.

The placement syntax provides a comma-separated argument list used to select an over-
loaded operator new() with a matching signature. These additional arguments are
often used to place the constructed object at a particular address. This form of
operator new uses the new library.

Ira Pohl’s C++ by Dissection 5.19 Overloading new and delete 226
// Placement syntax and new overloaded

char* buf1 = new char[1000]; // in place of heap
char* buf2 = new char[1000];

class object {
public:

·····
private:

·····
};

int main()
{

object *p = new(buf1) object; // allocate at buf1
object *q = new(buf2) object; // allocate at buf2
·····

}

This placement syntax allows an arbitrary signature for the overloaded new operator.
This signature—which is distinct from the initializer argument—calls new to select an
appropriate constructor.

The delete operator comes in two flavors. There are two possible signatures:

void operator delete(void* p);
void operator delete(void* p, size_t);

The first signature makes no provision for the number of bytes to be returned by
delete; in this case, the programmer provides code that supplies this value. The sec-
ond signature includes a size_t argument passed to the delete invocation. This argu-
ment is provided by the compiler as the size of the object pointed at by p. Only one
form of delete can be provided as a static member function in each class. These class
new() and delete() member functions are always implicitly static. The new() is
invoked before the object exists and therefore cannot have a this yet. The delete() is
called by the destructor, so the object is already destroyed.

It is possible to explicitly call a destructor:

p = new my_string("I don’t need you long");
// invokes my_string::my_string(const char*);

·····
p -> ~my_string(); // or p -> my_string::~my_string()
····· // but delete p strongly preferred

This is most often done when new is used with placement.

Ira Pohl’s C++ by Dissection 5.20 More Signature Matching 227
5.20 More Signature Matching

Rules for signature matching are given in simplified form in Section 5.9, Overloading
and Signature Matching, on page 208. A further clarification of these rules with exam-
ples is given here.

For a given argument, a best match is always an exact match. An exact match also
includes trivial conversions. These are shown in Table 5.1 for type T.

The use of volatile is specialized. It means that a variable can be modified external to
the program code. So a variable representation of an address that gets data from an
external device, such as a real-time clock, would be volatile. Also, volatile is used
to suppress compiler optimizations that involve such variables.

It is important to remember that user-defined conversions include constructors of a
single argument that can be implicitly called to perform conversions from the argument
type to their class type. This can happen for assignment conversions, as in the argu-
ment-matching algorithm. The following example is modified from the one in Section
5.12, Unary Operator Overloading, on page 214:

In file my_clock.cpp

// Modify my_clock program

class my_clock {
public:

my_clock(unsigned long i);// ctor & conversion
void print() const; // formatted printout
void tick(); // add one second
my_clock operator++() { tick(); return *this; }
void reset(const my_clock& c);

private:
unsigned long tot_secs, secs, mins, hours, days;

};

void my_clock::reset(const my_clock& c)
{

tot_secs = c.tot_secs;
secs = c.secs;
mins = c.mins;
hours = c.hours;
days = c.days;

}

Table 5.1 Trivial Conversions

From To

T* const T*

T* volatile T*

5.20

http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/my_clock.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/my_clock.cpp

Ira Pohl’s C++ by Dissection 5.21 Software Engineering: When to Use Overloading 228
int main()
{

my_clock c1(900), c2(400);
·····
c1.reset(c2);
c2.reset(100);
·····

}

The call to reset(100) involves an argument match between int and my_clock that is
a user-defined conversion invoking the constructor my_clock(unsigned). Where these
conversions are unintended, explicit can be used in declaring the constructor to dis-
able its use as an implicit conversion.

5.21 Software Engineering: When to Use Overloading

Explicitly casting arguments can be both an aid to documentation and a useful way to
avoid poorly understood conversion sequences. It is not an admission of ignorance to
cast or to parenthesize arguments or expressions that otherwise could be converted or
evaluated properly.

Operator overloading is easily misused. Do not overload operators when doing so can
lead to misinterpretation. Typically, operator overloading is appropriate when there is a
widely used notation that conforms to your overloading, such as complex arithmetic.
Also, overload related operators in a manner consistent with C++ community expecta-
tions. For example, the relational operators <, >, <=, and >= should all be meaningful
and provide expected inverse behaviors.

Generally speaking, overload symmetric binary operators, such as +, *, ==, !=, and &&,
with friend functions. Both arguments are then passed as ordinary parameters, which
subjects them to the same rules of parameter passing. Recall that using a member func-
tion to provide overloading for symmetric binary operators causes the first argument to
be passed via the this pointer.

Anytime a class uses new to construct objects, it should provide an explicitly over-
loaded operator=(). This advice is analogous to our rule that such a class provide an
explicit copy constructor. The compiler-provided default assignment operator seman-
tics in most cases result in spurious behavior. This leads to a suggested normal form
for classes with heap-managed memory. Normal form means that the class provides
explicit constructors, including the default and copy constructor and the overloaded
assignment operator, as well as an appropriate destructor. Class behaviors should be
consistent with other C++ types.

5.21

Ira Pohl’s C++ by Dissection 5.22 Dr. P’s Prescriptions 229
In file my_string.cpp

// Normal form for heap-managed classes

class my_string {
public:

my_string() { st = new str_obj; assert(st != 0); }
my_string(const char* p)

{ st = new str_obj(p); assert(st != 0); }
my_string(const my_string& str)

{ st = str.st; st -> ref_cnt++; }
~my_string();
my_string& operator=(const my_string& str);
// other methods ·····

private:
str_obj* st;

};

5.22 Dr. P’s Prescriptions

■ Constructors should be public methods.

■ Constructors come first, then a destructor, and then other member functions.

■ All friend functions are placed in the public section.

■ Classes with dynamically allocated memory should have both a copy constructor
and an assignment operator explicitly defined.

■ Initialization is preferable to assignment in constructors.

■ Constructors have three uses: allocation, initialization, and conversion. Avoid other
purposes.

■ Destructors have two uses: deallocation and finalization. Avoid other purposes.

■ Use friends for binary operator overloading.

■ Use friends when a special relationship exists between two classes.

■ A set of overloaded operators should be developed for scientific types and not for
nonstandard purposes. The standard library provides one such type: complex num-
ber.

■ Overload the operator=() whenever the constructor uses new.

■ Overloaded operator=() should check for assignment to itself. It should assign a
value to each data member and return *this.

The idea behind placing more visible members first is the newspaper principle—
namely, what everyone needs to know comes first. What everyone needs to know are the
public members. This is the interface available to all users of the class. The friend func-
tions are to be considered part of that interface and therefore in the public access sec-
tion as well. Constructors and destructors are needed by anyone using the class, so they

5.22

http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/my_string.cpp

Ira Pohl’s C++ by Dissection 5.22 Dr. P’s Prescriptions 230
go first. Construction or object initialization is needed to use an ordinary type, so it is
usual to have a constructor be public.

Classes that use pointers as part of their implementation should provide explicit
default and copy constructors. This avoids problems from inadvertent shallow copies in
which the pointer value is copied, but no new implementation is created. Usually, such
classes require a related overloaded definition of operator=.

Constructors are for initialization. In the debugging and prototyping phase of code
development, it is also useful to add code that outputs or tests behavior. Other work
should not be carried out by a constructor, for this would be unexpected. For example,
if in initializing an integer variable the system printed out its square root and whether it
was prime, we would be properly upset.

Similarly, destructors are for finalization. They should retrieve resources connected
with variables going out of scope. They are conceptually the inverse operation to a cor-
responding constructor.

For const and reference members, an initializer list is required because they cannot be
given values through assignment. Even when member values can be assigned, initializ-
ers are preferable, because they can be more efficient and are notationally clear in pur-
pose.

The friend declaration should be used for special situations and not merely as a way
of circumventing access restrictions. Friends are commonly used for overloading
operators. When a member function overloads a binary operator, the first argument is
passed through the this pointer and the second argument is passed through the func-
tion’s argument list. The second argument is subjected to assignment conversions. For
example, a + b is equivalent to a.operator+(b) when overloaded with a member
function, and to operator+(a, b) when overloaded with an ordinary function. In the
second case, both arguments are symmetrically subjected to assignment conversion.
This symmetry is expected for most operators. Usually, writing these overloaded
operators as nonmember functions requires that the function be given access to private
implementation and therefore needs the friend designation.

The friend designation is also appropriate between tightly coupled classes. These
classes are designed to work together intimately. An example is a container class, such
as a list, and an iterator class for navigating the list.

Idiosyncratic algebras and personal notations are a bad idea. They lead to writing dense
and obscure code that is hard for others to follow and test. Where community-under-
stood algebras exist, as in the mathematical and scientific disciplines, operator over-
loading should follow normal definitions and contain no surprises. One guideline is to
be complete. For example, if the operator==() is defined, then define the correspond-
ing operator!=(). The type complex number is provided by the C++ library and is an
example of a scientific type using overloaded operators. Other such types might include
polynomials, vectors, matrices, and rational numbers.

The assignment operator is especially important and is frequently a candidate for over-
loading. Anytime the copy constructor of a class is explicitly defined, an analogous def-
inition of operator=() should be coded. The default semantics of assignment are
member-by-member which is often incorrect when pointers are involved in a class
implementation. When overloading assignment, test that x = x works correctly.

Ira Pohl’s C++ by Dissection 5.23 C++ Compared with Java 231
5.23 C++ Compared with Java

Like a C++ constructor, a Java constructor is a function whose job is to initialize an
object of its class. Constructors are invoked after the instance variables of a newly cre-
ated class object have been assigned default initial values and any explicit initializers
are called. Constructors are frequently overloaded. A constructor is a member function
whose name is the same as the class name. The constructor does not have a return type.

Let us write a program for making change. We can encapsulate the logic of that program
in a class. We can look at change as an object returned when we have a purchase. We
have to decide which data members are needed for making change. Generally, objects
mimic the real world. In this case, we need members that track the number of coins of
each denomination. We also need actions that are useful with these types. For example,
what would be the value of a set of coins containing three quarters and two dimes?

In file Change.java

class Change {
private int dollars, quarters, dimes, pennies;
private double total;
Change(int dlrs, int qtr, int dm, int pen) {

dollars = dlrs;
quarters = qtr;
dimes = dm;
pennies = pen;
total = dlrs + 0.25 * qtr + 0.1 * dm + 0.01 * pen;

}

static Change makeChange(double paid, double owed)
{

double diff = paid - owed;
int dollars, quarters, dimes, pennies;
dollars = (int)diff;
pennies = (int)((diff - dollars) * 100);
quarters = pennies / 25;
pennies -= 25 * quarters;
dimes = pennies / 10;
pennies -= 10 * dimes;
return new Change(dollars, quarters, dimes, pennies);

}

public String toString() {
return ("$" + total + "\n"

+ dollars + " dollars\n"
+ quarters + " quarters\n"
+ dimes + " dimes\n"
+ pennies + " pennies\n");

}
}

5.23

http://www.cse.ucsc.edu/~pohl/JBD/chap6/Change.java
http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/Change.java

Ira Pohl’s C++ by Dissection 5.23 C++ Compared with Java 232
Dissection of the Change.java Program

■ private int dollars, quarters, dimes, pennies;
private double total;

Here, we declare the various data members bundled inside a Change
object. We gave them private access to protect them from arbitrary
manipulations by nonmember methods.

■ Change(int dlrs, int qtr, int dm, int pen) {
dollars = dlrs;
quarters = qtr;
dimes = dm;
pennies = pen;
total = dlrs + 0.25 * qtr + 0.1 * dm + 0.01 * pen;

}

As defined, the only way to construct a Change object is by specifying
the number of each type of coin. We chose not to use nickels or half-
dollars, just to keep the code shorter. Because there is not a no-argu-
ment constructor (in C++ terminology, the default constructor) in this
class, we can’t create a Change object by using the expression new
Change(). We intentionally left the no-argument constructor out
because, as currently implemented, there is no use for it. Java does
not have initializing syntax for its constructors.

■ static Change makeChange(double paid, double owed) {

double diff = paid - owed;
int dollars, quarters, dimes, pennies;
dollars = (int)diff;
pennies =(int)((diff-dollars) * 100);
quarters = pennies / 25;
pennies -= 25 * quarters;
dimes = pennies / 10;
pennies -= 10 * dimes;
return new Change(dollars, quarters, dimes,

pennies);
}

This method is a static method because it isn’t operating on a Change
object. Instead, it is a helper function, used to compute change for an
amount paid and an amount owed. Once we’ve computed the numbers
of each of the coin types, we then create a new Change object using the
values. This new Change object is then returned as the result of the
method. Note that we are using an object to encapsulate many related
values—the counts of the various coins. The return type, rather than
being a single primitive value, is an object. This type allows a complex
calculation to bundle and return many related values as an object.

Ira Pohl’s C++ by Dissection 5.23 C++ Compared with Java 233
The following simple program, taken from Java by Dissection, by Ira Pohl and Charlie
McDowell (Addison-Wesley, 1999) pages 210 to 212, uses the class Change.

In file ChangeTest.java

public class ChangeTest {
public static void main(String[] args) {

double owed = 12.37;
double paid = 15.0;
System.out.println("You owe $" + owed);
System.out.println("You gave me $" + paid);
System.out.println("Your change is " +

Change.makeChange(paid, owed));
}

}

The output of this program is

■ public String toString() {
return ("$" + total + "\n"

+ dollars + " dollars\n"
+ quarters + " quarters\n"
+ dimes + " dimes\n"
+ pennies + " pennies\n");

}

In Java, all classes include a method toString(), which returns a
string representation of the class.

If we don’t provide the method, the Java system provides one by
default—but it isn’t useful for most purposes. It simply returns the
name of the class of which the object is an instance and the address of
the object in the computer’s memory. One version of the method
println() takes as an argument any reference. The method then prints
whatever the toString() method for the referenced object returns.
Here, we use string concatenation to build the result string. This
toString() method gives slightly nonstandard output for values when
no pennies are involved. For example, the total for $1.50 prints out as
$1.5, with no trailing 0. The toString() method is a polymorphic con-
version method.

You owe $12.37
You gave me $15.0
Your change is $2.63
2 dollars
2 quarters
1 dimes
3 pennies

http://www.cse.ucsc.edu/~pohl/C++BD/05Chap/ChangeTest.java

Ira Pohl’s C++ by Dissection 5.23 C++ Compared with Java 234
As with C++, methods and constructors are typically overloaded.

// Constructor to be placed in Java class Person

public Person() { name = "Unknown"; }
public Person(String nm) { name =nm; }
public Person(String nm, int a, char b)

{ name = nm; age =a; gender = b; }

These constructors would be invoked when new is used to associate a created instance
with the appropriate type reference variable. For example:

p1 = new Person();
// make Unknown 0 M
p1 = new Person("Laura Pohl");
// make Laura Pohl 0 M
p1 = new Person("Laura Pohl", 12, 'F');
// make Laura Pohl 12 F

The overloaded constructor is selected by the set of arguments that match the con-
structor’s parameter list.

Destruction is done automatically by the system, using automatic garbage collection.
This differs from C++, in which the programmer must provide the destructor. When the
object can no longer be referenced—for example, when the existing reference is given a
new object—the now inaccessible object is called garbage. Periodically, the system
sweeps through memory and retrieves these dead objects. The programmer need not be
concerned with such apparent memory leaks.

Unlike C++, Java does not have operator overloading. Java’s use of new is similar to that
in C++ but does not allow for overloading of the new operator. In general, this simplifies
and restricts what the Java programmer can do and needs to worry about. Java allows
ordinary casts but does not allow nonportable casts.

Java performs an automatic conversion only if the conversion does not result in any
information loss. The exception is that some numeric conversions from integer types to
floating-point types can result in loss of precision, but the most significant digits of the
result are unchanged. For example, the following results in an automatic conversion
when n is assigned to f:

int n = 2;
float f;

f = n;

Trying to assign f to n requires a cast.

n = (int)f;

In this case, the floating-point value stored in f is rounded toward zero and the result-
ing value is stored in n. String conversion is used in println():

System.out.println("x = " + x);

Ira Pohl’s C++ by Dissection Summary 235
in which x is a numeric primitive type variable. String conversion occurs when exactly
one operand of the operator + is a string. In this case, the nonstring operand is con-
verted to a String. For the primitive types, the result of string conversion is a value of
type String that represents the primitive value. For example, the result of doing a
string conversion on the int value 123 is the String "123".

Summary

■ A constructor, a member function whose name is the class name, constructs objects
of its class type. This can involve initializing data members and allocating the heap,
using the operator new. A constructor is invoked when its associated type is used in
a definition.

TYPE_foo y(3); // invoke TYPE_foo::TYPE_foo(int)
extern TYPE_foo x;// declaration but not definition

Again, not all declarations are definitions. In those cases, no constructor is invoked.

■ A destructor is a member function whose name is the class name preceded by the
tilde character, ~. Its usual purpose is to destroy values of the class type, typically by
using delete.

■ A constructor requiring no arguments is called the default constructor. It can be a
constructor with an empty argument list or one whose arguments all have default
values. It has the special purpose of initializing arrays of objects of its class.

■ A copy constructor of the form

type::type(const type& x)

is used to copy one type value into another when a variable is initialized by a value, a
value is passed as an argument in a function or a value is returned from a function.
If the copy constructor is not present, the compiler provides one that does member-
by-member initialization of values.

■ A class having members whose type requires a constructor uses initializers, a
comma-separated list of constructor calls following a colon. The constructor is
invoked by using the member name followed by an argument list in parentheses.
The initialization is in the order of the declaration of the members.

■ Constructors of a single parameter are automatically conversion functions. They
convert from the parameter type to the class type. my_type::my_type(int); is a
conversion from int to my_type. This property can be disallowed by declaring the
constructor explicit.

■ Overloading operators gives them new meanings. For example, the meaning of the
expression a + b depends on the types of the variables a and b. The expression
could mean string concatenation, complex number addition, or integer addition,

Ira Pohl’s C++ by Dissection Review Questions 236
depending on whether the variables were the ADT my_string, the ADT complex, or
the built-in type int, respectively.

■ The keyword friend is a function specifier that allows a nonmember function
access to the nonpublic members of the class of which it is a friend.

■ It is common to overload >> and << to provide input and output for class types.

■ The structure pointer operator -> , or smart pointer, is overloaded as a nonstatic
class member function. The argument must be a class object or a reference of this
type. The function should return a pointer to a class object, an object of a class or
reference to a class for which operator -> is defined.

■ Overloading functions are selected using the signature matching algorithm.

Basic Signature Matching Algorithm
1. Use an exact match if found.

2. Try standard type promotions.

3. Try standard type conversions.

4. Try user-defined conversions.

5. Use a match to ellipsis if found.

Review Questions

1. What is the signature in the following declaration: void f(int x, double y);?

2. How can you disable a conversion constructor?

3. How many arguments can a user-defined conversion have?

4. Outline the signature matching algorithm.

5. Explain how cout << x uses operator overloading and why this is important.

6. The keyword friend is a function specifier. It gives a nonmember function .

7. One reason for using friend functions is .

8. Binary operators, such as +, should be overloaded by nonmember functions
because .

9. When a pointer operator is overloaded, it must be a function.

10. Some operators can be overloaded only as nonstatic member functions. Name three
such operators.

Ira Pohl’s C++ by Dissection Exercises 237
Exercises

1. Table 5.1 contains a variety of mixed-type expressions. Fill in both the type the
expression is converted to and its value when well defined.

2. To test your understanding, use the slist type to code the following member func-
tions.

// slist ctor with initializer char* string
slist::slist(const char* c);

// length returns the length of the slist
int slist::length() const ;

// return number of elements whose data value is c
int slist::count_c(char c) const ;

3. For the type rational in Section 5.9, Overloading and Signature Matching, on page
209, explain why the conversions of integer 7 and double 7.0 lead to different inter-
nal representations.

4. The following line of code is from the rational.cpp program in Section 5.9, Overload-
ing and Signature Matching, on page 209.

cout << ") = "
<< greater(static_cast<rational>(i), z);

If the preceding statement is replaced by

cout << ") = " << greater(i, z);

what goes wrong?

Table 5.1 Declarations and Initializations

int i = 3, *p = &i;
char c = 'b';

float x = 2.14, *q = &x;

Expression Type Value

i + c

x + i

p + i

p == & i

* p - * q

static_cast<int>(x + i)

Ira Pohl’s C++ by Dissection Exercises 238
To test your understanding, write a rational constructor that, given two integers
as dividend and quotient, uses a greatest common divisor algorithm to reduce the
internal representation to its smallest a and q value.

5. Overload the equality and comparison operators for rational. Notice that two
rationals are equal in the form given by the previous exercise if and only if their
dividends and quotients are equal. (See Section 5.9, Overloading and Signature
Matching, on page 209.)

6. Define class complex as

class complex {
public:

complex(double r) : real(r), imag(0) { }
void assign(double r, double i)

{ real = r; imag = i; }
void print()

{ cout << real << " + " << imag << "i "; }
operator double()

{ return (sqrt(real * real + imag * imag));}
private:

double real, imag;
};

We wish to augment the class by overloading a variety of operators. For example, the
member function print() could be replaced by creating the friend function opera-
tor<<():

ostream& operator<<(ostream& out, complex x)
{

out << x.real << " + " << x.imag << "i ";
return out;

}

Also, code and test a unary minus operator. It should return a complex whose value
in each part is negated.

7. For the type complex, write the binary operator functions add, multiply, and sub-
tract. Each should return complex. Write each as a friend function. Why not write
them as member functions?

8. Write two friend functions:

friend complex operator+(complex, double);
friend complex operator+(double, complex);

In the absence of a conversion from type double to type complex, both types are
needed to allow completely mixed expressions of complex and double. Explain why
writing one with an int parameter is unnecessary when these friend functions are
available.

Ira Pohl’s C++ by Dissection Exercises 239
9. Overload assignment for complex:

complex& complex::operator=(complex c) {return c;}

If this definition were omitted, would this be equivalent to the default assignment
that the compiler generates? In the presence of the conversion operator for convert-
ing complex to double, what is the effect of assigning a complex to a double? Try
to overload assignment with a friend function in class complex.

friend double operator=(double d, complex c);
// assign d = real_part(c)

Why won’t this work?

10. Program a class vec_complex that is a safe array type whose element values are
complex. Overload operators + and * to mean, respectively, element-by-element
complex addition and dot-product of two complex vectors. For added efficiency,
you can make the class vec_complex a friend of class complex.

11. Redo the my_string ADT by using operator overloading. (See Section 5.5, Strings
Using Reference Semantics, on page 201.) The member function assign() should be
changed to become operator=. Also, overload operator[] to return the ith charac-
ter in the my_string. If there is no such character, the value -1 is to be returned.

12. Test your understanding of my_string by implementing additional members of
my_string.

// strcmp is negative if s < s1,
// is 0 if s == s1,
// and is positive if s > s1
// where s is the implicit argument
int my_string::strcmp(const my_string& s1);

// strrev reverses the my_string
void my_string::strrev();

// print overloaded to print the first n characters
void my_string::print(int n) const;

13. Explain why friendship to str_obj was required when overloading << to act on
objects of type my_string. (See Section 5.5, Strings Using Reference Semantics, on
page 201.) Rewrite my_string by adding a conversion member function operator
char*(). This now allows << to output objects of type my_string. Discuss this
solution.

14. What goes wrong with the following client code when the overloaded definition of
operator=() is omitted from my_string? (See Section 5.5, Strings Using Reference
Semantics, on page 201.)

Ira Pohl’s C++ by Dissection Exercises 240
// Swapping my_strings that are reference counted
class my_string {

·····
};

void swap(my_string x, my_string y)
{

my_string temp;
temp = x;
x = y;
y = temp;

}

int main()
{

my_string b("do not try me "), c(" try me");

cout << b << c << endl;
swap(b, c);
cout << b << c << endl;

}

15. We can further develop our my_string class with a substring operation by overload-
ing the function call operator (). The notation is my_string(from, to), where
from is the beginning of the substring and to is the end. Use this to search a string for a
character sequence and return true if the subsequence is found.

my_string my_string::operator()(int from, int to)
{

my_string temp(to - from + 1); //code this

for (int i = from; i < to + 1; ++i)
temp.st -> s[i - from] = st -> s[i];

temp.st[to - from + 1] = 0;
return temp;

}

16. Given this code for overloaded [] for my_string from Section 5.1.6, The Copy Con-
structor, on page 194, why would the following be buggy?

char& my_string::operator[](int position)
{

return st -> s[position];
}

17. Rewrite the substring function, using a char* constructor. Is this better or worse? If
you have a profiler, run this example with both forms of substring creation on the
following client code:

Ira Pohl’s C++ by Dissection Exercises 241
int main()
{

my_string large("A verbose phrase to search");

for (i = 0; i < MANY; ++i)
count += (large(i, i + 3) == "ver");

}

For this exercise, code operator==() to work on my_strings.

18. To test your understanding, use the preceding substring operation to search a string
for a given character sequence and to return true if the subsequence is found. To
further test your understanding, recode this function to test that the positions are
within the actual string. This means that they cannot have negative values and they
cannot go outside the null character terminator of the string.

19. Code a class int_stack. Use this to write out integer subsequences in increasing
order by value. In the sequence (7, 9, 3, 2, 6, 8, 9, 2), the subsequences are (7, 9), (3),
(2, 6, 8, 9), (2). Use a stack to store increasing values. Pop the stack when a next
sequence value is no longer increasing. Keep in mind that the stack pops values in
reverse order. Redo this exercise using a queue, thus avoiding this reversal problem.

20. Redo the list ADT by using operator overloading. (See Section 5.4, Example: A Singly
Linked List, on page 196.) The member function prepend() should change to oper-
ator+(), and del() should change to operator--(). Also, overload operator[]()
to return the ith element in the list.

21. The postfix operators ++ and -- can be overloaded distinct from their prefix mean-
ings. Postfix can be distinguished by defining the postfix overloaded function as
having a single unused integer argument, as in

class T {
public:

// postfix invoked as t.operator++(0);
T operator++(int);
T operator--(int);

};

There is no implied semantic relationship between the postfix and prefix forms. Add
postfix decrement and increment to class my_clock in Section 5.12, Unary Operator
Overloading, on page 214. Have them subtract a second and add a second, respec-
tively. Write these operators to use an integer argument n that is subtracted or
added as an additional argument.

my_clock c(60);

c++; // adds a second
c--; // subtracts a second
c.operator++(5); // adds 1 + 5 seconds
c.operator--(5); // subtracts 6 seconds

Ira Pohl’s C++ by Dissection Exercises 242
22. (Uwe F. Mayer) Rewrite istream& operator>>(istream& in, rational& x).You
can improve on this input function by allowing it to read the input a/q where the “/
” acts a separator for the two integer values.

23. (Project) You should start by writing code to implement a polynomial class with
overloaded operators + and * for polynomial addition and multiplication. You can
base the polynomial on a linked list representation. Then write a full-blown polyno-
mial package that is consistent with community expectations. You could include dif-
ferentiation and integration of polynomials as well.

24. (Project) Write code that fleshes out the rational type of Section 5.17, Overloading
<< and >>, on page 222. Have the code work appropriately for all major operators.
Allow it to properly mix with other number types, including integers, floats, and
complex numbers. There are several ways to improve the rational implementation.
You can try to improve the precision of going from double to rational. Also, many
algorithms are more convenient when the rational is in a canonical form in which
the quotient and divisor are relatively prime. This can be accomplished by adding a
greatest common division algorithm to reduce the representation to the canonical
form. (See exercise 4 on page 237.)

25. (Java) Rewrite in Java the class rational in Section 5.9, Overloading and Signature
Matching, on page 209. You must substitute ordinary methods for any operator
overloading.

Templates and Generic
Programming

CHAPTER 6
A key problem in programming is programmer productivity. An important technique
is code reuse. Generic programming is a critical methodology for enhancing code reuse.
Generic programming is about code that can be used over a wide category of types. In
C++, there are three different ways to employ generic coding techniques: void* point-
ers, templates, and inheritance. We show a simple use of each of these methods. This
lets us concentrate on C++ templates and how they are used effectively.

We start with a small piece of code that can benefit from genericity: assigning the con-
tents of one array to a second array.

In file transferArray.cpp

// Simple array assignment function

int transfer(int from[], int to[], int size)
{

for (int i = 0; i < size; i++)
to[i] = from[i];

return size;
}

This code works for the int array type and depends on an appropriate size array being
allocated. This piece of code can be readily replicated for different types, but replica-
tion has a cost and can introduce errors.

For the following declarations:

int a[10], b[10];
double c[20], d[20];

transfer(b, a, 10); // works fine
transfer(d, c, 20); // syntax error

C++ has a void pointer type that can be used to create generic code. Generic code is
code that can work with different types.

http://www.cse.ucsc.edu/~pohl/C++BD/06Chap/transferArray.cpp

Ira Pohl’s C++ by Dissection 244
In file voidTransferArray.cpp

// void* generic assignment function

int transfer(void* from, void* to,
int elementSize, int size)

{
int nBytes = size * elementSize;

for (int i = 0; i < nBytes; i++)
static_cast<char*>(to)[i] =
static_cast<char*>(from)[i];

return size;
}

Dissection of the transfer() Function Using void*

■ int transfer(void* from, void* to,
int elementSize, int size)

This code works for any array type. Since void* is a universal pointer
type, any array type can be passed as a parameter. However, the com-
piler does not catch type errors. Here are some declarations and func-
tion calls:

int a[10], b[10];
double c[20], d[20];

transfer(a, b, sizeof(int), 10); // works fine
transfer(c, d, sizeof(double), 20); // works fine
transfer(a, c, sizeof(int), 10); // sys dependent

In this last call, a is an int* type but c is a double*. On many
machines, an int fits in 4 bytes and a double fits in 8 bytes. The
effect of these transfers can be very different where these underlying
size limits differ. This presents a diffuculty in writing portable code
that C++ templates will solve.

■ int nBytes = size * elementSize;

The number of bytes to be transferred is computed as the elemen-
tSize times the size for an individual element. For a 10-element
array of 4-byte ints, this would be 40 bytes.

■ for (int i = 0; i < nBytes; i++)
static_cast<char*>(to)[i] =
static_cast<char*>(from)[i];

This for loop performs the actual transfer. It does it byte by byte,
with each byte being treated as a character. .

http://www.cse.ucsc.edu/~pohl/C++BD/06Chap/voidTransferArray.cpp

Ira Pohl’s C++ by Dissection 245
C++ has template functions that can be used to create generic code. Template functions
are written using the keyword template followed by angle brackets. The angle brack-
ets contain an identifier that is used as a placeholder for an arbitrary type. Here, we
write the transfer() function using templates.

In file templateTransferArray.cpp

// Template generic assignment function

template<class T>
int transfer(T* from, T* to, int size)
{

for (int i = 0; i < size; i++)
to[i] = from[i];

return size;
}

The template function requires that the type be properly instantiated. It does not allow
two distinct types to be used in this form of array transfer. It continues to provide type-
safety, which is important to program correctness. Templates conveniently solve porta-
bility problems that void* techniques have difficulty with.

Dissection of the transfer() Function Using template

■ template<class T>
int transfer(T* from, T* to, int size)

This code works for any array type. T can be any type. For the follow-
ing declarations:

int a[10], b[10];
double c[20], d[20];

transfer(a, b, 10); // works fine
transfer(c, d, 20); // works fine
transfer(a, c, 10); // syntax error

In the first case, a function transfer(int*, int*, int) is com-
piled. In the second case, a function transfer(double*, double*,
int) is compiled. In this last case, a is an int* type, but c is a dou-
ble*. The template mechanism cannot produce an actual function
because these are two different types. This leads to the syntax error
“failure to unify the two argument types.”

■ for (int i = 0; i < size; i++)
to[i] = from[i];

This for loop performs the actual transfer. It does it array-element by
array-element, which is generally more efficient than a byte transfer.

http://www.cse.ucsc.edu/~pohl/C++BD/06Chap/templateTransferArray.cpp

Ira Pohl’s C++ by Dissection 6.1 Template Class stack 246
C++ uses the keyword template to provide parametric polymorphism, which allows the
same code to be used with respect to various types, in which the type is a parameter of
the code body. This is a form of generic programming. Many of the classes used in the
text so far contained data of a particular type, although the data have been processed in
the same way regardless of type. Using templates to define classes and functions allows
us to reuse code in a simple, type-safe manner that lets the compiler automate the pro-
cess of type instantiation—that is, when a type replaces a type parameter that appeared
in the template code.

6.1 Template Class stack

Here, we modify the ch_stack type from Section 4.11, A Container Class Example:
ch_stack, on page 164, to have a parameterized type. This is a prototypical container
class. It is a class whose chief purpose is to hold values. Rather than write a version of
this class for each type, we can write generic code using the template syntax.

In file templateStack.cpp

// Template stack implementation

template <class TYPE>
class stack {
public:

explicit stack(int size = 100)
: max_len(size), top(EMPTY), s(new TYPE[size])
{ assert(s != 0); }

~stack() { delete []s; }
void reset() { top = EMPTY; }
void push(TYPE c) { s[++top] = c; }
TYPE pop() { return s[top--]; }
TYPE top_of() const { return s[top]; }
bool empty() const { return top == EMPTY; }
bool full() const { return top == max_len - 1; }

private:
enum { EMPTY = -1 };
TYPE* s;
int max_len;
int top;

};

The syntax of the class declaration is prefaced by

template <class identifier>

This identifier is a template argument that essentially stands for an arbitrary type.
Throughout the class definition, the template argument can be used as a type name.
This argument is instantiated in the declarations. A template declaration usually has

6.1

http://www.cse.ucsc.edu/~pohl/C++BD/04Chap/ch_stack.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/06Chap/templateStack.cpp

Ira Pohl’s C++ by Dissection 6.1 Template Class stack 247
global or namespace scope, can be a member of a class, and can be declared within
another template class. An example of a stack declaration using this is

stack<char> stk_ch; // 100 char stack
stack<char*> stk_str(200); // 200 char* stack
stack<complex> stk_cmplx(500); // 500 complex stack

This mechanism saves us rewriting class declarations in which the only variation would
be the type declarations, providing a type-safe, efficient, and convenient way to reuse
code.

When a template class is used, the code must always use the angle brackets as part of
the declaration.

In file templateStack.cpp

// Reversing an array of char* represented strings

void reverse(char* str[], int n)
{

stack<char*> stk(n);
int i;

for (i = 0; i < n; ++i)
stk.push(str[i]);

for (i = 0; i < n; ++i)
str[i] = stk.pop();

}

// Initialize stack of complex numbers from an array

void init(complex c[], stack<complex>& stk, int n)
{

for (int i = 0; i < n; ++i)
stk.push(c[i]);

}

Polymorphic Genie: Capable of Assuming Any Type

Which
form

do you
need,

master?

http://www.cse.ucsc.edu/~pohl/C++BD/06Chap/templateStack.cpp

Ira Pohl’s C++ by Dissection 6.2 Function Templates 248
Member functions, when declared and defined inside the class, are, as usual, inline.
When defining them externally, you must use the full angle bracket declaration. So,
when defined outside the template class,

TYPE top_of() const { return s[top]; }

would be written as

template<class TYPE> TYPE stack<TYPE>::top_of() const
{ return s[top]; }

Yes, this is ugly and takes some getting used to, but the compiler otherwise would not
know that TYPE was a template argument. As another example, we write the file scope
definition of the destructor for template<class TYPE> stack:

template<class TYPE> stack<TYPE>::~stack()
{ delete []s; }

A C++ programmer would use the Standard Template Library (STL) class std::stack.
The code presented in this section allows you to better appreciate the container classes
provided by the standard library. See Chapter 7, Standard Template Library, for more
on STL.

6.2 Function Templates

Many functions have the same code body, regardless of type; for example, initializing
the contents of one array from another of the same type uses the same code body. The
essential code is

for (i = 0; i < n; ++i)
a[i] = b[i];

Many programmers automate this with a simple macro:

Now that’s what I call a generic waiter - he can balance anything!

6.2

Ira Pohl’s C++ by Dissection 6.2 Function Templates 249
#define COPY(A, B, N) \
{ int i; for (i=0; i < (N); ++i) (A)[i] = (B)[i]; }

Programming that works regardless of type is a form of generic programming. The use
of define macros is a form of generic programming. Its advantages are several, includ-
ing simplicity, familiarity, and efficiency. There is familiarity because of a long tradition
in C programming of using such macros. It is very efficient. There is no function call
overhead.

The disadvantages of using macros include type-safety, unanticipated evaluations, and
scoping problems. Using define macros can often work, but doing so is not type-safe.
Macro substitution is a preprocessor textual substitution that is not syntactically
checked until later. Another problem with define macros is that they can lead to
repeated evaluation of a single parameter. Definitions of macros are tied to their posi-
tion in a file and not to the C++ language rules for scope. The code

#define CUBE(X) ((X)*(X)*(X))

behaves differently from the code

template<class T> T cube (T x) { return x * x * x;}

When cube(sqrt(7)) is invoked, the function sqrt(7) is called once, not three times
as with the CUBE define macro.

Templates are safer when types can be mixed in an expression and conversions are
inappropriate.

In file copy1.cpp

template<class TYPE>
void copy(TYPE a[], TYPE b[], int n)
{

for (int i = 0; i < n; ++i)
a[i] = b[i];

}

The invocation of copy() with specific arguments causes the compiler to generate the
function based on those arguments. If it cannot, a compile-time error results. What are
the effects of the following calls?

In file copy1.cpp

double f1[50], f2[50];
char c1[25], c2[50];
int i1[75], i2[75];
char* ptr1 = c1, *ptr2 = c2;

copy(f1, f2, 50);
copy(c1, c2, 10);
copy(i1, i2, 40);
copy(ptr1, ptr2, 15);
copy(i1, f2, 50);
copy(ptr1, f2, 50);

http://www.cse.ucsc.edu/~pohl/C++BD/06Chap/copy1.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/06Chap/copy1.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/06Chap/copy1.cpp

http://www.cse.ucsc.edu/~pohl/C++BD/06Chap/copy1.cpp

Ira Pohl’s C++ by Dissection 6.2 Function Templates 250
The last two invocations of copy() fail to compile because their types cannot be
matched to the template type. This is called a unification error. The types of the argu-
ments do not conform to the template. How the compiler generates this matching is dis-
cussed in the next section. If we were to cast f2 as

copy(i1, static_cast<int* >(f2), 50);

compilation would occur. However, the result would be an inappropriate form of copy-
ing. Instead, we need to have a generic copying procedure that accepts two distinct
class type arguments.

In file copy2.cpp

template<class T1, class T2>
void copy(T1 a[], T2 b[], int n)
{

for (int i = 0; i < n; ++i)
a[i] = b[i];

}

This form has an element-by-element conversion. This is usually the appropriate and
safer conversion.

6.2.1 Signature Matching and Overloading
A generic routine often cannot work for special case. The following form of swapping
template works on basic types, such as int or char, but will not work as expected on an
array of int or char. In order for a template function to work on a particular type, we
need each operation to be defined for that type. Without this condition, the code will
fail to compile for that type. Even when the template compiles, the resulting code needs
to be correct for that type. The following form of swapping template works on basic
types:

See, any cookie shape is possible!

http://www.cse.ucsc.edu/~pohl/C++BD/06Chap/copy2.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/06Chap/copy2.cpp

Ira Pohl’s C++ by Dissection 6.2 Function Templates 251
In file swap.cpp

// Generic swap

template <class T>
void swap(T& x, T& y)
{

T temp;

temp = x;
x = y;
y = temp;

}

A function template is used to construct an appropriate function for any invocation
that matches its arguments unambiguously:

int i, j;
char str1[100], str2[100], ch;
complex c1, c2;
char *s1 = str1, *s2 = str2;

swap(i, j); // i j int - okay
swap(c1, c2); // c1, c2 complex - okay
swap(str1[50], str2[33]); // both char variables-okay
swap(i, ch); // i int ch char - illegal
swap(str1, str2); // illegal
swap(s1, s2); // legal- but may not be intention

In the first three cases, the template compiles and runs as expected. The case of
swap(i, ch) yields a syntax error, as the two arguments are not the same type. In the
case of swap(str1, str2), str1 and str2 are array names. They are pointer values
that cannot be modified. Therefore, for this type, the code x = y; cannot compile. In
the last case, swap(s1, s2), the arguments are the same type and are modifiable. The
swap(s1, s2) function compiles and executes, but the contents of the arrays that the
pointers represent are not copied; only the pointers themselves are swapped.

To have swap() work for strings represented as character arrays, we write the following
special case:

void swap(char* s1, char* s2)
{

int max_len;

max_len = (strlen(s1) >= strlen(s2)) ?
strlen(s1) : strlen(s2);

char* temp = new char[max_len + 1];

strcpy(temp, s1);
strcpy(s1, s2);
strcpy(s2, temp);

}

http://www.cse.ucsc.edu/~pohl/C++BD/06Chap/swap.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/06Chap/swap.cpp

Ira Pohl’s C++ by Dissection 6.2 Function Templates 252
This specific version of swap() swaps the two strings represented by pointer values.
With this specialized case added, an exact match of this nontemplate version to the sig-
nature of a swap() invocation takes precedence over the exact match found by a tem-
plate substitution. This is a dangerous swap routine, as the longer string might
overflow the memory that had been allocated for the shorter string. When multiple
functions are available, the overloaded function-selection algorithm given below deter-
mines which to use.

Overloaded Function-Selection Algorithm
1. Exact match with some trivial conversions on nontemplate functions

2. Exact match using function templates

3. Ordinary argument resolution on nontemplate functions

6.2.2 How to Write a Simple Function: square()
Let us review what we know about writing a simple function. We choose the function
square() as our test case.

// Hand-coding genericity by overloading the function

inline int square(int n)
{

return n * n;
}

inline double square(double x)
{

return x * x;
}

Here, we use a text editor to copy the basic code and change types as needed. The func-
tion square() is overloaded for as many signatures as needed. The downside in this is
the effort to do this mundane coding task manually. It is also error-prone because, in
copying and changing types by hand, mistakes are made.

// Macro square

#define SQUARE(X) ((X)*(X))

Here, we use a preprocessor to inline substitute code where necessary, independent of
type. The macro is also error-prone, because textual substitution occurs without lan-
guage rules being checked. It is only after the substitution that the compiler checks for
syntax errors.

Ira Pohl’s C++ by Dissection 6.3 Generic Code Development: Quicksort 253
// Poor attempt at genericity using void*

inline double square(void* p)
{

double* temp = reinterpret_cast<double*>(p);
return (*temp) * (*temp);

}

Here, we use a void* as the argument type, which is error-prone because it uses a sys-
tem-dependent cast. It works through conversion to double, which may be inappropri-
ate.

And the winner is template coding:

// C++ template

template <class T>
inline T square(T n)
{

return n * n;
}

The code is easily generated based on testing for a simple native type. It works univer-
sally when the multiplication operator* is defined. It is automatically generated as
necessary for arbitrary signatures. You can test your understanding of this concept by
doing exercise 4 on page 278.

6.3 Generic Code Development: Quicksort

Sorting is an important algorithm for many applications. Sorting needs to be accom-
plished on many different types. Sorting needs to be compactly coded and highly effi-
cient. Thus, sorting functions are a prime candidate for generic coding. We develop the
code for quicksort—a highly efficient, well-known sorting method. Quicksort was cre-
ated by C. Anthony R. Hoare and described in his 1962 paper “Quicksort” (Computer
Journal, vol. 5, no. 1). Of all the various sorting techniques, quicksort is perhaps the
most widely used internal sort. An internal sort is one in which all the data to be sorted
fit entirely within main memory.

First, we program the quicksort for a specific type. Then we show how easy it is to con-
vert it to generic code. Our quicksort code is as follows:

6.3

Ira Pohl’s C++ by Dissection 6.3 Generic Code Development: Quicksort 254
In file quicksort.cpp

// Quicksort
inline void swap(int& x, int& y)
{

int t;
t = x;
x = y;
y = t;

}

inline void order(int& x, int& y)
{

if (x > y) swap(x, y);
}

bool find_pivot(int *left, int *right,
int *pivot_ptr);

int* partition(int *left, int *right, int pivot);

void quicksort(int *left, int *right)
{

int *p, pivot;
if (find_pivot(left, right, &pivot)) {

p = partition(left, right, pivot);
quicksort(left, p - 1);
quicksort(p, right);

}
}

Quicksort is usually implemented recursively. The underlying idea is to divide and con-
quer. Suppose that in main() we have declared a to be an array of size N. After the array
has been filled, we can sort it with the call

quicksort(a, a + N - 1);

The first argument is a pointer to the first element of the array; the second argument is
a pointer to the last element of the array. In the function definition for quicksort(), it
is convenient to think of these pointers as being on the left and right side of the array,
respectively. The function find_pivot() chooses, if possible, one of the elements of
the array to be a pivot element. The function partition() is used to rearrange the
array so that the first part consists of elements all of whose values are less than the
pivot, and the remaining part consists of elements all of whose values are greater than
or equal to the pivot. In addition, partition() returns a pointer to an element in the
array. Elements to the left of the pointer all have value less than the pivot, and elements
to the right of the pointer, as well as the element pointed to, all have value greater than
or equal to the pivot. Once the array has been rearranged with respect to the pivot,
quicksort() is invoked on each subarray.

http://www.cse.ucsc.edu/~pohl/C++BD/06Chap/quicksort.cpp

Ira Pohl’s C++ by Dissection 6.3 Generic Code Development: Quicksort 255
bool find_pivot(int *left, int *right, int *pivot_ptr)
{

int a, b, c, *p;
a = *left; // left value
b = *(left + (right - left) / 2); // middle value
c = *right; // right value
order(a, b);
order(a, c);
order(b, c); // order these 3 values
if (a < b) { // pivot is higher of 2 values

*pivot_ptr = b;
return true;

}

if (b < c) {
*pivot_ptr = c;
return true;

}
for (p = left + 1; p <= right; ++p)

if (*p != *left) {
*pivot_ptr = (*p < *left) ? *left : *p;
return true;

}
return false; // all elements have same value

}

Ideally, the pivot should be chosen so that at each step the array is partitioned into two
parts, each with an equal (or nearly equal) number of elements. This would minimize
the total amount of work performed by quicksort(). Because we do not know a priori
what this value should be, we try to select for the pivot the middle value from among
the first, middle, and last elements of the array. In order for there to be a partition,
there has to be at least one element that is less than the pivot. If all the elements have
the same value, a pivot does not exist and false is returned by the function.

int *partition(int *left, int *right, int pivot)
{

while (left <= right) {
while (*left < pivot)
++left;

while (*right >= pivot)
--right;

if (left < right) {
swap(*left, *right);
++left;
--right;

}
}
return left;

}

Ira Pohl’s C++ by Dissection 6.3 Generic Code Development: Quicksort 256
The major work is done by partition(). We want to explain in detail how this function
works. Suppose we have an array a[] of 12 elements:

7 4 3 5 2 5 8 2 1 9 -6 -3

When find_pivot() is invoked, the first, middle, and last elements of the array are
compared. The middle value is 5, and because this is larger than the smallest of the
three values, this value is chosen for the pivot value. The following simulation shows
the values of the elements of the array after each pass of the outer while loop in the
partition() function. The elements that were swapped in that pass are underlined.

Unordered data: 7 4 3 5 2 5 8 2 1 9 -6 -3
First pass: -3 4 3 5 2 5 8 2 1 9 -6 7
Second pass: -3 4 3 -6 2 5 8 2 1 9 5 7
Third pass: -3 4 3 -6 2 1 8 2 5 9 5 7
Fourth pass: -3 4 3 -6 2 1 2 8 5 9 5 7

Notice that after the fourth pass, the elements with index 0 to 6 have value less than the
pivot and that the remaining elements have value greater than or equal to the pivot. The
address of a[7] is returned from partition() when it finishes the fourth pass and
exits.

6.3.1 Converting to a Generic quicksort()
Now let us convert the quicksort to work with generic data. The key is to identify any
types that need to be generalized. The original algorithm works with int data. Let us
change this step by step to work with data of type T:

In file genericQuicksort.cpp

template <class T>
inline void swap(T& x, T& y)
{

T t;
t = x;
x = y;
y = t;

}

template <class T>
inline void order(T& x, T& y)
{

if (x > y) swap(x, y);
}

http://www.cse.ucsc.edu/~pohl/C++BD/06Chap/genericQuicksort.cpp

Ira Pohl’s C++ by Dissection 6.3 Generic Code Development: Quicksort 257
Once the algorithm and its general coding scheme are understood, it is relatively easy to
find the specific type, in this case int, that needs to be parameterized and change it to
a parameterized type T. We show the remaining code parameterized without comment.

Dissection of the swap() and order() Functions

■ template <class T>
inline void order(T& x, T& y)

The key to writing templates is to preface the code with template
and the appropriate number of type identifiers, usually identifiers T1,
T2, and so on. Normally, only one type is parameterized, and for this
case, class T is usual. The function normally uses T as part of its sig-
nature. Later, when order() is called with a given type, as in
order(x, y), with these being doubles, the compiler generates code
to specifically handle that type. One downside is that for each use of
order() with different types, a code body is generated. Schemes for
generic coding using void* can avoid these multiple code bodies,
also referred to as code bloat.

■ {
if (x > y) swap(x, y);

}

The code is no different from for the int case. The compiler gives
you a syntax error if the operator > is not defined for a particular type
T.

■ template <class T>
inline void swap(T& x, T& y)
{

T t;

Here, both the signature and a block variable are using type T.

■ t = x;
x = y;
y = t;

}

This code should work universally because operator= is defined for
any type. However, the user needs to check that semantics for opera-
tor= should be a deep copy, that is, a copy of the data itself, not just
a copy of a pointer to the data.

Ira Pohl’s C++ by Dissection 6.3 Generic Code Development: Quicksort 258
// Forward declarations of auxiliary functions

template <class T>
bool find_pivot(T *left, T *right, T *pivot_ptr);

template <class T>
T* partition(T *left, T *right, T pivot);

template <class T>
void quicksort(T *left, T *right)
{

T *p, pivot;
if (find_pivot(left, right, &pivot)) {

p = partition(left, right, pivot);
quicksort(left, p - 1);
quicksort(p, right);

}
}

template <class T>
T *partition(T *left, T *right, T pivot)
{

while (left <= right) {
while (*left < pivot)

++left;
while (*right >= pivot)

--right;
if (left < right) {

swap(*left, *right);
++left;
--right;

}
}
return left;

}

template <class T>
bool find_pivot(T *left, T *right, T *pivot_ptr)
{

T a, b, c, *p;
a = *left; // left value
b = *(left + (right - left) / 2); // middle value
c = *right; // right value
order(a, b);
order(a, c);
order(b, c); // order these 3 values
if (a < b) { // pivot is higher of 2 values

*pivot_ptr = b;
return true;

}

Ira Pohl’s C++ by Dissection 6.3 Generic Code Development: Quicksort 259
if (b < c) {
*pivot_ptr = c;
return true;

}

for (p = left + 1; p <= right; ++p)
if (*p != *left) {

*pivot_ptr = (*p < *left) ? *left : *p;
return true;

}
return false; // all elements have same value

}

Let us test this code on two different array types:

In file genericQuicksort.cpp

int main()
{

cout << "quicksort\n";
int a[12]={7, 4, 3, 5, 2, 5, 8, 2, 1, 9, -6, -3 };

for (int i = 0; i < 12; i++)
cout << a[i] << " , ";

quicksort(a, a + 11);
cout << "\n\nquicksorted\n";
for (int i = 0; i < 12; i++)

cout << a[i] << " , ";
cout << endl;
// Now use doubles
double b[6] = { 7.8, 4.9, 3.8, 5.0, 2.8, 5.3 };
for (int i = 0; i < 6; i++)

cout << b[i] << " , ";
quicksort(b, b + 5);
cout << "\n\nquicksorted\n";
for (int i = 0; i < 6; i++)

cout << b[i] << " , ";
cout << endl;

}

The standard C library provides qsort(), a generic quicksort routine using void*. An
extended discussion of this technique can be found in A Book on C: 4th Edition, by Al
Kelley and Ira Pohl (Addison Wesley, 2000) pages 372 to 380.

http://www.cse.ucsc.edu/~pohl/C++BD/06Chap/genericQuicksort.cpp

Ira Pohl’s C++ by Dissection 6.4 Class Templates 260
6.4 Class Templates

In the stack<T> example given in Section 6.1, Template Class stack, on page 246, we
have an ordinary case of class parameterization. In this section, we wish to discuss var-
ious special features of parameterizing classes.

6.4.1 Friends
Template classes can contain friends. A friend function that does not use a template
specification is universally a friend of all instantiations of the template class. A friend
function that incorporates template arguments is specifically a friend of its instantiated
class.

template <class T>
class matrix {
public:

friend void foo_bar(); // universal
friend vect<T> prod(vect<T> v); // instantiated
·····

};

6.4.2 Static Members
Static members are not universal but are specific to each instantiation.

template <class T>
class foo {
public:

static int count;
·····

};

·····
foo<int> a;
foo<double> b;

The static variables foo<int>::count and foo<double>::count are distinct.

6.4

Ira Pohl’s C++ by Dissection 6.4 Class Templates 261
6.4.3 Class Template Arguments
Both classes and functions can have several class template arguments. Let us write a
function that converts one type of value to a second type, provided the first type is at
least as wide as the second type:

In file coerce.cpp

template <class T1, class T2>
bool coerce(T1& x, T2 y)
{

if (sizeof(x) <= sizeof(y))
return false;

x = static_cast<T1>(y);
return true;

}

This template function has two possibly distinct types as template arguments.

Other template arguments include constant expressions, function names, and character
strings.

In file templateArray.cpp

template <class T, int n>
class assign_array {
public:

T a[n];
};
·····
assign_array<double,50> x, y;
·····
x = y; // should work efficiently

The benefits of this parameterization include allocation off the stack, as opposed to
allocation from free store. On many systems, the former is more efficient. The type is
bound to the particular integer constant; thus, operations involving compatible-length
arrays are type-safe and checked at compile time. (See exercise 1 on page 278.)

6.4.4 Default Template Arguments
A template provider can decide that there is a common case that should be provided as
a default.

template<class T = double>
class point{

·····
private:

T x, y, z; // T is commonly double
}

http://www.cse.ucsc.edu/~pohl/C++BD/06Chap/coerce.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/06Chap/coerce.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/06Chap/templateArray.cpp

Ira Pohl’s C++ by Dissection 6.5 Parameterizing the Class vector 262
This template can be used with an explicit parameter or with the parameter omitted as
follows:

point <int> i_pt; // the coordinates are int
point <double> d_pt; // the coordinates are double
point < > d_pt2; // the coordinates are double

6.4.5 Member Templates
Members may themselves be templates inside the template class. This feature of the
ANSI standard has yet to be implemented on some compilers.

template <class T1>
class foo {
public:

// class member template
template <class T2>
class fooprime {

·····
// can use T1 and T2 in fooprime

};
// can only use T1 in foo
·····

};

foo<int>::fooprime<char> a;

There can also be function member templates. Check your local compiler documenta-
tion to see whether these constructs are available.

6.5 Parameterizing the Class vector

Let us improve on the native C++ array by creating a container class. A defect of the
array as found in C and C++ is that it is easy to have out-of-bounds errors resulting in
difficult-to-find runtime bugs. We parameterize the class, naming it vector in anticipa-
tion of discussing and understanding the Standard Template Library (STL) class
std::vector. The new class is used in conjunction with iterators and algorithms. An
iterator is a pointer or a pointerlike variable used for traversing and accessing container
elements.

6.5

Ira Pohl’s C++ by Dissection 6.5 Parameterizing the Class vector 263
In file vect_it.h

// Template-based vector type

template <class T>
class vector {
public:

typedef T* iterator;
explicit vector(int n = 100);// make size n array
vector(const vector<T>& v); // copy vector
vector(const T a[], int n); // copy an array
~vector() { delete []p; }
iterator begin() { return p; }
iterator end() { return p + size; }
T& operator[](int i); // range-checked element
vector<T>& operator=(const vector<T>& v);

private:
T* p; // base pointer
int size; // number of elements

};

Basically, the template definition uses T everywhere the class acts on values stored in
individual elements. Thus, the declaration of the private base pointer p is type T.

The definition of member functions in file scope includes the scope-resolved label class-
name<T>. The following constructors for vector<T> use T as the type specification to
new:

template <class T>
vector<T>::vector(int n) : size(n)
{

assert(n > 0);
p = new T[size];
assert(p != 0);

}

The preceding code is the default constructor because of the default argument of 100
given in its declaration within the class. We use the keyword explicit to disallow its
use as a conversion from int to vector. Assertions are used to guarantee that the con-
structor performs its contractual obligations when given appropriate input.

template <class T>
vector<T>::vector(const T a[], int n)
{

assert(n > 0);
size = n;
p = new T[size];
assert(p != 0);
for (int i = 0; i < size; ++i)

p[i] = a[i];
}

http://www.cse.ucsc.edu/~pohl/C++BD/06Chap/vect_it.h
http://www.cse.ucsc.edu/~pohl/C++BD/06Chap/vect_it.h

Ira Pohl’s C++ by Dissection 6.5 Parameterizing the Class vector 264
This constructor converts an ordinary array to a vector. The copy constructor defines a
deep copy of the vector v.

template <class T>
vector<T>::vector(const vector<T>& v)
{

size = v.size;
p = new T[size];
assert(p != 0);
for (int i = 0; i < size; ++i)

p[i] = v.p[i];
}

The following code defines vector indexing by overloading the bracket operator. The
return type for the bracket operator is “reference to T,” as this is an alias for the item
stored in the container. Using this return type allows the bracket operator to access the
item in the container as an lvalue.

template <class T> T& vector<T>::operator[](int i)
{

assert (i >= 0 && i < size);
return p[i];

}

Notice that we can test to make sure that the array bounds are not exceeded. With
operator[] overloaded, we can access vectors as if they were native C++ arrays. We
also need to provide an overloaded assignment operator.

template <class T>
vector<T>& vector<T>::operator=(const vector<T>& v)
{

assert(v.size == size);
for (int i = 0; i < size; ++i)

p[i] = v.p[i];
return *this;

}

Client code is almost as simple as with nonparameterized declarations. To use these
declarations, you simply add within angle brackets the specific type that instantiates
the template. These types can be native types, such as int in the example, or user-
defined types. The following code uses these templates.

Ira Pohl’s C++ by Dissection 6.6 Using STL: string, vector, and complex 265
In file vect_it.cpp

int main()
{

vector<double> v(5);
vector<double>::iterator p;
int i = 0;

for (p = v.begin(); p != v.end(); ++p)
*p = 1.5 + i++;

do {
--p;
cout << *p << " , ";

} while (p != v.begin());
cout << endl;

}

The output from this program is

The values are in reverse order to how they are stored. This is a consequence of iterat-
ing back from the iterator value v.end(). (See exercise 6 on page 278.)

6.6 Using STL: string, vector, and complex

The C++ standard library makes heavy use of templates. It is not necessary to be able to
code templates, but it is vital to be able to use template code. This section discusses a
range of useful template types provided by the standard library and by STL. The full use
of STL is such an important and extensive topic that it is the subject of Chapter 7, Stan-
dard Template Library.

6.6.1 string and basic_string<>
The string library is a very extensive library that uses templates to create a family of
string types. This library should be used in preference to cstring, the older C standard
library for char* strings.

It is simple enough to use string as a type. This is in effect a basic container type, spe-
c ia l ized to conta in the type char . In rea l i ty , string i s the template
basic_string<charT> with the instantiation char and can be used typically as well
to store the wider character type wchar_t. This is useful when the limited ASCII charac-
ter set does not suffice to express the needed character set, as is the case for many for-
eign languages, such as Chinese, Japanese, Finnish, or Korean. The basic_string<>

5.5, 4.5, 3.5, 2.5, 1.5,

6.6

http://www.cse.ucsc.edu/~pohl/C++BD/06Chap/vect_it.cpp

Ira Pohl’s C++ by Dissection 6.6 Using STL: string, vector, and complex 266
class represents a sequence of characters. It contains all the usual operations of a
sequence container, as well as standard string operations such as concatenation.

There is no need to use the basic_string<> template directly because the types
string and wstring are typedefs for, respectively, basic_string<char> and
basic_string<wchar_t>.

The following example shows some of these features:

In file templateString.cpp

// String class to rewrite a sentence.

#include <iostream>
#include <string>
using namespace std;

int main()
{

string sentence, words[10];
int pos = 0, old_pos = 0, nwords, i = 0;

sentence = "Eskimos have 23 ways to ";
sentence += "describe snow";
while (pos < sentence.size()) {

pos = sentence.find(' ', old_pos);
words[i].assign(sentence, old_pos,

pos - old_pos);
cout << words[i++] << endl; // print words
old_pos = pos + 1;

}

nwords = i;
sentence = "C++ programmers ";
for (i = 1; i < nwords -1; ++i)

sentence += words[i] + ' ';
sentence += "windows";
cout << sentence << endl;

}

The string type is used to capture each word from an initial sentence in which the
words are separated by the space character. The position of the space characters is
computed by the find() member function. Then the assign() member function is
used to select a substring from sentence. Finally, a new sentence is constructed using
the overloaded operator=(), operator+=(), and operator+() functions to perform
assignments and concatenations.

Note that it is important to check the local system documentation, as different vendors
have employed their own specifications.

http://www.cse.ucsc.edu/~pohl/C++BD/06Chap/templateString.cpp

Ira Pohl’s C++ by Dissection 6.6 Using STL: string, vector, and complex 267
6.6.2 vector<> in STL
We developed a useful generalization of an arraylike container, the vector<>. A fully
developed std::vector<> is found in the STL library vector. In most cases, it is prefer-
able to use this type instead of the native array type. It is safer than native arrays,
because it checks to see if you are out of range. It is more flexible than native arrays
because it is resizable and has many associated standard methods. It is very easy to
substitute for native arrays because it works as given with array notation. Here is an
example:

#include <vector>
using namespace std;

template<class T>
T* find(vector<T> data, T v)
{

int i;
for (i = 0; i < data.size(); i++)

if (data[i] == v);
return &data[i];

return 0; // indicates failure to find v
}

Notice that the code looks typical of an array. The extra feature is that size() is a
method that returns the length of the vector.

6.6.3 Using complex<>
The complex<> template found in the library complex provides a complex number type.
It is compatible with the other numerical types. In earlier C++ libraries, this was not a
template. It was a type based on the following data description:

class complex{
// ·····methods

private:
double x, y;

};

This is replaced by

template <class SCALAR>
class complex{
// ·····methods

private:
SCALAR x, y;

};

This allows users to decide on needed precision of the underlying type. Usually, this
would be float, double, or long double. Here is some simple code testing this type:

Ira Pohl’s C++ by Dissection 6.6 Using STL: string, vector, and complex 268
In file complex.cpp

#include <iostream>
#include <complex>
using namespace std;
int main()
{

complex<double> x(1,2.1), y;
cout << "x = " << x << endl;
y = x + 1.0;
cout << "\ny = " << y << endl;
// if (x < y) not allowed - no standard definition
// cout << "x less than y" << endl;

}

The complex type is important to scientists and engineers. It shows how easy it is to
extend C++ to new domains. For example, many scientists programmed in FORTRAN90,
which has a complex number type. Thus, C++ readily can be used to replace FORTRAN
programs needing the complex type.

Notice how the commented out lines involve using the less-than operator. It is not
defined in the standard library for this type, so the template compilation fails to instan-
tiate it. If you have your own definition for this operator, you could specifically over-
load it and then this code would work.

6.6.4 limits and Other Useful Templates
The limits library describes the characteristics of the fundamental types on the local
system. The template class numeric_limits<> provides this information for all
numeric types. Instead of a different macro identifier for each data type characteristic,
such as INT_MAX, the local system maximum int value, the class defines a single static
funct ion , named max() , which re turns the appropria te va lues , such as
numeric_limits<int>::max(). Using a template class greatly reduces the number of
symbolic names that need to be defined to describe the local system.

The following is an example of using these functions:

In file limits.cpp

#include <iostream>
#include <limits>
using namespace std;

int main()
{

cout << numeric_limits<char>::digits << " char\n ";
cout << numeric_limits<unsigned char>::digits << " u char\n";
cout << numeric_limits<wchar_t>::digits << " wchar_t\n";
cout << numeric_limits<int>::max() << " max int\n";
cout << numeric_limits<double>::max() << " max double " << endl;

}

http://www.cse.ucsc.edu/~pohl/C++BD/06Chap/complex.cpp

http://www.cse.ucsc.edu/~pohl/C++BD/06Chap/limits.cpp

Ira Pohl’s C++ by Dissection 6.7 Software Engineering: Reuse and Generics 269
The digits field yields the number of bits representing the magnitude of the type.

Two other template libraries that are not discussed here but that are very important for
certain specialized computations are valarray and memory. The valarray library pro-
vides templates for scientific vector computations that can be parallelized. Typically,
this is useful on certain vector-parallel supercomputers. The memory library provides
the auto_ptr<> template that aids management of data dynamically allocated by new
expressions.

6.7 Software Engineering: Reuse and Generics

Reuse is a key to holding down software costs. Writing and testing new code is always
expensive. Templates are a critical means of providing efficient reusable code. Unlike
the #define macro, templates are type-safe and properly scoped.

As indicated in this chapter, templates are frequently no more expensive to develop
than specialized code. Typically, the programmer writes the specialized case for a given
type. This type should have characteristics representative of the different types the
generic code would be instantiated with. The specialized code should be debugged and
carefully tested until satisfactory. Then the programmer rewrites the specialized code
in template form.

6.7.1 Debugging Template Code
As with ordinary code, you have syntax errors that the compiler finds and runtime
errors that the programmer must hopefully find. In the case of template code, the syn-
tax errors are of two varieties. One is just an error regardless of type instantiation; the
second is an error because of a particular instantiation. Here is some code we wrote ear-
lier in the chapter; however, it is modified to have an error, a missing semicolon:

template <class T1, class T2>
bool coerce(T1& x, T2 y)
{

if (sizeof(x) <= sizeof(y))
return false // missing semicolon

x = static_cast<T1>(y);
return true;

}

This type of error is readily detected upon compilation. Now consider using the code
with the semicolon correction, as follows:

6.7

Ira Pohl’s C++ by Dissection 6.7 Software Engineering: Reuse and Generics 270
int main()
{
 int i = 6;
 struct s { int first, second; }x;

 coerce(i, x);
 cout << i;
}

Here is code that again has a syntax error, but this error is specific to the type instanti-
ation. We are asking a struct variable to be cast to an int variable. Different compilers
note this error with messages that can be difficult to decipher. You should try it on
whatever C++ compilers you are using.

int main()
{
 int i = 6;
 double x = 5.5;

 coerce(i, x);
 cout << i;
}

Here is code that works, but the Borland compiler properly indicates that there is
unreachable code. This is because the test

if (sizeof(x) <= sizeof(y))

is instantiated for the types int and double and the expression is always true. Need-
less to say, code that is generic and uses casting is highly suspect. As a general software
engineering rule, you should stay away from code that is likely to have nonportable
behavior.

6.7.2 Special Considerations
Many current C++ template implementations make a distinction between template
parameters for functions and those for classes. Functions allow only class arguments,
which must occur in the template function signature as part of the type description of
at least one of the function parameters. The following is okay:

template <class TYPE>
void maxelement(TYPE a[], TYPE& max, int size);

template <class TYPE>
int find(TYPE* data);

The following was previously illegal but is now legal according to the ANSI standard:

template <class TYPE>
TYPE convert(int i) { TYPE temp(i); return temp; }

Ira Pohl’s C++ by Dissection 6.7 Software Engineering: Reuse and Generics 271
In the ANSI standard, the function is invoked as follows:

// Newly allowed explicit function instantiation

convert<double>(i + j);

Since it was previously illegal, the function instantiation may not work on some sys-
tems. The restriction exists because these compilers must use the arguments at func-
tion invocation to deduce which functions are created. A workaround is possible by
creating a class whose sole member is a parameterized static function, as follows:

template <class TYPE> // other arguments possible
class convert_it {
public:

static TYPE convert(int i)
{ TYPE temp(i); return temp; }

};

int main()
{

convert_it<double> D;

cout << D.convert(5) << endl; // outputs a double
}

6.7.3 Using typename
The keyword typename can be used inside templates instead of the keyword class to
declare template type parameters. The keyword is needed when class would not allow
the template declaration to be correctly parsed.

template<class T1, class T2>
T1 foo(T1* w, T2 data)
{

typename T1:: y * z; // a pointer declaration
·····

};

Without the typename declaration, the compiler would not know whether foo() was
declaring z of type T1::y* or multiplying y times z. Other subtle situations exist that
require this form.

Ira Pohl’s C++ by Dissection 6.8 Dr. P’s Prescriptions 272
6.8 Dr. P’s Prescriptions

■ Use templates instead of void* genericity.

■ First write an archetypal case and test, and then recode generically and test.

■ Use templates for any standard code to enhance reuse.

■ Avoid a commitment to a particular container type.

■ Be general where possible.

■ Use templates for containers, such as stack or tree.

■ Use iterators in preference to indices for access to containers.

Before templates were used, generic code in C++ was written using void* arguments to
functions. This generic pointer type can accept any specific pointer type as an argu-
ment. This code can largely be replaced with templates. The code is again compile-time
type-checked. Also, template functions need not manipulate arguments indirectly with
pointers.

It can be difficult to write and test generic code from scratch. Concreteness is a great
aid to the program developer. Pick a type that represents the archetypal case. Develop
the code for this case and test, making sure it’s correct. Finally, convert this to template
code and retest with selected types.

Templates are especially good for code that is repeatedly required with different types.
Container class code is usefully generalized by coding with templates. A container is an
object whose primary purpose is to store values. A classic example of a container is a
stack. Templates allow such code to be reused over arbitrary types with type-safety that
is checked at compile time.

C++ is designed to be template friendly. Code, when designed as a template, benefits
from greater abstraction than corresponding specialized code. What we mean by this is
that programmers are normally overly clever. This leads to hard-to-maintain code with
possibly subtle bugs. Generic code must be correct over a wide range of types and can-
not indulge in cleverness.

Iterators avoid the commitment to a particular container type. In contrast, using indices
to access arrays does not allow for pointer traversal as used in list and tree containers.
Generalization benefits by avoiding commitments.

6.9 C++ Compared with Java

Unlike C++, Java does not have templates. Java does not have void* or macro code
mechanisms. Instead, each class in Java can be viewed as an extension of the superclass
Object. This is done implicitly. The Object superclass provides for a type of generic
programming and achieves some of the ideas of polymorphism accomplished by the
use of templates in C++. The use of Object in writing generic code is based on inherit-

6.8

6.9

Ira Pohl’s C++ by Dissection 6.9 C++ Compared with Java 273
ance and is discussed in Java by Dissection (Addison Wesley, 1999), Pohl and McDowell,
pages 244 to 249.

Java does have string types. They are built-in and come in two important classes:
String and StringBuffer. We begin our discussion of the class String with an exam-
ple that uses two operations defined for String: length() and charAt(). A string can
be viewed as a sequence of characters. The method length() is used to find the num-
ber of characters in the string. The method charAt() is used to select individual char-
acters from a string. The first character in the string is at position zero, and the last is
at position length - 1, in which length is the number of characters in the string.

We use the String class to determine whether a string is a palindrome, a string that
reads the same backward or forward. A simple example is the word eye. Here is the Java
code from Java by Dissection (Addison Wesley, 1999), Pohl and McDowell, pages 190-
192, and its output:

In file Palindrome.java

// Check if a string is a palindrome
public class Palindrome {

public static void main(String[] args) {
String str1 = "eye", str2 = "bye";
System.out.println("Palindrome detection");
System.out.println(str1 + " " +

isPalindrome(str1));
System.out.println(str2 + " " +

isPalindrome(str2));
}

static boolean isPalindrome(String s) {
int left = 0;
int right = s.length() - 1;
while (left < right) {

if (s.charAt(left) != s.charAt(right))
return false;

left++;
right--;

}
return true;

}
}

Palindrome detection
eye true
bye false

http://www.cse.ucsc.edu/~pohl/C++BD/06Chap/Palindrome.java

Ira Pohl’s C++ by Dissection 6.9 C++ Compared with Java 274
The methods length() and charAt() are called instance methods because they operate
on a specified instance of the class String. This corresponds to C++’s nonstatic mem-
ber functions. Note that in the palindrome example, we preceded the method calls
length() and charAt() with a String variable separated by a dot. That’s how we
specify the object upon which the method is to operate.

Dissection of the Palindrome Program

■ public static void main(String[] args) {
String str1 = "eye", str2 = "bye";
System.out.println("Palindrome detection");
System.out.println(str1 + " " +

isPalindrome(str1));
System.out.println(str2 + " " +

isPalindrome(str2));
}

We use the method main() to test our isPalindrome() method. We
declare two variables of type String and assign them initial values.
Except for the objects of type String or created by literals, we create
all other class objects by using the keyword new.

■ static boolean isPalindrome(String s)

For methods that perform a test and return a boolean, the method’s
name commonly begins with the prefix is.

■ int left = 0;
int right = s.length() - 1;

The operation length() is applied to the String variable s. For the
same reason that arrays are indexed starting at 0, the position of the
first character in a String is position, or index 0; therefore, the posi-
tion of the last character is length - 1.

■ while (left < right) {
if (s.charAt(left) != s.charAt(right))

return false;
left++;
right--;

}
return true;

The method charAt() implements the operation of extracting a sin-
gle, selected character from a string, based on the position of the
character in the string. Each pair of corresponding characters is
tested for inequality. The first pair that disagrees causes the method
to terminate with a value of false. If the iteration reaches the middle
of the string without disagreement, the loop terminates. The method
then returns with a value of true.

Ira Pohl’s C++ by Dissection 6.9 C++ Compared with Java 275
We can modify a String variable to refer to different objects, but we can’t change an
actual String object to let it contain different characters. However, the standard Java
class StringBuffer does provide string objects that are modifiable. Like a String
object, a StringBuffer object represents a sequence of characters. In addition, the
class StringBuffer provides mutator methods that can be used to change the
sequence of characters represented by the StringBuffer. For example, the method
reverse() can reverse the character sequence contained in StringBuffer.

StringBuffer str = new StringBuffer("ABCD");
str.reverse();
System.out.println(str); // prints DCBA

Note that str.reverse() doesn’t return a new StringBuffer that is the reverse of
str. Instead, it actually modifies the StringBuffer referred to by str.

It should come as no surprise to readers familiar with arrays that the StringBuffer
class internally stores the characters of the represented string in an array. Conse-
quently, a StringBuffer object has two sizes: One is called the length, and the other is
called the capacity. The object’s length, like the length of a String object, is the num-
ber of characters in the represented string. The object’s capacity is the number of char-
acters that can be stored in the StringBuffer before the StringBuffer must do a
relatively expensive operation of adding additional storage. This information is helpful
to an understanding of some of the methods that are part of the StringBuffer class.

Ira Pohl’s C++ by Dissection Summary 276
Summary

■ C++ has a void pointer type that can be used to create generic code. Generic code is
code that can work with different types.

■ C++ uses templates to provide parametric polymorphism. The same code is used
with different types, in which the type is a parameter of the code body.

■ Both classes and functions can have several class template arguments. In addition to
class template arguments, class template definitions can include constant expres-
sions, function names, and character strings as template arguments. A common case
is to have an int argument that parameterizes a size.

■ A nontemplate, specialized version of a function may be needed when the generic
routine does not work. When multiple functions are available, the overloaded func-
tion-selection algorithm determines which to use.

Overloaded Function-Selection Algorithm
1. Exact match with some trivial conversions on nontemplate functions

2. Exact match using function templates

3. Ordinary argument resolution on nontemplate functions

■ A class such as vector<> or stack<> is a form of container class. It is used to hold
and retrieve values of other types. An iterator is a pointer or a pointerlike variable
used for traversing and accessing container elements. It is useful to traverse con-
tainer classes using iterators.

■ The string library is a very extensive library that uses templates to create a family of
string types. This library should be used in preference to cstring, the older C stan-
dard library for char* strings.

■ The complex<> template found in the library file complex provides a complex num-
ber type. It is compatible with the other numerical types.

■ A fully developed std::vector<> is found in the STL library vector. It is preferable
to use this type instead of the native array type. It is safer than native arrays because
it checks to see if you are out of range. It is more flexible than native arrays because
it is resizable and has many associated standard methods.

■ The limits library describes the characteristics of the fundamental types on the local
system. The template class numeric_limits<> provides this information for all numeric
types.

Ira Pohl’s C++ by Dissection Review Questions 277
Review Questions

1. In C, one can use void* to write generic code, such as memcpy(). In C++, writing
generic code uses the keyword .

2. Rewrite as a template function the macro

#define SQ(A) ((A) * (A))

Mention a reason why using the template is preferable to using the macro.

3. Using templates to define classes and functions allows us to reuse code in a simple,
type-safe manner that lets the compiler automate the process of type —that is,
when a type replaces a type parameter that appeared in the template code.

4. A is an object whose primary purpose is to store values.

5. An iterator is a pointer or a pointerlike variable used for .

6. One downside is that for each use of a template function with different types,
 is generated.

7. A friend function that does not use a template specification is a friend of .

8. Are static template members universal or specific to each instantiation? .

9. Unlike the #define macro, templates are and .

10. The keyword can be used inside templates instead of the keyword class to
declare template type parameters.

Ira Pohl’s C++ by Dissection Exercises 278
Exercises

1. Rewrite stack<T> in Section 6.1, Template Class stack, on page 246, to accept an
integer value for the default size of the stack. Now client code can use such declara-
tions as

stack<int, 100> s1, s2;
stack<char, 5000> sc1, sc2, sc3;

Discuss the pros and cons of this additional parameterization.

2. Define a template for fixed-length stacks that allocates a compile-time-determined
size array to store the stacked values.

3. The code

#define CUBE(X) ((X)*(X)*(X))

behaves differently from the code

template<class T> T cube (T x){ return x * x * x;}

Explain the difference when cube(sqrt(7)) is invoked. When would the two coding
schemes give different results?

4. Write a generic exchange() function with the following definition, and test it:

template<class TYPE>
void exchange(TYPE& a, TYPE& b, TYPE& c)
{
// replace a's value by b's and b's by c's
// and c's by a's
}

5. Write a generic function that, given an arbitrary array and its size, rotates its values
with

a[1] = a[0] , a[2] = a[1], ·····,
a[size - 1] = a[size - 2], a[0] = a[size - 1]

6. For the vect_it program in Section 6.5, Parameterizing the Class vector, on page
265, write the member function template to print the entire vector range.

<class T> void vector<T>::print()

7. Rewrite the overloaded assignment operator to be more general:

Ira Pohl’s C++ by Dissection Exercises 279
template <class T>
vector<T>& vector<T>::operator=(const vector<T>& v)
// allow different size vectors to be assigned
// must delete and reallocate storage for left-hand
// argument and avoid in a = a

8. Write a generic function that requires swapping of two vector<T>s of different
types. (See Section 6.5, Parameterizing the Class vector, on page 263.) Assume that
both array types have elements that are assignment convertible.

9. Using vector<T> and its associated iterator class, code a generic vector internal
sorting routine of your choice, but not quicksort (see Section 6.5, Parameterizing the
Class vector, on page 263). Compare its running time with the STL sort routine for
vectors of 100; 1,000; and 10,000 elements.

10. (Project) Create a parametric string type. The basic type is to act as a container class
that contains a class T object. In the prototype case, the object is a char. The nor-
mal end-of-string sentinel is 0. The standard behavior should model the functions
found in the string library. The class definition could parameterize the sentinel as
well. Such a type exists in the standard library string.

11. Sorting functions are natural candidates for parameterization. Rewrite the following
generic bubble sort using templates:

void bubble(int d[], int how_many)
{

int temp;
for (int i = 0; i < how_many - 1; ++i)

for (int j= 0; j < how_many - 1 - i; ++j)
if (d[j] < d[j + 1]) {

temp = d[j];
d[j]= d[j + 1];
d[j + 1] = temp;

}
}

What happens if this is instantiated with a class in which operator<() is not defined?
What would you need to do to get this to sort char* strings lexicographically?

CHAPTER 7
Standard Template Library
The standard template library (STL) is the C++ library providing generic programming
for many standard data structures and algorithms. The STL provides three types of
components—containers, iterators, and algorithms—that support a standard for
generic programming.

The library is built using templates and is highly orthogonal in design. It is orthogonal
in that components can be used in combination with one another on native and user-
provided types through proper instantiation of the various elements of the STL. The fol-
lowing sections serve only as an overview and brief introduction to the STL, which is
large and complicated. Many newer systems have important further extensions to the
STL.

7.1 A Simple STL Example

We start with an example of using the container class vector. It was briefly discussed
in Section 6.6.2, vector<> in STL, on page 267. This class is a generalization of the
native array type in C++ and, as such, is easily understood and used. Indeed, one of the
most effective uses of the STL is to replace the use of ordinary C++ arrays with STL vec-
tors. The STL vector type has many important advantages over the array, such as
dynamic expansion, thus avoiding overflow. Further, it can be readily navigated with
both iterators and indices and has a rich interface of built-in operations.

In file stl_vector1.cpp

// Simple STL vector program

#include <iostream>
#include <vector>
using namespace std;

7.1

http://www.cse.ucsc.edu/~pohl/C++BD/07Chap/stl_vector1.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/07Chap/stl_vector1.cpp

Ira Pohl’s C++ by Dissection 7.1 A Simple STL Example 281
int main ()
{

vector<int> v(100); // 100 is vector's size

for (int i = 0; i < 100; ++i)
v[i] = i;

for (vector<int>::iterator p = v.begin();
p != v.end(); ++p)
cout << *p << '\t';

cout << endl;
}

Dissection of the stl_vector Program

■ // Simple STL vector program

#include <iostream>
#include <vector>
using namespace std;

The library vector contains the STL’s template for the component
vector<>.

■ vector<int> v(100); // 100 is vector's size

The STL container vector is used in place of an ordinary int array.
As with any other template, it is instantiated with an existing type.
Here, we use the native type int. The template class has a number of
constructors. The one used here generates an int vector of size
100.

■ for (int i = 0; i < 100; ++i)
v[i] = i;

The first for statement is written in exactly the same manner as a
C++ loop on ordinary data. In most instances, vectors can be used in
place of native arrays without changing working code besides the dec-
larations.

■ for (vector<int>::iterator p = v.begin();
p != v.end(); ++p)
cout << *p << '\t';

The second for statement is written using the iterator p. An iterator
behaves as a pointer. STL provides the member functions begin()
and end() as initial and terminal position values for the container.
Note that end() returns the iterator position (or address), one past
the last element of the container. Thus, end() is a guard location, or a
value signaling that you are finished traversing the container.

Ira Pohl’s C++ by Dissection 7.1 A Simple STL Example 282
The next example uses the list container, an iterator, and the generic algorithm accumu-
late(). The list and numeric libraries are required.

In file stl_container.cpp

#include <iostream>
#include <list> // list container
#include <numeric> // for accumulate
using namespace std;

// Using the list container

void print(list<double> &lst)
{

list<double>::iterator p; // traverse iterator

for (p = lst.begin(); p != lst.end(); ++p)
cout << *p << '\t';

cout << endl;
}

int main()
{

double w[4] = { 0.9, 0.8, 88, -99.99 };
list<double> z;

for (int i = 0; i < 4; ++i)
z.push_front(w[i]);

print(z);
z.sort();
print(z);
cout << "sum is "

<< accumulate(z.begin(), z.end(), 0.0)
<< endl;

}

In this example, a list container is instantiated to hold doubles. An array of doubles is
pushed into the list. The print() function uses an iterator to print each element of the
list in turn. Notice again that iterators work like pointers. Both the list and the vector
have the standard begin() and end() member functions for starting and ending loca-
tions of the container. Also, the list interface includes a stable sorting algorithm, the
sort() member function. In a stable sort, equal elements remain in the same relative
position. The accumulate() function is a generic function in the numeric package that
uses 0.0 as an initial value and computes the sum of the list container elements by
going from the starting location z.begin() to the ending guard location z.end().

Notice that print() itself could be parameterized by using an iterator range and a
return value of the position where the printing leaves off, making it a more general
algorithm. Let us do this:

http://www.cse.ucsc.edu/~pohl/C++BD/07Chap/stl_container.cpp

Ira Pohl’s C++ by Dissection 7.2 Containers 283
// Using the iterator range
// b is the beginning location
// e is the guard location and ends the iteration

template <class Iterator>
Iterator print(Iterator b, Iterator e)
{

for (Iterator p = b; p != e; ++p)
cout << *p << '\t';

cout << endl;
return p; //guard value

}

This version of print is far more general. It works on any standard container, including
native array types. It also illustrates some conventions that STL uses. Typically, the end-
ing location is a guard value and is the location one past the last element processed.
Thus, the loop termination test is p != e, so as not to process this location.

7.2 Containers

Containers come in two major families: sequence and associative. Sequence containers
(vectors, lists, and deques) are ordered by having a sequence of elements. The vector is
the most useful. The deque is a double-ended queue container, conveniently added to at
both front and back. The list makes internal insertion and deletion efficient and conve-
nient. Associative containers (sets, multisets, maps, and multimaps) have keys for look-
ing up elements. The set is a container that stores a value according to an ordering
relationship. A set contains only unique values. The multiset allows multiple copies of
the same item to be stored. The map container is a basic associative array and requires
that a comparison operation on the stored elements be defined. The multimap is a gen-
eralization of a map that allows nonunique keys. So, one key value may be linked to
more than one value.

The two varieties of container share a similar interface.

STL Typical Container Interfaces
■ Constructors, including default and copy constructors

■ Element access

■ Element insertion

■ Element deletion

■ Destructor

■ Iterators

Containers are traversed using iterators that are available as templates and optimized
for use with STL containers.

7.2

Ira Pohl’s C++ by Dissection 7.2 Containers 284
In file stl_deque.cpp

// A typical container algorithm

template <class Summable>
Summable sum(deque<Summable> &dq)
{

deque<Summable>::iterator p;
Summable s = 0;

for (p = dq.begin(); p != dq.end(); ++p)
s += *p;

return s;
}

Container classes, as shown in Table 7.1, are designated as CAN in the following descrip-
tion of their interface. The identifier CAN was chosen because a can is something that
holds items.

All container classes have these definitions available. For example, in using the vector
container class, vector<char>::value_type means a character value is stored in the

Dissection of the deque sum() Function

■ template <class Summable>
double sum(deque<Summable> &dq)

We sum the elements contained in this double-ended queue container
dq. It is passed by reference to avoid copying costs for the potentially
large data structure. The choice for identifier Summable is used to
indicate that the instantiated type should have properties that allow
for addition and should recognize a value of 0. It is a convention to
capitalize the template class identifier because it is a meta-variable
that is instantiated with an actual type when used by the compiler to
produce machine code.

■ deque<Summable>::iterator p;

The deque container is traversed using an iterator. The iterator p is
dereferenced to obtain each stored value in turn. This algorithm
works with sequence containers and all types having operator+=()
defined. Containers allow equality and comparison operators and
have an extensive list of standard data and function members.

■ for (p = dq.begin(); p != dq.end(); ++p)
s += *p;

This is a standard traversal idiom for STL containers. Notice how it
works for ordinary pointers as well. This algorithm would be more gen-
eral if instead of a specific container type it used a parameterization
based on an iterator range.

http://www.cse.ucsc.edu/~pohl/C++BD/07Chap/stl_deque.cpp

Ira Pohl’s C++ by Dissection 7.2 Containers 285
vector container and could be traversed with a vector<char>::iterator. For exam-
ple:

In file stl_vector_char.cpp

#include <iostream>
#include <typeinfo>
#include <vector>
using namespace std;

int main() {
char c;
vector<char>::value_type v;
if (typeid(c) == typeid(v))

cout << "vector<char>::value_type is just char"
<< endl;

else
cout << "vector<char>::value_type differs "

<< "from char" << endl;
}

Containers have an extensive list of standard member functions, as shown in Table 7.2.

Containers allow equality and comparison operators, as shown in Table 7.3.

7.2.1 Sequence Containers
Sequence containers (vector, list, and deque) have a sequence of accessible elements.
In many cases, the C++ array type can also be treated as a sequence container. In the
stl_vector2 program, we create a five-element vector v. The deque and vector libraries
are used.

Table 7.1 STL Container Definitions

CAN::value_type Type of value held in the CAN

CAN::reference Reference type to value

CAN::const_reference const reference

CAN::pointer Pointer to value type

CAN::iterator Iterator type

CAN::const_iterator const iterator accessing const values

CAN::reverse_iterator Reverse iterator moving backward

CAN::const_reverse_iterator const reverse iterator

CAN::difference_type Represents the difference between two
CAN::iterator values

CAN::size_type Size is an integral type that can represent a
difference_type value

http://www.cse.ucsc.edu/~pohl/C++BD/07Chap/stl_vector_char.cpp

Ira Pohl’s C++ by Dissection 7.2 Containers 286
In file stl_vector2.cpp

// Sequence Containers - insert a vector into a deque
// Simple STL vector program

#include <iostream>
#include <vector>
#include <deque>
using namespace std;

int main()
{

int data[5] = { 6, 8, 7, 6, 5 };
vector<int> v(5, 6); // 5 element vector
deque<int> d(data, data + 5);
deque<int>::iterator p;
cout << "\nDeque values" << endl;
for (p = d.begin(); p != d.end(); ++p)

cout << *p << '\t'; // print:6 8 7 6 5
cout << endl;
d.insert(d.begin(), v.begin(), v.end());
for (p = d.begin(); p != d.end(); ++p)

cout << *p << '\t';// print:6 6 6 6 6 6 8 7 6 5
cout << endl;

}

Table 7.2 STL Container Members

CAN::CAN() Default constructor

CAN::CAN(c) Copy constructor

c.begin() Beginning location of CAN c

c.end() Guard location of CAN c

c.rbegin() Beginning used by a reverse iterator

c.rend() Guard used by a reverse iterator

c.size() Number of elements in CAN

c.max_size() Largest possible size

c.empty() true if the CAN is empty

c.swap(d) Swap two CANs

Table 7.3 STL Container Operators

== != < > <= >= Equality and comparison operators using
CAN::value_type

http://www.cse.ucsc.edu/~pohl/C++BD/07Chap/stl_vector2.cpp

Ira Pohl’s C++ by Dissection 7.2 Containers 287
Some sequence container member functions are given in Table 7.4. Sequence classes are
designated as SEQ in the following description of their interface; these are in addition to
the already described CAN interface. End values designated in Table 7.4 below as e_it
are understood as guard values.

Dissection of the stl_vector Program

■ int data[5] = { 6, 8, 7, 6, 5 };
vector<int> v(5, 6); // 5 element vector
deque<int> d(data, data + 5);
deque<int>::iterator p;

The vector v initializes a five-element int container to value 6. The
deque d uses the iterator values data and data + 5 to initialize a
five-element double-ended queue container. This is one of the stan-
dard container class constructors. Notice how it uses an iterator
range to pass in arguments for the constructor. Many of the STL func-
tions use iterator ranges as arguments. Here, array pointers are used
as iterator values. The starting value is the pointer address d, and the
ending guard value is the pointer address d + 5. The iterator p is
declared but is not initialized. The deque<int> d is initialized
sequentially to the five values 6, 8, 7, 6, and 5.

■ for (p = d.begin(); p != d.end(); ++p)
cout << *p << '\t'; // print:6 8 7 6 5

In this standard idiom, notice that d.end() is used to terminate the
loop, because it is the end-of-container iterator guard value. Also
notice that the ++ increment has pointer semantics advancing the
iterator to the next container position. Dereferencing also works anal-
ogously to pointer semantics.

■ d.insert(d.begin(), v.begin(), v.end());

The insert() member function places the range of iterator values
v.begin() up to but not including v.end() at the position
d.begin(). The insert() member function is very typical of mem-
ber functions in STL, using the first iterator value as an insertion
point and an iterator range for the values to be inserted.

■ for (p = d.begin(); p != d.end();++p)
cout << *p << '\t';// print:6 6 6 6 6 6 8 7 6 5

As a consequence of inserting five new elements of value 6 at the
front of the deque d, the output of the traversal loop for d is now the
10 elements, as shown in the comment.

Ira Pohl’s C++ by Dissection 7.2 Containers 288
7.2.2 Associative Containers
The associative containers (sets, multisets, maps, and multimaps) have key-based acces-
sible elements and an ordering relation Compare, which is the comparison method for
the associative container. In section Section 7.6, STL: Function Objects, on page 315, we
show you how to program such a method as a class that has the function call opera-
tor() overloaded.

Briefly, a set is a container that stores a unique value according to an ordering relation-
ship. For example, it might store a series of strings according to lexicographic (alpha-
betic or dictionary order) comparison, or integers according to their value. The multiset
is a generalization of a set that can store multiple copies of the same item. The map is a
container that has a pair of values. Each element is a key-value pair. It allows you to
look up the value based on the key in an efficient manner. This is also known as an
associative array. The multimap generalizes map to allow nonunique keys. So, one key
may be linked to more than one value.

We have an example of using the map and string libraries:

In file stl_age.cpp

// Associative Containers - looking up ages

#include <iostream>
#include <map>
#include <string>
using namespace std;

int main()
{

map<string, int, less<string> > name_age;

name_age["Pohl,Laura"] = 12;
name_age["Dolsberry,Betty"] = 39;
name_age["Pohl,Tanya"] = 14;
cout << "Laura is " << name_age["Pohl,Laura"]

<< " years old." << endl;
}

Table 7.4 STL Sequence Members

SEQ::SEQ(n, v) n elements of value v

SEQ::SEQ(b_it, e_it) Starts at b_it and goes to e_it

c.insert(w_it, v) Inserts v before w_it

c.insert(w_it, v, n) Inserts n copies of v before w_it

c.insert(w_it, b_it, e_it) Inserts b_it to e_it before w_it

c.erase(w_it) Erases the element at w_it

c.erase(w_it, e_it) Erases w_it to e_it

http://www.cse.ucsc.edu/~pohl/C++BD/07Chap/stl_age.cpp

Ira Pohl’s C++ by Dissection 7.2 Containers 289
The associative containers have several standard constructors for initialization. What
distinguishes these constructors from sequence container constructors is the use of a
comparison method. The insertions work when no element of the same key is already
present.

Associative classes are shown as ASSOC in Table 7.5. Keep in mind that these are in
addition to the already described CAN interface.

The associative containers have several standard constructors for initialization, as
shown in Table 7.6.

What distinguishes associative constructors from sequence container constructors is
the use of a comparison method, as in Table 7.7.

The insertion works when no element of the same key is already present, as seen in
Table 7.8.

Dissection of the stl_age Program

■ #include <map>
#include <string>

These are two standard library header files needed for the map con-
tainer where it is used for looking up information based on a string.

■ map<string, int, less<string> > name_age;

The map name_age is an associative array where the key is a string
type and the Compare object is less<string>. The map is a template
that requires three arguments. This means that an int value is
stored in the map and found using a string value. The ordering rela-
tionship is less<string>.

■ name_age["Pohl,Laura"] = 12;
name_age["Dolsberry,Betty"] = 39;
name_age["Pohl,Tanya"] = 14;

The ages of the three people are stored in the map name_age.

■ cout << "Laura is " << name_age["Pohl,Laura"]
<< " years old." << endl;

Here, associative retrieval is used to get back the age of Laura Pohl.
Unlike an ordinary array, which takes constant time to retrieve a
stored value, the map requires logarithmic time per lookup.

Table 7.5 STL Associative Definitions

ASSOC::key_type Retrieval key type

ASSOC::key_compare Comparison method object for keys

ASSOC::value_compare Comparison method object for values

Ira Pohl’s C++ by Dissection 7.2 Containers 290
The associative containers are sets, multisets, maps, and multimaps. They have key-
based accessible elements. These containers have an ordering relation, Compare, which
is the comparison method for the associative container.

As a further associative container example, we use a multiset to count the number of
times each vegetable enters our diet in the course of 100 meals. We use a random num-
ber generator to select which vegetable we will have in a given meal. Besides printing
out the number of times each vegetable is in a meal, we will print out how the multiset
stores this information.

Table 7.6 STL Associative Constructors

ASSOC() Default constructor using Compare

ASSOC(cmp) Constructor using cmp as the comparison method

ASSOC(b_it, e_it) Uses element range b_it to e_it using Compare

ASSOC(b_it, e_it, cmp) Uses element range b_it to e_it and cmp as the
comparison method

Table 7.7 STL Insert and Erase Member Functions

c.insert(t) Inserts t, if no existing element has the same key
as t; returns pair <iterator, bool> with
bool being true if t was not present

c.insert(w_it, t) Inserts t with w_it as a starting position for the
search; fails on sets and maps if key value is
already present; returns position of insertion

c.insert(b_it, e_it) Inserts the elements in this range

c.erase(k) Erases elements whose key value is k, returning
the number of erased elements

c.erase(w_it) Erases the pointed-to element

c.erase(b_it, e_it) Erases the range of elements

Table 7.8 STL Member Functions

c.find(k) Returns iterator to element having given key k; otherwise, ends

c.count(k) Returns the number of elements with key k

c.lower_bound(k) Returns iterator to first element having value greater or equal
to key k

c.upper_bound(k) Returns iterator to first element having value greater than key
k

c.equal_range(k) Returns an iterator pair for lower_bound and upper_bound

Ira Pohl’s C++ by Dissection 7.2 Containers 291
In file stl_multiset.cpp

// Associative Containers - checking up on your diet

#include <iostream>
#include <set> // used for both set and multiset
#include <vector>
using namespace std;

enum vegetables { broccoli, tomato, carrot, lettuce,
beet, radish, potato };

int main() {
vector<vegetables> my_diet(100);
vector<vegetables>::iterator pos;
vegetables veg;
multiset<vegetables, greater<vegetables> > v_food;
multiset<vegetables, greater<vegetables>>::iterator vpos;

for (pos = my_diet.begin(); pos != my_diet.end();
++pos) {

*pos = static_cast<vegetables>(rand() % 7);
v_food.insert(*pos);

}

cout << "How often a vegetable is eaten." << endl;
cout << " broccoli, tomato, carrot, lettuce,"

<<"beet, radish, potato " << endl;
for (veg = broccoli; veg <= potato;

veg = static_cast<vegetables>(veg + 1))
cout << v_food.count(veg) << endl;

cout << "\nOffering of vegetables" << endl;
for (vpos = v_food.begin(); vpos != v_food.end();

++vpos)
cout << *vpos << '\t';

cout << endl;
}

http://www.cse.ucsc.edu/~pohl/C++BD/07Chap/stl_multiset.cpp

Ira Pohl’s C++ by Dissection 7.2 Containers 292
Dissection of stl_multiset Program

■ #include <set> // used for both set and multiset
#include <vector>
using namespace std;
enum vegetables { broccoli, tomato, carrot,

lettuce, beet, radish, potato };

This program generates a random diet of vegetables. It then uses the
special properties of multiset to perform a count on how often each
vegetable is eaten in our diet. The set elements are taken from the
type vegetable. The set library file contains both the set and multi-
set templates.

■ vector<vegetables> my_diet(100);
vector<vegetables>::iterator pos;
vegetables veg;

We store into the vector my_diet a selection of vegetables. The
vector is declared to be size 100 and to have an associated iterator
variable pos. The variable veg is of the enumerated type vegetables.

■ multiset<vegetables, greater<vegetables> > v_food;
multiset<vegetables, greater<vegetables>

>::iterator vpos;

The multiset requires a comparison relationship that is used to order
and efficiently retrieve elements of the set. Notice how an iterator
gets declared. All the template arguments must be reproduced when
declaring the related iterator.

■ for (pos = my_diet.begin(); pos != my_diet.end();
++pos) {

*pos = static_cast<vegetables>(rand() % 7);
v_food.insert(*pos);

}

We randomly generate the seven possible vegetables. These values are
inserted into both a vector my_diet and a multiset v_food.

■ for (veg = broccoli; veg <= potato;
veg = static_cast<vegetables>(veg + 1))

cout << v_food.count(veg) << endl;

The count() method of a multiset prints the count for each value the
multiset stores. Thus, v_food.count(broccoli) tells us how many
times we eat broccoli.

Ira Pohl’s C++ by Dissection 7.2 Containers 293
7.2.3 Container Adaptors
Container adaptor classes modify existing containers to produce various public behav-
iors based on an existing implementation. Three provided container adaptors are
stack, queue, and priority_queue. The stack can be adapted from vector, list,
and deque and needs an implementation that supports back, push_back, and
pop_back operations. From these underlying operations and representations, the stack
adaptor template produces the equivalent standard stack container with operations
for pop and push. The stack is a last-in-first-out data structure.

The queue can be adapted from list or deque and needs an implementation that sup-
ports empty, size, front, back, push_back and pop_front operations. From these
underlying operations and representations, the queue adaptor template produces the
equivalent standard queue container with operations for pop and push. The queue is a
first-in-first-out data structure.

The priority_queue is a queue that has values accessible in an order decided by a
comparison operation. It can be adapted from vector or deque and needs an imple-
mentation that supports empty, size, push_back, pop_back, and front operations. It
also needs a comparison function object , and its underlying container must support
random-access iteration.

We adapt the stack from an underlying vector implementation. Notice that the STL
ADTs replace our individually designed implementations of these types. The stack, vec-
tor, and string libraries are required.

In file stl_stack.cpp

// Adapt a stack from a vector

#include <iostream>
#include <stack>
#include <vector>
#include <string>
using namespace std;

Well, I did bring the heater, but I forgot the plug adapter!

http://www.cse.ucsc.edu/~pohl/C++BD/07Chap/stl_stack.cpp

Ira Pohl’s C++ by Dissection 7.2 Containers 294
int main()
{

stack<string, vector<string> > str_stack;
string quote[3] =

{ "The wheel that squeaks the loudest\n",
"Is the one that gets the grease\n",
"Josh Billings\n" };

for (int i = 0; i < 3; ++i)
str_stack.push(quote[i]);

while (!str_stack.empty()) {
cout << str_stack.top();
str_stack.pop();

}
}

The output from this program is

Josh Billings
Is the one that gets the grease
The wheel that squeaks the loudest

Dissection of stl_stack Program

■ int main()
{

stack<string, vector<string> > str_stack;

The stack uses an underlying representation. In this case, it uses a
vector. In effect, it is a facade for the vector implementation that
restricts the use of vector to a last-in-first-out data structure, namely,
the stack. The template’s first argument is the type stored in the
stack, in this case, a string. The second argument is the stack’s imple-
mentation.

■ for (int i = 0; i < 3; ++i)
str_stack.push(quote[i]);

The basic operation is a push onto the stack. Notice how the three
strings are lines from a common adage. After being pushed onto the
stack, they have the last line on the top of the stack.

Ira Pohl’s C++ by Dissection 7.2 Containers 295
Special functions exist for adaptor classes, as is shown inTable 7.9 through Table 7.11.

■ while (!str_stack.empty()) {
cout << str_stack.top();
str_stack.pop();

}

The top of the stack is printed. Then the stack element is popped.
This continues until the stack is empty. This results in the adage
printed line-by-line in reverse order. Notice how push(), pop(),
empty() and top() are all standard methods for the stack container.

Table 7.9 STL Adapted stack Functions

void push(const value_type&
v)

Places v on stack

void pop() Removes top element of stack

value_type& top() const Returns top element of stack

bool empty() const Returns true if stack is empty

size_type size() const Returns number of elements in stack

operator== and operator< Equality and lexicographically less than

Table 7.10 STL Adapted queue Functions

void push(const value_type& v) Places v on end of queue

void pop() Removes front element of queue

value_type& front() const Returns front element of queue

value_type& back() const Returns back element of queue

bool empty() const Returns true if queue is empty

size_type size() const Returns number of elements in queue

operator== and operator< Equality and lexicographically less than

Table 7.11 STL Adapted priority_queue Functions

void push(const value_type& v) Places v in priority_queue

void pop() Removes top element of priority_queue

value_type& top() const Returns top element of priority_queue

bool empty() const Checks for priority_queue empty

size_type size() const Shows number of elements in
priority_queue

Ira Pohl’s C++ by Dissection 7.3 Iterators 296
In the minimal description in the table, the use of the equality operator or less-than
operator causes the entire contents of two stacks to be compared for equality or less-
than, respectively. The less-than is lexicographic, meaning the first elements are com-
pared, and that continues in sequence, element pair by element pair, until a less-than is
determined. Check your vendor’s product for specific system-dependent implementa-
tions. In general, it is best to stay with the standard. This avoids locking you into partic-
ular products.

7.3 Iterators

Navigation over containers is by iterator. As seen in our earlier examples, iterators
should be thought of as an enhanced pointer type. Here is a simple example of iterator
and pointer use:

In file stl_iterator.cpp

// Compare iterator and pointer traversal

#include <iostream>
#include <set>
using namespace std;

int main()
{

int primes[4] ={ 2, 3, 5, 7 }, *ptr = primes;
set<int, greater<int> > s;
set<int, greater<int> > :: const_iterator c_it;
while (ptr != primes + 4)

s.insert(*ptr++);

cout << "The primes below 10 : " << endl;
for (c_it = s.begin(); c_it != s.end(); ++c_it)

cout << *c_it << '\t';
cout << endl;

}

The preceding program uses an iterator for a set container to output one-digit primes.
Such an iterator needs to have the ability to increment and to be dereferenced. Notice
how the iteration travels over a range from s.begin() until s.end(). This idiom is
repeated throughout the examples found here.

There are five iterator types: input, output, forward, bidirectional, and random-access.
Not all iterator types may be available for a given container class. For example, random-
access iterators are available for vectors but not for maps.

Input iterators support equality operations, dereferencing, and increment. An iterator
that satisfies these conditions can be used for one-pass algorithms that read values of a
data structure in one direction. A special case of the input iterator is the
istream_iterator.

7.3

http://www.cse.ucsc.edu/~pohl/C++BD/07Chap/stl_iterator.cpp

Ira Pohl’s C++ by Dissection 7.3 Iterators 297
Output iterators support dereferencing restricted to the left-hand side of assignment
and increment. An iterator that satisfies these conditions can be used for one-pass algo-
rithms that write values to a data structure in one direction. A special case of the output
iterator is the ostream_iterator.

Forward iterators support all input/output iterator operations, as well as unrestricted
use of assignment. This allows position within a data structure to be retained from pass
to pass. Therefore, general one-directional multipass algorithms can be written with
forward iterators.

Bidirectional iterators support all forward iterator operations as well as both the incre-
ment and decrement operators. Therefore, general bidirectional multipass algorithms
can be written with bidirectional iterators.

Random-access iterators support all bidirectional iterator operations, as well as address
arithmetic operations, such as indexing. Also, random-access iterators support compar-
ison operations. Therefore, algorithms, such as quicksort, that require efficient ran-
dom-access in linear time can be written with these iterators.

Container classes and algorithms dictate the category of iterator available or needed;
therefore, vector containers allow random-access iterators, but lists do not. Sorting
generally requires a random-access iterator, but finding requires only an input iterator.

7.3.1 Iterators for istream and ostream
An istream_iterator is derived from an input iterator to work specifically with read-
ing from streams. An ostream_iterator is derived from an output iterator to work
specifically with writing to streams. We write a program that prompts for five numbers,
reads them, and computes their sum, with I/O using these iterators. The template for
istream_iterator is instantiated with a <type> and some older compilers require
instead <type, distance>. This distance is usually specified by ptrdiff_t. More recent
STL implementations do not require the ptrdiff_t argument, as it is defaulted. As
defined in cstddef or stddef, it is an integer type representing the difference between
two pointer values. Both vector and iterator libraries are needed.

In file stl_io.cpp

// Use of istream_iterator and ostream_iterator

#include <iterator>
#include <iostream>
#include <vector>
using namespace std;

http://www.cse.ucsc.edu/~pohl/C++BD/07Chap/stl_io.cpp

Ira Pohl’s C++ by Dissection 7.3 Iterators 298
int main()
{

vector<int> d(5);
int i, sum;

cout << "enter 5 numbers" << endl;
istream_iterator<int> in(cin);
ostream_iterator<int> out(cout, "\t");
sum = d[0] = *in; // input first value
for (i = 1; i < 5; ++i) {

d[i] = *++in; // input consecutive values
sum += d[i];

}
for (i = 0; i < 5; ++i)

*out = d[i]; // output consecutive values
cout << "sum = " << sum << endl;

}

Dissection of the stl_io Program

■ vector<int> d(5);

The vector container is the workhorse of STL. If you only learn this
one part of the library, you gain 90 percent of the benefit from using
it. Here, we have a simple vector constructor that gets us five ele-
ments.

■ cout << "enter 5 numbers << endl;
istream_iterator<int> in(cin);

The istream iterator in is constructed with the argument cin. This
is, of course, the standard input stream, normally the keyboard. The
iterator must input int values as specified by its template parameter.
Some older compilers require the use of ptrdiff_t, which is a dis-
tance type that the iterator uses to advance in getting a next element.
It is the number of bytes each int requires for storage. If it is
required, the istream_iterator statement is replaced by

istream_iterator<int, ptrdiff_t> in(cin);

■ ostream_iterator<int> out(cout, "\t")

The ostream_iterator out is constructed with the output stream
cout and the char* delimiter \t. Thus, the tab character is issued to
the stream cout after each int value is written. Recent implementa-
tions of istream_iterator do not require the ptrdiff_t argument.

Ira Pohl’s C++ by Dissection 7.3 Iterators 299
The output stream iterator is isomorphic to the input stream iterator. When a value is
assigned to the iterator, it is written to the instantiated output stream, using operator
<<. As seen in the preceding example, the output stream iterator must specify the asso-
ciated output stream as a parameter to the constructor. An optional second parameter
to the constructor is a string that is used as a separator between values.

An ostream_iterator is derived from an output_iterator to work specifically with
writing to streams. The ostream_iterator can be constructed with a char* delimiter,
in this case \t. Thus, the tab character is issued to the stream cout after each int value
is written. In this program, the iterator out, when it is dereferenced, writes the assigned
int value to cout:

In file stl_o_iterator.cpp

// Use of ostream_iterator iterator

#include <iostream>
#include <iterator>
using namespace std;

int main()
{

int d[5] = { 2, 3, 5, 7, 11 }; // primes
ostream_iterator<int> out(cout, "\t");

for (int i = 0; i < 5; ++i)
*out = d[i];

cout << endl;
}

■ sum = d[0] = *in; // input first value
for (i = 1; i < 5; ++i) {

d[i] = *++in; // input consecutive values
sum += d[i];

}

The iterator in is a pointerlike object. When dereferenced, it forces a
next value to be fetched from the standard input stream. Here, we
obtain five values and place them in an array while summing them.

■ for (i = 0; i < 5; ++i)
*out = d[i]; // output consecutive values

cout << " sum = " << sum << endl;

Here, we use the output iterator out to take values from the array d[]
and print them to the standard output stream. These five values are
spaced using the tab character. We could as well have used *out =
sum, but then we could have not commented the output with the
string " sum = ".

http://www.cse.ucsc.edu/~pohl/C++BD/07Chap/stl_o_iterator.cpp

Ira Pohl’s C++ by Dissection 7.3 Iterators 300
Simple file manipulations can be coded by using input and output stream iterators and
various algorithms in the standard library. The following example reads a file of inte-
gers, removes all occurrences of the value 0, and copies the remaining values, separat-
ing each value with a comma:

In file stl_io_iterator.cpp

// Use istream_iterator & ostream_iterator iterator

#include <iostream>
#include <iterator>
#include <algorithm>
using namespace std;

void main()
{

istream_iterator<int> input (cin), eof;
ostream_iterator<int> output (cout, ",");

// remove 0 from file redirected to cin
// print file to cout
remove_copy (input, eof, output, 0);

}

7.3.2 Iterator Adaptors
Iterators can be adapted to provide backward traversal and traversal with insertion.
Reverse iterators reverse the order of iteration; with insert iterators, insertion takes
place instead of the normal overwriting mode. All standard container classes define
reverse iterators. The following example uses a reverse iterator to traverse a sequence.
The vector library is required:

In file stl_adaptor.cpp

// Use of the reverse iterator

#include <iostream>
#include <vector>
using namespace std;

template <class ForwIter>
void print(ForwIter first, ForwIter last, const char* title)
{

cout << title << endl;
while (first != last)

cout << *first++ << '\t';
cout << endl;

}

http://www.cse.ucsc.edu/~pohl/C++BD/07Chap/stl_io_iterator.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/07Chap/stl_adaptor.cpp

Ira Pohl’s C++ by Dissection 7.3 Iterators 301
int main()
{

int data[3] = { 9, 10, 11 };
vector<int> d(data, data + 3);

print(d.begin(), d.end(), "Original");
print(d.rbegin(), d.rend(), "Reverse");

}

This program uses a reverse iterator to change the direction in which the print() func-
tion prints the elements of vector d.

STL Iterator Adaptors
■ Reverse iterators—reverse the order of iteration

■ Insert iterators—insertion takes place instead of the normal overwriting
mode

In Table 7.12, we briefly list adaptors and their purpose, as found in this library.

Table 7.12 STL Iterator Adaptors

reverse_bidirectional_
iterator;

Reverses normal direction of iteration using rbegin()
and rend() for range

reverse_iterator; Reverses normal direction of iteration using rbegin()
and rend() for range

inserter(c, p); Inserts into c at position p

front_inserter(c); Inserts at front of container and requires push_front()

back_inserter(c); Inserts at back of container and requires a push_back()
member

Ah, here’s the problem. I keyed ‘reverse_iterator’ instead of
‘reverse_rudder’!

Ira Pohl’s C++ by Dissection 7.4 Algorithms 302
7.4 Algorithms

The STL algorithms library contains the following four categories:

■ Sorting algorithms

■ Nonmutating sequence algorithms

■ Mutating sequence algorithms

■ Numerical algorithms

These algorithms generally use iterators to access containers instantiated on a given
type. The resulting code can be competitive in efficiency with special-purpose codes.

7.4.1 Sorting Algorithms
Sorting algorithms include general sorting, merges, lexicographic comparison, permuta-
tion, binary search, and similar operations. These algorithms have versions that use
either operator<() or a Compare object and often require random-access iterators.

The following program uses the quicksort function sort() from the STL algorithm
library to sort over elements d to e.

In file stl_sort1.cpp

// Using sort() from STL

#include <iostream>
#include <algorithm>
using namespace std;

const int N = 5;

int main()
{

int d[N], i, *e = d + N;

for (i = 0; i < N; ++i)
d[i] = rand();

sort(d, e);
for (i = 0; i < N; ++i)

cout << d[i] << '\t';
cout << endl;

}

This is a straightforward use of the library sort algorithm operating on the built-in
array d[]. Ordinary pointer values can be used as iterators. We present some sorting
algorithms in Table 7.13 through Table 7.17.

These algorithms have a form that uses a Compare object replacing operator<(), as in

7.4

http://www.cse.ucsc.edu/~pohl/C++BD/07Chap/stl_sort1.cpp

Ira Pohl’s C++ by Dissection 7.4 Algorithms 303
template<class RandAcc, class Compare>
void sort(RandAcc b, RandAcc e, Compare comp);

Here is another sorting example:

Table 7.13 STL Sort Related Library Functions

sort(b, e); Quicksort over elements in range b to e

sort(b, e, comp); Quicksort algorithm over elements in range b to e using
comp for ordering

stable_sort(b, e); Stable sorting algorithm over elements in range b to e. In
stable sort, equal elements remain in their relative same
position

partial_sort (b, m, e) Partial sorting algorithm over elements in range b to e.
Range b to m filled with elements sorted up to position m

partial_sort_copy
(b, e,result_b,
result_e)

Partial sorting algorithm over elements in range b to e. Ele-
ments sorted taken from input iterator range and copied
to random-access iterator range with smaller of two ranges
is used

nth_element (b, n, e) nth element placed in sorted order, with rest of elements
partitioned by it. For example, if fifth position is chosen,
four smallest elements are placed to left of it. Remaining
elements placed to right of it and are greater or equal to it

merge (b1, e1, b2, e2,
result_b)

Elements in range b1 to e1 and b2 to e2 are merged to
starting position result_b

inplace_merge (b, m, e) Elements in range b to m and m to e are merged in place

Table 7.14 More STL Sort Related Library Functions

binary_search(b, e, t) true if t is found in b to e

lower_bound(b, e, t) First position for placing t while maintaining sorted order

upper_bound(b, e, t) Last position for placing t while maintaining sorted order

equal_range(b, e, t) Returns iterator pair for range where t can be placed
while maintaining sorted order

next_permutation(b, e) Produces next permutation

prev_permutation(b, e) Produces previous permutation

lexicographical_compare
(b1, e1, b2, e2)

Returns true if sequence 1 is lexicographically less than
sequence 2

Table 7.15 STL Sort Related Heap Functions

push_heap(b, e) Places the location e’s element into an already existing heap

pop_heap(b, e) Swaps the location e’s element with the b location’s element and
reheaps

sort_heap(b, e) Performs a sort on the heap

make_heap(b, e) Creates a heap

Ira Pohl’s C++ by Dissection 7.4 Algorithms 304
In file stl_sort2.cpp

#include <iostream>
#include <algorithm>
using namespace std;

// Using sort() from STL

// Class MyLess works for any class T that has
// operator<() defined

template<class T>
class MyLess {
public:

bool operator()(const T& obj1, const T& obj2)
{ return obj1 < obj2; }

};

// Function MyGreater works for any class T with
// operator>() defined

template<class T>
bool MyGreater (const T& obj1, const T& obj2)

{ return obj1 > obj2; }

const int N = 5;

Table 7.16 STL Sort Related Min and Max Functions

min(t1, t2) Return the minimum of t1 and t2 that
are call-by-reference arguments

max(t1, t2) Return the maximum

min_element(b, e) Return the position of the minimum

max_element(b, e) Return the position of the maximum

Table 7.17 STL Sort Related Set Functions

set_union (b1, e1, b2, e2, r) Returns the union as output iterator r

set_intersection (b1, e1, b2,
e2, r)

Returns the set intersection as output
iterator r

set_difference (b1, e1, b2, e2, r) Returns the set difference as output iter-
ator r

set_symmetric_difference
(b1, e1, b2, e2, r)

Returns the set symmetric difference as
output iterator r

http://www.cse.ucsc.edu/~pohl/C++BD/07Chap/stl_sort2.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/07Chap/stl_sort2.cpp

Ira Pohl’s C++ by Dissection 7.4 Algorithms 305
int main()
{

int i, d[N], *e = d + N;
MyLess<int> MyLessObj;

for (i = 0; i < N; ++i)
d[i] = rand()%100;

sort(d, e, MyLess<int>()); // use comparison class
for (i = 0; i < N; ++i)

cout << d[i] << '\t';
cout << endl;
sort(d, e, MyGreater<int>); // use comparison func
for (i = 0; i < N; ++i)

cout << d[i] << '\t';
cout << endl;
sort(d, e, MyLessObj); // use comparison method
for (i = 0; i < N; ++i)

cout << d[i] << '\t';
cout << endl;

}

7.4.2 Nonmutating Sequence Algorithms
Nonmutating algorithms do not modify the contents of the containers they work on. A
typical operation is searching a container for a particular element and returning its
position.

In the following program, the nonmutating library function find() in the algorithm
library is used to locate the element t:

In file stl_find.cpp

// Use of the find function
#include <iostream>
#include <algorithm>
#include <string>
using namespace std;

int main()
{

string words[5] = { "my", "hop", "mop", "hope",
"cope"};

string* where;

http://www.cse.ucsc.edu/~pohl/C++BD/07Chap/stl_find.cpp

Ira Pohl’s C++ by Dissection 7.4 Algorithms 306
where = find(words, words + 5, "hop");
cout << *++where << endl; // mop

sort(words, words + 5);
where = find(words, words + 5, "hop");

cout << *++where << endl; // hope
}

We present some of the library functions for algorithms in Table 7.18. We briefly list

other algorithms and their purpose as found in this library in Table 7.19.

Dissection of the stl_find Program

■ #include <algorithm>

The algorithm header is where many STL standard generic algorithms
are declared.

■ string words[5] = { "my", "hop", "mop", "hope",
"cope"};

string* where;

As usual, native arrays can be used with STL algorithms and treated
as random-access containers.

■ where = find(words, words + 5, "hop");

This program uses find() to look for the position of the word hop.

■ cout << *++where << endl; // mop

The word after hop in the array is mop.

■ sort(words, words + 5);
where = find(words, words + 5, "hop");
cout << *++where << endl; // hope

After sorting the array words[], the word after hop is now hope.

Table 7.18 STL Nonmutating Sequence Library Functions

find(b, e, t) Finds the position of t in the range b to e

find(b, e, p) Finds the position of the first element that makes the predicate
true in the range b to e; otherwise, the position e is returned

Ira Pohl’s C++ by Dissection 7.4 Algorithms 307
7.4.3 Mutating Sequence Algorithms
Mutating algorithms can modify the contents of the containers they work on. A typical
operation is reversing the contents of a container.

In the following program, the mutating library functions reverse() and copy() are
used. The vector and algorithm libraries are required:

In file stl_reverse.cpp

// Use of mutating copy and reverse

#include <iostream>
#include <string>
#include <algorithm>
#include <vector>
using namespace std;

Table 7.19 STL Nonmutating Sequence Library Functions

count(b, e, t, n) Returns count n of elements equal to t

count_if(b, e, p, n) Returns count n of elements that make predicate p true

adjacent_find(b, e) Returns first position of adjacent elements that are equal;
otherwise, returns e

adjacent_find
(b, e, bp)

Returns first position of adjacent elements satisfying binary
predicate bp; otherwise, returns e

mismatch(b1, e1, b2) Returns iterator pair indicating positions where elements
don’t match from sequences starting with b1 and b2

mismatch (b1, e1,
b2, bp)

As above, with binary predicate bp used instead of equality

equal(b1, e1, b2) Returns true if indicated sequences match; otherwise,
returns false

equal (b1, e1, b2, bp) As above, with binary predicate bp used instead of equality

search(b1, e1, b2, e2) Returns iterator where second sequence is contained in first;
if not, returns e1

search
(b1, e1, b2, e2, bp)

As above, with binary predicate bp used instead of equality

http://www.cse.ucsc.edu/~pohl/C++BD/07Chap/stl_reverse.cpp

Ira Pohl’s C++ by Dissection 7.4 Algorithms 308
int main()
{

string first_names[5] = {"laura", "ira",
"buzz", "debra", "twinkle"};

string last_names[5] = {"pohl", "pohl",
"dolsberry", "dolsberry", "star"};

vector<string> names(first_names, first_names+5);
vector<string> names2(10);
vector<string>::iterator p;

copy(last_names, last_names + 5, names2.begin());
copy(names.begin(), names.end(), names2.begin()+5);
reverse(names2.begin(), names2.end());
for (p = names2.begin(); p != names2.end(); ++p)

cout << *p <<'\t';
cout << endl;

}

The first invocation of the mutating function copy() places last_names in the con-
tainer vector names2. The second call to copy() copies in the first_names that had
been used in the construction of the vector names. The function reverse() reverses
all the elements, which are then printed out.

We present the library prototypes for mutating algorithms in Table 7.20.

The remaining library functions are briefly described in Table 7.21.

Table 7.20 STL Mutating Sequence Library Functions

copy(b1,e1,b2) Copying algorithm for elements b1 to e1. The copy is
placed starting at b2. Position returned is guard value
of end of copy.

copy_backward(b1,e1,b2) Copying algorithm for elements b1 to e1. The copy is
placed starting at b2 and runs backward from e1 into
b2. Position returned is b2-(e1 - b1)

for_each(b, e, f) Applies the function f to each value found in the range
b to e

reverse(b, e) Reverses in place the elements b to e

reverse_copy(b1,e1, b2) Reverse copying algorithm for elements b1 to e1. Copy
in reverse is placed starting at b2 and runs backward
from e1 into b2. Position returned is b2+(e1-b1).

unique(b, e) Adjacent duplicate elements in the range b to e are
erased, and position returned is end of resulting range

Ira Pohl’s C++ by Dissection 7.4 Algorithms 309
Table 7.21 STL Mutating Sequence Library Functions

unique(b, e, bp); Adjacent duplicate elements in range b to e with binary
predicate bp satisfied are erased. Returns end of result-
ing range

unique_copy(b1, e1,b2) Results are copied to b2 with original range
unchanged

unique_copy(b1, e1,
b2, bp)

If binary predicate bp is satisfied, results are copied to
b2 with original range

next_permutation(b, e) Rearranges the elements in range b to e according to
the next permutation

prev_permutation(b, e) Produces previous permutation

swap(t1, t2) Swaps t1 and t2

iter_swap(b1, b2) Swaps pointed-to locations

;;swap_range
(b1, e1, b2)

Swaps elements from b1 to e1 with those starting at
b2; returns b2 + (e1 - b1)

transform
(b1, e1, b2, op)

Using unary operator op, transforms the sequence b1
to e1, placing it at b2; returns end of output location

transform
(b1, e1, b2,
b3, bop)

Uses binary operator bop on two sequences starting
with b1 and b2 to produce sequence b3; returns end
of output location

replace(b, e, t1, t2) Replaces in range b to e value t1 by t2

replace_if
(b, e, p, t2)

Replaces in range b to e elements satisfying predicate
p by t2

replace_copy
(b1, e1, b2, t1, t2)

Copies and replaces into b2 range b1 to e1 with value
t1 replacing t2

replace_copy_if
(b1, e1, b2, p, t2)

Copies and replaces into b2 range b1 to e1 with ele-
ments satisfying predicate p replacing t2

remove(b, e, t) Removes elements of value t

remove_if(),
remove_copy(),
remove_copy_if()

These correspond to replace() methods, except that
values are removed

Ira Pohl’s C++ by Dissection 7.4 Algorithms 310
7.4.4 Numerical Algorithms
Numerical algorithms include sum, inner product, and adjacent difference. In the fol-
lowing program, the function accumulate() from the numeric library performs a vector
summation, and inner_product() performs a vector inner product.

In file stl_numeric.cpp

// Vector accumulation and inner product

#include <iostream>
#include <numeric>
using namespace std;

int main()
{

double v1[3] = { 1.0, 2.5, 4.6 },
v2[3] = { 1.0, 2.0, -3.5 };

double sum, inner_p;

sum = accumulate(v1, v1 + 3, 0.0);
inner_p = inner_product(v1, v1 + 3, v2, 0.0);
cout << "sum = " << sum << ", product = "

<< inner_p << endl;
}

The output from this program is

fill(b, e, t) Assigns t to range b to e

fill_n(b, n, t) Assigns n ts starting at b

generate (b, e, gen) Assigns to range b to e by generator gen

generate_n (b, n, gen) Assigns n values starting at b using gen

rotate(b, m, e) Rotates leftward elements of range b to e; element in
position i ends up in position (i + n - m) % n, where n is
range size, m is midposition and b is first position

rotate_copy
(b1, m, e1, b2)

As above, but copies to b2 with original unchanged

random_shuffle(b, e) Shuffles the elements

random_shuffle
(b, e, rand)

Shuffles the elements using the supplied random num-
ber generator rand

partition (b, e, p) Range b to e is partitioned to have all elements satis-
fying predicate p placed before those that do not sat-
isfy p

stable_partition
(b, e, p)

As above, but preserving relative order

Table 7.21 STL Mutating Sequence Library Functions

http://www.cse.ucsc.edu/~pohl/C++BD/07Chap/stl_numeric.cpp

Ira Pohl’s C++ by Dissection 7.5 Numerical Integration Made Easy 311
The library prototypes for numerical algorithms are shown in Table 7.22.

7.5 Numerical Integration Made Easy

STL provides the basic computations for many more sophisticated algorithms. By using
STL, programmers can easily implement those algorithms. We use numerical integration
as an example. The idea is to generate a series of points, using a generator. A generator
is a class that defines the function by overloading operator(), the function call opera-
tor. The STL algorithm

generate(iterator b, iterator e, generator g)

is used to produce a vector of values in the range (0, 1) for the function. The algorithm,
numeric, and vector libraries are all required.

sum = 8.1, product = -10.1

Dissection of the stl_numeric Program

■ #include <numeric>

This is the header for STL generic numerical algorithms.

■ sum = accumulate(v1, v1 + 3, 0.0);

This function behaves as expected on numerical types, where + is
defined. The accumulate algorithm takes the starting and ending
positions and, as a third argument, the initial value, normally 0.0, to
start accumulating the sum with. In this case, we add the three ele-
ments initialized in the double array v1[].

■ inner_p = inner_product(v1, v1 + 3, v2, 0.0);

This function behaves as expected on numerical types, where + and
* are defined. The inner_product algorithm takes the starting and
ending positions of a first sequence and, as a third argument, the
starting position for a second sequence. The fourth argument is nor-
mally 0.0 and is the starting value for accumulating the inner prod-
uct value. Each position is then multiplied and accumulated to
produce the inner product. In this case, we compute

v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2]

7.5

Ira Pohl’s C++ by Dissection 7.5 Numerical Integration Made Easy 312
In file stl_integration1.cpp

// Simple integration routine for x * x over (0, 1)

#include <iostream>
#include <numeric>
#include <algorithm>
#include <vector>
using namespace std;

// The function is represented in class gen

class gen { // generator for integrated function
public:

gen(double x_zero, double increment)
: x(x_zero), incr(increment) { }

double operator()() { x += incr; return x * x; }
private:

double x, incr;
};

double integrate(gen g, int n) // integrate on (0,1)
{

vector<double> fx(n);

generate(fx.begin(), fx.end(), g);
return(accumulate(fx.begin(), fx.end(), 0.0) / n);

}

Table 7.22 STL Numerical Library Functions

accumulate(b, e, t) Successive elements from range b to e are summed and
added to sum t

accumulate
(b, e, t, bop)

Successive elements from range b to e are summed with
sum function bop(sum, element) and added to t

inner_product
(b1, e1, b2, t)

Returns inner product from two ranges starting with b1
and b2; this product is initialized to t, usually 0

inner_product (b1,
e1,b2,t, bop1, bop2)

Returns generalized inner product using bop1 to sum and
bop2 to multiply

partial_sum
(b1, e1, b2)

Produces a sequence of element sums starting at b2 that
is the partial sum of the terms from range b1 to e1

partial_sum
(b1, e1, b2, bop)

As above, using bop for summation

adjacent_difference
(b1, e1, b2)

Produces sequence starting at b2 that is adjacent differ-
ence of terms from range b1 to e1

adjacent_difference
(b1, e1, b2, bop)

As above, using bop for difference

http://www.cse.ucsc.edu/~pohl/C++BD/07Chap/stl_integration1.cpp

Ira Pohl’s C++ by Dissection 7.5 Numerical Integration Made Easy 313
int main()
{

const int n = 10000;

gen g(0.0, 1.0/n);
cout << "integration program x**2" << endl;
cout << integrate(g, n) << endl;

}

Dissection of the stl_integration Program

■ class gen { // generator for integrated function
public:

gen(double x_zero, double increment)
: x(x_zero), incr(increment) { }

double operator()() {x += incr; return x * x; }
private:

double x, incr;
};

To write a generator, we must write a class that overloads the func-
tion call operator with no arguments. In this case, gen::opera-
tor()() is used to increment a value x. The class constructor is used
to initialize the variable x and the increment for it, incr. The idea is
to use this to generate a sequence of values where the function is
numerically integrated.

■ double integrate(gen g, int n) // integrate (0,1)
{

vector<double> fx(n);

We use the generator to integrate between 0 and 1 in increments of 1/
n. The values of the expression x * x at the points between 0 up to
and including 1 are stored in vector fx.

■ generate(fx.begin(), fx.end(), g);

The generator object g is used to generate the n x * x values at incre-
ments of 1/n.

■ return(accumulate(fx.begin(), fx.end(), 0.0) / n);

This numerical sum is an approximation to integrating f(x) = x2.

Ira Pohl’s C++ by Dissection 7.5 Numerical Integration Made Easy 314
We can write a more accurate numerical integrator. We approximate the area under the
curve by a sequence of rectangles whose height is the value of the function and whose
width is the increment. An increment gives us two choices for a height, and in the previ-
ous example, we have chosen the right end point to compute it. We could improve the
numerical accuracy of integration by bounding the area between rectangles based on
the smaller heights and one based on the larger heights.

In file stl_integration2.cpp

// Simple integration routine for x * x over (0, 1)

#include <iostream>
#include <numeric>
#include <algorithm>
#include <vector>
using namespace std;

// The function is represented in class gen

class gen { // generator for integrated function
public:

gen(double x_zero, double increment)
: x(x_zero), incr(increment) { }

double operator()() { x += incr; return x * x; }
private:

double x, incr;
};

■ int main()
{

const int n = 10000;

gen g(0.0, 1.0/n);
cout << "integration program x**2" << endl;
cout << integrate(g, n) << endl;

}

The generator object is initialized with an increment of 1/10,000.
That means 10,000 points are used for the evaluation. On our local
system, the answer is 0.333383. The answer if worked out by calculus
is 1/3. So the numerical solution is accurate to four significant digits.

http://www.cse.ucsc.edu/~pohl/C++BD/07Chap/stl_integration2.cpp

Ira Pohl’s C++ by Dissection 7.6 STL: Function Objects 315
// Integrate on (0,1)

double integrate(gen g, int n, double& diff)
{

vector<double> fx(n + 1), sm(n), lg(n);
double s, l;

generate(fx.begin(), fx.end(), g);
for (int i = 0; i < n; ++i)

if (fx[i] > fx[i + 1]) {
sm[i] = fx[i + 1]; lg[i] = fx[i];

}
else {

sm[i] = fx[i]; lg[i] = fx[i + 1];
}

s = accumulate(sm.begin(), sm.end(), 0.0) / n;
l = accumulate(lg.begin(), lg.end(), 0.0) / n;
diff = l - s;
return(s + l) / 2;

}

int main()
{

const int n = 10000;

gen g(0.0, 1.0/n);
cout << "integration program x**2" << endl;
double d, i = integrate(g, n, d);
cout << "integral = " << i << " +/- "

<< (d / 2) << endl;
}

The second version of integrate() produces a more reliable estimate, with an error
estimate calculated in diff. In this method, we get a result of 0.333333 on our system,
which is accurate to six digits.

7.6 STL: Function Objects

It is useful to have function objects to further leverage the STL library. For example,
many of the previous numerical functions had a built-in meaning using + or *, but also
had a form in which user-provided binary operators could be passed in as arguments.
Defined function objects can be found in function or built. Function objects are classes
that have operator() defined. These are inlined and are compiled to produce efficient
object code.

7.6

Ira Pohl’s C++ by Dissection 7.6 STL: Function Objects 316
In file stl_function.cpp

// Using a function object minus<int>

#include <iostream>
#include <numeric>
using namespace std;

int main()
{

double v1[3] = { 1.0, 2.5, 4.6 }, sum;

sum = accumulate(v1, v1 + 3, 0.0, minus<int>());
cout << "sum = " << sum << endl; // sum = -7

}

Accumulation is done using integer minus for the binary operation over the array v1[].
Therefore, the double values are truncated, with the result being -7.

There are three defined function object classes.

STL Defined Function Object Classes
■ Arithmetic function objects

■ Comparison function objects

■ Logical function objects

We use Table 7.23 to briefly list algorithms and their purpose as found in this library.
Arithmetic function objects are often used in numerical algorithms, such as accumu-
late().

The comparison methods are frequently used with sorting algorithms, such as merge().

Table 7.23 STL Arithmetic Function Objects

<class T> struct plus Add for type T

<class T> struct minus Subtract for type T

<class T> struct times Multiply for type T, obsolete

<class T> struct multiplies Multiply for type T

<class T> struct divides Divide for type T

<class T> struct modulus Modulus operator for type T

<class T> struct negate Unary minus for type T

http://www.cse.ucsc.edu/~pohl/C++BD/07Chap/stl_function.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/07Chap/stl_function.cpp

Ira Pohl’s C++ by Dissection 7.6 STL: Function Objects 317
7.6.1 Building a Function Object
To better understand the library-provided function objects, let us see how to provide
our own. Let us write a binary operator that alternates between being plus and minus.
This is frequently used in alternating series in mathematics.

int alternate(int x, int y)
{

static int sign = -1;
sign = -sign;
return x + (y * sign);

}

It could be used as the binary operator for accumulate() as follows:

sum = accumulate(v1, v1 + 3, 0.0, alternate);

This function alternate() could be used in place of minus<int>(). It would then add
and subtract alternate terms when used by accumulate(). This would work on argu-
ments that are int or convertible to int.

More generally, we can write a template class with operator() overloaded.

template <class T>
class alternate {
public:

T operator()(const T& x, const T& y) const
{

static int sign = -1;
sign = -sign;
return x + (y * sign);

}
};

Table 7.24 STL Comparison Function Objects

equal_to Equality of 2 operands

not_equal_to Inequality of 2 operands

greater Comparison by greater (>) of 2 operands

less Comparison by less (<) of 2 operands

greater_equal Comparison by greater or equal (>=) of 2 operands

less_equal Comparison by less or equal (<=) of 2 operands

Table 7.25 STL Logical Function Objects

logical_and Performs logical and (&&) on two operands

logical_or Performs logical or (||) on two operands

logical_not Performs logical negation (!) on single argument

Ira Pohl’s C++ by Dissection 7.6 STL: Function Objects 318
Now this will work on arbitrary types that support the various arithmetic operations
found in the definition of operator(). It could be used as the binary operator for
accumulate() as follows:

sum = accumulate(v1, v1 + 3, 0.0, alternate<int>());

7.6.2 Function Adaptors
A function adaptor is a function object. It allows function objects to be composed with
each other or with other functions. STL provides some predefined function adaptors.

STL Function Adaptors
■ Negators for negating predicate objects

■ Binders for binding a function argument

■ Adaptors for pointer to a function

In the following example, we use a binder function bind2nd() to transform an initial
sequence of values to a sequence where these values doubled:

In file stl_fadaptor.cpp

// Use of the function adaptor bind2nd

#include <iostream>
#include <algorithm>
#include <functional>
#include <string>
using namespace std;

template <class ForwIter>
void print(ForwIter first, ForwIter last, const string& title)
{

cout << title << endl;
while (first != last)

cout << *first++ << '\t';
cout << endl;

}

int main()
{

int data[3] = { 9, 10, 11 };

print(data, data + 3, "Original values");
transform(data, data + 3, data, bind2nd(multiplies<int>(), 2));
print(data, data + 3, "New values");

}

http://www.cse.ucsc.edu/~pohl/C++BD/07Chap/stl_fadaptor.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/07Chap/stl_fadaptor.cpp

Ira Pohl’s C++ by Dissection 7.6 STL: Function Objects 319
Where the function object multiplies<int> is not available, use times<int>, as this
is an earlier implementation of this object. We use Table 7.26 to briefly list algorithms
and their purpose.

Dissection of the stl_fadaptor Program

■ #include <algorithm>
#include <functional>
#include <string>

As with all STL programs we need to include the appropriate libraries.
The function transform() comes from the algorithm library. The
function adapter bind2nd() and the function object multi-
plies<int>() come from the functional library.

■ transform(data, data + 3, data,
bind2nd(multiplies<int>(), 2));

The transform() function has as its first two arguments the iterator
range for the values that are transformed. Here, we transform the
array elements data[0], data[1], and data[2]. The transformed
values are placed starting at the destination iterator value, which is
the third argument. Here, this starts at the beginning of the array
data. The fourth argument is a unary function operator. Here, this is
bind2nd(). Its purpose is to adapt the multiplies<int>() opera-
tor, which is binary, to a unary operator. It makes the second argu-
ment the integer constant 2. This has the effect of doubling each
element value in the original iterator range.

Table 7.26 STL Function Adaptors

not1(p) Returns !p where p is unary predicate

not2(p) Returns !p where p is binary predicate

binder1st<Op> bind1st (op, t) Binary op has first argument bound to t; a
function object is returned

binder2nd<Op> bind2nd (op, t) Binary op has second argument bound to t; a
function object is returned

ptr_fun(T (*f)(Arg)) Constructs a
pointer_to_unary_function<Arg, T>

ptr_fun(T (*f) (Arg1, Arg2)) Constructs a pointer_to_binary_function
<Arg1, Arg2, T>

Ira Pohl’s C++ by Dissection 7.7 Allocators 320
7.7 Allocators

Allocator objects manage memory for containers. They allow implementations to be tai-
lored to local system conditions while maintaining a portable interface for the container
class. Allocator definitions include value_type, reference, size_type, pointer, and
difference_type. We briefly list allocator member functions as found in this library in
Table 7.27.

7.8 Software Engineering: STL Use

The not-invented-here syndrome is especially costly when developing software. Pro-
grammers are uncomfortable using others’ code. However, STL is to be greatly preferred
to specially developed code. It is far easier to maintain and is highly portable and effi-
cient. When possible, it is desirable to use library functions that are known to be effi-
cient, debugged, and well documented.

When extending STL, you should write in an STL style. This means that algorithms
should be coded to use the weakest iterator class that leaves the code efficient. This
also means that code should work on parameters that are iterator ranges.

Let us write code that will count how many of a given character appear in a vector of
char:

int count(vector<char> & v, char comp)
{

int count = 0;
vector<char>::iterator p;

for (p = v.begin(); p !=v.end(); ++p)
count += (comp == *p);

return count;
}

This is not properly general. There is no reason to limit the container to the vector. Bet-
ter is the following.

Table 7.27 STL Allocator Members

allocator();
~allocator();

Constructor and destructor for
allocators

pointer address(r); Returns address of r

pointer allocate(n); Allocates memory for n objects of size_type from free
store

void deallocate(p); Deallocates memory associated with p

size_type
max_size();

Returns largest value for difference_type; in effect,
largest number of elements allocatable to a container

7.7

7.8

Ira Pohl’s C++ by Dissection 7.8 Software Engineering: STL Use 321
template<class InIterator>
int count(InIterator b, InIterator e, char comp)
{

int count = 0;

 for(; b != e; ++b)
 count += (comp == *b);
 return count;
}

Iterator ranges and template code is in the style of STL. This version is far more reus-
able. One last generalization is to not tie the algorithm to finding a character comp but
instead to allow it to be whatever the iterator value type is. This will be left as an exer-
cise.

7.8.1 Syntax Bugs
There is a tricky lexical problem that leads to confusion when first using templates. It is
found in the following template instantiation:

vector<vector<int>> b; // may give a syntax error

Here, we expect to declare a vector of vectors of int. Certainly a very useful con-
tainer. The problem is that the >> is interpreted as the token for the bit-shift operator.
This does not make sense here. Instead, you should use extra space, as in:

vector<vector<int> > b; // space makes it okay

Once you get used to STL, you will want to replace native array code with vector code.
The advantages of vector use outweigh any minor loss of efficiency or storage utiliza-
tion advantages for native arrays. The vector container is safer. It is typically used with
iterators that safeguard the user from falling out of range. It is more flexible. For exam-
ple, a vector can automatically expand.

In file stl_vec_is_best.cpp

// Use of vector is better than array

#include <iostream>
#include <vector>
using namespace std;

http://www.cse.ucsc.edu/~pohl/C++BD/07Chap/stl_vec_is_best.cpp

Ira Pohl’s C++ by Dissection 7.9 Dr. P’s Prescriptions 322
int main()
{
 vector<int> d(5); //usually only 5 numbers
 int i, sum = 0;

 cout << "\nEnter integers - 0 terminates" << endl;
for (i = 0; cin >> d[i] && d[i] != 0; ++i)

 sum += d[i];
 cout << "sum = " << sum << endl;
}

7.9 Dr. P’s Prescriptions

■ For sequence containers, think vector first, deque second, and list last.

■ Use the most efficient container for a computation.

■ When adapting, remember that the underlying structure determines efficiency.

■ Use iterator parameters rather than container variables.

■ Use the weakest iterator category compatible with the function.

■ Use the most efficient algorithm for a computation.

■ Modify or adapt existing STL algorithms.

■ Understand function composition.

■ Make sure your vendor implements the standard.

The vector is generally the easiest container to use. It is a simple generalization of the
array and as such is most familiar to programmers. It is also often the most efficient
over a large class of operations. It should be your default container choice. The deque is
the next most useful. Its ability to add to both ends of the data structure in linear time
is its greatest strength. It also supports random-access. The list in many ways is the
most expensive container class. Its chief benefit is to give you insertion and deletion of
internal elements in constant time without destroying existing iterator values. Again, be
guided by the most frequent operations required by your problem in making these
choices.

There is relative ease in switching among containers. One container can be constructed
by passing an iterator range from another container. Do not be afraid of using multiple
representations for some problems that dictate a combination of space-operation cost
trade-offs. The point of STL is to use a more efficient algorithm. Usually, this involves
selecting the appropriate container.

Container adaption results in a supported interface, such as a stack or priority queue,
that hides the underlying container implementation. Nevertheless, the different imple-
mentations dictate the efficiency of the resulting data structure. Your choice should be
sensitive to what operations and space constraints are important to your problem.
When in doubt, profile your program.

7.9

Ira Pohl’s C++ by Dissection 7.10 C++ Compared with Java 323
Iterator sequences are not tied to a particular type of container. Container types are a
narrower style of representation than iterator ranges. Ergo, using iterator sequences
leaves algorithms more general and hence more reusable.

Our modus operandi in generic programming is to make the program as general as pos-
sible without degrading efficiency. This leads to rule 2; namely, use the weakest iterator
type compatible with an efficient implementation of a computation.

The STL algorithms are expected to be efficient. The generalized sort is an efficient ver-
sion of quicksort and compares favorably in most cases to running qsort() as found in
the C standard library.

As in the preceding example of numerical integration, STL routines can be readily
employed and adapted to perform significant computations without resorting to special
codes. In many cases, a lack of understanding of the mathematical concept of function
composition prevents a programmer from fully mastering the notion and techniques of
adaptation. Many of these concepts are routinely used in functional languages or logic-
based languages such as Lisp, ML, Scheme, and Prolog. It can be useful to look at exam-
ples written in those languages to better understand how these ideas can apply to STL.

Many vendors have variations on the STL standard. There can also be problems with the
vendors’ support of template compilation. These algorithms have been tested on the
latest Sun Microsystem compiler and with Borland 5.1 and found to work. There were
some problems with Microsoft C++ version 6.0. Generally, these can be easily remedied
by looking at your vendor’s documentation.

7.10 C++ Compared with Java

Unlike C++, Java does not have templates. Instead, each class in Java can be viewed as
an extension of the superclass Object. This is done implicitly. The Object superclass
provides for a type of generic programming and achieves some of the ideas of polymor-
phism accomplished by the use of templates in C++.

There is a Java Generic Library (JGL) that corresponds roughly to STL for C++. The use
of Object in writing generic code is based on inheritance and is discussed in Chapter 8,
Inheritance and OOP.

The package java.util has several useful containers, including LinkedList and Stack.
The Java array type is safer than the C++ native array, so in some sense it more closely
approximates the vector. A Java array is allocated off the heap. It also has a length
member that dynamically tracks the array size. This is described in detail in Java by Dis-
section, by Ira Pohl and Charlie McDowell (Addison Wesley, 1999) page 147.

7.10

Ira Pohl’s C++ by Dissection Summary 324
Summary

■ The standard template library (STL) is the C++ library that provides generic pro-
gramming for standard data structures and algorithms.

■ Containers come in two major families: sequence and associative. Sequence contain-
ers (vectors, lists, and deques) are ordered by having a sequence of elements. Asso-
ciative containers (sets, multisets, maps, and multimaps) have keys for looking up
elements.

■ Container adaptor classes modify existing containers to produce different public
behaviors, based on an existing implementation. Three provided container adaptors
are stack, queue, and priority_queue.

■ Iterators can be thought of as an enhanced pointer type. The five iterator types are
input, output, forward, bidirectional, and random-access. Not all iterator types may
be available for a given container class. For example, random-access iterators are
available for vectors but not for maps.

■ The STL algorithm’s library contains the following four categories: sorting algo-
rithms, nonmutating sequence algorithms, mutating sequence algorithms, and
numerical algorithms. These algorithms generally use iterators to access containers
instantiated on a given type. The resulting code can be competitive in efficiency with
special-purpose codes.

■ It is useful to have function objects to further leverage the STL library. Defined func-
tion objects can be found in function or built. Function objects are classes that have
operator() defined. These are inlined and are compiled to produce efficient object
code.

■ When extending STL you should write in an STL style. This means that algorithms
should be coded to use the weakest iterator class that leaves the code efficient. This
also means that code should work on parameters that are iterator ranges.

Ira Pohl’s C++ by Dissection Review Questions 325
Review Questions

1. The three components of STL are , , and .

2. An iterator is like a type in the kernel language.

3. The member is used as a guard for determining the last position in a container.

4. Name two STL sequence container classes.

5. Name two STL associative container classes.

6. Can STL be used with ordinary array types? Explain.

7. True or false: A template argument can be only a type.

8. A nonmutating STL algorithm, such as find(), has the property .

Ira Pohl’s C++ by Dissection Exercises 326
Exercises

1. Using a random number generator, generate 10,000 integers between 0 and 9,999.
Place them in a list<int> container. (See Section 7.1, A Simple STL Example, on
page 282.) Compute and print the median value. What did you expect? Compute the
frequencies of each value; in other words, how many 0s were generated, how many
1s were generated, and so forth. Print the value with the greatest frequency. Use a
vector<int> to store the frequencies.

2. Recode print(const list<double> &lst) to be a template function that is as
general as possible. (See Section 7.1, A Simple STL Example, on page 282.)

3. Write an algorithm for vector<> v that adds the values stored in the elements
v[2 * i], the even-valued indices of the vector. Test it on ints and doubles.

4. Write a program that inputs a string. It then separates the string into a list of words.
Finally, it should sort the list of words and print out this list. You need to use
list<string> and can use any of STL.

5. For list<T>, write the member function

iterator list<T>::insert(iterator w_it, T v);

which inserts v before w_it and returns an iterator pointing at the inserted element.
(See Section 7.1, A Simple STL Example, on page 282.)

6. For list<T>, write the member function

void list<T>::erase(iterator w_it);

which erases the element pointed at by w_it. (See Section 7.1, A Simple STL Example,
on page 282.)

7. Write an algorithm to find the second largest element stored in an arbitrary con-
tainer class. Use STL containers vector<T>, list<T>, and set<T> to test that it
works regardless of the container. Write the algorithm, assuming that a forward iter-
ator is available and comparison is understood.

8. Write and test the template code for the STL library function count_if(b, e, p,
n), where p is a predicate and n is the summing variable.

9. Rewrite the flushing program of Section 4.7, An Example: Flushing, on page 153, to
use STL container classes.

10. Rewrite exercise 9 to use random_shuffle() instead of the special purpose routine
found in the original code. Why is this better methodology?

Ira Pohl’s C++ by Dissection Exercises 327
11. Improve the stl_multiset.cpp program by having the output appear as vegetable was
eaten k times instead of a simple unlabeled integer. One way to do this is to create
an array of vegetable names indexed by the vegetables enumeration value.

12. Change the ordering of vegetables in the previous exercise to be lesser<vegeta-
ble> and print the result.

13. Use a map to create a table of foods and calories per portion. For example,carrots—
45, ice cream—250, and so on. Place at least 10 foods in your map. Use a random
number generator to pick 4 foods per meal. Print out the meal and its calorie total.

14. Write a comparison object that uses the square of an objects value for comparison.
Therefore, a large negative number is greater than a small positive number using
this comparison object. Generate in a vector the integers -100 to +100 and use an
STL sort with this comparison object. Print out the result.

15. Write an STL algorithm product(b1, e1, b2, c1) that multiplies the elements
starting at b1 by the elements starting at b2 and places the results starting at c1.
The parameter e1 is the guard value for the first sequence.

16. (Project) Design a data type class matrix that uses vectors to hold rectangular
arrays of elements. How should iterators be implemented for such a two-dimen-
sional container? You need to think about basic accessing operations and algorithms
such as matrix addition and multiplication.

Inheritance and OOP

CHAPTER 8
Inheritance is the powerful code-reuse mechanism of deriving a new class from an old
one. That is, the existing class can be added to or altered to create the derived class.
Through inheritance, a hierarchy of related types that share code and interfaces can be
created.

Many useful types are variants of one another, and it is frequently tedious to produce
the same code for each. A derived class inherits the description of the base class, which
can then be altered by adding members and modifying existing member functions and
access privileges. The usefulness of inheritance can be seen by examining how taxo-
nomic classification compactly summarizes large bodies of knowledge.

For example, knowing the concept mammal and knowing that an elephant and mouse
are both mammals allows our descriptions of them to be considerably more succinct
than they are otherwise. The root concept contains the information that mammals are
warm-blooded higher vertebrates and that they nourish their young through mammary
glands. This information is inherited by the concept of both mouse and elephant, but it
is expressed only once: in the root concept. In C++ terms, both elephant and mouse are
derived from the base class mammal.

Hey! Don’t flatten me, I’m your cousin from Chicago!

Ira Pohl’s C++ by Dissection 8.1 A Derived Class 329
C++ supports virtual member functions: functions declared in the base class and rede-
fined in a derived class. A class hierarchy that is defined by public inheritance creates a
related set of user types, all of whose objects may be pointed at by a base-class pointer.
By accessing the virtual function through this pointer, C++ selects the appropriate func-
tion definition at runtime. The object being pointed at must carry around type informa-
tion so that this distinction can be made dynamically, a feature typical of object-
oriented code. Each object knows how it is to be acted on. This is a form of polymor-
phism called pure polymorphism.

Inheritance should be designed into software to maximize reuse and to allow a natural
modeling of the problem domain. With inheritance, the key elements of the OOP design
methodology are as follows:

OOP Design Methodology
1. Decide on an appropriate set of types.

2. Design in relationships among types and use inheritance to share code.

3. Use virtual functions to process like objects polymorphically.

8.1 A Derived Class

A class can be derived from an existing class by using the form

class class-name : (public|protected|private)optbase-name
{

member declarations
};

As usual, the keyword class can be replaced by the keyword struct, with the implica-
tion that members are by default public. One aspect of the derived class is the visibil-
ity of its inherited members. The keywords public, protected, and private are used
after the colon to specify how the base-class members are to be accessible to the
derived class. The keyword protected is introduced to allow data hiding for members
that must be available in derived classes but that otherwise act like private members. It
is an intermediate form of access between public and private.

Consider developing software to track everyone at a college or university. First, every-
one is a person. Then some people are employees and some people are students. Each
of these two major categories has further subcategories: undergraduate and graduate
students, staff and faculty employees. Understanding a university leads to a natural
hierarchy of the groups that participate at the university.

The person class has members that describe a person, such as name and gender.

8.1

Ira Pohl’s C++ by Dissection 8.1 A Derived Class 330
In file person.h

class person {
public:

person(const string& nm, int a,
char g) : name(nm), age(a), gender(g) { }

void print() const { cout << *this << endl; }
friend ostream& operator<<(ostream& out, const person& p);

protected:
string name;
int age;
char gender; // male == 'M', female == 'F'

};

ostream& operator<<(ostream& out, const person& p)
{

return (out << p.name << ", age is " << p.age
<< ", gender is " << p.gender);

}

The class person has the access keyword protected, which makes its members inac-
cessible to nonclass methods. We could use person in a code fragment, as follows:

// Declare and initialize

person abe(string("Abe Pohl"), 92, 'M');
cout << abe << endl; // Abe info printed out

The output from these statements is

We can now create a new class for representing students that is derived from class per-
son. The idea is that a student is a type of person, and this idea is expressed by stu-
dent inheriting person’s code.

In file student.h

enum year { fresh, soph, junior, senior };
const string year_label[]= { "freshman", "sophomore",

"junior", "senior" };

Abe Pohl, age is 92, gender is M

http://www.cse.ucsc.edu/~pohl/C++BD/08Chap/student.h
http://www.cse.ucsc.edu/~pohl/C++BD/08Chap/person.h
http://www.cse.ucsc.edu/~pohl/C++BD/08Chap/person.h

Ira Pohl’s C++ by Dissection 8.1 A Derived Class 331
class student: public person {
public:

student(const string& nm, int a, char g, double gp, year yr)
: person(nm, a, g), gpa(gp), y(yr) { }

void print() const { cout << *this << endl; }
friend ostream& operator<<(ostream& out, const student& s);

protected:
double gpa;
year y;

};

ostream& operator<<(ostream& out, const student& s) {
return(out << static_cast<person>(s) << ", " << year_label[s.y]

<< ", gpa = " << s.gpa);
}

Dissection of the student Class

■ enum year { fresh, soph, junior, senior };

const string year_label[]={"freshman",
"sophomore", "junior", "senior" };

An enumerated type is used to describe a student’s year at college.
The corresponding string entries are used in the output.

■ class student: public person {

The keyword public means two things in this context. One is that
student inherits the members of person and keeps their access at
the same visibility level. So if in person, the member gender is pro-
tected, it remains protected in student. But it also means that
student is a subtype of person. This is important in that it allows
code that is written to operate on person to also operate on student.

■ student(const string& nm, int a, char g,
double gp, year yr)

: person(nm, a, g), gpa(gp), y(yr) { }

Here, we have the constructor for student. Inside the constructor’s
initializer list is the class identifier person called with three argu-
ments. This calls the person constructor to initialize the part of stu-
dent that consists of its person’s members.

Ira Pohl’s C++ by Dissection 8.1 A Derived Class 332
We could use student in a code fragment as follows:

student abe(string("Abe Pohl"), 92, 'M', 3.9, soph);
cout << abe << endl; // abe info printed out

The output from this print statement is

In this example, student is the derived class and person is the base class. The use of
the keyword public following the colon in the derived-class header means that the pro-
tected and public members of person are to be inherited as protected and public mem-
bers of student. Private members are inaccessible. Public inheritance also means that
the derived class student is a subtype of person. Thus, a student is a person, but a per-
son does not have to be a student. This subtyping relationship is called the ISA relation-
ship, or interface inheritance.

A derived class is a modification of the base class, inheriting the public and protected
members of the base class. Only constructors, destructors, and member function oper-
ator=() cannot be inherited. Thus, in the example of student, the person members

■ void print() const; { cout << *this << endl; }
friend ostream& operator<<(ostream& out,

const student& s);
protected:

double gpa;
year y;

};

The method declared here is student::print(), but recall that per-
son::print() is imported through inheritance, so there are two
print methods in student. The overloaded operator >> must be
made a friend and then defined outside the class.

■ ostream& operator<<(ostream& out,
const student& s) {

return(out << static_cast<person>(s) << ", "
<< year_label[s.y] << ", gpa = "
<< s.gpa);

}

This overloads the output operator for printing so that the standard
output << can be used with student objects. The method first
invokes the output of person, in this case name, age, and gender.
The rest of the code prints out the string corresponding to member y
and the gpa. Notice that out is returned so that multiple objects can
be output with a single statement.

Abe Pohl, age is 92, gender is M, soph, gpa = 3.9

Ira Pohl’s C++ by Dissection 8.1 A Derived Class 333
name, age, gender, and print() are inherited. Frequently, a derived class adds new
members to the existing class members. This is the case with student, which has two
new data members and a redefined member function print(), which is overridden. The
function definitions of person::print() and student::print() are distinct. Imple-
mentation of the member function of the derived class is different from that of the base
class. This is different from overloading, in which the same function name can have dif-
ferent meanings for each unique signature.

Benefits of Using a Derived Class
■ Code is reused: student uses existing, tested code from person.

■ The hierarchy reflects a relationship found in the problem domain. When
speaking of persons, the special grouping student is an outgrowth of the real
world and its treatment of this group.

■ Various polymorphic mechanisms allow client code to treat student as a sub-
type of person, simplifying client code while granting it the benefits of main-
taining these distinctions among subtypes.

8.1.1 More Unified Modeling Language (UML)
A standard relationship between two classes is the inheritance relation. It is usual to
have the base class at the top of the diagram and the derived class underneath, with an
arrow pointing up from the derived class to the base class.

A key inheritance relationship between classes is the ISA or subtype relationship. In the
following basic UML diagram, we show the person-student class diagram:

student

gpa
y

print()

person

name
age

gender

print()

Basic inheritence in UML

Ira Pohl’s C++ by Dissection 8.2 A Student ISA Person 334
8.2 A Student ISA Person

The first thing to understand about C++ inheritance logic is that public inheritance is
used to generate subtypes, so in the first example, a student is a person. This implies
that wherever person is allowed, so is student. We extend our previous example:

In file person.h

class person {
public:

person(const string& nm, int a, char g):
name(nm), age(a), gender(g) { }

void print() const { cout << *this << endl; }
friend ostream& operator<<(ostream& out, const person& p);
int get_age() const { return age; }

protected:
string name;
int age;
char gender; // male == 'M', female == 'F'

};

// Overloaded and operator<<

ostream& operator<<(ostream& out, const person& p)
{

return (out << p.name << ", age is " << p.age
<< ", gender is " << p.gender); }

}

// older can work with student as well

const person& older(const person& a, const person& b)
{

if (a.get_age() >= b.get_age())
return a;

else
return b;

}

8.2

http://www.cse.ucsc.edu/~pohl/C++BD/08Chap/person.h

Ira Pohl’s C++ by Dissection 8.2 A Student ISA Person 335
In file student.cpp

int main()
{

// declare and initialize
person abe(string("Abe Pohl"), 92,'M');
person sam(string("Sam Pohl"), 66, 'M');
student phil(string("Philip Pohl"), 68, 'M', 3.8, junior);
student laura(string("Laura Pohl"), 12, 'F', 3.9, fresh);
cout << abe << endl; // info on abe is printed
cout << phil << endl;

person* ptr_person;
ptr_person = &abe;
ptr_person -> print();
ptr_person = &phil;
ptr_person -> print();

cout << "older is " << older(abe, sam) << endl;
cout << "older is " << older(abe, phil) << endl;
cout << "older is " << older(laura, phil) << endl;

}

The output from this program is

Abe Pohl, age is 92, gender is M
Philip Pohl, age is 68, gender is M, junior, gpa = 3.8
Abe Pohl, age is 92, gender is M
Philip Pohl, age is 68, gender is M
older is Abe Pohl, age is 92, gender is M
older is Abe Pohl, age is 92, gender is M
older is Philip Pohl, age is 68, gender is M

Dissection of the student Program

■ int get_age() const { return age;}

It is standard methodology to provide accessor methods rather than
allow the variables accessed to be public.

ostream& operator<<(ostream& out, const person& p)
{

return (out << p.name << ", age is " << p.age
<< ", gender is " << p.gender); }

}

It is also customary to provide an overloaded operator<< for output.

http://www.cse.ucsc.edu/~pohl/C++BD/08Chap/student.cpp

Ira Pohl’s C++ by Dissection 8.2 A Student ISA Person 336
■ const person& older(const person& a, const person& b)
{

if (a.get_age() >= b.get_age())
return a;

else
return b;

}

We use pass-by-reference for aggregates because it is more efficient
than pass-by-value, as this mechanism avoids unneeded argument
copying. The key point here is that a publicly derived class from per-
son, namely student, can be passed as well to this function’s argu-
ments.

■ person abe(string("Abe Pohl"), 92,'M');
person sam(string("Sam Pohl"), 66, 'M');
student phil(string("Philip Pohl"), 68, 'M',

3.8, junior);
student laura(string("Laura Pohl"), 12, 'F',

3.9, fresh);
cout << abe << endl; // info on abe is printed
cout << phil << endl;

We have two persons and two students. When we go to print abe, he
prints as expected—namely, his name, age, and gender. When we
print phil, he prints as a student. So, we get his college year and
GPA printed. Note that abe uses person::print() and phil uses
student::print().

■ person* ptr_person;
ptr_person = &abe;
ptr_person -> print();

Here also, the function person::print() is called.

■ ptr_person = &phil;
ptr_person -> print();

Here also, the function person::print() is called. But here we can
get confused, because the object pointed at is student::phil. Never-
theless, the pointer type is person. In this situation, the pointer type
determines which method to call.

■ cout << "older is " << older(abe, sam) << endl;
cout << "older is " << older(abe, phil) << endl;
cout << "older is " << older(laura, phil) << endl;

In the first case, abe and sam are type person, so there is no prob-
lem. The second case is mixed, with phil being of type student. The
third case has laura and phil both of type student. The function
older(person, person) works regardless.

Ira Pohl’s C++ by Dissection 8.3 Virtual Functions: Dynamic Determination 337
8.3 Virtual Functions: Dynamic Determination

Overloaded member functions are invoked by a type-matching algorithm that includes
having the implicit argument matched to an object of that class type. All this is known
at compile time, and it allows the compiler to select the appropriate member directly.
As becomes apparent, it is nice to dynamically select at runtime the appropriate mem-
ber function from among base- and derived-class functions. The keyword virtual, a
function specifier that provides such a mechanism, may be used only to modify mem-
ber function declarations. The combination of virtual functions and public inheritance is
our most general and flexible way to build a piece of software. This is a form of pure
polymorphism.

An ordinary virtual function must be executable code. When invoked, its semantics are
the same as those of other functions. In a derived class, it can be overridden, and the
function prototype of the derived function must have a matching signature and return
type. The selection of which function definition to invoke for a virtual function is
dynamic. In the typical case, a base class has a virtual function, and derived classes
have their versions of this function. A pointer to base class can point at either a base-
class object or a derived-class object. The member function selected depends on the
class of the object being pointed at, not on the pointer type. In the absence of a derived
type member, the base-class virtual function is used by default.

Note the difference in selection of the appropriate overridden virtual function from an
overloaded member function. The overloaded member function is selected at compile
time based on its signature, and it can have distinct return types. A virtual function is
selected at runtime based on the object’s type, which is passed to it as its this pointer
argument. Also, once it is declared virtual, this property is carried along to all redefi-
nitions in derived classes. It is unnecessary in the derived class to use the function
modifier virtual.

A student is a type of person, a person is a type of ape—they
all derive from DNAS/GENOME.

Ape

Person

Student

8.3

Ira Pohl’s C++ by Dissection 8.3 Virtual Functions: Dynamic Determination 338
Consider the following virtual_sel program example:

In file virtual_sel.cpp

// Virtual function selection

class Base {
public:

virtual void print() const
{ cout << " inside Base" << endl; }

};

class Derived : public Base {
public:

// virtual as well
void print() const

{ cout << " inside Derived" << endl; }
};

int main()
{

Base b;
Derived f;
Base* pb = &b; // points at a Base object

pb -> print(); // call Base::print()
pb = &f; // points at Derived object
pb -> print(); // call Derived::print()

}

The output of this program is

inside Base
inside Derived

This note says to take my medicine at 8 o’clock, but which one?

http://www.cse.ucsc.edu/~pohl/C++BD/08Chap/virtual_sel.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/08Chap/virtual_sel.cpp

Ira Pohl’s C++ by Dissection 8.3 Virtual Functions: Dynamic Determination 339
It is important to notice that this did not happen with the last section example of stu-
dent and person, because there the print() methods were not virtual. It is the normal

Dissection of the virtual_sel Program

■ class Base {
public:

virtual void print() const
{ cout << " inside Base" << endl; }

};

The base class Base has the virtual method print(). We know when
it executes by its output " inside Base".

■ class Derived : public Base {
public:

void print() const // virtual as well
{ cout << " inside Derived" << endl; }

};

The derived class Derived has the overridden virtual method
print(). We could have explicitly used the keyword virtual in its
declaration, but this is unnecessary because this property is inherited
from the base class method. We know when it executes by its output,
" inside Derived". Now an object of type Derived is also an object
of type Base because it is derived by public inheritance.

■ int main()
{

Base b;
Derived f;
Base* pb = &b; // points at Base object

We test what gets called by having both class types used with a
pointer pb. A base class pointer can be used to point at any object
derived from its class.

■ pb -> print(); // call Base::print()

The pointer holds the address of Base b. It calls Base::print().

■ pb = &f; // points at Derived object
pb -> print(); // call Derived::print()

The pointer is assigned the address of Derived f. It calls
Derived::print(). In OOP terminology, the object is sent the mes-
sage print(), and it selects its own version of the corresponding
method. Thus, the pointer’s base type is not the determining method
(function) selection. Different class objects are processed by different
functions, determined at runtime. Facilities that allow the implemen-
tation of ADTs, inheritance, and dynamic objects are the essentials of
OOP.

Ira Pohl’s C++ by Dissection 8.3 Virtual Functions: Dynamic Determination 340
case in inheritance that overridden methods be declared virtual. This allows them to
select appropriate behavior at runtime. As a simple exercise, redo person with virtual
functions. Should the get_age() method be virtual? Virtual functions require added
work at runtime and are less efficient than nonvirtual methods. C++ programmers use
them only where needed.

8.3.1 Overloading and Overriding Confusion
Virtual functions and member function overloading cause confusion. Consider the fol-
lowing program:

In file virtual_err.cpp

#include <iostream>
using namespace std;

class Base {
public:

virtual void foo(int i) { cout << "Base::i = " << i << endl; }
virtual void foo(double x){ cout << "Base::x = " << x << endl; }

};

class Derived : public Base {
public:

void foo(int i){ cout << "Derived::i = " << i << endl; }
};

class Derived2 : public Derived {
public:

void foo(int i) { cout << "Derived2::i = " << i << endl; }
void foo(double d) { cout << "Derived2::d = " << d << endl; }

};

int main()
{

Derived d;
Derived2 d2;
Base b, *pb = &d;

b.foo(9); // selects Base::foo(int);
b.foo(9.5); // selects Base::foo(double);
d.foo(9); // selects Derived::foo(int);
d.foo(9.5); // selects Derived::foo(int);
pb -> foo(9); // selects Derived::foo(int);
pb -> foo(9.5); // selects Base::foo(double);
pb = &d2;
pb -> foo(9); // selects Derived2::foo(int);
pb -> foo(9.5); // selects Derived2::foo(double)

}

http://www.cse.ucsc.edu/~pohl/C++BD/08Chap/virtual_err.cpp

Ira Pohl’s C++ by Dissection 8.3 Virtual Functions: Dynamic Determination 341
Only nonstatic member functions can be virtual. The virtual characteristic is inherited.
Thus, the derived-class function is automatically virtual, and the presence of the vir-
tual keyword is usually a matter of taste. Constructors cannot be virtual, but destruc-
tors can be. As a rule of thumb, any class having virtual functions should have a virtual
destructor. Some compilers, such as the latest version of g++, issues a warning if a class
has virtual members and a nonvirtual destructor.

Dissection of the virtual_error Program

■ class Base {
public:

virtual void foo(int i)
{ cout << "Base::i = " << i << endl; }

virtual void foo(double x)
{ cout << "Base::x = " << x << endl; }

};

Here, we have a classic case of signature overloading. In overloading,
the compiler at compile time statically selects which method to call.

■ class Derived : public Base {
public:

void foo(int i)
{ cout << "Derived::i = " << i << endl; }

};

The base-class member function Base::foo(int) is overridden. So
far, this is not confusing. However, the base-class member function
Base::foo(double) is inherited in the derived class but is not over-
ridden. Here is the cause of the confusion:

d.foo(9); // selects Derived::foo(int);
d.foo(9.5); // selects Derived::foo(int);
pb -> foo(9); // selects Derived::foo(int);
pb -> foo(9.5); // selects Base::foo(double);

In the statement d.foo(9.5), the double value 9.5 is converted to
the integer value 9. To call the hidden member function, we need to
use scope resolution as in d.Base::foo(double). On the other hand,
when called with a pointer pb -> foo(9.5), the Base::foo(dou-
ble) is selected. Obviously, this a confusing situation that should be
avoided. When overriding base class virtual functions that are over-
loaded, be sure to overload all of their definitions. This is what was
done in Derived2 which does not suffer the same confusion.

Ira Pohl’s C++ by Dissection 8.3 Virtual Functions: Dynamic Determination 342
8.3.2 A Canonical Example: Class shape
Virtual functions allow runtime decisions. Consider a computer-aided design applica-
tion in which the area of the shapes in a design has to be computed. The various shapes
are derived from the shape base class.

In file shape.cpp

class shape {
public:

virtual double area() const { return 0; }
// virtual double area is default behavior

protected:
double x, y;

};

class rectangle : public shape {
public:

rectangle(double h = 0.0, double w=0.0): height(h), width(w) { }
double area() const { return (height * width); }

private:
double height, width;

};

class circle : public shape {
public:

circle(double r = 0.0) : radius(r) { }
double area() const { return (PI * radius * radius); }

private:
double radius;

};

In such a class hierarchy, the derived classes correspond to important, well-understood
types of shapes. The system is readily expanded by deriving further classes. The area
calculation is a local responsibility of a derived class.

Client code that uses the polymorphic area calculation looks like this:

const int N = 3;

int main()
{
 shape* p[N];
 p[0] = new rectangle(2, 3);
 p[1] = new rectangle(2.5, 2.001);
 p[2] = new circle(1.5);

double tot_area = 0.0;
for (int i = 0; i < N; ++i)

tot_area += p[i] -> area();
cout << tot_area << " is total area" << endl;

}

http://www.cse.ucsc.edu/~pohl/C++BD/08Chap/shape.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/08Chap/shape.cpp

Ira Pohl’s C++ by Dissection 8.4 Abstract Base Classes 343
A major advantage here is that the client code does not need to change if new shapes
are added to the system. Change is managed locally and propagated automatically by
the polymorphic character of the client code.

8.4 Abstract Base Classes

A type hierarchy begins with a base class that contains a number of virtual functions.
They provide for dynamic typing. In the base class, virtual functions are often dummy
functions and have an empty body. In the derived classes, however, virtual functions
are given specific meanings. In C++, the pure virtual function is introduced for this pur-
pose. A pure virtual function is one whose body is normally undefined. Notationally,
such a function is declared inside the class, as follows:

virtual function prototype = 0;

The pure virtual function is used to defer the implementation decision of the function.
In OOP terminology, it is called a deferred method.

A class that has at least one pure virtual function is an abstract class. In a type hierar-
chy, it is useful for the base class to be an abstract class. This base class has the basic
common properties of its derived classes but cannot itself be used to declare objects.
Instead, it is used to declare pointers or references that can access subtype objects
derived from the abstract class.

We explain this concept while developing a primitive form of ecological simulation. OOP
was originally developed as a simulation methodology using Simula67. Hence, many of
its ideas are easily understood as an attempt to model a particular reality.

The world in our example has various forms of life interacting; they inherit the interface
of an abstract base class called living. Each position in a grid defined to be the world
can either have a life-form or be empty. We shall have foxes as an archetypal predator,
with rabbits as prey. The rabbits eat grass. Each of these life-forms lives, reproduces,
and dies each iteration of the simulation.

In file predator.cpp

// Predator-Prey simulation using class living

enum state { EMPTY, GRASS, RABBIT, FOX, STATES };

const int DRAB = 3, DFOX = 6, TMFOX = 5,
CYCLES = 5, N = 40;

// DRAB rabbits die at 3, DFOX foxes at 6,
// TMFOX too many foxes, CYCLES of simulation,
// N size of square world

class living; // forward declaration
typedef living* world[N][N];

8.4

http://www.cse.ucsc.edu/~pohl/C++BD/08Chap/predator.cpp

http://www.cse.ucsc.edu/~pohl/C++BD/08Chap/predator.cpp

Ira Pohl’s C++ by Dissection 8.4 Abstract Base Classes 344
class living { // what lives in world
public:

virtual state who() = 0; // state identification
virtual living* next(world w) = 0;

protected:
int row, column; // location
void sums(world w, int sm[]);

};

void living::sums(world w, int sm[])
{

int i, j;

sm[EMPTY] = sm[GRASS] = 0;
sm[RABBIT] = sm[FOX] = 0;
for (i = -1; i <= 1; ++i)

for (j = -1; j <= 1; ++j)
sm[w[row + i][column + j] -> who()]++;

}

Dissection of the living Abstract Base Class

■ class living; // forward declaration
typedef living* world[N][N];

The class living represents different life-forms, such as rabbits and
grass. The life-forms are placed on an N by N square world.

■ class living { // what lives in world
public:

virtual state who() = 0; // state identity
virtual living* next(world w) = 0;

protected:
int row, column; // location
void sums(world w,int sm[]);

};

This abstract base class is used as the base class for all derived indi-
vidual life-forms needed by the simulation. There are two pure virtual
functions and one ordinary member function, sums(). The pure vir-
tual functions must be defined in any concrete class derived from
class living. Virtual functions incur a small additional runtime
cost over normal member functions. Therefore, we use virtual func-
tions only when necessary to our implementations. Our simulation
has rules for deciding who goes on living based on the populations in
the neighborhood of a given square. These populations are computed
by sums(). Note that the neighborhood includes the square itself.

Ira Pohl’s C++ by Dissection 8.4 Abstract Base Classes 345
The inheritance hierarchy is one level deep.

// Currently only predator class

class fox : public living {
public:

fox(int r, int c, int a = 0) : age(a)
{ row = r; column = c; }

state who() { return FOX; }// deferred fox method
living* next(world w);

protected:
int age; // used to decide on dying

};

// Currently only prey class

class rabbit : public living {
public:

rabbit(int r, int c, int a = 0) : age(a)
{ row = r; column = c; }

state who() { return RABBIT; }
living* next(world w);

protected:
int age;

};

■ void living::sums(world w, int sm[])
{

int i, j;

sm[EMPTY] = sm[GRASS] = 0;
sm[RABBIT] = sm[FOX] = 0;
for (i = -1; i <= 1; ++i)

for (j = -1; j <= 1; ++j)
sm[w[row + i][column + j] -> who()]++;

}

This function collects the values of the different life-forms in the
region immediately surrounding the life-form’s position in the world,
namely (row, column). Each life-form has rules that use this sum to
see if they propagate, die off, or stay alive.

Ira Pohl’s C++ by Dissection 8.4 Abstract Base Classes 346
// Currently only plant life

class grass : public living {
public:

grass(int r, int c) { row = r; column = c; }
state who() { return GRASS; }
living* next(world w);

};

// Nothing lives here

class empty : public living {
public:

empty(int r, int c) { row = r; column = c; }
state who() { return EMPTY; }
living* next(world w);

};

Notice that the design allows other forms of predator, prey, and plant life to be devel-
oped, using a further level of inheritance. The characteristics of how each life-form
behaves are captured in its version of next().

Grass can be eaten by rabbits. If there is more grass than the rabbits in the neighbor-
hood can eat, the grass remains; otherwise, it is eaten up. (Feel free to substitute your
own rules, as these are highly limited and artificial.)

living* grass::next(world w)
{

int sum[STATES];

sums(w, sum);
if (sum[GRASS] > sum[RABBIT]) // eat grass

return (new grass(row, column));
else

return (new empty(row, column));
}

Rabbits die of old age if they exceed a defined limit DRAB; they are eaten if there are an
appropriate number of foxes nearby.

living* rabbit::next(world w)
{

int sum[STATES];
sums(w, sum);
if (sum[FOX] >= sum[RABBIT]) // eat rabbits

return (new empty(row, column));
else if (age > DRAB) // rabbit is too old

return (new empty(row, column));
else

return (new rabbit(row, column, age + 1));
}

Ira Pohl’s C++ by Dissection 8.4 Abstract Base Classes 347
Foxes die of overcrowding or old age.

living* fox::next(world w)
{

int sum[STATES];

sums(w, sum);
if (sum[FOX] > TMFOX) // too many foxes

return (new empty(row, column));
else if (age > DFOX) // fox is too old

return (new empty(row, column));
else

return (new fox(row, column, age + 1));
}

Empty squares are competed for by the various life-forms.

living* empty::next(world w) // fill empty square
{

int sum[STATES];

sums(w, sum);
if (sum[FOX] > 1)

return (new fox(row, column));
else if (sum[RABBIT] > 1)

return (new rabbit(row, column));
else if (sum[GRASS] > 0)

return (new grass(row, column));
else

return (new empty(row, column));
}

The rules in the various versions of next() determine a possibly complex set of interac-
tions. Of course, to make the simulation more interesting, other behaviors, such as sex-
ual reproduction, whereby the animals have gender and can mate, could be simulated.

The array type world is a container for the life-forms. The container has the responsi-
bility of creating its current pattern. The container needs to have ownership of the liv-
ing objects so as to allocate new ones and delete old ones.

// World is all empty

void init(world w)
{

int i, j;

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)

w[i][j] = new empty(i,j);
}

Ira Pohl’s C++ by Dissection 8.4 Abstract Base Classes 348
This routine creates an empty world. Each square is initialized by the empty::empty()
constructor.

// New world w_new is computed from old world w_old

void update(world w_new, world w_old)
{

int i, j;

for (i = 1; i < N - 1; ++i) // borders are taboo
for (j = 1; j < N - 1; ++j)

w_new[i][j] = w_old[i][j] -> next(w_old);
}

This routine updates the world. The old state of the world stored in w_old[][] is used
to compute what lives in the new state w_new[][]. This is computed from rules that
next() uses.

// Clean world up

void dele(world w)
{

int i, j;

for (i = 1; i < N - 1; ++i) //borders are taboo
for (j = 1; j < N - 1; ++j)

delete(w[i][j]);
}

This routine returns memory to the heap (free store). In a long-running large simulation,
all these calls to new would burn up too much memory if not for this reclamation rou-
tine.

void eden(world w)
{

int i, j;

for (i = 2; i < N - 2; ++i)
for (j = 2; j < N - 2; ++j) {

delete(w[i][j]);
if ((i + j) % 3 == 0)

w[i][j] = new rabbit(i, j);
else

if ((i + j) % 3 == 1)
w[i][j] = new fox(i, j);

else
w[i][j] = new grass(i, j);

}
}

Ira Pohl’s C++ by Dissection 8.4 Abstract Base Classes 349
We need a first state of the world. This version of an eden() routine should be replaced
by a routine that allows the user to establish the Garden of Eden pattern.

void pr_state(world w)
{

int i, j;

for (i = 0; i < N; ++i) {
cout << endl;
for (j = 0; j < N; ++j)

cout << static_cast<int>(w[i][j] -> who());
}
cout << endl << endl;

}

The simulation has odd and even worlds, which alternate as the basis for the next
cycle’s calculations.

int main()
{

world odd, even;
int i;

init(odd); init(even);
eden(even); // generate initial world
pr_state(even); // print Garden of Eden state
for (i = 0; i < CYCLES; ++i) { // simulation

if (i % 2) {
update(even, odd);
pr_state(even);
dele(odd);

}
else {

update(odd, even);
pr_state(odd);
dele(even);

}
}

}

If the fox is eating the rabbit which eats the grass,
can the fire be far behind?

Ira Pohl’s C++ by Dissection 8.5 Templates and Inheritance 350
The code runs the simulation for a number of iterations specified by the constant
CYCLES. The reader should experiment with modifications of this code. The structure of
the program lets you easily modify the rules and the initial configuration. More
advanced modifications would improve the user interface and add other life-forms.

8.5 Templates and Inheritance

Templates and inheritance are jointly an extremely powerful reuse technique. Parame-
terized types can be reused through inheritance. Such use parallels that of inheritance
in deriving ordinary classes. Templates and inheritance are both mechanisms for code
reuse, and both can involve polymorphism. They are distinct features of C++ and, as
such, combine in various forms. A template class can derive from an ordinary class, an
ordinary class can derive from an instantiated template class, and a template class can
derive from a template class. Each of these possibilities leads to different relationships.

In some situations, templates lead to unacceptable cost in the size of the object module.
Each instantiated template class requires its own compiled object module. This can be
remedied by using a template to inherit the base class.

The derivation of a class from an instantiated template class is basically no different
from ordinary inheritance. In the following example, we assume that we already have a
template class stack<class T>. For example, it can be obtained from STL. It is used as
a base class for a safe character stack.

// Safe character stack

class safe_char_stack : public stack<char> {
public:

// test push and pop
void push(char c)
{ assert (!full()); stack<char>::push(c); }

char pop()
{ assert (!empty()); return (stack<char>::pop()); }

};

The instantiated class stack<char> is generated and reused by safe_char_stack.

This example can be usefully generalized to a template class.

// Parameterized safe stack

template <class TYPE>
class safe_stack : public stack<TYPE> {
public:

void push(TYPE c)
{ assert (!full()); stack<TYPE>::push(c); }

TYPE pop()
{ assert (!empty()); return (stack<TYPE>::pop()); }

};

8.5

Ira Pohl’s C++ by Dissection 8.6 Multiple Inheritance 351
It is important to notice the linkage between the base class and the derived class. Both
require the same instantiated type. Each pair of base and derived classes is independent
of all other pairs.

8.6 Multiple Inheritance

The examples in the text thus far require only single inheritance; that is, they require
that a class be derived from a single base class. This feature can lead to a chain of deri-
vations wherein class B is derived from class A, class C is derived from class B, . . . , and
class N is derived from class M. In effect, N ends up being based on A, B, . . . , M. This
chain must not be circular, however; a class cannot have itself as an ancestor.

Multiple inheritance allows a derived class to be derived from more than one base class.
The syntax of class headers is extended to allow a list of base classes and their privacy
designations. For example:

class student {
·····

};

class worker {
·····

};

class student_worker: public student, public worker {
·····

};

In this example, the derived class student_worker publicly inherits the members of
both base classes. This parental relationship is described by the inheritance directed
acyclic graph (DAG). The DAG is a graph structure whose nodes are classes and whose
directed edges point from base to derived class. To be legal, a DAG cannot be circular;
thus, no class may, through its inheritance chain, inherit from itself. Note: This is simi-
lar to the UML diagrams for these classes, but with the arrows reversed.

When identically named members are derived from different classes, ambiguities may
arise. These derivations are allowed, provided the user does not make an ambiguous
reference to such a member. For example:

class worker {
public:

const int soc_sec;
const char* name;
·····

};

8.6

Ira Pohl’s C++ by Dissection 8.6 Multiple Inheritance 352
class student {
public:

const char* name;
·····

};

class student_worker: public student, public worker {
public:

void print() { cout << "ssn: " << soc_sec << "\n";
cout << name; ····· } // error

·····
};

In the body of student_worker::print(), the reference to soc_sec is fine, but the
reference to name is inherently ambiguous. The problem can be resolved by properly
qualifying name using the scope resolution operator.

With multiple inheritance, two classes can be derived from a common ancestor. If both
classes are used as base classes in the ordinary way by their derived class, it has two
subobjects of the common ancestor. If this duplication is not desirable, it can be elimi-
nated, using virtual inheritance. An example is

class student: virtual public person {
·····

};

class worker: virtual public person {
·····

};

class student_worker: public student, public worker {
·····

};

Without the use of virtual in this example, class student_worker would have
objects of class student::person and class worker::person. The order of execu-
tion for initializing constructors in base and member constructors is given in the fol-
lowing list:

student worker

student_worker

person

DAG of Multiple Inheritance

Ira Pohl’s C++ by Dissection 8.7 RTTI and Other Fine Points 353
Constructor Execution Order
1. Base classes initialized in declaration order

2. Members initialized in declaration order

3. The body of the constructor

Virtual base classes are constructed before any of their derived classes and before any
nonvirtual base classes. Construction order depends on their DAG. It is a depth-first,
left-to-right order. Destructors are invoked in the reverse order of constructors. These
rules, although complicated, are intuitive.

On many systems, a concrete example of multiple inheritance can be found in the ios-
tream library. This library contains the class iostream, which can be derived from
istream and ostream. However, it is an interesting comment on multiple inheritance
that more recent implementations have gone back to single-inheritance designs.

8.7 RTTI and Other Fine Points

Runtime type identification (RTTI) provides a mechanism for safely determining the
type pointed at by a base-class pointer at runtime and involves dynamic_cast, an oper-
ator on a base-class pointer; typeid, an operator for determining the type of an object;
and type_info, a structure providing runtime information for the associated type. It is
used with classes having virtual functions. The dynamic_cast operator has the form

dynamic_cast< type >(v)

where type must be a pointer or reference to a class type and v must be a correspond-
ing pointer value or reference value. This cast is implemented as follows:

class Base { virtual void foo(); ····· };
class Derived : public Base { ····· };

void fcn(Base* ptr)
{

Derived* dptr = dynamic_cast<Derived*>(ptr);
·····

}

In this example, the cast converts the pointer value ptr to a Derived*. If the conversion
is inappropriate, a value of 0, the NULL pointer, is returned. This is called a downcast.
Dynamic casts also work with reference types.

The operator typeid() can be applied to a typename or to an expression to determine
the exact type of the argument. The operator returns a reference to the class
type_info, which is supplied by the system and is defined in the header file typeinfo
(some compilers use type_info). The class type_info provides both a name() member
function that returns a string that is the type name and overloaded equality operators.
Remember to check the local implementation for the complete interface of this class.

8.7

Ira Pohl’s C++ by Dissection 8.7 RTTI and Other Fine Points 354
Base* bptr;
·····// print typename of what current bptr points at
cout << typeid(*bptr).name() << endl;
·····
if (typeid(*bptr) == typeid(Derived)) {

····· // appropriate for Derived
}

Bad dynamic casts and typeid operations can be made to throw the exceptions
bad_cast and bad_typeid, so the user can choose between dealing with the NULL
pointer or catching an exception. (See Section 10.8, terminate() and unexpected(),
on page 409.)

8.7.1 Finer Points
A difficulty in learning C++ is the many distinctions and rules pertaining to the use of
functions. We have described most of the extensions and now show some distinctions.

Function Use in C++
■ A virtual function and its derived instances having the same signature must

have the same return type, with some minor exceptions. Notice that nonvir-
tual member functions with the same signature can have different return
types in derived classes. For example, if the base class function returns its
own type, then the derived class function can return its type.

■ All member functions except constructors and overloaded new and delete
can be virtual.

■ Constructors, destructors, overloaded operator=, and friends are not inher-
ited.

■ Conversion functions of operator type() and the operators =, (), [], and ->
can be overloaded only with nonstatic member functions. Overloading
operators new and delete can be done only with static member functions.
Other overloadable operators can be done with friend, member, or ordinary
functions.

■ A union may have constructors and destructors but not virtual functions. It
can neither serve as a base class nor have a base class. Members of a union
cannot require constructors or destructors.

■ Access modification is possible, but using it with public inheritance destroys
the subtype relationship. Access modification cannot broaden visibility, but it
can narrow it. For example:

Ira Pohl’s C++ by Dissection 8.8 Software Engineering: Inheritance and Design 355
In file access_mod.cpp

// Access modification

class Base {
public:

int k;
protected:

int j, n;
private:

int i;
};

class Derived : public Base {
public:

int m;
Base::n; // illegal protected access can't broaden

private:
Base::j; // otherwise default is protected

};

8.8 Software Engineering: Inheritance and Design

At one level, inheritance is a code-sharing technique. At another level, it reflects an
understanding of the problem and relationships between parts of the problem space.
Much of public inheritance is the expression of an ISA relationship between the base
and derived classes. The rectangle is a shape. This is the conceptual underpinning for
making shape a superclass and allowing the behavior described by its public member
functions to be interpretable on objects within its type hierarchy. In other words, sub-
classes derived from the superclass share its interface.

A design cannot be specified in a completely optimal way. Design involves trade-offs
between the various objectives one wishes to achieve. For example, generality is fre-
quently at odds with efficiency. Using a class hierarchy that expresses ISA relationships
increases our effort to understand how to compartmentalize coding relationships and
potentially introduces coding inefficiencies by having various layers of access to the
(hidden) state description of an object. However, a reasonable ISA decomposition can
simplify the overall coding process. For example, a shape-drawing package need not
anticipate shapes that might be added in the future. Through inheritance, the class
developer imports the base-class shape interface and provides code that implements
operations, such as draw. What is primitive or shared remains unchanged. Also
unchanged is the client’s use of the package.

An undue amount of decomposition imposes its own complexity and ends up being
self-defeating. There is a granularity decision whereby highly specialized classes do not
provide enough benefit and are better folded into a larger concept.

Single inheritance (SI) conforms to a hierarchical decomposition of the key objects in
the domain of discourse. Multiple inheritance (MI) is more troubling as a modeling or

8.8

http://www.cse.ucsc.edu/~pohl/C++BD/08Chap/access_mod.cpp

Ira Pohl’s C++ by Dissection 8.8 Software Engineering: Inheritance and Design 356
problem-solving concept. In MI, the new object is composed of several preexisting
objects and is usefully thought of as a form of each. The term mixin is used to mean a
class composed using MI, with each base class orthogonal. Much of the time, there is an
alternative HASA formulation. For example, is a vampire bat a mammal that happens to
fly, a flying machine that happens to be a mammal, or both a flying machine and a
mammal? Depending on what code is available, developing a proper class for vampire
bat might involve an MI derivation or an SI with appropriate HASA members.

MI presents problems for the type theorist: student might be derived from person,
and employee might be derived from person. But what about a student-employee?
Generally, types are best understood as SI chains.

None of this diminishes the attraction of MI as a code-reuse technique. It is clearly a
powerful generalization of SI. As such, it probably fits in with the style of some pro-
grammers. Just as some programmers prefer iteration to recursion, some prefer SI and
aggregation to MI and composition. In aggregation, we create a big object by having
class members for each subpart.

8.8.1 Subtyping Form
ADTs are successful insofar as they behave like native types. Native types, such as the
integer types in C, act as a subtype hierarchy. This is a useful model for publicly derived
type hierarchies, and it promotes ease of use through polymorphism. Here is a recipe
for building such a type hierarchy. The base class is made abstract and is used for inter-
face inheritance. The derived class implements this interface concretely.

class Abstract_Base {
public:

// interface - largely virtual
Abstract_Base(); // default ctor
Abstract_Base(const Abstract_Base&); // copy ctor
virtual ~Abstract_Base() = 0; // pure virtual
·····

protected: // used instead of private for inheritance
·····

private: // often empty-no future design constraint
·····

};

Ira Pohl’s C++ by Dissection 8.8 Software Engineering: Inheritance and Design 357
class Derived: virtual public Abstract_Base {
public:

// Concrete instance
Derived(); // default ctor
Derived(const Derived&); // copy ctor
~Derived(); // dtor
Derived& operator=(const Derived&); // assignment
·····

protected: // instead of private-inheritance expected
·····

private: // used for implementation details
·····

};

It is usual to leave the base class of the hierarchy abstract, yielding the most flexible
design. Generally, no concrete implementation is developed at this point. By using pure
virtual functions, we are precluded from declaring objects of this type. Notice that the
~Abstract_Base() function is pure. This level of the design focuses on public inter-
face. These are the operations expected of any subtype in the hierarchy. In general,
basic constructors are expected and may not be virtual. Also, most useful aggregates
require an explicit definition of assignment that differs from default assignment
semantics. The destructor is virtual because response must be at runtime and is depen-
dent on the object’s size, which can vary across the hierarchy. Finally, virtual public
inheritance ensures that in MI schemes we do not have multiple copies of the abstract
base class.

8.8.2 Code Reuse
Private inheritance does not have a subtype, or ISA relationship. In private inheritance,
we reuse a base class for its code. We call private derivation a LIKEA relationship, or
implementation inheritance, as opposed to interface inheritance. The LIKEA relationship
comes in handy when diagramming the class relationships in a complicated software
system. Because private and protected inheritance do not create type hierarchies, they
have more limited utility than does public inheritance. In a first pass in understanding
these concepts, nonpublic inheritance can be skipped.

Code reuse is often all you want from inheritance. The template methodology is simpler
and more runtime efficient; it is simpler because instantiation requires only a single
type placed in the template declaration. In inheritance, we need to derive the whole
interface, substituting appropriate types. It is more runtime efficient because it often
avoids indirection. Inheritance allows special cases to be developed for each type, if
necessary; it does not lead to large object-code modules. Remember, each template
instantiation is compiled to object code.

Ira Pohl’s C++ by Dissection 8.9 Dr. P’s Prescriptions 358
8.9 Dr. P’s Prescriptions

■ Use interface inheritance, called ISA inheritance.

■ Usually, a base class is abstract.

■ Minimize interactions between classes.

■ Base-class destructors are usually virtual.

■ Avoid deep hierarchies.

■ Avoid multiple inheritance.

Public inheritance creates a class hierarchy in which a derived class object is a form of
base-class object. This is called ISA inheritance; it is also referred to as interface inherit-
ance, as opposed to implementation inheritance. Class hierarchies should be about
interface inheritance. In the classic example, an abstract base class shape describes the
properties and behaviors of all shape types using virtual and pure virtual member func-
tions. The derived classes LIKEA circle implement the specifics. The circle ISA
shape. A base-class reference or pointer can be assigned a derived-class object or
address. Manipulation by such a reference or pointer can be polymorphic—namely, by
using virtual functions, the properly overridden function defined in the derived class is
called dynamically. Usually, such a base class is abstract. This identifies the class as an
important type to be used polymorphically. It guarantees that the compiler insists on
overridden member function definitions where concrete behavior for derived types is
needed.

Base-class destructors should be virtual. In most cases, derived classes have different
resource requirements, implying that returning resources through destructor finaliza-
tion needs to be dynamic.

Overdoing complexity by using deep hierarchies or multiple inheritance leads to code
that can be inefficient and difficult to maintain and modify.

8.10 C++ Compared with Java

Like C++, Java has the inheritance mechanism, which extends a new class from an exist-
ing one. Java uses different terminology with respect to inheritance. The Java base class
is called the superclass. The extended class adds to or alters the inherited superclass
methods. This is used to share an interface and to create a hierarchy of related types. In
Java, ordinary class inheritance is single inheritance. Java also has interface inheritance,
which can be used as a restricted form of multiple inheritance.

Consider designing a database for a college. The registrar must track various types of
students. We start with the superclass Person1. This class is identical to Person in Sec-
tion 4.14, C++ Compared with Java, on page 171 except that the private instance vari-
ables are changed to have access protected. This access allows their use in the
subclass but otherwise acts like private.

8.9

8.10

Ira Pohl’s C++ by Dissection 8.10 C++ Compared with Java 359
In file Person1.java

// An elementary Java implementation of type Person

class Person1 {
public void setName(String nm) { name = nm; }
public void setAge(int a) { age = a; }
public void setGender(char b) { gender = b; }
public String toString() { return(name + " age is "

+ age + " gender is " + gender); }
protected String name;
protected int age;
protected char gender; // male 'M', female 'F'

};

Now we derive Student from Person1.

class Student extends Person1 {
private String college;
private byte year; // 1=fr, 2=so, 3=jr, 4=sr
private double gpa; // 0.0 to 4.0
public void setCollege(String nm) { college = nm; }
public void setYear(byte a) { year = a; }
public void setGpa(double g) { gpa = g; }
public String toString()

{ return (super.toString() + " college is " + college); }
public Student()

{ super.setName("Unknown"); college = "Unknown"; }
public Student(String nm)

{ super.setName(nm); college = "Unknown"; }
public Student(String nm, int a, char b)

{ name =nm; age =a; gender = b; }
};

In this example, Student is the subclass, and Person1 is the superclass. Notice the use
of the keyword super, which provides a means of accessing the instance variables or
methods found in the superclass.

The inheritance structure provides a design for the overall system. The superclass
Person1 leads to a design whereby the subclass Student is derived from it. Other sub-
classes, such as GradStudent or Employee, could be added to this inheritance hierar-
chy.

In Java, polymorphism comes from both method overloading and method overriding.
Overriding occurs when a method is redefined in the subclass. The toString()
method is in Person1 and is redefined in Student extended from Person1.

http://www.cse.ucsc.edu/~pohl/C++BD/08Chap/Person1.java

Ira Pohl’s C++ by Dissection 8.10 C++ Compared with Java 360
// Overriding the toString() method

class Person1 {
protected String name;
·····
public String toString() { return (name

+ " age is " + age + " gender is " + gender); }
·····

};

class Student extends Person1 {
private String college;
·····
public toString()

{ return(super.toString() + " college is " + college); }
·····

};

The overridden method toString() has the same name and signature in both the
superclass Person1 and the subclass Student. Which one gets selected depends on
what is being referenced at runtime. For example:

// StudentTest.java uses Student which uses Person1

public class StudentTest {
public static void main (String[] args)
{

Person1 q1;
q1 = new Student();
q1.setName("Charles Babbage");
System.out.println(q1.toString());
q1 = new Person1();
q1.setName("Charles Babbage");
System.out.println(q1.toString());

}
}

The variable q1 can refer to either the Person1 object or the subtype Student object.
At runtime, the correct toString() is selected. The setName() method is known at
compile time, since it is the superclass Person1 method.

Ira Pohl’s C++ by Dissection Summary 361
Summary

■ Inheritance provides the ability to create new derived classes by adding to or alter-
ing existing classes. Through inheritance, a hierarchy of related, code-sharing ADTs
can be created.

■ A class can be derived from an existing class using the form

class class-name : (public|protected|private)optbase-name
{

member declarations
};

As usual, the keyword class can be replaced by the keyword struct, with the usual
implication that members are by default public.

■ The keywords public, private, and protected are available as visibility modifiers
for class members. A public member is visible throughout its scope. A private mem-
ber is visible to other member functions within its own class and to friend functions.
A protected member is visible to other member functions within its class, within
friend functions, and within any class immediately derived from it. These visibility
modifiers can be used within a class declaration in any order and with any fre-
quency.

■ The default visibility for a base class is private if the keyword class is used; it is
public if the keyword struct is used.

■ The derived class has its own constructors, which invoke the base class constructor.
A special syntax is used to pass arguments from the derived-class constructor back
to the base class constructor:

function header : base-classname (argument list)

■ A publicly derived class is a subtype of its base class. A variable of the derived class
can in many ways be treated as if it were the base-class type. A pointer whose type is
pointer to base class can point to objects of the publicly derived class type.

■ A reference to the derived class may be implicitly converted to a reference to the
public base class. It is possible to declare a reference to a base class and to initialize
it to a reference to an object of the publicly derived class.

■ The keyword virtual is a function specifier that provides a mechanism to dynami-
cally select at runtime the appropriate member function from among base- and
derived-class functions. This specifier may be used only to modify member function
declarations. This is called overriding. This ability to dynamically select a routine
appropriate to an object’s type is a form of polymorphism.

■ Inheritance provides for code reuse. The derived class inherits the base-class code
and typically modifies and extends the base class. Public inheritance also creates a
type hierarchy, allowing further generality by providing additional implicit type con-
versions. Also, at a runtime cost, it allows for runtime selection of overridden virtual

Ira Pohl’s C++ by Dissection Review Questions 362
functions. Facilities that allow the implementation of inheritance and the ability to
process objects dynamically are the essentials of OOP.

■ A pure virtual function is a virtual member function whose body is normally unde-
fined. Notationally, a pure virtual function is declared inside the class, as follows:

virtual function prototype = 0;

The pure virtual function is used to defer the implementation decision of the func-
tion. In OOP terminology, it is called a deferred method. A class that has at least one
pure virtual function is an abstract class. It is useful for the base class in a type hier-
archy to be an abstract class. As such, the base class would define the interface for
its derived classes but cannot itself be used to declare objects.

Review Questions

1. In class X : Y { ····· }, X is a class and Y is a(n) class.

2. True or false: If D inherits from B privately, D is a subtype of B.

3. The term overriding refers to functions.

4. An abstract base class contains a .

5. The subtyping relationship is called the .

6. True or false: Template classes cannot be base classes.

7. What is wrong with the following?

class A:B {·····};
class B:C {·····};
class C:A {·····};

8. In multiple inheritance, why is virtual inheritance used?

9. The class type_info provides a name() member function that .

10. True or false: Constructors, destructors, overloaded operator=, and friends are not
inherited.

Ira Pohl’s C++ by Dissection Exercises 363
Exercises

1. For student and grad_student code, input member functions that read input for
each data member in their classes. (See Section 8.1, A Derived Class, on page 330.)
Use student::read to implement grad_student::read.

2. Pointer conversions, scope resolution, and explicit casting create a wide selection of
possibilities. Using main(), discussed in Section 8.2, A Student ISA Person, on page
335, which of the following work, and what is printed?

reinterpret_cast<grad_student *>(ps) -> print();
dynamic_cast<student *>(pgs) -> print();
pgs -> student::print();
ps -> grad_student::print();

Print out and explain the results.

3. Create an abstract class Counter. It should have only pure virtual functions. It
should have a method click() that would advance the counter. It should have
methods get() and set() for accessing and mutating the counter’s value.

4. Create a concrete class Timer derived from the abstract class Counter. This class
should simulate a timer that has seconds and minutes as readout. Write a program
that tests this implementation.

5. Develop a class Clock based on Timer. It should have the same functionality as an
ordinary house clock or watch. Write a program that tests this implementation.

6. Write a class stack that stores values that are void*. This is a form of generic
stack. Implement operations that are available for the STL stack. Now derive pri-
vately a form of this stack that stores ints. Write some code testing this. One such
standard test would be to use the stack for reversing a set of values. Compare this
approach to one using STL. Why should STL be preferred? Are there any advantages
to the use of void* and inheritance instead of templates?

7. Derive an integer vector class from the STL class vector<int> that has 1 as its
first index value and n as its last index value.

int_vector x(n); // vector whose range is 1 to n

8. Generalize the previous exercise by deriving a template class that creates the index
range 1 to n.

vec_1<double> x(n); // vector whose range is 1 to n

9. For the following program, explain when both overriding and overloading take place.

Ira Pohl’s C++ by Dissection Exercises 364
class B {
public:

B(int j = 0) : i(j) {}
virtual void print() const

{ cout << " i = " << i << endl; }
void print(char *s) const

{ cout << s << i << endl; }
private:

int i;
};

class D : public B {
public:

D(int j = 0) : B(5), i(j) {}
void print() const

{ cout << " i = " << i << endl; }
int print(char *s) const

{ cout << s << i << endl; return i; }
private:

int i;
};

int main()
{

B b1, b2(10), *pb;
D d1, d2(10), *pd = &d2;

b1.print(); b2.print(); d1.print(); d2.print();
b1.print("b1.i = "); b2.print("b2.i = ");
d1.print("d1.i = "); d2.print("d2.i = ");
pb = pd;
pb -> print(); pb -> print("d2.i = ");
pd -> print(); pd -> print("d2.i = ");

}

10. Modify class D in the previous exercise to be

class D2 : private B {
public:

B::i; // access modification
void print_i()
{

cout << i << " inside D2 and B::i is "
<< B::i << endl;

}
};

What is changed in the output from that program?

Ira Pohl’s C++ by Dissection Exercises 365
11. Define a base class person that contains universal information, including name,
address, birth date, and gender. Derive from this class the following classes:

class student : virtual public person {
// ····· relevant additional state and behavior

};

class worker : virtual public person {
// ····· relevant additional state and behavior

};

class student_worker: public student, public worker {
·····

};

Write a program that reads a file of information and creates a list of persons. Pro-
cess the list to create, in sorted order by last name, a list of all people, a list of peo-
ple who are students, a list of people who are employees, and a list of people who
are student-employees. On your system, can you easily produce a list in sorted order
of all students who are not employees?

12. Add a new life-form to the predator-prey simulation found in Section 8.4, Abstract
Base Classes, on page 343.

13. (Project) Design and implement a graphical user interface (GUI) for the predator-prey
simulation of Section 8.4, Abstract Base Classes, on page 343. It is beyond the scope
of this book to describe various available GUI toolkits. The program should draw
each iteration of the simulation on the screen. You should be able to directly input a
Garden of Eden starting position. (See Section 8.4, Abstract Base Classes, on page
348, for the game-of-life simulation.) You should also be able to provide other set-
tings for the simulation, such as the size of the simulation. Can you allow the user to
define other life-forms and their rules for existing, eating, and reproducing? Make
the graphical interface as elegant as possible. The user should be able to position it
on the screen, resize it, and select icons for the various available life-forms.

14. (Java) Add GraduateStudent to the Java class hierarchy in Section 8.10, C++ Com-
pared with Java, on page 360. Note how Java uses capitalization instead of an under-
score to separate words in an identifier. This is stylistic. C++ derives its heritage
directly from C and adopted C style. Java has a SmallTalk influence and has styles
adopted from that culture.

15. (Java) Develop the Java version of the shape hierarchy in Section 8.3.2, A Canonical
Example: Class shape, on page 342.

16. (Java) Develop the predator-prey simulation in Java, using the SWING library to pro-
vide a graphical interface. (See Section 8.4, Abstract Base Classes, on page 343, for
the predator-prey C++ simulation.) This is one area that Java excels in.

CHAPTER 9
Input/Output
This chapter describes input/output in C++, using iostream and its associated librar-
ies. The standard input/output library for C, described by the header cstdio, is still
available in C++. However, C++ introduces iostream, which implements its own collec-
tion of input/output functions.

Stream I/O is described as a set of classes in iostream. These classes overload the put to
and get from operators << and >>. Streams can be associated with files, and examples
of file processing using streams are discussed in this chapter. A lot of file processing
requires character-handling macros, which are found in ctype. These are also discussed
here.

In OOP, objects should know how to print themselves, and in this text we have fre-
quently made print() a member function of a class. Notationally, it is also useful to
overload << for user-defined ADTs. In this section, we develop output functions for the
types card and deck to illustrate these techniques.

9.1 The Output Class ostream

Output is inserted into an object of type ostream, declared in the header file iostream.
An operator << is overloaded in this class to perform output for the standard types.
The overloaded left-shift operator is called the insertion, or put to, operator. The opera-
tor is left-associative and returns a value of type ostream&. The standard output
ostream corresponding to stdout is cout, and the standard output ostream corre-
sponding to stderr is cerr.

The effect of executing a simple output statement, such as

cout << "x = " << x << '\n';

is to print to the screen a string of four characters, followed by an appropriate repre-
sentation for the output of x, followed by a new line. The representation depends on
which overloaded version of << is invoked.

9.1

Ira Pohl’s C++ by Dissection 9.2 Formatted Output and iomanip 367
The class ostream contains public members, such as

ostream& operator<<(int i);
ostream& operator<<(long i);
ostream& operator<<(double x);
ostream& operator<<(char c);
ostream& operator<<(const char* s);
ostream& put(char c);
ostream& write(const char* p, int n);
ostream& flush();

The member function put() outputs the character representation of c. The member
function write() outputs the string of length n pointed at by p. The member function
flush() forces the stream to be written. Since these are member functions, they can be
used as follows:

cout.put('A'); // output A

char* str = "ABCDEFGHI";
cout.write(str + 2, 3); // output CDE
cout.flush(); // empty buffer to stream

9.2 Formatted Output and iomanip

The put to operator << produces by default the minimum number of characters needed
to represent the output. As a consequence, output can be confusing, as seen in the fol-
lowing example:

int i = 8, j = 9;

cout << i << j; // confused: prints 89
cout << i << " " << j; // better: prints 8 9
cout << "i= " << i << " j= " << j; // best: i= 8 j= 9

Two schemes that we have used to properly space output are to have strings separating
output values and to use \n and \t to create new lines and tabbing. We can also use
manipulators in the stream output to control output formatting.

A manipulator is a value or a function that has a special effect on the stream on which it
operates. A simple example of a manipulator is endl, defined in iostream, which out-
puts a newline and flushes the ostream.

x = 1;
cout << "x = " << x << endl;

This immediately prints the line

x = 1

Another manipulator, flush, flushes the ostream, as in

9.2

Ira Pohl’s C++ by Dissection 9.2 Formatted Output and iomanip 368
cout << "x = " << x << flush;

This has almost the same effect as the previous example but does not advance to a new
line.

The manipulators dec, hex, and oct can be used to change integer bases. The default is
base 10. The conversion base remains set until it is explicitly changed.

In file manip.cpp

// Using different bases in integer I/O

int main()
{

int i = 10, j = 16, k = 24;
cout << i << '\t' << j << '\t' << k << endl;
cout << oct << i << '\t' << j << '\t' << k << endl;
cout << hex << i << '\t' << j << '\t' << k << endl;
cout << "Enter 3 integers, e.g. 11 11 12a" << endl;

cin >> i >> hex >> j >> k;
cout << dec << i << '\t' << j << '\t' << k << endl;

}

The resulting output is

10 16 24
12 20 30
a 10 18
Enter 3 integers, e.g. 11 11 12a
11 17 298

Dissection of the manip Program

■ int i = 10, j = 16, k = 24;

In this program, we show how to use manipulators to help format
output.

■ cout << i << '\t' << j << '\t' << k << endl;

The default is decimal output with no separation. In this case, the tab
character is used to separate the values. Better would be

cout << "i = " << i << "\tj = " << j
<< "\tk = "<< k << endl;

■ cout << oct << i << '\t' << j << '\t' << k << endl;

The manipulator oct changes to an octal representation, so the
value of i, which is decimal 10, is printed as the octal 12.

http://www.cse.ucsc.edu/~pohl/C++BD/09Chap/manip.cpp

Ira Pohl’s C++ by Dissection 9.2 Formatted Output and iomanip 369
The preceding manipulators are found in iostream. Other manipulators are found in
iomanip. For example, setw(int width) is a manipulator that changes the default field
width for the next formatted I/O operation to the value of its argument. This value
reverts to the default. Table 9.1 briefly lists the standard manipulators, the function of
each, and the location where each is defined.

■ cout << hex << i << '\t' << j << '\t' << k << endl;

The manipulator hex changes to a hexadecimal representation, so
the value of i, which is decimal 10, is printed as the hexadecimal a.

■ cout << "Enter 3 integers, e.g. 11 11 12a" << endl;
cin >> i >> hex >> j >> k;
cout << dec << i << '\t' << j << '\t' << k << endl;

Input streams can also set the base using manipulators. Thus, for cin
the variable of i is read in as decimal, but the manipulator hex
changes the base for the next values. The base manipulator is persis-
tent. If we had not reset cout to dec, the values would have printed
as hexadecimal because the last setting for cout was hexadecimal.
Thus, the value of j input as hexadecimal 11 prints as decimal 17.
The value of k input as hexadecimal 12a prints as decimal 298.

Table 9.1 I/O Manipulators

Manipulator Function File

endl Outputs newline and flush iostream

ends Outputs null in string iostream

flush Flushes the output iostream

dec Uses decimal iostream

hex Uses hexadecimal iostream

oct Uses octal iostream

ws Skips white space on input iostream

skipws Skips white space iostream

noskipws Does not skip white space iostream

boolalpha Prints true and false iostream

noboolalpha Prints 1 and 0 iostream

fixed Prints using format 123.45 iostream

Ira Pohl’s C++ by Dissection 9.2 Formatted Output and iomanip 370
A further example demonstrates the use of setw, setfill, and setprecision manipu-
lators.

In file format.cpp

// Display use of formatting manipulators

#include <iostream>
#include <iomanip>
using namespace std;

// pi to 21 places
const long double pi = 3.14159265358979323846L;

inline long double area(long double rad)
{ return (pi * rad * rad); }

int main()
{

long double r;

cout << "\nEnter radius: ";
cin >> r;
cout << "\nArea is " << setw(20) << area(r);
cout << "\nArea is " << setw(20)

<< setprecision(10) << area(r);
cout << "\nArea is " << area(r);
cout << "\nArea is " << setprecision(20)

<< area(r) << endl;
cout << setfill('*');
cout << setprecision(4) << setw(20) << r << endl;

}

scientific Prints using format 1.2345e+02 iostream

left Fills characters to right of value iostream

right Fills characters to left of value iostream

internal Fills characters between sign and value iostream

setw(int) Sets field width iomanip

setfill(int) Sets fill character iomanip

setbase(int) Sets base format iomanip

setprecision(int) Sets floating-point precision iomanip

setiosflags(long) Sets format bits iomanip

resetiosflags(long) Resets format bits iomanip

Table 9.1 I/O Manipulators

Manipulator Function File

http://www.cse.ucsc.edu/~pohl/C++BD/09Chap/format.cpp

Ira Pohl’s C++ by Dissection 9.2 Formatted Output and iomanip 371
The output from this program when 1.0 is entered for r is

Enter radius:
Area is 3.14159
Area is 3.141592654
Area is 3.141592654
Area is 3.141592653589793238
*******************1

Dissection of the format Program

■ #include <iomanip>

This file contains many of the standard manipulators, such as setw()
and setprecision().

■ const long double pi = 3.14159265358979323846L;

We want to display a large number of digits in this test program.

■ cout << "\nArea is " << setw(20) << area(r);

The width for printing the area(r) is 20 characters. It prints as

This is right adjusted and prints by default 6 significant digits.

■ cout << "\nArea is " << setw(20)
<< setprecision(10) << area(r);

cout << "\nArea is " << area(r);
cout << "\nArea is " << setprecision(20)

<< area(r) << endl;

Notice how these change the number of significant digits printed.

■ cout << setfill('*');
cout << setprecision(4) << setw(20) << r << endl;

This prints 19 fill characters '*' and r, which is exactly 1.

Area is 3.14159

*******************1

Ira Pohl’s C++ by Dissection 9.3 User-Defined Types: Output 372
As expected, the setprecision() yields a different number of decimal digits of float-
ing-point precision. Be careful not to exceed the meaningful precision of the result. The
fill character by default is blank, and here in the last line of output, it was changed to
the star. The output widths are adjusted per each output value. Otherwise, the default
width is the exact number of characters needed to display a result.

9.3 User-Defined Types: Output

User-defined types have typically been printed by creating a member function print().
Let us use the types card and deck as an example of a simple user-defined type. We
write out a set of output routines for displaying cards:

In file print_deck.cpp

// Card output

const char pips_symbol[14] = {'?', 'A', '2', '3', '4',
'5', '6', '7', '8', '9', 'T', 'J', 'Q', 'K' };

const char suit_symbol[4] = { 'c', 'd', 'h', 's' };

enum suit { clubs, diamonds, hearts, spades };

class pips {
public:

void assign(int n) { p = n % 13 + 1; }
void print() { cout << pips_symbol[p]; }

private:
int p;

};

In C++, being good at manipulation and willing to use it
isn’t a character flaw!

9.3

http://www.cse.ucsc.edu/~pohl/C++BD/09Chap/print_deck.cpp

Ira Pohl’s C++ by Dissection 9.3 User-Defined Types: Output 373
class card {
public:

suit s;
pips p;
void assign(int n)

{ cd = n; s = suit(n / 13); p.assign(n); }
void pr_card()

{ p.print(); cout << suit_symbol[s] << " "; }
suit get_suit() { return s; }
pips get_pips() { return p; }

private:
int cd; // a cd is from 0 to 51

};

class deck {
public:

void init_deck();
void shuffle();
void deal(int, int, card*);
void pr_deck();

private:
card d[52];

};

void deck::pr_deck()
{

for (int i = 0; i < 52; ++i) {
if (i % 13 == 0) // 13 cards to a line

cout << endl;
d[i].pr_card();

}
cout << endl;

}

Each card is printed out in two characters. If d is a variable of type deck, then
d.pr_deck() prints out the entire deck, 13 cards to a line.

In keeping with the spirit of OOP, it would also be nice to overload << to accomplish the
same aim. The operator << has two arguments—an ostream& and the ADT—and it must
produce an ostream&. You want to use a reference to a stream and to return a reference
to a stream, whenever overloading << or >>, because you do not want to copy a stream
object. Let us write these functions for the types card and deck:

In file print_deck.cpp

ostream& operator<<(ostream& out, pips& x)
{

return (out << pips_symbol[x.p]);
}

http://www.cse.ucsc.edu/~pohl/C++BD/09Chap/print_deck.cpp

Ira Pohl’s C++ by Dissection 9.4 The Input Class istream 374
ostream& operator<<(ostream& out, card& cd)
{

return (out << cd.p << suit_symbol[cd.s]);
}

ostream& operator<<(ostream& out, deck& x)
{

for (int i = 0; i < 52; ++i) {
out << x.d[i];
if ((i + 1) % 13 == 0) // 13 cards to a line

out << endl;
else

out << " ";
}
return out;

}

The functions that operate on pips and deck need to be friends of the corresponding
class, because they access private members.

See Section 5.17, Overloading << and >>, on page 222 for more examples of overloading
the << operator.

9.4 The Input Class istream

An operator >> is overloaded in istream to perform input for the standard types. The
overloaded right-shift operator is called the extraction, or get from, operator. The stan-
dard input istream corresponding to stdin is cin.

The effect of executing a simple input statement, such as

cin >> x >> i;

is to read from standard input, normally the keyboard, a value for x and then a value
for i. White space is ignored and is only used to separate tokens in the input stream.

The class istream contains public members, such as

istream& operator>>(int& i);
istream& operator>>(long& i);
istream& operator>>(double& x);
istream& operator>>(char& c);
istream& operator>>(char* s);
istream& get(char& c);
istream& get(char* s, int n, char c = '\n');
istream& getline(char* s, int n, char c = '\n');
istream& read(char* s, int n);

The member function get(char& c) inputs the character representation to c, including
white space characters. The member function get(char* s, int n, int c = '\n')

9.4

Ira Pohl’s C++ by Dissection 9.5 Files 375
inputs into the string pointed at by s at most n - 1 characters, up to the specified
delimiter character c or an end-of-file (EOF). A terminating 0 is placed in the output
string. The optionally specified default character acts as a terminator but is not placed
in the output string. If not specified, the input is read up to the next newline. The mem-
ber function getline() works like get(char*, int, char = '\n'), except that it
discards rather than keeps the delimiter character in the designated istream. The
member function read(char* s, int n) inputs into the string pointed at by s at most
n characters. It sets the failbit if an end-of-file is encountered before n characters are
read. (See Section 9.8, Using Stream States, on page 380.) In systems that have imple-
mented ANSI standard exceptions, the ios_base::failure exception may be thrown.

cin.get(c); // one character
cin.get(s, 40); // length 40 or terminated by \n
cin.get(s, 10, '*'); // length 10 or terminated by *
cin.getline(s, 40); // same as get but \n discarded

Other useful member functions are

int gcount(); // number of recently extracted chars
istream& ignore(int n=1, int delimiter=EOF); // skips
int peek(); // get next char without extraction
istream& putback(char c); // puts back character

When overloading the >> operator to produce input to a user-defined type, the typical
form is

istream& operator>>(istream& p, user-defined-type& x)

If the function needs access to private members of x, it must be made a friend of class
x. A major point is to make x a reference parameter so that its value can be modified.

9.5 Files

C systems have stdin, stdout, and stderr as standard files. In addition, systems may
define other standard files, such as stdprn and stdaux. Abstractly, a file may be
thought of as a stream of characters that are processed sequentially. The standard C++
files are shown in Table 9.2.

Table 9.2 Standard Files

C C++ Name Connected To

stdin cin Standard input file Keyboard

stdout cout Standard output file Screen

stderr cerr Standard error file Screen

stdprn cprn Standard printer file Printer

stdaux caux Standard auxiliary file Auxiliary port

9.5

Ira Pohl’s C++ by Dissection 9.5 Files 376
The C++ stream input/output ties the first three of these standard files to cin, cout,
and cerr, respectively. Typically, C++ ties cprn and caux to their corresponding stan-
dard files, stdprn and stdaux. There is also clog, which is a buffered version of cerr.
Other files can be opened or created by the programmer. We show how to do this in the
context of writing a program that double-spaces an existing file into an existing or new
file. The file names are specified on the command line and passed into argv.

File I/O is handled by including fstream, which contains the classes ofstream and
ifstream for output and input file-stream creation and manipulation. To properly open
and manage an ifstream or ofstream related to a system file, you must first declare it
with an appropriate constructor.

ifstream();
ifstream(const char*, int = ios::in, int prot = filebuf::openprot);
ofstream();
ofstream(const char*, int = ios::out, int prot = filebuf::openprot);

The constructor of no arguments creates a variable that is later associated with an input
file. The constructor of three arguments takes as its first argument the named file. The
second argument specifies the file mode. The third argument is for file protection. The
arguments for file mode are defined as enumerators in class ios, as shown Table 9.3.

Thus, the default for an ifstream is input mode, and the default for an ofstream is
output mode. If file opening fails, the stream is put into a bad state. The mode can be
tested with the !operator. In libraries built with exceptions, the failure exception can
be thrown.

Other important member functions found in fstream include

// Opens ifstream file

void open(const char*, int = ios::in, int prot = filebuf::openprot);

// Opens ofstream file
void open(const char*, int = ios::out, int prot= filebuf::openprot);

void close();

Table 9.3 File Modes

Argument Mode

ios::in Input mode

ios::app Append mode

ios::out Output mode

ios::ate Open and seek to end-of-file

ios::nocreate Open but do not create mode

ios::trunc Discard contents and open

ios::noreplace If file exists, open fails

Ira Pohl’s C++ by Dissection 9.5 Files 377
These functions can be used to open and close appropriate files. If you create a file
stream with the default constructor, you would normally use open() to associate it
with a file. You could then use close() to close the file and to open another file, using
the same stream. Typically, a file stream will be closed automatically when it goes out of
scope. Additional member functions in other I/O classes allow for a full range of file
manipulation. The following program uses both the fstream and the cstdlib libraries:

In file double_space.cpp

// A program to double space a file.
// Usage: executable f1 f2
// f1 must be present and readable
// f2 must be writable if it exists

#include <fstream>
#include <cstdlib>
using namespace std;

void double_space(ifstream& f, ofstream& t)
{

char c;

while (f.get(c)) {
t.put(c);
if (c == '\n')

t.put(c);
}

}

int main(int argc, char** argv)
{

if (argc != 3) {
cout << "\nUsage: " << argv[0]

<< " infile outfile" << endl;
exit(1);

}

ifstream f_in(argv[1]);
ofstream f_out(argv[2]);

if (!f_in) {
cerr << "cannot open " << argv[1] << endl;
exit(1);

}
if (!f_out) {

cerr << "cannot open " << argv[2] << endl;
exit(1);

}
double_space(f_in, f_out);

}

http://www.cse.ucsc.edu/~pohl/C++BD/09Chap/double_space.cpp

Ira Pohl’s C++ by Dissection 9.5 Files 378
Dissection of the double_space Program

■ void double_space(ifstream& f, ofstream& t)

This function is a typical file manipulation function. It is idiomatic of
much of C++ file processing. In this case, there is an input file that is
processed with the results going to an output file.

■ char c;

while (f.get(c)) {

Much of file processing is handled one character at a time. The
expression f.get(c) returns as 0 when the stream can no longer be
read. Otherwise, it returns with a nonzero value and reads into c the
character value, including white space characters.

■ t.put(c);
if (c == '\n')

t.put(c);

The loop places each character into the output file. It tests each char-
acter for being a newline. Where a newline is found, it outputs a sec-
ond newline, thus double spacing the file.

■ int main(int argc, char** argv)
{

if (argc != 3) {
cout << "\nUsage: " << argv[0]

<< " infile outfile" << endl;
exit(1);

}

This is idiomatic for generating an executable that utilizes command
line arguments. The resulting code would be something like

double_space my_input my_output

Here, the expectation is that there are three strings on the command
line. The name of the executable, followed by the input and output
file names. This correct usage is tested by main().

■ ifstream f_in(argv[1]);
ofstream f_out(argv[2]);

The declarations of the two streams cause constructor invocation to
properly open these files.

Ira Pohl’s C++ by Dissection 9.6 Using Strings as Streams 379
9.6 Using Strings as Streams

The class stringstream allows strings to be treated as iostreams. When using
stringstreams, the sstring library must be included. An older library strstring does the
same for char* strings. Check your system to determine which of these libraries is
available.

The istringstream is used when input is from a string rather than from a stream. The
overloaded >> get from operator may be used with istringstream variables. The
forms for declaring an istringstream variable are

istringstream name (char* s);
istringstream name (char* s, int n);

where s is a string to use as input, n is the optional length of the input buffer, and name
is used instead of cin. If n is not specified, the string must be terminated with a 0. The
end-of-string sentinel is treated as an EOF. An example follows:

In file str_stream.cpp

#include <iostream>
#include <sstream> // replaces strstream
#include <cstdlib>
using namespace std;

int main()
{

string name;
int total;

string scores[5] = { "Vicki 2", "Nicole 5", "Boston 8",
"Chris 7", "Don 3" };

istringstream ist(scores[4]);// ist uses scores[4]
ist >> name >> total; // name: Don, total: 3
cout << "\nname: " << name << " total: "

<< total << endl; }

■ if (!f_in) {
cerr << "cannot open " << argv[1] << endl;
exit(1);

}
if (!f_out) {

cerr << "cannot open " << argv[2] << endl;
exit(1);

}
double_space(f_in, f_out);

We test that the constructors properly opened the two files. If there is
no error exit, the double_space() function is invoked.

9.6

http://www.cse.ucsc.edu/~pohl/C++BD/09Chap/str_stream.cpp

Ira Pohl’s C++ by Dissection 9.7 The Functions and Macros in ctype 380
Here, we have a series of five strings stored in an array. We take scores[4] as the ini-
tializer for ist. Then the overloaded extraction operator >> can be used to assign
"Don" to name and 3 to total.

The ostringstream declarations have the following forms:

ostringstream name();
ostringstream name(char* s, int n,

int mode = ios::out);

where s is pointer to buf to receive string, n is the optional size of buffer, and mode
specifies whether the data are to be put into an empty buffer (ios::out) or appended
to the existing null-terminated string in the buffer (ios::app or ios::ate). If no size is
specified, the buffer is dynamically allocated. The ostringstream variable may use the
overloaded put to operator << to build the string. The use of ostringstream is particu-
larly useful when you want to construct a single string from information kept in a vari-
ety of variables. In the following example, note that ost2 must contain an existing null-
terminated string in order for the append to work correctly:

ostringstream ost1;
ostringstream ost2 (charbuf, 1000, ios::app);

ost1 << name << " " << score << endl;
ost2 << address << city << endl << ends;

9.7 The Functions and Macros in ctype

The system provides a standard header file, ctype.h, or ctype, which contains a set of
functions used to test characters and a set of functions used to convert characters, as
shown in Table 9.4. These functions may be implemented as macros or as inline func-
tions. This is mentioned here because of its usefulness in C++ input/output. Those
functions that only test a character return an int value. The argument is type int.

Other functions, as shown in Table 9.5, provide for the appropriate conversion of a
character value. Note that these functions do not change the value of c stored in mem-
ory.

The ASCII code functions are usual on ASCII systems.

9.8 Using Stream States

Each stream has an associated state that can be tested. The states on existing systems
are

enum io_state { goodbit, eofbit, failbit, badbit };

9.7

9.8

Ira Pohl’s C++ by Dissection 9.8 Using Stream States 381
ANSI systems propose the type ios_base::iostate to be a bitmask type defining
these values. When the values other than goodbit are set by an I/O operation, ANSI sys-
tems can throw the I/O standard exception ios_base::failure. Associated with this
exception is a member function what() returning a char* message that gives a reason
for the failure.

The values for a particular stream can be tested by using the public member functions
in Table 9.6.

Table 9.4 ctype Functions

Function Nonzero (true) Is Returned if c Is

isalpha(c) A letter

isupper(c) An uppercase letter

islower(c) A lowercase letter

isdigit(c) A digit

isxdigit(c) A hexadecimal digit

isspace(c) A white space character

isalnum(c) A letter or digit

ispunct(c) A punctuation character

isgraph(c) A printing character, except space

isprint(c) A printable character

iscntrl(c) A control character

isascii(c) An ASCII code

Table 9.5 ctype Conversion Functions

toupper(c) Changes c from lowercase to uppercase

tolower(c) Changes c from uppercase to lowercase

toascii(c) Changes c to ASCII code

Table 9.6 Stream State Functions

int good(); Nonzero if not EOF or other error bit set

int eof(); Nonzero if istream eofbit set

int fail(); Nonzero if failbit, badbit set

int bad(); Nonzero if badbit set

int rdstate(); Returns error state

void clear(int i=0); Resets error state

int operator!(); Return true if failbit or badbit set

operator void*() const; Return false if failbit or badbit set

Ira Pohl’s C++ by Dissection 9.8 Using Stream States 382
Testing for a stream’s being in a nongood state can protect a program from hanging up.
A stream state of good means that the previous input/output operation worked and
that the next operation should also. A stream state of EOF means that the previous
input operation returned an end-of-file condition. A stream state of fail means that
the previous input/output operation failed but that the stream is usable once the error
bit is cleared. A stream state of bad means that the previous input/output operation is
invalid but that the stream may be usable once the error condition is corrected.

It is also possible to directly test a stream. It is nonzero if it is in either a good or an
EOF state.

if (cout << x) // output succeeded
·····

else
····· // output failed

The following program counts the number of words coming from the standard input.
Normally, this would be redirected to use an existing file. The program illustrates ideas
discussed in this and the previous two sections.

In file word_count.cpp

// The word_count program for counting words
// Usage: executable < file

int found_next_word();

int main()
{

int word_cnt = 0;

while (found_next_word())
++word_cnt;

cout << "word count is " << word_cnt << endl;
}

int found_next_word()
{

char c;
int word_sz = 0;

cin >> c;
while (!cin.eof() && !isspace(c)) {

++word_sz;
cin.get(c);

}
return word_sz;

}

A non-white space character is received from the input stream and is assigned to c. The
while loop calls the isspace() function in the ctype library to test that adjacent char-
acters are not white space. The loop terminates when either an end-of-file character or a

http://www.cse.ucsc.edu/~pohl/C++BD/09Chap/word_count.cpp

Ira Pohl’s C++ by Dissection 9.9 Mixing I/O Libraries 383
white space character is found. The word size is returned as 0 when the only non-white
space character found is the end-of-file. One last point: The loop cannot be rewritten as

while (!cin.eof() && !isspace(c)) {
++word_sz;
cin >> c;

}

because this would skip white space.

9.9 Mixing I/O Libraries

Throughout this text, iostream has been used. It is perfectly reasonable to want to con-
tinue using stdio. This is the standard in the C community, and it is well understood. Its
disadvantage is that it is not type-safe.

Functions such as printf() use unchecked variable-length argument lists. Stream I/O
requires, as arguments to its functions and overloaded operators, assignment-compati-
ble types. You might also want to mix both forms of I/O. Synchronization problems can
occur because the two libraries use different buffering strategies. This can be avoided
by calling

ios::sync_with_stdio();

The following program coordinates the two libraries:

9.9

We are switching from C to C++, and want to start using the
newer iostream library, but I’ve got 240,000 lines of C code

to integrate, which uses stdio!

Ira Pohl’s C++ by Dissection 9.10 Software Engineering: I/O 384
In file mix_io.cpp

// The mix_io program with synchronized I/O

unsigned long fact(int n)
{

unsigned long f = 1;

for (int i = 2; i <= n; ++i)
f *= i;

return f;
}

int main()
{

int n;

ios::sync_with_stdio();

do {
cout << "\nEnter n positive or 0 to halt: ";
scanf("%d", &n);
printf("\n fact(%d) = %ld", n, fact(n));

} while (n > 0);
cout << "\nend of session" << endl;

}

Note that for integer values greater than 12, the results overflow. It is safe to mix stdio
and iostream, provided they are not mixed on the same file.

9.10 Software Engineering: I/O

STL containers and iterators are a natural pattern to use when writing code for input/
output streams. Both model the sequence abstraction. STL provides special input and
output iterators for handling I/O. These again demonstrate how sequences are a very
powerful software design tool. Let us write a routine that reads a file into a vector,
outputs its contents, and sums the vector:

In file io_iterators.cpp

// Use of istream_iterator and ostream_iterator

#include <iterator>
#include <iostream>
#include <fstream>
#include <vector>
#include <numeric>
using namespace std;

9.10

http://www.cse.ucsc.edu/~pohl/C++BD/09Chap/mix_io.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/09Chap/io_iterators.cpp

Ira Pohl’s C++ by Dissection 9.10 Software Engineering: I/O 385
int main()
{

int sum;
istream_iterator<int> in(*new ifstream("data"));
istream_iterator<int> eos;
ostream_iterator<int> out(cout, "\t");
vector<int> v(in, eos);

copy(v.begin(), v.end(), out);
sum = accumulate(v.begin(), v.end(), 0);
cout << "sum = " << sum << endl;

}

Dissection of the io_iterators Program

■ istream_iterator<int> in(*new ifstream("data"));

This opens a file for input. The files name is data. This is used to ini-
tialize the istream_iterator in. Note that some older compilers
require the use of ptrdiff_t parameter as follows:

istream_iterator<int, ptrdiff_t>
in(*new ifstream("data"));

■ istream_iterator<int> eos;

This establishes the end-of-stream iterator. This allows us to use in
as the beginning of the stream and eos as the end-of-stream guard.
Note that some older compilers require the use of ptrdiff_t param-
eter as follows:

istream_iterator<int, ptrdiff_t> eos;

■ ostream_iterator<int> out(cout, "\t");

This constructs the correspondence between cout and the iterator
out. Using this iterator injects a tab character after each int value
output.

■ vector<int> v(in, eos);

This creates a vector initialized from the file data. It reads all integer
values until it hits the end-of-file.

■ copy(v.begin(), v.end(), out);

The copy() algorithm writes the vector v to cout. This is a simple
powerful idiom for stream output from any sequence.

Ira Pohl’s C++ by Dissection 9.11 Dr. P’s Prescriptions 386
9.11 Dr. P’s Prescriptions

■ Remember GIGO—garbage in, garbage out.

■ Input should be prompted for and checked by echoing.

■ Output should be easily readable by a user of the program who does not have source
code available.

■ Use iostream instead of cstdio.

■ Provide overloaded functions << and >> in classes.

Garbage in, garbage out is one of the prime axioms of computation. This implies that
the program must check input as rigorously as possible. I/O is critical to the user of
your program. Without meaningful I/O the program is useless. In this text, we have kept
many of the examples simple, and the text programs assume that a user will enter
meaningful data. In real-world programs, the user interface has to be robust. This
implies that the user will be prompted for appropriate data. The program will test that
the input is what the user intended by asking the user to confirm that the data is cor-
rect. In the case of incorrect data, the user will be allowed to reenter new data.

Output needs to be formatted in a readable manner. Think in terms of the naive user
being able to read the output without having to understand any detail of the program or
algorithm.

One important improvement on iostream over cstdio is its type-safety. There are rea-
sons to use cstdio, such as maintenance of legacy code or a need for special formatting,
but in most cases the iostream functionality is preferred.

There is an expectation in the C++ community that any user-defined type will have over-
loaded the << and >> for output and input, respectively. This design consistency is a
trait of a good object-oriented programmer.

9.12 C++ Compared with Java

Java has type-safe I/O but does not have operator overloading. In Java, most output to
the terminal is done using println(), as we discussed in Section 2.11, C++ Compared
with Java, on page 67. Java also has the GUI library Swing, which is discussed exten-
sively in Java by Dissection by Ira Pohl and Charile McDowell (Addison-Wesley 1999)
Chapters 7 and 8. In this section, we present an example of Java writing to a file. This is
taken from Java by Dissection, Section 10.2, pages 347-348.

The simplest way to write text to a file requires the use of two different classes—
PrintWriter and FileWriter—both from the standard package java.io. The class
PrintWriter has the familiar methods print() and println() that we’ve been using
to write to the console. To create a PrintWriter object that is associated with a partic-
ular file, we must first create a FileWriter object for that file. This object is then
passed to the constructor for the PrintWriter, as shown in the following example:

9.11

9.12

Ira Pohl’s C++ by Dissection 9.12 C++ Compared with Java 387
In file HelloFile.java

//Writing to a Java file

import java.io.*;

class HelloFile {
public static void main(String[] args)

throws java.io.IOException
{

PrintWriter out =
new PrintWriter(new FileWriter("hello.txt"));

out.println("Hello, file system!");
out.close();

}
}

If you run this program, it creates a file, hello.txt, which you can view with any text edi-
tor. The contents of the file are the one line:

Hello, file system!

Dissection of the HelloFile Program

■ import java.io.*;

We must import the package java.io. That is where the Print-
Writer and FileWriter classes are defined.

■ public static void main(String[] args)
throws java.io.IOException

Many of the methods for I/O can generate an I/O exception. As dis-
cussed in Chapter 10, Exceptions and Program Correctness, an excep-
tion is something unexpected that occurs. Often, an exception is
really an error. In this example, if the output file couldn’t be opened
for some reason, an IOException would be generated. A statement
or method that generates an exception is said to “throw an excep-
tion.” The class IOException is defined in the package java.io. We
can either give the full name of the exception, java.io.IOExcep-
tion, as in this example, or, because we are importing java.io.*, we
can use the shorter name, IOException.

■ PrintWriter out =
new PrintWriter(new FileWriter("hello.txt"));

The class FileWriter needs the name of the file as a string. This
name can include directory information, which is platform depen-
dent. When no directory information is specified, the file is created in
the operating system’s notion of the current directory. The resulting
FileWriter object is used to construct a PrintWriter object.

http://www.cse.ucsc.edu/~pohl/C++BD/09Chap/HelloFile.java

Ira Pohl’s C++ by Dissection 9.12 C++ Compared with Java 388
Why do we need the two classes PrintWriter and FileWriter? The reason is that the
Java I/O package is designed to support many different types of input/output process-
ing. Think of the classes in the package as building blocks. By assembling the correct
set of building blocks, you can meet many different I/O processing needs. You can use
the class FileWriter to write a stream of text characters into a file, but the methods in
FileWriter are fairly primitive and support only the writing of text from String,
char, and char[] values. The class PrintWriter from the same package can generate
a stream of text characters from any value. The primary methods in class PrintWriter
are the familiar print() and println() used for writing to the console. By passing a
FileWriter object to the constructor of a PrintWriter, you are logically creating a
sequence or pipeline of processing steps.

You can use the class PrintWriter to create text streams that go somewhere other
than to a file. For example, you can also use a PrintWriter to write over a network or
to write to a character array. The output of the PrintWriter is sent to the stream spec-
ified in the constructor. In this case, it is a FileWriter.

■ out.println("Hello file system!");
out.close();

Anything that we can do with System.out.print() or Sys-
tem.out.println(), we can do with the corresponding method from
PrintWriter. Closing the file when the program terminates is essen-
tial. Failure to close the PrintWriter stream may cause some or all
of the output not to appear in the file because of unflushed buffers.

Ira Pohl’s C++ by Dissection Summary 389
Summary

■ Output is inserted into an object of type ostream, declared in the header file
iostream. An operator << is overloaded in this class to perform output for the stan-
dard types. The overloaded left_shift operator is called the insertion, or put to, oper-
ator. The standard output ostream is cout.

■ The operator >> is overloaded in istream to perform input for standard types. The
overloaded right-shift operator is called the extraction, or get from, operator. The
standard input istream is cin.

■ A manipulator is a value or a function that has a special effect on the stream on
which it operates. Common ones include endl and setw().

■ Code for overloading operator<< often looks like

ostream& operator<<(ostream& out, type& x)
{

out << x.part << ·····// output members
return out;

}

■ File I/O is handled by including fstream, which contains the classes ofstream and
ifstream for output and input file-stream creation and manipulation. To properly
open and manage an ifstream or ofstream related to a system file, you must first
declare it with an appropriate constructor.

■ The istringstream is used when input is from a string rather than from a stream.
The overloaded >> get from operator may be used with istringstream variables.

■ Each stream has an associated state that can be tested. The states on existing sys-
tems are tested with streamname.good() and are

enum io_state { goodbit, eofbit, failbit, badbit };

■ Synchronization problems can occur because the two I/O libraries, iostream and cst-
dio, use different buffering strategies. This can be avoided by calling

ios::sync_with_stdio();

Ira Pohl’s C++ by Dissection Review Questions 390
Review Questions

1. What two standard output streams are provided by iostream?

2. What ctype method capitalizes alphabetic characters?

3. How is EOF tested for when using cin?

4. Name two manipulators and describe their purpose.

5. What method can be used to read strings from a file?

6. The class allows strings to be treated as iostreams, and the library must
be included.

7. In OOP, objects should know how to print themselves, and it is best to do this by
 for user-defined ADTs.

8. Synchronization problems can occur when using stdio and iostream in the same
program because the two libraries use different buffering strategies, which can be
avoided by calling .

9. Fill in the C++ stream names and their default physical connection devices in Table
9.1.

10. File I/O is handled by including , which contains the classes and for
output and input file-stream creation and manipulation.

Table 9.1 Standard Files

C C++ Name Connected to

stdin Standard input file

stdout Standard output file

stderr Standard error file

stdprn Standard printer file

stdaux Standard auxiliary file

Ira Pohl’s C++ by Dissection Exercises 391
Exercises

1. Write an array of strings to a file named strings.txt. Initialize the array with the four
strings "I am", "a text", "file written", and "to strings.txt".

2. Create an array of strings that receive their input from the file save.txt. Specify the
number of strings by asking the user to enter the number of lines to be read. Echo
the strings read to cout.

3. Redo the preceding exercise to end when the input is a special sentinel string. For
example, you may use an empty string as the sentinel.

4. Write a program that prints 1,000 random numbers to a file.

5. Write a program to read 1,000 random numbers in the range 0 to 1 from a file (see
exercise 4) and plot their distribution. That is, divide the interval 0-1 into tenths and
count the numbers that fall into each tenth. This gives you some confidence in their
randomness.

6. Modify the preceding two exercises to allow the user to specify the number of ran-
dom numbers and the name of the file on the command line. Store the number of
generated numbers as the first entry in the file.

7. Read a text file and write it to a target text file, changing all lowercase to uppercase
and double spacing the output text.

8. Modify the program in the previous exercise to number each nonblank line.

9. Write a class dollar. Have its overloaded I/O operators print a number such as
12345.67 as $12,345.67. You should decide whether this class should internally
store a dollar amount as two ints or a simple double.

10. Write a program that reads a text file and computes the relative frequency of each of
the letters of the alphabet. You can use an array of length 26 to store the number of
occurrences of each letter. You can use tolower() to convert uppercase letters.
Subtracting 'a' then gives you a value in the range 0 to 25, inclusive, which you can
use to index into the array of counts.

11. Run the program from the previous exercise on several large text files and compare
the results. How can you use this information to break a simple substitution code?

12. Compile the following program and put the executable code into the file try_me:

Ira Pohl’s C++ by Dissection Exercises 392
#include <iostream>

int main()
{

cout << "A is for apple" << endl;
cerr << "and alphabet pie!" << endl;

}

Execute the program so you understand its effects. What happens when you redirect
the output? Try the command

try_me > temp

Make sure you read the file temp after you do this. If UNIX is available to you, try the
command

try_me >& temp

This causes the output that is written to cerr to be redirected, too. Make sure that
you look at what is in temp. You may be surprised!

13. Write a program to number the lines in a file. The input file name should be passed
to the program as a command line argument. The program should write to cout.
Each line in the input file should be written to the output file with the line number
and a space prepended.

14. Modify the program you wrote in the previous exercise so that the line numbers are
right-adjusted. The following output is not acceptable:

·····
9 This is line nine.
10 This is line ten.

15. Our program that double-spaces a file can be invoked with the command

dbl_space infile outfile

But if outfile exists, it is overwritten; this is potentially dangerous. Rewrite the pro-
gram so that it writes to stdout instead. Then the program can be invoked with the
command

dbl_space infile > outfile

This program design is safer. Of all the system commands, only a few are designed
to overwrite a file. After all, nobody likes to lose a file by accident.

16. Write the function getwords(in, k, words) so that it reads k words from a file
using the input stream in and places them in the string words, separated by new-
lines. The function should return the number of words successfully read and stored
in words. Write a program to test your function.

17. Write a program that displays a file on the screen 20 lines at a time. The input file
should be given as a command line argument. The program should display the next
20 lines after a carriage return has been typed. (This is an elementary version of the
more utility in UNIX.)

Ira Pohl’s C++ by Dissection Exercises 393
18. Modify the program you wrote in the previous exercise. Your program should dis-
play one or more files given as command line arguments. Also, allow for a command
line option of the form -n, where n is a positive integer specifying the number of
lines that are to be displayed at one time.

19. Write a program called search that searches for patterns. If the command

search hello my_file

is given, then the string pattern hello is searched for in the file my_file. Any line that
contains the pattern is printed. (This program is an elementary version of grep.)
Hint: Use STL functions.

20. (Java) In the following Java example, we demonstrate how to detect an EOF with the
standard Java class BufferedReader. The program opens the file specified on the
command line and echoes its contents to the console. Rewrite this code as C++.

// Echo.java - echo file contents to the screen
// Java by Dissection page 365.

import java.io.*;
class Echo {

public static void main(String[] args)
throws IOException {

if (args.length < 1) {
System.out.println("Usage: " +

"java Echo filename");
System.exit(0);

}

BufferedReader input =
new BufferedReader(new FileReader(args[0]));

String line = input.readLine();
while (line != null) {

System.out.println(line);
line = input.readLine();

}
}

}

CHAPTER 10
Exceptions and Program
Correctness
This chapter describes exception handling in C++. Exceptions are generally unex-
pected error conditions. Normally, these conditions terminate the user program with a
system-provided error message. An example is floating-point divide-by-zero. Usually,
the system aborts the running program. C++ allows the programmer to attempt to
recover from these conditions and continue program execution.

Assertions are program checks that force error exits when correctness is violated. One
point of view is that an exception is based on a breakdown of a contractual guarantee
among the provider of a code, the code’s manufacturer, and the code’s client. (See Sec-
tion 11.1.1, ADTs: Encapsulation and Data Hiding, on page 423.) In this model, the client
needs to guarantee that the conditions for applying the code exist, and the manufac-
turer needs to guarantee that the code works correctly under these conditions. In this
methodology, assertions enforce the various guarantees.

10.1 Using the assert Library

Program correctness can be viewed in part as a proof that the computation terminated
with correct output, dependent on correct input. The user of the computation had the
responsibility of providing correct input. This was a precondition. The computation, if
successful, satisfied a postcondition. Providing a fully formal proof of correctness is an
ideal but is not usually done. Nevertheless, such assertions can be monitored at runt-
ime to provide very useful diagnostics. Indeed, the discipline of thinking out appropri-
ate assertions frequently causes the programmer to avoid bugs and pitfalls.

The C and C++ communities are increasingly emphasizing the use of assertions. The
standard library assert provides a macro, assert, which is invoked as

assert(expression);

If the expression evaluates as false, execution is aborted with diagnostic output. The
assertions are discarded if the macro NDEBUG is defined.

10.1

Ira Pohl’s C++ by Dissection 10.1 Using the assert Library 395
Let us use assertions in template code for a stack container:

In file templateStack.cpp

// Template stack implementation

template <class TYPE>
class stack {
public:

explicit stack(int size = 100)
: max_len(size), top(EMPTY)
{ assert(size > 0); s = new TYPE[size];

assert(s != 0); }
~stack() { delete []s; }
void reset() { top = EMPTY; }
void push(TYPE c) { assert(top < max_len - 1);

s[++top] = c; }
TYPE pop() { assert(top >= 0); return s[top--]; }
TYPE top_of() const { return s[top]; }
bool empty() const { return top == EMPTY; }
bool full() const { return top == max_len - 1; }

private:
enum { EMPTY = -1 };
TYPE* s;
int max_len;
int top;

};

The use of assertions replaces the ad hoc use of conditional tests with a more uniform
methodology. This is better practice. The downside is that the assertion methodology
does not allow a retry or other repair strategy to continue program execution. Also,
assertions do not allow a customized error message, although it would be easy to add
this capability.

Dissection of the stack Class

■ explicit stack(int size = 100)
: max_len(size), top(EMPTY)
{ assert(size > 0);

s = new TYPE[size]; assert(s != 0); }

The constructor is explicit to prevent its use as a conversion from
int to stack. The assert(size > 0) tests the precondition that a
legitimate value for this parameter was passed in to the constructor.
The assert(s != 0) checks that the pointer s is not 0. On many C++
systems, this is the indicator that allocation with new failed. We dis-
cuss what happens when exception logic is used to signal this mem-
ory allocation error in Section 10.9, Standard Exceptions and Their
Uses, on page 409.

http://www.cse.ucsc.edu/~pohl/C++BD/10Chap/templateStack.cpp

Ira Pohl’s C++ by Dissection 10.1 Using the assert Library 396
It is possible to make this scheme slightly more sophisticated by providing various test-
ing levels, as are found in the Borland C++ checks library. Under this package, the flag
_DEBUG can be set to

_DEBUG 0 no testing
_DEBUG 1 PRECONDITION tests only
_DEBUG 2 CHECK tests also

The idea is that once the library functions are thought to be correct, the level of check-
ing is reduced to testing preconditions only. Once the client code is debugged, all test-
ing can be suspended.

The following bubble sort does not work correctly:

In file bad_bubble1.cpp

// Incorrect bubble sort

void swap(int a, int b)
{

int temp = a;

a = b;
b = temp;

}

void bubble(int a[], int size)
{

int i, j;

for (i = 0; i != size - 1; ++i)
for (j = i ; j != size - 1; ++j)

if (a[j] < a [j + 1])
swap (a[j], a[j + 1]);

}

■ void push(TYPE c) { assert(top < max_len - 1);
s[++top] = c; }

Here, the assertion tests that the stack does not overflow. This is a
precondition for the push() working correctly.

■ TYPE top_of()const { return s[top]; }

Here, assertions that top has a valid value are unnecessary because
the other methods guarantee that top is within the bounds EMPTY
and max_len.

http://www.cse.ucsc.edu/~pohl/C++BD/10Chap/bad_bubble1.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/09Chap/bad_bubble1.cpp

Ira Pohl’s C++ by Dissection 10.2 C++ Exceptions 397
int main()
{

int t[10] = { 9, 4, 6, 4, 5, 9, -3, 1, 0, 12};

bubble(t, 10);
for (int i = 0; i < 10; ++i)

cout << t[i] << '\t';
cout << "\nsorted? " << endl;

}

As an exercise, place assertions in this code to test that it is working properly. (See exer-
cise 1 on page 419.)

10.2 C++ Exceptions

C++ introduces a context-sensitive exception-handling mechanism. It is not intended to
handle the asynchronous exceptions defined in signal, such as SIGFPE, which indicates
a floating-point exception. The context for handling an exception is a try block. The
handlers are declared at the end of a try block, using the keyword catch.

C++ code can raise an exception in a try block by using the throw expression. The
exception is handled by invoking an appropriate handler selected from a list found at
the end of the handler’s try block. An example of this follows:

In file simple_throw.cpp

int main()
{
cout << "\nEnter positive integer " <<

"(negative will cause exception)" << endl;
try {

double x;
cin >> x;
if (x < 0)

throw(x);
else sqrt(x);
·····

}
catch(double x)

{ cerr << "x = " << x << endl; abort(); }
}

The throw(x) has a double argument and matches the catch(double x) signature.
The catch(double x) is called an exception handler. It is expected to perform an
appropriate action where an incorrect value has been passed as an argument to sqrt().
For example, an error message and abort are normal.

10.2

http://www.cse.ucsc.edu/~pohl/C++BD/10Chap/simple_throw.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/09Chap/simple_throw.cpp

Ira Pohl’s C++ by Dissection 10.3 Throwing Exceptions 398
10.3 Throwing Exceptions

Syntactically, throw expressions come in two forms:

throw expression
throw

The throw expression raises an exception. The innermost try block in which an excep-
tion is raised is used to select the catch statement that processes the exception. The
throw with no argument can be used inside a catch to rethrow the current exception.
This throw is typically used when you want a second handler called from the first han-
dler to further process the exception.

The expression thrown is a temporary object that persists until exception handling is
completed. The expression is caught by a handler that may use this value, as follows:

In file throw1.cpp

int foo()
{

int i = 0; // illustrates an exception thrown
// ····· code that affects i

if (i < 0)
throw i;

return i;
}

int main()
{

try {
foo();

}
catch(int n)

{ cerr << "exception caught\n" << n << endl; }
}

The integer value thrown by throw i persists until the handler with the integer signa-
ture catch(int n) exits and is available for use within the handler as its argument.

10.3

http://www.cse.ucsc.edu/~pohl/C++BD/10Chap/throw1.cpp

Ira Pohl’s C++ by Dissection 10.3 Throwing Exceptions 399
When a nested function throws an exception, the process stack is unwound until an
exception handler is found. This means that block exit from each terminated local pro-
cess causes automatic objects to be destroyed.

Dissection of the throw Program

■ int foo()
{

int i = 0; // illustrates exception thrown
// ····· code that affects i
if (i < 0)

throw i;
return i;

}

The throw expression has a simple syntax. It throws some value. In
this case, the value is a negative integer. The idea is that foo() to be
correct must return an integer value greater or equal to zero. The if
test, like an assertion, detects an incorrect computation and throws
an exception that interrupts the normal flow of control for foo().
Normal execution would have been to return a value i to the point in
main() where foo() is called.

■ int main()
{

try {
foo();

The try block is a scope within which an exception is caught. An
exception, such as the throw i inside foo(), is caught at the end of
the try block.

■ }
catch(int n)

{ cerr << "exception caught\n" << n << endl; }

A list of handlers, namely catch(signature) { catch executable },
comes at the end of the try block. The throw expression has a type,
in this case int, which must match the catch signature.

Ira Pohl’s C++ by Dissection 10.3 Throwing Exceptions 400
In file throw2.cpp

void foo()
{

int i, j;
·····
throw i; // foo() terminates with i persisting

// as the exception object
// i and j are destroyed

····· // this code won't be reached
}

void call_foo()
{

int k;
·····
foo(); // when foo() throws i call_foo() exits

// exception object from foo() persists
// k is destroyed

·····
}

int main()
{

try {
call_foo(); // exception object persists

}
catch(int n) { ····· } // catch(i) is executed

}

10.3.1 Rethrown Exceptions
Using throw without an expression rethrows a caught exception. The catch that
rethrows the exception cannot complete the handling of the existing exception. This
catch passes control to the nearest surrounding try block, where a handler capable of
catching the still existing exception is invoked. The exception expression exists until all
handling is completed. Control resumes after the outermost try block that last handled
the rethrown expression.

An example of rethrowing of an exception follows:

http://www.cse.ucsc.edu/~pohl/C++BD/10Chap/throw2.cpp

Ira Pohl’s C++ by Dissection 10.3 Throwing Exceptions 401
void foo()
{

try {
·····
throw i;

}
catch(int n)
{
if (n > 0) // handle for positive values here

·····
return;

}
else { // handle n <= 0 partially

·····
throw; // rethrown

}
}

Assuming that the thrown expression was of integer type, the rethrown exception is the
same persistent integer object that is handled by the nearest handler suitable for that
type.

10.3.2 Exception Expressions
Conceptually, the thrown expression passes information to the handlers. Frequently, the
handlers do not need this information. For example, a handler that prints a message
and aborts needs no information from its environment. However, the user might want
additional information printed so that it can be used to select or help decide the han-
dler’s action. In this case, it can be appropriate to package the information as an object.

I don’t understand why I have to put in this error detection
code: My code is always perfect, the machine has infinite

resources, and I’m quite sure the interface code is every bit
as perfect as my own!

Ira Pohl’s C++ by Dissection 10.3 Throwing Exceptions 402
class stack_error {
public:

stack_error(stack& s, string message);
};

Now, throwing an expression using an object of type stack_error can be more infor-
mative to a handler than just throwing expressions of simple types.

·····
throw stack_error(stk, "out of bounds");
·····

Let us use these ideas to write a complete example:

In file stack_error1.cpp

// Example of using an stack_error object
// Version 1. Uwe F. Mayer

#include <iostream>
#include <string>
using namespace std;

class stack{ // extremely simple stack
public:

char s[100];
};

class stack_error {
public:

stack_error(stack& s, const string message) :
st(s), msg(message) { }

void* get_stack() const { return &st; }
const string& get_msg() const { return msg; }

private:
stack& st;
string msg;

};

http://www.cse.ucsc.edu/~pohl/C++BD/10Chap/stack_error1.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/09Chap/stack_error1.cpp

Ira Pohl’s C++ by Dissection 10.3 Throwing Exceptions 403
int main()
{

stack stk;
try {

throw stack_error(stk,"out of bounds");
}
catch(stack_error& se)
{

cerr << se.get_msg() << " for stack stored at "
<< se.get_stack() << endl;

abort();
}

}

Dissection of the stack_error Program

■ class stack_error {
public:

stack_error(stack& s, const string message) :
st(s), msg(message) { }

void* get_stack() const { return &st; }
const string& get_msg() const { return msg; }

We create a specialized object that is used in conjunction with stack
errors. It allows us to bundle information within a single object. It
also allows us to have member functions that can provide different
pieces of information. It can be used as the base class for a hierarchy
of exception objects. The const string& return type for get_msg()
is for efficiency reasons.

■ private:
stack& st;
string msg;

};

The hidden away data members are used for diagnostic purposes.

■ throw stack_error(stk,"out of bounds");

In main(), we throw our exception.

■ catch(stack_error& se)
{

cerr << se.get_msg() << " for stack stored at "
<< se.get_stack() << endl;

abort();
}

The catch uses the different stack_error methods to provide diag-
nostic information before aborting. In this case, the address of the
stack stk prints as a hexadecimal number on most systems.

Ira Pohl’s C++ by Dissection 10.4 try Blocks 404
10.4 try Blocks

Syntactically, a try block has the form

try
compound statement
handler list

The try block is the context for deciding which handlers are invoked on a raised excep-
tion. The order in which handlers are defined determines the order in which a handler
for a raised exception of matching type is tried.

try {
·····
throw ("SOS");
·····
io_condition eof(argv[i]);
throw (eof);
·····

}
catch(const char* s) {·····}
catch(io_condition& x) {·····}

Conditions Under Which Throw Expression Matches the Catch Handler Type
■ An exact match

■ A derived type of the public base-class handler type

■ A thrown object type that is convertible to a pointer type that is the catch
argument

It is an error to list handlers in an order that prevents them from being called. For
example:

catch(void* s) // any char* would match
catch(char* s) // this needs to come first
catch(BaseTypeError& e) // always on DerivedTypeError
catch(DerivedTypeError& e) // before BaseTypeError

There are further subtleties in ordering when const is used in the type. As an exercise,
determine the preference between catch(const char* s) and catch (char* s).

A try block can be nested. If no matching handler is available in the immediate try
block, a handler is selected from its immediately surrounding try block. If no handler
that matches can be found, a default behavior is used. This is by default terminate()
(see Section 10.9, Standard Exceptions and Their Uses, on page 409).

10.4

Ira Pohl’s C++ by Dissection 10.5 Handlers 405
10.5 Handlers

Syntactically, a handler has the form

catch (formal argument)
compound statement

The catch looks like a function declaration of one argument without a return type.

In file catch.cpp

catch(string& message)
{

cerr << message << endl;
exit(1);

}

catch(...) // default action to be taken
{

cerr << "THAT'S ALL FOLKS." << endl;
abort();

}

An ellipsis signature matching any argument type is allowed. Also, the formal argument
can be an abstract declaration: It can have type information without a variable name,
such as catch(int). Such a handler cannot use the value of the thrown expression.

The handler is invoked by an appropriate throw expression. At that point, the try block
is exited. The system calls clean up functions that include destructors for any objects
that were local to the try block. A partially constructed object has destructors invoked
on any parts of it that are constructed subobjects. The program resumes at the state-
ment after the try block.

10.6 Converting Assertions to Exceptions

We revisit our template class stack and use exceptions instead of assertions. Here,
we can see that the exception logic is more dynamic because the handlers can be more
informed than with asserts. The asserts print an assertion failure message and abort
the program. Exception handlers can print arbitrary information and either abort the
program or attempt to continue the program.

In file stack_error2.cpp

// Template stack with preconditions instead
// of assertions

#include <iostream>
using namespace std;

10.5

10.6

http://www.cse.ucsc.edu/~pohl/C++BD/10Chap/catch.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/10Chap/stack_error2.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/09Chap/catch.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/09Chap/stack_error2.cpp

Ira Pohl’s C++ by Dissection 10.6 Converting Assertions to Exceptions 406
template <class T> void precondition (bool cond,
const string message, T throw_exp)

{
if (!cond) {

cerr << message << endl;
throw throw_exp;

}
}

This function template provides a generic precondition test. If the boolean expression
passed in for the parameter cond is false, a message is printed, and an exception of
type T is thrown. Similar generic postcondition() and invariant() tests can be
coded.

// Replace asserts with precondition tests.
// We assume std::bad_alloc is thrown if new fails

template <class TYPE>
class stack {
public:

explicit stack(int size = 100) :
max_len(size), top(EMPTY)
{ precondition((size > 0),

"Incorrect Allocation", 0);
s = new TYPE[size]; }

~stack() { delete []s; }
void reset() { top = EMPTY; }
void push(TYPE c)
{precondition(!full(), "Stack OverFlow", max_len);

s[++top] = c; }
TYPE pop()

{ precondition(!empty(), "Stack UnderFlow ", 0);
return s[top--]; }

TYPE top_of()const { return s[top]; }
bool empty()const { return top == EMPTY; }
bool full()const { return top == max_len - 1; }

private:
enum { EMPTY = -1 };
TYPE* s;
int max_len;
int top;

};

Let us write a main() that tests these assertions:

Ira Pohl’s C++ by Dissection 10.6 Converting Assertions to Exceptions 407
int main() {

try{
cout << "allocates for -1 " << endl;
stack<char> d(-1);

} catch(int n) { cerr << "stack error n=" << n << endl; }
try{

stack<int> f(2);
f.push(1);
f.push(2);
f.push(3);

} catch(int n) { cerr << "stack error n= " << n << endl;}
}

The output from this program is

allocates for -1
Incorrect allocation
stack error n = 0
Stack OverFlow
stack error n = 2

Dissection of the precondition() Function

■ stack<char> d(-1);

This is an incorrect size leading to a precondition exception thrown
by the constructor.

■ precondition((size > 0), "Incorrect Allocation", 0);

This prints Incorrect allocation and throws a value of 0.

■ stack<int> f(2);
f.push(1);
f.push(2);
f.push(3);

In this try block, the stack overflows. There are three pushes onto a
size 2 stack.

■ void push(TYPE c)
{ precondition(!full(), "Stack OverFlow", max_len);

s[++top] = c; }

The push() method has as a precondition the test for stack full. If it
fails, then it prints the message Stack Overflow and throws a value of
max_len.

Ira Pohl’s C++ by Dissection 10.7 Exception Specification 408
10.7 Exception Specification

Syntactically, an exception specification is part of a function declaration or a function
definition and has the form

function header throw (type list)

The type list is the list of types that a throw expression within the function can have.
The function definition and the function declaration must specify the exception specifi-
cation identically. If the list is empty, the compiler may assume that no throw is exe-
cuted by the function, either directly or indirectly.

void foo() throw(int, stack_error);
void noex(int i) throw();

If an exception specification is left off, the assumption is that an arbitrary exception
can be thrown by such a function. Violations of these specifications are runtime errors
and are caught by the function unexpected().

As an example, let us write a template function postcondition() with an exception
specification:

■ } catch(int n)
{ cerr << "stack error n= " << n << endl; }

Upon failure, the catch() prints out that a stack error has occurred
with n = max_len.

This is what happens when you build tiny little stacks,
then go pushing all that data on! It’s just a good thing you
told me to throw a “strangle the programmer” exception,
or I would have had to shut down this entire installation.

10.7

Ira Pohl’s C++ by Dissection 10.8 terminate() and unexpected() 409
template <class T> void postcondition
(bool cond, const string message,
T throw_exp) throw(T)

{
if (!cond) {

cerr << message << endl;
throw throw_exp;

}
}

10.8 terminate() and unexpected()

The system-provided function terminate() is called when no handler has been pro-
vided to deal with an exception. The abort() function, called by default, immediately
terminates the program, returning control to the operating system. Another action can
be specified by using set_terminate() to provide a handler. These declarations are
found in the except library.

The system-provided handler unexpected() is called when a function throws an excep-
tion that was not in its exception-specification list. By default, the terminate() func-
tion is called; otherwise, a set_unexpected() can be used to provide a handler.

10.9 Standard Exceptions and Their Uses

C++ compilers and library vendors provide standard exceptions. For example, the
exception type bad_alloc is thrown by the ANSI compiler if the new operator fails to
return with storage from free store. The bad_alloc exception is in the exception library.

Here is a program that lets you test this behavior:

For all our listeners out there who may be unfamiliar with the
new expansion team, the Silicon Valley Exceptions, we have to
say that they don’t have a running game at all. But they sure

can catch and throw exceptionally well!

10.8

10.9

Ira Pohl’s C++ by Dissection 10.9 Standard Exceptions and Their Uses 410
In file except.cpp

#include <iostream>
#include <exception> // standard exceptions here
using namespace std;

int main()
{

int *p, n;

try {
while (true) {

cout << "enter allocation request:" << endl;
cin >> n;
p = new int[n];

}
}
catch(bad_alloc) { cerr << "bad_alloc" << endl; }
catch(...) { cerr << "default catch" << endl; }

}

This program loops until it is interrupted by an exception. On our system, a request for
1 billion integers invokes the bad_alloc handler.

A frequent use of standard exceptions is in testing casts. The standard exception
bad_cast is declared in file exception.

In file bad_cast.cpp

#include <iostream>
#include <exception>
using namespace std;

class A {
public:

virtual void foo() { cout << "in A" << endl; }
};

class B: public A {
public:

void foo() { cout << "in B" << endl; }
};

// Example by Ira Pohl and corrected by Uwe F. Mayer

int main()
{

try {
A a, *pa; B b;
A& ar1= b; // legal
// B& br1 = a; // illegal

http://www.cse.ucsc.edu/~pohl/C++BD/10Chap/except.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/10Chap/bad_cast.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/09Chap/except.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/09Chap/bad_cast.cpp

Ira Pohl’s C++ by Dissection 10.10 Software Engineering: Exception Objects 411
ar1.foo();
pa = &b;
A& ar2 = dynamic_cast<A&>(*pa); // succeeds
ar2.foo();
pa = &a;
B& br2 = dynamic_cast<B&>(*pa); // fails, throws bad_cast
br2.foo();

}
catch(bad_cast) { cerr << "dynamic_cast failed" << endl; }

}

The standard library exceptions are derived from the base-class exception. Two
derived classes are logic_error and runtime_error. Logic-error types include
bad_cast, out_of_range, and bad_typeid, which are intended to be thrown, as indi-
cated by their names. The runtime error types include range_error, overflow_error,
and bad_alloc.

The base class defines a virtual function.

virtual const char* exception::what() const throw();

This member function should be defined in each derived class to give more helpful
messages. The empty throw-specification list indicates that the function should not
itself throw an exception.

10.10 Software Engineering: Exception Objects

Paradoxically, error recovery is concerned chiefly with writing correct programs. Excep-
tion handling is about error recovery. Exception handling is also a transfer-of-control
mechanism. The client/manufacturer model gives the manufacturer the responsibility
of making software that produces correct output, given acceptable input. The question
for the manufacturer is how much error detection and, conceivably, correction should
be built in. The client is often better served by fault-detecting libraries, which can be
used in deciding whether to attempt to continue the computation.

10.10

But if we throw an uncaught exception, it might blow up part of Moscow.

Ira Pohl’s C++ by Dissection 10.10 Software Engineering: Exception Objects 412
Error recovery is based on the transfer of control. Undisciplined transfer of control
leads to chaos. In error recovery, one assumes that an exceptional condition has cor-
rupted the computation, making it dangerous to continue. It is analogous to driving a
car after realizing that the steering mechanism is damaged. Useful exception handling
is the disciplined recovery when damage occurs.

In most cases, programming that raises exceptions should print a diagnostic message
and gracefully terminate. Special forms of processing, such as real-time processing and
fault-tolerant computing, require that the system not go down. In these cases, heroic
attempts at repair are legitimate.

What can be agreed on is that classes can usefully be provided with error conditions. In
many of these conditions, the object has member values in illegal states—values it is
not allowed to have. The system raises an exception for these cases, with the default
action being program termination.

But what kind of intervention is reasonable to keep the program running? And where
should the flow of control be returned? C++ uses a termination model that forces the
current try block to terminate. Under this regime, one either retries the code or ignores
or substitutes a default result and continues. Retrying the code seems most likely to
give a correct result.

Code is usually too thinly commented. It is difficult to imagine the program that would
be too rich in assertions. Assertions and simple throws and catches that terminate the
computation are parallel techniques. A well-thought-out set of error conditions detect-
able by the user of an ADT is an important part of a good design. An over reliance on
exception handling in normal programming, beyond error detection and termination, is
a sign that a program was ill-conceived, with too many holes, in its original form.

When designing classes, one could have an object’s constructor look like the following:

Object::Object(arguments)
{

if (illegal argument1)
throw expression1;

if (illegal argument2)
throw expression2;

····· // attempt to construct
}

The Object constructor now provides a set of thrown expressions for an illegal state.
The try block can now use the information to repair or abort the incorrect operation.

try {

// ····· fault-tolerant code
}
catch(declaration1) { /* fixup this case */ }
catch(declaration2) { /* fixup this case */ }

·····
catch(declarationK) { /* fixup this case */ }
// correct or repaired - state values are now legal

Ira Pohl’s C++ by Dissection 10.11 Dr. P’s Prescriptions 413
When many distinct error conditions are useful for the state of a given object, a class
hierarchy can be used to create a selection of related types to be used as throw expres-
sions.

Object_Error {
public:

Object_Error(arguments); // capture useful info
members that contain thrown expression state
virtual void repair()

{ cerr << "Repair failed in Object" << endl;
abort(); }

};

Object_Error_S1 : public Object_Error {
public:

Object_Error_S1(arguments);
added members that contain thrown expression state
void repair(); // override to provide repair

};

····· // other derived error classes as needed

These hierarchies allow an ordered set of catches to handle exceptions in a logical
sequence. Remember: a base-class type should come after a derived-class type in the list
of catch declarations.

10.11 Dr. P’s Prescriptions

■ Avoid the use of exceptions as a sophisticated transfer of control.

■ Avoid using exceptions for continuing computations that have undiagnosed errors.

■ Use exceptions and assertions to check preconditions and postconditions.

■ Program by contract, where exceptions guarantee the terms.

■ Use exceptions to test whether system resources are exhausted, unavailable, or cor-
rupted.

■ Use exceptions to provide soft, informative termination.

■ Use exceptions to restart corrected computations.

■ Exception handling is expensive; use only for error conditions.

■ Exception specifications can cause unexpected program termination, even if the call-
ing code is prepared to handle the exception.

■ Beware of throwing pointers to local objects—otherwise, dangling references may be
passed to the exception handler.

■ In general, it is safest and most efficient to catch complex exceptions by reference;
this avoids extra copying as well as dangling references (as in catch-by-pointer).

10.11

Ira Pohl’s C++ by Dissection 10.12 C++ Compared with Java 414
Exceptions are often misused when they are used as a patch to fix code, much in the
way the goto was used to hack changes to poorly designed programs. Exceptions are
meant to detect errors; therefore, they should mostly be used to provide informed ter-
mination and soft failure.

Programming by contract is the ability of one part of the code to rely on guarantees
from another part of the code. For example, to properly merge two lists, the merge code
must rely on the input lists already being ordered. This is often done with assertions.
The assertion methodology can be mimicked by exceptions that abort when guarantees
are not met. An example of this is a dynamic_cast throwing a bad_cast exception
when it is not able to provide the indicated conversion.

Exceptions should be thrown when requested resources are unavailable. The
std::bad_alloc exception thrown by new when it fails is an example of this
approach. In such cases, there may be ways to add to the system resources, allowing the
program to continue.

Unless program termination is unacceptable, as in mission-critical real-time systems, ad
hoc error correction and program resumption should be avoided. Such unexpected con-
ditions should be diagnosed and the code redone. Special techniques exist for mission-
critical code.

The last four tips were suggested by George Belotsky as further professional advice.
Exception handling adds significant runtime expense. An assert methodology tied to a
debug flag does not. In production code, you may want to eliminate exception handling.
Exception specifications may cause the system-provided handler unexpected() to be
called unnecessarily and is undesirable in production code. Pointers use can lead to
dangling references and memory leaks. Be careful about these problems when using
them as catch signatures. Finally, copying complex objects has significant expense. As
with ordinary function call signatures, catch signatures can use call-by-reference to
suppress this copying.

10.12 C++ Compared with Java

Java’s exception-handling mechanism is integral to the language and heavily used for
error detection at runtime. The mechanism is similar to the one found in C++. A Java
exception is itself an object, which must be derived from the superclass Throwable. An
exception is thrown by a method when it detects an error condition. The exception is
handled by invoking an appropriate handler picked from a list of handlers, or catches.
These explicit catches occur at the end of an enclosing try block. An uncaught excep-
tion is handled by a default Java handler that issues a message and terminates the pro-
gram.

The following code robustly reads one integer from the console. If the user doesn’t type
an integer, he or she is prompted to try again. It is taken from Java by Dissection by Ira
Pohl and Charlie McDowell (Addison Wesley 1999) pages 374-376, and uses the spe-
cially developed tio package. The source code is presented in Appendix D, , and is
available on the Web at ftp:// ftp.awl.com/cseng/authors/pohl-mcdowell/.

10.12

ftp://ftp.awl.com/cseng/authors/pohl-mcdowell/

Ira Pohl’s C++ by Dissection 10.12 C++ Compared with Java 415
In file ExceptionExample.java

import tio.*;

public class ExceptionExample {
public static void main(String[] args) {

int aNumber = 0;
boolean success = false;
String inputString = "";
System.out.println("Type an integer.");

while (!success) {
try {

aNumber = Console.in.readInt();
success = true;

}
catch (NumberFormatException e) {

inputString = Console.in.readWord();
System.out.println(inputString +

" is not an integer. Try again!");
}

}
System.out.println("You typed " + aNumber);
// continue with code to process aNumber

}
}

Dissection of the ExceptionExample Program

■ while (!success) {

This loop continues until the assignment success = true is exe-
cuted.

■ try {
aNumber = Console.in.readInt();
success = true;

}

If a NumberFormatException occurs while any statement in the try
block is being executed, control is immediately transferred to the first
statement in the catch block. In this case, the call to readInt()
may throw a NumberFormatException, in which case aNumber
remains unchanged and the subsequent assignment success = true
won’t execute; hence the while loop repeats.

http://www.cse.ucsc.edu/~pohl/C++BD/10Chap/ExceptionExample.java

Ira Pohl’s C++ by Dissection 10.12 C++ Compared with Java 416
Incorrectly entered input is a common programming error. In robust programs, input
should be tested to determine whether it is both syntactically and semantically correct.
Frequently, good practice is to ask the user to confirm the value entered. The following
loop does just that:

while (confirm != 'Y') {
// ····· ask for data in dollars

System.out.println("Did you mean " + dollars);
System.out.println("Please Enter Y or N:");
confirm = Console.in.readChar();

}

This technique can be combined with the exception handling methodology of the pre-
ceding example.

■ catch (NumberFormatException e) {
inputString = Console.in.readWord();
System.out.println(inputString +

" is not an integer. Try again!");
}

Here, we ignore the parameter. Arriving at this catch() tells us all we
need to know—a NumberFormatException occurred in the try block.
Because readInt() is defined not to consume any nonwhite input
characters if it fails, we use readWord() to read the offending white
space delimited string of characters. We print an appropriate message
and then continue with the statement following the try-catch state-
ment. The exception has been handled, and normal execution
resumes.

■ while (!success) {
·····
success = true;
·····

}
System.out.println("You typed " + aNumber);
// continue with code to process a Number

Eventually, the user will type a legal integer, the assignment to suc-
cess is reached, the end of the try block is reached, the catch block
is skipped, and the loop exits.

Ira Pohl’s C++ by Dissection Summary 417
Summary

■ Exceptions are generally unexpected error conditions. Normally, these conditions
terminate the user program with a system-provided error message. An example is
floating-point divide-by-zero.

■ The standard library assert provides the macro

assert(expression);

If the expression evaluates as false, then execution is aborted with diagnostic out-
put. The assertions are discarded if the macro NDEBUG is defined.

■ C++ code can raise an exception by using the throw expression. The exception is
handled by invoking an appropriate handler selected from a list of handlers found
at the end of the handler’s try block.

■ The throw expression raises an exception in a try block. The throw with no argu-
ment may be used in a catch to rethrow the current exception. Syntactically, throw
comes in two forms:

throw expression
throw

■ The try block is the context for deciding which handlers are invoked on a raised
exception. The order in which handlers are defined determines the order in which a
handler for a raised exception of matching type is tried. Syntactically, a try block
has the form

try
compound statement
handler list

■ The catch looks like a function declaration of one argument without a return type.
Syntactically, a handler has the form

catch (formal argument)
compound statement

■ The type list is the list of types that a throw expression within the function can have.
If the list is empty, the compiler may assume that no throw is executed by the func-
tion, either directly or indirectly. Syntactically, an exception specification is part of a
function declaration and has the form

function header throw (type list)

■ The system-provided handler terminate() is called when no other handler has
been provided to deal with an exception. The system-provided handler unex-
pected() is called when a function throws an exception that was not in its excep-
tion-specification list. By default, terminate() calls the abort() function. The
default unexpected() behavior is to call terminate().

Ira Pohl’s C++ by Dissection Review Questions 418
Review Questions

1. True or false: In C++, new cannot throw an exception.

2. System exceptions, such as SIGFPE, are defined in .

3. The context for handling an exception is a block.

4. The system-provided is called when a function throws an exception that was
not in its exception-specification list.

5. A standard exception class is and is used for .

6. The system-provided handler is called when no other handler has been pro-
vided to deal with an exception.

7. Handlers are declared at the end of a try block, using the keyword .

8. The is the list of types a throw expression can have.

9. Name three standard exceptions provided by C++ compilers and libraries.

10. What two actions should most handlers perform?

Ira Pohl’s C++ by Dissection Exercises 419
Exercises

1. The following bubble sort does not work correctly. Place assertions in this code to
test that it is working properly. Besides detecting errors, the placing of assertions in
code as a discipline aids you in writing a correct program. Correct the program.

// Incorrect bubble sort

void swapIt(int a, int b)
{

int temp = a;

a = b;
b = temp;

}

void bubble(int a[], int size)
{

int i, j;

for (i = 0; i != size - 1; ++i)
for (j = i ; j != size - 1; ++j)

if (a[j] < a [j + 1])
swapIt (a[j], a[j + 1]);

}

int main()
{

int t[10] = { 9, 4, 6, 4, 5, 9, -3, 1, 0, 12};

bubble(t, 10);
for (int i = 0; i < 10; ++i)

cout << t[i] << '\t';
cout << "\nsorted?" << endl;

}

2. Use templates to write a generic version of the correct bubble sort, complete with
assertions. Use a random number generator to generate test data. On what types can
this be made to work generically?

3. Replace assertions with an equivalent version using exceptions.

4. Write a program that asks the user to enter a positive integer. Have it throw an
exception when the user fails to enter a correct value. Have the handler write out the
incorrect value and abort.

Ira Pohl’s C++ by Dissection Exercises 420
5. Rewrite the previous program to require the handler to ask the user for a correct
value. The program should terminate printing the correct value. Many programs try
to ensure that input is failure proof. This is an aspect of good software engineering.

6. Recode the ch_stack class to throw exceptions for as many conditions as you think
are reasonable. (See Section 5.1.5, Constructing a Stack, on page 190.) Use an enu-
merated type to list the conditions.

enum stack_error { overflow, underflow, ····· };

Write a catch that uses a switch statement to select an appropriate message and to
terminate the computation.

7. Write a stack_error class that replaces the enumerated type in the previous exer-
cise. Make this a base class for a series of derived classes that encapsulates each
specific exception condition. The catches should be able to use overridden virtual
functions to process the various thrown exceptions.

8. (Java) Recode in Java the ch_stack class, complete with exceptions. Java already
throws exceptions if new fails to allocate storage, and Java automatically throws a
range-error exception when an index is out of range.

OOP Using C++

CHAPTER 11
C++ is a hybrid language. The kernel language developed from C is classically used as
a system-implementation language. As such, C++ is suitable for writing very efficient
code. The class-based additions to the language support the full range of OOP require-
ments. Therefore, C++ is suitable for writing reusable libraries, and it supports both a
generic and an object-oriented coding style.

In the 60s and 70s, the dominant programming methodology was structured program-
ming that relied on breaking large programs into a series of function or procedure calls.
Until the mid 1980s, procedural encapsulation was the dominant academic and profes-
sional programming paradigm. In the 1970s, SmallTalk, developed at Xerox Parc, pio-
neered a new paradigm, object-oriented programming (OOP). It ran on special hardware
developed at Parc and was relatively expensive and inefficient in comparison with con-
temporary procedural languages, such as C and Pascal. C++ added objects to C. It
allowed efficient compilation and execution of OOP on most platforms. Starting in
1985, it was embraced by industry very quickly. C++, as a hybrid OOP language, allows a
multiparadigmatic approach to coding. The traditional advantages of C as an efficient,
powerful procedural language are not lost. The key new ingredients in C++ are inherit-
ance and polymorphism—that is, its capability to assume many forms.

Which form did you want, master?

Ira Pohl’s C++ by Dissection 11.1 OOP Language Requirements 422
11.1 OOP Language Requirements

We present four major OOP language characteristics below. These features cannot sub-
stitute for programmer discipline and community-observed convention, but they can be
used to promote such behavior.

OOP Language Characteristics
■ Encapsulation with data hiding: the ability to distinguish an object’s internal

state and behavior from its external state and behavior

■ Type extensibility: the ability to add user-defined types to augment the native
types

■ Inheritance: the ability to create new types by importing or reusing the
description of existing types

■ Polymorphism with dynamic binding: the ability of objects to be responsible
for interpreting function invocation

These features cannot substitute for programmer discipline and community-observed
convention, but they can be used to promote such behavior.

Typical procedural languages, such as FORTRAN, Pascal, and C, have limited forms of
type extensibility and encapsulation. These languages have pointer and record types
that provide these features. C also has a scheme of file-oriented privacy, in its static
file-scope declarations. Such languages as Modula-2 and Ada have more complete forms
of encapsulation—namely, module and package, respectively. These languages readily
allow users to build abstract data types (ADTs) and provide significant library support
for many application areas. A language such as pure LISP supports dynamic binding.
The elements in OOP have been available in various languages for at least 25 years.

LISP, Simula, and SmallTalk have long been in widespread use in both the academic and
research communities. These languages are in many ways more elegant than C and C++.
However, not until OOP elements were added to C was there any significant movement
to use OOP in industry. Indeed, the late 1980s saw a bandwagon effect in adopting C++
that cut across companies, product lines, and application areas; industry needed to cou-
ple OOP with the ability to program effectively at a low level.

Also crucial was the ease of migration from C to C++. PL/1, by contrast, is rooted in
FORTRAN and COBOL; Ada is rooted in Pascal. But C++ had C as a nearly proper subset.
As such, the installed base of C code need not be abandoned. These other languages
required a nontrivial conversion process to modify existing code from their ancestor
languages.

The conventional academic wisdom is that excessive concern with efficiency is detri-
mental to good coding practices. This concern misses the obvious—namely, that prod-
uct competition is based on performance. Consequently, industry values low-level
technology. In this environment, C++ is a very effective tool.

11.1

Ira Pohl’s C++ by Dissection 11.1 OOP Language Requirements 423
11.1.1 ADTs: Encapsulation and Data Hiding
To fully appreciate the OOP paradigm, we must view the overall coding process as an
exercise in shared and distributed responsibilities. These chapters have used the terms
client to mean a user of a class and manufacturer to mean the provider of the class.

A client of a class expects an approximation to an abstraction. A stack, to be useful, has
to be of reasonable size. A complex number must be of reasonable precision. A deck of
cards must be shufflable, with random outcome in dealing hands. The internals of how
these behaviors are computed is not a direct concern of the client. The client is con-
cerned with cost, effectiveness, and ease of operation, not with implementation. This is
the black box principle, and it has two components.

Black Box for the Client
■ Simple to use, easy to understand, and familiar

■ In a component relationship within the system

■ Cheap, efficient, and powerful

Black Box for the Manufacturer
■ Easy to reuse and modify; difficult to misuse and reproduce

■ Profitable to produce with a large client base

■ Cheap, efficient, and powerful

The manufacturer competes for clients by implementing an ADT product that is reason-
ably priced and efficient. It is in the manufacturer’s interest to hide details of an imple-
mentation. This simplifies what the manufacturer needs to explain to the client, and it
frees the manufacturer to allow internal repairs or improvements that do not affect the
client’s use. It restrains the client from dangerous or inadvertent tampering with the
product.

A data-hiding scheme that restricts access of implementation detail to manufacturers
guarantees client conformance to the ADT abstraction. The private parts are hidden
from client code, and the public parts are available. It is possible to change the hidden
representation without changing the public access or functionality. If done properly, cli-
ent code need not change when the hidden representation is modified. The two keys to
fulfilling these conditions are inheritance and polymorphism.

11.1.2 Reuse and Inheritance
Library creation and reuse are crucial indicators of successful language strategies.
Inheritance, or deriving a new class from an old one, is used for code sharing and reuse,
as well as for developing type hierarchies. Inheritance can be used to create a hierarchy
of related ADTs that share both code and a common interface, a feature critical to the
ability to reuse code.

Ira Pohl’s C++ by Dissection 11.1 OOP Language Requirements 424
Inheritance influences overall software design by providing a framework that captures
conceptual elements that become the focus for system building and reuse. For example,
InterViews is a C++ package that supports building graphical user interfaces for interac-
tive, text, and graphics objects. These categories are readily composed to produce vari-
ous applications, such as a CAD system, a browser, or a WYSIWYG editor.

OOP Design Methodology
1. Decide on an appropriate set of ADTs.

2. Design in their relatedness and use inheritance to share code and interface.

3. Use virtual functions to process related objects dynamically.

Inheritance also facilitates the black box principle and is an important mechanism for
suppressing detail. It is hierarchical, and each level provides functionality to the next
level that is built on it. In retrospect, structured programming methodology, with its
process-centered view, relied on stepwise refinement to nest routines but did not ade-
quately appreciate the need for a corresponding view of data.

11.1.3 Polymorphism
Polymorphism is the genie in OOP, taking instruction from a client and properly inter-
preting its wishes. A polymorphic function has many forms. Following the categoriza-
tion developed by the programming theorists L. Cardelli and P. Wegner of Brown
University, we make the following distinctions:

Types of Polymorphism
1. Coercion (ad hoc polymorphism): A function or operator works on several

types by converting their values to the expected type. An example is conver-
sion of arithmetic types in expressions.

// x and d double, i int
x = d + i; // int i is coerced to double

2. Overloading (ad hoc polymorphism): A function is called based on its signa-
ture, defined as the list of argument types in its parameter list. The integer-
divide operator and float-divide operator are distinguished, based on their
argument list.

// type of division depends on type of a and b
x = a / b ;

3. Inclusion (pure polymorphism): A type is a subtype of another type. Func-
tions available for the base type work on the subtype. Such a function can
have various implementations that are invoked by a runtime determination of
subtype.

Ira Pohl’s C++ by Dissection 11.2 OOP: The Dominant Programming Methodology 425
p -> draw() // virtual function call

4. Parametric polymorphism (pure polymorphism): The type is left unspecified
and is later instantiated. Templates provide this in C++.

template <class T> bool greater(T a, T b)
{

return (a > b);
}

Polymorphism localizes responsibility for behavior. The client code frequently requires
no revision when additional functionality is added to the system through manufacturer-
provided code additions.

Polymorphism directly contributes to the black box principle. The virtual functions
specified for the base class are the interface used by the client throughout. The client
knows that an overridden member function takes responsibility for a specific imple-
mentation of a given action relevant to the object. The client need not know different
routines for each calculation or different forms of specification. These details are sup-
pressed.

11.2 OOP: The Dominant Programming Methodology

OOP using C++ gained dazzling acceptance in industry from 1986 on, despite acknowl-
edged flaws and unfamiliarity with OOP strategies. The reason for this is that C++
brought OOP technology to industry in an acceptable way. C++ is based on an existing,
widely used, successful language. C++ allows tight, efficient, portable code to be writ-
ten. Type-safety is retained, and type extensibility is general. C++ coexists with stan-
dard languages and does not require special system resources.

C was designed as a system-implementation language and as such allows coding that is
readily translated to efficiently use machine resources. Software products gain compet-
itive advantage from such efficiency. Hence, despite complaints that traditional C was
not a safe or robust language to code in, C grew in its range of application. The C com-
munity, by convention and discipline, used structured programming and ADT exten-
sions. OOP made inroads into this professional community only when it was wed to C
within a conceptual framework that maintained its traditional point of view and advan-
tages. Key to the bandwagon move to C++ has been the understanding that inheritance
and polymorphism gain additional important advantages over traditional coding prac-
tice.

Polymorphism in C++ allows a client to use an ADT as a black box. Success in OOP is
characterized by the extent to which a user-defined type can be made indistinguishable
from a native type. Polymorphism allows coercions to be specified that integrate the
ADT with the native types. Objects from subtype hierarchies respond dynamically to
function invocation, the messaging principle in OOP. Polymorphism also simplifies cli-
ent protocols, and name proliferation is controlled by function and operator overload-
ing. The availability of all four forms of polymorphism encourages the programmer to
design with encapsulation and data hiding in mind. OOP is many things to many people.

11.2

Ira Pohl’s C++ by Dissection 11.2 OOP: The Dominant Programming Methodology 426
Attempts to define it are like blind men’s attempts to describe an elephant. Recall the
equation describing object orientation: OOP = type-extensibility + polymorphism.

In many languages and systems, the cost of detail suppression was runtime inefficiency
or undue rigidity in the interface. C++ has a range of choices that allow both efficiency
and flexibility. Also, the success of C++ was a precondition for the introduction of Java
in 1995. Together, C++ and Java have established OOP as the dominant contemporary
programming methodology.

The following example is amended from code developed by Andrew Koenig, the most
important figure in the C++ community besides the inventor of C++, Bjarne Strous-
troup. It is a demonstration of the power of type hierarchies and polymorphism. It is
used to do expression evaluation.

An expression such as 2 * x + y can be represented as a tree, with each subexpres-
sion being a node. The following code uses an expression tree to evaluate an expression
and print out its fully parenthesized form:

In file tree.cpp

// OOP = type-extensibility + polymorphism
// See also Andrew Koenig JOOP August 1988

#include <iostream>
using namespace std;

class Node {
friend class Tree;
friend ostream& operator<<(ostream&, const Tree&);

protected:
Node() { use = 1; }
virtual ~Node() { }
virtual void print(ostream&) const = 0;
virtual int eval() const = 0;

private:
int use; // reference count

};

Dissection of the Node Class

■ Node() { use = 1; }
virtual ~Node() { }

Node is an abstract base class for a hierarchy of Node subtypes. You
should always use a virtual destructor for these classes. This is to
make sure that the proper cleanup is done within this polymorphic
structure. Here, we build this as a reference counted structure. If you
are unfamiliar with reference count ideas, see Section 5.5, Strings
Using Reference Semantics, on page 201.

http://www.cse.ucsc.edu/~pohl/C++BD/11Chap/tree.cpp

Ira Pohl’s C++ by Dissection 11.2 OOP: The Dominant Programming Methodology 427
In file tree.cpp

class IntNode : public Node {
public:

friend class Tree;
int eval() const { return n; }

private:
const int n;
void print(ostream& o) const { o << n; }
IntNode(int k): n(k) { }

};

class IdNode : public Node {
public:

friend class Tree;
int eval() const { return val; }

private:
const char name;
int val;
void print(ostream& o) const { o << name; }
IdNode(char id): name(id)

{ cout << "Enter value of " << name << ": "; cin >> val; }
};

■ virtual void print(ostream&) const = 0;
virtual int eval() const = 0;

Here are two pure virtual functions. They must be overridden and
defined for every concrete subclass.

■ friend class Tree;

Because Tree contains Node as a subpart, we need to expose the pro-
tected and private members of Node to Tree member functions.
Our design leads to the unusual decision to hide Node constructors.
This keeps Node from otherwise being used. This is in keeping with it,
being used only for implementation of Tree, and not as a separate
data type.

http://www.cse.ucsc.edu/~pohl/C++BD/11Chap/tree.cpp
http://www.cse.ucsc.edu/~pohl/C++BD/10Chap/tree.cpp

Ira Pohl’s C++ by Dissection 11.2 OOP: The Dominant Programming Methodology 428
class BinaryNode : public Node {
public:

friend class Tree;
int eval() const;

private:
const char op;
Tree left;
Tree right;
BinaryNode(char a, Tree b, Tree c): op(a), left(b), right(c) { }
void print (ostream& o) const

{ o << "(" << left << op << right << ")"; }
};

int BinaryNode::eval() const
{

int ans = 0;
switch (op) {
case '-': ans = (left.eval() - right.eval()); break;
case '+': ans = (left.eval() + right.eval()); break;
case '*': ans = (left.eval() * right.eval()); break;
default:

cerr << op << " not implemented" << endl; break;
}
return ans;

}

The various node types store different types of subexpressions. These are used to build
the full expression tree.

Oh, yeah, next to my orange tree is an exotic C++ expression
tree. It takes a lot of maintenance because it is prone to bug

infestations.

Ira Pohl’s C++ by Dissection 11.2 OOP: The Dominant Programming Methodology 429
Dissection of the BinaryNode, IdNode, and IntNode Classes

■ class IntNode : public Node {
·····
int eval() const { return n; }
IntNode(int k): n (k) { }

The IntNode is a literal. It stores its value and returns it from
eval(). The constructor just initializes an IntNode to its constant
value.

■ class IdNode : public Node {
·····
int eval() const { return val; }

private:
const char name;
int val;
·····
IdNode(char id): name (id)

{ cout << "Enter value of " << name << ": ";
cin >> val; }

};

The IdNode represents a variable. Its name can only be a single char-
acter. Its value is read in.

■ class BinaryNode : public Node {
·····
const char op;
Tree left;
Tree right;
BinaryNode(char a, Tree b, Tree c):

op(a), left(b), right(c) { }
void print (ostream& o) const

{ o << "(" << left << op << right << ")"; }
};

Here, we see the power of this representation. The tree is a self-refer-
ential data structure. So a tree is made up of a left and right subtree.
The print() method is polymorphic. It parenthesizes the expression
and calls the output operator << to properly print the subexpres-
sions. The constructor just performs initialization.

Ira Pohl’s C++ by Dissection 11.2 OOP: The Dominant Programming Methodology 430
The next major piece is the expression tree. By adding further node types, such as a
unary Node type and tree constructors, we can readily extend this code to more expres-
sion types.

In file tree.cpp

class Tree {
public:

Tree(int); // constant
Tree(char); // variable
Tree(char, Tree, Tree); // binary operator
Tree(const Tree& t) { p = t.p; ++p -> use; }
~Tree() { if (--p -> use == 0) delete p; }
void operator=(const Tree& t);
int eval() const { return p -> eval(); }

private:
friend ostream& operator<<(ostream&, const Tree&);
Node* p; // polymorphic hierarchy

};

int BinaryNode::eval() const
{

int ans = 0;
switch (op) {
case '-': ans= (left.eval()-right.eval());break;
case '+': ans= (left.eval()+right.eval());break;
case '*': ans= (left.eval()*right.eval());break;
default:

cerr << op <<" not implemented" <<endl; break;
}
return ans;

}

The eval() function is both recursive and polymorphic. It calls itself
on the two subtrees and then determines from the node type which
overridden eval() method to call. Notice how convenient it is to
extend the design by adding further operators as cases.

http://www.cse.ucsc.edu/~pohl/C++BD/11Chap/tree.cpp

Ira Pohl’s C++ by Dissection 11.2 OOP: The Dominant Programming Methodology 431
void Tree::operator=(const Tree& t)
{

if (this != &t) {
++t.p -> use;
if (--p -> use == 0)

delete p;
p = t.p;

}
}

ostream& operator<<(ostream& o, const Tree& t)
{

t.p -> print(o);
return (o);

}

Tree::Tree(int n) { p = new IntNode(n); }
Tree::Tree(char id) { p = new IdNode(id); }
Tree::Tree(char op, Tree left, Tree right)

{ p = new BinaryNode(op, left, right);
left.p -> use++; right.p -> use++; }

Dissection of the Tree Class

Tree::Tree(int n) { p = new IntNode(n); }
Tree::Tree(char id) { p = new IdNode(id); }
Tree::Tree(char op, Tree left, Tree right)

{ p = new BinaryNode(op, left, right);
 left.p -> use++; right.p -> use++; }

Each of these constructors works with a different node type calling
new to construct them.

■ Tree(const Tree& t) { p = t.p; ++p -> use; }
~Tree() { if (--p -> use == 0) delete p; }

The copy constructor and destructor use reference count semantics.
This is a very important idiom that is used for many class types that
need to construct objects by calling new.

■ int eval() const { return p -> eval(); }

The code for evaluation uses the base class Node pointer p to poly-
morphically call the correct overridden definition of eval().

Ira Pohl’s C++ by Dissection 11.3 Designing with OOP in Mind 432
Finally, here is code to test our Tree expression class:

In file tree.cpp

int main()
{

Tree t1 = Tree('*', Tree(5), Tree('+', 'A', 4));
Tree t2 = Tree('+', Tree('-', 'A', 1), Tree('+', t1, 'B'));
cout << "t1 = " << t1 << " ; t2 = " << t2 << endl;
cout << "t1:" << t1.eval() << " t2:" << t2.eval() << endl;

}

Presume that when prompted for variable A in the first Tree t1, we enter 3. Then the
first tree evaluates to 35. It prints, fully parenthesized, as t1 = (5 * (A + 4)). Test
this code and enter your own values for the variables in these expressions.

11.3 Designing with OOP in Mind

Most programming should involve the use of existing designs. For example, the mathe-
matical and scientific communities have standard definitions of complex numbers,
rationals, matrices, and polynomials. Each of these can be readily coded as an ADT. The
expected public behavior of these types is widely agreed on.

■ ostream& operator<<(ostream& o, const Tree& t)
{

t.p -> print(o);
return (o);

}

The overloaded output operator<< also uses p polymorphically to
produce a properly parenthesized expression.

■ void Tree:: operator=(const Tree& t)
{

if (this != &t) {
++t.p -> use;
if (--p -> use == 0)

delete p;
p = t.p;

}
}

Not used in this test example, we nevertheless provide an overloaded
assignment operator. Anytime we provide a copy constructor, we also
want to write code for assignment. Recall, this is a reference counted
structure. So our copying is not expensive but requires pointer
assignment semantics.

11.3

http://www.cse.ucsc.edu/~pohl/C++BD/11Chap/tree.cpp

Ira Pohl’s C++ by Dissection 11.3 Designing with OOP in Mind 433
The programming community has widespread experience with standard container
classes. Reasonable agreement exists as to the behavior of stack, associative array,
binary tree, and queue. Also, the programming community has many examples of spe-
cialized programming language oriented to a particular domain. For example, SNOBOL
and its successor language, ICON, have powerful string-processing features that can be
captured as ADTs in C++.

OOP attempts to emphasize reuse, which is possible on several scales. The grandest
scale is the development of libraries that are effective for an entire problem domain.
The upside is that reuse contributes in the long run to more easily maintained code. The
downside is that a particular application does not need costly library development.

OOP requires programmer sophistication. More sophisticated programmers are better
programmers. The downside is high training cost and the potential misuse of sophisti-
cated tools.

OOP makes client code simpler and more readily extensible. Polymorphism can be used
to incorporate local changes into a large-scale system without global modification. The
downside can be runtime overhead.

C++ provides programming encapsulations through classes, inheritance, and templates.
Encapsulations hide and localize. As systems get bigger and more complex, there is an
increasing need for such encapsulations. Simple block structure and functional encap-
sulation of such languages as Pascal are not enough. The 1970s taught us the need for
the module as a programming unit. The 1980s taught us that modules need to have a
logical coherence supported in the language and that they must be derivable from one
another. When supported by a programming language, encapsulations and relation-
ships lead to increased programmer discipline. The art of programming is to blend
rigor and discipline with creativity.

Occam’s Razor is a useful design principle: Entities should not be multiplied beyond
necessity—or beyond completeness, invertibility, orthogonality, consistency, simplic-
ity, efficiency, or expressiveness. Such ideals can be in conflict and frequently involve
trade-offs in arriving at a design.

Invertibility means that the program should have member functions that are inverses. In
the mathematical types, addition and subtraction are inverses. In a text editor, add and

This is possibly a little more complex than it needs
to be just to hit a key.

Ira Pohl’s C++ by Dissection 11.4 Class-Responsibility-Collaborator 434
delete are inverses. Some commands, such as negation, are their own inverses. The
importance of invertibility in a nonmathematical context can be seen by the brilliant
success of the undo command in text editing and the recover commands in file mainte-
nance.

Completeness is best seen in Boolean algebra, in which the nand operation suffices to
generate all possible Boolean expressions. But Boolean algebra is usually taught with
negation, conjunction, and disjunction as the basic operations. Completeness by itself
is not enough to judge a design by. A large set of operators is frequently more expres-
sive.

Orthogonality means that each element of a design should integrate and work with all
other elements without overlapping or being redundant. For example, on a system that
manipulates shapes, one should have a horizontal move, a vertical move, and a rotate
operation. In effect, these operations would be adequate to position the shape at any
point on the screen.

Hierarchy is captured through inheritance. Designs should be hierarchical. It is a reflec-
tion of two principles—decomposition and localization. Both principles are methods of
suppressing detail, a key idea in coping with complexity. However, there is a scale prob-
lem in such a design. How much detail is enough to make a concept useful as its own
class? It is important to avoid a proliferation of specialized concepts. Too much detail
renders the class design difficult to master.

11.4 Class-Responsibility-Collaborator

Designs can be aided by a diagramming process. Several object-oriented design (OOD)
notations exist, and a number have been incorporated in CASE (computer-assisted soft-
ware engineering) tools. The most comprehensive of these are based on Universal Mod-
eling Language (UML), pioneered by Rational Software. Another useful, related low-tech
scheme: the Class-Responsibility-Collaborator (CRC) notecard scheme.

A responsibility is an obligation the class must keep. For example, complex number
objects must provide an implementation of complex arithmetic. A collaborator is
another object that cooperates with this object to provide an overall set of behaviors.
For example, integers and reals collaborate with complex numbers to provide a compre-
hensive set of mathematical behaviors.

11.4

Ira Pohl’s C++ by Dissection 11.4 Class-Responsibility-Collaborator 435
11.4.1 CRC Cards
A CRC notecard is used to design a given class. The responsibilities of the class and the
collaborators for that class are initially described. The back of the card is used to
describe implementation detail. The front of the card corresponds to public behavior.

As the design process proceeds, the cards are rewritten and refined. They become more
detailed and closer to a set of member function headers. The back of the card can be
used to show implementation details, including ISA, LIKEA, and HASA relationships.

The attractiveness of this scheme is its flexibility. In effect, it represents a pseudocode
refinement process that can reflect local tastes. The number of revisions and the level
of detail and rigor are a matter of taste. (See the site at http://c2.com/doc/oopsla89/
paper.html for a good description.)

A more formal system for documenting class architectures is Unified Modeling Lan-
guage (UML), which we already discussed in Section 4.12.2, Unified Modeling Language
(UML) and Design, on page 169. (See the UML site at http://www.rational.com/uml/ for a
full description.) A class diagram describes the types and relationships in the system. It
is very useful documentation, and a number of systems, such as Rational Rose, now
provide automated tools to develop such documentation along with coding. A key rela-

classname: stack

responsibilities
push
pop

empty

collaborators:
none

card front

public

state/description

top

base_pointer

card back

CRC Card

http://www.rational.com/uml/
http://c2.com/doc/oopsla89/paper.html
http://c2.com/doc/oopsla89/paper.html

Ira Pohl’s C++ by Dissection 11.5 Design Patterns 436
tionship is the ISA or subtype relationship. In the following basic UML diagram, we
show the Node-IdNode class diagram:

Other relationships that can be depicted by UML include the part-whole or aggregation
relationship (HASA), and the uses or collaborates relationship. For example, a Tree type
uses a Node type as part of its representation. This is also called delegation.

11.5 Design Patterns

Reuse is a primary theme in modern programming. In early times, reuse was limited to
simple libraries of functions, such as the math functions found in math.h or the char*
functions in cstring. In OOP, the class or template becomes a key construct for reuse.
Classes and templates encapsulate code that conforms to certain designs. Thus, the
iterator classes of STL are a design pattern. Recently, the concept of design pattern has
proved very popular in defining medium-scale reuse. A design pattern has four ele-
ments.

IdNode

n

eval()
print()

Basic ISA Inheritence in UML

Node

use

eval()
print()

NodeTree

name
val

print()
eval()

Basic HASA Relationship in UML

11.5

Ira Pohl’s C++ by Dissection 11.6 A Further Assessment of C++ 437
Elements of a Design Pattern
1. The pattern terminology: for example, iterator

2. The problem and conditions: for example, visitation over a container

3. The solution: for example, pointerlike objects with a common interface

4. The evaluation: for example, the trade-off between defining an iterator on a
vector and using a native array

A design pattern is an abstraction that suggests a useful solution to a particular pro-
gramming problem. Often reuse is inexpensive, as with STL container and iterator
design patterns that require only instantiation. Sometimes reuse is expensive, such as
inventing a balanced-tree class with an interface conforming to STL sequence contain-
ers.

Design Patterns
1. Iterator, such as vector::iterator; organizes visitation on a container

2. Composite, such as class grad_student; composes complex objects out of
simpler ones

OOP has stimulated reuse through design patterns. A design pattern is a software solu-
tion in search of a problem. Consider how the iterator logic of STL decouples visitation
of container elements from specific details of the container. This idea is independent of
computer language and is useful in C++, Java, and SmallTalk coding projects. This idea
can be summarized as the iterator pattern.

The name is of great importance, as it increases the programmer’s technical vocabulary.
A name should be memorable and illuminate a key characteristic of the method. The
problem identifies circumstances under which the pattern provides a solution. The
solution shows how the pattern solves the problem. The consequences are a discussion
of the cost-benefit trade-off in using the pattern.

When the pattern is discussed in a specific language context, it is often called a pro-
gramming idiom. This is also sometimes used for smaller coding ideas. For example, in
C++ or C, EOF is frequently used as a guard value to terminate file processing.

When the pattern is used in a wider context to provide a library of routines and compo-
nents, it is called a framework. The STL can be considered a framework that makes
heavy use of the iterator and template patterns, among others. In Java, the Java Founda-
tion Classes, also known as Swing, support window development. They are imple-
mented with the model-view-controller pattern.

11.6 A Further Assessment of C++

C++ is better than C in several ways. First, it can be used in place of C without change
for most applications. Second, it extends C by including additional critical features that
support object-oriented and generic programming. Third, it remedies some of C’s
defects.

11.6

Ira Pohl’s C++ by Dissection 11.6 A Further Assessment of C++ 438
C++ is largely a superset of C. There are some minor differences, such as the difference
in semantics between void* in both languages and the fact that C++ treats control
expressions as bool. Nevertheless, most running C code compiles and runs as C++
code.

C++ was designed, at first, to allow for classes and inheritance, the core functionality
needed for object-oriented programming. This was done without sacrificing C’s object
code efficiency. The key idea was to extend struct’s functionality to include access
restrictions and member function declarations. The result is that the C++ language is
philosophically consistent with C at its core. C++ also embraced generic programming
using templates.

C++ remedies some of C’s defects. C was a language of the 1970s. It relied on the pre-
processor to provide macros and to define constants. C++ uses inline, template, and
const to provide these facilities directly in the language. C is heavily criticized for its
lack of type-safety. Here, C++ provided iostream, a type-safe I/O library, as a replace-
ment for stdio.h in C. Also, C++ replaced unrestricted casting with four named casts.
C++ added the bool type, which means that code that needs logical values, such as con-
trol expressions in conditional statements, no longer uses the traditional C interpreta-
tion of 0 as false and nonzero as true. C++ also provides more scoping constructs. In
general, having scope enables you to manage complexity better. C++ allows namespace
scope and nested class scope, both unavailable in C.

11.6.1 Why C++ Is Better Than Java
C++ compiles into efficient object code, while Java is interpreted. C++ is an almost
proper superset of C. These two critical observations have important implications and
advantages for C++ over Java.

Invariably, C++ runs faster than Java. This is true even for compiled Java code, in most
cases. Java is designed to be independent of any local architecture. Therefore, it is easy
to have a mismatch between a Java construct and the local machine. This is the price of
Java, being largely machine-independent. C++ is allowed to define types that are conve-
nient to the local architecture. There is a looser specification for C++, which allows a
compiler writer to custom tailor the compiler to the local system. C++ has low-level fea-
tures, such as access to the bit representation of the word and inlining that allows great
efficiency. C++ class methods can be nonvirtual and therefore do not require runtime
dispatch overhead.

The C programmer is instantly a C++ programmer. The C programmer at first can be
confused by the annoying changes to C code that allow it to run as Java. For example, in
Java there cannot be external functions. All functions must be contained in a class. The
syntax for main() is slightly different. Philosophically, Java is closer to SmallTalk than
it is to C. Moving from C to C++ is relatively simple and does not require a break with
existing C practice.

C++ has several critical features not found in Java, such as templates and operator over-
loading. Operator overloading is very important to C++’s use as a numerical algorithms
language. Scientists and engineers like the ability to add numerical types, such as com-
plex number, rational, matrix, and polynomial, while still using ordinary operators such
as + and / for expressions over these types. C++ templates permit efficient generic pro-

Ira Pohl’s C++ by Dissection 11.7 Software Engineering: Last Thoughts 439
gramming that is type-safe. The implementation and use of STL, including important
extensions to it, demonstrate the power of these techniques.

11.6.2 A Short Rebuttal
C++ is too large and complex. C++ is system-dependent. C++ is not Web-ready. C++ does
not manage memory. Java is purely object-oriented and very type-safe. When teaching
students programming, it is desirable to minimize complexity. This is possible by teach-
ing a very restricted set of C++, but invariably issues such as signature matching, con-
versions, and memory management require sophisticated explanations. The mere fact
that Java does not have the pointer type greatly simplifies the teaching of Java. We
expand on this theme in Section 11.9, C++ Compared with Java, on page 441.

11.7 Software Engineering: Last Thoughts

Let us revisit our tree.cpp and examine software engineering lessons learned from this
example. Imagine writing this code in a procedural programming style such as needed
by C or Pascal. Invariably, it would be designed around a big switch statement, such as

switch (nodetype) {
case 1: ····· break; // unary operator
case 2: ····· break; // binary operator
·····
default: cerr << “ Case not Found. “ << endl; abort();
break;
}

What is required when we write a new version, possibly incorporating the evaluation of
additional operators? We have to search out each such switch and update with the new
case. In the case of our object-oriented code using a related hierarchy of Node types, we
only need to add a new subclass. We do not have to do any global searches.

Notice that we did use a switch for evaluating a BinaryNode. This can be avoided by
having further subclasses. In exercise 6 on page 450, you are asked to provide this
switchless alternative and discuss its design trade-offs.

11.7

Ira Pohl’s C++ by Dissection 11.8 Dr. P’s Prescriptions 440
int BinaryNode::eval() const
{

int ans = 0;
switch (op) {
case '-': ans = (left.eval() - right.eval()); break;
case '+': ans = (left.eval() + right.eval()); break;
case '*': ans = (left.eval() * right.eval()); break;
default:

cerr << op << " not implemented" << endl; break;
}
return ans;

}

Part of the trade-off comes from value returned by having subclasses of finer granular-
ity. When you have software based on many little classes, you have fine granularity;
with software based on very few large classes, you have coarse granularity. Fine granu-
larity has the overhead of writing and maintaining many small classes of limited useful-
ness. Coarse granularity has the overhead of a relatively rigid design and the need for
more revision and testing within these large classes.

11.8 Dr. P’s Prescriptions

■ KISS—keep it simple, stupid.

■ Use standard libraries.

■ Check that your compiler supports full, modern C++.

C++ has many obscure and complex features. For example, inheritance hierarchies tend
to be overused. Remember, code needs to be understood, maintained, and extended by
others not as clever as yourself. Low-level tricks based on heavy use of casting may pro-
vide a shortsighted benefit, but they can backfire when one is porting to another sys-
tem. The most universal criticism of C++ is its great complexity. Sticking to essentials
and idiomatic use promotes understanding of your code.

Do not reinvent the wheel—trite but true. STL is a great achievement and should be
used extensively. It has excellent performance characteristics. Historically, starting with
the FORTRAN scientific library package and continuing with the various UNIX libraries,
libraries have been the most successful software reuse tool.

C++ compilers for ANSI C++ as described here may still be incomplete. Make sure you
know what the vendors support, especially when it comes to recent changes in the use
of namespaces, exception handling, templates, and libraries, particularly the Standard
Template Library (STL). Vendors, such as Microsoft with its popular Visual C++, provide
libraries and features that can be at variance with the standard.

11.8

Ira Pohl’s C++ by Dissection 11.9 C++ Compared with Java 441
11.9 C++ Compared with Java

Java shares with C++ the use of classes and inheritance to build software in an object-
oriented manner. Also, both languages use data hiding and have methods that are bun-
dled within the class.

Unlike C++, Java does not allow for conventional programming. Everything is encapsu-
lated in a class. This forces the programmer to think and to design everything as an
object. The downside is that conventional C code is not as readily adapted to Java as it
is to C++. Java avoids most of the memory-pointer errors that are common to C and
C++. Address arithmetic and manipulation are done by the compiler and the system,
not the programmer. Therefore, the Java programmer writes safer code. Also, memory
reclamation is automatically done by the Java garbage collector.

Another important concept in OOP is the promotion of code reuse through the inherit-
ance mechanism. In Java, this is the mechanism of extending a new class, called a sub-
class, from an existing one, called the superclass. Methods in the extended class
override the superclass methods. The method selection occurs at runtime and is a
highly flexible polymorphic style of coding.

Java, in a strict sense, is completely portable across all platforms that support it. Java is
compiled to byte code that is run on the Java virtual machine. This is typically an inter-
preter—code that understands the Java byte code instructions. Such code is much
slower than native code on most systems. The trade-off here is universally consistent
behavior versus loss of efficiency.

Java has extensively developed libraries for performing Web-based programming. Java
also has the ability to write graphical user interfaces that are used interactively. Its
thread package has secure Web communication features that let the coder write distrib-
uted applications.

Java is far simpler than C++ in the core language and its features. In some ways, this is
deceptive in that much of the complexity is in its libraries. Java is far safer because of
very strict typing, avoidance of pointer arithmetic, and well-integrated exception han-
dling. It is system independent in its behavior, so one size fits all. This combination of
object orientation, simplicity, universality, and Web-sensitive libraries makes it the lan-
guage of the moment.

Java programs are classes. A class has syntactic form that is derived from the C
struct, which does not exist in Java. Data and functions are placed within classes.
When a class is executed as a program, it starts by calling the member function main().

Java is known for providing applets on Web pages. A browser is used to display and
execute the applet. Typically, the applet provides a graphical user interface (GUI) to the
code. The following discussion of an applet is taken from Chapter 8 of Java by Dissec-
tion (Addison Wesley 1999), by Pohl and McDowell. It uses the standard Java library
swing for drawing components and the Java applet library awt.

Most GUIs have more than a single button to click or a single text field. As a result, we
face two new questions: How do we arrange the GUI components whenwe have more
than one? How do we respond to events from several different components?

11.9

Ira Pohl’s C++ by Dissection 11.9 C++ Compared with Java 442
To control the arrangement of GUI components, Java uses layout managers. A layout
manager is an object that determines the location of components. One type of layout
manager is implemented by the class java.awt.GridLayout. As the name implies,
GridLayout arranges the components in a two-dimensional grid. We specify the num-
ber of rows and columns in the grid and then add the components, one at a time. Each
new component is added into the next available cell in the grid.

In the following program, we use a GridLayout to arrange the components of a minical-
culator, which is capable of adding and subtracting two numbers. The program includes
two buttons: one for adding and one for subtracting. The ActionListener determines
which button is clicked.

In file MiniCalc.java

// Demo GridLayout

import java.awt.*;
import javax.swing.*;

class MiniCalc {
public static void main(String[] args) {

JFrame frame = new JFrame("MiniCalc");
Container pane = frame.getContentPane();

// create the major components
JTextField firstNumber = new JTextField(20);
JTextField secondNumber = new JTextField(20);
JTextField result = new JTextField(20);
JButton addButton = new JButton("Add");
JButton subButton = new JButton("Subtract");

// there are 4 rows of 2 components each
pane.setLayout(new GridLayout(4, 2));

// add all of the components to content pane
pane.add(new JLabel("Enter a number"));
pane.add(firstNumber);
pane.add(new JLabel("Enter a number"));
pane.add(secondNumber);
pane.add(new JLabel("Result"));

pane.add(result);
pane.add(addButton);
pane.add(subButton);

http://www.cse.ucsc.edu/~pohl/C++BD/11Chap/MiniCalc.java
http://www.cse.ucsc.edu/~pohl/JBD/chap8/MiniCalc.java

Ira Pohl’s C++ by Dissection 11.9 C++ Compared with Java 443
// setup the listener, listening to the buttons
// DoMath class is defnied separately
DoMath listener =

new DoMath(firstNumber, secondNumber,
result);

subButton.addActionListener(listener);
addButton.addActionListener(listener);
frame.pack();
frame.show();

}
}

The initial display looks like this:

Dissection of the MiniCalc.java Program

■ import java.awt.*;
import javax.swing.*;
class MiniCalc {
public static void main(String[] args) {
JFrame frame = new JFrame("MiniCalc");
Container pane = frame.getContentPane();

This program begins by creating the frame and its content pane. The
imports are needed because we use JFrame, JButton, JTextField,
and JLabel from the package javax.swing, and Container from
java.awt. We create a JFrame, which is the top-level window, and get
the content pane, to which we add the other GUI components.

■ JTextField firstNumber = new JTextField(20);
JTextField secondNumber = new JTextField(20);
JTextField result = new JTextField(20);
JButton addButton = new JButton("Add");
JButton subButton = new JButton("Subtract");

Here, we create the JButton and JTextField components that are to
be part of the GUI. The JTextField components are wide enough to
display 20 characters.

■ pane.setLayout(new GridLayout(4, 2));

To have the content pane use a GridLayout manager, we must set
the layout manager as shown. Other layout managers are, for exam-
ple, BorderLayout and FlowLayout.

Ira Pohl’s C++ by Dissection 11.9 C++ Compared with Java 444
We have now shown one way to control the arrangement of multiple components—with
a GridLayout. We use the class DoMath to show how an object can listen to multiple
buttons and determine which button was clicked.

In file DoMath.java

// Respond to two different buttons

import javax.swing.*;
import java.awt.event.*;

■ pane.add(new JLabel("Enter a number"));
pane.add(firstNumber);
pane.add(new JLabel("Enter a number"));
pane.add(secondNumber);
pane.add(new JLabel("Result"));
pane.add(result);
pane.add(addButton);
pane.add(subButton)

We can now add the components to the grid. Instead of specifying a
row and column number for each component, we simply add them
one at a time. The components are added to the grid beginning in the
upper left corner, filling the rows from left to right and moving to the
next row when a row is full. Each of the JTextField components is
placed in a row with a JLabel component, which is text that serves as
a label. We haven’t bothered to save a reference to the JLabel compo-
nents in local variables because we don’t need to refer to the labels
after we’ve added them to the GUI.

■ DoMath listener =
new DoMath(firstNumber, secondNumber, result);

subButton.addActionListener(listener);
addButton.addActionListener(listener);

Here, we create an instance of the class DoMath. The constructor for
DoMath is passed the three text fields, which it needs in order to per-
form its task. The DoMath listener object is added as an ActionLis-
tener for both buttons.

■ frame.pack();
frame.show();

Now that we’ve added all the components to our GUI, we call pack(),
which tells the JFrame to arrange the components according to the
layout manager that we specified—in this case, a grid of four rows
and two columns. Finally, the JFrame is ready to be shown.

http://www.cse.ucsc.edu/~pohl/C++BD/11Chap/DoMath.java

Ira Pohl’s C++ by Dissection 11.9 C++ Compared with Java 445
class DoMath implements ActionListener {
DoMath(JTextField first, JTextField second,

JTextField result)
{

inputOne = first;
inputTwo = second;
output = result;

}

public void actionPerformed(ActionEvent e) {
double first, second;
first =

Double.parseDouble(inputOne.getText().trim());
second =

Double.parseDouble(inputTwo.getText().trim());
if (e.getActionCommand().equals("Add"))

output.setText(String.valueOf(first + second));
else //must be subtract button

output.setText(String.valueOf(first - second));
}

private JTextField inputOne, inputTwo, output;
}

Dissection of the DoMath.java Program

■ import javax.swing.*;
import java.awt.event.*;

class DoMath implements ActionListener {

This class uses JTextField from javax.swing and ActionListener
and ActionEvent from java.awt.event. As with other listener
classes, the class DoMath must implement the interface ActionLis-
tener.

■ DoMath(JTextField first, JTextField second,
JTextField result)

The DoMath listener class has an explicit constructor; it cannot rely
on the default constructor. An instance of DoMath needs references to
the three text fields in the GUI—two for input and one for output.
Each is saved in a private instance variable.

Ira Pohl’s C++ by Dissection 11.9 C++ Compared with Java 446
■ public void actionPerformed(ActionEvent e) {
double first, second;
first =

Double.parseDouble(inputOne.getText().trim());
second =

Double.parseDouble(inputTwo.getText().trim());

Regardless of which button is clicked, we need to get the text strings
from each of the input text fields and convert those strings to num-
bers. Here, we chose to convert them to primitive double values. The
call inputOne.getText() returns the String object corresponding
to the text typed into the JTextField component. We use the
method trim() from the class String to eliminate any extraneous
spaces a user may type before or after the number. This call isn’t
required, provided the user doesn’t accidentally type any spaces in
the text field. However, including it makes our program more
robust—that is, less likely to generate an error when we could have
given a normal response. The call Double.parseDouble() converts a
String to a primitive double value.

■ if (e.getActionCommand().equals("Add"))
output.setText(String.valueOf(first + second));

else // must be the "Subtract" button
output.setText(String.valueOf(first - second));

The class ActionEvent defines the method getActionCommand().
When the event is generated by a button, this call returns the action
command string associated with the button. By default, the action
command string is the same as the label on the button. The action
command string can be different from the label if the method set-
CommandString(), which is defined for the class JButton, is called.
By testing the command string, we can determine which button was
clicked. Once we know which button was clicked, we perform the
appropriate operation and call output.setText() to set the text
string displayed in the output text field. The call String.valueOf()
is used to convert the double value to a String, as required by set-
Text().

■ private JTextField inputOne, inputTwo, output;

Here, we declare the private data members of the class that are initial-
ized in the constructor.

Ira Pohl’s C++ by Dissection Summary 447
Summary

■ Object-oriented programming (OOP) and C++ were embraced by industry very
quickly. As a hybrid OOP language, C++ allows a multiparadigmatic approach to cod-
ing. The traditional advantages of C as an efficient, powerful programmer’s language
are not lost. The key new ingredient is polymorphism, or the ability to assume many
forms.

■ Existing languages and methodology supported much of the OOP methodology by
combining language features with programmer discipline. It is possible to create and
use ADTs in a nonOOP language. Three examples in the C community are string,
boolean, and file, which are pseudotypes in that they do not enjoy the same privi-
leges as true types. What is gained by looking at these examples is a better under-
standing of the limits of extensibility in nonOOP.

■ A black box for the client should be simple to use, easy to understand, and familiar;
cheap, efficient, and powerful; and in a component relationship within the system. A
black box for the manufacturer should be easy to reuse and modify and difficult to
misuse and reproduce; cheap, efficient, and powerful; and profitable to produce for
a large client base. In brief, the OOP design methodology involves deciding on an
appropriate set of ADTs, designing in their relatedness, and using inheritance to
share code and interface, using virtual functions to process related objects dynami-
cally.

■ Polymorphism directly contributes to the black box principle. The virtual functions
specified for the base class are the interface used by the client throughout. The cli-
ent knows that an overridden member function takes responsibility for a specific
implementation of a given action relevant to the object.

■ As a hybrid OOP language, C++ can cause the programmer a dialectical tension head-
ache. The penchant of C programmers to focus on efficiency and implementation
conflicts with the penchant of objectivists to focus on elegance, abstraction, and
generality. The two demands on the coding process are reconcilable but require a
measure of coordination and respect for the process.

■ OOP is many things to many people. In many languages and systems, the cost of
detail suppression was runtime inefficiency or undue rigidity in the interface. C++
has a range of choices that allow both efficiency and flexibility.

■ Occam’s Razor, a useful design principle, states that entities should not be multi-
plied beyond necessity—or beyond completeness, invertibility, orthogonality, con-
sistency, simplicity, efficiency, or expressiveness. These principles can be in conflict
and frequently involve trade-offs in arriving at a design.

■ The Class Responsibility Collaborator (CRC) notecard scheme is used in OOD. A
responsibility is an obligation the class must keep. A collaborator is another object
that cooperates with this object to provide an overall set of behaviors. The responsi-
bilities of the class and the collaborators for that class are initially described. The

Ira Pohl’s C++ by Dissection Review Questions 448
back of the card is used to describe implementation detail. The front of the card cor-
responds to public behavior.

■ OOP has stimulated reuse of design patterns. A design pattern is a software solution
in search of a problem. Consider how the iterator logic of STL decouples visitation of
container elements from specific details of the container. This idea can be summa-
rized as the iterator pattern. The name is of great importance, as it increases the
programmer’s technical vocabulary. The name should be clever and should illumi-
nate a key characteristic of the method. The problem identifies circumstances under
which the pattern provides a solution. The solution shows how the pattern solves
the problem. The consequences are a discussion of the cost-benefit trade-off in
using the pattern.

Review Questions

1. Name three typical characteristics of an object-oriented programming language.

2. True or false: Conventional academic wisdom is that excessive concern with effi-
ciency is detrimental to good coding practice.

3. Through , a hierarchy of related ADTs can be created that share code and a
common interface.

4. Name three properties of a black box for the client.

5. Name three properties of a black box for the manufacturer.

6. methodology has a process-centered view and relies on stepwise refinement to
nest routines but does not adequately appreciate the need for a corresponding view
of data.

7. is the genie in OOP, taking instruction from a client and properly interpreting
its wishes.

8. Give an example of ad hoc polymorphism.

9. Describe at least two separate concepts for the keyword virtual as used in C++.
Does this cause conceptual confusion?

Ira Pohl’s C++ by Dissection Exercises 449
Exercises

1. Consider the following three ways to provide a Boolean type:

// Traditional C using the preprocessor

#define TRUE 1
#define FALSE 0
#define Boolean int

// ANSI C and C++ using enumerated types
// Prior to adoption of the native bool type

enum Boolean { false, true };

// C++ as a class

class Boolean {
·····

public:
// various member functions
// including overloading ! && || == !=

};

What would be the advantages and disadvantages of each style? Keep in mind scope,
naming and conversion problems. In what ways is it desirable for C++ to now have a
native type bool?

Discuss the advantages and disadvantages of each style. Keep in mind scope, nam-
ing, and conversion problems. In what ways is it desirable for C++ to now have a
native type bool?

2. C++ originally allowed the this pointer to be modifiable. One use was to have user-
controlled storage management by assigning directly to the this pointer. The
assignment of 0 meant that the associated memory could be returned to free store.
Discuss why this is a bad idea. Write a program with an assignment of this = 0.
What error message does your compiler give you? Can you get around this with a
cast? Would this be a good idea?

3. The rules for deciding which definition of an overloaded function to invoke have
changed since the first version of C++. One reason for this is to reduce the number
of ambiguities. A criticism is that the rules allow matching through conversions that
may be unintended by the programmer causing difficult-to-detect runtime bugs.
One strategy is to have the compiler issue a diagnostic warning in such cases;
another is to use casting defensively to inform the compiler of the intended choice.
Discuss these alternatives after investigating how the rules have changed.

4. Add a UnaryNode class to our tree.cpp code from Section 11.2, OOP: The Dominant
Programming Methodology, on page 426. It should deal with unary minus and unary

Ira Pohl’s C++ by Dissection Exercises 450
plus. Unary plus is a no-op, meaning nothing is done. Test using the expressions +a -
3 * b and -a + b * -3.

5. Redo the previous exercise by including the increment and decrement operators.
Write and run appropriate test cases.

6. (Uwe F. Mayer) Redo the tree.cpp from Section 11.2, OOP: The Dominant Program-
ming Methodology, on page 427, to avoid the switch statements. Do this by writing
further subclasses for the different binary operators. Discuss the benefits and draw-
backs of this approach.

7. (Java) Java and C++ have different casting rules. Investigate the differences. C++
allows a wider range of casting opportunities. Is this desirable?

8. List three things that you would drop from the C++ language. Argue why each would
not be missed. For example, it is possible to have protected inheritance, although it
was never discussed in this text? Should it be in the language for completeness’
sake? Can you write code that uses protected inheritance that demonstrates that it
is a critical feature of language, as opposed to an extravagance?

9. (Java) Using awt, write a Java program that is a basic desktop calculator. Have but-
tons that indicate a series of operations, such as addition, multiplication, square
root, and reciprocal; data fields to enter arguments; and a result field. If you have
access to JFC (Swing), use it. Document your design with CRC cards.

ASCII Character Codes

APPENDIX A
Some Observations
■ Character codes 0 through 31 and 127 are nonprinting.

■ Character code 32 prints a single space.

■ Character codes for digits 0 through 9e are contiguous.

■ Character codes for letters A through Z are contiguous.

■ Character codes for letters a through z are contiguous.

■ The difference between a capital letter and the corresponding lowercase let-
ter is 32.

American Standard Code for Information Interchange

0 1 2 3 4 5 6 7 8 9
0 nul soh stx etx eot enq ack bel bs ht
1 nl vt np cr so si dle dc1 dc2 dc3
2 dc4 nak syn etb can em sub esc fs gs
3 rs us sp ! “ # $ % & ‘
4 () * + , - . / 0 1
5 2 3 4 5 6 7 8 9 : ;
6 < = > ? @ A B C D E
7 F G H I J K L M N O
8 P Q R S T U V W X Y
9 Z [\] ^ _ ‘ a b c
10 d e f g h i j k l m
11 n o p q r s t u v w
12 x y z { | } ~ del

Ira Pohl’s C++ by Dissection 452
.

The Meaning of some of the Abbreviations

bel audible bell ht horizontal tab
bs backspace nl newline
cr carriage return nul null
esc escape vt vertical tab

Operator Precedence and
Associativity

APPENDIX B
Operators Associativity

:: (global scope) :: (class scope) Left to right

func() [] -> . (postfix) ++ (postfix) --typeid(e)
type(e) dynamic_cast<type>(e) static_cast<type>(e)
reinterpret_cast<type>(e) const_cast<type>(e)

Left to right

++ (prefix) --(prefix) ! ~ & (address)
sizeof(e) + (unary) - (unary) *(indirection)
delete new (type)e

Right to left

.* ->* Left to right

* / % Left to right

+ - Left to right

<< >> Left to right

< <= > >= Left to right

== != Left to right

& Left to right

^ Left to right

| Left to right

&& Left to right

|| Left to right

?: Right to left

= += -= *= /= %= >>= <<= &= ^= |= Right to left

throw(e) Left to right

, (comma operator) Left to right

Ira Pohl’s C++ by Dissection 454
All operators in a given table entry, such as ++, new, and &, have equal precedence with
respect to one another but have higher precedence than all the operators in the entries
below them.

The associativity rule for all the operators in a given entry appears on the right side of
the table.

APPENDIX C
String Library
A string type library is supplied by the C++ system including the standard header file
string. It is the instantiation of a template class basic_string<T> with char. The
string type provides member functions and operators that perform string manipula-
tions, such as concatenation, assignment, or replacement. An example of a program
using the string type for simple string manipulation follows:

In file poem.cpp

// String class to write a poem
#include <string>
#include <iostream>
#include <cstdlib>
#include <vector>
using namespace std;

//pick a word at random
string& choose_word(vector<string> &word) {
 int i = rand() % 6;
 return word[i];
}

http://www.cse.ucsc.edu/~pohl/C++BD/13Chap/poem.cpp

Ira Pohl’s C++ by Dissection C.1 Constructors 456
int main()
{
 int i, seed;
 string poem;
 vector<string> nouns(6), verbs(6), rhymes(6);

 cout << "enter seed: ";
cin >> seed;
cout << "enter dictionary: " << endl;

 for (i = 0; i < 6; ++i) {
 cin >> nouns[i]; // input words
 cin >> verbs[i];
 cin >> rhymes[i];
 }

cout << "My random poem" << endl;
 for (int lines = 0; lines <4; ++lines)
 poem += choose_word(nouns) + ' '
 + choose_word(verbs) + ' '

+ choose_word(rhymes) + '\n';
 cout << poem << endl;
}

The string type is used to store and manipulate each word conveniently. Notice how
easy concatenation and assignment work with this type. These operations are over-
loaded in the library as well as the input/output operations.

The representation for a string of characters is presented in Table C.1. It is usual to
have the instantiation basic_string<wchar_t> for a wide string type wstring. Other
instantiations are possible as well.

This implementation provides an explicit variable to track the string length; thus, string
length can be looked up in constant time, which is efficient for many string computa-
tions.

C.1 Constructors

Table C.2 presents the six public string constructors. These constructors make it easy
to declare and initialize strings from a wide range of parameters.

Table C.1 String Private Data Members

char* ptr Contains the pointer to the initial character

size_t len Contains the length of the string

size_t res Contains the currently allocated size or, for an
unallocated string, its maximum size

C.1

Ira Pohl’s C++ by Dissection C.2 Member Functions 457
These constructors make it quite easy to use the string type initialized from char*
pointers, which is the traditional C method for working with strings. Many computa-
tions are readily handled as a vector of characters. This is also facilitated by the string
interface.

C.2 Member Functions

Strings have some members that overload operators, as described inTable C.3.

The extensive set of public member functions lets you manipulate strings. In many
cases, these functions are overloaded to work with string, char*, and char.

For the append() and assign() functions in Table C.4, all functions throw a
length_error exception if the resulting lengths exceed max_size() and all return a
reference to the implicit string argument.

In the following code examples, it is assumed that each statement starts with s1 con-
taining "I am " and s2 containing "7 years old":

Table C.2 String Constructor Members

string() Creates an empty string

string(const char* p) Constructs the implied string from the
char* array p

string(InputIterator b,
InputIterator e)

Constructs the implied string from the
InputIterator range from b to e

string(const string& str,
size_t pos=0, size_t n=npos)

Copy constructor; npos is usually -1
and indicates that no memory was
allocated

string(const char* p, size_t n) Copies n characters, where p is the
base address

string(size_t n, char c) Constructs a string of n cs

Table C.3 String Overloaded Operator Members

string& operator=(s) Assigns from string s

string& operator=(p) Assigns from char* p array

string& operator=(c) Assigns from a single char c

string& operator+=(s) Appends string s

string& operator+=(p) Appends a char*

string& operator+=(c) Appends a char c

char operator[](pos)t Returns the character at pos

char& operator[](pos) Returns the reference to the
character at pos

C.2

Ira Pohl’s C++ by Dissection C.2 Member Functions 458
s1.append(s2); // s1 " I am 7 years old"
s2.append(s1,0,4); // s2 "7 years old I am"
s1.assign(s2); // s1 "7 years old"
s1.assign(s2); // s1 "7 years old"

Table C.5 shows the use of some insert() functions. All insert() functions insert
additional elements at the position specified by pos. All variations also throw a
length_error if the resulting string exceeds max_size(). Elements of the implicit
string are moved apart as necessary to accommodate the inserted elements, and all
return a reference to this string.

The insert() functions presented inTable C.6 work with iterators. These versions of
insert() put additional elements in this string immediately before the character referred
to by p. All of these versions require that p is a valid iterator on this string. The first two
functions return the iterator p, the third returns void.

The following code illustrates the use of insert() and again assumes that s1 contains
"I am " and s2 contains "7 years old".

s1.insert(2, s2); // s1 "I 7 years old am"

Table C.4 append() and assign() Functions

string& append(s, pos, n) Appends n characters, starting at pos from
string s

string& append(p, n) Appends n characters from the char* p
array

string& append(p) Appends the characters from char* p
array

string& append(n, c) Appends n repetitions of char c

string& assign(s, pos, n) Assigns n characters, starting at pos from
string s

string& assign(p, n) Assigns the first n characters of the char*
p array

string& assign(p) Assigns the char* p array

string& assign(n, c) Assigns n repetitions of char c

string& assign(b, e) Assigns members specified by the range
InputIterator b to InputIterator e

Table C.5 String insert() Functions

string& insert(pos, p, n) Inserts n characters of char* p array at pos

string& insert(pos, p) Inserts char* p array at pos

string& insert(pos, n, c) Inserts n repetitions of char c at pos

string& insert(pos1, s1,
pos2=0, n=0)

Inserts at pos1 in implied string, the lesser of
n and s1.size() - pos2 characters
beginning at pos2 of string s1

Ira Pohl’s C++ by Dissection C.2 Member Functions 459
The inverse function is remove().

Table C.7 briefly describes further public string member functions. The return types
are shown explicitly.

You can lexicographically compare two strings by using compare(), a family of over-
loaded member function shown in Table C.8. The return int value is 0 if the strings
have the same value, a negative number if the implied string is lexicographically before
the string argument, and a positive number otherwise.
.

Table C.6 String insert() Iterator Functions

iterator insert(p, c) Inserts single char c at iterator p

iterator insert(p, n, c) Inserts n repetitions of char c at iterator p

iterator insert(p, b, e) Inserts at iterator p elements from range
iterator b to iterator e

Table C.7 More String Members

string& remove(pos, n s) Removes n number of characters at position pos

string& replace(pos1, n1,
str, pos2=0, n2=npos)

Replaces at pos1 for n1 characters, the substring in str
at pos2 of n2 characters

string& replace(pos,n,p,n2)
string& replace(pos,n,p)
string& replace(pos,n,c)

Replaces n characters at pos, using a char* p of n2
characters, or a char* p until null, or a character c

size_t length() Returns the string length

const char* c_str() Converts string to traditional char* representation

const char* data() Returns the base address of the string representation

void resize(n, c)
void resize(n)

Resizes the string to length n; the padding character c
is used in the first function, and the eos()
character is used in the second

void reserve(res_arg)
size_t reserve()

Allocates memory for string; returns the size of the
allocation

size_t copy(p, n, pos=0) Copies the implicit string starting at pos into the
char* p for n characters

string substr(pos=0, n=npos) Returns substring of n characters of the implicit string

Table C.8 string compare() functions

int compare(s, pos=0, n=npos) Compares implicit string starting at pos for
n characters with string s

int compare(p, pos, n) Compares implicit string starting at pos for
n characters with char* array p

int compare(p, pos=0) Compares implicit string starting at pos
with char* array p

Ira Pohl’s C++ by Dissection C.3 Global Operators 460
The find() functions we present in Table C.9 perform a find operation. One group is
discussed here; Table C.10 summarizes more variations of this group of member func-
tions. In all cases, if the substring is found, its position is returned. If it is not found,
npos is returned.

Further functions for finding strings and characters are briefly described in Table C.10.

C.3 Global Operators

The string package contains operator overloadings that provide input/output, concate-
nation, and comparison operators. These are intuitively understandable and are briefly
described in Table C.11.

The comparison operators and the concatenation operator+() are also overloaded
with the four signatures as shown in Table C.12.

Table C.9 string find() Functions

size_t find(s, pos=0) Searches for string s starting at pos

size_t find(p, pos, n) Searches for char* array p and starting at pos and
going for n characters.

size_t find(p, pos=0); Searches for char* array p starting at pos

size_t find(c, pos=0) Searches for char c starting at pos

size_t rfind(s, pos=npos)
size_t rfind(p, pos, n)
size_t rfind(p, pos=npos)
size_t rfind(c, pos=npos)

Like find() but scans the string s backward for a
first match in the specified pattern: string s,
char* array p, or char c

Table C.10 String More Find Members

size_t find_first_of(s, pos=0)
size_t find_first_of(p, pos, n)
size_t find_first_of(p, pos=0)
size_t find_first_of (c,pos=0)

Searches for first character of any
character in specified pattern:
string s, char* array p, or char c

size_t find_last_of(s, pos=npos)
size_t find_last_of(p, pos, n)
size_t find_last_of(p, pos=npos)
size_t find_last_of(c,pos=npos)

Searches backward for first charac-
ter of any character in specified pat-
tern: string s, char* array p, or
char c

size_t find_first_not_of(s, pos=0)
size_t find_first_not_of(p, pos, n)
size_t find_first_not_of(p, pos=0)
size_t find_first_not_of(c,pos=0)

Searches for first character that does
not match any character in specified
pattern: string s, char* array p,
or char c

size_t find_last_not_of(s, pos=npos)
size_t find_last_not_of(p, pos, n)
size_t find_last_not_of(p, pos=npos)
size_t find_last_not_of(c,pos=npos)

Searches backward for first charac-
ter that does not match any charac-
ter in specified pattern: string s,
char* array p, or
char c

C.3

Ira Pohl’s C++ by Dissection C.3 Global Operators 461
In effect, a comparison or concatenation of any kind can occur between string and a
second argument that is a string, a character, or a character pointer.

Table C.11 String Overloaded Global Operators

ostream& operator<<(o, s) Output string s to ostream o

istream& operator>>(in, s) Input into istream in from string s

string operator+(s1, s2) concatenates strings s1 and s2

bool operator==(s1, s2) true if strings s1 and s2 are lexicograph-
ically equal

< <= > >= != as expected

Table C.12 String Comparison Operators

bool operator==(p, s) Compares char* array p and string s

bool operator==(c, s) Compares char c and string s

bool operator==(s, p) Compares strings and char* array p

bool operator==(s, c) Compares string s and char c

The tio Library

APPENDIX D
The Java tio package was developed by Charlie McDowell as an aid in writing simple
I/O in Java programs. Originally developed for the book Java by Dissection, by Ira Pohl
and Charlie McDowell (Addison-Wesley, 1999) the downloadable source code may be
found at www.cse.ucsc.edu/~charlie/java/tio/.

D.1 Console

package tio;
import java.io.*;

/**
* The class Console is a convenience class.
* It contains a static variable in that is
* initialized to refer to a ReadInput object,
* reading from the standard input stream
* System.in.
* It also contains a static variable out
* that is initialized to refer to a
* FormattedWriter, writing to the output
* stream System.out.
*/

public class Console {
public final static ReadInput in =

new ReadInput(new
InputStreamReader(System.in));

public final static FormattedWriter out =
new FormattedWriter(System.out);

}

D.1

http://www.cse.ucsc.edu/~charlie/java/tio/
http://www.cse.ucsc.edu/~charlie/java/tio/
http://www.cse.ucsc.edu/~charlie/java/tio/
http://www.cse.ucsc.edu/~charlie/java/tio/

Ira Pohl’s C++ by Dissection D.2 FormattedWriter 463
D.2 FormattedWriter

package tio;

import java.io.*;
import java.text.*;

/**
 * The class FormattedWriter contains
 * methods that allow for formatted printing.
 * It includes support for setting the width of the
 * output field, using left or right justification in
 * the output field, using an arbitrary fill
 * character, and setting the number of digits to the
 * right of the decimal point in floating point
 * values.
 *
 * @author C. E. McDowell
*/

public class FormattedWriter extends PrintWriter {
// constants for specifying justification
public static final int LEFT = 1;
public static final int RIGHT = 2;

/**
* Constructs a FormattedWriter object for an
* OutputStream.
*
* @param os the OutputStream to write to
*/

public FormattedWriter(OutputStream os) {
super(os, true); // make default auto-flushing

}

/**
* Constructs a FormattedWriter object for a
* FileWriter.
*
* @param writer the FileWriter to write to
*/

public FormattedWriter(FileWriter writer) {
super(writer, true);

}

D.2

Ira Pohl’s C++ by Dissection D.2 FormattedWriter 464
/**
* Constructs a FormattedWriter object for writing
* to a file.
*
* @param filename the name of the file to write to
*/

public FormattedWriter(String filename)
throws java.io.IOException

{
this(new FileWriter(filename));

}

/**
* Set the output field width. If the value being
* printed is less than the width of the field,
* then the field is padded with the pad character
* (see setPadChar()). The field can be either left
* or right justified (see setJustify()).
*
* @param width the width of the output field
*/

public void setWidth(int width) {
if (width < 0)

this.width = 0;
else if (width > MAX_WIDTH)

this.width = MAX_WIDTH;
else

this.width = width;
}

/**
* Set the number of digits to be printed to the
* right of the decimal point in floating point
* values.
*
* @param places the number of places to the right
* of the decimal point
*/

public void setDigits(int places) {
decimalPlaces = places;
form.setMaximumFractionDigits(decimalPlaces);

}

Ira Pohl’s C++ by Dissection D.2 FormattedWriter 465
/**
* Set the justification to be LEFT or RIGHT.
*
* @param leftOrRight use FormattedWriter.LEFT
* or FormattedWriter.RIGHT
* @exception IllegalArgumentException if not LEFT
* or RIGHT
*/

public void setJustify(int leftOrRight) {
if (leftOrRight != LEFT && leftOrRight != RIGHT)

throw new IllegalArgumentException(
"use FormattedWriter.LEFT or" +
" FormattedWriter.RIGHT");

justify = leftOrRight;
}

/**
* Set the character to be used in padding.
* The default padding character is a blank.
*
* @param pad the character to use in padding
*/

public void setPadChar(char pad) {
if (pad == ' ')

padding = spaces;
else if (pad == '0')

padding = zeros;
else

padding = buildPadding(MAX_WIDTH, pad);
}

/**
* Print a String in a field of the current
* width using the current padding character
* and justification.
*
* @param s the String to print
*/

Ira Pohl’s C++ by Dissection D.2 FormattedWriter 466
public void printf(String s) {
if (s.length() >= width)

super.print(s);
else if (justify == LEFT)

super.print(s +
padding.substring(0, width - s.length()));

else
super.print(

padding.substring(0, width-s.length())+s);
}

/**
* Print a boolean in a field of the current
* width, using the current padding character and
* justification.
*
* @param value the value to print
*/

public void printf(boolean value) {
printf(String.valueOf(value));

}

/**
* Print a char in a field of the current
* width, using the current padding character and *

justification.
*
* @param value the value to print
*/

public void printf(char value) {
printf(String.valueOf(value));

}

/**
* Print an array of characters in a field of the
* current width, using the current padding
* character and justification.
*
* @param value the value to print
*/

public void printf(char[] value) {
printf(String.valueOf(value));

}

Ira Pohl’s C++ by Dissection D.2 FormattedWriter 467
/**
* Print an int in a field of the current
* width, using the current padding character and
* justification.
*
* @param value the value to print
*/

public void printf(int value) {
printf(String.valueOf(value));

}

/**
* Print a long in a field of the current
* width, using the current padding character and *

justification.
*
* @param value the value to print
*/

public void printf(long value) {
printf(String.valueOf(value));

}

/**
* Print any Object in a field of the current
* width, using the current padding character and *

justification.
*
* @param value the value to print
*/

public void printf(Object value) {
printf(value.toString());

}

/**
* Print a double in a field of the current
* width, with the current number of digits to the
* right of the decimal point and using the current
* padding character and justification.
*
* @param value the value to print
*/

public void printf(double value) {
printf(trimDigits(String.valueOf(value)));

}

Ira Pohl’s C++ by Dissection D.2 FormattedWriter 468
/**
* Print a float in a field of the current
* width, with the current number of digits to the
* right of the decimal point and using the current
* padding character and justification.
*
* @param value the value to print
*/

public void printf(float value) {
printf(trimDigits(String.valueOf(value)));

}

/**
* Same as printf() with a newline added at the
* end.
*/

public void printfln(String s) {
printf(s);
println();

}

/**
* Same as printf() with a newline added at the
* end.
*/

public void printfln(boolean value) {
printf(value);
println();

}

/**
* Same as printf() with a newline added at the
* end.
*/

public void printfln(char value) {
printf(value);
println();

}

/**
* Same as printf() with a newline added at the
* end.
*/

Ira Pohl’s C++ by Dissection D.2 FormattedWriter 469
public void printfln(char[] value) {
printf(value);
println();

}

/**
* Same as printf() with a newline added at the
* end.
*/

public void printfln(int value) {
printf(value);
println();

}

/**
* Same as printf() with a newline added at the
* end.
*/

public void printfln(long value) {
printf(value);
println();

}

/**
* Same as printf() with a newline added at the
* end.
*/

public void printfln(Object value) {
printf(value);
println();

}

/**
* Same as printf() with a newline added at the
* end.
*/

public void printfln(double value) {
printf(value);
println();

}

/**
* Same as printf() with a newline added at the
* end.
*/

Ira Pohl’s C++ by Dissection D.2 FormattedWriter 470
public void printfln(float value) {
printf(value);
println();

}

/*
* Trim the number of digits to the right of the
* decimal point if there is one.
*/

private String trimDigits(String value) {
int places;

if (decimalPlaces == -1)
return value;

int pos = value.indexOf(".");
int exp = value.indexOf("E");

if (exp == -1)
places = value.length() - pos - 1;

else
places = exp - pos - 1;

if (places <= decimalPlaces)
return value;

if (exp == -1)
return round(value);

else {
String needsRounding=value.substring(0, exp);
return round(needsRounding) +

value.substring(exp);
}

}

/*
* Round the last digit of s. E.g. 1.2345 would be
* returned as 1.235 and 1.234 would be returned as
* 1.23.
* This is done using a java.text.NumberFormat
* object that had its decimal places set in
* setDigits() above.
*/

Ira Pohl’s C++ by Dissection D.2 FormattedWriter 471
private String round(String s) {
// form is a java.text.NumberFormat object
return form.format(Double.parseDouble(s));

}

/*
* Create an array of pad characters used for
* quickly building strings of pad characters
* by a call to substring (see printfln(String s))
*/

private static String buildPadding(int width,
char pad)

{
StringBuffer sbuf = new StringBuffer(width);
for (int i = 0; i < width; ++i)

sbuf.append(pad);
return sbuf.toString();

}

private static int MAX_WIDTH = 40;
private static final String spaces =

buildPadding(MAX_WIDTH, ' ');
private static final String zeros =

buildPadding(MAX_WIDTH, '0');
private String padding = spaces;
private int width = 0;
private int justify = LEFT;

// -1 means use max precision
private int decimalPlaces = -1;
// used in trimming decimal digits
private NumberFormat form =

NumberFormat.getInstance();

Ira Pohl’s C++ by Dissection D.3 PrintFileWriter 472
D.3 PrintFileWriter

package tio;

import java.io.*;

/**
 * The class PrintFileWriter is a
 * convenience class. It adds one constructor to its
 * parent class, PrintWriter. This new constructor
 * takes the name of a file.
 *
 * new PrintFileWriter(fileName) is the
 * same as
 * new PrintWriter(new FileWriter(fileName))
 *
 */

public class PrintFileWriter extends PrintWriter {
public PrintFileWriter(String filename)

throws IOException
{

super(new FileWriter(filename));
}

}

D.4 ReadException

package tio;

import java.io.*;

/**
 * The class ReadException is used to convert
 * java.io.IOExceptions into a subtype of
 * RuntimeException. By doing this, users of
* ReadInput methods do not need to use throws

 * declarations,simplifying beginning programs.
 * Subtypes of RuntimeException do not need
 * to be declared using a throws clause.
 *
 * @author C. E. McDowell
 * @version 1.1, Released for Java By Dissection
 *
 */

D.3

D.4

Ira Pohl’s C++ by Dissection D.5 ReadInput 473
public class ReadException extends RuntimeException {

/**
* Constructs a ReadException object with no
* specific message.
*/

public ReadException() {
super();

}

/**
* Constructs a ReadException object with the
* specified message.
*
* @param message the error message
*/

public ReadException(String message) {
super(message);

}
}

D.5 ReadInput

package tio;

import java.io.*;

/**
 * The class ReadInput contains methods that
 * allow for simple input of numbers, strings and
 * characters from a text stream.
 *
 * @author C. E. McDowell
 * @version 1.1, release for Java By Dissection
 */

public class ReadInput {

/**
* Constructs a ReadInput object for reading from
* any * Reader object.
* @param input the Reader text stream to read * from.
*/

D.5

Ira Pohl’s C++ by Dissection D.5 ReadInput 474
public ReadInput(Reader input) {
// look ahead over 1024 white space characters
// when checking for the end of file mark
this.input = new PushbackReader(input, 1024);

}

/**
* Constructs a ReadInput object for reading from a
* file.
*
* @param filename the name of the file from which
* to read.
* @exception FileNotFoundException if the file
* can’t be opened.
*/

public ReadInput(String filename) {
try {

FileReader fin = new FileReader(filename);
this.input = new PushbackReader(fin, 1024);

}
catch (java.io.IOException e) {

throw new ReadException(e.toString());
}

}

/**
* Constructs a ReadInput object for reading from
* any InputStream.
*
* @param input the InputStream to read from.
*/

public ReadInput(InputStream input) {
this(new InputStreamReader(input));

}

/**
* Check to see if there are any non-white space
* characters left in the input. If used to
* terminate reading with readLine(), any trailing
* blank lines will be ignored. To read trailing
* blank lines, do not use hasMoreElements() and
* instead read with readLine() until an
* EOFException is thrown.
*
* @return true if the input contains more
* non-white space characters and false otherwise.
*/

Ira Pohl’s C++ by Dissection D.5 ReadInput 475
public boolean hasMoreElements() {
try {

if (atEof)
return false;

else if (whiteSpaceBuffered)
//something followed the white space
return true;

// look ahead to see if any non-white remain
int nextChar = input.read();
if (Character.isWhitespace((char)nextChar)) {

// save white space incase readLine() next
whiteSpaceBuffered = true;
buffer[0] = (char)nextChar;
for (bufferCount = 1; bufferCount < 1024;

++bufferCount)
{

nextChar = input.read();
if (nextChar == -1) {

atEof = true;
break;

}
else if
(!Character.isWhitespace((char)nextChar))

{
input.unread(nextChar);
break;

}
buffer[bufferCount] = (char)nextChar;

} //end for
}
else if (nextChar == -1) {

atEof = true;
input.unread(nextChar);

}
else

input.unread(nextChar);
return !atEof;

}
catch(java.io.IOException e) {

throw new ReadException(e.toString());
}

}

Ira Pohl’s C++ by Dissection D.5 ReadInput 476
/**
* Read next character. White space is not skipped.
* readChar() cannot be used to reread input
* characters that resulted in a
* NumberFormatException trying
* to read a number. readLine() will return the
* characters of a failed number read.
*
* @return the int value of the next character.
*/

public int readChar() {
try {

int result;
// tokenRead will be true if a token was read
// but couldn't be parsed. readChar() cannot
// be used to reread such a token, discard it
tokenRead = false;
if (whiteSpaceBuffered) {

input.unread(buffer, 0, bufferCount);
whiteSpaceBuffered = false;

}
result = input.read();
if (result == -1)

atEof = true;
return result;

}
catch (java.io.IOException e) {

throw new ReadException(e.toString());
}

}

/**
* Attempt to interpret next white space delimited
* input characters as a double.
*
* @return double value of the next, white-space
* delimited input string.
* @exception NumberFormatException if A3next input
* string does not contain a parsable double.
*/

Ira Pohl’s C++ by Dissection D.5 ReadInput 477
public double readDouble() {
try {

readToken();
double result = Double.parseDouble(token);
tokenRead = false; // token has been used up
return result;

}
catch (java.io.IOException e) {

throw new ReadException(e.toString());
}

}

/**
* Attempt to interpret next white space delimited
* input characters as a float.
*
* @return the float value of the next, white-space
* delimited input string.
* @exception NumberFormatException if next input
* string does not contain a parsable float.
*/

public float readFloat() {
try {

readToken();
float result = Float.parseFloat(token);
tokenRead = false; // token has been used up
return result;

}
catch (java.io.IOException e) {

throw new ReadException(e.toString());
}

}

/**
* Attempt to interpret next white space delimited
* input characters as an int.
*
* @return the int value of the next, white-space
* delimited input string.
* @exception NumberFormatException if next input
* string does not contain a parsable int.
*/

Ira Pohl’s C++ by Dissection D.5 ReadInput 478
public int readInt() {
try {
readToken();
int result = Integer.parseInt(token);
tokenRead = false; // token has been used up
return result;

}
catch (java.io.IOException e) {

throw new ReadException(e.toString());
}

}

/**
* Read the next complete input line up to newline
* character. The terminating newline character is
* read and discarded. It is not part of the return
* string. If the previous read was an attempt to * read a

number that generated
* a NumberFormatException, readLine()
* will return the input line including the input
* characters that caused the exception. This can
* be used to try and recover from failure to read
* numeric input.
*
* @return the next input line as a String.
*/

public String readLine() {
try {

if (tokenRead) {
tokenRead = false;
return token + readLine(input);

}
else {

return readLine(input);
}

}
catch (java.io.IOException e) {

throw new ReadException(e.toString());
}

}

Ira Pohl’s C++ by Dissection D.5 ReadInput 479
/**
* Attempt to interpret next white space delimited
* input characters as a long.
*
* @return the long value of the next, white-space
* delimited input string.
* @exception NumberFormatException if next input
* string does not contain a parsable long.
*/

public long readLong() {
try {

readToken();
long result = Long.parseLong(token);
tokenRead = false; // token has been used up
return result;

}
catch (java.io.IOException e) {

throw new ReadException(e.toString());
}

}

/**
* Read the next white space delimited string.
*
* @return the next, white-space delimited input
* string.
*/

public String readWord() {
try {

readToken();
tokenRead = false; // token has been used up
return token;

}
catch (java.io.IOException e) {

throw new ReadException(e.toString());
}

}

/**
* Do the work of reading a line of text.
* White space may have been buffered up from a
* call to hasMoreElements(). If so, unread the
* buffered white space then read one line.
*/

Ira Pohl’s C++ by Dissection D.5 ReadInput 480
private String readLine(PushbackReader in)
throws IOException

{
StringBuffer result = new StringBuffer(80);
if (whiteSpaceBuffered) {

in.unread(buffer, 0, bufferCount);
whiteSpaceBuffered = false;

}
int nextChar = in.read();
while (nextChar != -1 && nextChar != '\n' &&

nextChar != '\r') {
result.append((char)nextChar);
nextChar = in.read();

}
if (nextChar == -1) {

atEof = true;
in.unread(nextChar);

}
else if (nextChar == '\r') {

nextChar = in.read(); // check for cr/newline
if (nextChar != '\n')

in.unread(nextChar);
}

if (atEof && result.length() == 0)
return null;

else
return result.toString();

}

/**
* Read the next white space delimited string.
* This will then be parsed by the appropriate
* routine to return one of the desired types.
*/

Ira Pohl’s C++ by Dissection D.5 ReadInput 481
private void readToken() throws IOException {
if (atEof)

throw new EOFException(
"Attempt to read beyond the end of "
"the stream.");

if (!tokenRead) {
//discard any buffered white space
whiteSpaceBuffered = false;
StringBuffer result = new StringBuffer(80);
int nextChar = input.read();
while

(Character.isWhitespace((char)nextChar))
nextChar = input.read();

while (nextChar != -1 && nextChar != '\n' &&
nextChar != '\r' &&
!Character.isWhitespace((char)nextChar))

{
result.append((char)nextChar);
nextChar = input.read();

}
token = result.toString();
if (nextChar == -1)

if(token.length() == 0)
throw new EOFException(

"Attempt to read beyond the end "
"of the stream.");

else
atEof = true;

input.unread(nextChar);
tokenRead = true;

}
}

private String token;
private boolean tokenRead = false;
private PushbackReader input;
private boolean atEof = false;
private boolean whiteSpaceBuffered = false;
private char[] buffer = new char[1024];
private int bufferCount;

}

Index
Symbols
! negation 47
!= not equal 47
" double quote 13, 30
% modulus operator 44
& address 50, 99, 175
& and (bitwise) 50, 176
&& and (logical) 47
() function call 50, 221
() parentheses 45, 50
* dereferencing or indirection 50, 100, 104
* multiplication operator 44
+ addition (binary) operator 44
++ increment 51, 214, 217
, comma 49
-- decrement 51, 214
-> structure pointer 141, 223, 236
. member operator 214
.* member object selector 172, 214
/ division operator 44
/* */ comment pair 4, 26
// comment 4, 26
:: scope resolution 150, 214
< less than 47
<< left shift 50, 176
<< put to 31, 222, 366-367, 373
<= less than or equal 47
= assignment 47, 51
== equal 47
> greater than 47
>= greater than or equal 47
>> get from 31, 222, 374
>> right shift 50, 176
?: conditional expression 49
[] brackets 120
[] indexing or subscripting 50, 106
\ backslash 29-30

\0 end-of-string sentinel 29-30
^ exclusive or (bitwise) 50, 176
^ unary one’s complement 176
{} braces 16, 52, 174
| or (bitwise) 50, 176
|| or (logical) 47
~ complement 50
– subtraction operator 44
–>* pointer to member 172
’ single quote 30

Numerics
0 null pointer 197, 353

A
\a alert 30
a.out command 14
AB_file program 135
abstract base class 343, 356
abstract data type 422-423
abstraction 423
access keywords

private 146-147, 166, 170, 329
protected 166, 170, 329
public 146, 166, 170, 329, 332

access_mod program 355
accessor function 166-167, 190
accumulate() 282, 310, 312
action command 446
ad hoc polymorphism 206, 424
Ada 422
adaptor

container 293
iterator 300

addition (binary) operator + 44
address 320
address & 50, 99, 175

Ira Pohl’s C++ by Dissection 483
address program 196
adjacent_difference() 312
adjacent_find() 307
ADT 139-170, 422-423

conversion 207
list 197
matrix 260
my_clock 217-218, 227
my_string 201-202, 213, 229
person 330, 334
point 143-146, 148, 158, 160, 189
shape 342
stack 164, 166-167, 191-192, 194-195, 246,

395, 406
student 331
template stack 246
template vector 262
vector 263

Al-Khwarizim, A. 10
alert \a 30
ALGOL60 26, 139
algorithm 2, 7-10, 262, 280, 302, 307, 322

mutating sequence 307
nonmutating 305
numerical 310
overloaded function selection 252
signature matching 208
sorting 302

algorithm library 302, 305, 311
alias 102
allocate() 320
allocator object 320
ancestor 352
and (bitwise) & 50, 176
and (logical) && 47
anonymous

declaration 141
enumeration 44
namespace 99
structure 141
union 175, 205

append() 458
argument 80

default 84
explicit 161
implicit 161, 218
template 261

arithmetic conversion 40, 424
arithmetic expression 47
array 75, 99, 105-124

access 119
base address 106
declaration 118
element 106
initialization 106, 118
multidimensional 117, 120

passing to function 107
pointer to 106
subscript 106
summation 108

assert library 125, 201, 394
assertion 124, 394-395
assign() 458
assignment

conversion 80, 218
multiple 220

assignment = 47, 51
associative

container 283, 288
definition 289

associativity 45, 47, 214
auto 92
automatic conversion 41, 207
automatic variables 92
average program 88
average_array program 113

B
\b backspace 30
back() 295
back_inserter() 301
backslash \ 29-30
backspace \b 30
bad() 381
bad_bubble program 396
bad_cast 354, 410-411, 414
bad_cast program 410
bad_typeid 354
bandwagon effect 422
base address 106
base class 328
basic_string class 455
bcc command 15
begin() 286
Bell Labs style 12
bench testing 9
bidirectional iterator 296-297
binary operator overloading 217, 229
binary_search() 303
bind1st() 319
bind2nd() 319
bit field 175
bit manipulation 50
bitwise operator 176
black box principle 167, 423-425
blank character 6
blast_off program 83
block 52, 90-92

exit 195, 205, 399
structure 34

body_fat program 42
bool 37, 47

Ira Pohl’s C++ by Dissection 484
boolalpha 369
braces {} 16, 52, 174
brackets [] 120
break 58, 66

C
C 422
.c file 95
c_str() 459
call-by-reference 82, 100-103, 127, 193, 217,

414
call-by-value 34, 78, 81-82, 107, 183, 193-194
carriage return \r 30
CASE 434
case 60
cast 41, 228, 353

down 353
casts

const_cast 163
mutable 163
typeid 353

catch 397-398, 404-405
catch program 405
caux 375
cc command 14
central processing unit 2
cerr 32, 375
ch_stack program 164-165, 191-192, 194-195
change program 11
char 37
checks library 396
cin 32, 374-375
class 139, 147-170, 329

abstract base 343, 356
base 328
constructor 184-194
container 433
data member 167
derived 329, 332-333
global 160
handler 201
hierarchy 342, 434
inheritance 328-357
initialization 184, 186
iterator 436
nested 152
scope 150
template 260
virtual base 353

classes
See also Java classes
Abstract_Base 356
address 196
assign_array 261
basic_string 455
card 153, 373

ch_stack 164, 166-167, 191, 195
circle 342
convert_it 271
counter 184
customer 149
deck 154, 373
Derived 353
empty 346
fox 345
fruit 141
grass 346
living 343-344
matrix 260
my_clock 214, 217-218, 227
my_string 202, 229
pcard 175
pers_data 204
person 164, 196, 330
person 334
pips 153, 372
point 140, 142-146, 148, 158, 160, 189
pr_char 187
rabbit 345
rational 209, 214, 222
rectangle 342
safe_char_stack 350
safe_stack 350
salary 161
shape 342
slist 197
slistelem 197
stack 246, 395, 406, 409
stack_error 402
str_obj 201, 213
student 331
suit 168, 182
t_ptr 224
triple 223
vector 263
word 176

clear() 381
client 171, 394, 411, 423
clog 376
close() 376-377
COBOL 422
code

executable 2, 14-15
generic 253, 421
object 3, 14
source 2, 14-15, 34

coerce program 261
coercion 40, 63, 424
coins program 23
comma , 49
command program 136
commands

Ira Pohl’s C++ by Dissection 485
a.out 14
bcc 15
cc 14
mv 14
rename 15
vi 14

comment // 4, 26
comment pair /* */ 4, 26
compare() 459
comparison object 288, 290, 316
comparison operator 285
compiler 2-3, 14
complement ~ 50
completeness 434
complex library 99
compound statement 35, 52, 65
computation 9
compute_sum program 81
computer program 9
conditional expression ?: 49
const 105, 161
const-correctness 161
const_cast 163
constant 29
constructor 162, 183-194, 204

conversion 187, 191, 215, 395
copy 193, 206
default 186
explicit 187, 263
initialization 206
initializer 187
order 352-353
string 457

container 280, 283-284
adaptor 293
associative 283, 288
class 433
deque 283-285, 293
interface 283
list 282-283, 285, 293
map 283, 288, 290
multimap 283, 288, 290
multiset 283, 288, 290
priority_queue 293
queue 293
sequence 283, 285
set 283, 288, 290
stack 293
vector 280, 283, 285, 293, 297, 300, 307, 311

continue 58, 66
control-c 16
control-d 16
control-z 16
conversion 63, 183, 206, 353, 422

ADT 207
arithmetic 40, 424

assignment 80, 218
automatic 41, 207
constructor 187, 191, 215, 395
explicit 41, 207-208, 395
function 187, 207, 354, 381
implicit 41, 217, 361
narrowing 41
pointer 208
promotion 208
traditional 40
trivial 227
type 127, 208
user-defined 207, 227
widening 41

copy constructor 193, 206
copy program 249-250
copy() 307-308, 459
copy_backward() 308
core dump 24
count() 290, 307
count_if() 307
counter program 184
cout 32, 375
cprn 375
CPU 2
CRC notecard 434
cstddef library 104, 297
cstdio library 31, 366, 386
cstdlib library 377
cstring library 104, 114-115, 201
ctype library 366, 380-382
cubes program 134
customer program 149

D
DAG 351
data hiding 147, 167, 423
data member 143, 148, 159, 170, 183
data() 459
deallocate() 320
debugging 9
dec 369
declaration 27, 39-40, 51, 63, 65, 92, 95

anonymous 141
array 118
block 90-91
const correctness 161
derived class 329
external 92-93
for 63
friend 211
function 78, 139, 186
instantiated 246
member 174
reference 82, 102
static 94

Ira Pohl’s C++ by Dissection 486
union 174
declarations

const 161
typedef 44
volatile 227

decrement -- 51, 214
default 60, 66
default argument 84
default constructor 186
deferred method 343
#define 89
definition 39
delegation 436
delete 120, 195, 226
demotion 41
deque container 283-285, 293
dereferencing or indirection * 50, 100, 104
derived class 328-329, 332-333
derived type 25
design 355, 432
design pattern 436-437
destructor 183, 195, 205
directed acyclic graph (DAG) 351
directive 66
dissections

See also Java dissections
BinaryNode 429
body_fat 43
ch_stack 165, 191
cstring 115
customer 150
deck 154
deque sum() 284
dynamic_array 122
echo 77
fibonacci 64
gcd 35
hello 4
IdNode 429
if_test 54
IntNode 429
io 33
living 344
my_clock 215
my_string 202
Node 426
operator=() 219
order() 101
place_min() 126
plot 87
point() 144
poker 157
precondition() 407
print() and release() 199
printable 188
rational 210

salary 162
stack 395
stack_error 403
stl_age 289
stl_fadaptor 319
stl_find 306
stl_integration 313
stl_io 298
stl_multiset 292
stl_numeric 311
stl_stack 294
stl_vector 281, 287
student 331
student 335
swap() and order() 257
switch_test 61
this pointer 159
throw 399
transfer() 244-245
tree 431
virtual_sel 339
virutal_error 341

division operator / 44
do 57
do_test program 58
double 37
double quote " 13, 30
double_space program 377
downcast 353
dynamic data structure 99
dynamic_array program 121
dynamic_cast 353

E
echo program 76, 78
editor 2, 15
element of array 106
ellipsis 127, 405
else 52
empty parameter list 80
empty() 286, 295
encapsulation 150, 425
end() 286-287
end-of-file signal 16
end-of-string sentinel \0 29-30
endl 33, 369
ends 369
enum 43
enumeration 43

anonymous 44
type 43

EOF 375, 381-382
eof() 381
equal == 47
equal() 307
equal_range() 290, 303

Ira Pohl’s C++ by Dissection 487
equality operator 47, 285
erase() 288, 290
errors

assignment 48
close quote 13
compile-time error 14
constructor 186
debugging 62
default case 60
for 65
format 32
input 416
misspelled function 13
out of bounds 106, 129
semicolon 13, 141
syntax 14
type-safety 25
unterminated string 13
variable 186
variable name 13

except library 409
except program 410
exception 354, 394-411

handler 397, 405, 414
specification 408

exception library 410
exceptions

catch 397-398, 404-405
NumberFormatException 415
throw 397-398, 405, 408
try 400, 404-405

exclusive or (bitwise) ^ 50, 176
executable file 2, 14-15, 97
explicit 187, 263
explicit argument 161
explicit conversion 41, 207-208
expression 44, 65

arithmetic 47
assignment 51
bit manipulation 50
conversion 40
equality 47
infix 213
mixed 40

extensibility 25, 425-426
extern 92
extraction 374

F
\f formfeed 30
factorial program 83
fail() 381
false 47
fault-tolerant 412
fibonacci program 63-65
figures

Adaptors 293
Alice and Friends 212
Alpha Centauri 4
Automation 186
Balls Moving 168
Black Box 147
C at the Core 25, 75
Calling Environment 76
Classes 140
Complexity 433
Cooking a Roast 8
CRC Cards 435
Ctors & Dtors 184
DAG of Multiple Inheritance 352
Dogs Playing Poker 158
Error Detection 401
Evaluation Center 50
Exceptions 409
Expression Tree 428
Generic Waiter 248
Genie 421
Head of a Block 79
Infinity 57
Inheritance 337
Iterators 301
Mammals 328
Members 148
MiniCalc Display 443
Nesting 152
Overloading 222
pgm.h Use In Files 95
Pointer Declarations 102
Polymorphic Genie 247
Programming Process 3
Reference Counts 204
Shapes 250
Singly Linked List 197
Smart Pointer 223
Source Code 15
Special Characters 189
Strings 114
Thrown Exception 408
Token Convention 26
UML 333, 436
UML Handle Class 169
Uncaught Exceptions 411

file 375
executable 2, 14-15, 97
mode 376
object 3, 14
scope 90, 97, 160
source 2, 14-15, 34
standard 375

files
.c 95
.c 2, 14-15, 34

Ira Pohl’s C++ by Dissection 488
.cc 2, 14-15, 34

.cpp 2, 14-15, 34

.exe 2, 14-15

.h 95

.obj 97

.obj 3, 14
a.out 2, 14-15

fill() 310
finalization 229-230
find() 290, 305-306, 460
find_first_not_of() 460
find_first_of() 460
find_last_not_of() 460
find_last_of() 460
fixed 369
float 37
float library 38
flowchart 8
flush 369
for 56
for_each() 308
for_test program 56
formal parameter 78, 104
formfeed \f 30
forward iterator 296-297
free store 120, 224
friend 211, 218, 260
front() 295
front_inserter() 301
fstream library 376-377
function 75-104, 127

accessor 166-167, 190
adaptor 318
argument 80
call () 50, 221
call-by-reference 82, 100-103, 127, 193, 217,

414
call-by-value 34, 78, 81-82, 107, 183, 193-

194
conversion 187, 207, 354, 381
declaration 139, 186
default argument 84
definition 78
exit 195, 205
friend 211, 218, 260
header 78
inline 43, 89, 145-146
invocation 76
member 140, 143, 161, 183, 195, 207, 211,

217, 263, 328-329, 337, 433, 435
mutator 166-167, 191
nested 399
object 315
overloading 88, 250, 337, 340
overridden virtual 337
parameter 78, 80, 104

passing array to 107
prototype 80
pure virtual 343
selection 208
signature matching 88, 227, 250
static member 159, 260
template 248
virtual 337
virtual member 329

function library 315
functions

See also Java methods and STL functions
append() 458
assign() 202, 458
author_ship() 85
average() 112
bad() 381
bubble() 396, 419
c_str() 459
circle() 93
clear() 381
close() 376-377
cnt_char() 194
coerce() 261, 269
compare() 459
convert() 270-271
copy() 249-250, 459
count_down() 83
cube() 89
data() 459
deal() 154
del() 198
dele() 348
double_space() 377-378
echo() 76
eden() 348
eof() 381
fact() 384
factorial() 83
fail() 381
fibonacci() 64-65
fill() 113
find() 266, 460
find_first_not_of() 460
find_first_of() 460
find_last_not_of() 460
find_last_of() 460
flush() 367
found_next_word() 382
gcd() 34, 134
get() 375
getline() 375
good() 381
graph() 190
how_many() 151
init() 247, 347

Ira Pohl’s C++ by Dissection 489
init_deck() 154
insert() 458
integratet() 315
isalnum() 381
isalpha() 381
isascii() 381
iscntrl() 381
isdigit() 381
isgraph() 381
islower() 381
isprint() 381
ispunct() 381
isspace() 381
isupper() 381
isxdigit() 381
length() 459
main() 66, 76
max() 91
maxelement() 270
maximum() 79-80
memcpy() 136
minimum() 112
next() 346-347
open() 376-377
operator double() 208
operator() 221, 240
operator*() 218
operator+() 218, 266
operator++() 217
operator+=() 266
operator->() 224
operator<<() 222-223, 242, 373-374
operator=() 219, 228, 230, 264
operator==() 230
operator[]() 264
operator–() 218
order() 101, 103, 125, 137
place_min() 125
plot() 86
plus() 145, 158, 189
pr_deck() 373
pr_numbered_statement() 124
pr_state() 349
precondition() 406
prepend() 198
price_discount() 149
print() 104, 198, 282-283, 300, 318
print() 330
printf() 81
put() 367
rand() 109
rdstate() 381
read() 375
release() 198
replace() 459
reserve() 459

reset() 227
resetiosflags() 370
resize() 459
reverse() 247
rfind() 460
set_terminate() 409
set_unexpected() 409
setbase() 370
setfill() 370
setiosflags() 370
setprecision() 370
setw() 369-370
shuffle() 154
sqr_or_power() 86
strcmp() 115-116
strcpy() 115-116
streq() 117, 133
strlen() 115, 117
sub_str() 205
substr() 459
sum() 108, 112, 123, 284
sums() 344
swap() 240, 251, 396, 419
terminate() 404, 409
toascii() 381
tolower() 381
toupper() 381
transfer() 243-244
unexpected() 408-409
update() 348
write() 367

G
garbage collection 201
gcd program 34
generate() 310
generate_n() 310
generator 311
generic 272

code 243, 253, 421
pointer 104
programming 243, 249-269, 437-438

genericQuicksort program 256, 259
get from >> 31, 222, 374
get() 375
getline() 375
global 90-92
global class 160
good() 381
goto 62, 66-67
greater than > 47
greater than or equal >= 47

H
.h file 95
hand simulation 9

Ira Pohl’s C++ by Dissection 490
handler 397, 405, 414
class 201

HASA 169, 195, 356, 435-436
hello program 3, 6
hex 369
hidden member 211
hierarchy 358, 434
Hoare, A. 253
how_many program 151

I
I/0 manipulator 369
I/O library 31, 366-384
ICON 433
identifier 27
if 52
if-else 52
if_test program 53
ifstream library 376
implementation inheritance 357
implicit argument 161, 218
implicit conversion 41, 217, 361
inclusion 424
increment ++ 51, 214, 217
indexing or subscripting [] 50, 106
infix expression 213
inheritance 328-357, 423

implementation 357
interface 332
multiple 351, 355
single 355
template 350
virtual 352

initialization 39, 95, 106, 229-230
array 106
arrays 118
class 184, 186
constructor 206
memberwise 193

initializer list 187, 230
inline 43, 89, 145-146
inline program 89
inner_product() 310, 312
inplace_merge() 303
input 31, 243, 366-384

errors 416
iterator 296

insert() 288, 290, 458
inserter() 301
insertion 366
instance method 274
instantiation 246, 260
int 37
interface 167
interface inheritance 332
internal 370

interrupts 16
InterViews 424
invertibility 433
io program 32
io_iterators program 384
iomanip library 367, 369-370
iostream library 4-5, 31, 99, 353, 366-367, 369,

383, 386
ISA 332, 334, 355, 358, 435
isalnum() 381
isalpha() 381
isascii() 381
iscntrl() 381
isdigit() 381
isgraph() 381
islower() 381
isprint() 381
ispunct() 381
isspace() 381
istream library 374
istream_iterator 297
isupper() 381
isxdigit() 381
iter_swap() 309
iterator 262, 280, 282, 296

adaptor 300
bidirectional 296-297
class 436
forward 296-297
input 296
istream 297
ostream 297-298
output 297
random access 296-297
reverse 301

J
Java ix, 1, 17, 441

applet 441
component 442
constructor 231
conversion 234
exception 387
function 171
GUI 442
layout manager 442
member function 171
method 171
override 359
polymorphism 359
subclass 441
superclass 441

Java classes
ActionEvent 446
Change 231
ChangeTest 233

Ira Pohl’s C++ by Dissection 491
DoMath 444-445
Echo 393
ExceptionExample 415
FileWriter 386
GridLayout 442
HelloFile 387
IOException 387
JButton 446
JLabel class 444
MakeChange 17
MiniCalc 442
Moon 67
Palindrome 273
Person 171
Person1 359-360
PersonTest 172
PrintWriter 386
StringBuffer 275
Student 359
StudentTest 360
SumArray 128

Java dissections
Change 232
DoMath 445
ExceptionExample 415
HelloFile 387
MakeChange 11, 18
MiniCalc 443
Moon 68
Palindrome 274
SumArray 128

Java libraries
awt 441-442, 444-445
io 387, 393, 462-463, 472-473
swing 441, 444-445
text 463
tio 17-19, 414-415, 462

Java methods
actionPerformed() 445
isPalindrome() 273
length() 273
makeChange() 231
pack() 444
print() 19, 386
println() 18, 386
readInt() 18
toString() 231, 233

K
Kelley, A. 17
Kernighan, B. 16
key-based element 288-289
keywords 27

auto 92
bool 37, 47
break 58, 66

case 60
catch 397-398, 404-405
char 37
class 139, 147, 170, 329
const 161
const 105, 161
const_cast 163
continue 58, 66
default 60, 66
delete 120, 195, 226
do 57
double 37
dynamic_cast<Primary> 353
else 52
enum 43
explicit 187, 263
extern 92
false 47
float 37
for 56
friend 211, 218, 260
goto 62, 66-67
if 52
if-else 52
inline 43, 89, 145-146
int 37
long 37
mutable 163
namespace 4, 94, 98
new 120, 206, 224
private 146-147, 166, 170, 329
protected 166, 170, 329
public 146, 166, 170, 329, 332
register 93
return 65, 79
short 37
signed 37
sizeof 37, 50, 214
static 94, 159
struct 139-141
switch 59, 66
template 246
this 158, 161
throw 397-398, 405, 408
true 27, 47
try 400, 404-405
typedef 44
typeid 353
union 174, 176, 205
unsigned 37
unsigned char 37
using 4, 98
virtual 337
void 104
void* 104
volatile 227

Ira Pohl’s C++ by Dissection 492
wchar_t 37
while 55

L
label 62
left 370
left shift << 50, 176
length() 459
less than < 47
less than or equal <= 47
lexicographical_compare() 303
libraries

See also Java libraries and STL libraries
assert 125, 201, 394
checks 396
complex 99
cstddef 104, 297
cstdio 31, 366, 386
cstdlib 377
cstring 104, 114-115, 201
ctype 366, 380-382
except 409
exception 410
float 38
fstream 376-377
ifstream 376
iomanip 367, 369-370
iostream 4-5, 31, 99, 353, 366-367, 369, 383,

386
istream 374
limits 38
list 282-283, 285, 293
math 436
new 225
ofstream 376
ostream 366
signal 397
sstream 379
stddef 297
stdio 31, 73, 81, 383
stdlib 156, 194, 225
string 76, 104, 114, 149, 279, 293, 455
type_info 353
vector 280, 283, 285, 293, 297, 300, 307, 311

library mixing 383
LIKEA 357-358, 435
limits library 38
limits program 268
linkage 95, 97-98, 351
linker 3, 14
LISP 201, 422
list container 293
list library 282-283, 285, 293
lists

Automatic Expression Conversion 40
Basic Signature Matching Algorithm 208

Benefits of Using a Derived Class 333
Black Box for the Client 423
Black Box for the Manufacturer 423
Call-by-Referency Using Pointers 101
Constructor Execution Order 353
Design Pattern 437
Elements of a Design Pattern 437
Function Invocation with call-by-value 82
Function Use in C++ 354
List Operations 197
OOP Characteristics 422
OOP Design Methodology 329, 424
Overloaded Function Selection Algorithm 252
Some Functions in the cstring Library 115
Steps for Writing and Running a C++

Program 14
STL Defined Function Object Classes 316
STL Function Adaptors 318
STL Iterator Adaptors 301
STL Typical Container Interfaces 283
The Programming Process 2
Tips for Avoiding Linkage Problems 98
Types of Polymorphism 424

literal 29
local scope 90
location 99
logical operators 47-48
long 37
lower_bound() 290, 303
lvalue 51

M
machine addresses 99
macro expansion 89
main() 66, 76
make_heap() 303
manip program 368
manipulator 5, 33, 367, 369

boolalpha 369
dec 369
endl 369
ends 369
fixed 369
flush 369
hex 369
internal 370
left 370
noboolalpha 369
noskipws 369
oct 369
right 370
scientific 370
skipws 369
ws 369

manufacturer 124, 394, 411, 423
map 283, 288, 290

Ira Pohl’s C++ by Dissection 493
Mascitti, R. 139
math library 436
max() 304
max_element() 304
max_size() 286, 320
McDowell, C. viii, 17
member 140, 167, 195

data 143, 148, 159, 170, 183
function 140, 143, 161, 183, 195, 207, 211,

217, 263, 328-329, 337, 433, 435
hidden 211
object selector .* 172, 214
operator . 214
union 174

member function 143
memberwise copy 205
memberwise initialization 193
memcpy() 136
memory location 99
memory management

delete 120, 195, 226
new 120, 206, 224

memory register 93
merge() 303
message 339
method 143, 339

instance 274
mutator 275

MI 355
min() 304
min_element() 304
minimum() 112
mismatch() 307
mix_io program 384
mixed expression 40
mixing libraries 383
Modula–2 422
modulus operator % 44
Monte Carlo calculation 108, 153
MS-DOS

control-d 16
end-of-file signal 16

multi_main program 96
multidimensional array 117, 120
multimap 283, 288, 290
multiple assignment 220
multiple inheritance 351, 355
multiplication operator * 44
multiset 283, 288, 290
mutable 163
mutating sequence 307
mutator function 166-167, 191
mutator method 275
mv command 14
my_clock program 214, 216-217, 227
my_string program 201, 213, 219, 221, 229

N
\n newline 30, 367
namespace

anonymous 99
scope 98, 247

namespace 4, 94, 98
narrowing 41
native type 25-44, 207
need to know style 148
negation ! 47
nested function 399
nested program 152
new 120, 206, 224
new library 225
newline \n 30, 367
next_permutation() 303, 309
noboolalpha 369
nonmutating sequence 305
normal form 228
noskipws 369
not equal != 47
not1() 319
not2() 319
nth_element() 303
null character \0 29-30
null pointer 0 197, 353
null statement 51
NumberFormatException 415
numeric library 282, 310-311
numerical algorithm 310

O
.obj file 97
object 146, 167, 183, 315
object file 3, 14
object-oriented programming 422
Occam’s Razor 433
oct 369
ofstream library 376
OOP 422
open() 376-377
operating system 2, 14
operator 31, 65

associativity 45, 47, 214, 453
binary overloading 217
bit manipulation 50
bit shift 31
bitwise 176
equality 47
logical 47-48
overloading 213, 228-230
precedence 45, 47, 214, 453
relational 47
ternary 49
unary overloading 214

Operator Precedence and Associativity 453

Ira Pohl’s C++ by Dissection 494
operator+() 266
operator+=() 266
operator=() 230
operator==() 230
operators

addition (binary) + 44
address & 50, 99, 175
and (bitwise) & 50, 176
and (logical) && 47
assignment = 47, 51
comma , 49
complement ~ 50
conditional expression ?: 49
decrement -- 51, 214
delete 120, 195, 226
dereferencing or indirection * 50, 100, 104
division / 44
equal == 47
exclusive or (bitwise) ^ 50, 176
function call () 50, 221
get from >> 31, 222, 374
greater than > 47
greater than or equal >= 47
increment ++ 51, 214, 217
indexing or subscripting [] 50, 106
left shift << 50, 176
less than < 47
less than or equal <= 47
member . 214
member object selector .* 172, 214
modulus % 44
multiplication * 44
mutable 163
negation ! 47
new 120, 206, 224
not equal != 47
or (bitwise) | 50, 176
or (logical) || 47
pointer to member –>* 172
put to << 31, 222, 366-367, 373
right shift >> 50, 176
scope resolution :: 150, 214
sizeof 37, 50, 214
structure pointer -> 141, 223, 236
subtraction – 44
typeid 353
unary one’s complement ^ 176

or (bitwise) | 50, 176
or (logical) || 47
order program 100, 103, 125
order() 125, 137
orthogonality 434
ostream library 366
ostream_iterator 297-298
out of bounds 106, 129
output 31, 366-384

iterator 296-297
user-defined 372

overloading 424
assignment 219
constructor 186
function 88, 250, 337, 340
I/O operators 222
indexing 221
new and delete 224
operator 213, 228-230
subscript 220

override 333, 337

P
parabola program 189-190
parameter 80

formal 78, 104
template 270

parametric polymorphism 246, 425
parentheses () 45, 50
partial_sort() 303
partial_sort_copy() 303
partial_sum() 312
partition() 310
Pascal 422, 433
person 164
place_min() 125
placement 225
plot program 86
point class 140, 142
point program 143, 145-146, 148, 158
pointer 75, 99

arithmetic 107
array 106
conversion 208
declarations 102
generic 104
null 0 197, 353
self-referential 158
this 158, 161
to class member 172
to member –>* 172
type 75

poker program 153
polymorphism 350, 356, 359, 424-425

ad hoc 206, 424
parametric 246, 425
pure 329, 337, 424-425
types 424

pop() 295
pop_heap() 303
postcondition 124, 394
postfix 51
powers program 86
pr_numbered_statement() 124
pr_statements program 124

Ira Pohl’s C++ by Dissection 495
precedence 45, 47, 214
precondition 124, 394
predator program 343, 349
prefix 51
preprocessor 3

#define 89
prescriptions

arrays 127
classes 170
constructors 229
desctructors 229
design 440
exceptions 413
expressions 65
friends 229
functions 127
I/O 386
inheritance 358
operator 65
operator overload 229
program correctness 413
statement 65
STL 322
string use 127
style 16

prev_permutation() 303, 309
print_deck program 372-373
printf() 81
priority_queue 293
privacy 94
private 146-147, 166, 170, 329
program

correctness 124, 245, 394-411
interrupt control-c 16
interrupt rubout key 16
structure 34

programs
See also Java classes
AB_file 135
access_mod 355
address 196
average 88
average_array 113
bad_bubble 396
bad_cast 410
blast_off 83
body_fat 42
catch 405
ch_stack 164-165, 191-192, 194-195
change 11
coerce 261
coins 23
command 136
compute_sum 81
copy 249-250
counter 184

cubes 134
customer 149
do_test 58
double_space 377
dynamic_array 121
echo 76, 78
except 410
factorial 83
fibonacci 63-65
for_test 56
gcd 34
genericQuicksort 256, 259
hello 3, 6
how_many 151
if_test 53
inline 89
io 32
io_iterators 384
limits 268
manip 368
mix_io 384
multi_main 96
my_clock 214, 216-217, 227
my_string 201, 213, 219, 221, 229
nested 152
order 100, 103, 125
parabola 189-190
person 164
plot 86
point 143, 145-146, 148, 158
poker 153
powers 86
pr_statements 124
predator 343, 349
print_deck 372-373
random 109
rational 209, 214, 222
salary 161
scope_test 91
set 176
shape 342
show_hide 173
simple_throw 397
simple_variables 39
slist 197-198, 200
stack_error 402, 405
stat_count 135
stl_adaptor 300
stl_age 288
stl_container 282
stl_deque 284
stl_fadaptor 318
stl_find 305
stl_fuction 316
stl_integration 312, 314
stl_io 297

Ira Pohl’s C++ by Dissection 496
stl_io_iterator 300
stl_iter 296
stl_multiset 291
stl_numeric 310
stl_o_iterator 299
stl_reverse 307
stl_sort 302, 304
stl_stak 293
stl_vec_is_best 321
stl_vector 286
stl_vector_char 285
stream_strm 379
string_func 115
student 330, 334-335
sum_2d_array 118, 120
sum_array 105, 107-108, 112, 123
swap 251
switch_test 60
templateArray 261
templateStack 246, 395
test_err 23
throw 398, 400
tracking 204
transferArray 243-245
triple 223
try_me 392
union 174
vect_it 263, 265
virtual_err 340
virtual_sel 338
weekend 175
while_test 55
word_count 382

promotion 41, 208
protected 166, 170, 329
pseudocode 10
ptr_fun 319
public 146, 166, 170, 329, 332
punctuator 31
pure polymorphism 329, 337, 425
pure procedure 104
pure virtual function 343
push() 295
push_heap() 303
put to << 31, 222, 366-367, 373
put() 367

Q
queue 293
queue container 293
quote

double " 13
single’ 30

R
\r carriage return 30

rand() 109
random access iterator 296-297
random number 108
random program 109
random_shuffle() 310
rational program 209, 214, 222
rbegin() 286
rdstate() 381
read() 375
recursion 83
redirection 36
reference

counting 201
declaration 102
variable 99

register 93
relational operators 47
remove() 309
remove_copy() 309
remove_copy_if() 309
remove_if() 309
rename command 15
rend() 286
replace() 309, 459
replace_copy() 309
replace_copy_if() 309
replace_if() 309
reserve() 459
resetiosflags() 370
resize() 459
rethrow 398, 400
return 65, 79
return type 78
reuse 350, 423, 433
reverse iterator 301
reverse() 308
rfind() 460
right 370
right shift >> 50, 176
Ritchie, D. 16
rotate() 310
rotate_copy() 310
rubout key 16
runtime type identification (RTTI) 353

S
salary program 161
scientific 370
scope 44, 90, 94, 99

class 150
file 90, 97, 160
local 90
namespace 98, 247

scope resolution :: 150, 214
scope_test program 91
search() 307

Ira Pohl’s C++ by Dissection 497
self-referential pointer 158
self-referential structure 196
sequence container 283, 285
set 283, 288, 290
set program 176
set_difference() 304
set_intersection() 304
set_symmetric_difference() 304
set_terminate() 409
set_unexpected() 409
set_union() 304
setbase() 370
setfill() 370
setiosflags() 370
setprecision() 370
setw() 369-370
shallow copy 205, 230
shape program 342
short 37
short-circuit evaluation 48
show_hide program 173
SI 355
side-effect 51, 66
signal library 397
signature matching 88, 227, 250
signed 37
simple data type 37
simple_throw program 397
simple_variables program 39
Simula67 26, 139, 343, 422
single inheritance 355
single quote ’ 30
size() 286, 295
sizeof 37, 50, 214
skipws 369
slist program 197-198, 200
SmallTalk 201, 422
smart pointer 223
SNOBOL 433
sort 256, 259
sort() 282, 302-303
sort_heap() 303
source file 2, 14-15, 34
sstream library 379
stable_partition() 310
stable_sort() 303
stack 293
stack container 293
stack library 293
stack_error program 402, 405
standard template library 280-320
stat_count program 135
statement 50-62

compound 35, 52, 65
expression 44
labeled 62

null 51
statements

break 58, 66
case 60
continue 58, 66
default 60, 66
do 57
else 52
for 56
goto 62, 66-67
if 52
if-else 52
return 65, 79
switch 59, 66
while 55

static 94, 159
static member 159, 260
stddef library 297
stdio library 31, 73, 81, 383
stdlib library 156, 194, 225
stepwise refinement 75
STL 280-320

adaptor 319
algorithm 280
allocator 320
arithmetic 316
associative

constructor 290
container 283, 288
definition 289

bidirectional iterator 296-297
class iterator 436
comparison object 288, 290, 316-317
container 280, 283-284

adaptor 293
definition 285
interface 283
member 286
operator 286

deque 283-285, 293
forward iterator 296-297
function adaptor 319
heap 303
input iterator 296
istream iterator 297
iterator 280, 282, 296

adaptor 300-301
bidirectional 296-297
forward 296-297
input 296
istream 297
ostream 297-298
output 296-297
random access 296-297
reverse 301

key 288-289

Ira Pohl’s C++ by Dissection 498
list 293
logical function 317
map 283, 288, 290
max 304
min 304
multimap 283, 288, 290
multiset 283, 288, 290
mutating 307-309
nonmutating 305-307
numerical 310, 312
ostream iterator 297-298
output iterator 296-297
priority_queue 293, 295
queue 293, 295
random access iterator 296-297
reverse iterator 301
sequence container 283, 285
sequence member 288
set 283, 288, 290, 304
sort 303
stack 293, 295

STL functions
accumulate() 282, 310, 312
address() 320
adjacent_difference() 312
adjacent_find() 307
allocate() 320
back() 295
back_inserter() 301
begin() 286
binary_search() 303
bind1st() 319
bind2nd() 319
copy() 307-308
copy_backward() 308
count() 290, 307
count_if() 307
deallocate() 320
empty() 286, 295
end() 286-287
equal() 307
equal_range() 290, 303
erase() 288, 290
fill() 310
find() 290, 305-306
for_each() 308
front() 295
front_inserter() 301
generate() 310
generate_n() 310
inner_product() 310, 312
inplace_merge() 303
insert() 288, 290
inserter() 301
iter_swap() 309
lexicographical_compare() 303

lower_bound() 290, 303
make_heap() 303
max() 304
max_element() 304
max_size() 286, 320
merge() 303
min() 304
min_element() 304
mismatch() 307
next_permutation() 303, 309
not1() 319
not2() 319
nth_element() 303
partial_sort() 303
partial_sort_copy() 303
partial_sum() 312
partition() 310
pop() 295
pop_heap() 303
prev_permutation() 303, 309
ptr_fun() 319
push() 295
push_heap() 303
random_shuffle() 310
rbegin() 286
remove() 309
remove_copy() 309
remove_copy_if() 309
remove_if() 309
rend() 286
replace() 309
replace_copy() 309
replace_copy_if() 309
replace_if() 309
reverse() 308
rotate() 310
rotate_copy() 310
search() 307
set_difference() 304
set_intersection() 304
set_symmetric_difference() 304
set_union() 304
size() 286, 295
sort() 282, 302-303
sort_heap() 303
stable_partition() 310
stable_sort() 303
swap() 286, 309
top() 295
transform() 309
unique() 308-309
unique_copy() 309
upper_bound() 290, 303

STL libraries
algorithm 302, 305, 311
function 315

Ira Pohl’s C++ by Dissection 499
list 282-283, 285, 293
numeric 282, 310-311
stack 293
string 149, 293
vector 280, 283, 285, 293, 297, 300, 307, 311

stl_adaptor program 300
stl_age program 288
stl_container program 282
stl_deque program 284
stl_fadaptor program 318
stl_find program 305
stl_fuction program 316
stl_integration program 312, 314
stl_io program 297
stl_io_iterator program 300
stl_iter program 296
stl_multisetprogram 291
stl_numeric program 310
stl_o_iterator program 299
stl_reverse program 307
stl_sort program 302, 304
stl_stak program 293
stl_vec_is_best program 321
stl_vector program 286
stl_vector_char program 285
storage class 90
storage mapping function 120
storage types

auto 92
extern 92
register 93
static 94, 159

str_stream program 379
strcmp() 115-116
strcpy() 115-116
stream state 380-381
streams

caux 375
cerr 32, 375
cin 32, 374-375
clog 376
cout 32, 366, 375
cprn 375

streq() 117, 133
string 99, 455

comparison operator 461
constructor 456-457
data member 456
find() 460
global operator 460
literal 29-30
member function 457, 459
overloaded global operators 461
overloaded operator 457
reference semantics 201

string library 76, 104, 114, 149, 279, 293, 455

string_func program 115
strlen() 115, 117
Stroustrup, B. vi, 16, 139
struct 139-141
structure

anonymous 141
block 34
member 140
program 34

structure pointer -> 141, 223, 236
student program 330, 334-335
style 12, 16

access 148, 166
Bell Labs 12
friend 211
header 99
need to know 148
object-oriented viii, 144, 421
parameter 80
procedural 439
STL 320
string 124

subscript 106
substr() 459
subtraction operator – 44
subtype 356
sum() 123
sum_2d_array program 118, 120
sum_array program 105, 107-108, 112, 123
swap program 251
swap() 286, 309
switch 59, 66
switch_test program 60
symbol 31
syntax errors 14

T
tab \t 30, 367
tables

Array Elements 118
Array Expressions 119
Bitwise Operators 50, 176
C++ Character Set 26
C++ Operators 31
C++ Relational, Equality, and Logical

Operators 47
Character Constants 30
Character Literals 29
Container Operators 286
ctype Conversion Functions 381
ctype Functions 381
Declaractions of Arrays 118
File Modes 376
Floating Point Literals 30
Fundamental Data Types 37
I/O manipulators 369

Ira Pohl’s C++ by Dissection 500
Illegal Identifiers 28
Keywords 27
Literals 29
Making Change 9
More String Members 459
Operator Precedence and Associativity 46,

453
Range of Floating Point Values 38
Range of Integral Values 38
Standard Files 375
STL Adapted priority_queue Functions 295
STL Adapted queue Functions 295
STL Adapted stack Functions 295
STL Allocator Members 320
STL Arithmetic Function Objects 316
STL Associative Constructors 290
STL Associative Definitions 289
STL Comparison Objects 317
STL Container Definitions 285
STL Container Members 286
STL Function Adaptors 319
STL Insert and Erase Member Functions 290
STL Iterator Adaptors 301
STL Logical Objects 317
STL Member Functions 290
STL Mutating Sequence Library

Functions 308-309
STL Nonmutating Sequence Library

Functions 306-307
STL Numerical Library Functions 312
STL Sequence Members 288
STL Sort Related Library Functions 303-304
STL Sort Related Set Functions 304
Stream State Functions 381
String compare() functions 459
String Comparison Operators 461
String Constructor Members 457
String find() Functions 460
String Literals 29
String More Find Members 460
String Overloaded Global Operators 461
String Overloaded Operator Members 457
String Private Data Members 456
Summing Elements of an Array 108
Trivial Conversions 227
Valid Identifiers 28

tag name 43, 141
template 243-269, 272, 350

argument 261
container 272
function 248
library 280
methodology 357
parameter 270

template 246
templateArray program 261

templateStack program 246, 395
terminate() 404, 409
ternary operator 49
test_err program 23
testing 9
text editor 14
this 158, 161
throw 397-398, 405, 408
throw expression 398
Throw Expression Match 404
throw program 398, 400
tio library (Java) 17-19, 414-415, 462
toascii() 381
tokens 26
tolower() 381
top() 295
toupper() 381
tracking program 204
traditional conversion 40
transfer of control 413
transferArray program 243-245
transform() 309
triple program 223
trivial conversion 227
true 27, 47
try 400, 404-405
try block 404
try_me program 392
type

checking 80
conversion 208
declaration 27
derived 25
enumeration 43
extensibility 25, 425-426
generic pointer 104
hierarchy 343
instantiation 246, 260
native 25-44, 207
pointer 75
return 78
safety 90, 127, 272, 425
simple 37
string 99, 455
tag name 43, 141
user-defined 207, 372

type_info library 353
typedef 44
typeid 353
types

bool 37, 47
char 37
class 139, 147, 170, 329
double 37
enum 43
float 37

Ira Pohl’s C++ by Dissection 501
int 37
long 37
short 37
signed 37
struct 139-141
template 246
union 174, 176, 205
unsigned 37
unsigned char 37
void 104
void* 104
wchar_t 37

U
UML 333
unary one’s complement ^ 176
unary operator overloading 214
unconditional branch 62
unexpected() 408-409
unification 250
union

anonymous 175, 205
initializer 174
member 174

union 174, 176, 205
union program 174
unique() 308-309
unique_copy() 309
UNIX

control-d 16
end-of-file signal 16

unsigned 37
unsigned char 37
upper_bound() 290, 303
user-defined conversion 227
user-defined output 372
user-defined type 207, 372
using 4, 98

V
\v vertical tab 30
variable

global 92
reference 99

vect_it program 263, 265
vector library 280, 283, 285, 293, 297, 300, 307,

311
vertical tab \v 30
vi command 14
virtual

base class 353
inheritance 352
member functions 329

virtual 337
virtual_err program 340
virtual_sel program 338

visibility 94, 139
void 104
void* 104
volatile 227

W
wchar_t 37
weekend program 175
while 55
while_test program 55
white space 30-31
widening 41
width of bit field 175
word-parallel operation 176
word_count program 382
write() 367
ws 369

Z
zero 29-30
zero null pointer 197, 353

	Preface
	Dissections
	No Background Assumed
	Special Features
	Chapter Features
	Classroom Usage
	Interactive Environment
	Professional Use
	Supplements
	Acknowledgments

	Table of Contents
	A First Program
	Problem Solving: Recipes
	1.2.1 Algorithms—Being Precise

	Implementing Our Algorithm in C++
	Software Engineering: Style
	Common Programming Errors
	Writing and Running a C++ Program
	1.6.1 Interrupting a Program
	1.6.2 Typing an End-of-File Signal

	Dr. P’s Prescriptions
	C++ Compared with Java
	Summary
	Review Questions
	Exercises

	Writing an ANSI C++ Program
	Getting Ready to Program
	Program Elements
	2.1.1 Comments
	2.1.2 Keywords
	2.1.3 Identifiers
	2.1.4 Literals
	2.1.5 Operators and Punctuators

	Input/Output
	Program Structure
	2.3.1 Redirection

	Simple Types
	2.4.1 Initialization

	The Traditional Conversions
	Enumeration Types
	2.6.1 typedef Declarations

	Expressions
	2.7.1 Precedence and Associativity of Operators
	2.7.2 Relational, Equality, and Logical Operators

	Statements
	2.8.1 Assignment and Expressions
	2.8.2 The Compound Statement
	2.8.3 The if and if-else Statements
	2.8.4 The while Statement
	2.8.5 The for Statement
	2.8.6 The do Statement
	2.8.7 The break and continue Statements
	2.8.8 The switch Statement
	2.8.9 The goto Statement

	Software Engineering: Debugging
	Dr. P’s Prescriptions
	C++ Compared with Java
	Summary
	Review Questions
	Exercises

	Native Types and Statements
	Functions, Pointers, and Arrays
	Functions
	Function Invocation
	Function Definition
	The return Statement
	Function Prototypes
	Call-By-Value
	Recursion
	Default Arguments
	Functions as Arguments
	Overloading Functions
	Inlining
	3.11.1 Software Engineering: Avoiding Macros

	Scope and Storage Class
	3.12.1 The Storage Class auto
	3.12.2 The Storage Class extern
	3.12.3 The Storage Class register
	3.12.4 The Storage Class static
	3.12.5 Header Files and Linkage Mysteries

	Namespaces
	Pointer Types
	3.14.1 Addressing and Dereferencing
	3.14.2 Pointer-Based Call-By-Reference

	Reference Declarations
	The Uses of void
	Arrays
	3.17.1 Subscripting
	3.17.2 Initialization

	Arrays and Pointers
	Passing Arrays to Functions
	Problem Solving: Random Numbers
	Software Engineering: Structured Programming
	Core Language ADT: char* String
	Multidimensional Arrays
	Operators new and delete
	3.24.1 Vector Instead of Array
	3.24.2 String Instead of char*

	Software Engineering: Program Correctness
	Dr. P’s Prescriptions
	C++ Compared with Java
	Summary
	Review Questions
	Exercises
	The Aggregate Type class and struct
	Member Selection Operator
	Member Functions
	Access: Private and Public
	Classes
	Class Scope
	4.6.1 Scope Resolution Operator
	4.6.2 Nested Classes

	An Example: Flushing
	The this Pointer
	static Members
	const Members
	4.10.1 Mutable Members

	A Container Class Example: ch_stack
	Software Engineering: Class Design
	4.12.1 Trade-Offs in Design
	4.12.2 Unified Modeling Language (UML) and Design

	Dr. P’s Prescriptions
	C++ Compared with Java
	Advanced Topics
	4.15.1 Pointer to Class Member
	4.15.2 Unions
	4.15.3 Bit Fields

	Summary
	Review Questions
	Exercises

	Classes and Abstract Data Types
	Classes with Constructors
	5.1.1 The Default Constructor
	5.1.2 Constructor Initializer
	5.1.3 Constructors as Conversions
	5.1.4 Improving the point Class
	5.1.5 Constructing a Stack
	5.1.6 The Copy Constructor

	Classes with Destructors
	Members That Are Class Types
	Example: A Singly Linked List
	Strings Using Reference Semantics
	Constructor Issues and Mysteries
	5.6.1 Destructor Details
	5.6.2 Constructor Pragmatics

	Polymorphism Using Function Overloading
	ADT Conversions
	Overloading and Signature Matching
	Friend Functions
	Overloading Operators
	Unary Operator Overloading
	Binary Operator Overloading
	Overloading the Assignment Operator
	Overloading the Subscript Operator
	Overloading Operator () for Indexing
	Overloading << and >>
	Overloading ->
	Overloading new and delete
	More Signature Matching
	Software Engineering: When to Use Overloading
	Dr. P’s Prescriptions
	C++ Compared with Java
	Summary
	Review Questions
	Exercises

	Ctors, Dtors, Conversions, and Operator Overloading
	Templates and Generic Programming
	Template Class stack
	Function Templates
	6.2.1 Signature Matching and Overloading
	6.2.2 How to Write a Simple Function: square()

	Generic Code Development: Quicksort
	6.3.1 Converting to a Generic quicksort()

	Class Templates
	6.4.1 Friends
	6.4.2 Static Members
	6.4.3 Class Template Arguments
	6.4.4 Default Template Arguments
	6.4.5 Member Templates

	Parameterizing the Class vector
	Using STL: string, vector, and complex
	6.6.1 string and basic_string<>
	6.6.2 vector<> in STL
	6.6.3 Using complex<>
	6.6.4 limits and Other Useful Templates

	Software Engineering: Reuse and Generics
	6.7.1 Debugging Template Code
	6.7.2 Special Considerations
	6.7.3 Using typename

	Dr. P’s Prescriptions
	C++ Compared with Java
	Summary
	Review Questions
	Exercises

	Standard Template Library
	A Simple STL Example
	Containers
	7.2.1 Sequence Containers
	7.2.2 Associative Containers
	7.2.3 Container Adaptors

	Iterators
	7.3.1 Iterators for istream and ostream
	7.3.2 Iterator Adaptors

	Algorithms
	7.4.1 Sorting Algorithms
	7.4.2 Nonmutating Sequence Algorithms
	7.4.3 Mutating Sequence Algorithms
	7.4.4 Numerical Algorithms

	Numerical Integration Made Easy
	STL: Function Objects
	7.6.1 Building a Function Object
	7.6.2 Function Adaptors

	Allocators
	Software Engineering: STL Use
	7.8.1 Syntax Bugs

	Dr. P’s Prescriptions
	C++ Compared with Java
	Summary
	Review Questions
	Exercises

	Inheritance and OOP
	A Derived Class
	8.1.1 More Unified Modeling Language (UML)

	A Student ISA Person
	Virtual Functions: Dynamic Determination
	8.3.1 Overloading and Overriding Confusion
	8.3.2 A Canonical Example: Class shape

	Abstract Base Classes
	Templates and Inheritance
	Multiple Inheritance
	RTTI and Other Fine Points
	8.7.1 Finer Points

	Software Engineering: Inheritance and Design
	8.8.1 Subtyping Form
	8.8.2 Code Reuse

	Dr. P’s Prescriptions
	C++ Compared with Java
	Summary
	Review Questions
	Exercises

	Input/Output
	The Output Class ostream
	Formatted Output and iomanip
	User-Defined Types: Output
	The Input Class istream
	Files
	Using Strings as Streams
	The Functions and Macros in ctype
	Using Stream States
	Mixing I/O Libraries
	Software Engineering: I/O
	Dr. P’s Prescriptions
	C++ Compared with Java
	Summary
	Review Questions
	Exercises

	Exceptions and Program Correctness
	Using the assert Library
	C++ Exceptions
	Throwing Exceptions
	10.3.1 Rethrown Exceptions
	10.3.2 Exception Expressions

	try Blocks
	Handlers
	Converting Assertions to Exceptions
	Exception Specification
	terminate() and unexpected()
	Standard Exceptions and Their Uses
	Software Engineering: Exception Objects
	Dr. P’s Prescriptions
	C++ Compared with Java
	Summary
	Review Questions
	Exercises

	OOP Using C++
	OOP Language Requirements
	11.1.1 ADTs: Encapsulation and Data Hiding
	11.1.2 Reuse and Inheritance
	11.1.3 Polymorphism

	OOP: The Dominant Programming Methodology
	Designing with OOP in Mind
	Class-Responsibility-Collaborator
	11.4.1 CRC Cards

	Design Patterns
	A Further Assessment of C++
	11.6.1 Why C++ Is Better Than Java
	11.6.2 A Short Rebuttal

	Software Engineering: Last Thoughts
	Dr. P’s Prescriptions
	C++ Compared with Java
	Summary
	Review Questions
	Exercises

	ASCII Character Codes
	Operator Precedence and Associativity
	String Library
	Constructors
	Member Functions
	Global Operators

	The tio Library
	Console
	FormattedWriter
	PrintFileWriter
	ReadException
	ReadInput

	Index

