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Do you need to develop flexible software that can be customized quickly? Do you need to add the power and
efficiency of frameworks to your software? The ADAPTIVE Communication Environment (ACE) is an open-source
toolkit for building high-performance networked applications and next-generation middleware. ACE's power and
flexibility arise from object-oriented frameworks, used to achieve the systematic reuse of networked application
software. ACE frameworks handle common network programming tasks and can be customized using C++ language
features to produce complete distributed applications.
 

C++ Network Programming, Volume 2, focuses on ACE frameworks, providing thorough coverage of the concepts,
patterns, and usage rules that form their structure. This book is a practical guide to designing object-oriented
frameworks and shows developers how to apply frameworks to concurrent networked applications. C++
Networking, Volume 1, introduced ACE and the wrapper facades, which are basic network computing ingredients.
Volume 2 explains how frameworks build on wrapper facades to provide higher-level communication services.
 

Written by two experts in the ACE community, this book contains:
•  
•

• An overview of ACE frameworks 
•

• Design dimensions for networked services 
•

• Descriptions of the key capabilities of the most important ACE frameworks 
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•

• Numerous C++ code examples that demonstrate how to use ACE frameworks
•  

C++ Network Programming, Volume 2, teaches how to use frameworks to write networked applications quickly,
reducing development effort and overhead. It will be an invaluable asset to any C++ developer working on
networked applications.
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Foreword

The ADAPTIVE Communication Environment (ACE) toolkit has achieved enormous success in the area of
middleware for networked computing. Due to its flexibility, performance, platform coverage, and other key
properties, ACE enjoys broad acceptance by the networked application software community, as evidenced by its
use in thousands of applications, in scores of countries, and in dozens of domains. ACE has also received
considerable attention beyond the middleware community since it's an open-source role model for high-quality and
well-designed pattern-oriented software architectures.
 

But why is ACE so successful? Addressing this question properly takes some thought. To start off, let's reconsider
the Foreword from C++ Network Programming: Mastering Complexity with ACE and Patterns (C++NPv1) and
resume the mass transit analogy presented there by my colleague Steve Vinoski. Steve's right that a high-quality mass
transit system consists of more than just aircraft, airports, trains, train stations, and rails. It also needs less obvious
infrastructure, such as scheduling, routing, ticketing, maintenance, and monitoring. But even a complete collection of
ingredients is still not sufficient to develop an effective mass transit system. Arranging these ingredients so they
seamlessly fulfill their primary objective?ast and reliable transportation of people?s equally important. Would you
use a mass transit system whose ticketing was located in a train maintenance location or an airport hangar, or whose
planned and actual scheduling and routing weren't available to the public? I doubt it!
 

The success of mass transit systems depends on more than the knowledge of the infrastructure parts that are
provided?t depends on how these different parts must be connected and integrated with their environment. This
knowledge enables architects of mass transit systems to integrate individual parts into higher-level building blocks and
to connect these building blocks effectively. For example, ticketing, information points, baggage offices, and boarding
are integrated in train stations located at city centers or major suburban centers. Likewise, airports are often located
near large cities and connected by frequent express trains.
 

Even mass transit centers themselves are arranged so that activities can be performed effectively. For example, when
you enter a train station or airport via the main entrance, you find ticket agents, information centers, and timetables.
You also find shops to satisfy your travel needs. As you enter the main train hall or airport concourse, you find other
information centers, up-to-date scheduling information, and the platforms and gates for boarding the trains and
planes. Mass transit centers thus not only provide all necessary services to begin and end a journey, they also
organize their internal "control flows" effectively. While the core structures and control flows in most train stations and
airports are similar, their concrete realization can differ widely. Yet we all recognize these mass transit center patterns
immediately since they follow key invariants that we've learned through years of experience.
 

So what's the connection between successful mass transit system design and the success of ACE? The answer is
simple: In addition to the basic network computing ingredients (the wrapper facades that Doug and Steve introduced
in C++NPv1), ACE also includes useful object-oriented frameworks that build upon these wrapper facades and
provide useful higher-level communication services, such as event demultiplexing and dispatching, connection
management, service configuration, concurrency, and hierarchically layered stream processing. The ACE framework
services satisfy many networked software needs by organizing the structures and internal control flows of your
applications effectively via key patterns learned through years of experience.
 

The ACE frameworks offer you a number of important benefits:
 

•

• You needn't develop the capabilities provided by ACE, which will save considerable time and effort. You
can therefore focus on your key responsibility: implementing the application functionality required by your
customers and end users.

•  
•

• The ACE frameworks reify the extensive network programming expertise that Doug, Steve, and their
colleagues have gained over several decades. In particular, the ACE frameworks efficiently implement the
canonical classes, class relationships, and control flows common to networked applications. The ACE
frameworks are tested regularly by thousands of users from around the world, which has yielded many useful
corrections and improvements. As an ACE user, you can directly leverage the correctness, effectiveness, and
efficiency of the ACE frameworks in your applications.

•  
•

• A framework isn't a framework if it can't be adapted to specific user needs. This means you can adapt the
ACE frameworks at key points of variation in networked applications. For example, the ACE Reactor
framework can be adapted to use different event demultiplexer functions, such as WaitForMultipleObjects()
or select(). Likewise, the ACE Acceptor-Connector framework can be configured with different IPC
mechanisms. While this adaptability is beneficial by itself, ACE goes a step further: for many adaptations you
can configure the desired strategies from available and interchangeable implementations. In addition to the
different Re-actor implementations mentioned above, for instance, ACE provides wrapper facades for
various IPC mechanisms, such as the Sockets, SSL, TLI, and shared memory, that help to configure the
ACE Acceptor-Connector framework for specific platforms and applications.

•  
•

• Last but not least, the ACE frameworks don't exist in isolation. You can therefore combine them in novel
ways to create networked applications and entirely new types of middleware. For example, you can integrate
the Reactor framework with the Acceptor-Connector framework to separate connection establishment from
service processing functionality in event-driven applications. You can likewise introduce various forms of
concurrency into your applications using the ACE Task framework.

•  

As a result of advising and leading many software projects over the years, I've found that ACE greatly simplifies the
task of employing reusable middleware that can be customized readily to meet the needs of networked applications.
Not all networked applications need heavyweight middleware, such as application servers, web services, and
complex component models. Yet most networked applications can benefit from portable and efficient host
infrastructure middleware like ACE. This flexibility is the core of ACE's success since you needn't commit to an entire
middleware suite if you don't use all of it. Instead, you can combine just the essential ACE middleware classes you
need to compose applications that are small, but as powerful as necessary. For this reason, I predict that ACE will
still be widely used long after the influence of today's heavyweight middleware has waned.
 

ACE's tremendous flexibility also needn't lead to a sea of incompatible middleware implementations. For example, if
you build an embedded system that speaks the CORBA Internet inter-ORB protocol (IIOP) to the outside world,
you can use The ACE ORB (TAO), which is a CORBA-compliant, open-source, real-time object request broker
(ORB) built using the ACE wrapper facades and frameworks. If CORBA is overkill for your application needs,
however, you can build custom, yet interoperable, middleware using the appropriate ACE classes. Both solutions can
be based on the same core structures and protocols, such as the ACE Common Data Representation (CDR) classes
and its TCP/IP Socket wrapper facades. They can therefore communicate seamlessly with one another, just as you
can take a train from Paris to Istanbul?he famous Orient Express?nd travel through many European countries
without having to change trains due to incompatible railroad networks.
 

As Steve Vinoski and I have pointed out, there are many similarities between high-quality mass transit systems and
high-quality networking middleware. To me and thousands of other C++ developers around the world, ACE is the
toolkit for building the latter! After saying so many good things about ACE, however, let's return to the main intent of
this foreword: introducing the second volume (C++NPv2) of the C++ Network Programming series. As with all
software technologies and middleware, the more you understand your tools, the better you'll be able to apply them. It
turns out that using ACE in your applications is just one aspect of improving your networked software. To benefit
significantly from ACE's many advantages, you therefore also need a sound understanding of the core concepts,
patterns, and usage rules that underlie its powerful frameworks.
 

For years, a common way to learn ACE involved studying its code, comments, and example applications. Clearly,
this process was time consuming and error prone. Moreover, even after managing to read the several hundred
thousand lines of C++ code in ACE, it was easy to miss the forest for the trees. As the Greek philosopher
Thucydides noted two millennia ago: "A man who has the knowledge but lacks the power to clearly express himself is
no better off than if he had never any idea at all."
 

We're therefore fortunate that Doug and Steve found time in their busy schedules to create such a high-quality book
on the ACE frameworks. C++NPv2 explains the ideas and concepts underlying the ACE frameworks in an easily
accessible form using the popular concurrency and networking patterns from the POSA [POSA1, POSA2] and
"Gang of Four" [GoF] patterns books. These patterns, in turn, reify thoughtful and time-proven solutions to common
networking problems. For example, they tell you what the problems are, why these problems are hard, what the
solutions to these problems are, and why these solutions applied to ACE are of high quality. If you want thorough
coverage of the patterns and frameworks in ACE that are shaping the next generation of networked application
software then read this book. I've learned much from it and I'm sure you will too.
 

Frank Buschmann
Senior Principal Engineer
Siemens Corporate Technology
Munich, Germany
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About This Book

Software for networked applications must possess the following qualities to be successful in today's competitive,
fast-paced computing industry:
 

•

• Affordability, to ensure that the total ownership costs of software acquisition and evolution are not
prohibitively high

•  
•

• Extensibility, to support successions of quick updates and additions to address new requirements and take
advantage of emerging markets

•  
•

• Flexibility, to support a growing range of multimedia data types, traffic patterns, and end-to-end quality of
service (QoS) requirements

•  
•

• Portability, to reduce the effort required to support applications on heterogeneous OS platforms and
compilers

•  
•

• Predictability and efficiency, to provide low latency to delay-sensitive real-time applications, high
performance to bandwidth-intensive applications, and usability over low-bandwidth networks, such as
wireless links

•  
•

• Reliability, to ensure that applications are robust, fault tolerant, and highly available
•  
•

• Scalability, to enable applications to handle large numbers of clients simultaneously
•  

Writing high-quality networked applications that exhibit these qualities is hard?t's expensive, complicated, and error
prone. The patterns, C++ language features, and object-oriented design principles presented in C++ Network
Programming, Volume 1: Mastering Complexity with ACE and Patterns (C++NPv1) help to minimize complexity
and mistakes in networked applications by refactoring common structure and functionality into reusable wrapper
facade class libraries. The key benefits of reuse will be lost, however, if large parts of the application software that
uses these class libraries?r worse, the class libraries themselves?ust be rewritten for each new project.
 

Historically, many networked application software projects began by
7.  
1.

1. Designing and implementing demultiplexing and dispatching infrastructure mechanisms that handle timed
events and I/O on multiple socket handles

1.  
2.

2. Adding service instantiation and processing mechanisms atop the demultiplexing and dispatching layer, along
with message buffering and queueing mechanisms

2.  
3.

3. Implementing large amounts of application-specific code using this ad hoc host infrastructure middleware
3.  

This development process has been applied many times in many companies, by many projects in parallel. Even
worse, it's been applied by the same teams in a series of projects. Regrettably, this continuous rediscovery and
reinvention of core concepts and code has kept costs unnecessarily high throughout the software development life
cycle. This problem is exacerbated by the inherent diversity of today's hardware, operating systems, compilers, and
communication platforms, which keep shifting the foundations of networked application software development.
 

Object-oriented frameworks [FJS99b, FJS99a] are one of the most flexible and powerful techniques that address
the problems outlined above. A framework is a reusable, "semi-complete" application that can be specialized to
produce custom applications [JF88]. Frameworks help to reduce the cost and improve the quality of networked
applications by reifying proven software designs and patterns into concrete source code. By emphasizing the
integration and collaboration of application-specific and application-independent classes, frameworks enable larger
scale reuse of software than can be achieved by reusing individual classes or stand-alone functions.
 

In the early 1990s, Doug Schmidt started the open-source ACE project to bring the power and efficiency of patterns
and frameworks to networked application development. As with much of Doug's work, ACE addressed many
real-world problems faced by professional software developers. Over the following decade, his groups at the
University of California, Irvine; Washington University, St. Louis; and Vanderbilt University, along with contributions
from the ACE user community and Steve Huston at Riverace, yielded a C++ toolkit containing some of the most
powerful and widely used concurrent object-oriented network programming frameworks in the world. By applying
reusable software patterns and a lightweight OS portability layer, the frameworks in the ACE toolkit provide
synchronous and asynchronous event processing; concurrency and synchronization; connection management; and
service configuration, initialization, and hierarchical integration.
 

The success of ACE has fundamentally altered the way that networked applications and middleware are designed
and implemented on the many operating systems outlined in Sidebar 2 (page 16). ACE is being used by thousands of
development teams, ranging from large Fortune 500 companies to small startups to advanced research projects at
universities and industry labs. Its open-source development model and self-supporting culture is similar in spirit and
enthusiasm to that driving Linus Torvalds's popular Linux operating system.
 

This book describes how the ACE frameworks are designed and how they can help developers navigate between
the limitations of

3.  
1.

1. Low-level native operating system APIs, which are inflexible and nonportable
1.  
2.

2. High-level middleware, such as distribution middleware and common middleware services, which often lacks
the efficiency and flexibility to support networked applications with stringent QoS and portability requirements

2.  

The skills required to produce and use networked application frameworks have traditionally been locked in the heads
of expert developers or buried deep within the source code of numerous projects that are spread throughout an
enterprise or an industry. Neither of these locations is ideal, of course, since it's time consuming and error prone to
reengineer this knowledge for each new application or project. To address this problem, this book illustrates the key
patterns [POSA2, POSA1, GoF] that underlie the structure and functionality of the ACE frameworks. Our coverage
of these patterns also makes it easier to understand the design, implementation, and effective use of the open-source
ACE toolkit itself.
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Intended Audience
 

This book is intended for "hands on" C++ developers or advanced students interested in understanding how to
design object-oriented frameworks and apply them to develop networked applications. It builds upon material from
C++NPv1 that shows how developers can apply patterns to master complexities arising from using native OS APIs
to program networked applications. It's therefore important to have a solid grasp of the following topics covered in
C++NPv1 before reading this book:
 

•

• Networked application design dimensions, including the alternative communication protocols and data
transfer mechanisms discussed in Chapter 1 of C++NPv1

•  
•

• Internet programming mechanisms, such as TCP/IP connection management and data transfer APIs [Ste98]
discussed in Chapter 2 of C++NPv1

•  
•

• Concurrency design dimensions, including the use of processes and threads, iterative versus concurrent
versus reactive servers, and threading models [Ste99] discussed in Chapters 5 through 9 of C++NPv1

•  
•

• Synchronization techniques necessary to coordinate the interactions of processes and threads on various OS
platforms [KSS96, Lew95, Ric97] discussed in Chapter 10 of C++NPv1

•  
•

• Object-oriented design and programming techniques [Boo94, Mey97] that can simplify OS APIs and avoid
programming mistakes through the use of patterns, such as Wrapper Facade [POSA2] and Proxy [POSA1,
GoF] discussed in Chapter 3 and Appendix A of C++NPv1

•  

The ACE frameworks are highly flexible and powerful, due in large part to their use of C++ language features [Bja00
]. You should therefore be familiar with C++ class inheritance and virtual functions (dynamic binding) as well as
templates (parameterized types) and the mechanisms your compiler(s) offer to instantiate them. ACE provides a great
deal of assistance in overcoming differences between C++ compilers. As always, however, you need to know the
capabilities of your development tools and how to use them. Knowing your tools makes it easier to follow the source
code examples in this book and to build and run them on your systems. Finally, as you read the examples in this
book, keep in mind the points noted in Sidebar 7 (page 46) regarding UML diagrams and C++ code.
 
Ru-Brd

This document is created with the unregistered version of CHM2PDF Pilot



 
Ru-Brd

This document is created with the unregistered version of CHM2PDF Pilot



Structure and Content
 

Our C++NPv1 book addressed how to master certain complexities of developing networked applications, focusing
on the use of ACE's wrapper facades to avoid problems with operating system APIs written in C. This book (which
we call C++NPv2) elevates our focus to motivate and demystify the patterns, design techniques, and C++ features
associated with developing and using the ACE frameworks. These frameworks help reduce the cost and improve the
quality of networked applications by reifying proven software designs and patterns into frameworks that can be
reused systematically across projects and enterprises. The ACE frameworks expand reuse technology far beyond
what can be achieved by reusing individual classes or even class libraries.
 

This book presents numerous C++ applications to reinforce the design discussions by showing concrete examples of
how to use the ACE frameworks. These examples provide step-by-step guidance that can help you apply key
object-oriented techniques and patterns to your own networked applications. The book also shows how to enhance
your design skills, focusing on the key concepts and principles that shape the design of successful object-oriented
frameworks for networked applications and middleware.
 

The chapters in the book are organized as follows:
 

•

• Chapter 1 introduces the concept of an object-oriented framework and shows how frameworks differ from
other reuse techniques, such as class libraries, components, patterns, and model-integrated computing. We
then outline the frameworks in the ACE toolkit that are covered in subsequent chapters.

•  
•

• Chapter 2 completes the domain analysis begun in C++NPv1, which covered the communication protocols
and mechanisms, and the concurrency architectures used by networked applications. The focus in this book
is on the service and configuration design dimensions that address key networked application properties,
such as duration and structure, how networked services are identified, and the time at which they are bound
together to form complete applications.

•  
•

• Chapter 3 describes the design and use of the ACE Reactor framework, which implements the Reactor
pattern [POSA2] to allow event-driven applications to demultiplex and dispatch service requests that are
delivered to an application from one or more clients.

•  
•

• Chapter 4 then describes the design and use of the most common implementations of the ACE_Reactor
interface, which support a wide range of OS event demultiplexing mechanisms, including select(),
WaitForMultipleObjects(), XtAppMainLoop(), and /dev/poll.

•  
•

• Chapter 5 describes the design and use of the ACE Service Configurator framework. This framework
implements the Component Configurator pattern [POSA2] to allow an application to link/unlink its
component service implementations at run time without having to modify, recompile, or relink the application
statically.

•  
•

• Chapter 6 describes the design and effective use of the ACE Task framework. This framework can be used
to implement key concurrency patterns, such as Active Object and Half-Sync/Half-Async [POSA2].

•  
•

• Chapter 7 describes the design and effective use of the ACE Acceptor-Connector framework. This
framework implements the Acceptor-Connector pattern [POSA2] to decouple the connection and
initialization of cooperating peer services in a networked system from the processing they perform once
connected and initialized.

•  
•

• Chapter 8 describes the design and use of the ACE Proactor framework. This framework implements the
Proactor and Acceptor-Connector patterns [POSA2] to allow event-driven applications to efficiently
demultiplex and dispatch service requests triggered by the completion of asynchronously initiated operations.

•  
•

• Chapter 9 describes the design and use of the ACE Streams framework. This framework implements the
Pipes and Filters pattern [POSA1] to provide a structure for systems that process streams of data.

•  
•

• The book concludes with a glossary of technical terms, a list of references for further study, and a general
subject index.

•  

The chapters are organized to build upon each other and to minimize forward references. We therefore recommend
that you read the chapters in order.
 

Although this book illustrates the key capabilities of ACE's most important frameworks, we don't cover all uses and
methods of those frameworks. For additional coverage of ACE, we refer you to The ACE Programmer's Guide [HJS
] and the online ACE reference documentation, generated by Doxygen [Dim01]. ACE's reference documentation is
available at http://ace.ece.uci.edu/Doxygen/ and http://www.riverace.com/docs/.
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Related Material
 

This book is based on ACE version 5.3, released in the fall of 2002. ACE 5.3 and all the sample applications
described in our books are open-source software. Sidebar 3 (page 19) explains how you can obtain a copy of ACE
so you can follow along, see the actual ACE classes and frameworks in complete detail, and run the code examples
interactively as you read the book.
 

To learn more about ACE, or to report errors you find in the book, we recommend you subscribe to the ACE
mailing list, ace-users@cs.wustl.edu. You can subscribe by sending a request to ace-users-request@cs.wustl.edu.
Include the following command in the body of the e-mail (the subject is ignored):
 
subscribe ace-users [emailaddress@domain] 

You must supply emailaddress@domain only if your message's From address is not the address you wish to
subscribe. If you use this alternate address method, the list server will require an extra authorization step before
allowing you to join the list.
 

Postings to the ace-users list are also forwarded to the comp.soft-sys.ace USENET newsgroup, along with postings
to several other ACE-related mailing lists. Reading the messages via the newsgroup is a good way to keep up with
ACE news and activity if you don't require immediate delivery of the 30 to 50 messages that are posted daily on the
mailing lists.
 

Archives of postings to the comp.soft-sys.ace newsgroup are available at http://groups.google.com/. Enter
comp.soft-sys.ace in the search box to go to a list of archived messages. Google has a complete, searchable archive
of over 40,000 messages. You can also post a message to the newsgroup from Google's site.
 
Ru-Brd

This document is created with the unregistered version of CHM2PDF Pilot



 
Ru-Brd

This document is created with the unregistered version of CHM2PDF Pilot



Acknowledgments
 

Champion reviewing honors go to Alain Decamps, Don Hinton, Alexander Maack, Chris Uzdavinis, and Johnny
Willemsen, who reviewed the book multiple times and provided extensive, detailed comments that improved its form
and content substantially. Many thanks also to the official reviewers, Timothy Culp, Dennis Mancl, Phil Mesnier, and
Jason Pasion, who read the entire book and gave us many helpful comments. Many other ACE users provided
feedback on this book, including Marc M. Adkins, Tomer Amiaz, Vi Thuan Banh, Kevin Bailey, Stephane Bastien,
John Dilley, Eric Eide, Andrew Finnell, Dave Findlay, Jody Hagins, Jon Harnish, Jim Havlicek, Martin J3ohnson,
Christopher Kohlhoff, Alex Libman, Harald Mitterhofer, Llori Patterson, Nick Pratt, Dieter Quehl, Tim Rozmajzl,
Irma Rastegayeva, Eamonn Saunders, Harvinder Sawhney, Christian Schuhegger, Michael Searles, Kalvinder Singh,
Henny Sipma, Stephen Sturtevant, Leo Stutzmann, Tommy Svensson, Bruce Trask, Dominic Williams, and Vadim
Zaliva.
 

We are deeply indebted to all the members, past and present, of the DOC groups at Washington University in St.
Louis and the University of California, Irvine, as well as the team members at Riverace Corporation and Object
Computing Inc., who developed, refined, and optimized many of the ACE capabilities presented in this book. This
group includes Everett Anderson, Alex Arulanthu, Shawn Atkins, John Aughey, Luther Baker, Jaiganesh
Balasubramanian, Darrell Brunsch, Don Busch, Chris Cleeland, Angelo Corsaro, Chad Elliot, Sergio Flores-Gaitan,
Chris Gill, Pradeep Gore, Andy Gokhale, Priyanka Gontla, Myrna Harbibson, Tim Harrison, Shawn Hannan, John
Heitmann, Joe Hoffert, James Hu, Frank Hunleth, Prashant Jain, Vishal Kachroo, Ray Klefstad, Kitty Krishnakumar,
Yamuna Krishnamurthy, Michael Kircher, Fred Kuhns, David Levine, Chanaka Liyanaarachchi, Michael Moran,
Ebrahim Moshiri, Sumedh Mungee, Bala Natarajan, Ossama Othman, Jeff Parsons, Kirthika Parameswaran, Krish
Pathayapura, Irfan Pyarali, Sumita Rao, Carlos O'Ryan, Rich Siebel, Malcolm Spence, Marina Spivak, Naga
Surendran, Steve Totten, Bruce Trask, Nanbor Wang, and Seth Widoff.
 

We also want to thank the thousands of C++ developers from over 50 countries who've contributed to ACE for
over a decade. ACE's excellence and success is a testament to the skills and generosity of many talented developers
and the forward-looking companies that had the vision to contribute their work to ACE's open-source code base.
Without their support, constant feedback, and encouragement, we would never have written this book. In recognition
of the efforts of the ACE open-source community, we maintain a list of all contributors at 
http://ace.ece.uci.edu/ACE-members.html.
 

We are also grateful for the support from colleagues and sponsors of our research on patterns and development of
the ACE toolkit, notably the contributions of Ron Akers (Motorola), Steve Bachinsky (SAIC), John Bay (DARPA),
Detlef Becker (Siemens), Frank Buschmann (Siemens), Dave Busigo (DARPA), John Buttitto (Sun), Becky Callison
(Boeing), Wei Chiang (Nokia Inc.), Joe Cross (Lockheed Martin), Lou DiPalma (Raytheon), Bryan Doerr (Savvis),
Karlheinz Dorn (Siemens), Scott Ellard (Madison), Matt Emerson (Escient Convergence Group, Inc.), Sylvester
Fernandez (Lockheed Martin), Nikki Ford (DARPA), Andreas Geisler (Siemens), Helen Gill (NSF), Inc.), Jody
Hagins (ATD), Andy Harvey (Cisco), Sue Kelly (Sandia National Labs), Gary Koob (DARPA), Petri Koskelainen
(Nokia Inc.), Sean Landis (Motorola), Patrick Lardieri (Lockheed Martin), Doug Lea (SUNY Oswego), Joe Loyall
(BBN), Kent Madsen (EO Thorpe), Ed Margand (DARPA), Mike Masters (NSWC), Major Ed Mays (U.S.
Marine Corps), John Mellby (Raytheon), Jeanette Milos (DARPA), Stan Moyer (Telcordia), Ivan Murphy
(Siemens), Russ Noseworthy (Object Sciences), Adam Porter (U. of Maryland), Dieter Quehl (Siemens), Vijay
Raghavan (Vanderbilt U.), Lucie Robillard (U.S. Air Force), Craig Rodrigues (BBN), Rick Schantz (BBN),
Andreas Schulke (Siemens), Steve Shaffer (Kodak), Tom Shields (Raytheon), Dave Sharp (Boeing), Naval Sodha
(Ericsson), Paul Stephenson (Ericsson), Tatsuya Suda (UCI), Umar Syyid (Storetrax, Inc.), Janos Sztipanovits
(Vanderbilt U.), Gautam Thaker (Lockheed Martin), Lothar Werzinger (Krones), and Don Winter (Boeing).
 

Very special thanks go to Susan Cooper, our copy editor, for enhancing our written material. In addition, we are
grateful for the encouragement and patience of our editor, Debbie Lafferty, our production coordinator, Elizabeth
Ryan, the series editor and inventor of C++, Bjarne Stroustrup, and everyone else at Addison-Wesley who made it
possible to publish this book.
 

Finally, we would also like to acknowledge our gratitude and indebtedness to the late W. Richard Stevens, the father
of network programming literature. The following poem by Samuel Butler sums up our view of Richard's enduring
influence:
 

Not on sad Stygian shore, nor in clear sheen
 

Of far Elysian plain, shall we meet those
 

Among the dead whose pupils we have been . . .
 

Yet meet we shall, and part, and meet again,
 

Where dead men meet, on lips of living men.
 

Steve's Acknowledgments
 

Wow. . . C++NPv1 took almost 3 years to complete?his volume took roughly nine months. Thank you to my wife
Jane who cheerfully endured this process. Your persistent exhortation to keep life in balance and "be the tortoise"
really helped me stay the course, and without your infinite patience through many long days and nights, I would not
have completed this?hank you! Thanks to Doug Schmidt for getting the bulk of this book down and organized in
world-class time amidst a full-time job and his usual, amazing amount of work on ACE. Finally, thank you to
Riverace's customers who supported this work so enthusiastically. It's a privilege to serve you.
 

Doug's Acknowledgments
 

I'd like to thank my wife Sonja and my parents for their love and support during the writing of this book. Now that
it's done we'll have lots more time to have fun! Thanks also to Steve Huston, who time-shared his overloaded
schedule to wrap up the book. I'd also like to thank my friends and colleagues at the College of William and Mary;
Washington University, St. Louis; University of California, Irvine; Vanderbilt University; DARPA; and Siemens?s
well as the thousands of ACE and TAO developers and users worldwide?ho have greatly enriched my intellectual
and interpersonal life over the past two decades. I look forward to working with all of you in the future.
 

This document is created with the unregistered version of CHM2PDF Pilot



Ru-Brd

This document is created with the unregistered version of CHM2PDF Pilot



 
Ru-Brd

Chapter 1. Object-Oriented Frameworks for
Network Programming
 

CHAPTER SYNOPSIS
 

Object-oriented frameworks help reduce the cost and improve the quality of networked applications by reifying
software designs and pattern languages that have proven effective in particular application domains. This chapter
illustrates what frameworks are and compares them with other popular software development techniques, such as
class libraries, components, patterns, and model-integrated computing. It then illustrates the process of applying
frameworks to networked applications and outlines the ACE frameworks that are the focus of this book. These
frameworks are based on a pattern language [POSA1, POSA2] that has been applied to thousands of production
networked applications and middleware worldwide.
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1.1 An Overview of Object-Oriented Frameworks
 

Even as computing power and network bandwidth increase dramatically, the development of networked application
software remains expensive, time consuming, and error prone. The cost and effort stems from the growing demands
placed on networked software, as well as the continual rediscovery and reinvention of core software design and
implementation artifacts throughout the software industry. Moreover, the heterogeneity of hardware architectures,
diversity of OS and network platforms, and stiff global competition makes it increasingly hard to build high-quality
networked application software from scratch.
 

The key to building high-quality networked software in a time-to-market-driven environment is the ability to reuse
successful software designs and implementations that have already been developed. Reuse has been a popular topic
of debate and discussion for over 30 years in the software community [McI68]. There are two general types of reuse:
 

•

• Opportunistic reuse, in which developers cut and paste code from existing programs to create new ones.
Opportunistic reuse works in a limited way for individual programmers or small groups. It doesn't scale up
across business units or enterprises, however, and therefore doesn't significantly reduce development cycle
time and cost or improve software quality. Worse, opportunistic reuse can actually impede development
progress since cut-and-paste code often begins to diverge as it proliferates, forcing developers to fix the
same bugs multiple times in multiple places.

•  
•

• Systematic reuse, which is an intentional and concerted effort to create and apply multiuse software
architectures, patterns, frameworks, and components throughout a product line [CN02]. In a well-honed
systematic reuse process, each new project leverages time-proven designs and implementations, only adding
new code that's specific to a particular application. This type of reuse is essential to increase software
productivity and quality by breaking the costly cycle of rediscovering, reinventing, and revalidating common
software artifacts.

•  

Middleware [SS02] is a class of software that can increase systematic reuse levels significantly by functionally
bridging the gap between the end-to-end functional requirements of networked applications and the underlying
operating systems and network protocol stacks. Middleware provides capabilities that are critical to networked
applications because they automate common network programming tasks. Developers who use middleware can
therefore program their networked applications more like stand-alone applications, rather than wrestling with the
many tedious and error-prone details associated with low-level OS event demultiplexing, message buffering and
queueing, marshaling and demarshaling, and connection management mechanisms. Popular examples of middleware
include Java virtual machines (JVMs), Enterprise JavaBeans (EJB), .NET, the Common Object Request Broker
Architecture (CORBA), and the ADAPTIVE Communication Environment (ACE).
 

Systematically developing high-quality, reusable middleware for networked applications presents many hard technical
challenges, including
 

•

• Detecting and recovering from transient and partial failures of networks and hosts in an
application-independent manner

•  
•

• Minimizing the impact of latency and jitter on end-to-end application performance
•  
•

• Determining how to partition a distributed application into separate component services
•  
•

• Deciding where and when to distribute and load balance services in a network
•  

Since reusable middleware is inherently abstract, it's hard to validate its quality and to manage its production.
Moreover, the skills required to develop, deploy, and support reusable networked application middleware have
traditionally been a "black art," locked in the heads of expert developers and architects. These technical impediments
to systematic reuse are often exacerbated by a myriad of nontechnical impediments [Hol97], such as organizational,
economic, administrative, political, sociological, and psychological factors. It's therefore not surprising that significant
levels of software reuse have been slow to materialize in many projects and organizations [Sch00].
 

While it's never easy to make reuse work universally, we've led the development of powerful host infrastructure
middleware called ACE that's designed specifically with systematic reuse in mind. During the past decade, we've
written hundreds of thousands of lines of C++ code while developing and applying ACE to networked applications
as part of our work with dozens of telecommunication, aerospace, medical, and financial services companies. As a
result of our experience, we've documented many patterns and pattern languages [POSA2, POS00] that have guided
the design of reuseable middleware and applications. In addition, we've taught hundreds of tutorials and courses on
reuse, middleware, and patterns to thousands of developers and students. Despite the many technical and
nontechnical challenges, we've identified a solid body of work that combines advanced research, time-proven design
knowledge, hands-on experience, and software artifacts that can significantly enhance the systematic reuse of
networked application software.
 

At the heart of this body of work are object-oriented frameworks [FJS99b, FJS99a], which are a powerful
technology for achieving systematic reuse of networked application software.[1] Below, we describe the three
characteristics of frameworks [JF88] that help them to achieve the important networked application qualities listed on
page xi. Figure 1.1 (page 4) illustrates how these characteristics work together.
 

[1] In the remainder of this book we use the term framework to mean object-oriented framework.
 

Figure 1.1. Synergy of Framework Capabilities
 

A framework provides an integrated set of domain-specific structures and functionality. Systematic reuse of software
depends largely on how well frameworks model the commonalities and variabilities [CHW98] in application domains,
such as business data processing, telecom call processing, graphical user interfaces, or distributed object computing
middleware. Since frameworks reify the key roles and relationships of classes in application domains, the amount of
reusable code increases and the amount of code rewritten for each application decreases.
 

A framework exhibits "inversion of control" at run time via callbacks. A callback is an object registered with a
dispatcher that calls back to a method on the object when a particular event occurs, such as a connection request or
data arriving on a socket handle. Inversion of control decouples the canonical detection, demultiplexing, and
dispatching steps within a framework from the application-defined event handlers managed by the framework. When
events occur, the framework calls back to virtual hook methods in the registered event handlers, which then perform
application-defined processing in response to the events.
 

Since frameworks exhibit inversion of control, they can simplify application design because the framework?ather
than the application?uns the event loop to detect events, demultiplex events to event handlers, and dispatch hook
methods on the handlers that process the events. The use of virtual hook methods in the handler classes decouples
the application's classes from the framework, allowing each to be changed independently as long as the interface
signature and interaction protocols aren't modified.
 

A framework is a "semi-complete" application that programmers can customize to form complete applications by
inheriting from and instantiating classes in the framework. Inheritance enables the features of framework base classes
to be shared selectively by subclasses. If a base class provides default implementations of its methods, application
developers need only override those virtual methods whose default behavior doesn't meet their needs.
 

Since a framework is a semi-complete application, it enables larger-scale reuse of software than can be achieved by
reusing individual classes or stand-alone functions. The amount of reuse increases due to a framework's ability to
integrate application-defined and application-independent classes. In particular, a framework abstracts the canonical
control flow of applications in a domain into families of related classes, which can collaborate to integrate
customizable application-independent code with customized application-defined code.
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1.2 Comparing Software Development and Reuse Techniques
 

Object-oriented frameworks don't exist in isolation. Class libraries, components, patterns, and model-integrated
computing are other techniques that are being applied to reuse software and increase productivity. This section
compares frameworks with these techniques to illustrate their similarities and differences, as well as to show how the
techniques can be combined to enhance systematic reuse for networked applications.
 

1.2.1 Comparing Frameworks and Class Libraries
 

A class is a general-purpose, reusable building block that specifies an interface and encapsulates the representation of
its internal data and the functionality of its instances. A library of classes was the most common first-generation
object-oriented development technique [Mey97]. Class libraries generally support reuse-in-the-small more effectively
than function libraries since classes emphasize the cohesion of data and methods that operate on the data.
 

Although class libraries are often domain independent and can be applied widely, their effective scope of reuse is
limited because they don't capture the canonical control flow, collaboration, and variability among families of related
software artifacts. The total amount of reuse with class libraries is therefore relatively small, compared with the
amount of application-defined code that must be rewritten for each application. The need to reinvent and reimplement
the overall software architecture and much of the control logic for each new application is a prime source of cost and
delay for many software projects.
 

The C++ standard library [Bja00] is a good case in point. It provides classes for strings, vectors, and other
containers. Although these classes can be reused in many application domains, they are relatively low level.
Application developers are therefore responsible for (re)writing much of the "glue code" that performs the bulk of the
application control flow and class integration logic, as shown in Figure 1.2 (1).
 

Figure 1.2. Class Library versus Framework Architectures
 

Frameworks are a second-generation development technique [Joh97] that extends the benefits of class libraries in
several ways. Most importantly, classes in a framework collaborate to provide a reusable architecture for a family of
related applications. Class collaboration in a framework yields "semi-complete" applications that embody
domain-specific object structures and functionality. Frameworks can be classified by various means, such as the
blackbox and whitebox distinctions described in Sidebar 1 (page 6).
 

Sidebar 1: Overview of Whitebox and
Blackbox Frameworks
 

Frameworks can be classified in terms of the techniques used to extend them, which range along a
continuum from whitebox frameworks to blackbox frameworks [HJE95], as described below:
 

•

• Whitebox frameworks. Extensibility is achieved in a whitebox framework via object-oriented
language features, such as inheritance and dynamic binding. Existing functionality can be reused
and customized by inheriting from framework base classes and overriding predefined hook
methods [Pre95] using patterns such as Template Method [GoF], which defines an algorithm
with some steps supplied by a derived class. To extend a whitebox framework, application
developers must have some knowledge of its internal structure.

•  
•

• Blackbox frameworks. Extensibility is achieved in a blackbox framework by defining interfaces
that allow objects to be plugged into the framework via composition and delegation. Existing
functionality can be reused by defining classes that conform to a particular interface and then
integrating these classes into the framework using patterns such as Function Object [Kuh97],
Bridge/Strategy [GoF], and Pluggable Factory [Vli98b, Vli99, Cul99], which provide a
blackbox abstraction for selecting one of many implementations. Blackbox frameworks can be
easier to use than whitebox frameworks since application developers need less knowledge of
the framework's internal structure. Blackbox frameworks can also be harder to design,
however, since framework developers must define crisp interfaces that anticipate a range of use
cases.

•  

Another way that class libraries differ from frameworks is that the classes in a library are typically passive since they
perform their processing by borrowing the thread from so-called self-directed applications that invoke their methods.
As a result, developers must continually rewrite much of the control logic needed to bind the reusable classes
together to form complete networked applications. In contrast, frameworks are active since they direct the flow of
control within an application via various callback-driven event handling patterns, such as Reactor [POSA2] and
Observer [GoF]. These patterns invert the application's flow of control using the Hollywood Principle: "Don't call us,
we'll call you" [Vli98a]. Since frameworks are active and manage the application's control flow, they can perform a
broader range of activities on behalf of applications than is possible with passive class libraries.
 

Frameworks and class libraries are complementary technologies in practice. Frameworks provide a foundational
structure to applications. Since frameworks are focused on a specific domain, however, they aren't expected to
satisfy the broadest range of application development needs. Class libraries are therefore often used in conjunction
within frameworks and applications to implement commonly needed code artifacts, such as strings, files, and
time/date classes.
 

For example, the ACE frameworks use the ACE wrapper facade classes to ensure their portability. Likewise,
applications can use the ACE container classes described in [HJS] to help implement their event handlers. Whereas
the ACE container classes and wrapper facades are passive, the ACE frameworks are active and provide inversion
of control at run time. The ACE toolkit provides both frameworks and a library of classes to help programmers
address a range of challenges that arise when developing networked applications.
 

1.2.2 Comparing Frameworks and Components
 

A component is an encapsulated part of a software system that implements a specific service or set of services. A
component has one or more interfaces that provide access to its services. Components serve as building blocks for
the structure of an application and can be reused based solely upon knowledge of their interface protocols.
 

Components are a third-generation development technique [Szy98] that are widely used by developers of multitier
enterprise applications. Common examples of components include ActiveX controls [Egr98] and COM objects [
Box98], .NET web services [TL01], Enterprise JavaBeans [MH01], and the CORBA Component Model (CCM) [
Obj01a]. Components can be plugged together or scripted to form complete applications, as shown in Figure 1.3.
 

Figure 1.3. A Component Architecture
 

Figure 1.3 also shows how a component implements the business application logic in the context of a container. A
container allows its component to access resources and services provided by an underlying middleware platform. In
addition, this figure shows how generic application servers can be used to instantiate and manage containers and
execute the components configured into them. Metadata associated with components provide instructions that
application servers use to configure and connect components.
 

Many interdependent components in enterprise applications can reside in multiple?possibly distributed?pplication
servers. Each application server consists of some number of components that implement certain services for clients.
These components in turn may include other collocated or remote services. In general, components help developers
reduce their initial software development effort by integrating custom application components with reusable
off-the-shelf components into generic application server frameworks. Moreover, as the requirements of applications
change, components can help make it easier to migrate and redistribute certain services to adapt to new
environments, while preserving key application properties, such as security and availability.
 

Components are generally less lexically and spatially coupled than frameworks. For example, applications can reuse
components without having to subclass them from existing base classes. In addition, by applying common patterns,
such as Proxy [GoF] and Broker [POSA1], components can be distributed to servers throughout a network and
accessed by clients remotely. Modern application servers, such as JBoss and BEA Systems's Web-Logic Server,
use these types of patterns to facilitate an application's use of components.
 

The relationship between frameworks and components is highly synergistic, with neither subordinate to the other [
Joh97]. For example, the ACE frameworks can be used to develop higher-level application components, whose
interfaces then provide a facade [GoF] for the internal class structure of the frameworks. Likewise, components can
be used as pluggable strategies in blackbox frameworks [HJE95]. Frameworks are often used to simplify the
development of middleware component models [TL01, MH01, Obj01a], whereas components are often used to
simplify the development and configuration of networked application software.
 

1.2.3 Comparing Frameworks and Patterns
 

Developers of networked applications must address design challenges related to complex topics, such as connection
management, service initialization, distribution, concurrency control, flow control, error handling, event loop
integration, and dependability. Since these challenges are often independent of specific application requirements,
developers can resolve them by applying the following types of patterns [POSA1]:
 

•

• Design patterns provide a scheme for refining the elements of a software system and the relationships
between them, and describe a common structure of communicating elements that solves a general design
problem within a particular context.

•  
•

• Architectural patterns express the fundamental, overall structural organization of software systems and
provide a set of predefined subsystems, specify their responsibilities, and include guidelines for organizing the
relationships between them.

•  
•

• Pattern languages define a vocabulary for talking about software development problems and provide a
process for the orderly resolution of these problems.

•  

Traditionally, patterns and pattern languages have been locked in the heads of expert developers or buried deep
within the source code of software applications and systems. Allowing this valuable information to reside only in these
locations is risky and expensive. Explicitly capturing and documenting patterns for networked applications helps to
 

•

• Preserve important design information for programmers who enhance and maintain existing software. This
information will be lost if it isn't documented, which can increase software entropy and decrease software
maintainability and quality.

•  
•

• Guide design choices for developers who are building new applications. Since patterns document the
common traps and pitfalls in their domain, they help developers to select suitable architectures, protocols,
algorithms, and platform features without wasting time and effort (re)implementing solutions that are known to
be inefficient or error prone.

•  

Knowledge of patterns and pattern languages helps to reduce development effort and maintenance costs. Reuse of
patterns alone, however, does not create flexible and efficient software. Although patterns enable reuse of abstract
design and architecture knowledge, software abstractions documented as patterns don't directly yield reusable code.
It's therefore essential to augment the study of patterns with the creation and use of frameworks. Frameworks help
developers avoid costly reinvention of standard software artifacts by reifying common patterns and pattern languages
and by refactoring common implementation roles.
 

ACE users can write networked applications quickly because the frameworks in ACE implement the core patterns
associated with service access, event handling, concurrency, and synchronization [POSA2]. This knowledge transfer
makes ACE more accessible and directly applicable compared to many other common knowledge transfer activities,
such as seminars, conferences, or design and code reviews. Although these other activities are useful, they are limited
because participants must learn from past work of others, and then try to apply it to their current and future projects.
In comparison, ACE provides direct knowledge transfer by embodying framework usage patterns in a powerful
toolkit containing both networked application domain experience and working code.
 

For example, JAWS [HS99] is a high-performance, open-source, adaptive Web server built using the ACE
frameworks. Figure 1.4 (page 10) illustrates how the JAWS Web server is structured as a set of collaborating
frameworks whose design is guided by the patterns listed along the borders of the figure. These patterns help resolve
common design challenges that arise when developing concurrent servers, including encapsulating low-level operating
system APIs, decoupling event demultiplexing and connection management from protocol processing, scaling up
server performance via multithreading, minimizing server threading overhead, using asynchronous I/O effectively, and
enhancing server configurability. More information on the patterns and design of JAWS appears in Chapter 1 of
POSA2.
 

Figure 1.4. Patterns Forming the Architecture of JAWS
 

1.2.4 Comparing Frameworks and Model-Integrated Computing
 

Model-integrated computing (MIC) [SK97] is an emerging development paradigm that uses domain-specific
modeling languages to systematically engineer software ranging from small-scale real-time embedded systems to
large-scale enterprise applications. MIC development environments include domain-specific model analysis and
model-based program synthesis tools. MIC models can capture the essence of a class of applications, as well as
focus on a single, custom application. MIC also allows the modeling languages and environments themselves to be
modeled by so-called meta-models [SKLN01], which help to synthesize domain-specific modeling languages that
can capture subtle insights about the domains they are designed to model, making this knowledge available for reuse.
 

Popular examples of MIC being used today include the Generic Modeling Environment (GME) [LBM+01] and
Ptolemy [BHLM94] (which are used primarily in the real-time and embedded domain) and UML/XML tools based
on the OMG Model Driven Architecture (MDA) [Obj01b] (which are used primarily in the business domain thus
far). When implemented properly, these MIC technologies help to
 

•

• Free application developers from dependencies on particular software APIs, which ensures that the models
can be reused for a long time, even as existing software APIs are obsoleted by newer ones.

•  
•

• Provide correctness proofs for various algorithms by analyzing the models automatically and offering
refinements to satisfy various constraints.

•  
•

• Generate code that's highly dependable and robust since the modeling tools themselves can be synthesized
from meta-models using provably correct technologies.

•  
•

• Rapidly prototype new concepts and applications that can be modeled quickly using this paradigm,
compared to the effort required to prototype them manually.

•  
•

• Reuse domain-specific modeling insights, saving significant amounts of time and effort, while also reducing
application time-to-market and improving consistency and quality.

•  

As shown in Figure 1.5, the MIC development process uses a set of tools to analyze the interdependent features of
the application captured in a model and determine the feasibility of supporting different QoS requirements in the
context of the specified constraints. Another set of tools then translates models into executable specifications that
capture the platform behavior, constraints, and interactions with the environment. These executable specifications in
turn can be used to synthesize application software.
 

Figure 1.5. Steps in the Model-Integrated Computing Development Process
 

Earlier efforts at model-based development and code synthesis attempted by CASE tools generally failed to deliver
on their potential for the following reasons [All02]:
 

•

• They attempted to generate entire applications, including the infrastructure and the application logic, which led
to inefficient, bloated code that was hard to optimize, validate, evolve, or integrate with existing code.

•  
•

• Due to the lack of sophisticated domain-specific languages and associated modeling tools, it was hard to
achieve round-trip engineering, that is, moving back and forth seamlessly between model representations and
the synthesized code.

•  
•

• Since CASE tools and early modeling languages dealt primarily with a restricted set of platforms (such as
mainframes) and legacy programming languages (such as COBOL), they did not adapt well to the distributed
computing paradigm that arose from advances in PC and Internet technology and newer object-oriented
programming languages, such as Java, C++, and C#.

•  

Many of the limitations with model-integrated computing outlined above can be overcome by integrating MIC tools
and processes with object-oriented frameworks [GSNW02]. This integration helps to overcome problems with
earlier-generation CASE tools since it does not require the modeling tools to generate all the code. Instead, large
portions of applications can be composed from reusable, prevalidated framework classes. Likewise, integrating MIC
with frameworks helps address environments where application requirements and functionality change at a rapid pace
by synthesizing and assembling newer extended framework classes and automating the configuration of many
QoS-critical aspects, such as concurrency, distribution, transactions, security, and dependability.
 

The combination of model-integrated computing with frameworks, components, and patterns is an area of active
research [Bay02]. In the DOC group, for example, there are R&D efforts underway to develop a MIC tool suite
called the Component Synthesis with Model-Integrated Computing (CoSMIC) [GSNW02]. CoSMIC extends the
popular GME modeling and synthesis tools [LBM+01] and the ACE ORB (TAO) [SLM98] to support the
development, assembly, and deployment of QoS-enabled networked applications. To ensure the QoS requirements
can be realized in the middleware layer, CoSMIC's model-integrated computing tools can specify and analyze the
QoS requirements of application components in their accompanying metadata.
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1.3 Applying Frameworks to Network Programming
 

One reason why it's hard to write robust, extensible, and efficient networked applications is that developers must
master many complex networking programming concepts and mechanisms, including
 

•

• Network addressing and service identification/discovery
•  
•

• Presentation layer conversions, such as marshaling, demarshaling, and encryption, to handle heterogeneous
hosts with alternative processor byte orderings

•  
•

• Local and remote interprocess communication (IPC) mechanisms
•  
•

• Event demultiplexing and event handler dispatching
•  
•

• Process/thread lifetime management and synchronization
•  

Application programming interfaces (APIs) and tools have evolved over the years to simplify the development of
networked applications and middleware. Figure 1.6 illustrates the IPC APIs available on OS platforms ranging from
UNIX to many real-time operating systems. This figure shows how applications can access networking APIs for
local and remote IPC at several levels of abstraction. We briefly discuss each level of abstraction below, starting
from the lower-level kernel APIs to the native OS user-level networking APIs and the host infrastructure middleware.
 

Figure 1.6. Levels of Abstraction for Network Programming
 

Kernel-level networking APIs. Lower-level networking APIs are available in an OS kernel's I/O subsystem. For
example, the UNIX putmsg() and getmsg() system functions can be used to access the Transport Provider Interface
(TPI) [OSI92b] and the Data Link Provider Interface (DLPI) [OSI92a] available in System V STREAMS [Rit84].
It's also possible to develop network services, such as routers [KMC+00], network file systems [WLS+85], or even
Web servers [JKN+01], that reside entirely within an OS kernel.
 

Programming directly to kernel-level networking APIs is rarely portable between different OS platforms, however.
It's often not even portable across different versions of the same OS! Since kernel-level programming isn't used in
most networked applications, we don't cover it any further in this book. See [Rag93], [SW95, MBKQ96], and [
SR00] for coverage of these topics in the context of System V UNIX, BSD UNIX, and Windows 2000,
respectively.
 

User-level networking APIs. Networking protocol stacks in modern commercial operating systems reside within the
protected address space of the OS kernel. Applications running in user space access protocol stacks in the OS
kernel via IPC APIs, such as the Socket or TLI APIs. These APIs collaborate with an OS kernel to provide the
capabilities shown in the following table:
 

Capability
 

Description
 

Local endpoint management
 

Create and destroy local communication endpoints,
allowing access to available networking facilities.
 

Connection establishment and connection termination
 

Enable applications to establish connections actively or
passively with remote peers and to shutdown all or part
of the connections when transmissions are complete.
 

Options management
 

Negotiate and enable/disable protocol and endpoint
options.
 

Data transfer mechanisms
 

Exchange data with peer applications.
 

Name/address translation
 

Convert human-readable names to low-level network
addresses and vice versa.
 

These capabilities are covered in Chapter 2 of C++NPv1 in the context of the Socket API.
 

Many IPC APIs are modeled loosely on the UNIX file I/O API, which defines the open(), read(), write(), close(),
ioctl(), lseek(), and select() functions [Rit84]. Due to syntactic and semantic differences between file I/O and network
I/O, however, networking APIs provide additional functionality that's not supported directly by the standard UNIX
file I/O APIs. For example, the pathnames used to identify files on a UNIX system aren't globally unique across hosts
in a heterogeneous distributed environment. Different naming schemes, such as IP host addresses and TCP/UDP port
numbers, have therefore been devised to uniquely identify communication endpoints used by networked applications.
 

Host infrastructure middleware frameworks. Many networked applications exchange messages using synchronous
and/or asynchronous request/response protocols in conjunction with host infrastructure middleware frameworks.
Host infrastructure middleware encapsulates OS concurrency and IPC mechanisms to automate many low-level
aspects of networked application development, including
 

•

• Connection management and event handler initialization
•  
•

• Event detection, demultiplexing, and event handler dispatching
•  
•

• Message framing atop bytestream protocols, such as TCP
•  
•

• Presentation conversion issues involving network byte ordering and parameter marshaling and demarshaling
•  
•

• Concurrency models and synchronization of concurrent operations
•  
•

• Networked application composition from dynamically configured services
•  
•

• Hierarchical structuring of layered networked applications and services
•  
•

• Management of quality of service (QoS) properties, such as scheduling access to processors, networks, and
memory

•  

The increasing availability and popularity of high-quality and affordable host infrastructure middleware is helping to
raise the level of abstraction at which developers of networked applications can work effectively. For example,
[C++NPv1, SS02] present an overview of higher-level distributed object computing middleware, such as CORBA [
Obj02] and The ACE ORB (TAO) [SLM98], which is an implementation of CORBA built using the frameworks
and classes in ACE. It's still useful, however, to understand how lower level IPC mechanisms work to fully
comprehend the challenges that arise when designing, porting, and optimizing networked applications.
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1.4 A Tour through the ACE Frameworks
 

1.4.1 An Overview of ACE
 

ACE is a highly portable, widely used, open-source host infrastructure middleware toolkit. The source code is freely
available from http://ace.ece.uci.edu/ or http://www.riverace.com/. The core ACE library contains roughly a quarter
million lines of C++ code that comprises approximately 500 classes. Many of these classes cooperate to form ACE's
major frameworks. The ACE toolkit also includes higher-level components, as well as a large set of examples and an
extensive automated regression test suite.
 

To separate concerns, reduce complexity, and permit functional subsetting, ACE is designed using a layered
architecture [POSA1], shown in Figure 1.7. The capabilities provided by ACE span the session, presentation, and
application layers in the OSI reference model [Bla91]. The foundation of the ACE toolkit is its combination of an OS
adaptation layer and C++ wrapper facades, which together encapsulate core OS network programming mechanisms
to run portably on all the OS platforms shown in Sidebar 2 (page 16). The higher layers of ACE build on this
foundation to provide reusable frameworks, networked service components, and standards-based middleware.
 

Figure 1.7. The Layered Architecture of ACE
 

1.4.2 A Synopsis of the ACE Frameworks
 

The ACE frameworks are an integrated set of classes that can be instantiated and customized to provide complete
networked applications and service components. These frameworks help to transfer decades of accumulated
knowledge directly from the ACE developers to ACE users in the form of expertise embodied in well-tested and
reusable C++ software artifacts. The ACE frameworks implement a pattern language for programming concurrent
object-oriented networked applications. Figure 1.8 illustrates the ACE frameworks. To illustrate how the ACE
frameworks rely on and use each other, the lines between boxes represent a dependency in the direction of the
arrow. Each framework is outlined below.
 

Figure 1.8. The Key Frameworks in ACE
 

Sidebar 2: OS Platforms Supported by ACE
 

ACE runs on a wide range of operating systems, including:
 

•

• PCs, for example, Windows (32- and 64-bit versions), WinCE, and Macintosh OS X
•  
•

• Most versions of UNIX, for example, SunOS/Solaris, IRIX, HP-UX, Tru64 UNIX (Digital
UNIX), AIX, DG/UX, Linux (Redhat, Debian, and SuSE), SCO OpenServer, UnixWare,
NetBSD, and FreeBSD

•  
•

• Real-time operating systems, for example, VxWorks, ChorusOS, LynxOS, Pharlap TNT,
QNX Neutrino and RTP, RTEMS, and pSoS

•  
•

• Large enterprise systems, for example, OpenVMS, MVS OpenEdition, Tandem NonStop-UX,
and Cray UNICOS.

•  

ACE can be used with all of the major C++ compilers on these platforms. The ACE Web site at 
http://ace.ece.uci.edu contains a complete, up-to-date list of platforms, along with instructions for
downloading and building ACE.
 

ACE Reactor and Proactor frameworks. These frameworks implement the Reactor and Proactor patterns [POSA2],
respectively. Both are architectural patterns that allow applications to be driven by events that are delivered to the
application from one or more event sources, the most important of which are I/O endpoints. The Reactor framework
facilitates a reactive I/O model, with events signaling the ability to begin a synchronous I/O operation. The Proactor
framework is designed for a proactive I/O model where one or more asynchronous I/O operations are initiated and
the completion of each operation triggers an event. Proactive I/O models can achieve the performance benefits of
concurrency without incurring many of its liabilities. The Reactor and Proactor frameworks automate the detection,
demultiplexing, and dispatching of application-defined handlers in response to many types of events. Chapters 3 and 4
describe the ACE Reactor framework and Chapter 8 describes the ACE Proactor framework.
 

ACE Service Configurator framework. This framework implements the Component Configurator pattern [POSA2],
which is a design pattern that allows an application to link and unlink its component implementations without having to
modify, recompile, or relink the application statically. The ACE Service Configurator framework supports the
configuration of applications whose services can be assembled late in the design cycle, such as at installation time
and/or run time. Applications with high availability requirements, such as mission-critical systems that perform online
transaction processing or real-time industrial process automation, often require such flexible configuration capabilities. 
Chapter 2 describes the design dimensions associated with configuring networked services and Chapter 5 describes
the ACE Service Configurator framework.
 

ACE Task framework. This framework implements various concurrency patterns, such as Active Object and
Half-Sync/Half-Async [POSA2]. Active Object is a design pattern that decouples the thread that executes a method
from the thread that invoked it. Its purpose is to enhance concurrency and simplify synchronized access to objects
that reside in their own threads of control. Half-Sync/Half-Async is an architectural pattern that decouples
asynchronous and synchronous processing in concurrent systems, to simplify programming without reducing
performance unduly. This pattern incorporates two intercommunicating layers, one for asynchronous and one for
synchronous service processing. A queueing layer mediates communication between services in the asynchronous
and synchronous layers. Chapter 5 of C++NPv1 describes the design dimensions associated with concurrent
networked applications and Chapter 6 of this book describes the ACE Task framework.
 

ACE Acceptor-Connector framework. This framework leverages the Reactor framework and reifies the
Acceptor-Connector pattern [POSA2]. This design pattern decouples the connection and initialization of cooperating
peer services in a networked system from the processing they perform once connected and initialized. The
Acceptor-Connector framework decouples the active and passive initialization roles from application-defined service
processing performed by communicating peer services after initialization is complete. Chapter 7 describes this
framework.
 

ACE Streams framework. This framework implements the Pipes and Filters pattern, which is an architectural pattern
that provides a structure for systems that process a stream of data [POSA1]. The ACE Streams framework
simplifies the development and composition of hierarchically layered services, such as user-level protocol stacks and
network management agents [SS94]. Chapter 9 describes this framework.
 

When used together, the ACE frameworks outlined above enable the development of networked applications that
can be updated and extended without the need to modify, re-compile, relink, or restart running applications. ACE
achieves this unprecedented flexibility and extensibility by combining
 

•

• OS mechanisms, such as event demultiplexing, IPC, dynamic linking, multithreading, multiprocessing, and
synchronization [Ste99]

•  
•

• C++ language features, such as templates, inheritance, and dynamic binding [Bja00]
•  
•

• Patterns, such as Component Configurator [POSA2], Strategy [GoF], and Handler/Callback [Ber95]
•  

The ACE frameworks provide inversion of control via callbacks, as shown below:
 

ACE Framework
 

Inversion of Control
 

Reactor and Proactor
 

Calls back to application-supplied event handlers to
perform processing when events occur synchronously
and asynchronously.
 

Service Configurator
 

Calls back to application-supplied service objects to
initialize, suspend, resume, and finalize them.
 

Task
 

Calls back to an application-supplied hook method to
perform processing in one or more threads of control.
 

Acceptor-Connector
 

Calls back to service handlers to initialize them after
they're connected.
 

Streams
 

Calls back to initialize and finalize tasks when they are
pushed and popped from a stream.
 

The callback methods in ACE's framework classes are defined as C++ virtual methods. This use of dynamic binding
allows networked applications to freely implement and extend interface methods without modifying or rebuilding
existing framework classes. In contrast, the ACE wrapper facades rarely use callbacks or virtual methods, so they
aren't as extensible as the ACE frameworks. The ACE wrapper facades do support a broad range of use cases,
however, and can be integrated together via generic programming [Ale01] techniques based on the C++ traits and
traits classes idioms outlined in Sidebar 40 (page 165).
 

Figure 1.9 illustrates how the class libraries and frameworks in ACE are complementary technologies. The ACE
toolkit simplifies the implementation of its frameworks via its class libraries of containers, which include lists, queues,
hash tables, strings, and other reusable data structures. Likewise, application-defined code invoked by event handlers
in the ACE Reactor framework can use the ACE wrapper facades and the C++ standard library classes [Jos99] to
perform IPC, synchronization, file management, and string processing operations. Sidebar 3 describes how to build
the ACE library so that you can experiment with the examples we present in this book.
 

Figure 1.9. Applying Class Libraries to Develop and Use ACE Frameworks
 

Sidebar 3: Building ACE and Programs that
Use ACE
 

ACE is open-source software that you can download from http://ace.ece.uci. edu or
http://www.riverace.com and build yourself. These sites contain a wealth of other material on ACE, such
as tutorials, technical papers, and an overview of other ACE wrapper facades and frameworks that
aren't covered in this book. You can also purchase a prebuilt version of ACE from Riverace at a
nominal cost. See http://www.riverace.com for a list of the prebuilt compiler and OS platforms
supported by Riverace.
 

If you want to build ACE yourself, you should download and unpack the ACE distribution into an empty
directory. The top-level directory in the distribution is named ACE_wrappers. We refer to this top-level
directory as "ACE_ROOT." You should create an environment variable by that name containing the full
path to the top-level ACE directory. The ACE source and header files reside in $ACE_ROOT/ace.
 

The $ACE_ROOT/ACE-INSTALL.html file has complete instructions for building ACE, including how
to configure it for your OS and compiler. This book's networked logging service example source and
header files reside in $ACE_ROOT/examples/C++NPv2 and are ready to build on all platforms that
ACE supports. To build your own programs, the $ACE_ROOT directory must be added to your
compiler's file include path. For command-line compilers, this can be done with the -I or /I compiler
option. Graphical IDEs provide similar options, such as MSVC++'s "Preprocessor, Additional include
directories" section of the C/C++ tab on the Project Settings dialog box.
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1.5 Example: A Networked Logging Service
 

It's been our experience that the principles, methods, and skills required to develop and use reusable networked
application software cannot be learned solely by generalities or toy examples. Instead, programmers must learn
concrete technical skills and gain hands-on experience by developing and using real frameworks and applications.
We therefore illustrate key points and ACE capabilities throughout this book by extending and enhancing the
networked logging service example introduced in C++NPv1, which collects and records diagnostic information sent
from one or more client applications.
 

The logging service in C++NPv1 used many of ACE's wrapper facades in a two-tier client/server architecture. This
book's logging service examples use a more powerful architecture that illustrates a broader complement of
capabilities and patterns, and demonstrates how ACE's frameworks can help achieve efficient, predictable, and
scalable networked applications. This service also helps to demonstrate key design and implementation
considerations and solutions that will arise when you develop your own concurrent object-oriented networked
applications.
 

Figure 1.10 illustrates the application processes and daemons in our networked logging service, which we outline
below.
 

Figure 1.10. Processes and Daemons in the Networked Logging Service
 

Client application processes (such as P1,P2, and P3) run on client hosts and generate log records ranging from
debugging messages to critical error messages. The logging information sent by a client application contains the time
the log record was created, the process identifier of the application, the priority level of the log record, and a
variable-sized string containing the log record text message. Client applications send these log records to a client
logging daemon running on their local host.
 

Client logging daemons run on every host machine participating in the networked logging service. Each client logging
daemon receives log records from that host's client applications via some form of local IPC mechanism, such as
shared memory, pipes, or sockets. The client logging daemon uses a remote IPC mechanism, such as TCP/IP, to
forward log records to a server logging daemon running on a designated host.
 

Server logging daemons collect and output the incoming log records they receive from client applications via client
logging daemons. A server logging daemon[2] can determine which client host sent each message by using addressing
information it obtains from the underlying Socket API. There's generally one server logging daemon per system
configuration, though they could be replicated to avoid a single point of failure.

[2] We use the terms server logging daemon and logging server interchangeably throughout this book.
 

Figure 1.11 (page 22) shows the progression of networked application servers that we'll develop and use in this
book. These client and server logging daemons will illustrate how to use the ACE frameworks and wrapper facades
with the following concurrency models.
 

Figure 1.11. Logging Server Examples
 

Concurrency Model
 

Section
 

Reactive
 

3.5, 4.2, 5.4
 

Thread pool
 

4.3, 4.4, 6.3
 

Thread-per-connection
 

7.2, 7.3
 

Producer/consumer
 

6.2, 7.4, 9.2
 

Proactive
 

8.2 ?8.5
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1.6 Summary
 

Networked application software has been developed manually from scratch for decades. The continual rediscovery
and reinvention of core concepts and capabilities associated with this process has kept the costs of engineering and
evolving networked applications too high for too long. Improving the quality and quantity of systematic software
reuse is essential to resolve this problem.
 

Middleware is a class of software that's particularly effective at providing systematically reusable artifacts for
networked applications. Developing and using middleware is therefore an important way to increase reuse. There are
many technical and nontechnical challenges that make middleware development and reuse hard, however. This
chapter described how object-oriented frameworks can be applied to overcome many of these chal-lenges. To make
the most appropriate choice of software development technologies, we also described the differences between
frameworks and class libraries, components, patterns, and model-integrated computing. Each technology plays a part
in reducing software development costs and life cycles and increasing software quality, functionality, and performance.
 

The result of applying framework development principles and patterns to the domain of networked applications has
yielded the ACE frameworks. These frameworks handle common network programming tasks and can be
customized via C++ language features to produce complete networked applications. When used together, the ACE
frameworks simplify the creation, composition, configuration, and porting of networked applications without incurring
significant performance overhead. The rest of this book explains how and why the ACE frameworks were developed
and shows many examples of how ACE uses C++ features to achieve its goals.
 

An intangible, but valuable, benefit of ACE is its transfer of decades of accumulated knowledge from ACE
framework developers to ACE framework users in the form of expertise embodied in well-tested C++ classes that
implement time-proven networked application software development strategies. These frameworks took scores of
person-years to develop, optimize, and mature. Fortunately, you can take advantage of the expertise embodied in
these frameworks without having to independently rediscover or reinvent the patterns and classes that underlie them.
 
Ru-Brd

This document is created with the unregistered version of CHM2PDF Pilot



 
Ru-Brd

This document is created with the unregistered version of CHM2PDF Pilot



Chapter 2. Service and Configuration Design
Dimensions
 

CHAPTER SYNOPSIS
 

A service is a set of functionality offered to a client by a server. Common services available on the Internet today
include
 

•

• Web content retrieval services, such as Apache and Google
•  
•

• Software distribution services, such as Castanet, Citrix, or Softricity
•  
•

• Electronic mail and network news transfer services
•  
•

• File access on remote machines
•  
•

• Network time synchronization
•  
•

• Payment processing services
•  
•

• Streaming audio/video services, such as RealPlayer and QuickTime
•  

Networked applications can be created by configuring their constituent services together at various points of time,
such as compile time, static link time, installation time, or run time.
 

Chapters 1 and 5 of C++NPv1 provided a domain analysis of the communication protocols and mechanisms and the
concurrency architectures used by networked applications. This chapter expands that coverage to analyze other
design dimensions that address key networked application properties. These properties include service duration and
structure, how networked services are identified, and the time at which they are bound together to form complete
applications. These design dimensions are important in any networked application, and of particular importance to the
ACE Service Configurator framework (Chapter 5). If you're already familiar with these design dimensions, however,
you may want to skip ahead to Chapter 3, which begins the coverage of the ACE frameworks.
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2.1 Service and Server Design Dimensions
 

When designing networked applications, it's important to recognize the difference between a service, which is a
capability offered to clients, and a server, which is the mechanism by which the service is offered. The design
decisions regarding services and servers are easily confused, but should be considered separately. This section
covers the following service and server design dimensions:
 

•

• Short- versus long-duration services
•  
•

• Internal versus external services
•  
•

• Stateful versus stateless services
•  
•

• Layered/modular versus monolithic services
•  
•

• Single- versus multiservice servers
•  
•

• One-shot versus standing servers
•  

2.1.1 Short-Duration versus Long-Duration Services
 

The services offered by network servers can be classified as short duration or long duration. These time durations
reflect how long a service holds system resources. The primary tradeoff in this design dimension involves holding
system resources when they may be better used elsewhere versus the overhead of restarting a service when it's
needed. In a networked application, this dimension is closely related to protocol selection because setup
requirements for different protocols can vary significantly.
 

Short-duration services execute in brief, often fixed, amounts of time and usually handle a single request at a time.
Examples of short-duration services include computing the current time of day, resolving the Ethernet number of an
IP address, and retrieving a disk block from the cache of a network file server. To minimize the amount of time spent
setting up a connection, short-duration services are often implemented using connectionless protocols, such as
UDP/IP [Ste94].
 

Long-duration services run for extended, often variable, lengths of time and may handle numerous requests during
their lifetime. Examples of long-duration services include transferring large software releases via FTP, downloading
MP3files from a Web server using HTTP, streaming audio and video from a server using RTSP, accessing host
resources remotely via TELNET, and performing remote file system backups over a network. Services that run for
longer durations allow more flexibility in protocol selection. For example, to improve efficiency and reliability, these
services are often implemented with connection-oriented protocols, such as TCP/IP [Ste94], or session-oriented
protocols, such as RTSP [SRL98] or SCTP [SX01].
 

Logging service From the standpoint of an individual log record, our server logging daemon seems like a
short-duration service. Each log record is limited to a maximum length of 4K bytes, though in practice most are much
smaller. The actual time spent handling a log record is relatively short. Since a client may transmit many log records,
however, we optimize performance by designing client logging daemons to establish connections with their peer
server logging daemons. We then reuse these connections for subsequent logging requests. It would be wasteful and
time consuming to set up and tear down a socket connection for each logging request, particularly when small
requests are sent frequently. We therefore model our client and server logging daemons as long-duration services.
 

2.1.2 Internal versus External Services
 

Services can be classified as internal or external. The primary tradeoffs in this dimension are service initialization time,
isolation of one service from another, and simplicity.
 

Internal services execute in the same address space as the server that receives the request, as shown in Figure 2.1
(1). As described in Chapter 5 of C++NPv1, an internal service can run iteratively, concurrently, or reactively in
relation to other internal services. Internal services usually have low initialization latency and their context switch time
is generally shorter than that of services residing in separate processes.
 

Figure 2.1. Internal versus External Services
 

Internal services may also reduce application robustness, however, since separate services within a process aren't
protected from one another. One faulty service can therefore corrupt data shared with other internal services in the
process, which may produce incorrect results, crash the process, or cause the process to hang indefinitely. As a
result, internal services should be reserved for code that can be trusted to operate correctly when run in the context
of other services in an application's address space.
 

External services execute in different process address spaces. For instance, Figure 2.1 (2) illustrates a master service
process that monitors a set of network ports. When a connection request arrives from a client, the master accepts the
connection and then spawns a new pro-cess to perform the requested service externally. External services may be
more robust than internal services since the failure of one need not cause the failure of another. To increase
robustness, therefore, mission-critical application services are often isolated in separate processes. The price for this
robustness, however, can be a reduction in performance due to process management and IPC overhead.
 

Some server frameworks support both internal and external services. For example, the INETD superserver [Ste98]
is a daemon that listens for connection requests or messages on certain ports and runs programs to perform the
services associated with those ports. System administrators can choose between internal and external services in
INETD by modifying the inetd.conf configuration file as follows:
 

•

• INETD can be configured to execute short-duration services, such as ECHO and DAYTIME, internally via
calls to statically linked functions in the INETD program.

•  
•

• INETD can also be configured to run longer-duration services, such as FTP and TELNET, externally by
spawning separate processes.

•  

Sidebar 4 (page 31) describes this and other service provisioning mechanisms that use both internal and external
services.
 

Logging service All logging server implementations in this book are designed as internal services. As long as only
one type of service is configured into our logging server, we needn't isolate it from harmful side effects of other
services. There are valid reasons to protect the processing of different client sessions from each other, however,
particularly if services are linked dynamically using the Component Configurator pattern [POSA2]. Chapter 8 in
C++NPv1 therefore illustrates how to implement a logging server as an external service using the ACE_Process and
ACE_Process_Manager classes.
 

2.1.3 Stateful versus Stateless Services
 

Services can be classified as stateful or stateless. The amount of state, or context, that a service maintains between
requests impacts the complexity and resource consumption of clients and servers. Stateful and stateless services trade
off efficiency for reliability, with the right choice depending on a variety of factors, such as the probability and impact
of host and network failures.
 

Stateful services cache certain information, such as session state, authentication keys, identification numbers, and I/O
handles, in a server to reduce communication and computation overhead. For instance, Web cookies enable a Web
server to preserve state across multiple page requests.
 

Stateless services retain no volatile state within a server. For example, the Network File System (NFS) [Ste94]
provides distributed data storage and retrieval services that don't maintain volatile state information within a server's
address space. Each request sent from a client is completely self-contained with the information needed to carry it
out, such as the file handle, byte count, starting file offset, and user credentials.
 

Some common network applications, such as FTP and TELNET, don't require retention of persistent application
state information between consecutive service invocations. These stateless services are generally fairly simple to
configure and reconfigure reliably. Conversely, the CORBA Naming Service [Obj98] is a common middleware
service that manages various bindings whose values may need to be retained even if the server containing the service
crashes. If preserving state across failures is paramount to system correctness, you may need to use a transaction
monitor [GR93] or some type of active replication [BvR94].
 

Logging service Our networked logging service exhibits both stateful and stateless characteristics. The state
maintained by the server process resides largely in the OS kernel (e.g., connection blocks) and the file system (e.g.,
the log records). Both client and server logging daemon services in this book are stateless, however, since they
process each record individually without requiring or using any information from, or expectation of, any previous or
possible future request. The need to handle any possible request ordering is not a factor since we use TCP/IP, which
provides an ordered, reliable communication byte stream.
 

2.1.4 Layered/Modular versus Monolithic Services
 

Service implementations can be classified as layered/modular or monolithic. The primary tradeoffs in this dimension
are service reusability, extensibility, and efficiency.
 

Layered/modular services can be decomposed into a series of partitioned and hierarchically related tasks. For
instance, application families can be specified and implemented as layered/modular services, as shown in Figure 2.2
(1). Each layer can handle a self-contained portion of the overall service, such as input and output, event analysis,
event filtering, and service processing. Interconnected services can collaborate by exchanging control and data
messages for incoming and outgoing communication.
 

Figure 2.2. Layered/Modular versus Monolithic Services
 

Powerful communication frameworks have emerged over the years to simplify and automate the development and
configuration of layered/modular services [SS93]. Examples include System V STREAMS [Rit84], the x-kernel [
HP91], the Conduits+ framework [HJE95], and the ACE Streams framework (Chapter 9). These frameworks
decouple the service functionality from the following service design aspects:
 

•

• Compositional strategies, such as the time and/or order in which services and protocols are composed
together (described in Chapters 5 and 9 of this book)

•  
•

• Concurrency and synchronization strategies, such as task- and message-based architectures (described in
Chapter 5 of C++NPv1) that execute services at run time

•  
•

• Communication strategies, such as the protocols and messaging mechanisms (described in Chapters 1?of
C++NPv1) that interconnect services together [SS95b]

•  

Monolithic services are tightly coupled clumps of functionality that aren't organized hierarchically. They may contain
separate modules of functionality that vaguely resemble layers, but are most often tightly coupled via shared, global
variables, as shown in Figure 2.2 (2) (page 27). They are also often tightly coupled functionally, with control flow
diagrams that look like spaghetti. Monolithic services are therefore hard to understand, maintain, and extend. While
they may sometimes be appropriate in short-lived, "throw away" prototypes [FY00], they are rarely suitable for
software that must be maintained and enhanced by multiple developers over longer amounts of time.[1]

[1] After you become proficient with the ACE toolkit, you'll find it's usually much faster to build a properly layered
prototype than to hack together a monolithic one.
 

Developers can often select either layered or monolithic service architectures to structure their networked
applications. The ACE Task and Streams frameworks, discussed in Chapters 6 and 9, provide efficient and
extensible ways to build modular services. The advantages of designing layered/modular services are
 

•

• Layering enhances reuse since multiple higher-layer application services can share lower-layer services.
•  
•

• Implementing applications via an interconnected series of layered services enables transparent, incremental
enhancement of their functionality.

•  
•

• A layered/modular architecture facilitates macro-level performance improvements by allowing the selective
omission of unnecessary service functionality or selective configuration of contextually optimal service
functionality.

•  
•

• Modular designs generally improve the implementation, testing, and maintenance of networked applications
and services.

•  

There can also be some disadvantages, however, with using a layered/modular architecture to develop networked
applications:
 

•

• The modularity of layered implementations can cause excessive overhead. For example, layering may be
inefficient if buffer sizes don't match in adjacent layers, thereby causing additional segmentation, reassembly,
and transmission delays.

•  
•

• Communication between layers must be designed and implemented properly, which can introduce another
source of errors.

•  
•

• Information hiding within layers can make it hard to manage resources predictably in applications with
stringent real-time requirements.

•  

Logging service By carefully separating design concerns, our client and server logging daemons are designed
using the layered/modular architecture depicted in Figure 2.3 and described below.
 

Figure 2.3. Networked Logging Service Architecture Layers
 

1.

1. Event infrastructure layer, which detects and demultiplexes events and dispatches them to their associated
event handlers. Chapters 3 and 4 describe how the Reactor pattern and ACE Reactor framework can be
applied to implement a generic event infrastructure layer. Likewise, Chapter 8 describes how the Proactor
pattern and ACE Proactor framework can be applied for a similar purpose.

1.  
2.

2. Configuration management layer, which installs, initializes, controls, and shuts service components down. 
Chapter 5 describes how the Component Configurator pattern and ACE Service Configurator framework
can be applied to implement a generic configuration management layer.

2.  
3.

3. Connection management and concurrency layer, which performs connection and initialization services that are
independent of application functionality. Chapters 6 and 7 describe how the Acceptor-Connector and
Half-Sync/Half-Async patterns and the ACE Acceptor-Connector and Task frameworks can implement a
generic connection management layer.

3.  
4.

4. Application layer, which customizes the application-independent classes provided by the other layers to
create concrete objects that configure applications, handle events, establish connections, exchange data, and
perform logging-specific processing. Throughout this book, we illustrate how to implement these
application-level capabilities using the ACE frameworks and the ACE wrapper facade classes.

4.  

2.1.5 Single-Service versus Multiservice Servers
 

Protocols and services rarely operate in isolation, but instead are accessed by applications within the context of a
server. Servers can be designed either as single service or multiservice. The tradeoff in this dimension is between
resource consumption versus robustness.
 

Single-service servers offer only one service. As shown in Figure 2.4 (1), a service can be internal or external, but
there's only a single service per process. Examples of single-service servers include
 

Figure 2.4. Single-service versus Multiservice Servers
 

•

• The RWHO daemon (RWHOD), which reports the identity and number of active users, as well as host
workloads and host availability

•  
•

• Early versions of UNIX standard network services, such as FTP and TELNET, that ran as distinct
single-service daemons initiated at OS boot time [Ste98]

•  

Each instance of these single-service servers executed externally in a separate process. As the number of system
servers increased, however, this statically configured, single-service-per-process approach incurred the following
limitations:
 

•

• It consumed excessive OS resources, such as virtual memory and process table slots.
•  
•

• It caused redundant initialization and networking code to be written separately for each service program.
•  
•

• It required running processes to be shut down and restarted manually to install new service implementations.
•  
•

• It led to ad hoc and inconsistent administrative mechanisms' being used to control different types of services.
•  

Multiservice servers address the limitations with single-service servers by integrating a collection of single-service
servers into a single administrative unit, as shown in Figure 2.4 (2). Examples of multiservice servers include INETD
(which originated with BSD UNIX [MBKQ96, Ste98]), LISTEN (which is the System V UNIX network listener
service [Rag93]), and the Service Control Manager (SCM) (which originated with Windows NT [SR00]). Sidebar 4
compares and contrasts these multiservice servers.
 

Sidebar 4: Comparing Multiservice Server
Frameworks
 

This sidebar compares the multiservice server frameworks supported by various versions of UNIX and
Windows.
 

•

• INETD's internal services, such as ECHO and DAYTIME, are fixed at static link time. The
master INETD daemon permits dynamic reconfiguration of its external services, such as FTP or
TELNET. For instance, when the INETD daemon is sent the SIGHUP signal, it reads its
inetd.conf file and performs the socket()/bind()/listen() sequence for all services listed in that file.
Since INETD does not support dynamic reconfiguration of internal services, however, any
newly listed services must still be processed by spawning slave daemons via fork() and the
exec*() family of system functions.

•  
•

• The System V UNIX LISTEN port monitoring facility is similar to INETD, though it only
supports connection-oriented protocols accessed via TLI and System V STREAMS, and
doesn't provide internal services. Unlike INETD, however, LISTEN supports standing servers
by passing initialized file descriptors via STREAMS pipes from the LISTEN process to a
previously registered standing server.

•  
•

• Unlike INETD and LISTEN, the Windows SCM is not a port monitor since it doesn't provide
built-in support for listening to a set of I/O ports and dispatching server processes on demand
when client requests arrive. Instead, it provides an RPC-based interface that allows a master
SCM process to automatically initiate and control (i.e., pause, resume, or terminate)
administrator-installed services (such as FTP and TELNET) that typically run as separate
threads within either a single-service or a multiservice daemon process. Each installed service is
individually responsible for configuring the service and monitoring any communication endpoints.
These endpoints may be more general than TCP or UDP sockets, for example, they can be
Windows named pipes.

•  

A multiservice server can yield the following benefits:
 

•

• It can reduce OS resource consumption by spawning servers on demand.
•  
•

• It simplifies server development and reuses common code by automatically daemonizing a server process
(described in Sidebar 5), initializing transport endpoints, monitoring ports, and demultiplexing/dispatching
client requests to service handlers.

•  
•

• It can allow external services to be updated without modifying existing source code or terminating running
server processes.

•  
•

• It consolidates network service administration via a uniform set of configuration management utilities. For
example, the INETD superserver provides a uniform interface for coordinating and initiating external services,
such as FTP and TELNET, and internal services, such as DAYTIME and ECHO.

•  

Logging service Implementations of the networked logging service in C++NPv1 all used single-service servers.
Starting in Chapter 5 of this book, various entities in the networked logging service will be configured via the ACE
Service Configurator framework, which can be used to configure multiservice superservers similar to INETD.
 

Sidebar 5: Daemons and Daemonizing
 

A daemon is a long-running server process that executes in the "background" performing various
services on behalf of clients [Ste98]. A daemon is not associated with an interactive user or controlling
terminal. It's therefore important to ensure a daemon is designed robustly to recover from errors and to
manage its resources carefully.
 

Daemonizing a UNIX process involves spawning a new server process, closing all unnecessary I/O
handles, changing the current filesystem directory away from the initiating user's, resetting the file access
creation mask, disassociating from the controlling process group and controlling terminal, and ignoring
terminal I/O-related events and signals. An ACE server can convert itself into a daemon on UNIX by
invoking the static method ACE::daemonize() or passing the '-b' option to ACE_Service_Config::open()
(page 141). A Windows Service [Ric97] is a form of daemon and can be programmed in ACE using
the ACE_NT_Service class.
 

2.1.6 One-shot versus Standing Servers
 

In addition to being single service or multiservice, networked servers can be designed as either one shot or standing.
The primary tradeoffs in this dimension involve how long the server runs and uses system resources. When evaluating
choices in this dimension, consider anticipated usage frequency for the service(s) offered by the server, as well as
requirements for startup speed and configuration flexibility.
 

One-shot servers are spawned on demand, for example, by an INETD superserver. They perform service requests
in a separate thread or process, as shown in Figure 2.5 (1). A one-shot server terminates after the completion of the
request or session that triggered its creation. An example of a one-shot server is a UNIX FTP server. When an FTP
client connects to the server, a new process is spawned to handle the FTP session, including user authentication and
file transfers. The FTP server process exits when the client session ends.
 

Figure 2.5. One-shot versus Standing Servers
 

A one-shot server doesn't remain in system memory when it's idle. Therefore, this design strategy can consume fewer
system resources, such as virtual memory and process table slots. This advantage is clearly more pronounced for
services that are seldom used.
 

Standing servers continue to run beyond the lifetime of any particular service request or session they process.
Standing servers are often initiated at boot time or by a superserver after the first client request. They may receive
connection and/or service requests via local IPC channels, such as named pipes or sockets, that are attached to a
superserver, as shown in Figure 2.5 (2). Alternatively, a standing server may take ownership of, or inherit, an IPC
channel from the original service invocation.
 

An example of a standing server is the Apache Web server [HMS98]. Apache's initial parent process can be
configured to pre-spawn a pool of child processes that service client HTTP requests. Each child process services a
tunable number of client requests before it exits. The parent process can spawn new child processes as required to
support the load on the Web server.
 

Compared with one-shot servers, standing servers can improve service response time by amortizing the cost of
spawning a server process or thread over a series of client requests. As in Apache's case, they can also be tuned
adaptively to support differing types of load. The ability of a standing server design to terminate and respawn service
processes periodically can also guard against OS or application problems, such as memory leaks, that degrade
performance over time or become security holes.
 

Logging service We implement the client and server logging daemons in our networked logging service as
standing servers to improve performance of the overall system. We justify the tradeoff of occupying process slots and
system resources since logging is a service that's used frequently. Thus, restarting a logging server for each client
would delay the client making the request and degrade overall system performance.
 

The choice between one-shot or standing servers is orthogonal to the choice between short- or long-duration
services described in Section 2.1.1. The former design alternative usually reflects OS resource management
constraints, whereas the latter design alternative is a property of a service. For example, we could easily change to a
short-duration service without changing the standing nature of the server itself. Likewise, if the logging service is lightly
used in some environments, it could easily be changed to a one-shot server, with or without revisiting the duration of
each service request.
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2.2 Configuration Design Dimensions
 

This section covers the following configuration design dimensions:
 

•

• Static versus dynamic naming
•  
•

• Static versus dynamic linking
•  
•

• Static versus dynamic configuration
•  

2.2.1 Static versus Dynamic Naming
 

Applications can be categorized according to whether their services are named statically or dynamically. The primary
tradeoff in this dimension involves run-time efficiency versus flexibility.
 

Statically named services associate the name of a service with object code that exists at compile time and/or static
link time. For example, INETD's internal services, such as ECHO and DAYTIME, are bound to statically named
functions stored internally in the INETD program. A statically named service can be implemented in either static or
dynamic libraries.
 

Dynamically named services defer the association of a service name with the object code that implements the service.
Code therefore needn't be identified?or even be written, compiled, and linked?ntil an application begins executing
the corresponding service at run time. A common example of dynamic naming is demonstrated by INETD's handling
of TELNET, which is an external service. External services can be updated by modifying the inetd.conf configuration
file and sending the SIGHUP signal to the INETD process. When INETD receives this signal, it rereads inetd.conf
and dynamically rebinds the services it offers to their new executables.
 

2.2.2 Static versus Dynamic Linking
 

Applications can also be categorized according to whether their services are linked into a process address space
statically or dynamically. The primary tradeoffs in this dimension involve extensibility, security, reliability, and
efficiency.
 

Static linking creates a complete executable program by binding together all its object files at compile time and/or
static link time, as shown in Figure 2.6 (1).
 

Figure 2.6. Static Linking versus Dynamic Linking
 

Dynamic linking loads object files into and unloads object files from the address space of a process when a program
is invoked initially or updated at run time, as shown in Figure 2.6 (2). The OS run-time linker updates external
symbol addresses for each process that the object file is loaded into to reflect the memory region the file is loaded
into. Operating systems generally support two types of dynamic linking:
 

•

• Implicit dynamic linking loads referenced object files during program execution without explicit action by the
program itself. Many platforms offer the option to defer address resolution and relocation operations until a
method is first referenced. This lazy evaluation strategy minimizes link editing overhead during application
initialization. Implicit dynamic linking is used to implement dynamically linked libraries (DLLs) [SR00], also
known as shared libraries [GLDW87].

•  
•

• Explicit dynamic linking allows an application to obtain, use, and remove the run-time address bindings of
certain function- or data-related symbols defined in DLLs. Explicit dynamic linking mechanisms supported by
popular operating systems include UNIX functions (dlopen(), dlsym(), and dlclose()) and Windows functions
(LoadLibrary(), GetProcAddress(), and FreeLibrary()).

•  

• Dynamic linking can help to reduce the memory consumption of both a process in memory and its program
image stored on disk. Ideally, only one copy of DLL code will exist, regardless of the number of processes
that execute the DLL code simultaneously.

• When choosing between dynamic and static linking, developers must carefully weigh tradeoffs between
flexibility, security, and robustness against the potential benefits of time and space efficiency. The following
are some downsides to using dynamic linking:

•  
•

• Security and robustness problems. A dynamically linked application may be less secure and robust than a
statically linked application. It may be less secure because trojan horses can be interposed in DLLs. It may
be less robust because a faulty DLL can corrupt the state of other code or data in the same application
process.

•  
•

• Run-time overhead. Dynamic linking can incur more run-time overhead compared with static linking. In
addition to opening and mapping multiple files, external symbol addresses in DLLs must be adjusted based
on the memory locations the files are loaded into. Although lazy linking can ameliorate this effect, it can be
noticeable, especially the first time a DLL is loaded into memory. Moreover, compilers that generate
position-independent code often use extra levels of indirection to resolve method invocations and access
global variables within DLLs [GLDW87].

•  
•

• Excessive jitter. Time-critical applications may be unable to tolerate the latency of linking DLLs into a
process and resolving method addresses dynamically.

•  

Naturally, you should empirically evaluate the impact of dynamic linking to determine whether it's really an issue for
your applications.
 

2.2.3 Static versus Dynamic Configuration
 

As described in Section 2.1, networked applications often offer or use a variety of services. By combining the naming
and linking dimensions described in Sections 2.2.1 and 2.2.2, we can classify networked application services as
being either statically or dynamically configured. As with static versus dynamic linking, the primary tradeoffs in this
dimension involve extensibility, security, reliability, and efficiency.
 

Static configuration refers to the activities associated with initializing an application that contains statically named
services (i.e., developing each service as a separate function or class) and then compiling, linking, and executing them
in a separate OS process. In this case, the services in the application cannot be extended at run time. This design may
be necessary for secure applications that only contain trusted services. Statically configured applications can also
benefit from the more aggressive compiler optimizations applicable to statically linked programs.
 

However, there are several problems with statically configuring networked applications and services:
 

•

• They can yield nonextensible applications and software architectures that tightly couple the implementation
and the configuration of a particular service with respect to other services in an application.

•  
•

• Static configuration limits the ability of system administrators to change the parameters or configuration of
applications to suit local operating conditions or variations in network and hardware configurations.

•  
•

• Large-scale statically configured applications may be impractical due to their executable size, which can be
hard to deliver, take excessive time to load, and can cause thrashing in systems if sufficient memory isn't
available.

•  

Dynamic configuration refers to the activities associated with initializing an application that offers dynamically named
services. When combined with explicit dynamic linking and process/thread creation mechanisms, the services offered
by applications configured dynamically can be extended at installation or boot time, or even during run time. This
extensibility can yield the following configuration-related optimizations:
 

•

• Dynamic service reconfiguration. Highly available networked applications, such as online transaction
processing or telecom call processing systems, may require flexible dynamic reconfiguration management
capabilities. For example, it may be necessary to phase a new version of a service into a server without
disrupting other services that it's already executing. Reconfiguration protocols based on explicit dynamic
linking mechanisms can enhance the functionality and flexibility of networked applications since they enable
services to be inserted, deleted, or modified at run time without first stopping and restarting the underlying
process or thread(s) [SS94].

•  
•

• Functional subsetting. Dynamic configuration simplifies the steps necessary to produce subsets of functionality
for application families developed to run on a range of OS platforms. Explicit dynamic linking enables the
fine-grain addition, removal, or modification of services. This in turn allows the same framework to be used
for space-efficient embedded applications and for large enterprise distributed applications. For example, a
Web browsing application may be able to run on PDAs, PCs, and/or workstations by dynamically
configuring subsets, such as image rendering, Java capability, printing, or direct phone number dialing.

•  
•

• Application workload balancing. It's often hard to determine the processing characteristics of application
services in advance since workloads can vary considerably at run time. It may therefore be necessary to use
dynamic configuration to support load balancing techniques [OOS01] and system partitionings that locate
application services on different host machines throughout a network. For example, developers may have the
opportunity to collocate or distribute certain services, such as image processing, on either side of a
client/server boundary. Bottlenecks may result if many services are configured into a server application and
too many active clients access these services simultaneously. Conversely, configuring many services into
clients can result in a bottleneck if clients execute on cheaper, less powerful machines.

•  

Logging service Our networked logging service implementations in C++NPv1 and in Chapters 3 and 4 of this
book are configured statically. In Chapter 5 of this book, we describe ACE_DLL, which is a portable wrapper
facade that encapsulates the ability to load/unload shared libraries (DLLs) dynamically and find symbols in them. We
also describe the ACE Service Configurator framework, which can configure application services dynamically. From 
Chapter 5 onward most of our examples are configured dynamically.
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2.3 Summary
 

This chapter described two groups of design dimensions related to the successful development and deployment of
networked applications. Service design dimensions affect the ways in which application services are structured,
developed, and instantiated. Service configuration dimensions affect user or administrator abilities to vary the run-time
placement and configuration of networked services after delivery and deployment.
 

Service design dimensions have a significant impact on how effectively applications use system and network
resources. Efficient resource usage is closely linked to application response time, as well as to overall system
performance and scalability. Performance is an important factor that's visible to end users. Though a coherent and
modular design is less visible to end users, it's critical to a product's long-term success.
 

Good design simplifies maintenance and allows application functionality to evolve in response to market changes and
competitive pressures without losing quality or performance. Fortunately, performance and modularity needn't be an
either/or proposition. By carefully considering service design dimensions and applying ACE judiciously, you'll be able
to create highly efficient and well-designed networked applications.
 

Even well-designed services and applications may need to adapt to a variety of deployment environments and user
demands. Service configuration dimensions involve tradeoffs between design decisions associated with identifying a
particular set of services and linking these services into the address space of one or more applications. To produce
successful solutions, a networked application's flexibility must be weighed against its security, packaging, and
complexity concerns.
 

When developing networked applications, the two sets of design dimensions in this chapter should be considered
along with the dimensions described in Chapters 1 and 5 of C++NPv1. The ACE frameworks described in this book
offer powerful tools to implement flexible and extensible designs with many combinations of tradeoffs and capabilities.
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Chapter 3. The ACE Reactor Framework
 

CHAPTER SYNOPSIS
 

This chapter describes the design and use of the ACE Reactor framework. This framework implements the Reactor
pattern [POSA2], which allows event-driven applications to react to events originating from a number of disparate
sources, such as I/O handles, timers, and signals. Applications override framework-defined hook methods, which the
framework then dispatch to process events. We show how to implement a logging server using a reactor that (1)
detects and demultiplexes different types of connection and data events from various event sources and (2) then
dispatches the events to application-defined handlers that process the events.
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3.1 Overview
 

The ACE Reactor framework simplifies the development of event-driven programs, which characterize many
networked applications. Common sources of events in these applications include activity on an IPC stream for I/O
operations, POSIX signals, Windows handle signaling, and timer expirations. In this context, the ACE Reactor
framework is responsible for
 

•

• Detecting the occurrence of events from various event sources
•  
•

• Demultiplexing the events to their preregistered event handlers
•  
•

• Dispatching to hook methods defined by the handlers to process the events in an application-defined manner
•  

This chapter describes the following ACE Reactor framework classes that networked applications can use to detect
the occurrence of events and then demultiplex and dispatch the events to their event handlers:
 

ACE Class
 

Description
 

ACE_Time_Value
 

Provides a portable, normalized representation of time
and duration that uses C++ operator overloading to
simplify time-related arithmetic and relational operations.
 

ACE_Event_Handler
 

An abstract class whose interface defines the hook
methods that are the target of ACE_Reactor callbacks.
Most application event handlers developed with ACE are
descendants of ACE_Event_Handler.
 

ACE_Timer_Queue
 

An abstract class defining the capabilities and interface
for a timer queue. ACE contains a variety of classes
derived from ACE_Timer_Queue that provide flexible
support for different timing requirements.
 

ACE_Reactor
 

Provides the interface for managing event handler
registrations and executing the event loop that drives
event detection, demultiplexing, and dispatching in the
Reactor framework.
 

The most important relationships between the classes in the ACE Reactor framework are shown in Figure 3.1. These
classes play the following roles in accordance with the Reactor pattern [POSA2]:
 

Figure 3.1. The ACE Reactor Framework Classes
 

•

• Event infrastructure layer classes provide application-independent strategies for synchronously detecting and
demultiplexing events to event handlers and then dispatching the associated event handler hook methods. The
infrastructure layer components in the ACE Reactor framework include ACE_Time_Value,
ACE_Event_Handler, the ACE timer queue classes, and the various implementations of the ACE_Reactor.

•  
•

• Application layer classes define event handlers to perform application-defined processing in their hook
methods. In the ACE Reactor framework, application layer classes are descendants of ACE_Event_Handler.

•  

The power of the ACE Reactor framework comes from encapsulating the differences between event demultiplexing
mechanisms available on various operating systems and maintaining a separation of concerns between framework
classes and application classes. By separating application-independent event demultiplexing and dispatching
mechanisms from application-dependent event processing policies, the ACE Reactor framework provides the
following benefits:
 

•

• Broad portability. The framework can be configured to use many OS event demultiplexing mechanisms, such
as select() (available on UNIX, Windows, and many real-time operating systems), /dev/poll (available on
certain UNIX platforms), and WaitForMultipleObjects() (available only on Windows).

•  
•

• Automates event detection, demultiplexing, and dispatching. By eliminating reliance on nonportable native OS
event demultiplexing APIs, the ACE Reactor framework provides applications with a uniform
object-oriented event detection, demulti-plexing, and dispatching mechanism. Event handler objects can be
registered with the ACE_Reactor to process various types of events.

•  
•

• Transparent extensibility. The framework employs hook methods via inheritance and dynamic binding to
decouple lower-level event mechanisms, such as detecting events on multiple I/O handles, expiring timers,
and demultiplexing and dispatching methods of the appropriate event handler to process these events, from
higher-level application event processing policies, such as connection establishment strategies, data
marshaling and demarshaling, and processing of client requests. This design allows the ACE Reactor
framework to be extended transparently without modifying existing application code.

•  
•

• Increase reuse and minimize errors. Developers who write programs using native OS event demultiplexing
operations must reimplement, debug, and optimize the same low-level code for each application. In contrast,
the ACE Reactor framework's event detection, demultiplexing, and dispatching mechanisms are generic and
can therefore be reused by many networked applications. This separation of concerns allows developers to
focus on high-level application-defined event handler policies, rather than wrestling repeatedly with low-level
mechanisms.

•  
•

• Efficient event demultiplexing. The ACE Reactor framework performs its event demultiplexing and
dispatching logic efficiently. For instance, the ACE_Select_Reactor presented in Section 4.2 uses the
ACE_Handle_Set_Iterator wrapper facade class described in Chapter 7 of C++NPv1. This wrapper facade
uses an optimized implementation of the Iterator pattern [GoF] to avoid examining fd_set bit-masks one bit at
a time. This optimization is based on a sophisticated algorithm that uses the C++ exclusive-or operator to
reduce run-time complexity from O(number of total bits) to O(number of enabled bits), which can improve
the run-time performance of large-scale applications substantially.

•  

The remainder of this chapter motivates and describes the capabilities of each class in the ACE Reactor framework.
We illustrate how this framework can be used to enhance the design of our networked logging server. If you aren't
familiar with the Reactor pattern from POSA2, we recommend that you read about it first before delving into the
detailed examples in this chapter. Chapter 4 then describes the design and use of the most common implementations
of the ACE_Reactor interface presented here. That chapter also describes the various concurrency models
supported by these ACE_Reactor implementations.
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3.2 The ACE_Time_Value Class
 

Motivation
 

Different operating systems provide different functions and data to access and manipulate the time and date. For
example, UNIX platforms define the timeval structure as follows:
 
struct timeval { 
  long secs; 
  long usecs; 
}; 

Different date and time representations are used on other OS platforms, such as POSIX, Windows, and proprietary
real-time operating systems. Time values are used in a number of situations, including timeout specifiers. As described
in Sidebar 6 (page 45), ACE specifies timeouts in absolute time for some situations, such as the concurrency and
synchronization wrapper facades in C++NPv1, and in relative time for other situations, such as the ACE_Reactor
I/O timeouts and timer settings. The wide range of uses and different representations across platforms makes
addressing these portability differences in each application unnecessarily tedious and costly, which is why the ACE
Reactor framework provides the ACE_Time_Value class.
 

Class Capabilities
 

ACE_Time_Value applies the Wrapper Facade pattern [POSA2] and C++ operator overloading to simplify the use
of portable time and duration related operations. This class provides the following capabilities:
 

•

• It provides a standardized representation of time that's portable across OS platforms.
•  
•

• It can convert between different platform time representations, such as timespec_t and timeval on UNIX, and
FILETIME and timeval on Windows.

•  
•

• It uses operator overloading to simplify time-based comparisons by permitting standard C++ syntax for
time-based arithmetic and relational expressions.

•  
•

• Its constructors and methods normalize time quantities by converting the fields in a timeval structure into a
canonical format that ensures accurate comparisons between ACE_Time_Value instances.

•  
•

• It can represent either a duration, such as 5 seconds and 310,000 microseconds, or an absolute date and
time, such as 2001-09-11-08.46.00. Note that some methods, such as operator*=(), are meaningless with
absolute times.

•  

The interface for ACE_Time_Value is shown in Figure 3.2 (page 44). As you read this book, keep in mind the points
noted in Sidebar 7 (page 46) regarding UML diagrams and C++ code. The key methods of ACE_Time_Value are
outlined in the following table:
 

Method
 

Description
 

ACE_Time_Value() set()
 

Overloaded constructors and methods that convert from
various time formats, such as timeval, FILETIME,
timespec_t, or long, to a normalized ACE_Time_Value.
 

sec()
 

An accessor that returns the seconds portion of an
ACE_Time_Value.
 

usec()
 

An accessor that returns the microseconds portion of an
ACE_Time_Value.
 

msec()
 

Converts the sec()/usec() ACE_Time_Value format into
millisecond format.
 

operator+=()
 

operator-=()
 

operator*=()
 

Arithmetic methods that add, subtract, and multiply an
ACE_Time_Value.
 

In addition to the methods shown above, the following binary operators are friends of the ACE_Time_Value class
that define arithmetic and relational operations:
 

Method
 

Description
 

operator+()
 

operator-()
 

Arithmetic methods that add and subtract two
ACE_Time_Values.
 

operator==()
 

operator!=()
 

Methods that compare two ACE_Time_Values for
equality and inequality.
 

operator<()
 

operator>()
 

operator<=()
 

operator>=()
 

Methods that determine relationships between two
ACE_Time_Values.
 

All ACE_Time_Value constructors and methods normalize the time values they operate on. Normalization reduces
microsecond quantities equivalent to one second or more by transferring the seconds value to the secs member,
leaving the remaining microseconds value in usecs. For example, normalizing the quantity
ACE_Time_Value(1,1000000) will compare equal to the normalized ACE_Time_Value(2) quantity. In contrast, a
bitwise comparison of non-normalized objects won't detect their equivalence.
 
Figure 3.2 The ACE_Time_Value Class
 
                      ACE_Time_Value 
+ zero : ACE_Time_Value 
+ max_time : ACE_Time_Value 
- tv_ : timeval 
+ ACE_Time_Value (sec : long, usec : long = 0) 
+ ACE_Time_Value (t : const struct timeval &) 
+ ACE_Time_Value (t : const timespec_t  &) 
+ ACE_Time_Value (t : const FILETIME &) 
+ set (sec : long, usec : long) 
+ set (t : const struct timeval &) 
+ set (t : const timespec_t  &) 
+ set (t : const FILETIME &) 
+ sec () : long 
+ usec () : long 
+ msec () : long 
+ operator+= (tv : const ACE_Time_Value &) : ACE_Time_Value & 
+ operator-= (tv : const ACE_Time_Value &) : ACE_Time_Value & 
+ operator*= (d : double) : ACE_Time_Value & 

Sidebar 6 describes the differences in the interpretation of ACE_Time_Value when used to represent timeout values
for various classes in ACE.
 

Example
 

The following example creates two ACE_Time_Value objects whose values can be set via command-line arguments.
It then performs range checking to ensure the values are reasonable.
 
 1 #include "ace/OS.h" 
 2 
 3 const ACE_Time_Value max_interval (60 * 60); // 1 hour. 
 4 
 5 int main (int argc, char *argv[]) { 
 6   ACE_Time_Value expiration = ACE_OS::gettimeofday (); 
 7   ACE_Time_Value interval; 
 8 
 9   ACE_Get_Opt opt (argc, argv, e:i:)); 
10   for (int c; (c = opt ()) != -1;) 
11     switch (c) { 
12     'e': expiration += ACE_Time_Value (atoi (opt.opt_arg ())); 
13          break; 
14     'i': interval = ACE_Time_Value (atoi (opt.opt_arg ())); 
15          break; 
16     } 
17   if (interval > max_interval) 
18     cout << "interval must be less than " 
19          << max_interval.sec () << endl; 
20   else if (expiration > (ACE_Time_Value::max_time - interval)) 
21     cout << "expiration + interval must be less than " 
22          << ACE_Time_Value::max_time.sec () << endl; 
23   return 0; 
24 } 

Sidebar 6: Absolute versus Relative
ACE_Time_Value Timeouts
 

Some ACE classes use relative timeouts, whereas others use absolute timeouts: 
•

• Relative time semantics
•  

• - ACE IPC wrapper facade I/O methods (Chapter 3 in C++NPv1), as well as higher level
framework classes that use them, such as those in the ACE Acceptor-Connector framework (
Chapter 7) 

• - ACE_Reactor and ACE_Proactor event loop and timer scheduling methods (Chapters 3 and 8
)

• - ACE_Process, ACE_Process_Manager, and ACE_Thread_Managerwait() methods
(Chapters 8 and 9 in C++NPv1) and 

• - Time slice quantum for ACE_Sched_Params (Chapter 9 in C++NPv1). 
•

• Absolute time semantics
•  

• - ACE synchronizer wrapper facades, such as ACE_Condition_Thread_Mutex and
ACE_Thread_Semaphore (Chapter 10 in C++NPv1) 

• - ACE timer queue scheduling methods (Chapter 3)

• - ACE_Task methods (Chapter 6) and 

• - ACE_Message_Queue methods (Chapter 6), as well as classes based on or that use
ACE_Message_Queue, such as those in the ACE Streams framework (Chapter 9) and
ACE_Activation_Queue, ACE_Future, and ACE_Future_Set [HJS]. 

Relative timeouts are often used where the operation (such as an ACE_Thread_Manager::wait()
operation) may delay before being able to proceed, but will be called only once. Conversely, absolute
timeouts are often used where the operation (such as an ACE_Condition_Thread_Mutex::wait()
operation) may be called multiple times via a loop. Use of absolute time avoids the need to recompute
the timeout value for each loop iteration [KSS96].
 

Lines 3? Initialize the ACE_Time_Value objects. By default, an ACE_Time_Value object is initialized to zero.
 

Lines 9?6 Parse the command-line arguments using the ACE_Get_Opt class described in Sidebar 8 (page 47).
 

Lines 17?2 Perform range checking to ensure the values are reasonable.
 

Sidebar 7: Displaying ACE Classes and C++
Code
 

We generally provide a UML diagram and a table that describe the key methods for each ACE C++
class used in this book. Complete class interfaces are available online at http://ace.ece.uci.edu and
http://www.riverace.com/docs/.We recommend you keep a copy of the ACE source code handy for
quick reference. Complete class implementations and networked logging service examples are available
in the ACE source distribution's $ACE_ROOT/ace and $ACE_ROOT/examples/C++NPv2
directories, respectively.
 

To save space in the book, our UML class diagrams focus on attributes and operations that are used in
our code examples. Class diagrams don't show an attributes section when no attributes are directly
pertinent to our discussions. We use italics to denote an abstract class or method as follows:
 

•

• A method name set in italics indicates a C++ virtual method that you can reimplement in a
derived class.

•  
•

• A class name set in italics indicates that you probably need to reimplement one or more of the
class's virtual methods to use the class effectively.

•  

If you need a UML overview, we recommend UML Distilled [wKS00].
 

To further save space, we use some programming shortcuts that aren't used in ACE, such as omitting
much of the error-handling code in our C++ examples. Naturally, ACE always checks for error
conditions and takes the appropriate action, just as your application software should. Some of our C++
examples also implement methods within the class definition, which we don't do in ACE itself since it
clutters class interfaces and slows down compilation. To learn more about ACE's programming
guidelines, please see $ACE_ROOT/docs/ACE-guidelines.html.
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3.3 The ACE_Event_Handler Class
 

Motivation
 

Networked applications are often based on a reactive model, in which they respond to various types of events, such
as I/O activity, expired timers, or signals. Application-independent mechanisms that detect events and dispatch them
to event-handling code should be reused across applications, while application-defined code that responds to the
events should reside in the event handlers. To reduce coupling and increase reuse, a framework separates the
reuseable mechanisms and provides the means to incorporate application-defined event handlers. This separation of
concerns is the basis of the ACE Reactor framework's inversion of control. Its event detection and dispatching
mechanisms control execution flow and invoke event-handling callback hook methods when there's application
processing to perform.
 

Sidebar 8: The ACE_Get_Opt Class
 

ACE_Get_Opt is an iterator for parsing options from command-line arguments. Options passed in an
optstring are preceded by '-' for short options or '--' for long options. ACE_Get_Opt can be used to
parse argc/argv arguments, such as those passed as a program's main() command line or to an init()
hook method. This class provides the following capabilities:
 

•

• A thin C++ wrapper facade for the standard POSIX getopt() function. Unlike getopt(),
however, each instance of ACE_Get_Opt maintains its own state, so it can be used reentrantly.
ACE_Get_Opt is also easier to use than getopt() since the optstring and argc/argv arguments
are only passed once to its constructor, rather than to each iterator call.

•  
•

• It can be told to start processing the command line at an arbitrary point specified by the
skip_args parameter, which allows it to skip the program name when parsing a command line
passed to main() or continue processing where it left off at a later time.

•  
•

• It can regroup all the option arguments at the beginning of the command line, while maintaining
their relative order, which simplifies option and nonoption argument processing. After all the
options are scanned, it returns EOF and opt_ind() points to the first nonoption argument, so the
program can continue processing the remaining arguments.

•  
•

• Multiple argument ordering modes: PERMUTE_ARGS, REQUIRE_ORDER, and
RETURN_IN_ORDER.

•  
•

• A colon following a short option character in the optstring signifies that the option takes an
argument. The argument is taken from the remaining characters of the current argv-element or
the next argv-element as needed. If an argv-element of '--' is encountered, this signifies the end
of the option section and EOF is returned.

•  
•

• Short options that don't take arguments can be grouped together on the command line after the
leading '-', but in that case, only the last short option in the group can take an argument. A '?' is
returned if the short option is not recognized.

•  
•

• Long option formats are similar to the GNU getopt_long() function. Long options can be defined
with corresponding short options. When ACE_Get_Opt finds a long option with a
corresponding short option, it returns the short option making it much easier for the caller to
handle it in a switch statement. Many examples in the book illustrate the use of both long and
short options.

•  
•

• Since short options are defined as integers, long options that wouldn't normally have a
meaningful short option equivalent can designate nonalphanumeric values for the corresponding
short option. These nonalphanumeric cannot appear in the argument list or in the optstring
parameter, but can be returned and processed efficiently in a switch statement.

•  

Figure 3.3 The ACE_Event_Handler Class
 
                        ACE_Event_Handler 
- priority_ : int 
- reactor_ : ACE_Reactor * 
# ACE_Event_Handler (r : ACE_Reactor * = 0, 
                     prio : int = LO_PRIORITY) 
+ ~ACE_Event_Handler () 
+ handle_input (h : ACE_HANDLE = ACE_INVALID_HANDLE) : int 
+ handle_output (h : ACE_HANDLE = ACE_INVALID_HANDLE) : int 
+ handle_exception (h : ACE_HANDLE = ACE_INVALID_HANDLE) : int 
+ handle_timeout (now : ACE_Time_Value &, act : void * = 0) : int 
+ handle_signal (signum : int, info : siginfo_t * = 0, 
                 ctx : ucontext_t * = 0) : int 
+ handle_close (h : ACE_HANDLE, mask : ACE_Reactor_Mask) : int 
+ get_handle () : ACE_HANDLE 
+ reactor () : ACE_Reactor * 
+ reactor (r : ACE_Reactor *) 
+ priority () : int 
+ priority (prio : int) 

To maintain this separation of concerns, there must be a way to invoke callbacks. One way to implement callbacks is
to define a separate function for each type of event. This approach can become unwieldy for application developers,
however, since they must:
 

1.

1. Keep track of which functions correspond to which events
1.  
2.

2. Design a way to associate data with callback functions
2.  
3.

3. Use a procedural model of programming since there's no object interface involved
3.  

To resolve these problems and support an object-oriented callback model, the ACE Reactor framework defines the
ACE_Event_Handler base class.
 

Class Capabilities
 

ACE_Event_Handler is the base class of all reactive event handlers in ACE. This class provides the following
capabilities:
 

•

• It defines hook methods for input events, output events, exception events, timer events, and signal events.[1]

• [1] On Windows, an ACE_Event_Handler can also handle synchronization events, such as transitioning from
the nonsignaled to signaled state with Windows event objects, mutexes, or semaphores [SR00], which we
discuss in Section 4.4.

•  
•

• Its hook methods allow applications to extend event handler subclasses in many ways without changing the
framework.

•  
•

• Its use of object-oriented callbacks simplifies the association of data with hook methods that manipulate the
data.

•  
•

• Its use of objects also automates the binding of an event source (or set of sources) with data the event source
is associated with, such as a network session.

•  
•

• It centralizes how event handlers can be destroyed when they're not needed.
•  
•

• It holds a pointer to the ACE_Reactor that manages it, making it simple for an event handler to manage its
event (de)registration correctly.

•  

The interface for ACE_Event_Handler is shown in Figure 3.3 and its key methods are outlined in the following table:
 

Method
 

Description
 

ACE_Event_Handler()
 

Assigns the ACE_Reactor pointer that can be associated
with an event handler.
 

ACE_Event_Handler()
 

Calls purge_pending_notifications() (page 77) to remove
itself from the reactor's notification mechanism.
 

handle_input()
 

Hook method called when input events occur, for
example, connection or data events.
 

handle_output()
 

Hook method called when output events are possible, for
example, when flow control abates or a nonblocking
connection completes.
 

handle_exception()
 

Hook method called when an exceptional event occurs,
for example, the arrival of TCP urgent data.
 

handle_timeout()
 

Hook method called when a timer expires.
 

handle_signal()
 

Hook method called when signaled by the OS, either via
POSIX signals or when a Windows synchronization
object transitions to the signaled state.
 

handle_close()
 

Hook method that performs user-defined termination
activities when one of the other handle_*() hook methods
returns -1 or when ACE_Reactor::remove_handler() is
called explicitly to unregister an event handler (page 73).
 

get_handle()
 

Returns the underlying I/O handle. This method can be
left as a no-op if an event handler only handles
time-driven events.
 

reactor()
 

Accessors to get/set the ACE_Reactor pointer that can
be associated with an ACE_Event_Handler.
 

priority()
 

Accessors to get/set the priority of the event handler, as
used by the ACE_Priority_Reactor (mentioned in 
Chapter 4).
 

Applications can inherit from ACE_Event_Handler to create event handlers that have the following properties:
 

•

• They override one or more of the ACE_Event_Handler class's handle_*() hook methods to perform
application-defined processing in response to the corresponding types of events.

•  
•

• They are registered or scheduled with an ACE_Reactor, which then dispatches hook methods on the
handlers to process events that occur.

•  
•

• Since event handlers are objects, not functions, it's straightforward to associate data with a handler's hook
methods to hold state across multiple reactor callbacks.

•  

Below, we discuss three aspects of programming ACE_Event_Handler hook methods.
 

1. Types of events and event handler hook methods. When an application registers an event handler with a reactor, it
must indicate what type(s) of event(s) the event handler should process. ACE designates these event types via the
following enumerators defined in ACE_Event_Handler:
 

Event Type
 

Description
 

READ_MASK
 

Indicates input events, such as data on a socket or file
handle. A reactor dispatches the handle_input() hook
method to process input events.
 

WRITE_MASK
 

Indicates output events, such as when flow control
abates. A reactor dispatches the handle_output() hook
method to process output events.
 

EXCEPT_MASK
 

Indicates exceptional events, such as urgent data on a
socket. A reactor dispatches the handle_exception()
hook method to process exceptional events.
 

ACCEPT_MASK
 

Indicates passive-mode connection events. A reactor
dispatches the handle_input() hook method to process
connection events.
 

CONNECT_MASK
 

Indicates a nonblocking connection completion. A
reactor dispatches the handle_output() hook method to
process nonblocking connection completion events.
 

These values can be combined ("or'd" together) to efficiently designate a set of events. This set of events can
populate the ACE_Reactor_Mask parameter that's passed to the ACE_Reactor::register_handler() methods (page
73).
 

Event handlers used for I/O events can provide a handle, such as a socket handle, via their get_handle() hook
method. When an application registers an event handler with a reactor, the reactor calls back to the handler's
get_handle() method to retrieve its handle. This handle is then included in the handle set a reactor uses to detect I/O
events.
 

2. Event handler hook method return values. When registered events occur, the reactor dispatches the appropriate
event handler's handle_*() hook methods to process them. Sidebar 9 describes some idioms to apply when
implementing these hook methods. When a handle_*() method finishes its processing, it must return a value that's
interpreted by the reactor as follows:
 

•

• Return value 0 indicates that the reactor should continue to detect and dispatch the registered event for this
event handler (and handle if it's an I/O event). This behavior is common for event handlers that process
multiple instances of an event, for example, reading data from a socket as it becomes available.

•  

Sidebar 9: Idioms for Designing ACE Event
Handlers
 

The following are some idioms for designing event handlers for use with the ACE Reactor framework:
 

•

• To prevent starvation, keep the execution time of an event handler's handle_*() hook methods
short, ideally shorter than the average interval between event occurrences. If a hook method
may run for a long time processing a request, consider queueing the request in an
ACE_Message_Queue and processing it later. The Example portion of Section 6.3 illustrates
this approach by combining the ACE Task framework with the ACE Reactor framework to
implement a concurrent logging server based on the Half-Sync/Half-Async pattern.

•  
•

• Consolidate an event handler's cleanup activities in its handle_close() hook method, rather than
dispersing them throughout its other methods. This idiom is particularly important when dealing
with dynamically allocated event handlers that are deallocated via delete this, because it's easier
to check whether there are potential problems with deleting nondynamically allocated memory.

•  
•

• Only call delete this in an event handler's handle_close() method, and only after the handler's
final registered event has been removed from the reactor. This idiom avoids dangling pointers
that can otherwise occur if an event handler that registered with a reactor for multiple events is
deleted prematurely. Sidebar 10 (page 53) illustrates one way to keep track of this information.

•  

•

• Return value greater than 0 also indicates that the reactor should continue to detect and dispatch the
registered event for this event handler. Additionally, if a value > 0 is returned after processing an I/O event,
the reactor will dispatch this event handler on the handle again before the reactor blocks on its event
demultiplexer. This feature enhances overall system fairness for cooperative I/O event handlers by allowing
one event handler to perform a limited amount of computation, then relinquish control to allow other event
handlers to be dispatched before it regains control again.

•  
•

• Return value -1 instructs the reactor to stop detecting the registered event for this event handler (and handle if
it's an I/O event). Before the reactor removes this event handler/handle from its internal tables, it invokes the
handler's handle_close() hook method, passing it the ACE_Reactor_Mask value of the event that's now
unregistered. This event handler may remain registered for other events on the same, or a different, handle;
it's the handler's responsibility to track which event(s) it's still registered for, as shown in Sidebar 10 (page
53).

•  

3. Cleaning up an event handler. An event handler's handle_close() method is called when one of its other hook
methods decides that cleanup is required. The handle_close() method can then perform user-defined shutdown
activities, such as releasing memory allocated by the object, closing IPC objects or log files, etc. The ACE Reactor
framework ignores the return value of the handle_close() method itself.
 

ACE_Reactor only calls handle_close() when a hook method returns a negative value, as described above, or when
a handler is removed from the reactor explicitly (page 74). It will not call handle_close() automatically when an IPC
mechanism reaches end-of-file or an I/O handle is closed by either the local application or a remote peer.
Applications must therefore detect when an I/O handle has closed and take steps to ensure an ACE_Reactor calls
handle_close(). For example, when a recv() or read() call returns 0, the event handler should return -1 from the
handle_*() method or call the ACE_Reactor::remove_handler() method (page 74).
 

In addition to the event types shown in the table on page 50, a reactor can pass the following enumerators defined in
ACE_Event_Handler to handle_close():
 

Event Type
 

Description
 

TIMER_MASK
 

Indicates time-driven events and is passed by a reactor
when a handle_timeout() hook method returns -1.
 

SIGNAL_MASK
 

Indicates signal-based events (or handle-based events on
Windows) and is passed by a reactor when a
handle_signal() hook method returns -1. ACE's
signal-handling facilities are described in [HJS].
 

Example
 

We implement our logging server by inheriting from ACE_Event_Handler and driving its processing via the
ACE_Reactor's event loop. We handle two types of events:
 

1.

1. Data events, which indicate the arrival of log records from connected client logging daemons
1.  
2.

2. Accept events, which indicate the arrival of new connections from client logging daemons
2.  

We therefore define two types of event handlers in our logging server:
 

1.

1. Logging_Event_Handler? This class processes log records received from a connected client logging daemon.
It uses the ACE_SOCK_Stream class from Chapter 3 in C++NPv1 to read log records from a connection.

1.  
2.

2. Logging_Acceptor? This class is a factory that allocates a Logging_Event_Handler dynamically and initializes
it when a client logging daemon connects. It uses the ACE_SOCK_Acceptor class from Chapter 3 of
C++NPv1 to initialize the ACE_SOCK_Stream contained in Logging_Event_Handler.

2.  

Both event handlers inherit from ACE_Event_Handler, which enables a reactor to dispatch their handle_input()
methods. The relationship between ACE_Reactor, ACE_Event_Handler, Logging_Acceptor, and
Logging_Event_Handler is shown in Figure 3.4.
 

Figure 3.4. ACE_Reactor-based Logging Server Classes
 

Sidebar 10: Tracking Dynamic Event
Handler Event Registrations
 

Applications are responsible for determining when a dynamically allocated event handler can be deleted.
For example, the following class shows an idiom in which an event handler keeps track of when all
events it's registered for have been removed from its associated reactor. 
class My_Event_Handler : public ACE_Event_Handler { 
private: 
  // Keep track of the events the handler's registered for. 
  ACE_Reactor_Mask mask_; 
public: 
  // ... class methods shown below ... 

The class constructor initializes the mask_ data member for READ and WRITE events and then
registers this object with its reactor parameter to handle both types of events, as follows: 
My_Event_Handler (ACE_Reactor *r): ACE_Event_Handler (r) { 
  ACE_SET_BITS (mask_, 
                ACE_Event_Handler::READ_MASK 
                | ACE_Event_Handler::WRITE_MASK); 
  reactor ()->register_handler (this, mask_); 
} 

The handle_input() and handle_output() methods must return -1 when they're finished processing READ
and WRITE events, respectively. Each time a handle_*() method returns -1 the reactor dispatches the
handle_close() hook method, passing it the ACE_Reactor_Mask value of the event that's being
unregistered. This hook method clears the corresponding bit from mask_, as follows: 
virtual int handle_close (ACE_HANDLE, ACE_Reactor_Mask mask) { 
  if (mask == ACE_Event_Handler::READ_MASK) { 
    ACE_CLR_BITS (mask_, ACE_Event_Handler::READ_MASK); 
    // Perform READ_MASK cleanup logic... 
  } 
  if (mask == ACE_Event_Handler::WRITE_MASK) { 
    ACE_CLR_BITS (mask_, ACE_Event_Handler::WRITE_MASK); 
    // Perform WRITE_MASK cleanup logic. 
  } 
  if (mask_ == 0) delete this; 
  return 0; 
} 

Only when mask_ is zero does handle_close() call delete this.
 

We start by creating the Logging_Acceptor.h file that includes the necessary headers:
 
#include "ace/Event_Handler.h" 
#include "ace/INET_Addr.h" 
#include "ace/Log_Record.h" 
#include "ace/Reactor.h" 
#include "ace/SOCK_Acceptor.h" 
#include "ace/SOCK_Stream.h" 
#include "Logging_Handler.h" 

All but one of these headers are defined in ACE. The exception is Logging_Handler.h, which contains the
Logging_Handler class defined in Chapter 4 of C++NPv1.
 

The Logging_Acceptor class inherits from ACE_Event_Handler and defines a private instance of the
ACE_SOCK_Acceptor factory, as shown below:
 
class Logging_Acceptor : public ACE_Event_Handler { 
private: 
  // Factory that connects <ACE_SOCK_Stream>s passively. 
  ACE_SOCK_Acceptor acceptor_; 

protected: 

  virtual Logging_Acceptor () {} // No-op destructor. 

We declare the no-op destructor in the protected access control section to ensure dynamic allocation of
Logging_Acceptor. Sidebar 11 explains why event handlers should generally be allocated dynamically.
 

Sidebar 11: Strategies for Managing Event
Handler Memory
 

Event handlers should generally be allocated dynamically for the following reasons:
 

•

• Simplify memory management. For example, deallocation can be localized in an event handler's
handle_close() method, using the event handler event registration tracking idiom shown in 
Sidebar 10 (page 53).

•  
•

• Avoid "dangling handler" problems. For example, the lifecycle of an event handler instantiated on
the stack or as a member of another class is controlled externally while its reactor registrations
are controlled internally. If the handler is destroyed while it's still registered with a reactor, there
will be unpredictable problems later if the reactor tries to dispatch the nonexistent handler.

•  
•

• Avoid portability problems. For example, dynamic allocation alleviates subtle problems
stemming from the delayed event handler cleanup semantics of the ACE_WFMO_Reactor
(page 107).

•  

Certain types of applications, such as real-time systems, avoid or minimize the use of dynamic memory
to improve their predictability. If you must allocate event handlers statically for such applications, here
are some conventions to follow:
 

1.

1. Don't call delete this in handle_close().
1.  
2.

2. Unregister all events from reactors in the class destructor, at the latest.
2.  
3.

3. Ensure that the lifetime of a registered event handler is longer than the reactor it's registered with
if it can't be unregistered for some reason.

3.  
4.

4. Avoid the use of the ACE_WFMO_Reactor since it defers the removal of event handlers,
thereby making it hard to enforce convention 3.

4.  
5.

5. If using ACE_WFMO_Reactor, pass the DONT_CALL flag to
ACE_Reactor::remove_handler() and carefully manage shutdown activities without the benefit of
the reactor's handle_close() callback.

5.  

We next show the interface and portions of the Logging_Acceptor method implementations. Although we don't show
much error handling code in this example, a production implementation (such as the logging server in the ACE
network service components library) should take appropriate corrective action if failures occur.
 
public: 
  // Simple constructor. 
  Logging_Acceptor (ACE_Reactor *r = ACE_Reactor::instance ()) 
    : ACE_Event_Handler (r) {} 

  // Initialization method. 
  virtual int open (const ACE_INET_Addr &local_addr); 
  // Called by a reactor when there's a new connection to accept. 
  virtual int handle_input (ACE_HANDLE = ACE_INVALID_HANDLE); 

  // Called when this object is destroyed, e.g., when it's 
  // removed from a reactor. 
  virtual int handle_close (ACE_HANDLE = ACE_INVALID_HANDLE, 
                            ACE_Reactor_Mask = 0); 

  // Return the passive-mode socket's I/O handle. 
  virtual ACE_HANDLE get_handle () const 
    { return acceptor_.get_handle (); } 

  // Returns a reference to the underlying <acceptor_>. 
  ACE_SOCK_Acceptor &acceptor () { return acceptor_; } 
}; 

The Logging_Acceptor::open() method initializes a passive-mode acceptor socket to listen for connections at
local_addr. The Logging_Acceptor then registers itself with the reactor to handle ACCEPT events.
 
int Logging_Acceptor::open (const ACE_INET_Addr &local_addr) { 
  if (acceptor_.open (local_addr) == -1) return -1; 
  return reactor ()->register_handler 
           (this, ACE_Event_Handler::ACCEPT_MASK); 
} 

Since the passive-mode socket in the ACE_SOCK_Acceptor becomes active when a new connection can be
accepted, the reactor dispatches the Logging_Acceptor::handle_input() method automatically. We'll show this
method's implementation on page 58 after first defining the following Logging_Event_Handler class:
 
class Logging_Event_Handler : public ACE_Event_Handler 
{ 
protected: 
  // File where log records are written. 
  ACE_FILE_IO log_file_; 

  // Connection to remote peer. 
  Logging_Handler logging_handler_; 

This class inherits from ACE_Event_Handler and adapts the Logging_Handler defined in Chapter 4 of C++NPv1 for
use with the ACE Reactor framework. In addition to a Logging_Handler, each Logging_Event_Handler contains an
ACE_FILE_IO object to keep a separate log file for each connected client.
 

The public methods in the Logging_Event_Handler class are shown below.
 
public: 
  // Initialize the base class and logging handler. 
  Logging_Event_Handler (ACE_Reactor *reactor) 
    : ACE_Event_Handler (reactor), 
    logging_handler_ (log_file_) {} 

  virtual Logging_Event_Handler () {} // No-op destructor. 
  virtual int open (); // Activate the object. 

  // Called by a reactor when logging events arrive. 
  virtual int handle_input (ACE_HANDLE = ACE_INVALID_HANDLE); 

  // Called when this object is destroyed, e.g., when it's 
  // removed from a reactor. 
  virtual int handle_close (ACE_HANDLE = ACE_INVALID_HANDLE, 
                            ACE_Reactor_Mask = 0); 

  // Return socket handle of the contained <Logging_Handler>. 
  virtual ACE_HANDLE get_handle () const; 

  // Get a reference to the contained <ACE_SOCK_Stream>. 
  ACE_SOCK_Stream &peer () { return logging_handler_.peer (); } 

  // Return a reference to the <log_file_>. 
  ACE_FILE_IO &log_file () const { return log_file_; } 
}; 

The Logging_Event_Handler::get_handle() method is defined as follows:
 
ACE_HANDLE Logging_Event_Handler::get_handle (void) const { 
  Logging_Handler &h = 
      ACE_const_cast (Logging_Handler &, logging_handler_); 
  return h.peer ().get_handle (); 
} 

Since get_handle() is a const method, we use the ACE_const_cast macro to call the nonconst
Logging_Handler::peer() method. This is safe since we call the const get_handle() method using it. Sidebar 17 (page
176) of C++NPv1 explains the various macros ACE provides to support portable casting on all C++ compilers.
You don't need to use these macros if your applications use only compilers that support the standard C++ cast
operators.
 

Now that we've outlined Logging_Event_Handler, we'll implement Logging_Acceptor::handle_input(), which is
dispatched by a reactor whenever a new connection can be accepted. This factory method creates, connects, and
activates a Logging_Event_Handler, as shown below:
 
 1 int Logging_Acceptor::handle_input (ACE_HANDLE) { 
 2   Logging_Event_Handler *peer_handler = 0; 
 3   ACE_NEW_RETURN (peer_handler, 
 4                   Logging_Event_Handler (reactor ()), -1); 
 5   if (acceptor_.accept (peer_handler->peer ()) == -1) { 
 6     delete peer_handler; 
 7     return -1; 
 8   } else if (peer_handler->open () == -1) { 
 9     peer_handler->handle_close (); 
10     return -1; 
11   } 
12   return 0; 
13 } 

Lines 2? Create a new Logging_Event_Handler that will process the new client's logging session. Sidebar 12 (page
60) describes the ACE_NEW_RETURN macro and other ACE memory management macros. The new
Logging_Event_Handler receives this object's ACE_Reactor pointer, which ensures that the new handler registers
with the reactor that dispatched this hook method, thereby joining the logging server's event loop.
 

Lines 5? Accept the new connection into the socket handle of the Logging_Event_Handler, deleting the peer_handler
and returning -1 if an error occurs. As discussed on page 51, when -1 is returned from an event handler's
handle_input() the reactor will automatically invoke the handler's handle_close() hook method, which is defined as
follows for the Logging_Acceptor:
 
int Logging_Acceptor::handle_close (ACE_HANDLE, 
                                    ACE_Reactor_Mask) { 
  acceptor_.close (); 
  delete this; 
  return 0; 
} 

Since we always use our Logging_Acceptor class in circumstances that require it to delete itself, we allocate it
dynamically in the various examples in the book.
 

Lines 8?0 Activate the connected peer_handler by calling its open() method. If this method returns -1 we close the
peer_handler, which deletes itself in Logging_Event_Handler::handle_close() (page 60). The open() method is shown
on the following page.
 
 1 int Logging_Event_Handler::open () { 
 2   static const char LOGFILE_SUFFIX[] = ".log"; 
 3   char filename[MAXHOSTNAMELEN + sizeof (LOGFILE_SUFFIX)]; 
 4   ACE_INET_Addr logging_peer_addr; 
 5 
 6   logging_handler_.peer ().get_remote_addr (logging_peer_addr); 
 7   logging_peer_addr.get_host_name (filename, MAXHOSTNAMELEN); 
 8   ACE_OS_String::strcat (filename, LOGFILE_SUFFIX); 
 9 
10   ACE_FILE_Connector connector; 
11   connector.connect (log_file_, 
12                      ACE_FILE_Addr (filename), 
13                      0, // No timeout. 
14                      ACE_Addr::sap_any, // Ignored. 
15                      0, // Don't try to reuse the addr. 
16                      O_RDWR|O_CREAT|O_APPEND, 
17                      ACE_DEFAULT_FILE_PERMS); 
18 
19   return reactor ()->register_handler 
20            (this, ACE_Event_Handler::READ_MASK); 
21 } 

Lines 3? Determine the connected client's hostname and use this as the logfile's name.
 

Lines 10?7 Create or open the file that stores log records from a connected client.
 

Lines 19?0 Use the ACE_Reactor::register_handler() method (page 73) to register this event handler for READ
events with the Logging_Acceptor's reactor.
 

When log records arrive from clients, the reactor will automatically dispatch the following
Logging_Event_Handler::handle_input() method:
 
int Logging_Event_Handler::handle_input (ACE_HANDLE) 
{ return logging_handler_.log_record (); } 

This method processes a log record by calling Logging_Handler::log_record(), which reads the record from the
socket and writes it to the log file associated with the client connection. Since logging_handler_ maintains its own
socket handle, the handle_input() method simply ignores its ACE_HANDLE parameter.
 

Whenever an error occurs or a client closes a connection to the logging server, the log_record() method returns -1,
which the handle_input() method then passes back to the reactor that dispatched it (Sidebar 13 on page 61 discusses
strategies for handling peers that simply stop communicating). This value causes the reactor to dispatch the
Logging_Event_Handler::handle_close() hook method, which closes both the socket to the client and the log file and
then deletes itself, as follows:
 

Sidebar 12: The ACE Memory Management
Macros
 

C++NPv1 and this book solve many problems related to differences between OS APIs. Another
problem area is differences between C++ compilers. The C++ operatornew() dynamic memory
allocator is a good example. Early C++ runtimes returned a NULL pointer when an allocation failed,
whereas newer runtimes throw an exception. ACE defines macros that unify the behavior and return a
NULL pointer regardless of the compiler's behavior. ACE uses these macros to ensure consistent,
portable behavior; your applications can use them as well.
 

If memory allocation fails, all of the ACE memory management macros set the specified pointer to
NULL and set errno to ENOMEM. The ACE_NEW_RETURN macro returns a specified value from
the current method on failure, whereas the ACE_NEW macro simply returns and the
ACE_NEW_NORETURN macro continues to execute in the current method. These macros enable
applications to work portably, regardless of the C++ compiler memory allocation error handling
policies. For example, the ACE_NEW_RETURN macro is defined as follows for compilers that throw
the std::bad_alloc C++ exception when new fails: 
#define ACE_NEW_RETURN(POINTER,CTOR,RET_VAL) \ 
 do { try { POINTER = new CTOR; } catch (std::bad_alloc) \ 
   { errno = ENOMEM; POINTER = 0; return RET_VAL; } \ 
 } while (0) 

In contrast, ACE_NEW_RETURN is defined as follows for compiler configurations that offer a
nothrow variant of operator new: 
#define ACE_NEW_RETURN(POINTER,CTOR,RET_VAL) \ 
 do { POINTER = new (ACE_nothrow) CTOR; \ 
   if (POINTER == 0) { errno = ENOMEM; return RET_VAL; } \ 
 } while (0) 

int Logging_Event_Handler::handle_close (ACE_HANDLE, 
                                         ACE_Reactor_Mask) { 
  logging_handler_.close (); 
  log_file_.close (); 
  delete this; 
  return 0; 
} 

This method can safely delete this since the Logging_Event_Handler object is allocated dynamically and won't be
used by the reactor or any other part of the program. The Example in Section 3.5 illustrates this method in the
context of the complete Reactor framework.
 

Sidebar 13: Handling Silent Peers
 

If a client disconnects, either gracefully or abruptly, its socket will become readable. A reactor can
detect this event and dispatch the handle_input() hook method on the event handler that's associated
with the socket handle. The handler will then determine that the connection has closed, which is usually
revealed by a recv() or read() call returning 0 or -1. If the client simply stops communicating altogether,
however, there could be a number of causes, including
 

•

• An Ethernet cable's being pulled out of its connector, which may be plugged back in shortly and
the connection continues or

•  
•

• The host crashed without the opportunity to close any connections, so the local endpoint of the
connection is stranded and will never continue.

•  

In these cases there are no events for a reactor to detect.
 

Depending on the needs of your application services and the application-level protocol(s) used, there
are several ways to handle a silent peer. These include:
 

•

• Wait until the TCP keepalive mechanism abandons the peer and closes the connection, which
will trigger an event on the socket that can be handled just as if the client closed the connection.
Unfortunately, this may take a long time?maybe hours?s described in [SW95].

•  
•

• Implement an application-level policy or protocol, such as a "heartbeat" message or periodic
"are you there?" message. If the peer fails to send a heartbeat message or answer the "are you
there?" message within an application defined period of time, abort the connection unilaterally.
The application may then attempt to reopen the connection at a later time.

•  
•

• Implement a policy that if the peer does not send any data for some determined amount of time,
the connection will be abandoned. This type of policy is used by the
Logging_Event_Handler_Ex class (page 68).

•  
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3.4 The ACE Timer Queue Classes
 

Motivation
 

Many networked applications perform activities periodically or must be notified when specified time periods have
elapsed. For example, Web servers require watchdog timers that release resources if clients don't send an HTTP
GET request shortly after they connect.
 

Native OS timer capabilities vary, but many platforms share the following problems:
 

•

• Limited number of timers. Many platforms allow applications to set a limited number of timers. For example,
the POSIX alarm() and ualarm() system functions each reset a single "alarm clock" timer on each call.
Managing multiple timer periods therefore often involves developing a timer queue mechanism that keeps
track of the next scheduled expiration. Scheduling a new "earliest" timer can (re)set the alarm clock if
necessary.

•  
•

• Timer expiration raises a signal. For example, the alarm() system function raises the SIGALRM signal when
the timer expires. Programming timer signals is hard because application actions are restricted in signal
context. Applications can minimize processing in signal context on UNIX platforms by using the sleep()
system function or using the sigsuspend() system function. These solutions are nonportable, however, and
they block the calling thread, which can impede concurrency and complicate programming.

•  

One way to avoid these problems is to manage timers in the normal course of event handling, as follows:
 

1.

1. Develop a timer queue mechanism that orders timers and associates each timer with an action to perform
when a timer expires

1.  
2.

2. Integrate the timer queue with the application's use of a synchronous event demultiplexer, such as select() or
WaitForMultipleObjects(), to integrate the handling of timer expirations with other event processing.

2.  

It's hard to develop this type of timer facility portably across OS platforms, however, due to the wide range of
capabilities and restrictions. Moreover, this capability is often redeveloped for many projects due to tight coupling
between the timer queue mechanism and the synchronous event demultiplexing mechanism. To alleviate the need for
application developers to rewrite efficient, scalable, and portable time-driven dispatchers in an ad hoc manner, the
ACE Reactor framework defines a family of reusable timer queue classes.
 

Class Capabilities
 

The ACE timer queue classes allow applications to register time-driven event handlers derived from
ACE_Event_Handler. These classes provide the following capabilities:
 

•

• They allow applications to schedule event handlers whose handle_timeout() hook methods will be dispatched
efficiently and scalably at caller-specified times in the future, either once or at periodic intervals.

•  
•

• They allow applications to cancel a timer associated with a particular event handler or all timers associated
with an event handler.

•  
•

• They allow applications to configure a timer queue's time source, such as ACE_OS::gettimeofday() or
ACE_High_Res_Timer::gettimeofday_hr(), described in Sidebar 14 (page 65).

•  

The interfaces and relationships of all the ACE timer queue classes are shown in Figure 3.5 (page 64). The key
methods in these classes are outlined in the following table:
 

Figure 3.5. The ACE Timer Queue Classes
 

Method
 

Description
 

schedule()
 

Schedule an event handler whose handle_timeout()
method will be dispatched at a caller-specified time in the
future and, optionally, at periodic intervals.
 

cancel()
 

Cancel a timer associated with a particular event handler
or all timers associated with an event handler.
 

expire()
 

Dispatch the handle_timeout() method of all event
handlers whose expiration time is less than or equal to the
current time of day, which is represented as an absolute
value, for example, 2001-09-11-09.37.00.
 

gettimeofday()
 

A pair of overloaded methods that allow applications to
(1) set the method used to control the timer queue's
source of the current time value and (2) call that method
to return the current absolute time value.
 

The schedule() method of an ACE timer queue must be passed two parameters:
 

•

• A pointer to an event handler that will be the target of the subsequent handle_timeout() dispatching and
•  
•

• A reference to an ACE_Time_Value indicating the absolute future time when the handle_timeout() hook
method should be invoked on the event handler.

•  

This method can optionally be passed the following parameters:
 

•

• A void pointer that's stored internally by the timer queue and passed back unchanged when the
handle_timeout() method is dispatched. This pointer can be used as an asynchronous completion token
(ACT) in accordance with the Asynchronous Completion Token pattern [POSA2]. This pattern allows an
application to efficiently demultiplex and process the responses of asynchronous operations it invokes on
services. By using an ACT, the same event handler can be registered with a timer queue at multiple future
dispatching times.

•  
•

• A reference to a second ACE_Time_Value that designates the interval at which the event handler should be
dispatched periodically. If this parameter is omitted, the event handler's handle_timeout() method is
dispatched only once. When specifying very short timer values, keep in mind that the actual timer resolution
will be limited to that of the timer queue's time source clock update frequency, which varies by platform.

•  

When a timer queue dispatches an event handler's handle_timeout() method, it passes as parameters the current time
and the void pointer ACT passed to the schedule() method when the event handler was scheduled originally.
 

The return value of schedule() uniquely identifies each timer event that's scheduled with a timer queue. Applications
can pass the unique timer identifier to the cancel() method to remove a particular event handler before it expires.
Applications can also pass the address of the handler to cancel() to remove all timers associated with a particular
event handler. If a non-NULL pointer to a void pointer is passed to cancel(), it's assigned the ACT passed by the
application when the timer was scheduled originally, which makes it possible to allocate an ACT dynamically without
leaking memory.
 

The ACE timer queue classes combine design patterns, hook methods, and template arguments to provide the
following timer queue implementations:
 

•

• ACE_Timer_Heap, which is a partially ordered, almost complete binary tree implemented in an array [Rob99
]. Its average- and worst-case performance for scheduling, canceling, and expiring an event handler is O(lg
n), which is why it's the default timer queue mechanism in the ACE Reactor framework. Heap-based timer
queues are useful for operating systems [BL88] and middleware [SLM98] whose applications require
predictable and low-latency time-driven dispatching. Sidebar 15 (page 66) describes some issues that
developers of real-time applications should consider when using the ACE timer queue mechanisms in their
code.

•  
•

• ACE_Timer_Wheel, which uses a timing wheel [VL97] that contains a circular buffer designed to schedule,
cancel, and dispatch timers in O(1) time in the average case, but O(n) in the worst case.

•  

Sidebar 14: ACE Time Sources
 

Figure 3.5 shows that ACE_Timer_Queue::gettimeofday() can be changed to use any static method that
returns an ACE_Time_Value value. The returned time value is expected to be absolute, but it need not
be the current date and time (commonly known as "wall clock" time). The primary requirement of the
time-returning static method is that it provides an accurate basis for timer scheduling and expiration
decisions. ACE provides two mechanisms that fit this requirement:
 

•

• ACE_OS::gettimeofday(), which is a static method that returns an ACE_Time_Value containing
the current absolute date and time as reported by the operating system.

•  
•

• ACE_High_Res_Timer::gettimeofday_hr(), which is a static method that returns the value of an
OS-specific high-resolution timer, converted to ACE_Time_Value units. These timers are often
based on the number of CPU clock ticks since boot time, rather than the actual wall clock time.

•  

The granularity of these timers can differ by three to four orders of magnitude. When they're used to time
out event demultiplexing mechanisms, however, the resolution is usually similar due to the intricacies of
clocks, timer interrupt servicing, and OS scheduling. In the context of the Reactor's timer queue, they
differ mainly in their behavior when the system's date and/or time is changed, where the values reported
by ACE_OS::gettimeofday() will change but the values reported by
ACE_High_Res_Timer::gettimeofday_hr() won't be affected?hey'll keep increasing at a constant rate.
If an application's timer behavior must remain constant?even if the wall clock time changes?he default
time source should be replaced with ACE_High_Res_Timer::gettimeofday_hr(), as shown in the
Example portion of Section 3.4.
 

•

• ACE_Timer_Hash, which uses a hash table to manage the queue. Like the timing wheel implementation, the
average-case time required to schedule, cancel, and expire timers is O(1) and its worst-case is O(n).

•  
•

• ACE_Timer_List, which is implemented as a linked list of absolute timers ordered by increasing deadline.
Although its average and worst-case performance for scheduling and canceling timers is O(n), it uses the least
amount of memory of the ACE timer queue implementations.

•  

The ACE Reactor framework allows developers to use any of these timer queue implementations to achieve the
functionality needed by their applications, without burdening them with a "one size fits all" implementation. Since the
methods in the ACE_Timer_Queue base class are virtual, applications can also integrate their own implementations
of other timer queue mechanisms.
 

Sidebar 15: Using Timers in Networked
Real-time Applications
 

Networked real-time applications are becoming increasingly widespread and important [GSC02].
Common examples include telecommunication networks (e.g., wireless phone services), telemedicine
(e.g., remote surgery), manufacturing process automation (e.g., hot rolling mills), and defense
applications (e.g., avionics mission computing systems). These types of applications typically have one
thing in common: the right answer delivered too late becomes the wrong answer.
 

If one reactor is used to dispatch both I/O and timer queue handlers, variations in the amount of time
spent handling I/O can cause the timer queue processing to "drift," which can wreak havoc on the
scheduling analysis and predictability of networked real-time applications. Moreover, the event
demultiplexing and synchronization mechanisms used to integrate I/O and timer dispatching in
implementations of the ACE Reactor framework can incur more overhead than some real-time
applications can afford.
 

Developers of networked real-time applications may therefore want to use separate ACE timer queues
running in different threads to handle timer dispatching. Depending on the relative importance of timers
versus I/O, different thread priorities can be used for the different threads. The
ACE_Thread_Timer_Queue_Adapter is a useful class that can simplify the design of these networked
real-time applications.
 

Example
 

Although the Logging_Acceptor and Logging_Event_Handler event handlers in Section 3.3 implement the logging
server functionality correctly, they may consume system resources unnecessarily. For example, clients can connect to
a server and then not send log records for long periods of time. In the example below, we illustrate how to apply the
ACE timer queue mechanisms to reclaim resources from those event handlers whose clients log records infrequently.
Our design is based on the Evictor pattern [HV99], which describes how and when to release resources, such as
memory and I/O handles, in order to optimize system resource management.
 

We use the Evictor pattern in conjunction with the ACE Reactor framework's timer queue mechanisms to check
periodically when each registered event handler has received its last client log record. If the time the last log record
was received exceeds a designated threshold (one hour), the following actions occur:
 

1.

1. The event handler is disconnected from its client.
1.  
2.

2. Its resources are returned to the OS.
2.  
3.

3. It is removed from the reactor.
3.  

Clients must detect these closed connections and reestablish them when they need to send more log records, as
shown in the Example portions of Sections 6.2 and 7.4.
 

This example uses ACE_Timer_Queue::gettimeofday() to obtain all time-of-day values. This method allows us to
change the program's time source at run time as described in Sidebar 14 (page 65). For example, if changes to the
system's time-of-day clock should neither delay nor hasten client evictions, the following code can be added to
main() before any timer-related work is done:
 
ACE_Reactor *r = ACE_Reactor::instance (); 
ACE_High_Res_Timer::global_scale_factor (); 
r->timer_queue ()-> 
  gettimeofday (&ACE_High_Res_Timer::gettimeofday_hr); 

The ACE_High_Res_Timer::global_scale_factor() call performs any initialization needed to obtain accurate timer
values before the program starts doing real work.
 

To implement the Evictor pattern, we extend Logging_Acceptor and Logging_Event_Handler in Section 3.3 to
create Logging_Acceptor_Ex and Logging_Event_Handler_Ex . We then register a timer for every instance of
Logging_Event_Handler_Ex . Since the default ACE timer queue (ACE_Timer_Heap) is highly scalable and efficient,
its scheduling, cancellation, and dispatching overhead is low, even if there are thousands of timers and instances of
Logging_Event_Handler_Ex.
 

We start by creating a new header file called Logging_Acceptor_Ex.h that contains the new Logging_Acceptor_Ex
class. The changes to this class are minor. We simply override and modify its handle_input() method to create a
Logging_Event_Handler_Ex rather than a Logging_Event_Handler, as shown below:
 
#include "ace/INET_Addr.h" 
#include "ace/Reactor.h" 
#include "Logging_Acceptor.h" 
#include "Logging_Event_Handler_Ex.h" 

class Logging_Acceptor_Ex : public Logging_Acceptor { 
public: 
  typedef ACE_INET_Addr PEER_ADDR; 

  // Simple constructor to pass <ACE_Reactor> to base class. 
  Logging_Acceptor_Ex (ACE_Reactor *r = ACE_Reactor::instance ()) 
    : Logging_Acceptor (r) {} 

  int handle_input (ACE_HANDLE) { 
    Logging_Event_Handler_Ex *peer_handler = 0; 
    ACE_NEW_RETURN (peer_handler, 
                    Logging_Event_Handler_Ex (reactor ()), -1); 
    // ... same as Logging_Acceptor::handle_input() 
  } 
}; 

In Chapter 7, we'll illustrate how the ACE Acceptor-Connector framework uses C++ features (such as templates,
inheritance, and dynamic binding) and design patterns (such as Template Method and Strategy [GoF]) to add new
behavior to an event handler without copying or modifying existing code.
 

The Logging_Event_Handler_Ex class involves more substantial additions, so we create both a
Logging_Event_Handler_Ex.h file and a Logging_Event_Handler_Ex.cpp file. In Logging_Event_Handler_Ex.h we
extend Logging_Event_Handler to create the following Logging_Event_Handler_Ex class:
 
class Logging_Event_Handler_Ex : public Logging_Event_Handler { 
private: 
  // Time when a client last sent a log record. 
  ACE_Time_Value time_of_last_log_record_; 

  // Maximum time to wait for a client log record. 
  const ACE_Time_Value max_client_timeout_; 

We implement the Evictor pattern by adding an ACE_Time_Value that keeps track of the time when a client last sent
a log record. The methods in the public interface of Logging_Event_Handler_Ex are shown below:
 
public: 
  typedef Logging_Event_Handler PARENT; 

  // 3600 seconds == one hour. 
  enum { MAX_CLIENT_TIMEOUT = 3600 }; 

  Logging_Event_Handler_Ex 
      (ACE_Reactor *reactor, 
       const ACE_Time_Value &max_client_timeout 
         = ACE_Time_Value (MAX_CLIENT_TIMEOUT)) 
    : Logging_Event_Handler (reactor), 
      time_of_last_log_record (0), 
      max_client_timeout_ (max_client_timeout) {} 

  virtual Logging_Event_Handler_Ex () { /* no-op */ } 
  virtual int open (); // Activate the event handler. 

  // Called by a reactor when logging events arrive. 
  virtual int handle_input (ACE_HANDLE); 

  // Called when a timeout expires to check if the client has 
  // been idle for an excessive amount of time. 
  virtual int handle_timeout (const ACE_Time_Value &tv, 
                              const void *act); 
  // Called when this object is destroyed, e.g., when it's 
  // removed from a reactor. 
  virtual int handle_close (ACE_HANDLE = ACE_INVALID_HANDLE, 
                            ACE_Reactor_Mask = 0); 
}; 

The Logging_Event_Handler_Ex::handle_input() method notes the time when a log record is received from the
connected client. We get the time from the timer queue's time source to ensure that all comparisons are consistent.
After recording the time, this method forwards to its parent's handle_input() method to process the log record, as
shown below:
 
int Logging_Event_Handler_Ex::handle_input (ACE_HANDLE h) { 
  time_of_last_log_record_ = 
    reactor ()->timer_queue ()->gettimeofday (); 
  return PARENT::handle_input (h); 
} 

The open() method is shown next:
 
 1 int Logging_Event_Handler_Ex::open () { 
 2   int result = PARENT::open (); 
 3   if (result != -1) { 
 4     ACE_Time_Value reschedule (max_client_timeout_.sec () / 4); 
 5     result = reactor ()->schedule_timer 
 6                (this, 0, 
 7                 max_client_timeout_,  // Initial timeout. 
 8                 reschedule);          // Subsequent timeouts. 
 9   } 
10   return result; 
11 } 

Line 2 Forward to the parent's open() method (page 59).
 

Lines 4? Call ACE_Reactor::schedule_timer() (page 76) to schedule this event handler to be dispatched by the
reactor periodically to check whether its client sent it a log record recently. We schedule the initial timer to expire in
max_client_timeout_ seconds (which defaults to one hour) and also request that it then expire periodically every
max_client_timeout_ / 4 seconds (i.e., check every 15 minutes).
 

When a timer expires, the reactor uses its timer queue mechanism to dispatch the following handle_timeout() hook
method automatically:
 
int Logging_Event_Handler_Ex::handle_timeout 
    (const ACE_Time_Value &now, const void *) { 
  if (now - time_of_last_log_record_ >= max_client_timeout_) 
    reactor ()->remove_handler (this, 
                                ACE_Event_Handler::READ_MASK); 
  return 0; 
} 

When an ACE timer queue dispatches handle_timeout(), it sets the now parameter to the absolute time (from
ACE_Timer_Queue::gettimeofday()) when the queue expires the timer.
Logging_Event_Handler_Ex::handle_timeout() checks if the time elapsed between now and the time when this event
handler received its last log record is greater than the designated max_client_timeout_ threshold. If so, it calls
ACE_Reactor::remove_handler(), which triggers the reactor to call the following hook method to remove the event
handler from the reactor:
 
int Logging_Event_Handler_Ex::handle_close (ACE_HANDLE, 
                                            ACE_Reactor_Mask) { 
  reactor ()->cancel_timer (this); 
  return PARENT::handle_close (); 
} 

This method cancels the handler's timer and calls its parent's handle_close() method (page 60), which closes the log
file and socket to the client, and then deletes itself.
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3.5 The ACE_Reactor Class
 

Motivation
 

Event-driven networked applications have historically been programmed using native OS mechanisms, such as the
Socket API and the select() synchronous event demultiplexer. Applications developed this way, however, are not
only nonportable, they are inflexible because they tightly couple low-level event detection, demultiplexing, and
dispatching code together with application event processing code. Developers must therefore rewrite all this code for
each new networked application, which is tedious, expensive, and error prone. It's also unnecessary because much
of event detection, demultiplexing, and dispatching can be generalized and reused across many networked
applications.
 

One way to address these problems is to combine skilled object-oriented design with networked application domain
experience to produce a set of framework classes that separates application event handling code from the reusable
event detection, demultiplexing, and dispatching code in the framework. Sections 3.2 through 3.4 laid the
groundwork for this framework by describing reusable time value and timer queue classes, and by defining the
interface between framework and application event processing code with the ACE_Event_Handler class. This
section describes how the ACE_Reactor class at the heart of the ACE Reactor framework defines how applications
can register for, and be notified about, events from multiple sources.
 

Class Capabilities
 

ACE_Reactor implements the Facade pattern [GoF] to define an interface that applications can use to access the
various ACE Reactor framework features. This class provides the following capabilities:
 

•

• It centralizes event loop processing in a reactive application.
•  
•

• It detects events via an event demultiplexer, such as select() or WaitForMultipleObjects(), provided by the
OS and used by the reactor implementation.

•  
•

• It demultiplexes events to event handlers when the event demultiplexer indicates the occurrence of the
designated events.

•  
•

• It dispatches the appropriate hook methods on registered event handlers to perform application-defined
processing in response to the events.

•  
•

• It ensures that any thread can change a Reactor's event set or queue a callback to an event handler and
expect the Reactor to act on the request promptly.

•  

The interface for ACE_Reactor is shown in Figure 3.6 (page 72). This class has a rich interface that exports all the
features in the ACE Reactor framework. We therefore group its method descriptions into the six categories
described below.
 

1. Reactor initialization and destruction methods. The following methods initialize and destroy an ACE_Reactor:
 

Method
 

Description
 

ACE_Reactor() open()
 

These methods create and initialize instances of a reactor.
 

ACE_Reactor() close()
 

These methods clean up the resources allocated when a
reactor was initialized.
 

The ACE_Reactor class isolates a variety of demultiplexing mechanisms behind the stable interface discussed in this
chapter. To partition the different mechanisms in an easy-to-use and easy-to-maintain way, the ACE_Reactor class
uses the Bridge pattern [GoF] to separate its implementations from its class interface. This design allows users to
substitute a specific reactor implementation when the default isn't appropriate.
 

The ACE_Reactor constructor can optionally be passed a pointer to the implementation used to detect and
demultiplex events and to dispatch the methods on the appropriate event handlers. The ACE_Select_Reactor
described in Section 4.2 is the default implementation of the ACE_Reactor on most platforms. The exception is
Windows, which defaults to ACE_WFMO_Reactor for the reasons described in Sidebar 25 (page 105).
 

The ACE_Reactor::open() method can be passed:
 

•

• The number of I/O handles and event handlers managed by the reactor. The default varies according to the
reactor implementation, as described in Sidebar 20 (page 92).

•  
•

• The type of timer queue implementation the reactor will use. The default is the ACE_Timer_Heap described
in Section 3.4 (page 64).

•  

Although ACE offers "full-featured" class constructors, they're best used in error-free or prototype situations where
error checking is not important (see Item 10 in [Mey96]). The preferred usage in ACE is a separate call to open()
(and close() in the case of object cleanup) methods. This preference stems from the ability of open() and close() 
Figure 3.6 The ACE_Reactor Class
 
                               ACE_Reactor 
# reactor_ : ACE_Reactor * 
# implementation_ : ACE_Reactor_Impl * 
+ ACE_Reactor (implementation : ACE_Reactor_Impl * = 0, 
               delete_implementation : int = 0) 
+ open (max_handles : int, restart : int = 0, 
        sig_handler : ACE_Sig_Handler * = 0, 
        timer_queue : ACE_Timer_Queue * = 0) : int 
+ close () : int 
+ register_handler (handler : ACE_Event_Handler *, 
                    mask : ACE_Reactor_Mask) : int 
+ register_handler (io : ACE_HANDLE, handler : ACE_Event_Handler *, 
                    mask : ACE_Reactor_Mask) : int 
+ remove_handler (handler : ACE_Event_Handler *, 
                  mask : ACE_Reactor_Mask) : int 
+ remove_handler (io : ACE_HANDLE, mask : ACE_Reactor_Mask) : int 
+ remove_handler (hs : const ACE_Handle_Set&, m : ACE_Reactor_Mask) : int 
+ suspend_handler (handler : ACE_Event_Handler *) : int 
+ resume_handler (handler : ACE_Event_Handler *) : int 
+ mask_ops (handler : ACE_Event_handler *, 
            mask : ACE_Reactor_Mask, ops : int) : int 
+ schedule_wakeup (handler : ACE_Event_Handler *, 
                   masks_to_be_added : ACE_Reactor_Mask ) : int 
+ cancel_wakeup (handler : ACE_Event_Handler *, 
                 masks_to_be_cleared : ACE_Reactor_Mask) : int 
+ handle_events (max_wait_time : ACE_Time_Value * = 0) : int 
+ run_reactor_event_loop (event_hook : int (*)(void *) = 0) : int 
+ end_reactor_event_loop () : int 
+ reactor_event_loop_done () : int 
+ schedule_timer (handler : ACE_Event_Handler *, arg : void *, 
             delay : ACE_Time_Value &, 
             repeat : ACE_Time_Value & = ACE_Time_Value::zero) : int 
+ cancel_timer (handler : ACE_Event_Handler *, 
                dont_call_handle_close : int = 1) : int 
+ cancel_timer (timer_id : long, arg : void ** = 0, 
                dont_call_handle_close : int = 1) : int 
+ notify (handler : ACE_Event_Handler * = 0, 
          mask : ACE_Reactor_Mask = ACE_Event_Handler::EXCEPT_MASK, 
          timeout : ACE_Time_Value * = 0) : int 
+ max_notify_iterations (iterations : int) : int 
+ purge_pending_notifications (handler : ACE_Event_Handler *, 
                    mask : ACE_Reactor_Mask = ALL_EVENTS_MASK) : int 
+ instance () : ACE_Reactor * 

+ owner (new_owner : ACE_thread_t, old_owner : ACE_thread_t * = 0) : int to return error
indications, whereas ACE constructors and destructors don't throw native C++ exceptions. The motivation for
avoiding native C++ exceptions in ACE's design is discussed in Section A.6 of C++NPv1. The ACE_Svc_Handler
class discussed in Section 7.2 of this book closes the underlying socket handle automatically.
 

The ACE_Reactor destructor and close() methods release all the resources used by a reactor. This shutdown
process involves calling the handle_close() hook method on all event handlers associated with handles that remain
registered with a reactor. Any scheduled timers are deleted without notice and any notifications that are buffered in
the reactor's notification mechanism (page 77) are lost when a reactor is closed.
 

2. Event handler management methods. The following methods register and remove event handlers from an
ACE_Reactor:
 

Method
 

Description
 

register_handler()
 

Register an event handler for I/O- and signal-based
events.
 

remove_handler()
 

Remove an event handler from I/O-based and
signal-based event dispatching.
 

suspend_handler()
 

Temporarily prevent dispatching events to an event
handler.
 

resume_handler()
 

Resume event dispatching for a previously suspended
handler.
 

mask_ops()
 

Get, set, add, or clear the event type(s) associated with
an event handler and its dispatch mask.
 

schedule_wakeup()
 

Add the designated masks to an event handler's entry,
which must have been registered previously via
register_handler().
 

cancel_wakeup()
 

Clear the designated masks from an event handler's
entry, but don't remove the handler from the reactor.
 

The ACE_Reactor's registration and removal methods offer multiple overloaded signatures to facilitate their use in
many different situations. For example, the register_handler() methods can be used with any of the following
signatures:
 

•

• (ACE_Event_Handler *, ACE_Reactor_Mask)? In this version, the first parameter identifies the
application's event handler and the second indicates the type of event(s) the handler is prepared to process.
The method's implementation uses double-dispatching [GoF] to obtain a handle via the handler's get_handle()
method. The advantage of this design is that application code need not obtain nor expose an I/O handle
explicitly, which prevents accidental association of the wrong handle with an event handler. Most examples in
this book therefore use this variant of register_handler().

•  
•

• (ACE_HANDLE, ACE_Event_Handler *, ACE_Reactor_Mask)? In this version, a new first parameter is
added to explicitly specify the I/O handle associated with the application's event handler. This design is
potentially more error-prone than the two-parameter version above since callers can accidentally pass an I/O
handle that doesn't match the event handler. However, it allows an application to register multiple I/O handles
for the same event handler, which is necessary for handlers that must be associated with multiple IPC
objects. This method can also be used to conserve memory if a single event handler can process events from
many unrelated I/O streams that don't require maintenance of per-handle state. The client logging daemon
example in the Example portion of Section 6.2 illustrates the three parameter variant of register_handler().

•  
•

• (const ACE_Sig_Set &sigset, ACE_Event_Handler *new_sh, ACE_ Sig_Action *new_disp)? In this
version, a new event handler (new_sh)is specified to handle a set of POSIX signals. When any signal in sigset
is raised, the reactor will call the handle_signal() hook method on the associated event handler. Unlike other
callbacks from the reactor, handle_signal() is called in signal context. Its actions are therefore restricted to a
subset of available system calls. Developers are advised to check their OS platform documentation for details.

•  

The ACE_Reactor::remove_handler() methods can be used to remove event handlers from a reactor so that they are
no longer registered for one or more types of I/O events or signals. There are variants with and without an explicit
handle specification (just like the first two register_handler() method variants described above). One variant accepts
an ACE_Handle_Set to remove a number of handles at once; the other accepts an ACE_Sig_Set to remove signals
from reactor handling. The ACE_Reactor::cancel_timer() method (page 76) must be used to remove event handlers
that are scheduled for timer events.
 

When an application calls one of the ACE_Reactor::remove_handler() methods for I/O event removal, it can pass a
bit mask consisting of the enumeration literals defined in the table on page 50. This bit mask indicates which I/O event
types are no longer of interest. The event handler's handle_close() method is subsequently called to notify it of the
removal. After handle_close() returns and the event handler is no longer registered to handle any I/O events, the
ACE_Reactor removes the event handler from its internal I/O event demultiplexing data structures.
 

An application can prevent handle_close() from being called back by adding the
ACE_Event_Handler::DONT_CALL flag to remove_handler()'s mask parameter. This flag instructs a reactor not to
dispatch the handle_close() method when removing an event handler, as shown in the Service_Reporter::fini() method
(page 135). To ensure a reactor won't invoke handle_close() in an infinite recursion, the DONT_CALL flag should
always be passed to remove_handler() when it's called from within the handle_close() hook method itself.
 

By default, the handle_close() hook method is not called when canceling timers via the cancel_timer() method.
However, an optional final argument can be supplied to request that handle_close() be called. The handle_close()
method is not called when removing an event handler from signal handling.
 

The suspend_handler() method can be used to remove a handler or set of handlers temporarily from the reactor's
handle-based event demultiplexing activity. The resume_handler() method reverts the actions of suspend_handler() so
that the handle(s) are included in the set of handles waited upon by the reactor's event demultiplexer. Since
suspend_handler() and resume_handler() affect only I/O handle-based dispatching, they have no effect on timers,
signal handling, or notifications.
 

The mask_ops() method performs operations that get, set, add, or clear the event type(s) associated with an event
handler's dispatch mask. The mask_ops() method assumes that an event handler is already present and doesn't try to
register or remove it. It's therefore more efficient than using register_handler() and remove_handler(). The
schedule_wakeup() and cancel_wakeup() methods are simply "syntactic sugar" for common operations involving
mask_ops(). They help prevent subtle errors, however, such as replacing a mask when adding bits was intended. For
example, the following mask_ops() calls enable and disable the ACE_Event_Handler::WRITE_MASK:
 
ACE_Reactor::instance ()->mask_ops 
  (handler, ACE_Event_Handler::WRITE_MASK, ACE_Reactor::ADD_MASK); 
// ... 
ACE_Reactor::instance ()->mask_ops 
  (handler, ACE_Event_Handler::WRITE_MASK, ACE_Reactor::CLR_MASK); 

These calls can be replaced by the following more concise and informative method calls:
 
ACE_Reactor::instance ()->schedule_wakeup 
  (handler, ACE_Event_Handler::WRITE_MASK); 
// ... 
ACE_Reactor::instance ()->cancel_wakeup 
  (handler, ACE_Event_Handler::WRITE_MASK); 

3. Event-loop management methods. Inversion of control is a key capability offered by the ACE Reactor framework.
Similar to other frameworks, such as the X Windows Toolkit or Microsoft Foundation Classes (MFC),
ACE_Reactor implements the event loop that controls when application event handlers are dispatched. After
registering its initial event handlers, an application can manage its event loop via methods in the following table:
 

Method
 

Description
 

handle_events()
 

Waits for an event to occur and then dispatches the
associated event handler(s). A timeout parameter can
limit the time spent waiting for an event.
 

run_reactor_event_loop()
 

Calls the handle_events() method repeatedly until it fails,
reactor_event_loop_done() returns 1, or an optional
timeout occurs.
 

end_reactor_event_loop()
 

Instructs a reactor to shut down its event loop.
 

reactor_event_loop_done()
 

Returns 1 when the reactor's event loop has been ended
via a call to end_reactor_event_loop().
 

The handle_events() method gathers the handles of all registered event handlers, passes them to the reactor's event
demultiplexer, and blocks for up to an application-specified time interval awaiting the occurrence of an event, such as
I/O activity or timer expiration. When an event occurs, this method dispatches the appropriate preregistered event
handlers by invoking their handle_*() hook method(s) defined by the application to process the event(s). If more than
one event occurs, they are all dispatched before returning. The return value indicates the number of events processed,
0 if no events occurred before the caller-specified timeout, or -1 if an error occurred.
 

The run_reactor_event_loop() method is a simple wrapper around handle_events(). It runs the event loop continually,
calling handle_events() until either
 

•

• An error occurs
•  
•

• The time designated in the optional ACE_Time_Value elapses
•  
•

• The end_reactor_event_loop() method is called?ossibly from within one of the event handling callbacks?o
end the event loop

•  

Applications without specialized event handling needs often use run_reactor_event_loop() and
end_reactor_event_loop() to handle their event loops because these methods detect and handle errors automatically.
 

Many networked applications run a reactor's event loop in a single thread of control. Sections 4.3 and 4.4 describe
how the ACE_TP_Reactor and ACE_WFMO_Reactor classes allow multiple threads to call their event loop
methods concurrently.
 

4. Timer management methods. By default, ACE_Reactor uses the ACE_Timer_Heap timer queue mechanism
described in Section 3.4 to schedule and dispatch event handlers in accordance to their timeout deadlines. The timer
management methods exposed by the ACE_Reactor include:
 

Method
 

Description
 

schedule_timer()
 

Registers an event handler that will be executed after a
user-specified amount of time.
 

cancel_timer()
 

Cancels one or more timers that were previously
registered.
 

The ACE_Reactor codifies the proper usage of the ACE timer queue functionality in the context of handling a range
of event types including I/O and timers. In fact, most users interact with the ACE timer queues only via the
ACE_Reactor, which integrates the ACE timer queue functionality into the Reactor framework as follows:
 

•

• The schedule_timer() method allows users to specify timers using relative time, which is generally easier to
work with than the absolute times the ACE timer queues use. This method uses the timer queue's
gettimeofday() mechanism to adjust user-specified times automatically to the time method used by the timer
queue.

•  
•

• The handle_events() method queries the timer queue to find the expiration time of the earliest timer. It then
uses this value to limit the amount of time the event demultiplexer waits for I/O events.

•  
•

• The handle_events() method will call the timer queue methods to expire timers when the event demultiplexer
times out after the time for the earliest timer arrives.

•  

Together, these actions effectively integrate timers into the ACE Reactor framework in an easy-to-use way that
allows applications to reuse the ACE timer queue capabilities without interacting with timer queue methods directly. 
Sidebar 16 describes how to minimize dynamic memory allocations in ACE timer queues.
 

Sidebar 16: Minimizing Memory Allocations
in ACE Timer Queues
 

The ACE_Timer_Queue base class depicted in Figure 3.5 (page 64) offers no method to set the size of
a timer queue. This omission is deliberate because there's no uniform meaning for "size" at that level of
the class hierarchy. Each timer queue subclass has a different meaning for "size" that's related to its
underlying data structures. The timer queue subclasses therefore offer size-related parameters in their
constructors. These parameters are hints instructing the timer queue implementation how large to make
its initial internal data structures. Although the timer queues resize automatically to accomodate arbitrarily
large numbers of timers, resizing involves dynamic memory allocation, which can introduce overhead
that's prohibitive for some applications.
 

In addition to sizing the queue, the ACE_Timer_Heap and ACE_Timer_Wheel classes offer the ability
to preallocate timer queue entries so the queue can avoid any subsequent dynamic memory allocation.
To make the ACE_Reactor use a custom-tuned queue for its timer operations you simply need to do the
following:
 

1.

1. Instantiate the desired ACE timer queue class, specifying the desired size and preallocation
argument, if applicable.

1.  
2.

2. Instantiate an ACE reactor implementation object, specifying the timer queue from step 1.
2.  
3.

3. Instantiate a new ACE_Reactor object, supplying the implementation object from step 2.
3.  

5. Notification methods. A reactor has a notification mechanism that applications can use to insert events and event
handlers into a reactor's dispatching engine. The following methods manage various aspects of a reactor's notification
mechanism:
 

Method
 

Description
 

notify()
 

Inserts an event (and an optional event handler) into the
reactor's event detector, which causes it to be processed
when the reactor next waits for events.
 

max_notify_iterations()
 

Sets the maximum number of handlers a reactor will
dispatch from its notification mechanism.
 

purge_pending_notifications()
 

Purges a specified event handler or all event handlers
from the reactor's notification mechanism.
 

The ACE_Reactor::notify() method can be used for several purposes:
 

•

• The reactor notification mechanism enables other threads to wake up a reactor's owner thread whose event
demultiplexer function is blocked waiting for I/O events to occur. For example, since mask_ops(),
schedule_wakeup(), and cancel_wakeup() don't cause the reactor to reexamine its set of handles and
handlers, any new masks will only be noticed the next time a reactor's handle_events() method is called. If no
other activity is expected shortly, or if the wait masks should be reexamined immediately,
ACE_Reactor::notify() can be called to force a reactor to reexamine its set of handles and handlers.

•  
•

• The notify() method can be passed an event handler pointer and one of the ACE_Reactor_Mask values,
such as READ_MASK, WRITE_MASK, or EXCEPT_MASK. These parameters trigger the reactor to
dispatch the corresponding event handler hook method (outlined in the table on page 50) without needing to
associate the handler with I/O handles or timer events. This feature enables the reactor to scale to an
open-ended number of event handlers since there's no requirement that a handler whose pointer is passed to
ACE_Reactor::notify() has ever been, or ever will be, registered with that reactor.

•  

By default, a reactor dispatches all event handlers in its notification mechanism after detecting a notification event. The
max_notify_iterations() method can change the number of event handlers dispatched. Setting a low value improves
fairness and prevents starvation, though it increases dispatching overhead somewhat.
 

Sidebar 17: Avoiding Reactor Notification
Mechanism Deadlock
 

By default, the reactor notification mechanism is implemented with a bounded buffer and notify() uses a
blocking send call to insert notifications into the queue. A deadlock can therefore occur if the buffer is
full and notify() is called by a handle_*() method of an event handler. There are several ways to avoid
such deadlocks:
 

•

• Pass a timeout to the notify() method. This solution pushes the responsibility for handling buffer
overflow to the thread that calls notify().

•  
•

• Design the application so that it doesn't generate calls to notify() faster than a reactor can
process them. This is ultimately the best solution, though it requires careful analysis of program
behavior.

•  

Sidebar 22 (page 94) describes a way to avoid ACE_Select_Reactor deadlocks.
 

Notifications to the reactor are queued internally while waiting for the reactor to dispatch them (Sidebar 17 discusses
how to avoid deadlock on a queue). If an event handler associated with a notification is invalidated before the
notification is dispatched, a catastrophic failure can occur when the reactor tries to dispatch an invalid event handler
pointer. The purge_pending_notifications() method can therefore be used to remove any notifications associated with
an event handler from the queue. The ACE Reactor framework assists users by calling purge_pending_notifications()
from the ACE_Event_Handler destructor. This behavior is inherited by all application event handlers because the
destructor is declared virtual.
 

Notifications remain in a queue until they are dispatched or purged by an event handler, which ensures that a
notification will be processed even if the reactor is busy processing other events at the time that notify() is called.
However, if the reactor ceases to detect and dispatch events (e.g., after run_reactor_event_loop() returns), any
queued notifications remain and will not be dispatched unless and until the reactor is directed to detect and dispatch
events again. Notifications will therefore be lost if the reactor is closed or deleted before dispatching the queued
notifications. Applications are responsible for deciding when to terminate event processing, and no events from any
source will be detected, demultiplexed, or dispatched after that time.
 

6. Utility methods. The ACE_Reactor class also defines the following utility methods:
 

Method
 

Description
 

instance()
 

A static method that returns a pointer to a singleton
ACE_Reactor, which is created and managed by the
Singleton pattern [GoF] combined with the
Double-Checked Locking Optimization pattern [POSA2
].
 

owner()
 

Assigns a thread to "own" a reactor's event loop.
 

The ACE_Reactor can be used in two ways:
 

•

• As a singleton [GoF] via the instance() method shown in the table above.
•  
•

• By instantiating one or more instances. This capability can be used to support multiple reactors within a
process. Each reactor is often associated with a thread running at a particular priority [Sch98].

•  

Some reactor implementations, such as the ACE_Select_Reactor described in Section 4.2, only allow one thread to
run their handle_events() method. The owner() method changes the identity of the thread that owns the reactor to
allow this thread to run the reactor's event loop. Sidebar 18 (page 80) describes how to avoid deadlock when using
a reactor in multithreaded applications.
 

Figure 3.8 (page 85) presents a sequence diagram of the interactions among classes in the ACE Reactor framework.
Additional coverage of the ACE Reactor framework's design appears in the Reactor pattern's Implementation
section in Chapter 3 of POSA2.
 

Figure 3.8. UML Sequence Diagram for the Reactive Logging Server
 

Example
 

Before we show the rest of the reactive networked logging server, let's quickly review the external behavior of the
logging server and client developed in C++NPv1. The logging server listens on a TCP port number specified on the
command line, defaulting to the port number specified as ace_logger in the OS network services file. For example,
the following line might appear in the UNIX /etc/services file:
 

Sidebar 18: Avoiding Reactor Deadlock in
Multithreaded Applications
 

Although reactors are often used in single-threaded applications, they can also be used in multithreaded
applications. In this context, it's important to avoid deadlock between multiple threads that are sharing
an ACE_Reactor. For example, an ACE_Reactor holds a recursive mutex when it dispatches a callback
to an event handler. If the dispatched callback method directly or indirectly calls back into the reactor
within the same thread of control, the recursive mutex's acquire() method detects this automatically and
simply increases its count of the lock recursion nesting depth, rather than deadlocking the thread.
 

Even with recursive mutexes, however, it's still possible to incur deadlock under the following
circumstances:
 

•

• The original callback method calls a second method that blocks trying to acquire a mutex that's
held by a second thread executing the same method.

•  
•

• The second thread directly or indirectly calls into the same reactor.
•  

In this case, deadlock can occur since the reactor's recursive mutex doesn't realize that the second
thread is calling on behalf of the first thread where the callback method was dispatched originally.
 

One way to avoid ACE_Reactor deadlock in a multithreaded application is to not make blocking calls
to other methods from callbacks if those methods are executed concurrently by competing threads that
directly or indirectly call back into the same reactor. It may be necessary to use an
ACE_Message_Queue described in Section 6.2 to exchange information asynchronously if a handle_*()
callback method must communicate with another thread that accesses the same reactor.
 

ace_logger     9700/tcp     # Connection-oriented Logging Service 

Client applications can optionally specify the TCP port and the IP host name or address where the client application
and logging server should rendezvous to exchange log records. If this information isn't specified, however, the port
number is located in the services database, and the hostname is assumed to be the
ACE_DEFAULT_SERVER_HOST, which is defined as "localhost" on most OS platforms.
 

The version of the logging server shown below offers the same capabilities as the Reactive_Logging_Server_Ex
version in Chapter 7 of C++NPv1. Both servers run in a single thread of control in a single process, handling log
records from multiple clients reactively. The main difference is that the version described here reuses the event
detection, demultiplexing, and dispatching capabilities from the ACE Reactor framework. This refactoring removes
the following application-independent code from the original Reactive_Logging_Server_Ex implementation:
 

Handle-to-object mapping. Two data structures in Reactive_Logging_Server_Ex performed the following mappings:
 

1.

1. An ACE_Handle_Set contained all the socket handles for connected clients and the ACE_SOCK_Acceptor
handle for accepting new client connections.

1.  
2.

2. An ACE_Hash_Map_Manager mapped socket handles to loosely associated ACE_FILE_IO objects,
which write log records to the appropriate output file.

2.  

Since the ACE Reactor framework now provides and maintains the code that manages handle-to-object mappings,
the resulting application is smaller, faster, and makes much better use of the reusable software artifacts available in
ACE.
 

Event detection, demultiplexing, and dispatching. To detect both connection and data events, the
Reactive_Logging_Server_Ex server used the ACE::select() synchronous event demultiplexer method. This design
had the following drawbacks, however:
 

1.

1. It worked only as long as the OS provided select().
1.  
2.

2. It worked well only as long as the OS implemented select() efficiently.
2.  
3.

3. The code that called ACE::select() and processed the resulting handle sets was hard to reuse for other
applications.

3.  

The new logging server reuses the ACE Reactor framework's ability to portably and efficiently detect, demultiplex,
and dispatch I/O- and time-based events. This framework also allows the application to integrate signal handling if
the need arises.
 

With the application-independent code described above removed, an important maintenance problem with the
original code is revealed. Although the code worked correctly, the Reactive_Logging_Server_Ex, Logging_Handler,
handle-to-ACE_FILE_IO map and ACE_FILE_IO objects were loosely cohesive and tightly coupled. Changing the
event handling mechanism therefore also required changes to all of the application-specific event handling code,
which illustrates the negative effects of tangling application-specific code with (what should be)
application-independent code. This resulted in a design that was hard to extend and maintain, which would add
considerable cost to the logging server as it evolved over time.
 

In contrast, the Logging_Event_Handler class (page 56) shows how the new reactive logging server separates
concerns more effectively by combining ACE_FILE_IO with a Logging_Handler and registering the socket's handle
with the reactor. This example show the following steps that developers can use to integrate applications with the
ACE Reactor framework:
 

1.

1. Create event handlers by inheriting from the ACE_Event_Handler base class and overriding its virtual
methods to handle various types of events.

1.  
2.

2. Register event handlers with an instance of ACE_Reactor.
2.  
3.

3. Run an event loop that demultiplexes and dispatches events to the event handlers.
3.  

Figure 3.7 illustrates the reactive logging server architecture that builds on our earlier implementations from
C++NPv1. This architecture enhances reuse and extensibility by decoupling the following aspects of the logging
server:
 

Figure 3.7. Architecture of the ACE_Reactor Logging Server
 

•

• ACE Reactor framework classes. These classes encapsulate the lower-level OS mechanisms that perform
event detection and the demultiplexing and dispatching of events to event handler hook methods.

•  
•

• ACE Socket wrapper facade classes. The ACE_SOCK_Acceptor and ACE_SOCK_Stream classes
presented in Chapter 3 of C++NPv1 are used in this version of the logging server. As in previous versions,
the ACE_SOCK_Acceptor accepts network connections from remote clients and initializes
ACE_SOCK_Stream objects. An initialized ACE_SOCK_Stream object then processes data exchanged
with its connected client.

•  
•

• Logging event handler classes. These classes implement the capabilities specific to the networked logging
service. As shown in the Example portion of Section 3.4, the Logging_Acceptor_Ex factory uses an
ACE_SOCK_Acceptor to accept client connections. Likewise, the Logging_Event_Handler_Ex uses an
ACE_SOCK_Stream to receive log records from connected clients. Both Logging_* classes are
descendants of ACE_Event_Handler, so their handle_input() methods can receive callbacks from an
ACE_Reactor.

•  

Our implementation begins in a header file called Reactor_Logging_Server.h, which includes several header files that
provide the various capabilities we'll use in our ACE_Reactor-based logging server.
 
#include "ace/ACE.h" 
#include "ace/Reactor.h" 

We next define the Reactor_Logging_Server class, which forms the basis for many subsequent logging server
examples in this book:
 
template <class ACCEPTOR> 
class Reactor_Logging_Server : public ACCEPTOR { 
public: 
  Reactor_Logging_Server (int argc, char *argv[], ACE_Reactor *); 
}; 

This class inherits from its ACCEPTOR template parameter. To vary certain aspects of Reactor_Logging_Server's
connection establishment and logging behavior, subsequent examples will instantiate it with various types of
acceptors, such as the Logging_Acceptor_Ex (pages 67, 96, and 101), the Logging_Acceptor_WFMO (page 113),
the TP_Logging_Acceptor (page 193), and the TPC_Logging_Acceptor (page 227). Reactor_Logging_Server also
contains a pointer to the ACE_Reactor that it uses to detect, demultiplex, and dispatch I/O- and time-based events
to their event handlers.
 

Reactor_Logging_Server differs from the Logging_Server class defined in Chapter 4 of C++NPv1 since
Reactor_Logging_Server uses the ACE_Reactor::handle_events() method to process events via callbacks to
instances of Logging_Acceptor and Logging_Event_Handler. Thus, the handle_connections(), handle_data(), and
wait_for_multiple_events(), hook methods used in the reactive logging servers from C++NPv1 are no longer needed.
 

The Reactor_Logging_Server template implementation resides in Reactor_Logging_Server_T.cpp. Its constructor
performs the steps necessary to initialize the reactive logging server:
 
 1 template <class ACCEPTOR> 
 2 Reactor_Logging_Server<ACCEPTOR>::Reactor_Logging_Server 
 3   (int argc, char *argv[], ACE_Reactor *reactor) 
 4   : ACCEPTOR (reactor) { 
 5   u_short logger_port = argc > 1 ? atoi (argv[1]) : 0; 
 6   ACE_TYPENAME ACCEPTOR::PEER_ADDR server_addr; 
 7   int result; 
 8 
 9   if (logger_port != 0) 
10     result = server_addr.set (logger_port, INADDR_ANY); 
11   else 
12     result = server_addr.set ("ace_logger", INADDR_ANY); 
13   if (result != -1) 
14     result = ACCEPTOR::open (server_addr); 
15   if (result == -1) reactor->end_reactor_event_loop (); 
16 } 

Line 5 Set the port number that we'll use to listen for client connections.
 

Line 6 Use the PEER_ADDR trait class that's part of the ACCEPTOR template parameter to define the type of
server_addr. The use of traits simplifies the wholesale replacement of IPC classes and their associated addressing
classes. Sidebar 19 explains the meaning of the ACE_TYPENAME macro.
 

Lines 9?2 Set the local server address server_addr.
 

Line 14 Pass server_addr to ACCEPTOR::open() to initialize the passive-mode endpoint and register this object
with the reactor for ACCEPT events.
 

Line 15 If an error occured, instruct the reactor to shut its event loop down so the main() function doesn't hang.
 

Sidebar 19: The C++ typename Keyword and
ACE_TYPENAME Macro
 

The C++ typename keyword tells the compiler that a symbol (such as PEER_ADDR) is a type. This
keyword is necessary when the qualifier is a template type argument (such as ACCEPTOR) because the
compiler won't have a concrete class to examine until templates are instantiated, which could be much
later in the build process. Since typename is a relatively recent addition to C++, ACE provides a
portable way to specify it. The ACE_TYPENAME macro expands to the typename keyword on C++
compilers that support it and to nothing on compilers that don't.
 

We conclude with the logging server's main() function, which resides in Reactor_Logging_Server.cpp:
 
 1 typedef Reactor_Logging_Server<Logging_Acceptor_Ex> 
 2         Server_Logging_Daemon; 
 3 
 4 int main (int argc, char *argv[]) { 
 5   ACE_Reactor reactor; 
 6   Server_Logging_Daemon *server = 0; 
 7   ACE_NEW_RETURN (server, 
 8                   Server_Logging_Daemon (argc, argv, &reactor), 
 9                   1); 
10 
11   if (reactor.run_reactor_event_loop () == -1) 
12     ACE_ERROR_RETURN ((LM_ERROR, "%p\n", 
13                        "run_reactor_event_loop()"), 1); 
14   return 0; 
15 } 

Lines 1? Instantiate the Reactor_Logging_Server template with the Logging_Acceptor_Ex class (page 67) to create
the Server_Logging_Daemon typedef.
 

Lines 6? Dynamically allocate a Server_Logging_Daemon object.
 

Lines 11?3 Use the local instance of ACE_Reactor to drive all subsequent connection and data event processing until
an error occurs. The ACE_ERROR_RETURN macro and other ACE debugging macros are described in Sidebar
10 on page 93 of C++NPv1.
 

Line 15 When the local reactor's destructor runs at the end of main() it calls the Logging_Acceptor::handle_close()
method (page 58) to delete the dynamically allocated Server_Logging_Daemon object. The destructor also calls
Logging_Event_Handler_Ex::handle_close() (page 70) for each registered event handler to clean up the handler and
shut the server down gracefully.
 

Figure 3.8 illustrates the interactions in the example above. Since all event detection, demultiplexing, and dispatching
is handled by the ACE Reactor framework, the reactive logging server implementation is much shorter than the
equivalent ones in C++NPv1. In fact, the work involved in moving from the C++NPv1 reactive servers to the current
server largely involves deleting code that's no longer needed, such as handle set and handle set management,
handle-to-ACE_FILE_IO mapping, synchronous event demultiplexing, and event dispatching. The remaining
application-defined functionality is isolated in classes inherited from the ACE Reactor framework.
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3.6 Summary
 

This chapter showed how the ACE Reactor framework can simplify the development of concise, correct, portable,
and efficient event-driven networked applications by encapsulating OS event demultiplexing mechanisms within an
object-oriented C++ interface. Likewise, it showed how the ACE Reactor framework enhances reuse, improves
portability, and enables the extensibility of event handlers by separating event detection, demultiplexing, and
dispatching mechanisms from application-defined event processing policies.
 

Since reusable classes in the ACE Reactor framework perform the lower-level event detection, demultiplexing, and
event handler dispatching, a relatively small amount of application-defined code must be written. For example, the
logging service in Sections 3.3 and 3.4 is mostly concerned with application-defined processing activities, such as
receiving client log records. Any applications that reuse the ACE_Reactor class described in Section 3.5 can
therefore leverage the knowledge and experience of its skilled middleware developers, as well as its future
enhancements and optimizations.
 

The ACE Reactor framework uses dynamic binding extensively since the dramatic improvements in clarity,
extensibility, and modularity it provides usually compensate for any decrease in efficiency resulting from its indirect
virtual table dispatching [HLS97]. The ACE Reactor framework is often used to develop networked applications,
where the major sources of overhead result from caching, latency, network/host interface hardware,
presentation-level formatting, dynamic memory allocation and copying, synchronization, and concurrency
management. The additional indirection caused by dynamic binding is often insignificant by comparison [Koe92]. In
addition, good C++ compilers can eliminate virtual method overhead completely via the use of "adjustor thunk"
optimizations [Lip96].
 

One of the most powerful properties of the ACE Reactor framework design is its ability to enhance extensibility both
above and below its public interface. The Reactor implementations provide a good example of how applying patterns
can provide a set of classes that take advantage of unique platform capabilities, while maintaining the ability for
networked applications to run unchanged across diverse computing platforms. The next chapter studies the
techniques that ACE uses to achieve this flexibility.
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Chapter 4. ACE Reactor Implementations
 

CHAPTER SYNOPSIS
 

This chapter describes the design and use of several implementations of the ACE_Reactor interface described in 
Chapter 3. These implementations support a diverse collection of operating system synchronous event demultiplexing
mechanisms, including select(), WaitForMultipleObjects(), XtAppMainLoop(), and /dev/poll. We explain the
motivations for, and capabilities provided by, the most common reactor implementations available in the ACE
Reactor framework. We also illustrate how to use three different implementations of the ACE_Reactor to improve
our logging server example. In addition, we show the range of concurrency models supported by these
ACE_Reactor implementations.
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4.1 Overview
 

The ACE Reactor framework discussed in Chapter 3 presents a real-world example of a framework that's designed
for extensibility. The original ACE_Reactor implementation was based solely on the select() synchronous event
demultiplexing mechanism. As application requirements and ACE platform support evolved, however, the internal
design of the ACE Reactor framework changed to support new application needs and new OS platform capabilities.
Fortunately, the ACE_Reactor interface has remained relatively consistent. This stability is important since it
simultaneously helps to
 

•

• Ensure compatibility with applications written for previous ACE versions
•  
•

• Allow each application to take advantage of new reactor capabilities as the need arises
•  

This chapter focuses on the most common implementations of the ACE Reactor framework, which are listed in the
following table:
 

ACE Class
 

Description
 

ACE_Select_Reactor
 

Uses the select() synchronous event demultiplexer
function to detect I/O and timer events; incorporates
orderly handling of POSIX signals.
 

ACE_TP_Reactor
 

Uses the Leader/Followers pattern [POSA2] to extend
ACE_Select_Reactor event handling to a pool of threads.
 

ACE_WFMO_Reactor
 

Uses the Windows WaitForMultipleObjects() event
demultiplexer function to detect socket I/O, timeouts, and
Windows synchronization events.
 

ACE also offers other more specialized reactor implementations that are outlined in Section 4.5. The variety of
reactor requirements motivating all these reactors grew out of the popular reactive model of networked application
design, coupled with:
 

•

• The growing popularity and availability of multithreaded systems
•  
•

• The addition of Windows to ACE's set of supported platforms
•  
•

• High performance I/O, CPU, and synchronous multiprocessing hardware
•  
•

• The desire to integrate event handling with GUI frameworks, such as Microsoft Windows, X11 Windows,
Trolltech AS's Qt, the Fast Light Toolkit, and TCL/Tk

•  

Newer reactor implementations began by subclassing ACE_Reactor and overriding methods to implement the new
capabilities. In 1997, during ACE version 4.4 development, however, the design was changed when ACE user
Thomas Jordan suggested use of the Bridge pattern [GoF] for the following reasons:
 

•

• The ACE_Reactor interface needed to remain constant to preserve backward compatibility, yet the
implementation needed to be flexible and selectable at run time.

•  
•

• The reactor implementations needed to take advantage of related capability by subclassing where it made
sense, yet avoid it completely where it didn't. For example, ACE_TP_Reactor is derived from
ACE_Select_Reactor, but ACE_WFMO_Reactor is completely different.

•  
•

• The expanding set of reactor implementations indicated the need for flexibility to allow further enhancements
without changing the ACE_Reactor interface.

•  

Application of the Bridge pattern to the reactor implementations led to the design depicted in Figure 4.1, which
shows the major reactor implementations that this chapter discusses. The ACE_Reactor class, which was the original
implementation, now plays the Abstraction role in the Bridge pattern. The ACE_Reactor_Impl class plays the
Implementor role, and the various user-visible reactor implementations each play a ConcreteImplementor role. The
Bridge pattern allows considerable freedom in implementation and allows applications to choose different reactors at
run time with minimal impact to existing code.
 

Figure 4.1. Implementations of the ACE_Reactor Interface
 

The remainder of this chapter motivates and describes the capabilities of the most common implementations of the
ACE_Reactor interface: ACE_Select_Reactor, ACE_TP_Reactor, and ACE_WFMO_Reactor. It explores the
detailed design issues associated with these implementations to illustrate the subtleties involved in developing
extensible and efficient object-oriented frameworks. It also shows how these reactor implementations can be used to
enhance the design of our networked logging server.
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4.2 The ACE_Select_Reactor Class
 

Motivation
 

As discussed in Chapter 5 of C++NPv1, a reactive server responds to events from one or more sources. Ideally,
response to events is quick enough so that all requests appear to be processed simultaneously, although event
processing is usually handled by a single thread. A synchronous event demultiplexer is at the heart of each reactive
server. This demultiplexer mechanism detects and reacts to events originating from a number of sources, making the
events available to the server synchronously, as part of its normal execution path.
 

The select() function is the most common synchronous event demultiplexer. This system function waits for specified
events to occur on a set of I/O handles. [1] When one or more of the I/O handles become active, or after a
designated amount of time elapses, select() returns. Its return value indicates the number of handles that are active,
that the caller-specified time elapsed before an event occurred, or an error occurred. The caller can then take
appropriate action. Additional coverage of select() is available in Chapter 6 of C++NPv1 and in [Ste98].
 

[1] The Windows version of select() works only on socket handles.
 

Although select() is available on most OS platforms, programming to the native select() C API requires developers to
wrestle with many low-level details, such as
 

•

• Setting and clearing fd_sets
•  
•

• Detecting events and responding to signal interrupts
•  
•

• Managing internal locks
•  
•

• Demultiplexing events to associated event handlers
•  
•

• Dispatching functions that process I/O, signal, and timer events
•  

Chapter 7 of C++NPv1 discussed several wrapper facade classes that can be used to master many complexities
associated with these low-level details. It's also useful, however, to use select() in environments where it's necessary
to
 

•

• Allow multiple threads to change the I/O handle sets used by the select() thread
•  
•

• Interrupt the select() function before events occur
•  
•

• Remove thread support overhead entirely, either because it isn't needed or because the platform or
application configuration doesn't support multithreading

•  

To address these issues systematically, the ACE Reactor framework defines the ACE_Select_Reactor class, which
provides all the capabilities outlined above.
 

Class Capabilities
 

ACE_Select_Reactor is an implementation of the ACE_Reactor interface that uses the select() synchronous event
demultiplexer function to detect I/O and timer events. In addition to supporting all the features of the ACE_Reactor
interface, the ACE_Select_Reactor class provides the following capabilities:
 

•

• It supports reentrant reactor invocations, where applications can call the handle_events() method from event
handlers that are being dispatched by the same reactor.

•  
•

• It can be configured to be either synchronized or nonsynchronized, which trades off thread safety for reduced
overhead.

•  
•

• It preserves fairness by dispatching all active handles in its handle sets before calling select() again.
•  

The ACE_Select_Reactor is the default implementation of ACE_Reactor on all platforms except Windows, which
uses the ACE_WFMO_Reactor for the reasons described in Sidebar 25 (page 105).
 

Implementation overview. ACE_Select_Reactor descends from ACE_Reactor_Impl, as shown in Figure 4.1 (page
89). It therefore serves as a concrete implementation of the ACE_Reactor. As shown in Figure 4.2,
ACE_Select_Reactor is actually a typedef of the ACE_Select_Reactor_T template (the Concurrency considerations
section on page 93discusses this implementation aspect further). The ACE_Select_Reactor_Impl class contains the
data and methods that are independent of the template argument to ACE_Select_Reactor_T, which isolates them
from the template argument-dependent factors and prevents them from being duplicated in each template
instantiation. Sidebar 20 (page 92) explains how to change the number of event handlers managed by an instance of
ACE_Select_Reactor.
 

Figure 4.2. The ACE_Select_Reactor Framework Internals
 

The ACE Reactor framework's notification mechanism (page 77) enables a reactor to process an open-ended
number of event handlers and can be used to unblock a reactor from its event loop. By default,
ACE_Select_Reactor implements its notification mechanism via an ACE_Pipe, which is a bidirectional IPC
mechanism whose semantics are described in Sidebar 21 (page 93). The two ends of the pipe play the following
roles:
 

•

• The writer role. The ACE_Select_Reactor::notify() method exposes the writer end of the pipe to application
threads, which use the notify() method to pass event handler pointers to an ACE_Select_Reactor via its
notification pipe.

•  
•

• The reader role. The ACE_Select_Reactor registers the reader end of the pipe internally with a
READ_MASK. When the reactor detects an event in the reader end of its notification pipe it wakes up and
dispatches its notify handler to process a user-configurable number of event handlers from the pipe. The
number of handlers dispatched is controlled by the max_notify_iterations() method (page 77).

•  

Sidebar 17 (page 78) explains how to avoid deadlocks that can result from the fact that the buffer size of an
ACE_Pipe is bounded. In addition to those application design tips, Sidebar 22 (page 94) describes another potential
problem related to notifications; its solution also provides a way to enlarge the notification mechanism, which helps
avoid deadlocks.
 

Sidebar 20: Controlling the Size of an
ACE_Select_Reactor
 

The number of event handlers that can be managed by an ACE_Select_Reactor defaults to the value of
the FD_SETSIZE macro. FD_SETSIZE is generally used by the OS to size the fd_set structures
discussed in Chapter 7 of C++NPv1. Since the internals of ACE_Select_Reactor rely on fd_set, and
FD_SETSIZE controls its size, FD_SETSIZE can play an important role in increasing the number of
possible event handlers in ACE_Select_Reactor. This value can be controlled as follows:
 

•

• To create an ACE_Select_Reactor that's smaller than the default size of FD_SETSIZE, simply
pass in the value to the ACE_Select_Reactor::open() method. This does not require
recompilation of the ACE library.

•  
•

• To create an ACE_Select_Reactor that's larger than the default size of FD_SETSIZE, you'll
need to change the value of FD_SETSIZE in your $ACE_ROOT/ace/config.h file and
recompile the ACE library (and possibly your OS kernel and C library on some platforms).
After recompiling and reinstalling the necessary libraries, you can then pass in the desired
number of event handlers to the ACE_Select_Reactor::open() method. You should be fine as
long as this value is less than or equal to the new FD_SETSIZE and the maximum number of
handles supported by the OS.

•  

Although the steps described above make it possible to handle a large number of I/O handles per
ACE_Select_Reactor, it's not necessarily a good idea since performance may suffer due to deficiencies
with select() [BM98]. To handle a large numbers of handles, you might therefore consider using the
ACE_Dev_Poll_Reactor (page 114) that's available on certain UNIX platforms. An alternative choice
could be a design using asynchronous I/O based on the ACE Proactor framework discussed in Chapter
8 (available on Windows and certain UNIX platforms). Avoid the temptation to divide a large number
of handles between multiple instances of ACE_Select_Reactor since one of the deficiencies stems from
the need for select() to scan large fd_set structures, not ACE's use of select().
 

Unlike the event handlers registered with a reactor, the handlers passed via a reactor's notification mechanism needn't
be associated with I/O-based or timer-based events, which helps improve the flexibility and scalability of
ACE_Select_Reactor. Likewise, this mechanism allows all event handler processing to be serialized in the reactor's
main thread, which simplifies event handler implementations since they needn't be thread-safe. Figure 4.3 illustrates
how ACE_Pipe is used within ACE_Select_Reactor.
 

Figure 4.3. The ACE_Select_Reactor Notification Mechanism
 

With events originating in numerous sources, both application-supplied (timers and I/O handles) and internal
(notification pipe), it's important for an ACE_Select_Reactor to dispatch events to event handlers in an effective
order. Years of experimentation and refinement resulted in the following order for event handler dispatching in the
ACE_Select_Reactor::handle_events() method:
 

Sidebar 21: The ACE_Pipe Class
 

The ACE_Select_Reactor's notification mechanism is implemented via the ACE_Pipe class, which
provides a portable, bidirectional IPC mechanism that transfers data within an OS kernel. This wrapper
facade class is implemented using a STREAMS pipe on modern UNIX platforms, a socketpair() on
legacy UNIX platforms, or a connected TCP/IP socket on Windows platforms. After initializing an
ACE_Pipe, applications can obtain its "read" and "write" handles via access methods and invoke I/O
operations to receive and send data. These handles can also be included in ACE_Handle_Set objects
passed to ACE::select() or to any reactor based on select(), such as the ACE_Select_Reactor or
ACE_Priority_Reactor.
 

1.

1. Time-driven events
1.  
2.

2. Notifications
2.  
3.

3. Output I/O events
3.  
4.

4. Exception I/O events
4.  
5.

5. Input I/O events
5.  

Applications should generally not rely on the order in which the different types of events are dispatched since not all
reactor implementations guarantee the same order. For example, the ACE_Dev_Poll_Reactor (page 114) might not
dispatch notifications before I/O events. There are situations, however, where knowing the dispatching order of
events is useful. For example, an event handler's handle_output() callback method may encounter an error writing to
a socket because the peer application aborts the connection. In this case, it's likely that the socket is also ready for
input and the handler's handle_input() callback will be invoked shortly, where common socket and handler cleanup
can take place.
 

Sidebar 22: Enlarging ACE_Select_Reactor's
Notification Mechanism
 

In some situations, it's possible that a notification queued to an ACE_Select_Reactor won't be delivered
until after the desired event handler is destroyed. This delay stems from the time window between when
the notify() method is called and the time when the reactor reacts to the notification pipe, reads the
notification information from the pipe, and dispatches the associated callback. Although application
developers can often work around this scenario and avoid deleting an event handler while notifications
are pending, it's not always possible to do so.
 

ACE offers a way to change the ACE_Select_Reactor notification queueing mechanism from an
ACE_Pipe to a user-space queue that can grow arbitrarily large. This alternate mechanism offers the
following benefits:
 

•

• Greatly expands the queueing capacity of the notification mechanism, also helping to avoid
deadlock (see Sidebar 17 on page 78)

•  
•

• Allows the ACE_Reactor::purge_pending_notifications() method to scan the queue and remove
desired event handlers

•  

To enable this feature, add #define ACE_HAS_REACTOR_NOTIFICATION_QUEUE to your
$ACE_ROOT/ace/config.h file and rebuild ACE. This option is not enabled by default because the
additional dynamic memory allocation required may be prohibitive for high-performance or embedded
systems.
 

Concurrency considerations. The ACE_Select_Reactor is an instantiation of the ACE_Select_Reactor_T class
template shown in Figure 4.2 (page 91). This template uses the Strategized Locking pattern [POSA2] to allow
application developers to configure the necessary level of synchronization. The TOKEN template argument is always
an instantiation of ACE_Select_Reactor_Token_T with one of the following types:
 

•

• ACE_Token? This produces a synchronized reactor, allowing multiple threads to invoke event handler
registration, removal, and management methods on a single ACE_Reactor that's shared by all threads in a
process. The ACE_Token recursive locking mechanism is described in Sidebar 23.

•  
•

• ACE_Noop_Token? This produces an unsynchronized reactor that minimizes the overhead of event handling
for single-threaded applications. ACE_Noop_Token exports the same interface as ACE_Token, but
performs no synchronization. This type of token is the default when ACE is built without multithreading
support.

•  

Only one thread (called the owner) can invoke ACE_Select_Reactor::handle_events() at a time. By default, the
owner of an ACE_Reactor is the identity of the thread that initialized it. The ACE_Select_Reactor::owner() method is
used to change ownership of the ACE_Select_Reactor to a particular thread id. This method is useful when the
thread running the reactor's event loop differs from the thread that initialized the reactor. The event_loop() function on
page 97 illustrates this use case.
 

Sidebar 23: The ACE_Token Class
 

ACE_Token is a lock whose interface is compatible with other ACE synchronization wrapper facades,
such as ACE_Thread_Mutex or ACE_RW_Mutex from Chapter 10 of C++NPv1, but whose
implementation has the following capabilities:
 

•

• It implements recursive mutex semantics; that is, a thread that owns the token can reacquire it
without deadlocking. Before a token can be acquired by a different thread, however, its
release() method must be called the same number of times that acquire() was called.

•  
•

• Each ACE_Token maintains two ordered lists that are used to queue high- and low-priority
threads waiting to acquire the token. Threads requesting the token using
ACE_Token::acquire_write() are kept in the high-priority list and take precedence over threads
that call ACE_Token::acquire_read(), which are kept in the low-priority list. Within a priority
list, threads that are blocked awaiting to acquire a token are serviced in either FIFO or LIFO
order according to the current queueing strategy as threads release the token.

•  
•

• The ACE_Token queueing strategy can be obtained or set via calls to
ACE_Token::queueing_strategy() and defaults to FIFO, which ensures the fairness among
waiting threads. In contrast, UNIX International and Pthreads mutexes don't strictly enforce any
particular thread acquisition ordering. For applications that don't require strict FIFO ordering,
the ACE_Token LIFO strategy can improve performance by maximizing CPU cache affinity [
SOP+00].

•  
•

• The ACE_Token::sleep_hook() hook method is invoked if a thread can't acquire a token
immediately. This method allows a thread to release any resources it's holding before it waits to
acquire the token, thereby avoiding deadlock, starvation, and unbounded priority inversion.

•  

ACE_Select_Reactor uses an ACE_Token-derived class named ACE_Select_Reactor_Token to
synchronize access to a reactor. Requests to change the internal states of a reactor use
ACE_Token::acquire_write() to ensure other waiting threads see the changes as soon as possible.
ACE_Select_Reactor_Token overrides its sleep_hook() method to notify the reactor of pending threads
via its notification mechanism described in Sidebar 21 (page 93).
 

Example
 

Since the reactive logging server on page 84 runs continuously there's no way to shut it down gracefully, other than to
terminate it abruptly. For example, an administrator can send its process a "kill ?" from a UNIX login console or end
the process via the Windows Task Manager. Abruptly terminating a process via these mechanisms prevents it from
performing cleanup activities, such as flushing log records to disk, releasing synchronization locks, and closing
TCP/IP connections. In this example, we show how to use the ACE_Select_Reactor::notify() mechanism to shut
down the logging server cleanly.
 

Figure 4.4 shows the architecture of our solution, which uses the ACE_Select_Reactor's notification mechanism to
shut down our Reactor_Logging_Server via the following steps:
 

Figure 4.4. ACE_Select_Reactor Logging Server with Controller Thread
 

1.

1. We'll spawn a controller thread that waits for an administrator to pass it commands via its standard input.
1.  
2.

2. When the "quit" command is received, the controller thread passes a special event handler to the reactor via
its notify() method and then exits the thread.

2.  
3.

3. The reactor invokes this event handler's handle_exception() method, which calls end_reactor_event_loop()
and then deletes itself.

3.  
4.

4. When ACE_Reactor::run_reactor_event_loop() next checks the result of the reactor_event_loop_done()
method, it will be true, causing the reactor event loop to exit, and the main server thread to exit gracefully.

4.  

The C++ code below illustrates these four steps. It's in Select_Reactor_Logging_Server.cpp and the revised main()
function is shown first:
 
 1 #include "ace/streams.h" 
 2 #include "ace/Reactor.h" 
 3 #include "ace/Select_Reactor.h" 
 4 #include "ace/Thread_Manager.h" 
 5 #include "Reactor_Logging_Server.h" 
 6 #include <string> 
 7 // Forward declarations. 
 8 ACE_THR_FUNC_RETURN controller (void *); 
 9 ACE_THR_FUNC_RETURN event_loop (void *); 
10 
11 typedef Reactor_Logging_Server<Logging_Acceptor_Ex> 
12         Server_Logging_Daemon; 
13 
14 int main (int argc, char *argv[]) { 
15   ACE_Select_Reactor select_reactor; 
16   ACE_Reactor reactor (&select_reactor); 
17 
18   Server_Logging_Daemon *server = 0; 
19   ACE_NEW_RETURN (server, 
20                   Server_Logging_Daemon (argc, argv, &reactor), 
21                   1); 
22   ACE_Thread_Manager::instance()->spawn (event_loop, &reactor); 
23   ACE_Thread_Manager::instance()->spawn (controller, &reactor); 
24   return ACE_Thread_Manager::instance ()->wait (); 
25 } 

Lines 1?2 Include the header files, define some forward declarations, and instantiate the Reactor_Logging_Server
template with the Logging_Acceptor_Ex class (page 67) to create the Server_Logging_Daemon type definition.
ACE_THR_FUNC_RETURN portably specifies the thread function's return type.
 

Lines 15?6 Set the implementation of the local ACE_Reactor instance to be an ACE_Select_Reactor.
 

Lines 20?1 Dynamically create an instance of Server_Logging_Daemon.
 

Line 22 Use the ACE_Thread_Manager singleton from Chapter 9 of C++NPv1 to spawn a thread that runs the
following event_loop() function:
 
static ACE_THR_FUNC_RETURN event_loop (void *arg) { 
  ACE_Reactor *reactor = ACE_static_cast (ACE_Reactor *, arg); 

  reactor->owner (ACE_OS::thr_self ()); 
  reactor->run_reactor_event_loop (); 
  return 0; 
} 

Note how we set the owner of the reactor to the identity of the thread that runs the event loop. The Concurrency
considerations discussion (page 94) explains the use of thread ownership for ACE_Select_Reactor.
 

Line 23 Spawn a thread to run the controller() function, which waits for an administrator to shut down the server via
a command on its standard input.
 

Line 24 Wait for the other two threads to exit before returning from the main() function.
ACE_Thread_Manager::wait() also reaps the exit status of the two threads to avoid memory leaks. Sidebar 42 (page
186) describes the conventions to follow to ensure memory isn't leaked when threads exit.
 

Line 25 At this point, the event loop isn't running, but the Server_Logging_Daemon and existing client connections
are still open. The reactor and select_reactor objects are about to go out of scope, however. Since the
ACE_Reactor plays the Abstraction role in the Bridge pattern, the only important field in reactor is a pointer to its
implementation object, select_reactor. By default, the ACE_Reactor destructor only destroys the implementation
object if the ACE_Reactor created it. Since select_reactor was created on the stack and passed to reactor,
select_reactor is not destroyed by the ACE_Reactor destructor. Instead, it's destroyed when it goes out of scope. Its
destruction triggers callbacks to Logging_Acceptor::handle_close() (page 58) and the
Logging_Event_Handler_Ex::handle_close() (page 70) hook methods for each logging handler and logging event
handler, respectively, that are still registered with the reactor.
 

The controller() function can be implemented as follows:
 
 1 static ACE_THR_FUNC_RETURN controller (void *arg) { 
 2   ACE_Reactor *reactor = ACE_static_cast (ACE_Reactor *, arg); 
 3   Quit_Handler *quit_handler = 0; 
 4   ACE_NEW_RETURN (quit_handler, Quit_Handler (reactor), 0); 
 5 
 6   for (;;) { 
 7     std::string user_input; 
 8     std::getline (cin, user_input, '\n'); 
 9     if (user_input == "quit") { 
10       reactor->notify (quit_handler); 
11       break; 
12    } 
13   } 
14   return 0; 
15 } 

Lines 2? After casting the void pointer argument back into an ACE_Reactor pointer, we create a special event
handler called Quit_Handler. Its handle_exception() and handle_close() methods simply shut down the
ACE_Select_Reactor's event loop and delete the event handler, respectively, as shown below:
 
class Quit_Handler : public ACE_Event_Handler { 
public: 
  Quit_Handler (ACE_Reactor *r): ACE_Event_Handler (r) {} 

  virtual int handle_exception (ACE_HANDLE) { 
    reactor ()->end_reactor_event_loop (); 
    return -1; // Trigger call to handle_close() method. 
  } 

  virtual int handle_close (ACE_HANDLE, ACE_Reactor_Mask) 
  { delete this; return 0; } 
private: 

  // Private destructor ensures dynamic allocation. 

  virtual Quit_Handler () {} 
}; 

Lines 6?3 Go into a loop that waits for an administrator to type "quit" on the standard input stream. When this
occurs, we pass the quit_handler to the reactor via its notify() method and exit the controller thread.
 

The implementation shown above is portable to all ACE platforms that support threads. Section 4.4 illustrates how to
take advantage of Windows-specific features to accomplish the same behavior.
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4.3 The ACE_TP_Reactor Class
 

Motivation
 

Although the ACE_Select_Reactor is flexible, it's somewhat limited in multithreaded applications because only the
owner thread can call its handle_events() method. ACE_Select_Reactor therefore serializes processing at the event
demultiplexing layer, which may be overly restrictive and nonscalable for certain networked applications. One way to
solve this problem is to spawn multiple threads and run the event loop of a separate instance of ACE_Select_Reactor
in each of them. This design can be hard to program, however, since it requires developers to implement a proxy that
partitions event handlers evenly between the reactors to divide the load evenly across threads. Often, a more
effective way to address the limitations with ACE_Select_Reactor is to use the ACE Reactor framework's
ACE_TP_Reactor class, where "TP" stands for "thread pool."
 

Class Capabilities
 

ACE_TP_Reactor is another implementation of the ACE_Reactor interface. This class implements the
Leader/Followers architectural pattern [POSA2], which provides an efficient concurrency model where multiple
threads take turns calling select() on sets of I/O handles to detect, demultiplex, dispatch, and process service
requests that occur. In addition to supporting all the features of the ACE_Reactor interface, the ACE_TP_Reactor
provides the following capabilities:
 

•

• It enables a pool of threads to call its handle_events() method, which can improve scalability by handling
events on multiple handles concurrently. As a result, the ACE_TP_Reactor::owner() method is a no-op.

•  
•

• It prevents multiple I/O events from being dispatched to the same event handler simultaneously in different
threads. This constraint preserves the I/O dispatching behavior of ACE_Select_Reactor, alleviating the need
to add synchronization locks to a handler's I/O processing.

•  
•

• After a thread obtains a set of active handles from select(), the other reactor threads dispatch from that
handle set instead of calling select() again.

•  

Implementation overview. ACE_TP_Reactor is a descendant of ACE_Reactor_Impl, as shown in Figure 4.1 (page
89). It also serves as a concrete implementation of the ACE_Reactor interface, just like ACE_Select_Reactor. In
fact, ACE_TP_Reactor derives from ACE_Select_Reactor and reuses much of its internal design.
 

Concurrency considerations. Multiple threads running an ACE_TP_Reactor event loop can process events
concurrently on different handles. They can also dispatch timeout and I/O callback methods concurrently on the same
event handler. The only serialization in the ACE_TP_Reactor occurs when I/O events occur concurrently on the
same handle. In contrast, the ACE_Select_Reactor serializes all its dispatching to handlers whose handles are active
in the handle set.
 

Compared to other thread pool models, such as the half-sync/half-async model in Chapter 5 of C++NPv1 and 
Section 6.3 of this book, the leader/followers implementation in ACE_TP_Reactor keeps all event processing local
to the thread that dispatches the handler. This design provides the following performance enhancements:
 

•

• It enhances CPU cache affinity and eliminates the need to allocate memory dynamically and share data
buffers between threads.

•  
•

• It minimizes locking overhead by not exchanging data between threads.
•  
•

• It minimizes priority inversion since no extra queueing is used.
•  
•

• It doesn't require a context switch to handle each event, which reduces latency.
•  

These performance enhancements are discussed further in the Leader/Followers pattern description in POSA2.
 

Given the added capabilities of the ACE_TP_Reactor, you may wonder why anyone would ever use the
ACE_Select_Reactor. There are two primary reasons:
 

1.

1. Less overhead?/span> Although the ACE_Select_Reactor is less powerful than the ACE_TP_Reactor it also
incurs less time and space overhead. Moreover, single-threaded applications can instantiate the
ACE_Select_Reactor_T template with an ACE_Noop_Token-based token to eliminate the internal
overhead of acquiring and releasing tokens completely.

1.  
2.

2. Implicit serialization?/span> The ACE_Select_Reactor is particularly useful when explicitly writing
serialization code at the application-level is undesirable. For example, application programmers who are
unfamiliar with synchronization techniques may prefer to let the ACE_Select_Reactor serialize their event
handling, rather than using threads and adding locks in their application code.

2.  

Example
 

To illustrate the power of the ACE_TP_Reactor, we'll revise the main() function from page 96 to spawn a pool of
threads that share the Reactor_Logging_Server's I/O handles. Figure 4.5 illustrates the architecture of this server.
This architecture is nearly identical to the one in Figure 4.4 (page 96), with the only difference being the pool of
threads that call ACE_Reactor::handle_events(). This example is in the TP_Reactor_Logging_Server.cpp file. The
C++ code for main() is shown below.
 

Figure 4.5. ACE_TP_Reactor Logging Server with Controller Thread
 

 1 #include "ace/streams.h" 
 2 #include "ace/Reactor.h" 
 3 #include "ace/TP_Reactor.h" 
 4 #include "ace/Thread_Manager.h" 
 5 #include "Reactor_Logging_Server.h" 
 6 #include <string> 
 7 // Forward declarations 
 8 ACE_THR_FUNC_RETURN controller (void *); 
 9 ACE_THR_FUNC_RETURN event_loop (void *); 
10 
11 typedef Reactor_Logging_Server<Logging_Acceptor_Ex> 
12         Server_Logging_Daemon; 
13 
14 int main (int argc, char *argv[]) { 
15   const size_t N_THREADS = 4; 
16   ACE_TP_Reactor tp_reactor; 
17   ACE_Reactor reactor (&tp_reactor); 
18   auto_ptr<ACE_Reactor> delete_instance 
19     (ACE_Reactor::instance (&reactor)); 
20 
21   Server_Logging_Daemon *server = 0; 
22   ACE_NEW_RETURN (server, 
23                   Server_Logging_Daemon (argc, argv, 
24                     ACE_Reactor::instance ()), 1); 
25   ACE_Thread_Manager::instance ()->spawn_n 
26     (N_THREADS, event_loop, ACE_Reactor::instance ()); 
27   ACE_Thread_Manager::instance ()->spawn 
28     (controller, ACE_Reactor::instance ()); 
29   return ACE_Thread_Manager::instance ()->wait (); 
30 } 

Lines 1?2 Include the header files, define some forward declarations, and instantiate the Reactor_Logging_Server
template with the Logging_Acceptor_Ex (page 67) to create the Server_Logging_Daemon type definition.
 

Lines 16?9 Create a local instance of ACE_TP_Reactor and use it as the implementation of a local ACE_Reactor
object. For variety, we then set the singleton ACE_Reactor to the address of the local reactor. Subsequent uses of
ACE_Reactor::instance() will now use our local reactor. When reassigning the singleton reactor, the caller becomes
responsible for managing the lifetime of the previous singleton. In this case, we assign it to an auto_ptr so it's deleted
automatically if the program ends.
 

Lines 21?4 Dynamically allocate an instance of Server_Logging_Daemon.
 

Lines 25?6 Spawn N_THREADS, each of which runs the event_loop() function (page 97). The new singleton
reactor's pointer is passed to event_loop() (ACE_TP_Reactor ignores the owner() method called in that function).
 

Lines 27?8 Spawn a single thread to run the controller() function (page 98).
 

Line 29 Wait for the other threads to exit and save the status as main()'s return value.
 

Line 30 When the main() function returns, the tp_reactor destructor triggers calls to the
Logging_Acceptor::handle_close() (page 58) and Logging_Event_Handler_Ex::handle_close() (page 70) hook
methods for each logging handler and logging event handler, respectively, that are still registered with it. By default,
the ACE_Object_Manager (Sidebar 23 on page 218 of C++NPv1) deletes the singleton ACE_Reactor during
shutdown. Since we replaced the original singleton with our local reactor object, however, ACE won't delete either
the original instance (because we assumed ownership of it on line 18) or our local one (because ACE won't delete a
reactor it didn't create, unless specifically directed to).
 

The primary difference between this example and the example on page 96 is the number of threads executing the
event loop. Although multiple threads can dispatch events to Logging_Event_Handler and Logging_Acceptor_Ex
objects, the ACE_TP_Reactor ensures that the same handler won't be invoked from multiple threads concurrently.
Since the event handling classes in the logging server are completely self-contained, there's no chance for race
conditions involving access from multiple threads. We therefore needn't make any changes to them to ensure thread
safety.
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4.4 The ACE_WFMO_Reactor Class
 

Motivation
 

Although the select() function is available on most operating systems, it's not always the most efficient or most
powerful event demultiplexer on any given OS platform. In particular, select() has the following limitations:
 

•

• On UNIX platforms, it only supports demultiplexing of I/O handles, such as files, terminal devices, FIFOs,
and pipes. It does not portably support demultiplexing of synchronizers, threads, or System V Message
Queues.

•  
•

• On Windows, select() only supports demultiplexing of socket handles.
•  
•

• It can only be called by one thread at a time for a particular set of I/O handles, which can degrade potential
parallelism.

•  

Windows defines the WaitForMultipleObjects() system function, described in Sidebar 24 (page 104), to alleviate
these problems. This function works with many Windows handle types that can be signaled. Although it doesn't work
directly with I/O handles, it can be used to demultiplex I/O-related events in two ways:
 

1.

1. Event handles used in overlapped I/O operations
1.  
2.

2. Event handles associated with socket handles via WSAEventSelect()
2.  

Moreover, multiple threads can call WaitForMultipleObjects() concurrently on the same set of handles, thereby
enhancing potential parallelism.
 

WaitForMultipleObjects() is tricky to use correctly, however, for the following reasons [SS95a]:
 

•

• WaitForMultipleObjects() returns an index to the first handle array slot with a signaled handle. It does not,
however, indicate the number of handles that are signaled, and there is no simple way to scan the handles and
check which are. WaitForMultipleObjects() must therefore be invoked numerous times to find all signaled
handles. In contrast, select() returns a set of active I/O handles and a count of how many are active.

•  
•

• WaitForMultipleObjects() doesn't guarantee a fair distribution of notifications, that is, the lowest active
handle in the array is always returned, regardless of how long other handles further back in the array may
have had pending events.

•  

To shield programmers from these low-level details, preserve demultiplexing fairness, and leverage the power of
WaitForMultipleObjects() on Windows platforms, the ACE Reactor framework provides the
ACE_WFMO_Reactor class.
 

Sidebar 24: The Windows
WaitForMultipleObjects() Function
 

The Windows WaitForMultipleObjects() event demultiplexer function is similar to select(). It blocks on
an array of up to 64 handles until one or more of them become active (which is known as being
"signaled" in Windows terminology) or until the interval in its timeout parameter elapses. It can be
programmed to return to its caller when either any one or more of the handles becomes active or all the
handles become active. In either case, it returns the index of the lowest active handle in the
caller-specified array of handles. Unlike the select() function, which only demultiplexes I/O handles,
WaitForMultipleObjects() can wait for many types of Windows objects, including a thread, process,
synchronizer (e.g., event, semaphore, or mutex), change notification, console input, and timer.
 

Class Capabilities
 

ACE_WFMO_Reactor is yet another implementation of the ACE_Reactor interface, which uses the
WaitForMultipleObjects() function to wait for events to occur on a set of event sources. In addition to supporting all
the features of the ACE_Reactor interface, the ACE_WFMO_Reactor class provides the following capabilities:
 

•

• It enables a pool of threads to call its handle_events() method concurrently (as a result, the
ACE_WFMO_Reactor::owner() method is a no-op). This facility is more powerful than that of
ACE_TP_Reactor. In ACE_WFMO_Reactor, all of the event handling threads can dispatch events
concurrently instead of taking turns in a leader/followers arrangement. We'll discuss this aspect of
ACE_WFMO_Reactor in more detail in the Concurrency considerations section on page 106.

•  
•

• It allows applications to wait for socket I/O events and scheduled timers, similar to the select()-based
reactors. ACE_WFMO_Reactor also integrates event demultiplexing and dispatching for all event types that
WaitForMultipleObjects() supports, as outlined in Sidebar 24.

•  
•

• Each call to handle_events() waits for a handle to become active. Starting from that handle, it iterates through
all other active handles before returning. This design prevents an active handle from starving handles further
down in the handle set array.

•  
•

• Using the ACE_Msg_WFMO_Reactor subclass, applications can process all the events above plus window
messages.

•  

ACE_WFMO_Reactor is the default ACE_Reactor implementation on Windows for the reasons described in 
Sidebar 25. Note that ACE_WFMO_Reactor dispatches events in the same order as the ACE_Select_Reactor
(page 92).
 

Implementation overview. As shown in Figure 4.1 (page 89), ACE_WFMO_Reactor inherits from
ACE_Reactor_Impl. It therefore serves as a concrete implementation of the ACE_Reactor interface. Just as
ACE_Select_Reactor leverages the capabilities of the select() function, ACE_WFMO_Reactor leverages the
capabilities of WaitForMultipleObjects(), as shown in Figure 4.6 (page 106).
 

Figure 4.6. The ACE_WFMO_Reactor Framework Internals
 

Sidebar 25: Why ACE_WFMO_Reactor Is
the Default on Windows
 

The ACE_WFMO_Reactor is the default implementation of the ACE_Reactor on Windows platforms
for the following reasons:
 

•

• It lends itself more naturally to multithreaded processing, which is common on Windows
(ACE_WFMO_Reactor was developed before ACE_TP_Reactor and was the first reactor to
support multithreaded event handling).

•  
•

• Applications often use signalable handles in situations where a signal may have been used on
POSIX (e.g., child process exit) and these events can be dispatched by ACE_WFMO_Reactor.

•  
•

• It can handle a wider range of events than the ACE_Select_Reactor, which can only handle
socket and timer events on Windows.

•  
•

• It's easily integrated with ACE_Proactor event handling, discussed in Sidebar 58 (page 290).
•  

ACE_WFMO_Reactor's most significant differences from ACE_Select_Reactor and ACE_TP_Reactor include the
following:
 

•

• Limited number of handles. Unlike ACE_Select_Reactor and ACE_TP_Reactor, which can be configured to
demultiplex hundreds or thousands of handles, ACE_WFMO_Reactor can process no more than 62
handles. This limitation stems from the fact that Windows only allows WaitForMultipleObjects() to wait for
64 handles per thread. ACE_WFMO_Reactor uses two of these handles internally: one for its notification
mechanism and another for synchronizing concurrent handler updates. If more than 64 handles must be
demultiplexed, you can use multiple ACE_WFMO_Reactor objects in multiple threads, use the
ACE_Proactor (Chapter 8), or use the ACE_Select_Reactor and increase its size via the mechanisms
described in Sidebar 20 (page 92).

•  
•

• WRITE_MASK semantics different from select(). When a socket can send more data, select() detects a
WRITE condition. It will continue to detect this condition as long as the socket remains writeable, that is, until
it becomes flow controlled. In contrast, the Windows WSAEventSelect() function only sets the WRITE
event when the socket is first connected, whether passively or actively, and when the socket transitions from
flow-controlled to writeable. When relying on WRITE events using the ACE_WFMO_Reactor, you must
therefore continue to write until the connection closes or the socket becomes flow controlled and a send()
fails with EWOULDBLOCK. If this behavior is undesirable, you might consider choosing the
ACE_Select_Reactor as the ACE_Reactor implementation on Windows since it has the same
WRITE_MASK semantics as on UNIX platforms.

•  
•

• Different notification mechanism. The ACE_Select_Reactor's notification mechanism is implemented using the
ACE_Pipe mechanism described in Sidebar 21 (page 93). In contrast, the ACE_WFMO_Reactor's
notification mechanism is implemented using a synchronized version of the ACE_Message_Queue described
in Section 6.2. As a result, the queue can be configured to have a user-defined size that can help avoid the
deadlock problems discussed in Sidebar 17 (page 78). The default maximum number of queued notifications
for ACE_WFMO_Reactor is 1,024. To change this value:

•  
o

o Create a new ACE_WFMO_Reactor_Notify object, specifying the desired maximum number of queued
notifications to its constructor.

o  
o

o Create a new ACE_WFMO_Reactor object, passing a pointer to the new
ACE_WFMO_Reactor_Notify object to the ACE_WFMO_Reactor constructor.

o  

Concurrency considerations. The ACE_WFMO_Reactor allows multiple threads to call its handle_events() method
concurrently. This capability complicates its design, however, and introduces some subtle behavioral differences from
select()-based reactors, as discussed below:
 

•

• Coordination of registration changes. Each change to the set of registered handles will affect all threads
executing the event loop. Allowing these changes to occur without synchronization would cause errors
ranging from missed events to incorrect or invalid handlers being dispatched. To handle registration changes
properly in the presence of multiple threads, ACE_WFMO_Reactor maintains three sets of handler
information objects:

•  
1.

1. Current handlers, which are the handlers used for event detection and demultiplexing
1.  
2.

2. New handlers, which are awaiting addition to the set of current handlers
2.  
3.

3. Suspended handlers, which are handlers suspended from the current handler set
3.  

When registration changes are requested (such as registering, removing, suspending, or resuming an event handler),
the handle, event handler, and event type information are remembered and the need for changing the associated
information is noted. The next thread that completes its pass through handle_events() will notice the need for a
change, obtain the reactor's lock, and wait for all other threads running handle_events() to complete. To ensure that
they complete in a timely fashion, the waiting thread signals an internal event that's part of the dispatch handle set,
causing all threads blocked in WaitForMultipleObjects() to awake. At this point, all event-handling threads will block
waiting for changes to occur. When the original thread completes the necessary information and handle changes, the
reactor lock is released, and all event-handling threads restart their event waiting, demultiplexing, and dispatching with
the updated handle set.
 

•

• Deferred event handler cleanup. ACE_WFMO_Reactor's registration change delay introduces a subtle
behavioral difference compared to select()-based reactors. When a handle_*() method returns
-1orACE_Reactor::remove_handler() is called on an event handler, the ACE_WFMO_Reactor defers the
handler removal and callback to the handler's handle_close() hook until the registration changes can take
place as described above. An application therefore can't delete an event handler immediately after requesting
an ACE_WFMO_Reactor to remove it since the reactor's later call to the handle_close() method will
dispatch through an invalid pointer.

•  

• The differences between ACE_WFMO_Reactor and the select()-based reactors can be masked in practice
by adhering to the idiom of performing all cleanup in an event handler's handle_close() hook method, as
described in Sidebar 9 (page 51). This idiom prevents premature deletion of the event handler object. In
cases where this idiom doesn't apply (for example if an event handler is an automatic object whose
destruction cannot be deferred), the ACE_Event_Handler::DONT_CALL flag must be passed to
ACE_Reactor::remove_handler() to prevent ACE_WFMO_Reactor from invoking the handle_close() hook
method later. It's therefore advisable to allocate event handlers dynamically, as advocated in Sidebar 11
(page 55), which avoids the need to manage the lifetime of event handlers outside the ACE_Reactor handler
management scheme.

•  
•

• Multithreaded dispatch to same handler. Unlike those using select()-based reactors, multithreaded
applications can demultiplex and dispatch events concurrently using the
ACE_WFMO_Reactor::handle_events() method. [2] In the multithreaded case it's therefore possible that
different threads will dispatch events simultaneously to the same event handler. This can happen, for example,
when a handler-scheduled timer expires while I/O is being processed. It can also occur in the following
situation: 

• [2] Although multiple threads can call ACE_TP_Reactor::handle_events() concurrently, only one thread at a
time (the leader) actually runs select().

•  
1.

1. Thread1 dispatches a socket input event to a handler.
1.  
2.

2. Thread1 calls ACE_SOCK_Stream::recv() to read data.
2.  
3.

3. More data are available on the socket, due to a limited receive in step 2 or the arrival of more data.
3.  
4.

4. Thread2 dispatches the input event on the same handle, resulting in a race condition between thread1 and
thread2.

4.  

Event handlers must therefore explicitly protect against race conditions when the handle_events() event loop is
executed by multiple threads on the same ACE_WFMO_Reactor object. The ACE_TP_Reactor avoids these race
conditions by implementing an internal protocol that automatically suspends a handle before dispatching its event
handler. Any follower thread that subsequently becomes the leader doesn't dispatch events on the affected handle
until the callback is complete and the handle is resumed. Sidebar 26 explains why this handler suspension protocol
can't be used with the ACE_WFMO_Reactor.
 

Example
 

This example illustrates how to use a signalable handle with the ACE_WFMO_Reactor.It also illustrates one
technique for properly serializing I/O handling in a thread pool running the ACE_WFMO_Reactor event loop. Figure
4.7 (page 110) illustrates the architecture of this server. It's similar to the one in Figure 4.4 (page 96), with the
difference being the pool of threads that call ACE_Reactor::handle_events(). Since this example explicitly specifies an
instance of ACE_WFMO_Reactor, it works only on Windows.
 

Figure 4.7. ACE_WFMO_Reactor Logging Server
 

This example is in the WFMO_Reactor_Logging_Server.cpp file. We start by defining a Quit_Handler class:
 
class Quit_Handler : public ACE_Event_Handler { 
private: 
  ACE_Manual_Event quit_seen_; // Keep track of when to shutdown. 
public: 

Although this class inherits from ACE_Event_Handler, it's used quite differently from the Quit_Handler defined on
page 98. The Quit_Handler constructor illustrates some of the differences below:
 
 1 Quit_Handler (ACE_Reactor *r): ACE_Event_Handler (r) { 
 2   SetConsoleMode (ACE_STDIN, ENABLE_LINE_INPUT 
 3                              | ENABLE_ECHO_INPUT 
 4                              | ENABLE_PROCESSED_INPUT); 
 5   if (reactor ()->register_handler 
 6       (this, quit_seen_.handle ()) == -1 
 7       || ACE_Event_Handler::register_stdin_handler 
 8           (this, r, ACE_Thread_Manager::instance ()) == -1) 
 9     r->end_reactor_event_loop (); 
10 } 

Sidebar 26: Why ACE_WFMO_Reactor
Doesn't Suspend Handles
 

The ACE_WFMO_Reactor doesn't implement a handler suspension protocol internally to minimize the
amount of policy imposed on application classes. In particular, multithreaded applications can process
events more efficiently when doing so doesn't require interevent serialization, as is the case when
receiving UDP datagrams. This behavior isn't possible in the ACE_TP_Reactor because of the semantic
differences in the functionality of the following OS event demultiplexing mechanisms:
 

•

• WaitForMultipleObjects(). When demultiplexing a socket handle's I/O event, one
ACE_WFMO_Reactor thread will obtain the I/O event mask from
WSAEnumNetworkEvents(), and the OS atomically clears that socket's internal event mask.
Even if multiple threads demultiplex the socket handle simultaneously, only one obtains the I/O
event mask and will dispatch the handler. The dispatched handler must take some action that
reenables demultiplexing for that handle before another thread will dispatch it.

•  
•

• select(). There's no automatic OS serialization for select(). If multiple threads were allowed to
see a ready-state socket handle, they would all dispatch it, yielding unpredictable behavior at the
ACE_Event_Handler layer and reduced performance due to multiple threads all working on the
same handle.

•  

It's important to note that the handler suspension protocol can't be implemented in the application event
handler class when it's used in conjunction with the ACE_WFMO_Reactor. This is because suspension
requests are queued and aren't acted on immediately, as described on page 107. A handler could
therefore receive upcalls from multiple threads until the handler was actually suspended by the
ACE_WFMO_Reactor. The Logging_Event_Handler_WFMO class (page 111) illustrates how to use
mutual exclusion to avoid race conditions in upcalls.
 

Lines 2? Simplify input handling by setting the console to read a whole line of text (not small pieces at a time) without
including control characters, such as Ctl-C.
 

Lines 5? We illustrate how to register an event handle with the reactor. We will signal this event when the quit
command is entered. Sidebar 27 (page 111) outlines the capabilities of the ACE_Manual_Event class.
 

Lines 7? Use ACE_Event_Handler::register_stdin_handler() to establish the input mechanism, which causes the
Quit_Handler::handle_input() hook method to be called repeatedly until it returns-1. On Windows, all these calls will
be made from a thread other than the event loop thread(s), which removes the requirement for the input-handling
method to serialize its processing.
 

Line 9 If either registration fails, we immediately mark the reactor event loop as ended, which forces an immediate
end to the loop when the main program starts it.
 

The Quit_Handler::handle_input() method is shown below:
 
virtual int handle_input (ACE_HANDLE h) { 
  CHAR user_input[BUFSIZ]; 
  DWORD count; 
  if (!ReadFile (h, user_input, BUFSIZ, &count, 0)) return -1; 
  user_input[count] = '\0'; 
  if (ACE_OS_String::strncmp (user_input, "quit", 4) == 0) 
    return -1; 
  return 0; 
} 

When the "quit" command is seen, handle_input() returns -1, which triggers ACE_WFMO_Reactor to dispatch
Quit_Handler::handle_close():
 
virtual int handle_close (ACE_HANDLE, ACE_Reactor_Mask) 
{ quit_seen_.signal (); return 0; } 

The manual event handle from quit_seen_ was registered with the reactor in the Quit_Handler constructor (page
108). When the event is signaled in the handle_close() method, the ACE_WFMO_Reactor will then demultiplex the
event and call the Quit_Handler::handle_signal() method shown below.
 
virtual int handle_signal (int, siginfo_t *, ucontext_t *) 
{ reactor ()->end_reactor_event_loop (); return 0; } 

This hook method calls the reactor's end_reactor_event_loop() method, which causes all of the event-handling
threads to stop. It's possible to call end_reactor_event_loop() directly from handle_close(). We moved the call to
handle_signal() to illustrate how to use a signalable handle with ACE_WFMO_Reactor.
 

When the Quit_Handler object is destroyed, its destructor behaves as follows:
 
1 Quit_Handler () { 
2   ACE_Event_Handler::remove_stdin_handler 
3     (reactor (), ACE_Thread_Manager::instance ()); 
4   reactor ()->remove_handler (quit_seen_.handle (), 
5                               ACE_Event_Handler::DONT_CALL); 
6 } 

Lines 2? Cancel the effects of the previous register_stdin_handler() call.
 

Lines 4? Unregister the event handle from the reactor. The DONT_CALL flag prevents the reactor from calling back
to handle_close(), so the cleanup is complete at this point and we needn't worry about a later callback through an
invalid object pointer.
 

Sidebar 27: The ACE_Manual_Event and
ACE_Auto_Event Classes
 

ACE provides two synchronization wrapper facade classes that should be familiar to Windows
programmers: ACE_Manual_Event and ACE_Auto_Event. These classes allow threads in a process to
wait on an event or inform other threads about the occurrence of a specific event in a thread-safe
manner. On Windows these classes are wrapper facades around native event objects, whereas on other
platforms ACE emulates the Windows event object facility.
 

Events are similar to condition variables in the sense that a thread can use them to either signal the
occurrence of an application-defined event or wait for that event to occur. Unlike stateless condition
variables, however, a signaled event remains set until a class-specific action occurs. For example, an
ACE_Manual_Event remains set until it is explicitly reset and an ACE_Auto_Event remains set until a
single thread waits on it. These two classes allow users to control the number of threads awakened by
signaling operations, and allows an event to indicate a state transition, even if no threads are waiting at
the time the event is signaled.
 

Events are more expensive than mutexes, but provide better control over thread scheduling. Events
provide a simpler synchronization mechanism than condition variables. Condition variables are more
useful for complex synchronization activities, however, since they enable threads to wait for arbitrary
condition expressions.
 

Due to concurrency differences between ACE_WFMO_Reactor and the select()based reactors (shown in Sections 
4.2 and 4.3), we also derive a new Logging_Event_Handler_WFMO class to add protection against race conditions.
We need only override the handle_input() hook method of Logging_Event_Handler_Ex (page 68) and add a mutex
to explicitly serialize access of threads in the thread pool to a client logging daemon connection, as follows:
 
class Logging_Event_Handler_WFMO 
    : public Logging_Event_Handler_Ex { 
public: 
  Logging_Event_Handler_WFMO (ACE_Reactor *r) 
    : Logging_Event_Handler_Ex (r) {} 

protected: 
  int handle_input (ACE_HANDLE h) { 
    ACE_GUARD_RETURN (ACE_SYNCH_MUTEX, monitor, lock_, -1); 
    return logging_handler_.log_record (); 
  } 

  ACE_Thread_Mutex lock_; // Serialize threads in thread pool. 
}; 

Since Logging_Acceptor_Ex (page 67) instantiates a new Logging_Event_Handler_Ex object for each new client
connection, our use of a different event handler class also mandates a new acceptor class. The following subclass of
Logging_Acceptor_Ex instantiates the correct type of event handler when a new client connection arrives:
 
class Logging_Acceptor_WFMO : public Logging_Acceptor_Ex { 
public: 
  Logging_Acceptor_WFMO 
    (ACE_Reactor *r = ACE_Reactor::instance ()) 
    : Logging_Acceptor_Ex (r) {} 

protected: 
  virtual int handle_input (ACE_HANDLE) { 
    Logging_Event_Handler_WFMO *peer_handler = 0; 
    ACE_NEW_RETURN (peer_handler, 
                    Logging_Event_Handler_WFMO (reactor ()), -1); 
    if (acceptor_.accept (peer_handler->peer ()) == -1) 
    { delete peer_handler; return -1; } 
    else if (peer_handler->open () == -1) 
    { peer_handler->handle_close (); return -1; } 
    return 0; 
  } 
}; 

The handle_input() method doesn't require protection against race conditions since it only operates on objects local
to the method. In fact, except for the type of event handler that's instantiated for each new connection,
Logging_Acceptor_WFMO is identical to Logging_Acceptor_Ex (page 67). The ACE Acceptor-Connector
framework in Chapter 7 shows how to factor out the event handler type into a reusable acceptor class.
 

Our ACE_WFMO_Reactor logging server's main() function is shown below:
 
#include "ace/Reactor.h" 
#include "ace/Synch.h" 
#include "ace/WFMO_Reactor.h" 
#include "ace/Thread_Manager.h" 
#include "Reactor_Logging_Server.h" 

ACE_THR_FUNC_RETURN event_loop (void *); // Forward declaration. 

typedef Reactor_Logging_Server<Logging_Acceptor_WFMO> 
        Server_Logging_Daemon; 

int main (int argc, char *argv[]) { 
  const size_t N_THREADS = 4; 
  ACE_WFMO_Reactor wfmo_reactor; 
  ACE_Reactor reactor (&wfmo_reactor); 

  Server_Logging_Daemon *server = 0; 
  ACE_NEW_RETURN 
    (server, Server_Logging_Daemon (argc, argv, &reactor), 1); 
  Quit_Handler quit_handler (&reactor); 
  ACE_Thread_Manager::instance ()->spawn_n 
    (N_THREADS, event_loop, &reactor); 
  return ACE_Thread_Manager::instance ()->wait (); 
} 

The main differences between this main() and the one shown on page 101 are
 

•

• Reactor_Logging_Server is instantiated with Logging_Acceptor_WFMO rather than Logging_Acceptor_Ex.
•  
•

• The ACE_WFMO_Reactor is used instead of ACE_TP_Reactor.
•  
•

• The controller thread dedicated to shutdown processing is replaced by an instance of Quit_Handler,
described above.

•  
•

• The calls to the WaitForMultipleObjects() event demultiplexer can actually run concurrently in different
threads, rather than having calls to select() be serialized using the Leader/Followers pattern, as is the case
with the ACE_TP_Reactor.

•  
•

• The program will only run on Windows platforms, instead of all ACE platforms.
•  
•

• We don't use the singleton reactor API, but instead use a local reactor instance again.
•  
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4.5 Summary
 

This chapter described how the most common ACE_Reactor implementations are designed and illustrated some
subtle nuances of their different capabilities. In addition to giving some guidelines on when to use each, our
discussions emphasized two points:
 

1.

1. Different implementations of OS event demultiplexing mechanisms can present significant challenges, as well
as important opportunities.

1.  
2.

2. A well-designed framework can be extended to use OS capabilities effectively while isolating complex design
issues in the framework, rather than in application code.

2.  

An intelligently designed framework can significantly improve the portability and extensibility of both applications and
the framework itself. The ACE Reactor framework implementations are good examples of how applying patterns,
such as Wrapper Facade, Facade, and Bridge, and C++ features, such as inheritance and dynamic binding, can yield
a high-quality, highly reusable framework with these elusive qualities. The ACE Reactor framework implementations
described in this chapter encapsulate many complex capabilities, allowing networked application developers to focus
on application-specific concerns.
 

One of the most powerful properties of the ACE Reactor framework design is its ability to enhance extensibility at
the following variation points:
 

•

• Customized event handlers. It's straightforward to extend application functionality by inheriting from the
ACE_Event_Handler class or one of its pre-defined ACE subclasses (such as ACE_Service_Object,
ACE_Task,orACE_Svc_Handler) and selectively implementing the necessary virtual method(s). For
example, Chapter 7 illustrates how event handlers in our client and server logging daemons can be
customized transparently to support authentication.

•  
•

• Customized ACE_Reactor implementations. It's straightforward to modify the underlying event
demultiplexing mechanism of an ACE_Reactor without affecting existing application code. For example,
porting a reactive logging server from a UNIX platform to a Windows platform requires no visible changes to
application code. In contrast, porting a C implementation of the server from select() to
WaitForMultipleObjects() is tedious and error-prone.

•  

Over the previous decade, ACE's use in new environments has yielded new requirements for event-driven
application support. For example, GUI integration is an important area due to new GUI toolkits and event loop
requirements. The following new Reactor implementations were made easier due to the ACE Reactor framework's
modular design:
 

ACE Class
 

Description
 

ACE_Dev_Poll_Reactor
 

Uses the /dev/poll or /dev/epoll demultiplexer. It's
designed to be more scalable than select()-based
reactors.
 

ACE_Priority_Reactor
 

Dispatches events in developer-assigned priority order.
 

ACE_XtReactor
 

Integrates ACE with the X11 Toolkit.
 

ACE_FlReactor
 

Integrates ACE with the Fast Light (FL) GUI framework.
 

ACE_QtReactor
 

Integrates ACE with the Qt GUI toolkit.
 

ACE_TkReactor
 

Integrates ACE with the TCL/Tk GUI toolkit.
 

ACE_Msg_WFMO_Reactor
 

Adds Windows message handling to
ACE_WFMO_Reactor.
 

You can read about these reactors in the ACE documentation at http://ace.ece.uci.edu/Doxygen/ or
http://www.riverace.com/docs/.
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Chapter 5. The ACE Service Configurator
Framework
 

CHAPTER SYNOPSIS
 

This chapter describes the design and use of the ACE Service Configurator framework, which is an implementation
of the Component Configurator pattern [POSA2]. This pattern helps increase application extensibility and flexibility
by decoupling the behavior of services from the point of time when implementations of these services are configured
into application processes. The chapter concludes by illustrating how the ACE Service Configurator framework can
help to improve the extensibility of our networked logging server.
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5.1 Overview
 

Section 2.2 described the naming and linking design dimensions that developers need to consider when configuring
networked applications. An extensible strategy for addressing these design dimensions is to apply the Component
Configurator design pattern [POSA2]. This pattern allows an application to reconfigure its services at run time
without having to modify, recompile, or relink the program itself, or shut down and restart the application.
 

The ACE Service Configurator framework is a portable implementation of the Component Configurator pattern that
allows applications to defer configuration and implementation decisions about their services until late in the design
cycle?s late as installation time or even at run time. The ACE Service Configurator framework supports the ability
to activate services selectively at run time regardless of whether they are
 

•

• Static services, which are linked statically into an application program
•  
•

• Dynamic services, which are linked from one or more shared libraries (DLLs)
•  

Each service can also be passed argc/argv-style arguments to set certain information at run time. Due to ACE's
integrated framework design, services using the ACE Service Configurator framework can also be dispatched by the
ACE Reactor framework.
 

This chapter examines the following ACE Service Configurator framework classes:
 

ACE Class
 

Description
 

ACE_Service_Object
 

Defines a uniform interface that the ACE Service
Configurator framework uses to configure and control a
service implementation. Control operations include
initializing, suspending, resuming, and terminating a
service.
 

ACE_Service_Repository
 

A central repository for all services managed using the
ACE Service Configurator framework. It provides
methods for locating, reporting on, and controlling all of
an application's configured services.
 

ACE_Service_Repository_Iterator
 

A portable mechanism for iterating through all the
services in a repository.
 

ACE_Service_Config
 

Provides an interpreter that parses and executes scripts
specifying which services to (re)configure into an
application (e.g., by linking and unlinking DLLs) and
which services to suspend and resume.
 

The most important relationships between the classes in the ACE Service Configurator framework are shown in 
Figure 5.1. These classes play the following roles in accordance with the Component Configurator pattern [POSA2]:
 

Figure 5.1. The ACE Service Configurator Framework Classes
 

•

• Configuration management layer classes perform application-independent strategies to install, initialize,
control, and shut down service objects. The classes in the configuration management layer in the ACE
Service Configurator framework include ACE_Service_Config, ACE_Service_Repository, and
ACE_Service_Repository_Iterator.

•  
•

• Application layer classes implement concrete services to perform an application's processing. In the ACE
Service Configurator framework, application layer classes are descendants of ACE_Service_Object, which
in turn inherits from ACE_Event_Handler (Chapter 3), thereby enabling service objects to be linked and
unlinked dynamically, and to participate in the ACE Reactor framework.

•  

The ACE Service Configurator framework provides the following benefits:
 

•

• Flexibility. The framework allows developers to offer multiple services, and a choice of different
implementations of services, that can be assembled at run time. The choices concerning which services to
execute on which network node(s) can be made (and changed) at any point, ranging from application build
time to the actual point when services start running. Developers can also limit choices (e.g., by not offering
dynamically linkable services) where desired.

•  
•

• Configurability. Developers can customize and configure application data for nearly any aspect of a service
and for each deployment. Services can be developed to read traditional configuration data, such as port
numbers, network addresses, and file system locations. Moreover, services can allow tuning and
performance decisions to be deferred until the right information is available to guide them. For example,
depending on the run-time platform's available multithreading facilities and available CPUs, it may be either
more or less efficient to run multiple services in separate threads or separate processes. The ACE Service
Configurator framework enables applications to be configured by site-knowledgable administrators, or they
can select and tune these behaviors flexibly at run time, when there's enough information to help match client
demands with available system processing resources.

•  
•

• Managability. All configuration information can be stored in a configuration script file, known as svc.conf. The
framework uses these scripts to load and configure services. An application's installation procedure can
record settings in an svc.conf file. Administrators can also edit and tune this information as needed, without
rebuilding the application itself. Applications can form their own configuration directives and pass them
directly to the ACE Service Configurator framework. The framework groups an application's services into
one administrative unit and enables an application to report on its services and their states.

•  
•

• Consistency. The framework imposes a uniform interface for initializing, suspending, resuming, and
terminating a service. This uniformity provides consistency to framework users and allows services to be
treated as building blocks that can be assembled flexibly to form complete applications.

•  
•

• Maintainability. The framework's decoupling of service implementation from configuration into networked
applications allows service implementations to evolve over time, independently of which networked
applications they're included in. Each service can be developed and tested independently, which simplifies
subsequent service composition and increases reuse.

•  
•

• Enhanced dynamism and control. The framework enables a service to be reconfigured dynamically without
modifying, recompiling, or statically relinking existing code. Each service can also be reconfigured without
affecting other services or stopping and restarting the server process itself. These reconfiguration capabilities
are often required for high-availability applications, such as mission-critical systems that perform online
transaction processing or telecom call processing.

•  

The remainder of this chapter motivates and describes the capabilities of each class in the ACE Service Configurator
framework. We also illustrate how this framework can be used to enhance the extensibility of our networked logging
server. If you aren't familiar with the Component Configurator pattern from POSA2 we recommend that you read
about it first before delving into the detailed examples in this chapter.
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5.2 The ACE_Service_Object Class
 

Motivation
 

Service configuration and life cycle management involves the following aspects that we've alluded to briefly above:
 

•

• Initialization. A service must be initialized, which may involve creating one or more objects or invoking a
factory method. Configuration parameters are passed to the service at this time.

•  
•

• Execution control. Certain applications require the ability to suspend and resume services. Offering this
capability therefore requires a mechanism by which a management application can locate the desired services
and then contact the services to request or force the suspend/resume operation.

•  
•

• Reporting. Mission-critical services often require the ability to respond to requests for information concerning
their status and availability in a uniform way.

•  
•

• Termination. Orderly shutdown processes are required to ensure that a service's resources are released
properly, any necessary status information is updated, and that service shutdown is ordered properly to avoid
improper service interactions.

•  

Designing and implementing these capabilities in an ad hoc manner often produces tightly coupled data structures and
classes, which are hard to evolve and reuse in future projects.
 

Moreover, if multiple projects or development groups undertake similar efforts, the primary benefits of service
configuration will be lost because it's highly unlikely that multiple designs will interoperate at either the service or
management level.
 

Since service configuration and management are largely application-independent they are good candidates to
incorporate into a framework. Enforcing a uniform interface across all networked services makes it easier to
configure and manage them consistently. In turn, this consistency simplifies application development and deployment
by mitigating key challenges inherent in creating reusable administrative configuration tools. To provide a uniform
interface between the ACE Service Configurator framework and the application-defined services, each service must
be a descendant of a common base class called ACE_Service_Object.
 

Class Capabilities
 

ACE_Service_Object provides a uniform interface that allows service implementations to be configured and
managed by the ACE Service Configurator framework. This class provides the following capabilities:
 

•

• It provides hook methods that initialize a service (e.g., allocating its resources) and shut a service down (e.g.,
cleaning up its resources).

•  
•

• It provides hook methods to suspend service execution temporarily and to resume execution of a suspended
service.

•  
•

• It provides a hook method that reports key service information, such as its purpose, current status, and the
port number where it listens for client connections.

•  

These methods are generally invoked as callbacks from the ACE Service Configurator framework when it interprets
the configuration directives described on page 141.
 

The interface for ACE_Service_Object is shown in Figure 5.2 (page 120). By inheriting from ACE_Event_Handler
and ACE_Shared_Object, subclasses of ACE_Service_Object can be dispatched by the ACE Reactor framework
and can be linked and unlinked from a DLL dynamically, respectively. The key configuration-related hook methods
of ACE_Service_Object are outlined in the following table:
 

Figure 5.2. The ACE_Service_Object Class
 

Method
 

Description
 

init()
 

Used by the framework to instruct a service to initialize
itself. "argc/argv"-style arguments can be passed to init()
to control service initialization.
 

fini()
 

Used by the framework to instruct a service to shut itself
down. This method typically performs termination
operations that release a service's resources, such as
memory, synchronization locks, or I/O handles.
 

suspend()
 

resume()
 

Used by the framework to instruct a service to suspend
and resume execution.
 

info()
 

Used to query a service for certain information about
itself, such as its name, purpose, and network address.
Clients can query a server to retrieve this information and
use it to contact a particular service running in a server.
 

These hook methods collectively impose a uniform interface between the ACE Service Configurator framework and
the application-defined services that it manages.
 

Application services that inherit from ACE_Service_Object can selectively override its hook methods, which are
called back at the appropriate time by the ACE Service Configurator framework in response to specific events. For
example, a service object's init() hook method is called when the Service Configurator framework executes a
directive to activate the service (both the dynamic and static directives activate a service, as shown on page 141).
The init() hook method must return 0 if initialization succeeds and -1 if it fails. If (and only if) init() succeeds, the
corresponding fini() method will be called on the service object when the ACE Service Configurator framework
executes the remove directive for the service, or shuts down all services.
 

The Service Configurator is the first ACE framework we've studied that has extensive interaction with administrators
or applications. These interactions introduce the need to operate with local character sets. Figure 5.2 shows the
ACE_TCHAR type, which helps ACE deal with non-ASCII character sets portably. ACE's facilities for handling
wide-character and Unicode characters are described in Sidebar 28. We'll use this facility to handle character strings
in the remainder of this book.
 

Example
 

To illustrate the ACE_Service_Object class, we reimplement our reactive logging server from the Example portion of 
Section 3.5. This revision can be configured dynamically by the ACE Service Configurator framework, rather than
configured statically into the main() program shown on page 84. To accomplish this, we'll apply the Adapter pat-tern [
GoF] to create the following template class in the Reactor_Logging_Server_Adapter.h header file:
 

Sidebar 28: How ACE Deals with Narrow
and Wide Characters
 

Developers outside the United States are acutely aware that many character sets in use today require
more than one byte, or octet, to represent each character. Characters that require more than one octet
are referred to as "wide characters." The most popular multiple octet standard is ISO/IEC 10646, the
Universal Multiple-Octet Coded Character Set (UCS). Unicode is a separate standard, but is essentially
a restricted subset of UCS that uses two octets for each character (UCS-2). Many Windows
programmers are familiar with Unicode.
 

C++ represents wide characters with the wchar_t type, which enables methods to offer multiple
signatures that are differentiated by their character type. Wide characters have a separate set of C string
manipulation functions, however, and existing C++ code, such as string literals, requires change for
wide-character usage. As a result, programming applications to use wide-character strings can become
expensive, especially when applications written initially for U.S. markets must be internationalized for
other countries. To improve portability and ease of use, ACE uses C++ method overloading and the
macros described below to use different character types without changing APIs:
 

Macro
 

Usage
 

ACE_HAS_WCHAR
 

Configuration setting to build ACE with its
wide-character methods
 

ACE_USES_WCHAR
 

Configuration setting that directs ACE to use
wide characters internally
 

ACE_TCHAR
 

Defined as either char or wchar_t, to match
ACE's internal character width
 

ACE_TEXT(str)
 

Defines the string literal str correctly based on
ACE_USES_WCHAR
 

ACE_TEXT_CHAR_TO_TCHAR(str)
 

Converts a char * string to ACE_TCHAR
format, if needed
 

ACE_TEXT_ALWAYS_CHAR(str)
 

Converts an ACE_TCHAR string to char *
format, if needed
 

ACE must be built with the ACE_HAS_WCHAR configuration setting for applications to use wide
characters. Moreover, ACE must be built with the ACE_USES_WCHAR setting if ACE should also
use wide characters internally. The ACE_TCHAR and ACE_TEXT macros are illustrated in examples
throughout this book.
 

ACE also supplies two string classes, ACE_CString and ACE_WString, which hold narrow and wide
characters, respectively. These classes are analogous to the standard C++ string class, but can be
configured to use custom memory allocators and are more portable. ACE_TString is a typedef for one
of the two string types depending on the ACE_USES_WCHAR configuration setting.
 

template <class ACCEPTOR> 
class Reactor_Logging_Server_Adapter : public ACE_Service_Object { 
public: 
  // Hook methods inherited from <ACE_Service_Object>. 
  virtual int init (int argc, ACE_TCHAR *argv[]); 
  virtual int fini (); 
  virtual int info (ACE_TCHAR **, size_t) const; 
  virtual int suspend (); 
  virtual int resume (); 

private: 
  Reactor_Logging_Server<ACCEPTOR> *server_; 
}; 

This template inherits from the ACE_Service_Object class and contains a pointer to a Reactor_Logging_Server
object (page 83). We instantiated this template with the ACCEPTOR class parameter to defer our choice of the
acceptor factory until later in the design cycle. The Adapter pattern is a good choice here because it allows reuse of
our existing Reactor_Logging_Server class. If we were designing this example from scratch with the ability to be
configured as a service, however, a more direct approach would be to derive Reactor_Logging_Server from
ACE_Service_Object instead of from ACE_Event_Handler. In that case, the adapter class would not be needed,
and we could still defer the choice of the acceptor factory until later.
 

Figure 5.3 illustrates the lifecycle of the objects in this example when an instance of
Reactor_Logging_Server_Adapter is configured dynamically. When this service is configured into the address space
of an application, the ACE Service Configurator framework creates an instance of
Reactor_Logging_Server_Adapter and invokes the following init() hook method automatically:
 

Figure 5.3. Life Cycle of the Dynamic Reactor Logging Server
 

 1 template <class ACCEPTOR> int 
 2 Reactor_Logging_Server_Adapter<ACCEPTOR>::init 
 3   (int argc, ACE_TCHAR *argv[]) 
 4 { 
 5   int i; 
 6   char **array = 0; 
 7   ACE_NEW_RETURN (array, char*[argc], -1); 
 8   ACE_Auto_Array_Ptr<char *> char_argv (array); 
 9 
10   for (i = 0; i < argc; ++i) 
11     char_argv[i] = ACE::strnew (ACE_TEXT_ALWAYS_CHAR(argv[i])); 
12   ACE_NEW_NORETURN (server_, Reactor_Logging_Server<ACCEPTOR> 
13                                (i, char_argv.get (), 
14                                 ACE_Reactor::instance ())); 
15   for (i = 0; i < argc; ++i) ACE::strdelete (char_argv[i]); 
16   return server_ == 0 ? -1 : 0; 
17 } 

Lines 5?1 The ACE Service Configurator framework passes argv as an array of ACE_TCHAR pointers, but the
Reactor_Logging_Server constructor accepts a char * array. The init() method therefore uses the
ACE_TEXT_ALWAYS_CHAR macro to convert to the char format where needed. This macro creates a
temporary object with the transformed string, which is then copied via ACE::strnew() to preserve it through the
Reactor_Logging_Server constructor. Sidebar 29 (page 125) describes the ACE::strnew() and ACE::strdelete()
methods.
 

Lines 12?4 Dynamically allocate an instance of the Reactor_Logging_Server that contains the desired reactor,
acceptor, and handlers.
 

Line 15 Free the memory used for the converted argv strings.
 

When instructed to remove the dynamically configured logging service, the ACE Service Configurator framework
invokes the Reactor_Logging_Server_Adapter::fini() hook method shown below:
 
template <class ACCEPTOR> int 
Reactor_Logging_Server_Adapter<ACCEPTOR>::fini () 
{ server_->handle_close (); server_ = 0; return 0; } 

This method calls Reactor_Logging_Server::handle_close(), which deletes the Reactor_Logging_Server object
allocated by init(). The ACE Service Configurator framework uses the "gobbler" function (page 137) to delete a
service object after calling its fini() hook method. We therefore must not call delete this in fini().
 

The info() hook method reports service-specific information when the framework requests it. Our info() method
formats a string containing the TCP port it's listening on:
 
 1 template <class ACCEPTOR> int 
 2 Reactor_Logging_Server_Adapter<ACCEPTOR>::info 
 3     (ACE_TCHAR **bufferp, size_t length) const { 
 4   ACE_TYPENAME ACCEPTOR::PEER_ADDR local_addr; 
 5   server_->acceptor ().get_local_addr (local_addr); 
 6 
 7   ACE_TCHAR buf[BUFSIZ]; 
 8   ACE_OS::sprintf (buf, 
 9                    ACE_TEXT ("%hu"), 
10                    local_addr.get_port_number ()); 
11   ACE_OS_String::strcat 
12     (buf, ACE_TEXT ("/tcp # Reactive logging server\n")); 
13   if (*bufferp == 0) *bufferp = ACE::strnew (buf); 
14   else ACE_OS_String::strncpy (*bufferp, buf, length); 
15   return ACE_OS_String::strlen (*bufferp); 
16 } 

Lines 4? Obtain the network address from the instance of ACE_SOCK_Acceptor that's used by the
Reactor_Logging_Server.
 

Lines 7?2 Format a message that explains what the service does and how to contact it.
 

Line 13 If the caller didn't supply a buffer to hold the formatted message, allocate a buffer and copy the message into
it using ACE::strnew(). In this case, the caller must use ACE::strdelete() to free the buffer. ACE does not specify how
an implementation of info() must allocate memory. Developers writing an implementation of info() must therefore
define and clearly document the policy for their implementations. It's strongly recommended that developers use
ACE::strnew() to allocate the string, and require their users to call ACE::strdelete() to free the memory. Sidebar 29
describes the motivation for these methods.
 

Line 14 If the caller did supply a buffer for the message, copy the formatted message into it, limited to the length
passed by the caller.
 

Line 15 Return the length of the message.
 

Sidebar 29: Portable Heap Operations with
ACE
 

Library functions and classes, such as Reactor_Logging_Server_Adapter::info() (page 124), often
allocate memory dynamically. Memory allocated dynamically in C++ programs should eventually be
freed. To write portable C++ programs, it's important to match these allocate and free operations to
avoid corrupting the heap (also known as the freestore).
 

A surprisingly common misconception is that simply ensuring the proper matching of calls to operator
new() and operator delete() (or calls to malloc() and free()) is sufficient for correct heap management.
This strategy relies on the implicit assumption that there's one universal heap per process. In practice,
however, a heap is simply a memory area managed by some run-time component, such as the C or C++
run-time library. If an executing program is exposed to multiple run-time library instances, it's likely there
will be multiple heaps as well.
 

For example, Windows supplies multiple variants of the C/C++ run-time library, such as Debug versus
Release and Multithreaded versus Single-threaded. Each of these variants maintains its own heap.
Memory allocated from one heap must be released back to the same heap. Thus, correct heap
management requires not only matching the proper method/function calls, but also making them through
the same run-time library. It's easy to violate these requirements when code from one subsystem or
provider frees memory allocated by another.
 

To assist in managing dynamic memory portably, ACE offers matching allocate and free methods listed
in the table below:
 

Method
 

Usage
 

ACE::strnew()
 

Allocates memory for a copy of a character
string and copies the string into it.
 

ACE::strdelete()
 

Releases memory allocated by strnew().
 

ACE_OS_Memory::malloc()
 

Allocates a memory block of specified size.
 

ACE_OS_Memory::calloc()
 

Allocates a memory block to hold a specified
number of objects, each of a given size. The
memory contents are explicitly initialized to 0.
 

ACE_OS_Memory::realloc()
 

Changes the size of a memory block
allocated via ACE_OS_Memory::malloc().
 

ACE_OS_Memory::free()
 

Releases memory allocated via any of the
above three ACE_OS_Memory methods.
 

As long as developers match the correct ACE allocation and deallocation methods, ACE ensures the
correct run-time library functions will be called on the correct heaps on all platforms. For complete
details on these methods, see the online ACE reference documentation at 
http://ace.ece.uci.edu/Doxygen/ and http://www.riverace.com/docs/.
 

Unlike the other ACE_Service_Object hook methods shown in Figure 5.2 (page 120), an info() method isn't always
invoked by the ACE Service Configurator framework, though it can be. Instead, it's often called directly by a server
program, as shown in the Service_Reporter::handle_input() method (page 133). Moreover, application developers
can determine the most useful content of the message since info() doesn't mandate a particular format.
 

The suspend() and resume() hook methods are similar to each other:
 
template <class ACCEPTOR> int 
Reactor_Logging_Server_Adapter<ACCEPTOR>::suspend () 
{ return server_->reactor ()->suspend_handler (server_); } 

template <class ACCEPTOR> int 
Reactor_Logging_Server_Adapter<ACCEPTOR>::resume () 
{ return server_->reactor ()->resume_handler (server_); } 

Since the Reactor_Logging_Server class descends from ACE_Event_Handler, the server_ object can be passed to
the singleton reactor's suspend_handler() and resume_handler() methods (page 73). Both methods double-dispatch
to Reactor_Logging_Server::get_handle() to extract the underlying passive-mode socket handle. This socket handle
is then temporarily removed from or replaced in the list of socket handles handled by the singleton reactor. The
Example portion of Section 5.4 shows how the Reactor_Logging_Server_Adapter can be configured into and out of
a generic server application dynamically.
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5.3 The ACE_Service_Repository Classes
 

Motivation
 

The ACE Service Configurator framework supports the configuration of both single-service and multiservice servers. 
Section 5.2 explained why the goals of initialization, execution control, reporting, and termination require application
services to be based on a common framework class. For the framework to leverage the accessibility provided by
ACE_Service_Object effectively, it must store service information in a well-known repository and be able to access
and control these service objects individually or collectively.
 

Application services in multiservice servers also may require access to each other. To avoid tightly coupling these
services, and to preserve the benefits of delayed configuration decisions, services should be able to locate each other
at run time. Therefore, to satisfy the needs of the framework and applications without requiring developers to provide
these capabilities in an ad hoc way, the ACE Service Configurator framework provides the
ACE_Service_Repository and ACE_Service_Repository_Iterator classes.
 

Class Capabilities
 

ACE_Service_Repository implements the Manager pattern [Som98] to control the life cycle of, and the access to,
service objects configured by the ACE Service Configurator framework. This class provides the following capabilities:
 

•

• It keeps track of all service implementations that are configured into an application and maintains each
service's status, such as whether it's active or suspended.

•  
•

• It provides the mechanism by which the ACE Service Configurator framework inserts, manages, and
removes services.

•  
•

• It provides a convenient mechanism to terminate all services, in reverse order of their initialization.
•  
•

• It allows an individual service to be located by its name.
•  

The interface for ACE_Service_Repository is shown in Figure 5.4 (page 128) and its key methods are outlined in the
following table:
 

Figure 5.4. The ACE_Service_Repository Class
 

Method
 

Description
 

ACE_Service_Repository() open()
 

Initialize the repository and allocate its dynamic resources.
 

ACE_Service_Repository() close()
 

Close down the repository and release its dynamically
allocated resources.
 

insert()
 

Add a new service into the repository.
 

find()
 

Locate an entry in the repository.
 

remove()
 

Remove an existing service from the repository.
 

suspend()
 

Suspend a service in the repository.
 

resume()
 

Resume a suspended service in the repository.
 

instance()
 

A static method that returns a pointer to a singleton
ACE_Service_Repository.
 

The ACE_Service_Repository binds the following entities together:
 

•

• The name of a service, which is represented as a character string, and
•  
•

• An instance of ACE_Service_Type, which is the class used by the ACE Service Configurator framework to
link, initialize, suspend, resume, remove, and unlink services from a server statically or dynamically.

•  

The ACE_Service_Type class provides the framework with the operations necessary to act on the configured
services. The ACE Service Configurator framework can be used to configure dynamic and static services, as well as
the ACE_Module and ACE_Stream capabilities covered in Sections 9.2 and 9.3, respectively.
 

The ACE_Service_Type class uses the Bridge pattern to allow type-specific data and behavior in service types to
evolve without impacting the class. The ACE_Service_Type class plays the Abstraction role in this pattern and the
ACE_Service_Type_Impl class plays the Implementor role. The following classes each play the
ConcreteImplementor role, representing the types of services that can be recorded in the service repository:
 

1.

1. ACE_Service_Object_Type?he object() method returns a pointer to the associated ACE_Service_Object
described in Section 5.2.

1.  
2.

2. ACE_Module_Type?he object() method returns a pointer to the associated ACE_Module described in 
Section 9.2.

2.  
3.

3. ACE_Stream_Type?he object() method returns a pointer to the associated ACE_Stream described in 
Section 9.3.

3.  

For dynamically linked service objects, ACE_Service_Type also stores the handle of the DLL that contains the
service's executable code. The ACE Service Configurator framework uses this handle to unlink and unload a service
object from a running server when the service it offers is no longer needed. Sidebar 30 (page 131) shows how a
program can use ACE_Dynamic_Service and ACE_Service_Type to retrieve services from
ACE_Service_Repository programmatically.
 

ACE_Service_Repository_Iterator implements the Iterator pattern [GoF] to provide applications with a way to
sequentially access the ACE_Service_Type items in an ACE_Service_Repository without exposing its internal
representation. The interface for ACE_Service_Repository_Iterator is shown in Figure 5.5 (page 130) and its key
methods are outlined in the following table:
 

Figure 5.5. The ACE_Service_Repository_Iterator Class
 

Method
 

Description
 

ACE_Service_Repository_Iterator()
 

Initialize the iterator.
 

next()
 

Pass back a pointer to the next ACE_Service_Type in
the repository.
 

done()
 

Returns 1 when all items have been seen.
 

advance()
 

Move ahead one item in the repository.
 

Never delete entries from an ACE_Service_Repository that's being iterated over since the
ACE_Service_Repository_Iterator is not a robust iterator [Kof93].
 

Example
 

This example illustrates how the ACE_Service_Repository and ACE_Service_Repository_Iterator classes can be
used to implement a Service_Reporter class. This class provides a "meta-service" that clients can use to obtain
information on all services that the ACE Service Configurator framework has configured into an application statically
or dynamically. A client interacts with a Service_Reporter as follows:
 

•

• The client establishes a TCP connection to the Service_Reporter object.
•  
•

• The Service_Reporter returns a list of all the server's services to the client.
•  
•

• The Service_Reporter closes the TCP/IP connection.
•  

Sidebar 31 (page 132) describes ACE_Service_Manager, which is a class bundled with the ACE toolkit that
provides a superset of Service_Reporter features.
 

The Service_Reporter class is described below. We first create a file called Service_Reporter.h that contains the
following class definition:
 
class Service_Reporter : public ACE_Service_Object { 
public: 
  Service_Reporter (ACE_Reactor *r = ACE_Reactor::instance ()) 
    : ACE_Service_Object (r) {} 

  // Hook methods inherited from <ACE_Service_Object>. 
  virtual int init (int argc, ACE_TCHAR *argv[]); 
  virtual int fini (); 
  virtual int info (ACE_TCHAR **, size_t) const; 
  virtual int suspend (); 
  virtual int resume (); 

protected: 
  // Reactor hook methods. 
  virtual int handle_input (ACE_HANDLE); 
  virtual ACE_HANDLE get_handle () const 
  { return acceptor_.get_handle (); } 

private: 
  ACE_SOCK_Acceptor acceptor_; // Acceptor instance. 
  enum { DEFAULT_PORT = 9411 }; 
}; 

Since Service_Reporter inherits from ACE_Service_Object, it can be configured by the ACE Service Configurator
framework. The ACE Service Configurator framework will create an instance of this class at run time, so the
constructor must be public.
 

Sidebar 30: The ACE_Dynamic_Service
Template
 

The ACE_Dynamic_Service class template provides a type-safe way to access the
ACE_Service_Repository programmatically. An application process can use this template to retrieve
services registered with its local ACE_Service_Repository. As shown below, the TYPE template
parameter ensures that a pointer to the appropriate type of service is returned from the static instance()
method: 
template <class TYPE> 
class ACE_Dynamic_Service { 
public: 
  // Use <name> to search the <ACE_Service_Repository>. 
  static TYPE *instance (const ACE_TCHAR *name) { 
    const ACE_Service_Type *svc_rec; 
    if (ACE_Service_Repository::instance ()->find 
          (name, &svc_rec) == -1) return 0; 
    const ACE_Service_Type_Impl *type = svc_rec->type (); 
    if (type == 0) return 0; 
    ACE_Service_Object *obj = 
      ACE_static_cast (ACE_Service_Object *, type->object ()); 
    return ACE_dynamic_cast (TYPE *, obj); 
  } 
}; 

If an instance of the Server_Logging_Daemon service has been linked dynamically and initialized by the
ACE Service Configurator framework, an application can use the ACE_Dynamic_Service template to
access the service programmatically as shown below: 
typedef Reactor_Logging_Server_Adapter<Logging_Acceptor> 
        Server_Logging_Daemon; 

Server_Logging_Daemon *logging_server = 
  ACE_Dynamic_Service<Server_Logging_Daemon>::instance 
    (ACE_TEXT ("Server_Logging_Daemon")); 

ACE_TCHAR *service_info = 0; 
logging_server->info (&service_info); 
ACE_DEBUG ((LM_DEBUG, "%s\n", service_info)); 
ACE::strdelete (service_info); 

Note that this example assumes info() allocates string memory via the ACE::strnew() method discussed
in Sidebar 29 (page 125).
 

Sidebar 31: The ACE_Service_Manager Class
 

ACE_Service_Manager provides clients with access to administrative commands to access and manage
the services currently offered by a network server. These commands "externalize" certain internal
attributes of the services configured into a server. During server configuration, an
ACE_Service_Manager is typically registered at a well-known communication port, for example, port
9411. Clients can connect to an ACE_Service_Manager at that port and issue one of the following
commands.
 

•

• help? a list of all services configured into an application via the ACE Service Configurator
framework is returned to the client.

•  
•

• reconfigure? a reconfiguration is triggered to reread the local service configuration file.
•  

If a client sends anything other than these two commands, its input is passed to
ACE_Service_Config::process_directive() (page 141), which enables remote configuration of servers
via command-line instructions such as 
% echo "suspend My_Service" | telnet hostname 9411 

It's therefore important to use the ACE_Service_Manager only if your application runs in a trusted
environment since a malicious attacker can use it to deny access to legitimate services or configure rogue
services in a Trojan Horse manner. For this reason, ACE_Service_Manager is a static service that ACE
disables by default.
 

An application can direct ACE to load its static services, including the ACE_Service_Manager, with the
ACE_Service_Config::open() method (page 141) in either of two ways:
 

1.

1. At compile time, by passing a 0 for the ignore_static_svcs argument
1.  
2.

2. At run time, by including the '-y' option with the argc/argv pair; this overrides the
ignore_static_svcs value.

2.  

The implementations of the Service_Reporter hook methods are placed into the Service_Reporter.cpp file. The ACE
Service Configurator framework calls the following Service_Reporter::init() hook method when a Service_Reporter
is configured into an application:
 
 1 int Service_Reporter::init (int argc, ACE_TCHAR *argv[]) { 
 2   ACE_INET_Addr local_addr (Service_Reporter::DEFAULT_PORT); 
 3   ACE_Get_Opt get_opt (argc, argv, ACE_TEXT ("p:"), 0); 
 4   get_opt.long_option (ACE_TEXT ("port"), 
 5                        'p', ACE_Get_Opt::ARG_REQUIRED); 
 6   for (int c; (c = get_opt ()) != -1;) 
 7     if (c == 'p') local_addr.set_port_number 
 8                     (ACE_OS::atoi (get_opt.opt_arg ())); 
 9   acceptor_.open (local_addr); 
10   return reactor ()->register_handler 
11           (this, 
12           ACE_Event_Handler::ACCEPT_MASK); 
13 } 

Line 2 Initialize local_addr to the Service_Reporter's default TCP port number.
 

Lines 3? Parse the service configuration options using the ACE_Get_Opt class described in Sidebar 8 (page 47).
We start parsing at argv[0] rather than argv[1], which is the default. If the -p, or the long version --port, option is
passed into init(), the local_addr port number is reset to that value. Since ACE_Get_Opt always returns the
corresponding short option for any long options it encounters, it's sufficient to test only for 'p' in the loop iterator.
 

Lines 9?2 Initialize the ACE_SOCK_Acceptor to listen on the local_addr port number and register the instance of
Service_Reporter with the reactor for ACCEPT events. When a connection request arrives from a client, the reactor
dispatches the following Service_Reporter::handle_input() hook method:
 
 1 int Service_Reporter::handle_input (ACE_HANDLE) { 
 2   ACE_SOCK_Stream peer_stream; 
 3   acceptor_.accept (peer_stream); 
 4 
 5   ACE_Service_Repository_Iterator iterator 
 6     (*ACE_Service_Repository::instance (), 0); 
 7 
 8   for (const ACE_Service_Type *st; 
 9        iterator.next (st) != 0; 
10        iterator.advance ()) { 
11     iovec iov[3]; 
12     iov[0].iov_base = ACE_const_cast (char *, st->name ()); 
13     iov[0].iov_len = 
14       ACE_OS_String::strlen (st->name ()) * sizeof (ACE_TCHAR); 
15     const ACE_TCHAR *state = st->active () ? 
16            ACE_TEXT (" (active) ") : ACE_TEXT (" (paused) "); 
17     iov[1].iov_base = ACE_const_cast (char *, state); 
18     iov[1].iov_len = 
19       ACE_OS_String::strlen (state) * sizeof (ACE_TCHAR); 
20     ACE_TCHAR *report = 0; // Ask info() to allocate buffer. 
21     int len = st->type ()->info (&report, 0); 
22     iov[2].iov_base = ACE_static_cast (char *, report); 
23     iov[2].iov_len = ACE_static_cast (size_t, len); 
24     iov[2].iov_len *= sizeof (ACE_TCHAR); 
25     peer_stream.sendv_n (iov, 3); 
26     ACE::strdelete (report); 
27   } 
28 
29   peer_stream.close (); 
30   return 0; 
31 } 

Lines 2? Accept a new client connection. The Service_Reporter is an iterative service that only handles one client at
a time.
 

Lines 5? Initialize an ACE_Service_Repository_Iterator, which we'll use to report all the active and suspended
services offered by the server. Passing a 0 as the second argument to this constructor instructs it to also return
information on suspended services, which are ignored by default.
 

Lines 8?7 For each service, invoke its info() method to obtain a descriptive synopsis of the service, and send this
information back to the client via the connected socket. The sendv_n() gather-write method transfers all data buffers
in the array of iovec structures efficiently using a single system function call, as discussed by Sidebar 6 in Chapter 3 of
C++NPv1. Since there are no record boundaries in a TCP stream, the client may not be able to find the end of each
line of text. It's therefore polite to code info() methods to include a newline at the end of the message. Note that this
code can work with either narrow or wide characters, as discussed in Sidebar 28 (page 121). The text received by
the client will be in the character set and width of the Service_Reporter. Designing a mechanism to handle this
properly is left as an exercise for the reader.
 

Line 29 Close down the connection to the client and release the socket handle.
 

The Service_Reporter::info() hook method passes back a string that tells which TCP port number it's listening on and
what the service does:
 
int Service_Reporter::info (ACE_TCHAR **bufferp, 
                            size_t length) const { 
  ACE_INET_Addr local_addr; 
  acceptor_.get_local_addr (local_addr); 

  ACE_TCHAR buf[BUFSIZ]; 
  ACE_OS::sprintf 
    (buf, ACE_TEXT ("%hu"), local_addr.get_port_number ()); 
  ACE_OS_String::strcat 
    (buf, ACE_TEXT ("/tcp # lists services in daemon\n")); 
  if (*bufferp == 0) *bufferp = ACE::strnew (buf); 
  else ACE_OS_String::strncpy (*bufferp, buf, length); 
  return ACE_OS_String::strlen (*bufferp); 
} 

As with the Reactor_Logging_Server_Adapter::info() method (page 124), the caller must delete the dynamically
allocated buffer using ACE::strdelete().
 

The Service_Reporter's suspend() and resume() hook methods forward to the corresponding methods in the reactor
singleton, as follows:
 
int Service_Reporter::suspend () 
{ return reactor ()->suspend_handler (this); } 

int Service_Reporter::resume () 
{ return reactor ()->resume_handler (this); } 

The Service_Reporter::fini() method is shown below:
 
int Service_Reporter::fini () { 
  reactor ()->remove_handler 
    (this, 
    ACE_Event_Handler::ACCEPT_MASK 
    | ACE_Event_Handler::DONT_CALL); 
  return acceptor_.close (); 
} 

This method closes the ACE_SOCK_Acceptor endpoint and removes the Service_Reporter from the singleton
reactor. The ACE Service Configurator framework is responsible for deleting a service object after calling its fini()
hook method. We therefore don't need to delete this object in handle_close(), so we pass the DONT_CALL flag to
prevent the reactor from invoking this callback.
 

Finally, we must supply the ACE Service Configurator framework with some "bookkeeping" information regarding
this new service. Although the code for this service will be statically linked into the example program, we want the
framework to instantiate a Service_Reporter object to execute the service when it's activated. We therefore add the
necessary ACE service macros to the Service_Reporter implementation file. These macros create a
Service_Reporter and register it with the ACE_Service_Repository, as described in Sidebar 32 (page 136).
 
 1 ACE_FACTORY_DEFINE (ACE_Local_Service, Service_Reporter) 
 2 
 3 ACE_STATIC_SVC_DEFINE ( 
 4   Reporter_Descriptor, 
 5   ACE_TEXT ("Service_Reporter"), 
 6   ACE_SVC_OBJ_T, 
 7   &ACE_SVC_NAME (Service_Reporter), 
 8   ACE_Service_Type::DELETE_THIS 
 9   | ACE_Service_Type::DELETE_OBJ, 
10   0 // This object is not initially active. 
11 ) 
12 
13 ACE_STATIC_SVC_REQUIRE (Reporter_Descriptor) 

Sidebar 32: The ACE Service Factory Macros
 

Applications can use the following macros defined in ace/OS.h to simplify the creation and use of factory
functions and static service registration. With the exception of ACE_STATIC_SVC_REGISTER, these
macros should be used at file scope, rather than in a namespace, class, or method.
 

Factory and gobbler function macros. Static and dynamic services must supply a factory function to
create the service object and a "gobbler" function to delete it. ACE provides the following three macros
to help generate and use these functions:
 

•

• ACE_FACTORY_DEFINE(LIB, CLASS)? Used in an implementation file to define the
factory and gobbler functions for a service. LIB is the ACE export macro prefix (see Sidebar 37
on page 150) used with the library containing the factory function. It can be
ACE_Local_Service if the function needn't be exported from a DLL. CLASS is the type of
service object the factory must create.

•  
•

• ACE_FACTORY_DECLARE(LIB, CLASS)? Declares the factory function defined by the
ACE_FACTORY_DEFINE macro. Use this macro to generate a reference to the factory
function from a compilation unit other than the one containing the ACE_FACTORY_DEFINE
macro.

•  
•

• ACE_SVC_NAME(CLASS)? Generates the name of the factory function defined via the
ACE_FACTORY_DEFINE macro. The generated name can be used to get the function
address at compile time, such as for the ACE_STATIC_SVC_DEFINE macro, below.

•  

Static service information macro. ACE provides the following macro to generate static service
registration information. It defines the service name, type, and a pointer to the factory function the
framework calls to create a service instance:
 

•

• ACE_STATIC_SVC_DEFINE(REG, NAME, TYPE, FUNC_ADDR, FLAGS, ACTIVE)?
Used in an implementation file to define static service information. REG forms the name of the
information object, which must match the parameter passed to
ACE_STATIC_SVC_REQUIRE and ACE_STATIC_SVC_REGISTER. Other parameters
set ACE_Static_Svc_Descriptor attributes.

•  

• Static service registration macros. The static service registration information must be passed to
the ACE Service Configurator framework at program startup. The following two macros
cooperate to perform this registration:

•  
•

• ACE_STATIC_SVC_REQUIRE(REG)? Used in the service implementation file to define a
static object whose constructor will add the static service registration information to the
framework's list of known static services.

•  
•

• ACE_STATIC_SVC_REGISTER(REG)? Used at the start of the main program to ensure the
object defined in ACE_STATIC_SVC_REQUIRE registers the static service no later than the
point this macro appears.

•  

Line 1 The ACE_FACTORY_DEFINE macro generates the following functions:
 
void _gobble_Service_Reporter (void *arg) { 
  ACE_Service_Object *svcobj = 
    ACE_static_cast (ACE_Service_Object *, arg); 
  delete svcobj; 
} 

extern "C" ACE_Service_Object * 
_make_Service_Reporter (void (**gobbler) (void *)) { 
  if (gobbler != 0) *gobbler = _gobble_Service_Reporter; 
  return new Service_Reporter; 
} 

The ACE_FACTORY_DEFINE macro simplifies the use of the ACE Service Configurator framework as follows:
 

•

• It generates compiler-independent factory functions. This macro generates the _make_Service_Reporter()
factory function with extern "C" linkage, allowing the framework to locate this function in a DLL's symbol
table without knowing the C++ compiler's name-mangling scheme.

•  
•

• It manages dynamic memory consistently. To ensure correct behavior across platforms, it's important that
memory allocated in a DLL be deallocated in the same DLL, as described in Sidebar 29 (page 125). The
gobbler function passed to _make_Service_Reporter() therefore enables the ACE Service Configurator
framework to ensure memory is allocated and deleted within the same heap.

•  

Lines 3?1 The ACE_STATIC_SVC_DEFINE macro is used to initialize an instance of
ACE_Static_Svc_Descriptor. This object stores the information needed to describe the statically configured service
reporter service. Service_Reporter is the service object's class name and "Service_Reporter" is the name used to
identify the service in the ACE_Service_Repository. ACE_SVC_OBJ_T is the type of the service object container.
We use the ACE_SVC_NAME macro in conjunction with the C++ "address-of" operator to obtain the address of
the _make_Service_Reporter() factory function that creates an instance of Service_Reporter. DELETE_THIS and
DELETE_OBJ are enumerated literals defined in the ACE_Service_Types class that effect processing after the
service's fini() hook method is called, as follows:
 

•

• DELETE_THIS directs ACE to delete the ACE_Service_Object_Type object representing the service and
•  
•

• DELETE_OBJ causes the gobbler function to be called so the Service_Reporter object can be cleaned up.
•  

Line 13 The ACE_STATIC_SVC_REQUIRE macro defines an object that registers the instance of the
Service_Reporter's ACE_Static_Svc_Descriptor object with the ACE_Service_Repository. On many platforms, this
macro also ensures the object is instantiated. Some platforms, however, also require the
ACE_STATIC_SVC_REGISTER macro in the main() function of the program this service is linked into.
 

The Example portion of Section 5.4 shows how a Service_Reporter can be configured statically into a server
application.
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5.4 The ACE_Service_Config Class
 

Motivation
 

Before a service can execute, it must be configured into an application's address space. One way to configure
services into a networked application is to statically link the functionality provided by its various classes and functions
into separate OS processes, and then manually instantiate or initialize them at run time. We used this approach in the
logging server examples in Chapters 3 and 4 and throughout C++NPv1, where the logging server program runs in a
process that handles log records from client applications. Although our use of the ACE Reactor framework in earlier
chapters improved the networked logging server's modularity and portability, the following drawbacks arose from
statically configuring the Reactor_Logging_Server class with its main() program:
 

•

• Service configuration decisions are made prematurely in the development cycle, which is undesirable if
developers don't know the best way to collocate or distribute services in advance. Moreover, the "best"
configuration may change as the computing context changes. For example, an application may write log
records to a local file when it's running on a disconnected laptop computer. When the laptop is connected to
a LAN, however, it may forward log records to a centralized logging server. Forcing networked applications
to commit prematurely to a particular service configuration impedes their flexibility and can reduce their
performance and functionality. It can also force costly redesign and reimplementation later in a project's life
cycle.

•  
•

• Modifying a service may affect other services adversely if the implementation of a service is coupled tightly
with its initial configuration. To enhance reuse, for example, a logging server may initially reside in the same
program as other services, such as a name service. If the other services change, however, for example if the
name service lookup algorithm changes, all existing code in the server would require modification,
recompilation, and static relinking. Moreover, terminating a running process to change some of its service
code would also terminate the collocated logging service. This disruption in service may not be acceptable for
highly available systems, such as telecommunication switches or customer care call centers [SS94].

•  
•

• System performance may scale poorly since associating a separate process with each service ties up OS
resources, such as I/O handles, virtual memory, and process table slots. This design is particularly wasteful if
services are often idle. Moreover, processes can be inefficient for many short-lived communication tasks,
such as asking a time service for the current time or resolving a host address request via the Domain Name
Service (DNS).

•  

To address the drawbacks of purely static configurations, the ACE Service Configurator framework defines the
ACE_Service_Config class.
 

Class Capabilities
 

ACE_Service_Config implements the Facade pattern [GoF] to integrate other classes in the ACE Service
Configurator framework and coordinate the activities necessary to manage the services in an application. This class
provides the following capabilities:
 

•

• It interprets a scripting language that allows applications or administrators to provide the ACE Service
Configurator framework with commands, called directives, to locate and initialize a service's implementation
at run time, as well as to suspend, resume, reinitialize, and/or shut down a component after it's been
initialized. Directives can be specified to ACE_Service_Config in either of two ways:
1.  
1.

1. Using configuration files (named svc.conf by default) that contain one or more directives
1.  
2.

2. Programmatically, by passing individual directives as strings
2.  

•

• It supports the management of services located in the application (the so-called static services), as well as
those that must be linked dynamically (the so-called dynamic services) from separate shared libraries (DLLs).

•  
•

• It allows service reconfiguration at run time using the following mechanisms:
2.  
1.

1. On POSIX platforms, ACE_Service_Config can be integrated with the ACE Reactor framework to
reprocess its configuration files upon receipt of a SIGHUP signal or any other user-specified signal, such
as SIGINT.

1.  
2.

2. By passing the "reconfigure" command via ACE_Service_Manager, as described in Sidebar 31 (page
132).

2.  
3.

3. An application can request its ACE_Service_Config to reprocess its configuration files at any time. For
example, a Windows directory change notification event can be used to help a program learn when its
configuration file changes. This change event can then trigger reprocessing of the configuration.

3.  
4.

4. An application can also specify individual directives for its ACE_Service_Config to process at any time
via the process_directive() method.

4.  

Figure 5.6 The ACE_Service_Config Class
 
                      ACE_Service_Config 
+ ACE_Service_Config (ignore_static_svcs : int = 1, 
                      repository_size : size_t = MAX_SERVICES, 
                      signum : int = SIGHUP) 
+ open (argc : int, argv : ACE_TCHAR *[], 
        logger_key : const ACE_TCHAR * = ACE_DEFAULT_LOGGER_KEY, 
        ignore_static_svcs : int = 1, 
        ignore_default_svc_conf : int = 0, 
        ignore_debug_flag : int = 0) : int 
+ close () : int 
+ process_directives () : int 
+ process_directive (directive : ACE_TCHAR[]) : int 
+ reconfigure () : int 
+ suspend (name : const ACE_TCHAR []) : int 
+ resume (name : const ACE_TCHAR []) : int 

The interface for ACE_Service_Config is shown in Figure 5.6. This class has a rich interface since it exports all the
features in the ACE Service Configurator framework. We therefore group the description of its methods into the
three categories described below.
 

1. Service Configurator life cycle management methods. The following methods initialize and shut down the
ACE_Service_Config:
 

ACE Class
 

Description
 

ACE_Service_Config() open()
 

These methods create and initialize the
ACE_Service_Config.
 

close()
 

This method shuts down and finalizes all the configured
services and deletes the resources allocated when the
ACE_Service_Config was initialized.
 

There's only one instance of ACE_Service_Config's state in a process. This class is a variant of the Monostate
pattern [CB97], which ensures a unique state for its instances by declaring all data members to be static. Moreover,
the ACE_Service_Config methods are also declared as static. The ACE_Service_Config constructor, however, is
the only way to set the maximum size of the ACE_Service_Repository. It's also the only programmatic way to
change the signal number that can be registered with the reactor to trigger reconfigurations. Instantiating an instance of
ACE_Service_Config therefore simply sets these parameters for the underlying monostate object and does not
create a separate configuration object. Thus, the ACE_Service_Config destructor is a no-op.
 

The open() method is the common way of initializing the ACE_Service_Config. It parses arguments passed in the
argc and argv parameters, skipping the first parameter (argv[0]) since that's the name of the program. The options
recognized by ACE_Service_Config are outlined in the following table:
 

Option
 

Description
 

'-b'
 

Turn the application process into a daemon (see Sidebar
5 on page 32).
 

'-d'
 

Display diagnostic information as directives are
processed.
 

'-f'
 

Supply a file containing directives other than the default
svc.conf file. This argument can be repeated to supply
multiple configuration files.
 

'-n'
 

Don't process static directives, which eliminates the need
to initialize the ACE_Service_Repository statically.
 

'-s'
 

Designate the signal to be used to cause the
ACE_Service_Config to reprocess its configuration file.
By default, SIGHUP is used.
 

'-S'
 

Supply a directive to the ACE_Service_Config directly.
This argument can be repeated to process multiple
directives.
 

'-y'
 

Process static directives, which requires the static
initialization of the ACE_Service_Repository.
 

2. Service configuration methods. After parsing all its argc/argv arguments, the ACE_Service_Config::open() method
calls one or both of the following methods to configure the application:
 

Method
 

Description
 

process_directives()
 

Process a sequence of directives that are stored in the
designated script file(s). This method allows multiple
directives to be stored persistently and processed
iteratively in batch mode. Each service configuration
directive in each configuration file is executed in the order
they are specified.
 

process_directive()
 

Process a single directive passed as a string.This method
allows directives to be created dynamically and
processed interactively, such as via a GUI or a network
connection.
 

The following table summarizes the service configuration directives that can be processed by these two
ACE_Service_Config methods:
 

Directive
 

Description
 

dynamic
 

Dynamically link a service and initialize it by calling its
init() hook method.
 

static
 

Call the init() hook method to initialize a service that was
linked statically.
 

remove
 

Remove a service completely, that is, call its fini() hook
method and unlink it from the application process when
it's no longer used.
 

suspend
 

Call a service's suspend() hook method to pause it
without removing it.
 

resume
 

Call a service's resume() hook method to continue
processing a service that was suspended earlier.
 

stream
 

Initialize an ordered list of hierarchically related modules.
 

We describe the syntax and semantics for the tokens in each of these directives below.
 

•

• Dynamically link and initialize a service: dynamic svc-name svc-type DLL-name:factory_func() [ "argc/argv
options"]

•  

• The dynamic directive instructs the ACE Service Configurator framework to dynamically link and initialize a
service object. The svc-name is the name assigned to the service. The svc-type designates the type of the
service, which can be a Service_Object *, Module *, or Stream *. DLL-name is the name of the dynamic
link library that contains the factory_func() symbol. This symbol is the entry point for an extern "C" function
that the ACE_Service_Config interpreter invokes to create an instance of a service. If the svc-type is
Service_Object * then factory_func() must return a pointer to an object derived from ACE_Service_Object.
The factory_func() symbol should have a leading underscore character since linkers add that character to
externally visible symbols.

• DLL-name can be either a full pathname or a filename without a suffix. If it's a full pathname, the
ACE_DLL::open() method described in Sidebar 33 is used to dynamically link the designated file into the
application process. If it's a filename, however, ACE_DLL::open() uses ACE::ldfind() (also described in 
Sidebar 33) to locate the DLL and dynamically link it into the address space of the process via
ACE_DLL::open(). The dynamic directive can be used portably across operating systems since ACE
encapsulates these platform details.

•  

• The argc/argv options are an optional list of parameters that can be supplied to initialize a service object via
its init() hook method. The ACE Service Configurator framework uses the ACE_ARGV class described in 
Sidebar 35 (page 148) to separate the string into arguments and substitute the values of environment
variables that are included in the string.

•  
•

• Initialize a statically linked service: static svc-name ["argc/argv options"]
•  

• Although ACE_Service_Config is commonly used to configure services dynamically, it can also be used to
configure services statically via the static directive. The svc-name and optional argc/argv options are the same
as those in the dynamic directive. The syntax is simpler, however, since the service object must already be
linked into the executable program image statically. Thus, there's no need to either locate and link a DLL or
call a factory function to create a service object. Static configuration trades flexibility for increased security,
which may be useful for certain types of servers that must contain only trusted, statically linked services.
Recall from Sidebar 31 (page 132) that static service loading is disabled by default. Static service loading
must therefore be enabled explicitly to use them, or else the static directive will have no effect.

Sidebar 33: The ACE_DLL Class
 

Applications that link and unlink DLLs explicitly can encounter the following problems:
 - A nonuniform programming interface that's even less portable than the Socket API described in
Chapter 3 of C++NPv1

- Unsafe types that invite errors and misuse because the native OS DLL APIs return weakly typed
handles that are passed to DLL functions, such as those used to locate symbols and unlink the DLL

- Potential resource leaks, since it's possible to forget to release DLL handles

To address these problems, ACE defines the ACE_DLL wrapper facade class to encapsulate explicit
linking/unlinking functionality. This class eliminates the need for applications to use error-prone, weakly
typed handles and also ensures that resources are released properly by its destructor. In addition, it uses
the ACE::ldfind() method to locate DLLs via the following algorithms:
 

•

• DLL filename expansion?ACE::ldfind() determines the name of the DLL by adding the
appropriate prefix and suffix. For example, it adds the lib prefix and .so suffix for Solaris and the
.dll suffix for Windows.

•  
•

• DLL search path?ACE::ldfind() will also search for the designated DLL using the platform's
DLL search path environment variable. For example, it searches for DLLs using
LD_LIBRARY_PATH on many UNIX systems and PATH on Windows.

•  

The key methods in the ACE_DLL class are outlined in the following table.
 

ACE Class
 

Description
 

ACE_DLL() open()
 

Opens and dynamically links a designated
DLL
 

ACE_DLL() close()
 

Closes and optionally unlinks the DLL
 

symbol()
 

Returns a pointer to a function or object in
the DLL
 

error()
 

Returns a string explaining which failure
occurred
 

The interface of ACE_DLL is shown in the figure below. 
                   ACE_DLL
- handle_ : ACE_SHLIB_HANDLE 
+ open (name : const ACE_TCHAR *, 
        mode : int = ACE_DEFAULT_SHLIB_MODE, 
        close_on_destruct : int = 1) : int 
+ close () : int 
+ symbol (name : const ACE_TCHAR *) : void * 
+ error (void) : ACE_TCHAR * 

•

• Remove a service completely: remove svc-name
•  

• The remove directive causes the ACE_Service_Config interpreter to query the ACE_Service_Repository for
the named service. If this service is located, the interpreter invokes its fini() hook method, which performs the
activities needed to clean up resources when the service shuts down. If a service destruction function pointer
is associated with the service object, it's called to destroy the service object itself (the
ACE_FACTORY_DEFINE macro defines this function automatically). Finally, if the service was linked
dynamically from a DLL, it's unlinked via the ACE_DLL::close() method. Since a DLL can be linked multiple
times in a process, ACE_DLL::close() ensures that the DLL is only unlinked when it's no longer in use.

•  
•

• Suspend a service without removing it: suspend svc-name
•  

• The suspend directive causes the ACE_Service_Config interpreter to query the ACE_Service_Repository
for the designated svc-name service. If this service is located, its suspend() hook method is invoked. A
service can override this method to implement the appropriate actions needed to suspend its processing.

•  
•

• Resume a previously suspended service: resume svc-name
•  

• The resume directive causes the ACE_Service_Config interpreter to query the ACE_Service_Repository for
the designated svc-name service. If this service is located, its resume() hook method is invoked. A service
can override this method to implement the appropriate actions needed to resume its processing, which
typically reverse the effects of the suspend() method.

•  
•

• Initialize an ordered list of hierarchically related modules: stream svc-name '{' module-list '}'
•  

• The stream directive causes the ACE_Service_Config interpreter to initialize an ordered list of hierarchically
related modules. Each module consists of a pair of services that are interconnected and communicate by
passing ACE_Message_Block objects. The implementation of the stream directive uses the ACE Streams
framework described in Chapter 9.

•  

The complete Backus/Naur Format (BNF) syntax for svc.conf files parsed by the ACE_Service_Config is shown in 
Figure 5.7. Sidebar 34 (page 146) describes how to specify svc.conf files using the optional XML syntax.
 

3. Utility methods. ACE_Service_Config defines the following utility methods:
 

Method
 

Description
 

reconfigure()
 

Reprocess the current configuration file(s).
 

suspend()
 

Suspend a service, identified by name.
 

resume()
 

Resume a suspended service, identified by name.
 

Figure 5.7 BNF for the ACE_Service_Config Scripting Language
 
 
<svc-conf-entries> ::= <svc-conf-entries> <svc-conf-entry> | NULL 
<svc-conf-entry>   ::= <dynamic> | <static> | <suspend> | 
                        <resume> | <remove> | <stream> 
<dynamic> ::= dynamic <svc-location> <parameters-opt> 
<static> ::= static <svc-name> <parameters-opt> 
<suspend> ::= suspend <svc-name> 
<resume> ::= resume <svc-name> 
<remove> ::= remove <svc-name> 
<stream> ::= stream <streamdef> '{' <module-list> '}' 
<streamdef> ::= <svc-name> | dynamic | static 
<module-list> ::= <module-list> <module> | NULL 
<module> ::= <dynamic> | <static> | <suspend> | 
             <resume> | <remove> 
<svc-location> ::= <svc-name> <svc-type> <svc-factory> <status> 
<svc-type> ::= Service_Object '*' | Module '*' | Stream '*' | NULL 
<svc-factory> ::= PATHNAME ':' FUNCTION '(' ')' 
<svc-name> ::= STRING 
<status> ::= active | inactive | NULL 
<parameters-opt> ::= '"' STRING '"' | NULL 

The reconfigure() method can be used to force the ACE_Service_Config interpreter to reprocess the service
configuration files. This capability is useful if your application monitors the service configuration files for changes.
When changes are noticed, they can be processed using the reconfigure() method. This method is the recommended
way to make run-time changes on Windows since there's no equivalent to the common UNIX practice of sending a
signal, such as SIGHUP, to a process.
 

The suspend() and resume() methods enable the suspension and resumption of a service if its name is known. It's a
shortcut to the methods defined in the ACE_Service_Repository singleton.
 

Example
 

This example shows how to apply the ACE Service Configurator framework to create a server whose initial
configuration behaves as follows:
 

•

• It statically configures an instance of Service_Reporter.
•  
•

• It dynamically links and configures the Reactor_Logging_Server_Adapter template from the Example portion
of Section 5.2 into the server's address space.

•  

We then show how to dynamically reconfigure the server to support a different implementation of a reactive logging
service.
 

Sidebar 34: Using XML to Configure Services
 

The ACE_Service_Config class can be configured to interpret an XML-based scripting language. The
Document Type Definition (DTD) for this language is shown below: 
<!ELEMENT ACE_Svc_Conf (dynamic|static|suspend|resume 
                        |remove|stream|streamdef)*> 
<!ELEMENT streamdef ((dynamic|static),module)> 
<!ATTLIST streamdef id IDREF #REQUIRED> 
<!ELEMENT module (dynamic|static|suspend|resume|remove)+> 
<!ELEMENT stream (module)> 
<!ATTLIST stream id IDREF #REQUIRED> 
<!ELEMENT dynamic (initializer)> 
<!ATTLIST dynamic id ID #REQUIRED 
                  status (active|inactive) "active" 
                  type (module|service_object|stream) 
                  #REQUIRED> 
<!ELEMENT initializer EMPTY> 
<!ATTLIST initializer init CDATA #REQUIRED 
                      path CDATA #IMPLIED 
                      params CDATA #IMPLIED> 
<!ELEMENT static EMPTY> 
<!ATTLIST static id ID #REQUIRED 
                 params CDATA #IMPLIED> 
<!ELEMENT suspend EMPTY> 
<!ATTLIST suspend id IDREF #REQUIRED> 
<!ELEMENT resume EMPTY> 
<!ATTLIST resume id IDREF #REQUIRED> 
<!ELEMENT remove EMPTY> 
<!ATTLIST remove id IDREF #REQUIRED> 

The syntax of this XML-based configuration language is different from the one in Figure 5.5, but its
semantics are the same. Although it's more verbose to compose, the ACE XML-based configuration file
format is more flexible. For example, users can plug in customized XML event handlers to extend the
behavior of the ACE Service Configurator framework without modifying the underlying ACE
implementation.
 

The XML configuration file format is relatively new (it was introduced in ACE 5.3). It's therefore not yet
the default used by the ACE Service Configurator framework. Users can choose the XML-based
Service Configurator by compiling ACE with the ACE_HAS_XML_SVC_CONF macro enabled.
ACE provides the svcconf-convert.pl perl script to translate original format files into the new XML
format. The script is located in the $ACE_ROOT/bin/ directory.
 

Initial server configuration. We start by writing the following generic main() program in
Configurable_Logging_Server.cpp. This program configures the Service_Reporter and
Reactor_Logging_Server_Adapter services into an application process and then runs the reactor's event loop.
 
 1 #include "ace/OS.h" 
 2 #include "ace/Service_Config.h" 
 3 #include "ace/Reactor.h" 
 4 
 5 int ACE_TMAIN (int argc, ACE_TCHAR *argv[]) { 
 6   ACE_STATIC_SVC_REGISTER (Reporter); 
 7 
 8   ACE_Service_Config::open 
 9     (argc, argv, ACE_DEFAULT_LOGGER_KEY, 0); 
10 
11   ACE_Reactor::instance ()->run_reactor_event_loop (); 
12   return 0; 
13 } 

Lines 1? There are no service-specific header files (or code) in the main() program. It's therefore completely generic,
and can be reused for many programs that are configured using the ACE Service Configurator and Reactor
frameworks.
 

Line 5 Replace the main() entry point name with the ACE_TMAIN macro. This macro uses the alternate wmain()
entry point on Windows when Unicode is enabled, and the usual main() in all other situations.
 

Line 6 Register the static Reporter service with the ACE Service Configurator framework. Although the framework
now knows of the service, it is not activated unless a service configuration directive causes it to be.
 

Lines 8? Call ACE_Service_Config::open() to configure the application. All decisions about which service(s) to load,
and all of the service parameters, are located in the service configuration file, which is external to the binary
application program. We then run the reactor's event loop to handle I/O events from clients.
 

Since we know that our program will activate the static Service_Reporter service, we added the fourth argument
(and by necessity, the third) to ACE_Service_Config::open() to explicitly enable static service loading. If we instead
decided to leave this decision to the user or administrator, that argument would not be supplied, and the user would
choose to enable or disable static services by supplying the -y option on the command line.
 

When ACE_Service_Config::open() is called, it uses the ACE_Service_Config::process_directives() method to
interpret the svc.conf file below:
 
1 static Service_Reporter "-p $SERVICE_REPORTER_PORT" 
2 
3 dynamic Server_Logging_Daemon Service_Object * 
4 SLD:_make_Server_Logging_Daemon() 
5   "$SERVER_LOGGING_DAEMON_PORT" 

Line 1 The Service_Reporter code, registration information, and factory function were all statically linked into the
executable program. This directive therefore simply causes the Service Configurator framework to activate the
service by calling Service_Reporter::init() (page 132). The argc/argv arguments passed to init() are the string "-p" and
an expansion of the SERVICE_REPORTER_PORT environment variable. The Service Configurator framework
expands this environment variable automatically using the ACE_ARGV class described in Sidebar 35. ACE_ARGV
recognizes SERVICE_REPORTER_PORT as an environment variable by its leading $ character and substitutes its
associated value. The ACE_STATIC_SVC_REQUIRE macro used in Service_Reporter.cpp (page 135) ensures
the Service_Reporter is registered with ACE_Service_Repository before the ACE_Service_Config::open() method
is called.
 

Sidebar 35: The ACE_ARGV Class
 

The ACE_ARGV class is a useful utility class that can
 

1.

1. Transform a string into an argc/argv-style vector of strings
1.  
2.

2. Incrementally assemble a set of strings into an argc/argv vector
2.  
3.

3. Transform an argc/argv-style vector into a string
3.  

During the transformation, the class can substitute environment variable values for each $-delimited
environment variable name encountered. ACE_ARGV provides an easy and efficient mechanism to
create arbitrary command-line arguments. Consider its use whenever command-line processing is
required, especially when environment variable substitution is desirable. ACE uses ACE_ARGV
extensively, particularly in its Service Configurator framework.
 

Lines 3? This code configures the server logging daemon via the following steps:
 

1.

1. Dynamically link the SLD DLL into the address space of the process.
1.  
2.

2. Use the ACE_DLL class described in Sidebar 33 (page 143) to extract the
_make_Server_Logging_Daemon() factory function from the SLD DLL symbol table.

2.  
3.

3. The factory function is called to allocate a Server_Logging_Daemon object.
3.  
4.

4. The Service Configurator framework calls the service object's Server_Logging_Daemon::init() hook method,
passing as its argc/argv arguments an expansion of the SERVER_LOGGING_DAEMON_PORT
environment variable that designates the port number where the server logging daemon listens for client
connection requests.

4.  
5.

5. If init() succeeds, the Server_Logging_Daemon pointer is stored in the ACE_Service_Repository under the
name "Server_Logging_Daemon".

5.  

Sidebar 36 illustrates an XML version of the svc.conf file shown above.
 

Sidebar 36: An XML svc.conf File Example
 

The XML representation of the svc.conf file shown on page 147 is shown below: 
 1 <ACE_Svc_Conf> 
 2   <static id='Service_Reporter' 
 3           params='-p $SERVICE_REPORTER_PORT'/> 
 4 
 5   <dynamic id='Server_Logging_Daemon' 
 6            type='service_object'> 
 7     <initializer path='SLD' 
 8                  init='_make_Server_Logging_Daemon' 
 9                  params='$SERVER_LOGGING_DAEMON_PORT'/> 
10   </dynamic> 
11 </ACE_Svc_Conf> 

The XML svc.conf file is more verbose than the original format since it specifies field names explicitly.
However, the XML format allows svc.conf files to express expanded capabilities, since new sections
and fields can be added without affecting existing syntax. There's also no threat to backwards
compatibility, as might occur if fields were added to the original format or the field order changed.
 

The SLD_DLL is generated from the following SLD.cpp file:
 
#include "Reactor_Logging_Server_Adapter.h" 
#include "Logging_Acceptor.h" 
#include "SLD_export.h" 

typedef Reactor_Logging_Server_Adapter<Logging_Acceptor> 
        Server_Logging_Daemon; 

ACE_FACTORY_DEFINE (SLD, Server_Logging_Daemon) 

The SLD.cpp file contains the Server_Logging_Daemon type definition that instantiates the
Reactor_Logging_Server_Adapter template with the Logging_Acceptor class (page 54). The
ACE_FACTORY_DEFINE macro generates the _make_Server_Logging_Daemon() factory function in the DLL
containing the service code. If code outside the service DLL needs to refer to the factory function, it can use the
ACE_FACTORY_DECLARE macro to declare the _make_Server_Logging_Daemon() factory function with the
proper import declaration.
 

ACE's import/export helper macros are described in Sidebar 37 (page 150). These macros help to ensure that a
DLL's externally visible symbols are exported properly from the DLL on all supported platforms, as well as allowing
the DLL's users to import them properly. Applying the export macros within the ACE service macros allow the ACE
Service Configurator framework to look up the factory function's entry point symbol when activating a service.
 

Sidebar 37: The ACE DLL Import/Export
Macros
 

Windows has specific rules for explicitly importing and exporting symbols in DLLs. Developers with a
UNIX background may not have encountered these rules in the past, but they are important for
managing symbol usage in DLLs on Windows. ACE makes it easy to conform to these rules by
supplying a script that generates the necessary import/export declarations and a set of guidelines for
using them successfully. To ease porting, the following procedure can be used on all platforms that ACE
runs on:
 

1.

1. Select a concise mnemonic for each DLL to be built.
1.  
2.

2. Run the $ACE_ROOT/bin/generate_export_file.pl Perl script, specifying the DLL's mnemonic
on the command line. The script will generate a platform-independent header file and write it to
the standard output. Redirect the output to a file named <mnemonic>_export.h

2.  
3.

3. #include the generated file in each DLL source file that declares a globally visible class or
symbol.

3.  
4.

4. To use in a class declaration, insert the keyword <mnemonic>_Export between class and the
class name.

4.  
5.

5. When compiling the source code for the DLL, define the macro <mnemonic>_BUILD_DLL.
5.  

Following this procedure results in the following behavior on Windows:
 

•

• Symbols decorated using the above guidelines will be declared using __declspec(dllexport)
when built in their DLL

•  
•

• When referenced from components outside the DLL, the symbols will be declared
__declspec(dllimport).

•  

If you choose a separate mnemonic for each DLL and use them consistently, it will be straightforward to
build and use DLLs across all OS platforms.
 

The UML sequence diagram in Figure 5.8 illustrates the steps involved in configuring the server logging daemon
based on the svc.conf file shown above. At program start time, the object generated by the
ACE_STATIC_SVC_REQUIRE macro registers the Service_Reporter information created using the
ACE_STATIC_SVC_DEFINE macro into ACE_Service_Config. When the ACE_Service_Config::open() method
is called it uses the specified factory function to instantiate a Service_Reporter object, but doesn't activate it. The
open() method then calls process_directives(), which interprets the directives in the svc.conf file. The first directive
activates the static Service_Reporter service. The second directive triggers the following actions:
 

Figure 5.8. UML Sequence Diagram for Configuring the Logging Server
 

1.

1. The SLD DLL is linked dynamically.
1.  
2.

2. The _make_Server_Logging_Daemon factory function is called to create an instance of
Reactor_Logging_Server_Adapter.

2.  
3.

3. The new service object's init() method is called to activate the service.
3.  

When all configuration activities are done, the main() program calls ACE_Reactor::run_reactor_event_loop(). At that
point, the services are running, just like the objects that were configured statically in previous examples.
 

Reconfiguring the server. The ACE Service Configurator framework can reconfigure a server at run time in response
to external events, such as signals or commands. At this point, the framework rereads its svc.conf file(s) and
performs the designated directives, such as inserting or removing service objects into or from a server, and
suspending or resuming existing service objects. We now illustrate how to use these features to reconfigure our server
logging daemon dynamically.
 

The initial configuration of the logging server has the following limitations:
 

•

• It uses the Logging_Acceptor implementation from Section 3.3 (page 54), which doesn't time out logging
handlers that remain idle for long periods of time.

•  
•

• There is no way to shut down the run_reactor_event_loop() method called on the ACE_Reactor singleton.
•  

We can add these capabilities without affecting existing code or the Service_Reporter service in the process by
defining a new svc.conf file and instructing the server to reconfigure itself by sending it a signal, such as SIGHUP or
SIGINT.
 
1 remove Server_Logging_Daemon 
2 
3 dynamic Server_Logging_Daemon Service_Object * 
4 SLDex:_make_Server_Logging_Daemon_Ex() 
5   "$SERVER_LOGGING_DAEMON_PORT" 
6 
7 dynamic Server_Shutdown Service_Object * 
8 SLDex:_make_Server_Shutdown() 

This svc.conf file assumes the server process is currently running with the Server_Logging_Daemon already
configured. The ACE Service Configurator framework provides configuration mechanisms and assumes the policies
that determine when and what to reconfigure are handled by an administrator or another application.
 

Line 1 Remove the existing server logging daemon from the ACE service repository and unlink it from the
application's address space.
 

Lines 3? Dynamically configure a different instantiation of the Reactor_Logging_Server_Adapter template into the
address space of the server logging daemon. In particular, the _make_Server_Logging_Daemon_Ex() factory
function is created by the ACE_FACTORY_DEFINE macro shown below in the SLDex.cpp file, which is used to
generate the SLDex DLL.
 
typedef Reactor_Logging_Server_Adapter<Logging_Acceptor_Ex> 
        Server_Logging_Daemon_Ex; 

ACE_FACTORY_DEFINE (SLDEX, Server_Logging_Daemon_Ex) 

This macro instantiates the Reactor_Logging_Server_Adapter template with the Logging_Acceptor_Ex (page 67).
 

Lines 7? Dynamically configure a Server_Shutdown service object that uses the controller() function (page 98) and
Quit_Handler class (page 98) to wait for an administrator to shut down the server via a command on its standard
input. The Server_Shutdown class shown below inherits from ACE_Service_Object so that we can manage its life
cycle via the ACE Service Configurator framework.
 
class Server_Shutdown : public ACE_Service_Object { 
public: 

Server_Shutdown::init() spawns a thread to run the controller() function: 

  virtual int init (int, ACE_TCHAR *[]) { 
    reactor_ = ACE_Reactor::instance (); 
    return ACE_Thread_Manager::instance ()->spawn 
             (controller, reactor_, THR_DETACHED); 
  } 

We pass the THR_DETACHED flag to spawn so that the controller's thread identifier and other resources are
reclaimed by the OS automatically after the thread terminates.
 

The Server_Shutdown::fini() method notifies the reactor to shut down:
 
 virtual int fini () { 
    Quit_Handler *quit_handler = 0; 
    ACE_NEW_RETURN (quit_handler, 
                    Quit_Handler (reactor_), -1); 
    return reactor_->notify (quit_handler); 
  } 

  // ... Other method omitted ... 
private: 
  ACE_Reactor *reactor_; 
}; 

We use ACE_FACTORY_DEFINE to generate the _make_Server_Shutdown() factory function needed by the
ACE Service Configurator framework.
 
ACE_FACTORY_DEFINE (SLDEX, Server_Shutdown) 

The UML sequence diagram in Figure 5.9 illustrates the steps involved in reconfiguring the server logging daemon
based on the svc.conf file shown above.
 

Figure 5.9. UML Sequence Diagram for Reconfiguring the Logging Server
 

The dynamic reconfiguration mechanism in the ACE Service Configurator framework enables developers to modify
server functionality or fine-tune performance without extensive redevelopment and reinstallation effort. For example,
debugging a faulty implementation of the logging service simply involves the dynamic reconfiguration of a functionally
equivalent service that contains additional instrumentation to help identify the erroneous behavior. This reconfiguration
process may be performed without modifying, recompiling, relinking, or restarting the currently executing server
logging daemon. In particular, this reconfiguration doesn't affect the Service_Reporter that was configured statically.
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5.5 Summary
 

Traditional software development techniques that statically link and configure a networked application's services
together can be limiting. For example, the effort and time needed to rebuild an entire program for each new or
modified service increases development and maintenance costs substantially. Moreover, making these changes in the
field is inefficient and error prone, and can cause support costs to soar and customer satisfaction to plummet.
 

This chapter described the ACE Service Configurator framework, which implements the Component Configurator
pattern [POSA2] to provide a portable way to statically and/or dynamically link services and then initiate, suspend,
resume, and shut them down dynamically at run time. This framework helps to improve the extensibility of networked
software by allowing applications to defer the selection of a particular service implementation until late in the software
life cycle?s late as installation time or even run time. This flexibility yields the following important advantages:
 

•

• Applications can be composed and (re)configured at run time using mix-and-match, independently developed
services.

•  
•

• Developers can concentrate on a service's functionality and other key design dimensions without committing
prematurely to a particular service configuration.

•  
•

• Applications are composed of multiple services that are developed independently, so they don't require
advanced global knowledge of each other, yet can still collaborate.

•  

This chapter explained the origin and usage of each of the ACE Service Configurator framework's classes and helper
macros. We also used these capabilities to separate parts of the previous chapter's logging servers into independently
linkable and configurable services. The result was a networked logging service that can be configured and deployed
in various ways. The extensibility afforded by the ACE Service Configurator framework allows operators and
administrators to select the features and alternative implementation strategies that make the most sense in a particular
context, as well as make localized decisions on how best to initialize and evolve them.
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Chapter 6. The ACE Task Framework
 

CHAPTER SYNOPSIS
 

This chapter describes the design and use of the ACE Task framework. This framework helps to enhance the
modularity and extensibility of concurrent object-oriented networked applications. The ACE Task framework forms
the basis of common concurrency patterns, such as Active Object and Half-Sync/Half-Async [POSA2]. After
discussing the motivation and usage of the framework's classes, we apply the ACE Task framework to enhance the
concurrency and scalability of our networked logging service.
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6.1 Overview
 

The ACE Task framework provides powerful and extensible object-oriented concurrency capabilities that can spawn
threads in the context of an object, as well as transfer and queue messages between objects executing in separate
threads. This framework can be applied to implement key concurrency patterns [POSA2], such as:
 

•

• The Active Object pattern, which decouples the thread that invokes a method from the thread that executes
the method. This pattern enhances concurrency and simplifies synchronized access to objects executing in the
context of one or more threads.

•  
•

• The Half-Sync/Half-Async pattern, which decouples asynchronous and synchronous processing in
concurrent systems to simplify programming without unduly reducing performance. This pattern introduces
three layers: one for asynchronous (or reactive) processing, one for synchronous service processing, and a
queueing layer that mediates communication between the asynchronous/reactive and synchronous layers.

•  

This chapter shows how these patterns, and the ACE Task framework that reifies them, can be applied to develop
concurrent object-oriented applications at a higher level of abstraction than existing C operating system APIs and
C++ wrapper facades. The ACE Task framework consists of the following classes that networked applications can
use to spawn and manage threads and pass messages between one or more threads within a process:
 

ACE Class
 

Description
 

ACE_Message_Block
 

Implements the Composite pattern [GoF] to enable
efficient manipulation of fixed- and variable-sized
messages
 

ACE_Message_Queue
 

Provides an intraprocess message queue that enables
applications to pass and buffer messages between
threads in a process
 

ACE_Thread_Manager
 

Allows applications to portably create and manage the
lifetime, synchronization, and properties of one or more
threads
 

ACE_Task
 

Allows applications to create passive or active objects
that decouple different units of processing; use messages
to communicate requests, responses, data, and control
information; and can queue and process messages
sequentially or concurrently
 

The most important relationships between the classes in the ACE Task framework are shown in Figure 6.1. This
framework provides the following benefits:
 

Figure 6.1. The ACE Task Framework Classes
 

•

• Improves the consistency of programming style by enabling developers to use C++ and object-oriented
techniques throughout their concurrent networked applications. For example, the ACE_Task class provides
an object-oriented programming abstraction that associates OS-level threads with C++ objects.

•  
•

• Manages a group of threads as a cohesive collection. Multithreaded networked applications often require
multiple threads to start and end as a group. The ACE_Task class therefore provides a thread group
capability that allows other threads to wait for an entire group of threads to exit before continuing their
processing.

•  
•

• Decouples producer and consumer threads that run concurrently and collaborate by passing messages via a
synchronized message queue.

•  
•

• Integrates concurrent processing, such as the Half-Sync/Half-Async pattern's synchronous layer, with the
ACE Reactor framework discussed in Chapter 3 or the ACE Proactor framework discussed in Chapter 8.

•  
•

• Facilitates dynamic configuration of tasks via integration with the ACE Service Configurator framework
discussed in Chapter 5. Developers therefore need not commit prematurely to concurrency decisions at
design time or even at run time. Tasks can instead be designed to run according to configurations that may
change as deployment site resources and dynamic conditions dictate.

•  

The ACE_Message_Block and ACE_Thread_Manager classes were described in Chapters 4 and 9 of C++NPv1,
respectively. This chapter therefore focuses largely on describing the capabilities provided by the
ACE_Message_Queue and ACE_Task classes. However, we illustrate how all the classes in the ACE Task
framework can be used to enhance the concurrency of our client and server logging daemons. If you aren't familiar
with the Active Object and Half-Sync/Half-Async patterns from POSA2 we recommend that you read about them
first before delving into the detailed examples in this chapter.
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6.2 The ACE_Message_Queue Class
 

Motivation
 

As discussed in Section 2.1.4 on page 27, networked applications whose services are layered/modular are often
composed of a set of collaborating tasks within a process. To simplify interfaces and design, minimize maintenance
costs, and maximize reuse, these tasks should have the following properties:
 

•

• Low intertask coupling, that is, separate task objects should have minimal dependencies on each other's data
and methods.

•  
•

• High intratask cohesion, that is, the methods and data in a task should focus on a related set of functionality.
•  

To achieve these properties, tasks often communicate by passing messages via a generic method, such as push() or
put(), rather than calling specific statically typed methods directly. Messages can represent work requests, work
results, or other types of data to process. They can also represent control requests that direct tasks to alter their
processing, for example, to shut down or reconfigure themselves.
 

When producer and consumer tasks are collocated in the same process, tasks often exchange messages via an
intraprocess message queue. In this design, producer task(s) insert messages into a synchronized message queue
serviced by consumer task(s) that remove and process the messages. If the queue is full, producers can either block
or wait a bounded amount of time to insert their messages. Likewise, if the queue is empty, consumers can either
block or wait a bounded amount of time to remove messages.
 

Although some operating systems supply intraprocess message queues natively, this capability isn't available on all
platforms. Moreover, when it is offered, it's often either highly platform specific, such as VxWorks message queues,
and/or inefficient, tedious, and error prone to use, such as System V IPC message queues [Ste99]. Examples of how
to create wrapper facade classes to handle these problems appear in C++NPv1. Wrapper facades could
encapsulate the spectrum of available intraprocess message queue mechanisms behind a common interface, emulating
missing capabilities where needed. ACE takes a different approach, however, for the following reasons:
 

•

• To avoid unnecessary complexity. Native message queueing mechanisms, where they exist, can be hard to
program correctly since they use low-level C APIs. They can also impose constraints on system
administration that reflect poorly on a product's operational procedures, which can increase product support
costs. For example, System V IPC message queues can persist after a program finishes execution if not
cleaned up properly. These remnants may prevent an application from restarting, or contribute to resource
leaks and often require a system administrator's intervention to repair the system manually. Likewise, System
V IPC message queues offer interprocess queueing that incurs more overhead than the intraprocess queueing
that's the target use case for many networked applications.

•  
•

• To avoid a matrix of increasing complexity. Each native message queueing mechanism has its own message
format. Properly encapsulating message queues with wrapper facades therefore requires a corresponding
encapsulation of messages. Reconciling two wrappers' desired feature sets with the matrix of message queues
and types complicates the design and development effort for the wrappers many times over. This problem
would only get worse as ACE is ported to new platforms.

•  
•

• ACE already has a powerful message class. ACE_Message_Block is a convenient, efficient, and powerful
message class described in Chapter 4 of C++NPv1. It offers more capability than many platform-specific
message formats, and also works portably across all ACE platforms.

•  

Due to these factors, ACE defines the ACE_Message_Queue class, which is a portable and efficient intraprocess
message queueing mechanism that leverages the advanced capabilities of ACE_Message_Block.
 

Class Capabilities
 

ACE_Message_Queue is a portable, lightweight intraprocess message queueing mechanism that provides the
following capabilities:
 

•

• It allows messages (which are instances of ACE_Message_Block) to be enqueued at the front of the queue,
the rear of the queue, or in priority order based on the message's priority. Messages can be dequeued from
the front or back of the queue.

•  
•

• It uses ACE_Message_Block to provide an efficient message buffering mechanism that minimizes dynamic
memory allocation and data copying.

•  
•

• It can be instantiated for either multithreaded or single-threaded configurations, allowing programmers to
trade off strict synchronization for lower overhead when concurrent access to a queue isn't required.

•  
•

• In multithreaded configurations, it supports configurable flow control, which prevents fast message producer
thread(s) from swamping the processing and memory resources of slower message consumer thread(s).

•  
•

• It allows timeouts to be specified on both enqueue and dequeue operations to avoid indefinite blocking.
•  
•

• It can be integrated with the ACE Reactor framework's event handling mechanism.
•  
•

• It provides allocators that can be strategized so the memory used by messages can be obtained from various
sources, such as shared memory, heap memory, static memory, or thread-specific memory.

•  

Figure 6.2 (page 160) shows the interface for ACE_Message_Queue. Since this class has a wide range of features,
we divide its description into the four categories below.
 

Figure 6.2. The ACE_Message_Queue Class
 

1. Initialization and flow control methods. The following methods can be used to initialize and manage flow control in
an ACE_Message_Queue:
 

Method
 

Description
 

ACE_Message_Queue() open()
 

Initialize the queue, optionally specifying watermarks and
a notification strategy (see Sidebar 38 on page 163).
 

high_water_mark()
 

low_water_mark()
 

Set/get the high and low watermarks that determine when
flow control starts and stops.
 

notification_strategy()
 

Set/get the notification strategy.
 

An ACE_Message_Queue contains a pair of watermarks that implement flow control to prevent a fast sender from
overrunning the buffering and computing resources of a slower receiver. To reflect the total resource usage of
messages in the queue, the watermarks are measured in bytes. Each ACE_Message_Queue maintains a count of the
payload bytes in each queued ACE_Message_Block to keep track of the number of bytes in the queue. A new
message can be enqueued if the total number of bytes in the queue before queueing the new message is less than or
equal to the high watermark. Otherwise, ACE_Message_Queue flow control works as follows:
 

•

• If the queue is "synchronized," the calling thread will block until the total number of bytes in the queue falls
below the low watermark or until a timeout occurs.

•  
•

• If the queue is "unsynchronized," the call will return -1 with errno set to EWOULDBLOCK.
•  

The ACE_MT_SYNCH or ACE_NULL_SYNCH traits classes (page 163) can be used to designate whether a
queue is synchronized or not, respectively. As ACE_Message_Block objects are removed from a message queue,
the count of queued bytes is decremented accordingly. The low watermark indicates the number of queued bytes at
which a previously flow-controlled ACE_Message_Queue no longer considers itself full.
 

The default high and low watermarks are both 16K. The default watermark values cause an ACE_Message_Queue
to flow control when more than 16K are queued and to cease flow control when the number of queued bytes drops
below 16K. These defaults are appropriate for applications in which the average ACE_Message_Block size is
considerably less than 1K.
 

Depending on load and design constraints, applications may require different settings for either or both of the
watermarks. The default watermark values can be reset in the ACE_Message_Queue's constructor or open()
method, as well as by its high_water_mark() and low_water_mark() mutator methods. One approach is to specify
watermarks using the ACE Service Configurator framework described in Chapter 5, with defaults determined from
application benchmarks measured during development and testing. The Example portions of Sections6.3 and 7.4
illustrate how to set and use a message queue's high watermark to exert flow control within multithreaded networked
applications.
 

2. Enqueue/dequeue methods and message buffering. The following methods perform the bulk of the work in an
ACE_Message_Queue:
 

Method
 

Description
 

is_empty()
 

is_full()
 

The is_empty() method returns true when the queue
contains no message blocks. The is_full() method returns
true when the number of bytes in the queue is greater
than the high watermark.
 

enqueue_tail()
 

Insert a message at the back of the queue.
 

enqueue_head()
 

Insert a message at the front of the queue.
 

enqueue_prio()
 

Insert a message according to its priority.
 

dequeue_head()
 

Remove and return the message at the front of the queue.
 

dequeue_tail()
 

Remove and return the message at the back of the queue.
 

The design of the ACE_Message_Queue class is based on the message buffering and queueing facilities in System V
STREAMS [Rag93]. Messages passed to a message queue are instances of ACE_Message_Block and can be
classified as either simple or composite messages. Simple messages contain a single ACE_Message_Block.
Composite messages contain multiple ACE_Message_Block objects that are linked together in accordance with the
Composite pattern [GoF], which provides a structure for building recursive aggregations. A composite message often
contains the following message types:
 

•

• A control message that contains bookkeeping information, such as destination addresses and length fields,
followed by

•  
•

• One or more data messages that contain the actual contents of a composite message
•  

Messages in a queue are linked bidirectionally via a pair of pointers that can be obtained using their next() and prev()
accessor methods. This design optimizes enqueueing and dequeueing at the head and tail of a queue. Priority-based
queueing with the ACE_Message_Queue::enqueue_prio() method uses the ACE_Message_Block::msg_priority()
accessor method to enqueue a message block ahead of all lower-priority message blocks already in the queue.
Message blocks at the same priority are enqueued in first-in, first-out (FIFO) order.
 

Each message block in a composite message is chained together unidirectionally via a continuation pointer, which can
be obtained via the cont() accessor method. Figure 6.3 (page 162) illustrates how three messages can be linked
together to form an ACE_Message_Queue. The head and tail messages in the queue are simple messages, whereas
the middle one is a composite message with one message block chained via its continuation pointer.
 

Figure 6.3. The Structure of an ACE_Message_Queue
 

Sidebar 39 (page 164) describes ACE_Message_Queue_Ex, which is a variant of ACE_Message_Queue that
exchanges strongly typed messages.
 

3. Parameterized synchronization strategies. If you examine Figure 6.2 (page 160) carefully you'll see the
ACE_Message_Queue template is parameterized by a SYNCH_STRATEGY traits class. This design is based on
the Strategized Locking pattern [POSA2], which parameterizes the synchronization mechanisms that a class uses to
protect its critical sections from concurrent access. Internally, the ACE_Message_Queue class uses the following
traits from its SYNCH_STRATEGY traits class template parameter:
 
template <class SYNCH_STRATEGY> 
class ACE_Message_Queue { 
  // ... 
protected: 
  // C++ traits that coordinate concurrent access. 
  ACE_TYPENAME SYNCH_STRATEGY::MUTEX lock_; 
  ACE_TYPENAME SYNCH_STRATEGY::CONDITION notempty_; 
  ACE_TYPENAME SYNCH_STRATEGY::CONDITION notfull_; 
}; 

Sidebar 40 (page 165) describes the C++ traits and traits class idioms. These idioms enable application developers
to customize an ACE_Message_Queue's synchronization strategy to suit their particular needs. The
ACE_Message_Queue class fragment above shows how the following traits in its traits class template parameter are
used:
 

Sidebar 38: Integrating an
ACE_Message_Queue with an ACE_Reactor
 

Some platforms offer a way to integrate native message queue events with synchronous event
demultiplexing. For example, AIX's version of select() can demultiplex events generated by System V
message queues. Although this use of select() is nonportable, the ability to integrate a message queue
with a reactor is useful in applications in which one thread must respond to both I/O events and items
enqueued to a message queue. The ACE_Message_Queue class therefore offers a portable way to
integrate event queueing with the ACE Reactor framework presented in Chapter 3.
 

The constructor of the ACE_Message_Queue class, as well as its open() and notification_strategy()
methods, can be used to set a notification strategy for the ACE_Message_Queue. This design is an
example of the Strategy pattern [GoF], which allows various algorithms to be substituted without
changing the client (which is the ACE_Message_Queue class in this case). The notification strategy must
be derived from ACE_Notification_Strategy, which allows the flexibility to insert any strategy necessary
for your application. One such subclass strategy is ACE_Reactor_Notification_Strategy, whose
constructor associates it with an ACE_Reactor, an ACE_Event_Handler, and an event mask. After the
strategy object is associated with an ACE_Message_Queue, each queued message triggers the
following sequence of actions:
 

1.

1. ACE_Message_Queue calls the strategy's notify() method.
1.  
2.

2. The ACE_Reactor_Notification_Strategy::notify() method notifies the associated reactor using
the reactor notification mechanism (page 77).

2.  
3.

3. The reactor dispatches the notification to the specified event handler using the designated mask.
3.  

•

• The lock_ member serializes access to the queue's state and
•  
•

• notempty_ and notfull_ are condition variables that enable callers to wait efficiently for a message to arrive or
to insert a message, respectively.

•  

The SYNCH_STRATEGY traits class used to parameterized ACE_Message_Queue allows these members to
adapt to a synchronized or unsynchronized queue at compile time.
 

Sets of ACE's synchronization wrapper facades can be combined to form traits classes that define customized
synchronization strategies. ACE provides the following two traits classes that prepackage the most common
synchronization traits:
 

•

• ACE_NULL_SYNCH? The traits in this class are implemented in terms of "null" locking mechanisms, as
shown below.

•  
class ACE_NULL_SYNCH { 
public: 
  typedef ACE_Null_Mutex MUTEX; 
  typedef ACE_Null_Mutex NULL_MUTEX; 
  typedef ACE_Null_Mutex PROCESS_MUTEX; 
  typedef ACE_Null_Mutex RECURSIVE_MUTEX; 
  typedef ACE_Null_Mutex RW_MUTEX; 
  typedef ACE_Null_Condition CONDITION; 
  typedef ACE_Null_Semaphore SEMAPHORE; 
  typedef ACE_Null_Semaphore NULL_SEMAPHORE; 
}; 

Sidebar 39: The ACE_Message_Queue_Ex
Class
 

The ACE_Message_Queue class enqueues and dequeues ACE_Message_Block objects, which
provide a dynamically extensible way to represent messages. For programs requiring strongly typed
messaging, ACE provides the ACE_Message_Queue_Ex class, which enqueues and dequeues
messages that are instances of a MESSAGE_TYPE template parameter, rather than an
ACE_Message_Block.
 

ACE_Message_Queue_Ex offers the same capabilities as ACE_Message_Queue. Its primary
advantage is that application-defined data types can be queued without the need to type cast on
enqueue and dequeue or copy objects into the data portion of an ACE_Message_Block. Since
ACE_Message_Queue_Ex is not derived from ACE_Message_Queue, however, it can't be used with
the ACE_Task class described in Section 6.3.
 

The ACE_NULL_SYNCH class is an example of the Null Object pattern [Woo97], which simplifies applications by
defining a "no-op" placeholder that removes conditional statements in a class implementation. ACE_NULL_SYNCH
is often used in single-threaded applications or in applications in which the need for interthread synchronization has
either been eliminated via careful design or implemented via some other mechanism. The client logging daemon
examples in Section 7.4 (page 238) illustrate the use of the ACE_NULL_SYNCH traits class.
 

•

• ACE_MT_SYNCH? The traits in this predefined class are implemented in terms of actual locking
mechanisms, as shown below: 

class ACE_MT_SYNCH { 
public: 
  typedef ACE_Thread_Mutex MUTEX; 
  typedef ACE_Null_Mutex NULL_MUTEX; 
  typedef ACE_Process_Mutex PROCESS_MUTEX; 
  typedef ACE_Recursive_Thread_Mutex RECURSIVE_MUTEX; 
  typedef ACE_RW_Thread_Mutex RW_MUTEX; 
  typedef ACE_Condition_Thread_Mutex CONDITION; 
  typedef ACE_Thread_Semaphore SEMAPHORE; 
  typedef ACE_Null_Semaphore NULL_SEMAPHORE; 
}; 

The ACE_MT_SYNCH traits class defines a strategy containing portable, efficient synchronizers suitable for
multithreaded applications. The client logging daemon examples in Section 6.2 (page 180) and Section 7.4 (page
243) illustrate the use of the ACE_MT_SYNCH traits class.
 

Sidebar 40: The C++ Traits and Traits Class
Idioms
 

A trait is a type that conveys information used by another class or algorithm to determine policies at
compile time. A traits class [Jos99] is a useful way to collect a set of traits that should be applied in a
given situation to alter another class's behavior appropriately. Traits and traits classes are C++
policy-based class design idioms [Ale01] that are widely used throughout the C++ standard library [
Aus99].
 

For example, the char_traits class defines the traits of a character type, such as its data type and
functions to compare, search for, and assign characters of that type. The C++ standard library provides
specializations of char_traits<> for char and wchar_t. These character traits then modify the behavior of
common classes, such as basic_iostream<> and basic_string<>. The iostream and string classes are
defined by specializing the class templates with char_traits<char>. Similarly, the wiostream and wstring
classes are defined by specializing the templates with char_traits<wchar_t>.
 

These C++ idioms are similar in spirit to the Strategy pattern [GoF], which allows substitution of class
behavioral characteristics without requiring a change to the class itself. The Strategy pattern involves a
defined interface that's commonly bound dynamically at run time using virtual methods. In contrast, the
traits and traits class idioms involve substitution of a set of class members and/or methods that can be
bound statically at compile time using C++ parameterized types.
 

Parameterizing the ACE_Message_Queue template with a traits class provides the following benefits.
 

•

• It allows ACE_Message_Queue to work in both single-threaded and multithreaded configurations without
requiring changes to the class implementation.

•  
•

• It allows the synchronization aspects of an instantiation of ACE_Message_Queue to be changed wholesale
via the Strategized Locking pattern.

•  

For example, the ACE_Message_Queue's MUTEX and CONDITION traits resolve to ACE_Null_Mutex and
ACE_Null_Condition if the ACE_NULL_SYNCH traits class is used. In this case, the resulting message queue class
incurs no synchronization overhead. In contrast, if an ACE_Message_Queue is parameterized with the
ACE_MT_SYNCH traits class, its MUTEX and CONDITION traits resolve to ACE_Thread_Mutex and
ACE_Condition_Thread_Mutex. In this case, the resulting message queue class behaves in accordance with the
Monitor Object design pattern [POSA2], which
 

•

• Synchronizes concurrent method execution to ensure that only one method at a time runs within an object
•  
•

• Allows an object's methods to schedule their execution sequences cooperatively
•  

Sidebar 49 (page 214) explains how ACE uses macros to implement ACE_NULL_SYNCH and
ACE_MT_SYNCH for C++ compilers that lack support for traits classes in templates.
 

When ACE_Message_Queue is parameterized with ACE_NULL_SYNCH, calls to its enqueue and dequeue
methods never block the calling thread when they reach the queue's boundary conditions. They instead return -1 with
errno set to EWOULDBLOCK. Conversely, when an ACE_Message_Queue is instantiated with
ACE_MT_SYNCH, its enqueue and dequeue methods support blocking, nonblocking, and timed operations. For
example, when a synchronized queue is empty, calls to its dequeue methods will block by default until a message is
enqueued and the queue is no longer empty. Likewise, when a synchronized queue is full, calls to its enqueue
methods block by default until sufficient messages are dequeued to decrease the number of bytes in the queue below
its low watermark and the queue is no longer full. This default blocking behavior can be modified by passing the
following types of ACE_Time_Value values to these methods:
 

Value
 

Behavior
 

NULL ACE_Time_Value pointer
 

Indicates that the enqueue or dequeue method should
wait indefinitely, that is, it will block until the method
completes, the queue is closed, or a signal interrupts the
call.
 

Non-NULL ACE_Time_Value pointer whose sec() and
usec() methods return 0
 

Indicates that enqueue and dequeue methods should
perform a nonblocking operation, that is, if the method
doesn't succeed immediately return -1 and set errno to
EWOULDBLOCK.
 

Non-NULL ACE_Time_Value pointer whose sec() or
usec() method returns > 0
 

Indicates that enqueue or dequeue method should wait
until the absolute time of day, returning -1 with errno set
to EWOULDBLOCK if the method does not complete
by this time. The call will also return earlier if the queue is
closed or a signal interrupts the call.
 

Sidebar 6 (page 45) describes the different interpretations of timeout values used by various classes in ACE.
 

1.

1. 4. Shutdown and message release methods. The following methods can be used to shut down, deactivate,
and/or release the messages in an ACE_Message_Queue:

1.  

Method
 

Description
 

deactivate()
 

Changes the queue state to DEACTIVATED and wakes
up all threads waiting on enqueue or dequeue operations.
This method does not release any queued messages.
 

pulse()
 

Changes the queue state to PULSED and wakes up all
threads waiting on enqueue or dequeue operations. This
method does not release any queued messages.
 

state()
 

Returns the queue's state .
 

activate()
 

Changes the queue state to ACTIVATED.
 

ACE_Message_Queue() close()
 

Deactivates the queue and releases any queued messages
immediately.
 

flush()
 

Releases the messages in a queue, but doesn't change its
state.
 

An ACE_Message_Queue is always in one of three states internally:
 

•

• ACTIVATED, in which all operations work normally (a queue always starts in the ACTIVATED state).
•  
•

• DEACTIVATED, in which all enqueue and dequeue operations immediately return -1 and set errno to
ESHUTDOWN until the queue is activated again.

•  
•

• PULSED, the transition to which causes waiting enqueue and dequeue operations to return immediately as if
the queue were deactivated; however, all operations initiated while in the PULSED state behave as in
ACTIVATED state.

•  

The DEACTIVATED and PULSED states are useful in situations in which it's necessary to notify all producer and
consumer threads that some significant event has occurred. Transitioning to either state causes all waiting producer
and consumer threads to wake up. The difference between them is the queue's enqueue/dequeue behavior after the
transition. In the DEACTIVATED state, all enqueue and dequeue operations fail until the queue's state is changed to
ACTIVATED. The PULSED state, however, is behaviorally equivalent to the ACTIVATED state, that is, all
enqueue/dequeue operations proceed normally. The PULSED state is mainly informational?n awakened
producer/consumer can decide whether to attempt further queue operations by examining the return value from the
state() method. The Example portion of Section 7.4 (page 246) illustrates the use of the pulse() method to trigger
connection reestablishment.
 

No messages are removed from the queue on any state transition. The messages in a queue can be released by the
ACE_Message_Queue destructor, close(), or flush() methods. These methods release all the message blocks
remaining in the message queue. The flush() method doesn't deactivate the queue, however, whereas the other two
methods do. Sidebar 41 describes several protocols that shut ACE_Message_Queues down gracefully.
 

Sidebar 41: ACE_Message?scoreQueue
Graceful Shutdown Protocols
 

To avoid losing queued messages unexpectedly when an ACE_Message_Queue needs to be closed,
producer and consumer threads can implement the following protocol:
 

1.

1. A producer thread can enqueue a special message, such as a message block whose payload is
size 0 and/or whose type is MB_STOP, to indicate that it wants the queue closed.

1.  
2.

2. The consumer thread can close the queue when it receives this shutdown message, after
processing any other messages ahead of it in the queue.

2.  

A variant of this protocol can use the ACE_Message_Queue::enqueue_prio() method to boost the
priority of the shutdown message so it takes precedence over lower-priority messages that may already
reside in the queue.
 

Example
 

This example shows how ACE_Message_Queue can be used to implement a client logging daemon. As shown in 
Figure 1.10 (page 21), a client logging daemon runs on every host participating in the networked logging service and
performs the following tasks:
 

•

• It uses a local IPC mechanism, such as shared memory, pipes, or loopback sockets, to receive log records
from client applications on the client logging daemon's host.

•  
•

• It uses a remote IPC mechanism, such as TCP/IP, to forward log records to a server logging daemon running
on a designated host.

•  

Our example uses two threads to implement a bounded buffer concurrency model [BA90] based on a synchronized
ACE_Message_Queue using the ACE_MT_SYNCH traits class (page 164).
 

In our client logging daemon, the main thread uses an event handler and the ACE Reactor framework to read log
records from sockets connected to client applications via the network loopback device. The event handler queues
each log record in the synchronized ACE_Message_Queue. A separate forwarder thread runs concurrently,
performing the following steps continuously:
 

1.

1. Dequeueing messages from the message queue
1.  
2.

2. Buffering the messages into larger chunks
2.  
3.

3. Forwarding the chunks to the server logging daemon over a TCP connection
3.  

By using a synchronized message queue, the main thread can continue to read log records from client applications as
long as the message queue isn't full. Overall server concurrency can therefore be enhanced, even if the forwarder
thread blocks occasionally when sending log records to the logging server over a flow controlled connection.
 

The client logging daemon plays multiple roles, including accepting connections from client applications, receiving log
records, establishing connections to the logging server, and forwarding log records. We therefore can't implement it
by reusing our Reactor_Logging_Server class from the Example portion of Section 3.5. Instead, we define a new
group of classes shown in Figure 6.4. The role of each class is outlined below:
 

Figure 6.4. The Client Logging Daemon Classes
 

Class
 

Description
 

CLD_Handler
 

Target of callbacks from the ACE_Reactor. Receives log
records from clients, converts them into
ACE_Message_Blocks, and inserts them into the
synchronized message queue that's processed by a
separate thread and forwarded to the logging server.
 

CLD_Acceptor
 

A factory that passively accepts connections from clients
and registers them with the ACE_Reactor to be
processed by the CLD_Handler.
 

CLD_Connector
 

A factory that actively establishes (and when necessary
reestablishes) connections with the logging server.
 

Client_Logging_Daemon
 

A facade class that integrates the other three classes
together.
 

As shown in Figure 6.4, the classes in this client logging daemon implementation are designed in accordance with the
Acceptor-Connector pattern. CLD_Acceptor plays the acceptor role, CLD_Connector plays the connector role,
and CLD_Handler plays the service handler role. The relationships between the main thread, the forwarder thread,
the classes in Figure 6.4, and the synchronized ACE_Message_Queue that joins them are shown in Figure 6.5 (page
170).
 

Figure 6.5. Interactions between Objects in the Client Logging Daemon
 

We start our implementation by including the necessary ACE header files.
 
#include "ace/OS.h" 
#include "ace/Event_Handler.h" 
#include "ace/INET_Addr.h" 
#include "ace/Get_Opt.h" 
#include "ace/Log_Record.h" 
#include "ace/Message_Block.h" 
#include "ace/Message_Queue.h" 
#include "ace/Reactor.h" 
#include "ace/Service_Object.h" 
#include "ace/Signal.h" 
#include "ace/Synch.h" 
#include "ace/SOCK_Acceptor.h" 
#include "ace/SOCK_Connector.h" 
#include "ace/SOCK_Stream.h" 
#include "ace/Thread_Manager.h" 
#include "Logging_Acceptor.h" 
#include "CLD_export.h" 

Each class in Figure 6.4 is defined in the Client_Logging_Daemon.cpp file and described below.
 

CLD Handler. This class provides the following capabilities:
 

•

• It receives log records from clients.
•  
•

• It converts the log records into ACE_Message_Blocks.
•  
•

• It enqueues the message blocks in a synchronized message queue.
•  
•

• It runs a separate thread that dequeues the message blocks and forwards them to the logging server in large
chunks.

•  

The CLD_Handler class is shown below:
 
#if !defined (FLUSH_TIMEOUT) 
#define FLUSH_TIMEOUT 120 /* 120 seconds == 2 minutes. */ 
#endif /* FLUSH_TIMEOUT */ 

class CLD_Handler : public ACE_Event_Handler { 
public: 
  enum { QUEUE_MAX = sizeof (ACE_Log_Record) * ACE_IOV_MAX }; 

  // Initialization hook method. 
  virtual int open (CLD_Connector *); 
  // Shut down hook method. 
  virtual int close (); 

  // Accessor to the connection to the logging server. 
  virtual ACE_SOCK_Stream &peer () { return peer_; } 

  // Reactor hook methods. 
  virtual int handle_input (ACE_HANDLE handle); 
  virtual int handle_close (ACE_HANDLE = ACE_INVALID_HANDLE, 
                            ACE_Reactor_Mask = 0); 

protected: 
  // Forward log records to the server logging daemon. 
  virtual ACE_THR_FUNC_RETURN forward (); 

  // Send buffered log records using a gather-write operation. 
  virtual int send (ACE_Message_Block *chunk[], size_t count); 

  // Entry point into forwarder thread of control. 
  static ACE_THR_FUNC_RETURN run_svc (void *arg); 

  // A synchronized <ACE_Message_Queue> that queues messages. 
  ACE_Message_Queue<ACE_MT_SYNCH> msg_queue_; 
  
  // Manage the forwarder thread. 
  ACE_Thread_Manager thr_mgr_; 

  // Pointer to our <CLD_Connector>. 
  CLD_Connector *connector_; 

  // Connection to the logging server. 
  ACE_SOCK_Stream peer_; 
}; 

There's no need for a constructor or destructor in CLD_Handler since its open() and close() hooks perform
initialization and destruction activities when called by the CLD_Acceptor factory class (page 176). CLD_Handler
performs two roles?span class="docEmphasis">input and output?hich are explained below.
 

•

• Input role. Since CLD_Handler inherits from ACE_Event_Handler, it can use the ACE Reactor framework
to wait for log records to arrive from client applications connected to the client logging daemon via loopback
TCP sockets. When a log record arrives at the client logging daemon, the singleton ACE_Reactor dispatches
the following CLD_Handler::handle_input() hook method:

•  
 1 int CLD_Handler::handle_input (ACE_HANDLE handle) { 
 2   ACE_Message_Block *mblk = 0; 
 3   Logging_Handler logging_handler (handle); 
 4 
 5   if (logging_handler.recv_log_record (mblk) != -1) 
 6     if (msg_queue_.enqueue_tail (mblk->cont ()) != -1) { 
 7       mblk->cont (0); 
 8       mblk->release (); 
 9       return 0; // Success return. 
10     } else mblk->release (); 
11   return -1; // Error return. 
12 } 

Lines 3? Use the Logging_Handler from Chapter 4 of C++NPv1 to read a log record out of the socket handle
parameter and store the record in an ACE_Message_Block.
 

Lines 6? Insert the message into the synchronized queue serviced by the forwarder thread. The server logging
daemon expects to receive a marshaled log record, but not a hostname string, so we enqueue only the log record
data (which is referenced by mblk->cont()) and not the hostname (which is referenced by mblk). When the server
logging daemon receives the log record, it prepends the name of the client logging host, just as this client logging
daemon recorded the name of the logging client. If the enqueue_tail() call succeeds, the continuation field is set to
NULL to ensure that mblk->release() only reclaims the message block that stores the hostname.
 

Lines 10?1 If a client application disconnects the TCP connection or an error occurs, the handle_input() hook
method returns -1 (Sidebar 41 on page 61 discusses strategies for handling peers that simply stop communicating).
This value triggers the reactor to call the following handle_close() hook method that closes the socket:
 
int CLD_Handler::handle_close (ACE_HANDLE handle, 
                               ACE_Reactor_Mask) 
{ return ACE_OS::closesocket (handle); } 

Note that we needn't delete this object in handle_close() since the memory is managed by the
Client_Logging_Daemon class (page 180).
 

•

• Output role. The CLD_Handler object is initialized when CLD_Connector's connect() method (page 179)
calls the following open() hook method: 

1 int CLD_Handler::open (CLD_Connector *connector) { 
2   connector_ = connector; 
3   int bufsiz = ACE_DEFAULT_MAX_SOCKET_BUFSIZ; 
4   peer ().set_option (SOL_SOCKET, SO_SNDBUF, 
5                       &bufsiz, sizeof bufsiz); 
6   msg_queue_.high_water_mark (CLD_Handler::QUEUE_MAX); 
7   return thr_mgr_.spawn (&CLD_Handler::run_svc, 
8                          this, THR_SCOPE_SYSTEM); 
9 } 

Lines 2? Store a pointer to the CLD_Connector and increase the peer() socket send buffer to its largest size to
maximize throughput over long-delay and/or high-speed networks.
 

Line 6 Set the msg_queue_'s high watermark to sizeof(ACE_Log_Record) x ACE_IOV_MAX. Since log records
are buffered in groups of up to ACE_IOV_MAX before being sent to the server logging daemon, the queue's high
watermark is set to accomodate at least ACE_IOV_MAX log records. Although the queued log records will be
CDR-marshaled, using the maximum sized demarshaled log record (ACE_Log_Record) is a fair approximation.
 

Lines 7? Use the ACE_Thread_Manager from Chapter 9 of C++NPv1 to spawn a system-scoped thread that
executes the CLD_Handler::run_svc() static method concurrently with respect to the main thread.[1] The run_svc()
static method casts its void pointer argument to a CLD_Handler pointer and then delegates its processing to the
forward() method, as shown below: 

[1] Since the CLD_Handler::close() method (page 176) waits for this thread to exit, we needn't pass the
THR_DETACHED flag to spawn(). 

ACE_THR_FUNC_RETURN CLD_Handler::run_svc (void *arg) { 
  CLD_Handler *handler = ACE_static_cast (CLD_Handler *, arg); 
  return handler->forward (); 
} 

We now show the CLD_Handler::forward() method, which runs in its own thread and forwards log records to the
server logging daemon. As shown below, this method optimizes network throughput by buffering log records until a
maximum number have arrived or a maximum time elapses.
 
 1 ACE_THR_FUNC_RETURN CLD_Handler::forward () { 
 2   ACE_Message_Block *chunk[ACE_IOV_MAX]; 
 3   size_t message_index = 0; 
 4   ACE_Time_Value time_of_last_send (ACE_OS::gettimeofday ()); 
 5   ACE_Time_Value timeout; 
 6   ACE_Sig_Action no_sigpipe ((ACE_SignalHandler) SIG_IGN); 
 7   ACE_Sig_Action original_action; 
 8   no_sigpipe.register_action (SIGPIPE, &original_action); 
 9 
10   for (;;) { 
11     if (message_index == 0) { 
12       timeout = ACE_OS::gettimeofday (); 
13       timeout += FLUSH_TIMEOUT; 
14     } 
15     ACE_Message_Block *mblk = 0; 
16     if (msg_queue_.dequeue_head (mblk, &timeout) == -1) { 
17       if (errno != EWOULDBLOCK) break; 
18       else if (message_index == 0) continue; 
19     } else { 
20       if (mblk->size () == 0 
21           && mblk->msg_type () == ACE_Message_Block::MB_STOP) 
22         { mblk->release (); break; } 
23       chunk[message_index] = mblk; 
24       ++message_index; 
25     } 
26     if (message_index >= ACE_IOV_MAX 
27         || (ACE_OS::gettimeofday () - time_of_last_send 
28             >= FLUSH_TIMEOUT)) { 
29       if (send (chunk, message_index) == -1) break; 
30       time_of_last_send = ACE_OS::gettimeofday (); 
31     } 
32   } 
33 
34   if (message_index > 0) send (chunk, message_index); 
35   msg_queue_.close (); 
36   no_sigpipe.restore_action (SIGPIPE, original_action); 
37   return 0; 
38 } 

Lines 2? We will buffer as many blocks as can be sent in a single gather-write operation. We therefore declare an
array of ACE_Message_Block pointers to hold pointers to the blocks that will be dequeued. We also define an
index to keep track of the number of buffered records and ACE_Time_Value objects to record the last time a log
record was sent and the next flush timeout. These ACE_Time_Value objects are used to bound the amount of time
log records are buffered before they're transmitted to the logging server.
 

Lines 6? UNIX systems will raise the SIGPIPE signal if send() fails due to the peer closing the connection. The
default behavior for SIGPIPE is to abort the process. We use the ACE_Sig_Action class to ignore the SIGPIPE
signal in this method, which will allow us to handle any send() failures in the normal (nonsignal) execution path.
 

Line 10 This loop will run until the message queue is deactivated.
 

Lines 11?4 Reset the flush timeout on the first iteration, after a timeout, and after message blocks are forwarded.
 

Lines 15?6 Wait up to the next flush timeout to dequeue a pointer to the next ACE_Message_Block from the
msg_queue_.
 

Lines 17?8 If the dequeue operation failed, and it wasn't because of a timeout, break out of the loop. If it was a
timeout, but there are no buffered log records, just continue the loop waiting to dequeue a message block.
 

Lines 19?2 After successfully dequeueing a message block, we first check to see if its size() is 0 and its type is
MB_STOP. By convention, this application uses this type of message block to request the thread to shut down.
When we receive the shutdown message, we release the message block and break out of the loop.
 

Lines 23?4 We store the log record block in the next available slot in the chunk array and increment the count of
saved message blocks.
 

Lines 26?0 Whenever the buffer fills up or the FLUSH_TIMEOUT elapses, call the CLD_Handler::send() method
(see below) to flush the buffered log records in one gather-write operation. The send() method releases all the saved
message blocks and resets message_index to reflect the fact that there are no valid blocks remaining. If the records
were sent successfully, we record the time when the records were sent.
 

Line 34 If dequeue_head() fails or a shutdown message was received, any remaining buffered log records are flushed
by a call to CLD_Handler::send().
 

Line 35 Close the message queue to release its resources.
 

Line 36 Restore the disposition of the SIGPIPE signal to its original action before the forward() method was called.
 

Line 37 Return from the CLD_Handler::forward() method, which exits the thread.
 

The CLD_Handler::send() method sends the buffered log records to the logging server. It's also responsible for
reconnecting to the server if the connection is closed.
 
 1 int CLD_Handler::send (ACE_Message_Block *chunk[], 
 2                        size_t &count) { 
 3   iovec iov[ACE_IOV_MAX]; 
 4   size_t iov_size; 
 5   int result = 0; 
 6 
 7   for (iov_size = 0; iov_size < count; ++iov_size) { 
 8     iov[iov_size].iov_base = chunk[iov_size]->rd_ptr (); 
 9     iov[iov_size].iov_len = chunk[iov_size]->length (); 
10   } 
11 
12   while (peer ().sendv_n (iov, iov_size) == -1) 
13     if (connector_->reconnect () == -1) { 
14       result = -1; 
15       break; 
16     } 
17 
18   while (iov_size > 0) { 
19     chunk[--iov_size]->release (); chunk[iov_size] = 0; 
20   } 
21   count = iov_size; 
22   return result; 
23 } 

Lines 3? To set up the gather-write operation, we gather the data pointers and lengths from the supplied message
blocks into an iovec array.
 

Lines 12?6 The ACE_SOCK_Stream::sendv_n() method flushes the buffered log records in one gather-write
operation. If sendv_n() fails due to a broken connection, we attempt to reestablish the connection using the
CLD_Connector::reconnect() method. If reconnect() succeeds, sendv_n() is reinvoked. As shown on page 179,
CLD_Connector::reconnect() tries upto MAX_RETRIES times to reestablish connections.
 

All the data is sent on each iteration of the while loop. Since there's no application-level transaction monitoring,
there's no end-to-end acknowledgment that the transmitted log records were received and recorded. The sendv_n()
can pass back the number of bytes successfully sent to the TCP layer for transmission, but offers no guarantee that
any of the bytes were received at the peer host or read by the server logging daemon. Since there's no reliable way
to tell how many log records were received and recorded, and logging a record multiple times does no harm, they are
all re-sent if the connection must be reestablished.
 

Lines 18?1 The final loop in the method releases all the log record data and sets all the ACE_Message_Block
pointers to 0. To reflect the fact that there are no valid log records remaining in chunk, we reset count to 0.
 

CLD_Handler::close() is a public method called by the CLD_Acceptor::handle_close() method (page 178) or the
Client_Logging_Daemon::fini() method (page 181) to shut the handler down. It inserts a 0-sized message of type
MB_STOP into the message queue as follows:
 
int CLD_Handler::close () { 
  ACE_Message_Block *shutdown_message = 0; 
  ACE_NEW_RETURN 
    (shutdown_message, 
    ACE_Message_Block (0, ACE_Message_Block::MB_STOP), -1); 
  msg_queue_.enqueue_tail (shutdown_message); 
  return thr_mgr_.wait (); 
} 

When the forwarder thread receives the shutdown_message, it flushes its remaining log records to the logging server,
closes the message queue, and exits the thread. We use the ACE_Thread_Manager::wait() method to block until the
forwarder thread exits before returning. This method also reaps the exit status of the forwarder thread to prevent
memory leaks.
 

CLD_Acceptor. This class provides the following capabilities:
 

•

• It's a factory that passively accepts connections from clients.
•  
•

• It then registers the connections with the ACE_Reactor. Log records sent from clients over the connections
are then processed by an instance of the CLD_Handler shown above.

•  

The CLD_Acceptor class definition is shown below:
 
class CLD_Acceptor : public ACE_Event_Handler { 
public: 
  // Initialization hook method. 
  virtual int open (CLD_Handler *, const ACE_INET_Addr &, 
                    ACE_Reactor * = ACE_Reactor::instance ()); 
  // Reactor hook methods. 
  virtual int handle_input (ACE_HANDLE handle); 
  virtual int handle_close (ACE_HANDLE = ACE_INVALID_HANDLE, 
                            ACE_Reactor_Mask = 0); 
  virtual ACE_HANDLE get_handle () const; 

protected: 
  // Factory that passively connects <ACE_SOCK_Stream>s. 
  ACE_SOCK_Acceptor acceptor_; 

  // Pointer to the handler of log records. 
  CLD_Handler *handler_; 
}; 

Since CLD_Acceptor inherits from ACE_Event_Handler, it can register itself with the ACE Reactor framework to
accept connections, as shown below:
 
int CLD_Acceptor::open (CLD_Handler *handler, 
                        const ACE_INET_Addr &local_addr, 
                        ACE_Reactor *r) { 
  reactor (r); // Store the reactor pointer. 
  handler_ = handler; 
  if (acceptor_.open (local_addr) == -1 
      || reactor ()->register_handler 
           (this, ACE_Event_Handler::ACCEPT_MASK) == -1) 
    return -1; 
  return 0; 
} 

This method instructs the acceptor_ to start listening for connection requests and then registers this object with the
singleton reactor to accept new connections. The reactor double-dispatches to the following
CLD_Acceptor::get_handle() method to obtain the acceptor_'s socket handle:
 
ACE_HANDLE CLD_Acceptor::get_handle () const 
{ return acceptor_.get_handle (); } 

When a connection request arrives at the client logging daemon, the singleton reactor dispatches the following
CLD_Acceptor::handle_input() hook method:
 
 1 int CLD_Acceptor::handle_input (ACE_HANDLE) { 
 2   ACE_SOCK_Stream peer_stream; 
 3   if (acceptor_.accept (peer_stream) == -1) return -1; 
 4   else if (reactor ()->register_handler 
 5              (peer_stream.get_handle (), 
 6               handler_, 
 7               ACE_Event_Handler::READ_MASK) == -1) 
 8     return -1; 
 9   else return 0; 
10 } 

Lines 2? Accept the connection into peer_stream, which just accepts the connection and initializes the new socket
handle registered with the reactor. It therefore needn't exist after handle_input() returns. The destructor of
ACE_SOCK_Stream doesn't shut down the handle automatically for the reasons described in Chapter 3 of
C++NPv1.
 

Lines 4? Use the three-parameter variant of register_handler() (page 73) to register a pointer to the CLD_Handler
with the reactor for READ events. This register_handler() method enables the client logging daemon to reuse a single
C++ object for all of its logging handlers. When log records arrive, the reactor will dispatch the
CLD_Handler::handle_input() method (page 171).
 

The following handle_close() method is invoked automatically by the reactor if a failure occurs while accepting a
connection or registering a handle and event handler:
 
int CLD_Acceptor::handle_close (ACE_HANDLE, ACE_Reactor_Mask) { 
  acceptor_.close (); 
  handler_->close (); 
  return 0; 
} 

This method closes both the acceptor factory and the CLD_Handler. CLD_Handler::close() (page 176) triggers a
shutdown of the message queue and forwarder thread.
 

CLD_Connector. This class provides the following capabilities:
 

•

• It's a factory that actively establishes a connection from the client logging daemon to the server logging
daemon.

•  
•

• It activates the instance of CLD_Handler to forward log records concurrently to the logging server.
•  

The CLD_Connector class definition is shown below:
 
class CLD_Connector { 
public: 
  // Establish a connection to the logging server 
  // at the <remote_addr>. 
  int connect (CLD_Handler *handler, 
               const ACE_INET_Addr &remote_addr); 

  // Re-establish a connection to the logging server. 
  int reconnect (); 

private: 
  // Pointer to the <CLD_Handler> that we're connecting. 
  CLD_Handler *handler_; 

  // Address at which the logging server is listening 
  // for connections. 
  ACE_INET_Addr remote_addr_; 
} 

The connect() method is shown below:
 
 1 int CLD_Connector::connect 
 2     (CLD_Handler *handler, 
 3      const ACE_INET_Addr &remote_addr) { 
 4   ACE_SOCK_Connector connector; 
 5 
 6   if (connector.connect (handler->peer (), remote_addr) == -1) 
 7     return -1; 
 8   else if (handler->open (this) == -1) 
 9   { handler->handle_close (); return -1; } 
10   handler_ = handler; 
11   remote_addr_ = remote_addr; 
12   return 0; 
13 } 

Lines 4? Use the ACE Socket wrapper facades from Chapter 4 of C++NPv1 to establish a TCP connection with
the server logging daemon.
 

Lines 8? Activate the CLD_Handler by invoking its open() hook method (page 172). If successful, this method
spawns a thread that runs the CLD_Handler::forward() method to forward log records to the logging server. If
open() fails, however, we call the handle_close() method on the handler to close the socket.
 

Lines 10?1 Store the handler and the remote address to simplify the implementation of the
CLD_Connector::reconnect() method, which is used to reconnect to the logging server when it closes client
connections, either due to a crash or due to the Evictor pattern (page 66). As shown below, the reconnect() method
uses an exponential backoff algorithm to avoid swamping a logging server with connection requests:
 
int CLD_Connector::reconnect () { 
  // Maximum number of times to retry connect. 
  const size_t MAX_RETRIES = 5; 

  ACE_SOCK_Connector connector; 
  ACE_Time_Value timeout (1); // Start with 1 second timeout. 
  size_t i; 
  for (i = 0; i < MAX_RETRIES; ++i) { 
    if (i > 0) ACE_OS::sleep (timeout); 
    if (connector.connect (handler_->peer (), remote_addr_, 
                           &timeout) == -1) 
      timeout *= 2; // Exponential backoff. 
    else { 
      int bufsiz = ACE_DEFAULT_MAX_SOCKET_BUFSIZ; 
      handler_->peer ().set_option (SOL_SOCKET, SO_SNDBUF, 
                                    &bufsiz, sizeof bufsiz); 
      break; 
    } 
  } 
  return i == MAX_RETRIES ? -1 : 0; 
} 

As earlier, we increase the peer() socket send buffer to its largest size to maximize throughput over long-delay and/or
high-speed networks.
 

Client_Logging_Daemon. This class is a facade that integrates the three classes described above to implement the
client logging daemon. Its definition is shown below.
 
class Client_Logging_Daemon : public ACE_Service_Object { 
public: 
  // Service Configurator hook methods. 
  virtual int init (int argc, ACE_TCHAR *argv[]); 
  virtual int fini (); 
  virtual int info (ACE_TCHAR **bufferp, size_t length = 0) const; 
  virtual int suspend (); 
  virtual int resume (); 

protected: 
  // Receives, processes, and forwards log records. 
  CLD_Handler handler_; 

  // Factory that passively connects the <CLD_Handler>. 
  CLD_Acceptor acceptor_; 

  // Factory that actively connects the <CLD_Handler>. 
  CLD_Connector connector_; 
}; 

Client_Logging_Daemon inherits from ACE_Service_Object. It can therefore be configured dynamically via a
svc.conf file processed by the ACE Service Configurator framework described in Chapter 5. When an instance of
Client_Logging_Daemon is linked dynamically, the ACE Service Configurator framework calls
Client_Logging_Daemon::init(), which is shown below:
 
 1 int Client_Logging_Daemon::init (int argc, ACE_TCHAR *argv[]) { 
 2   u_short cld_port = ACE_DEFAULT_SERVICE_PORT; 
 3   u_short sld_port = ACE_DEFAULT_LOGGING_SERVER_PORT; 
 4   ACE_TCHAR sld_host[MAXHOSTNAMELEN]; 
 5   ACE_OS_String::strcpy (sld_host, ACE_LOCALHOST); 
 6 
 7   ACE_Get_Opt get_opt (argc, argv, ACE_TEXT ("p:r:s:"), 0); 
 8   get_opt.long_option (ACE_TEXT ("client_port"), 'p', 
 9                        ACE_Get_Opt::ARG_REQUIRED); 
10   get_opt.long_option (ACE_TEXT ("server_port"), 'r', 
11                        ACE_Get_Opt::ARG_REQUIRED); 
12   get_opt.long_option (ACE_TEXT ("server_name"), 's', 
13                        ACE_Get_Opt::ARG_REQUIRED); 
14 
15   for (int c; (c = get_opt ()) != -1;) 
16     switch (c) { 
17     case 'p': // Client logging daemon acceptor port number. 
18       cld_port = ACE_static_cast 
19         (u_short, ACE_OS::atoi (get_opt.opt_arg ())); 
20       break; 
21     case 'r': // Server logging daemon acceptor port number. 
22       sld_port = ACE_static_cast 
23         (u_short, ACE_OS::atoi (get_opt.opt_arg ())); 
24       break; 
25     case 's': // Server logging daemon hostname. 
26       ACE_OS_String::strsncpy 
27         (sld_host, get_opt.opt_arg (), MAXHOSTNAMELEN); 
28       break; 
29     } 
30 
31   ACE_INET_Addr cld_addr (cld_port); 
32   ACE_INET_Addr sld_addr (sld_port, sld_host); 
33 
34   if (acceptor_.open (&handler_, cld_addr) == -1) 
35     return -1; 
36   else if (connector_.connect (&handler_, sld_addr) == -1) 
37   { acceptor_.handle_close (); return -1; } 
38   return 0; 
39 } 

Lines 2? Assign the default client logging daemon listen port (cld_port) and the default server logging daemon port
(sld_port) and hostname (sld_host). These network addresses can be changed by arguments passed into this
method. In particular, the server logging daemon hostname will often need to be set using the -s option.
 

Lines 7?9 Use the ACE_Get_Opt iterator described in Sidebar 8 (page 47) to parse any options passed by the
svc.conf file. The final parameter of 0 to ACE_Get_Opt ensures option parsing will begin at argv[0] rather than
argv[1], which is the default. If any of the "-p", "-r",or"-s" options, or their long option equivalents, are passed in the
argv parameter to init(), the appropriate port number or hostname is modified accordingly.
 

Lines 31?2 With the port numbers and server logging daemon's hostname now known, form the addresses needed to
establish connections.
 

Lines 34?7 Initialize the acceptor_ (page 177) and connector_ (page 179).
 

When the client logging daemon is removed, the ACE Service Configurator framework calls the following
Client_Logging_Daemon::fini() hook method:
 
int Client_Logging_Daemon::fini () { 
  acceptor_.handle_close (); 
  handler_.close (); 
  return 0; 
} 

This fini() method closes the ACE_SOCK_Acceptor socket factory and the CLD_Handler, which triggers a
shutdown of the message queue and forwarder thread. The ACE Service Configurator framework will delete the
Client_Logging_Daemon instance after fini() returns.
 

Now that we've implemented all the client logging daemon's classes, we place the following
ACE_FACTORY_DEFINE macro from Sidebar 32 (page 136) in the implementation file: [2]
 

[2] We leave the suspend(), resume(), and info() hook methods as an exercise for the reader.
 
ACE_FACTORY_DEFINE (CLD, Client_Logging_Daemon) 

This macro defines the _make_Client_Logging_Daemon() factory function, which is used in the following svc.conf file:
 
dynamic Client_Logging_Daemon Service_Object * 
CLD:_make_Client_Logging_Daemon() "-p $CLIENT_LOGGING_DAEMON_PORT" 

This file directs the ACE Service Configurator framework to configure the client logging daemon via the following
steps:
 

1.

1. It dynamically links the CLD DLL into the address space of the process.
1.  
2.

2. It uses the ACE_DLL class described in Sidebar 33 (page 143) to extract the
_make_Client_Logging_Daemon() factory function address from the CLD DLL symbol table.

2.  
3.

3. The factory function is called to obtain a pointer to a dynamically allocated Client_Logging_Daemon object.
3.  
4.

4. The Service Configurator framework then calls Client_Logging_Daemon::init() on this new object, passing as
its argc/argv argument the string "-p" followed by an expansion of the
CLIENT_LOGGING_DAEMON_PORT environment variable designating the port number where the client
logging daemon listens for client application connection requests. The "-r" and "s" options can also be passed
in this manner.

4.  
5.

5. If init() succeeds, the Client_Logging_Daemon pointer is stored in the ACE_Service_Repository under the
name "Client_Logging_Daemon".

5.  

Rather than write a new main() program, we reuse the one from Configurable_Logging_Server (page 147). The
svc.conf file above simply configures in the Client Logging Daemon service when the program starts. The Example
portion of Section 7.4 shows how the ACE Acceptor-Connector framework can be used to further simplify and
enhance the multithreaded client logging daemon implementation shown above.
 

This document is created with the unregistered version of CHM2PDF Pilot



Ru-Brd

This document is created with the unregistered version of CHM2PDF Pilot



 
Ru-Brd

This document is created with the unregistered version of CHM2PDF Pilot



6.3 The ACE_Task_Class
 

Motivation
 

The ACE_Message_Queue class described in Section 6.2 can be used to
 

•

• Decouple the flow of information from its processing
•  
•

• Link threads that execute producer/consumer services concurrently
•  

To use a producer/consumer concurrency model effectively in an object-oriented program, however, each thread
should be associated with the message queue and any other service-related information. To preserve modularity and
cohesion, and to reduce coupling, it's therefore best to encapsulate an ACE_Message_Queue with its associated
data and methods into one class whose service threads can access it directly.
 

Thread-spawning capabilities provided by popular OS platforms are based on each spawned thread invoking a
C-style function call. The ACE_Thread_Manager wrapper facade class described in Chapter 9 of C++NPv1
implements portable multithreading capabilities. However, programmers must still pass a C-style function to its
spawn() and spawn_n() methods. Providing a spawned thread with access to a C++ object requires a bridge to the
C++ object environment. The CLD_Handler::open() method (page 172) illustrated this technique. Since
implementing this technique manually for each class is repetitive, it's a good candidate for reuse. The ACE Task
framework therefore defines ACE_Task to encapsulate a class's messaging capability and provide a portable way for
thread(s) to execute in the context of an object.
 

Class Capabilities
 

ACE_Task is the basis of ACE's object-oriented concurrency framework. It provides the following capabilities:
 

•

• It uses an instance of ACE_Message_Queue from Section 6.2 to separate data and requests from their
processing.

•  
•

• It uses the ACE_Thread_Manager class to activate the task so it runs as an active object [POSA2] that
processes its queued messages in one or more threads of control. Since each thread runs a designated class
method, they can access all of the task's data members directly.

•  
•

• It inherits from ACE_Service_Object, so its instances can be configured dynamically via the ACE Service
Configurator framework from Chapter 5.

•  
•

• It's a descendant of ACE_Event_Handler, so its instances can also serve as event handlers in the ACE
Reactor framework from Chapter 3.

•  
•

• It provides virtual hook methods that application classes can reimplement for task-specific service execution
and message handling.

•  

Our focus in this section is on the ACE_Task capabilities for queueing and processing messages. It obtains its
event-handling, configuration, and dynamic linking/unlinking capabilities as a consequence of inheriting from ACE
classes described in previous chapters.
 

The interface for ACE_Task is shown in Figure 6.6. Since this class has a rich interface, we group the description of
its methods into the three categories described below. Sidebar 60 (page 308) describes some additional ACE_Task
methods that are related to the ACE Streams framework.
 

Figure 6.6. The ACE_Task Class
 

1. Task initialization methods. The methods used to initialize a task are shown in the following table:
 

Method
 

Description
 

ACE_Task()
 

Constructor that can assign pointers to the
ACE_Message_Queue and ACE_Thread_Manager
used by the task
 

open()
 

Hook method that performs application-defined
initialization activities
 

thr_mgr()
 

Get and set a pointer to the task's
ACE_Thread_Manager
 

msg_queue()
 

Get and set a pointer to the task's ACE_Message_Queue
 

activate()
 

Convert a task into an active object that runs in one or
more threads
 

Applications can customize the startup behavior of an ACE_Task by overriding its open() hook method. This method
allocates resources used by a task, such as connection handlers, I/O handles, and synchronization locks. Since
open() is generally called after the init() method that's inherited via ACE_Service_Object, any options passed via the
ACE Service Configurator framework have already been processed. Therefore, open() can act on those configured
preferences. The open() method is also often used to convert a task into an active object by calling
ACE_Task::activate() (page 187).
 

The thr_mgr() and msg_queue() methods make it possible to access and change the thread management and
message queueing mechanisms used by a task. Alternative thread management and message queueing mechanisms
can also be passed to the ACE_Task constructor when an instance of the class is created.
 

The activate() method uses the ACE_Thread_Manager pointer returned by the thr_mgr() accessor to spawn one or
more threads that run within the task. This method converts the task into an active object whose thread(s) direct its
own execution and response to events, rather than being driven entirely by passive method calls that borrow the
thread of the caller. Sidebar 42 (page 186) describes how to avoid memory leaks when an activated task's thread(s)
exit.
 

2. Task communication, processing, and synchronization methods. The following table describes the methods used to
communicate between tasks and to process messages passively and actively within a task:
 

Method
 

Description
 

svc()
 

A hook method that can implement a task's service
processing. It is executed by all threads spawned via the
activate() method.
 

put()
 

A hook method that can be used to pass a message to a
task, where it can be processed immediately or queued
for subsequent processing by the svc() hook method.
 

putq()
 

getq()
 

ungetq()
 

Insert, remove, and replace messages from the task's
message queue. The putq(), getq(), and ungetq()
methods simplify access to the enqueue_tail(),
dequeue_head(), and enqueue_head() methods of a
task's message queue, respectively.
 

A subclass of ACE_Task can perform application-defined processing on messages passed to it by overriding its
put() and svc() hook methods to implement the following two processing models:
 

1. Passive processing. The put() method is used to pass messages to an ACE_Task. Pointers to
ACE_Message_Blocks are passed between tasks to avoid data copying overhead. Task processing can be
performed entirely in the context of put(), where the caller's thread is borrowed for the duration of its processing. A
task's svc() hook method need not be used if the task only processes requests passively in put().
 

Sidebar 42: Avoiding Memory Leaks When
Threads Exit
 

Calls to the ACE_Task::activate() or the ACE_Thread_Manager's spawn() and spawn_n() methods can
include either of the following flags:
 

•

• THR_DETACHED, which designates the spawned thread(s) as detached so that when the
thread exits, the ACE_Thread_Manager ensures the storage used for the thread's state and exit
status is reclaimed.

•  
•

• THR_JOINABLE, which designates the spawned thread(s) as joinable so that
ACE_Thread_Manager ensures the identity and exit status of an exiting thread is retained until
another thread reaps its exit status.

•  

The terms detached and joinable stem from POSIX Pthreads [IEE96].
 

By default, ACE_Thread_Manager (and hence the ACE_Task class that uses it) spawns threads with
the THR_JOINABLE flag. To avoid leaking resources that the OS holds for joinable threads, an
application must call one of the following methods:
 

1.

1. ACE_Task::wait(), which waits for all threads to exit an ACE_Task object
1.  
2.

2. ACE_Thread_Manager::wait_task(), which waits for all threads to exit in a specified ACE_Task
object

2.  
3.

3. ACE_Thread_Manager::join(), which waits for a designated thread to exit.
3.  

If none of these methods are called, ACE and the OS won't reclaim the thread stack and exit status of a
joinable thread, and the program will leak memory.
 

If it's inconvenient to wait for threads explicitly in your program, you can simply pass
THR_DETACHED when spawning threads or activating tasks. Many networked application tasks and
long-running daemon threads can be simplified by using detached threads. However, an application can't
wait for a detached thread to finish with ACE_Task::wait() or obtain its exit status via join().
Applications can, however, use ACE_Thread_Manager::wait() to wait for both joinable and detached
threads managed by an ACE_Thread_Manager to finish.
 

2. Active processing. A task's application-defined processing can also be performed actively. In this case, one or
more threads execute the task's svc() hook method to process messages concurrently with respect to other activities
in an application. If a task's put() method doesn't perform all the processing on a message, it can use putq() to
enqueue the message and return to its caller immediately.
 

A task's svc() hook method can use ACE_Task::getq() to dequeue messages placed onto the message queue and
process them concurrently. The getq() method blocks until either a message is available on the message queue or the
specified absolute timeout elapses. The blocking nature of getq() allows the thread(s) of a task to block and only
wake up when there's work available on the message queue.
 

Unlike put(), the svc() method is never invoked by a client of a task directly. It's instead invoked by one or more
threads when a task becomes an active object after its activate() method is called. The activate() method uses the
ACE_Thread_Manager associated with an ACE_Task to spawn one or more threads, as shown below:
 
template <class SYNCH_STRATEGY> int 
ACE_Task<SYNCH_STRATEGY>::activate (long flags, 
                                    int n_threads, 
                                    /* Other params omitted */) { 
  // ... 
  thr_mgr ()->spawn_n (n_threads, 
                       &ACE_Task<SYNCH_STRATEGY>::svc_run, 
                       ACE_static_cast (void *, this), 
                       flags, /* Other params omitted */); 
  // ... 
} 

The THR_SCOPE_SYSTEM, THR_SCOPE_PROCESS, THR_NEW_LWP, THR_DETACHED, and
THR_JOINABLE flags in the table on page 190 of C++NPv1 can be passed in the flags parameter to activate(). 
Sidebar 42 describes how THR_DETACHED and THR_JOINABLE can be used to avoid memory leaks when
threads exit.
 

ACE_Task::svc_run() is a static method used by activate() as an adapter function. It runs in the newly spawned
thread(s) of control, which provide an execution context for the svc() hook method. Figure 6.7 illustrates the steps
associated with activating an ACE_Task using the Windows _beginthreadex() function to spawn the thread.
Naturally, the ACE_Task class shields applications from OS-specific details.
 

Figure 6.7. Activating an ACE Task
 

When an ACE_Task subclass executes as an active object, its svc() method runs an event loop that uses its getq()
method to wait for messages to arrive on the task's message queue. This queue can buffer a sequence of data
messages and control messages for subsequent processing by a task's svc() method. As messages arrive and are
enqueued by a task's put() method, its svc() method runs in separate thread(s), dequeueing the messages and
performing application-defined processing concurrently, as shown in Figure 6.8.
 

Figure 6.8. Passing Messages Between ACE_Task Objects
 

Sidebar 43 compares and contrasts the ACE_Task capabilities with Java's Runnable interface and Thread class.
 

3. Task destruction. The methods used in the destruction of all or parts of a task are shown in the following table:
 

Method
 

Description
 

ACE_Task()
 

Deletes resources allocated in ACE_Task constructor,
which includes the message queue, if it wasn't passed as
a parameter to the constructor.
 

close()
 

Hook method that performs application-defined
shutdown activities. This method should generally not be
called directly by applications, particularly if the task is an
active object.
 

flush()
 

Closes the message queue associated with the task,
which frees all of its enqueued message blocks and
releases any threads blocked on the queue.
 

thr_count()
 

Returns the number of threads currently active in the
ACE_Task.
 

wait()
 

A barrier synchronizer that waits for all joinable threads
running in this task to exit before returning.
 

The lifetime of an ACE_Task object is not tied to the lifetime of any threads activated in that object. Since deleting an
ACE_Task object doesn't shut down any active threads, the threads must therefore exit before the task object can
be deleted. ACE provides various ways to request a task's threads to exit, including the cooperative cancellation
mechanism (pages 190?91 of C++NPv1). A task's message queue can also be used to pass a shutdown message to
the task's threads, as described in Sidebar 41 (page 167).
 

Applications can customize an ACE_Task's destruction by overriding its close() hook method. This method can free
application-defined resources allocated by a task, such as connection control blocks, I/O handles, and
synchronization locks. Whereas the open() hook method should be called at most once per instance to initialize an
object before it's activated, both the svc() and close() hook methods are called once in each thread. The svc() hook
should therefore perform any needed per-thread initialization. The ACE Task framework will call the close() hook
method in each thread after the svc() hook method returns, so avoid calling a task's close() hook directly, particularly
if a task is an active object. This asymmetry between the open() and close() hook methods is necessary because
there's no reliable opportunity to clean up a task's resources except in the task's threads.
 

Sidebar 43: ACE_Task vs. Java Runnable
and Thread
 

If you've used Java's Runnable interface and Thread class [Lea00], the ACE_Task design should look
familiar, as discussed below:
 

•

• ACE_Task::activate() is similar to the Java Thread.start() method since they both spawn internal
threads. The Java Thread.start() method spawns only one thread, whereas activate() can spawn
multiple threads within the same ACE_Task, making it easy to implement thread pools as shown
in the Example part of this section.

•  
•

• ACE_Task::svc() is similar to the Java Runnable.run() method since both methods are hooks
that run in newly spawned thread(s) of control. The Java run() hook method executes in only a
single thread per object, whereas the ACE_Task::svc() method can execute in multiple threads
per task object.

•  
•

• ACE_Task contains a message queue that allows applications to exchange and buffer messages.
In contrast, this type of queueing capability must be added by Java developers explicitly.

•  

If a task activates multiple threads, the close() method must not free resources (or delete the task object itself) if
other threads are still executing. The thr_count() method returns the number of threads still active in the task.
ACE_Task decrements the thread count before calling close(),soifthr_count() returns a value greater than 0, the
object is still active. The wait() method can be used to block until all threads running in this task exit, at which point
thr_count() equals 0. Sidebar 44 (page 190) describes the steps to follow when destroying an ACE_Task.
 

Example
 

This example shows how to combine ACE_Task and ACE_Message_Queue with the ACE_Reactor from Chapter 3
and ACE_Service_Config from Chapter 5 to implement a concurrent logging server. This server design is based on
the Half-Sync/Half-Async pattern [POSA2] and the eager spawning thread pool strategy described in Chapter 5 of
C++NPv1. Figure 6.9 (page 191) shows how a pool of worker threads is prespawned when the logging server is
launched. Log records can be processed concurrently until the number of simultaneous client requests exceeds the
number of worker threads. At this point, the main thread buffers additional requests in a synchronized
ACE_Message_Queue until a worker thread becomes available or until the queue becomes full.
 

Figure 6.9. Architecture of the Thread Pool Logging Server
 

Sidebar 44: Destroying an ACE_Task
 

Special care must be taken when destroying an ACE_Task that runs as an active object. Before
destroying an active object, ensure that the thread(s) running its svc() hook method have exited. Sidebar
41 (page 167) describes several techniques to shut down svc() hook methods that are blocked on a
task's message queue.
 

If a task's life cycle is managed externally, whether dynamically allocated or instantiated on the stack,
one way to ensure a proper destruction sequence looks like this: 
My_Task *task = new Task; // Allocate a new task dynamically. 
task->open (); // Initialize the task. 
task->activate (); // Run task as an active object. 
// ... do work ... 
// Deactive the message queue so the svc() method unblocks 
// and the thread exits. 
task->msg_queue ()->deactivate (); 
task->wait (); // Wait for the thread to exit. 
delete task; // Reclaim the task memory. 

This technique relies on the task to exit all of its threads when the task's message queue is deactivated.
This design introduces behavioral coupling, however, between the Task class and its users. Users
depend on particular behavior when the message queue is deactivated, so any change to this behavior
would cause undesired ripple effects throughout all systems that use the Task class.
 

If a task is allocated dynamically, it may therefore be better to have the task's close() hook delete itself
when the last thread exits the task, rather than calling delete on a pointer to the task directly. You may
still want to wait() on the threads to exit the task, however, particularly if you're preparing to shut down
the process. On some OS platforms, when the main thread returns from main(), the entire process will
be shut down immediately, whether there were other threads active or not.
 

The ACE_Message_Queue plays several roles in our thread pool logging server's half-sync/half-async concurrency
design:
 

•

• It decouples the main reactor thread from the thread pool. This design allows multiple worker threads to be
active simultaneously. It also offloads the responsibility for maintaining queues of log record data from kernel
space to user space, which has more virtual memory to queue log records than the kernel.

•  
•

• It helps to enforce flow control between clients and the server. When the number of bytes in the message
queue reaches its high watermark, its flow control protocol blocks the main thread. As the underlying TCP
socket buffers fill up, the flow control propagates back to the server's clients. This prevents clients from
establishing new connections or sending log records until the worker threads have a chance to catch up and
unblock the main thread.

•  

Prespawning and queueing help to amortize the cost of thread creation, as well as constrain the use of OS resources,
which can significantly improve server scalability.
 

The following table outlines the classes that we'll cover in the thread pool logging server example below:
 

Class
 

Description
 

TP_Logging_Task
 

Runs as an active object, with a pool of threads that
process and store log records inserted into its
synchronized message queue
 

TP_Logging_Handler
 

Target of upcalls from the ACE_Reactor that receives
log records from clients and inserts them into the
TP_Logging_Task's message queue
 

TP_Logging_Acceptor
 

A factory that accepts connections and creates
TP_Logging_Handler objects to process client requests
 

TP_Logging_Server
 

A facade class that integrates the other three classes
together
 

The relationship between these classes is shown in Figure 6.10 (page 192). The TP_Logging_Acceptor and
TP_Logging_Handler classes play the reactive role in the Half-Sync/Half-Async pattern and the
TP_Logging_Task::svc() method, which runs concurrently in the worker threads, plays the synchronous role in the
pattern.
 

Figure 6.10. The Thread Pool Logging Server Classes
 

Each class in Figure 6.10 is described below. We start by including the necessary ACE header files into the
TP_Logging_Server.h file:
 
#include "ace/OS.h" 
#include "ace/Auto_Ptr.h" 
#include "ace/Singleton.h" 
#include "ace/Synch.h" 
#include "ace/Task.h" 
#include "Logging_Acceptor.h" 
#include "Logging_Event_Handler.h" 
#include "Reactor_Logging_Server.h" 
#include "TPLS_export.h" 

TP Logging Task. This class provides the following capabilities:
 

•

• It derives from ACE_Task, which it instantiates to provide a synchronized ACE_Message_Queue.
•  
•

• It spawns a pool of worker threads that all run the same svc() method to process and store log records
inserted into its synchronized message queue.

•  

The TP_Logging_Task is shown below:
 
class TP_Logging_Task : public ACE_Task<ACE_MT_SYNCH> { 
         // Instantiated with an MT synchronization trait. 
public: 
  enum { MAX_THREADS = 4 }; 
  // ...Methods defined below... 
}; 

The TP_Logging_Task::open() hook method calls ACE_Task::activate() to convert this task into an active object, as
follows:
 
virtual int open (void * = 0) 
{ return activate (THR_NEW_LWP, MAX_THREADS); } 

If activate() returns successfully, the TP_Logging_Task::svc() method will be running in MAX_THREADS separate
threads. We show the TP_Logging_Task::svc() method (page 199) after we describe the TP_Logging_Acceptor and
TP_Logging_Handler classes.
 

The TP_Logging_Task::put() method inserts a message block containing a log record into the queue.
 
virtual int put (ACE_Message_Block *mblk, 
                 ACE_Time_Value *timeout = 0) 
{ return putq (mblk, timeout); } 

We need only one instance of TP_Logging_Task, so we convert it into a singleton using the singleton adapter
template described in Sidebar 45 (page 194). Since the TP_Logging_Task will be located in a DLL, however, we
must use the ACE_Unmanaged_Singleton rather than ACE_Singleton. This design requires that we close the
singleton explicitly when the logging task shuts down in TP_Logging_Server::fini() (page 201).
 
typedef ACE_Unmanaged_Singleton<TP_Logging_Task, ACE_Null_Mutex> 
        TP_LOGGING_TASK; 

Since TP_LOGGING_TASK::instance() is only accessed from the main thread, we use ACE_Null_Mutex as the
synchronization type parameter for ACE_Unmanaged_Singleton. If this singleton were accessed concurrently by
other threads we'd need to parameterize it with ACE_Recursive_Thread_Mutex (Chapter 10 of C++NPv1) to
serialize access.
 

TP_Logging_Acceptor. This class is a factory that provides the following capabilities:
 

•

• It accepts connections from client logging daemons.
•  
•

• It creates TP_Logging_Handlers that receive log records from connected clients.
•  

The TP_Logging_Acceptor class is shown below:
 

Sidebar 45: The ACE_Singleton Template
Adapters
 

Although it's possible to code the TP_Logging_Task explicitly to be a singleton, this approach is tedious
and error-prone. ACE therefore defines the following ACE_Singleton template adapter that applications
can use to manage singleton life cycles: 
template <class TYPE, class LOCK> 
class ACE_Singleton : public ACE_Cleanup { 
public: 
  static TYPE *instance (void) { 
    ACE_Singleton<TYPE, LOCK> *&s = singleton_; 
    if (s == 0) { 
      LOCK *lock = 0; 
      ACE_GUARD_RETURN (LOCK, guard, 
            ACE_Object_Manager::get_singleton_lock (lock), 0); 
      if (s == 0) { 
        ACE_NEW_RETURN (s, (ACE_Singleton<TYPE, LOCK>), 0); 
        ACE_Object_Manager::at_exit (s); 
      } 
    } 
    return &s->instance_; 
  } 
protected: 
  ACE_Singleton (void); // Default constructor. 
  TYPE instance_; // Contained instance. 
  // Single instance of the <ACE_Singleton> adapter. 
  static ACE_Singleton<TYPE, LOCK> *singleton_; 
}; 

The ACE_Singleton::instance() static method uses the Double-Checked Locking Optimization pattern [
POSA2] to construct and access an instance of the type-specific ACE_Singleton. It then registers the
instance with the ACE_Object_Manager for cleanup at program termination. As described in Sidebar
23 of C++NPv1 (page 218), the ACE_ObjectManager assumes responsibility for destroying the
ACE_Singleton instance, as well as the adapted TYPE instance.
 

A program can crash during singleton cleanup if the object code implementing TYPE is unlinked before
the ACE_Object_Manager cleans up singletons, which is often the case for singletons located in
dynamically linked services. We therefore recommend using ACE_Unmanaged_Singleton when defining
singletons in DLLs that will be linked and unlinked dynamically. This class offers the same
double-checked locking optimization to create the singleton. To destroy the singleton, however, requires
an explicit call to ACE_Unmanaged_Singleton::close(). A dynamic service's fini() method is a good
place to call this close() method, as shown in the TP_Logging_Server::fini() method (page 201).
 

class TP_Logging_Acceptor : public Logging_Acceptor { 
public: 
  TP_Logging_Acceptor (ACE_Reactor *r = ACE_Reactor::instance ()) 
    : Logging_Acceptor (r) {} 

  virtual int handle_input (ACE_HANDLE) { 
    TP_Logging_Handler *peer_handler = 0; 
    ACE_NEW_RETURN (peer_handler, 
                    TP_Logging_Handler (reactor ()), -1); 
    if (acceptor_.accept (peer_handler->peer ()) == -1) { 
      delete peer_handler; 
      return -1; 
    } else if (peer_handler->open () == -1) 
      peer_handler->handle_close (ACE_INVALID_HANDLE, 0); 
    return 0; 
  } 
}; 

Since TP_Logging_Acceptor inherits from the Logging_Acceptor (page 54) it can override handle_input() to create
instances of TP_Logging_Handler.
 

TP_Logging_Handler. This class provides the following capabilities:
 

•

• It receives log records from a connected client.
•  
•

• It enqueues the log records into the TP_LOGGING_TASK singleton's synchronized message queue.
•  

The TP_Logging_Handler class is shown below:
 
class TP_Logging_Handler : public Logging_Event_Handler { 
  friend class TP_Logging_Acceptor; 

Since this class derives from Logging_Event_Handler (page 59 in Section 3.3), it can receive log records when
dispatched by a reactor.
 

The destructor is defined as protected to ensure dynamic allocation. However, since the
TP_Logging_Acceptor::handle_input() method deletes objects of this type, TP_Logging_Acceptor must be a friend
of this class. Declaring a friend class is appropriate in this case because these classes exhibit a high degree of
cohesion, and it's important to maintain the restriction on dynamic allocation of TP_Logging_Handler. The three data
members are used to implement the protocol for closing TP_Logging_Handler objects concurrently, as described in 
Sidebar 46 (page 196).
 
protected: 

  virtual TP_Logging_Handler () {} // No-op destructor. 

  // Number of pointers to this class instance that currently 
  // reside in the <TP_LOGGING_TASK> singleton's message queue. 
  int queued_count_; 

  // Indicates whether <Logging_Event_Handler::handle_close()> 
  // must be called to cleanup and delete this object. 
  int deferred_close_; 

  // Serialize access to <queued_count_> and <deferred_close_>. 
  ACE_Thread_Mutex lock_; 

Sidebar 46: Closing TP_Logging_Handlers
Concurrently
 

A challenge with thread pool servers is closing objects that can be accessed concurrently by multiple
threads. In our thread pool logging server, TP_Logging_Handler pointers are used by
TP_LOGGING_TASK threads. These service threads are separate from the thread running the reactor
event loop that's driving callbacks to TP_Logging_Handler. We must therefore ensure that a
TP_Logging_Handler object isn't destroyed while there are still pointers to it in use by
TP_LOGGING_TASK. 

When a logging client closes a connection, TP_Logging_Handler::handle_input() (page 197) returns -1.
The reactor then calls the handler's handle_close() method, which ordinarily cleans up resources and
deletes the handler. Unfortunately, that would wreak havoc if one or more pointers to that handler were
still enqueued or being used by threads in the TP_LOGGING_TASK pool. We therefore use a
reference counting protocol to ensure the handler isn't destroyed while a pointer to it is still in use. The
UML activity diagram below illustrates the behavior this protocol enforces: 

The protocol counts how many times a handler resides in the TP_LOGGING_TASK singleton's
message queue. If the count is greater than 0 when the logging client socket is closed,
TP_Logging_Handler::handle_close() can't yet destroy the handler. Later, as the
TP_LOGGING_TASK processes each log record, the handler's reference count is decremented.
When the count reaches 0, the handler can finish processing the close request that was deferred earlier. 

The public part of the class defines the constructor and a pair of methods dispatched by the reactor when certain
events occur.
 
public: 
  TP_Logging_Handler (ACE_Reactor *reactor) 
    : Logging_Event_Handler (reactor), 
      queued_count_ (0), 
      deferred_close_ (0) {} 

  // Called when input events occur, e.g., connection or data. 
  virtual int handle_input (ACE_HANDLE); 

  // Called when this object is destroyed, e.g., when it's 
  // removed from a reactor. 
  virtual int handle_close (ACE_HANDLE, ACE_Reactor_Mask); 
}; 

ACE_FACTORY_DECLARE (TPLS, TP_Logging_Handler) 

TP_Logging_Handler::handle_input() plays the reactive role in the HalfSync/Half-Async pattern. It differs from the
Logging_Event_Handler::handle_input() method (page 59) since it doesn't process a log record immediately after
receiving it. Instead, it inserts each log record into the TP_LOGGING_TASK singleton's message queue, where it
will be processed concurrently. However, while processing the log record, the TP_LOGGING_TASK needs to
access this handler's log file (inherited from Logging_Event_Handler). To facilitate this, handle_input() combines the
log record with a message block containing the handler's pointer and inserts the resulting composite message at the
end of the TP_LOGGING_TASK singleton's message queue, as shown below:
 
 1 int TP_Logging_Handler::handle_input (ACE_HANDLE) { 
 2   ACE_Message_Block *mblk = 0; 
 3   if (logging_handler_.recv_log_record (mblk) != -1) { 
 4     ACE_Message_Block *log_blk = 0; 
 5     ACE_NEW_RETURN 
 6       (log_blk, ACE_Message_Block 
 7                   (ACE_reinterpret_cast (char *, this)), -1); 
 8     log_blk->cont (mblk); 
 9     ACE_GUARD_RETURN (ACE_Thread_Mutex, guard, lock_, -1); 
10     if (TP_LOGGING_TASK::instance ()->put (log_blk) == -1) 
11     { log_blk->release (); return -1; } 
12     ++queued_count_; 
13     return 0; 
14   } else return -1; 
15 } 

Lines 2? Read a log record from a connected socket into a dynamically allocated ACE_Message_Block.
 

Lines 4? Create an ACE_Message_Block called log_blk that contains a pointer to this handler. The
ACE_Message_Block constructor simply "borrows" the this pointer and sets the
ACE_Message_Block::DONT_DELETE flag internally to ensure that the handler itself isn't destroyed when the
message block is released in TP_Logging_Task::svc() (page 199). The mblk is attached to log_blk's continuation
chain to form a composite message.
 

Lines 9?0 Use an ACE_Guard to acquire the lock_ that serializes access to queued_count_. To avoid a race
condition in which a service thread processes the record before queued_count_ can be incremented, the lock is
acquired before calling put() to insert the composite message block into the TP_LOGGING_TASK singleton's
message queue.
 

Lines 11?3 Release the log_blk resources and return -1 if put() fails. If it succeeds, increment the count of the
number of times the handler's in the TP_LOGGING_TASK's queue. In either case, the return statement causes the
guard to release lock_.
 

Line 14 If the client closes the connection, or a serious error occurs, handle_input() returns -1. This value causes the
reactor to call TP_Logging_Handler::handle_close(), which implements a key portion of the protocol for closing
TP_Logging_Handlers concurrently, as described in Sidebar 46 (page 196). The handle_close() method is shown
below:
 
 1 int TP_Logging_Handler::handle_close (ACE_HANDLE handle, 
 2                                       ACE_Reactor_Mask) { 
 3   int close_now = 0; 
 4   if (handle != ACE_INVALID_HANDLE) { 
 5     ACE_GUARD_RETURN (ACE_Thread_Mutex, guard, lock_, -1); 
 6     if (queued_count_ == 0) close_now = 1; 
 7     else deferred_close_ = 1; 
 8   } else { 
 9     ACE_GUARD_RETURN (ACE_Thread_Mutex, guard, lock_, -1); 
10     queued_count_--; 
11     if (queued_count_ == 0) close_now = deferred_close_; 
12   } 
13 
14   if (close_now) return Logging_Event_Handler::handle_close (); 
15   return 0; 
16 } 

Line 3 The close_now variable records whether the Logging_Event_Handler::handle_close() method should be called
on line 14. This decision depends on the reference count decisions made in the rest of this method.
 

Lines 4? This code runs when handle_close() is called when handle_input() returns -1. Lines 6? are performed within
a critical section protected by an ACE_Guard that acquires and releases the lock_ automatically within the scope of
the if clause. If queue_count_ equals 0, there are no references to this object remaining in the
TP_LOGGING_TASK, so we set the close_now local variable to 1. Otherwise, we set the deferred_close_ data
member to note that as soon as the reference count reaches 0 this handler should be destroyed since the client has
already closed its socket endpoint. As log records are processed, the TP_Logging_Task::svc() method (page 199)
calls handle_close() again, and will execute the lines described below.
 

Lines 8?2 The handle equals ACE_INVALID_HANDLE when handle_close() is called in TP_Logging_Task::svc()
(page 199) after the handler has been removed from the task's message queue. We therefore decrement the
queue_count_. If the count is now 0, we record whether we need to finish processing a close request that was
deferred earlier. As in lines 5?, we use an ACE_Guard to acquire and release the lock_ automatically within the
scope of the else clause.
 

Line 14 Call Logging_Event_Handler::handle_close() (page 60) if the local variable close_now is true to close the
socket and log file, and then delete itself.
 

Now that we've shown the TP_Logging_Handler class, we can show the TP_Logging_Task::svc() method, which
runs concurrently in each of the worker threads and implements the synchronous role in the Half-Sync/Half-Asynch
pattern. This method runs its own event loop that blocks on the synchronized message queue. After a message is
enqueued by TP_Logging_Handler::handle_input() (page 197), it will be dequeued by an available worker thread
and written to the appropriate log file corresponding to the client, as shown below.
 
 1 int TP_Logging_Task::svc () { 
 2   for (ACE_Message_Block *log_blk; getq (log_blk) != -1; ) { 
 3     TP_Logging_Handler *tp_handler = ACE_reinterpret_cast 
 4       (TP_Logging_Handler *, log_blk->rd_ptr ()); 
 5     Logging_Handler logging_handler (tp_handler->log_file ()); 
 6     logging_handler.write_log_record (log_blk->cont ()); 
 7     log_blk->release (); 
 8     tp_handler->handle_close (ACE_INVALID_HANDLE, 0); 
 9   } 
10   return 0; 
11 } 

Lines 2? Call the getq() method, which blocks until a message block is available. As shown in Figure 6.11, each
message block is a composite message containing three message blocks chained together via their continuation
pointers in the following order:
 

Figure 6.11. Message Block Chain of Log Record Information
 

1.

1. A pointer to the TP_Logging_Handler that contains the log file where the log record will be written
1.  
2.

2. The hostname of the connected client
2.  
3.

3. The marshaled log record contents
3.  

Lines 5? Initialize logging_handler with the log_file and then call Logging_Handler::write_log_record(), which writes
the log record to the log file. The write_log_record() method is responsible for releasing its message block chain, as
shown in Chapter 4 of C++NPv1.
 

Lines 7? Call log_blk->release() to reclaim allocated resources. Since the TP_Logging_Handler pointer is borrowed
rather than allocated dynamically, however, we must explicitly call TP_Logging_Handler::handle_close() (page 198)
on tp_handler. This method decreases the TP_Logging_Handler reference count and cleans up the object properly,
using the protocol described in Sidebar 46 (page 196).
 

TP_Logging_Server. This facade class inherits from ACE_Service_Object, contains a Reactor_Logging_Server, and
uses the TP_LOGGING_TASK singleton, as shown below.
 
class TP_Logging_Server : public ACE_Service_Object { 
protected: 
  // Contains the reactor, acceptor, and handlers. 
  typedef Reactor_Logging_Server<TP_Logging_Acceptor> 
          LOGGING_DISPATCHER; 
  LOGGING_DISPATCHER *logging_dispatcher_; 

public: 
  TP_Logging_Server (): logging_dispatcher_ (0) {} 

  // Other methods defined below... 
}; 

The TP_Logging_Server::init() hook method enhances the reactive logging server implementation from Chapter 3 as
follows:
 
virtual int init (int argc, ACE_TCHAR *argv[]) { 
  int i; 
  char **array = 0; 
  ACE_NEW_RETURN (array, char*[argc], -1); 
  ACE_Auto_Array_Ptr<char *> char_argv (array); 

   for (i = 0; i < argc; ++i) 
     char_argv[i] = ACE::strnew (ACE_TEXT_ALWAYS_CHAR (argv[i])); 
   ACE_NEW_NORETURN 
     (logging_dispatcher_, 
      TP_Logging_Server::LOGGING_DISPATCHER 
        (i, char_argv.get (), ACE_Reactor::instance ())); 
   for (i = 0; i < argc; ++i) ACE::strdelete (char_argv[i]); 
   if (logging_dispatcher_ == 0) return -1; 
   else return TP_LOGGING_TASK::instance ()->open (); 
} 

This init() method is similar to the one on page 122. It allocates an instance of
TP_Logging_Server::LOGGING_DISPATCHER and stores its pointer in the logging_dispatcher_ member. It also
calls TP_Logging_Task::open() to prespawn a pool of worker threads that process log records concurrently.
 

The TP_Logging_Server::fini() method is shown next:
 
1 virtual int fini () { 
2   TP_LOGGING_TASK::instance ()->flush (); 
3   TP_LOGGING_TASK::instance ()->wait (); 
4   TP_LOGGING_TASK::close (); 
5   delete logging_dispatcher_; 
6   return 0; 
7 } 

Line 2 Call the flush() method of the TP_LOGGING_TASK singleton, thereby closing the message queue
associated with the task, which deletes all the queued messages and signals the threads in the pool to exit.
 

Lines 3? Use the ACE_Thread_Manager's barrier synchronization feature to wait for the pool of threads spawned by
TP_Logging_Task::open() to exit and then explicitly close the singleton because this DLL is about to be unlinked.
 

Lines 5? Delete the logging_dispatcher_ allocated in init() and return. For brevity, we omit the suspend(), resume(),
and info() hook methods, which are similar to those shown in earlier examples.
 

Finally, we place ACE_FACTORY_DEFINE into TP_Logging_Server.cpp.
 
ACE_FACTORY_DEFINE (TPLS, TP_Logging_Server) 

This macro automatically defines the _make_TP_Logging_Server() factory function that's used in the following
svc.conf file:
 
dynamic TP_Logging_Server Service_Object * 
TPLS:_make_TP_Logging_Server() "$TP_LOGGING_SERVER_PORT" 

This file directs the ACE Service Configurator framework to configure the thread pool logging server via the
following steps:
 

1.

1. Dynamically link the TPLS DLL into the address space of the process.
1.  
2.

2. Use the ACE_DLL class to extract the _make_TP_Logging_Server() factory function from the TPLS DLL
symbol table.

2.  
3.

3. This function is called to obtain a pointer to a dynamically allocated TP_Logging_Server.
3.  
4.

4. The Service Configurator framework calls the TP_Logging_Server::init() hook method through this pointer,
passing the value of the TP_LOGGING_SERVER_PORT environment variable as its single argument. This
string designates the port number where the logging server listens for client connection requests.

4.  
5.

5. If init() succeeds, the TP_Logging_Server pointer is stored in the ACE_Service_Repository under the name
"TP_Logging_Server".

5.  

Once again, the ACE Service Configurator framework enables us to reuse the main() program from
Configurable_Logging_Server.cpp (page 147).
 

This document is created with the unregistered version of CHM2PDF Pilot



Ru-Brd

This document is created with the unregistered version of CHM2PDF Pilot



 
Ru-Brd

6.4 Summary
 

The ACE Task framework allows developers to create and configure concurrent networked applications using
powerful and extensible object-oriented designs. This framework provides the ACE_Task class that integrates
multithreading with object-oriented programming and queueing. The queueing mechanism in ACE_Task uses the
ACE_Message_Queue class to transfer messages between tasks efficiently. Since ACE_Task derives from the
ACE_Service_Object in Section 5.2, it's easy to design services that can be configured dynamically to run as active
objects and be dispatched by the ACE Reactor framework.
 

This chapter illustrated how the ACE Reactor framework can be combined with the ACE Task framework to
implement variants of the Half-Sync/Half-Async pattern [POSA2]. The ACE Task framework classes can also be
combined with the ACE_Future, ACE_Method_Request, and ACE_Activation_List classes to implement the Active
Object pattern [POSA2]. A subset of the ACE_Message_Queue implementation is presented in Chapter 10 of
C++NPv1.
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Chapter 7. The ACE Acceptor-Connector
Framework
 

CHAPTER SYNOPSIS
 

This chapter describes the design and use of the ACE Acceptor-Connector framework. This framework implements
the Acceptor-Connector pattern [POSA2], which decouples the connection and initialization of cooperating peer
services in a networked application from the processing they perform after being connected and initialized. The
Acceptor-Connector framework allows applications to configure key properties of their connection topologies
independently from the services they provide. We illustrate how this framework can be combined with the ACE
Reactor and Task frameworks and applied to enhance the reusability, extensibility, security, and scalability of our
networked logging service.
 
Ru-Brd

This document is created with the unregistered version of CHM2PDF Pilot



 
Ru-Brd

This document is created with the unregistered version of CHM2PDF Pilot



7.1 Overview
 

Many networked applications, such as e-mail, remote file backups, and Web services, use connection-oriented
services containing classes that play the following roles:
 

•

• The connection role determines how an application establishes connections.
•  
•

• The communication role determines whether an application plays the role of a client, a server, or both client
and server in a peer-to-peer configuration.

•  

Networked applications that communicate via connection-oriented protocols (e.g., TCP/IP) are typified by the
following asymmetric connection roles between clients and servers:
 

•

• Servers often wait passively to accept connections by listening on a designated TCP port.
•  
•

• Clients often initiate connections actively by connecting to a server's listening port.
•  

Even in peer-to-peer applications, where applications play both client and server roles, connections must be initiated
actively by one peer and accepted passively by the other. To enhance reuse and extensibility, networked applications
should be designed to easily change connection and communication roles to support different requirements and
environments.
 

The ACE Acceptor-Connector framework implements the Acceptor-Connector design pattern [POSA2], which
enhances software reuse and extensibility by decoupling the activities required to connect and initialize cooperating
peer services in a networked application from the processing they perform once they're connected and initialized.
This chapter describes the following ACE Acceptor-Connector framework classes that networked applications can
use to establish connections and initialize peer services:
 

ACE Class
 

Description
 

ACE_Svc_Handler
 

Represents the local end of a connected service and
contains an IPC endpoint used to communicate with a
connected peer.
 

ACE_Acceptor
 

This factory waits passively to accept a connection and
then initializes an ACE_Svc_Handler in response to an
active connection request from a peer.
 

ACE_Connector
 

This factory actively connects to a peer acceptor and
then initializes an ACE_Svc_Handler to communicate
with its connected peer.
 

The most important relationships between the ACE Acceptor-Connector framework's classes are shown in Figure
7.1. These classes play the following roles in accordance with the Acceptor-Connector pattern [POSA2]:
 

Figure 7.1. The ACE Acceptor-Connector Framework Classes
 

•

• Event infrastructure layer classes perform generic, application-independent strategies for dispatching events.
The ACE Reactor framework described in Chapter 3 is commonly used as the event infrastructure layer.

•  
•

• Connection management layer classes perform application-independent connection and initialization services.
These classes include the ACE_Svc_Handler, ACE_ Acceptor, and ACE_Connector.

•  
•

• Application layer classes customize the generic strategies performed by the other two layers via subclassing
and/or template instantiation to create objects that establish connections, exchange data, and perform
service-specific processing. In the ACE Acceptor-Connector framework, application layer classes are
descendants and template instantiations of the connection management layer classes outlined above.

•  

By being descendants of ACE_Event_Handler, these classes all offer integration with the ACE Reactor framework
from Chapter 3. Chapter 8 describes a variant of the Acceptor-Connector framework based on the ACE Proactor
framework for applications in which asynchronous I/O is more appropriate or beneficial.
 

The ACE Acceptor-Connector framework provides the following benefits:
 

•

• Reusability and extensibility. Connection-oriented networked applications often contain a significant amount
of low-level code that establishes connections and initializes services. This code is largely independent of the
processing that connected service handlers perform on the data they exchange. The ACE
Acceptor-Connector framework refactors this low-level code into reusable, application-independent
acceptor and connector classes that know how to establish a connection and initialize its associated service
handler after the connection is established. As a result, service handlers can focus solely on their
application-defined processing. This separation of concerns makes it easier to add new types of application
services, service implementations, authentication protocols, and communication protocols without affecting
existing connection establishment and service initialization configuration code.

•  
•

• Portability. The class templates in the framework are all parameterized by the type of IPC mechanism needed
to establish connections and to transfer data. The flexibility offered by this template-based extensibility is
useful when developing applications that must run portably and efficiently across multiple OS platforms. The
IPC class parameters for the Acceptor-Connector templates can be any network programming classes that
conform to the interface expected by the templates. For example, depending on certain properties of the
underlying OS platform, such as whether it's a BSD or System V variant of UNIX, a server can instantiate
the framework classes to use the ACE Socket wrapper facades or the ACE TLI wrapper facades. For
non-TCP/IP applications, the templates can be instantiated with many of ACE's IPC wrapper facades, or
any privately developed classes that export the necessary interface.

•  
•

• Robustness. By strongly decoupling a service handler from its acceptor, the framework can ensure that
passive-mode transport endpoints aren't accidentally used to read or write data. This added type safety
eliminates a subtle and pernicious class of errors that can arise when programming with weakly typed
network programming interfaces, such as the Socket or TLI APIs defined in C.

•  
•

• Efficiency. The Acceptor-Connector pattern can actively establish connections with a large number of peers
asynchronously and efficiently over long-latency wide area networks. Asynchrony is important in these
situations because large-scale networked applications may have hundreds or thousands of peers to connect.

•  

The remainder of this chapter motivates and describes the capabilities of the ACE Acceptor-Connector framework
classes. It shows how service handlers are initialized and destroyed, and motivates key framework design choices. It
also shows how this framework can be layered on top of the ACE Reactor and ACE Task frameworks to handle
connection requests and data exchanged between client and server logging daemons. If you're not familiar with the
Acceptor-Connector pattern from POSA2 we recommend you read about it first before delving into the detailed
examples in this chapter. We also recommend you read about the ACE Reactor and Task frameworks in Chapters 3
and 6, respectively.
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7.2 The ACE_Svc_Handler Class
 

Motivation
 

Chapter 2 defined a service as a set of functionality offered to a client by a server. A service handler is the portion of
a networked application that either implements or accesses (or both, in the case of a peer-to-peer arrangement) a
service. Connection-oriented networked applications require at least two communicating service handlers?ne for
each end of every connection. Incidentally, applications using multicast or broadcast communication may have
multiple service handlers. Although these connectionless communication protocols don't cleanly fit the
Acceptor-Connector model, the ACE_Svc_Handler class is often a good choice for implementing a service handler
and should be considered.
 

When designing the service handlers involved in a service, developers should also take into account the
communication design dimensions discussed in Chapter 1 of C++NPv1. In general, the application functionality
defined by a service handler can be decoupled from the following design aspects:
 

•

• How the service handler was connected (actively or passively) and initialized
•  
•

• The protocols used to connect, authenticate, and exchange messages between two service handlers
•  
•

• The network programming API used to access the OS IPC mechanisms
•  

In general, connection/authentication protocols and service initialization strategies change less frequently than the
service handler functionality implemented by an application. To separate these concerns and allow developers to
focus on the functionality of their service handlers, the ACE Acceptor-Connector framework defines the
ACE_Svc_Handler class.
 

Class Capabilities
 

ACE_Svc_Handler is the basis of ACE's synchronous and reactive data transfer and service processing mechanisms.
This class provides the following capabilities:
 

•

• It provides the basis for initializing and implementing a service in a synchronous and/or reactive networked
application, acting as the target of the ACE_Connector and ACE_Acceptor connection factories.

•  
•

• It provides an IPC endpoint used by a service handler to communicate with its peer service handler(s). The
type of this IPC endpoint can be parameterized with many of ACE's IPC wrapper facade classes, thereby
separating lower-level communication mechanisms from application-level service processing policies.

•  
•

• Since ACE_Svc_Handler derives from ACE_Task (and ACE_Task from ACE_ Event_Handler), it inherits
the concurrency, synchronization, dynamic configuration, and event handling capabilities described in
Chapters 3 through 6.

•  
•

• It codifies the most common practices of reactive network services, such as registering with a reactor when a
service is opened and closing the IPC endpoint when unregistering a service from a reactor.

•  

The interface for ACE_Svc_Handler is shown in Figure 7.2 (page 208). As shown in the figure, this class template is
parameterized by:
 

Figure 7.2. The ACE_Svc_Handler Class
 

•

• A PEER_STREAM traits class, which is able to transfer data between connected peer service handlers. It
also defines an associated PEER_STREAM::PEER_ADDR trait that represents the address class for
identifying the peers to the service. The PEER_ STREAM parameter is often instantiated by one of the ACE
IPC wrapper facades, such as the ACE_SOCK_Stream described in Chapter 3 of C++NPv1.

•  
•

• A SYNCH_STRATEGY traits class, which applies the Strategized Locking pattern [POSA2] to
parameterize the synchronization traits of an ACE_Message_Queue in the parent ACE_Task class. This
parameter is often instantiated by either the ACE_NULL_SYNCH or ACE_MT_SYNCH traits classes
(page 163).

•  

Sidebar 40 (page 165) describes the C++ traits and traits class idioms.
 

Since ACE_Svc_Handler is a descendant of ACE_Event_Handler, an instance of it can be registered with the ACE
Reactor framework for various types of events. For example, it can be registered to handle READ and WRITE
events. Its handle_input() and handle_output() hook methods will then be dispatched automatically by a reactor when
its data-mode socket handle is ready to receive or send data, respectively.
 

The ACE_Svc_Handler class has a rich interface that exports both its capabilities and the capabilities of its parent
classes. We therefore group the description of its methods into the three categories described below.
 

1. Service creation and activation methods. The ACE Acceptor-Connector framework can modify various service
handler creation and initialization aspects at compile time and at run time. By default, an ACE_Svc_Handler subclass
is allocated dynamically by an acceptor or connector factory, which use the following methods to create and activate
it:
 

Method
 

Description
 

ACE_Svc_Handler()
 

Constructor called by an acceptor or connector when it
creates a service handler
 

open()
 

Hook method called automatically by an acceptor or
connector to initialize a service handler
 

Sidebar 47 explains why the ACE Acceptor-Connector framework decouples service handler creation from
activation.
 

Pointers to ACE_Thread_Manager, ACE_Message_Queue, and ACE_Reactor objects can be passed to the
ACE_Svc_Handler constructor to override its defaults. The open() hook method can perform activities that initialize
a service handler, such as:
 

•

• Spawning a thread (or pool of threads) that will perform service processing via the svc() hook method
•  
•

• Registering one or more event sources, such as input events or timeouts, with a reactor

Sidebar 47: Decoupling Service Handler
Creation from Activation
 

The motivations for decoupling service activation from service creation in the ACE Acceptor-Connector
framework include:
 

•

• To make service handler creation flexible. ACE allows for wide flexibility in the way an
application creates (or reuses) service handlers. Many applications create new handlers
dynamically as needed, but some may recycle handlers or use a single handler for all
connections, as discussed in Sidebar 53 (page 240).

•  
•

• To simplify error handling. ACE doesn't rely on native C++ exceptions for the reasons
described in Appendix A.6 of C++NPv1. The constructor used to create a service handler
therefore shouldn't perform any operations that can fail. Instead, any such operations should be
placed in the open() hook method, which must return -1 if activation fails.

•  
•

• To ensure thread safety. If a thread is spawned in a constructor it's not possible to ensure that
the object has been initialized completely before the thread begins to run. To avoid this potential
race condition, the ACE Acceptor-Connector framework decouples service handler creation
from activation.

•  

•

• Opening log files and initializing usage statistics
•  
•

• Initializing locks or other resources
•  

If these initialization activities complete successfully, open() returns 0. If a failure occurs and the service cannot or
should not continue, however, open() must report this event to its caller by returning -1. Since the service handler
doesn't control how it was instantiated, a failure in open() must be reported back to the caller so that cleanup
activities can be performed. By default, the service handler is deleted automatically if open() returns -1, as shown in
the various activate_svc_handler() methods of the acceptor and connector factories (page 221).
 

The ACE_Svc_Handler defines a default implementation of open() that performs the common set of operations
shown below:
 
template <class PEER_STREAM, class SYNCH_STRATEGY> int 
ACE_Svc_Handler<PEER_STREAM, SYNCH_STRATEGY>::open 
    (void *factory) { 
  if (reactor () && reactor ()->register_handler 
      (this, ACE_Event_Handler::READ_MASK) == -1) return -1; 
  else return 0; 
} 

The void * parameter to open() is a pointer to the acceptor or connector factory that created the service handler. By
default, a service handler registers itself with a reactor and processes incoming events reactively. The Example part of
this section (page 214) illustrates a service handler that activates itself in its open() method to become an active
object and process incoming events concurrently. Since a service handler is responsible for its life cycle management
after being activated successfully, it rarely interacts with the acceptor that created and activated it. As shown in the
Example part of Section 7.4, however, a service handler often uses a connector to reestablish connections if failures
occur.
 

2. Service processing methods. As outlined above, a service handler can perform its processing in several ways. For
example, it can process events reactively using a reactor or it can process them concurrently via one or more
processes or threads. The following methods inherited from ACE_Svc_Handler's ancestors can be overridden by its
subclasses and used to perform service handler processing:
 

Method
 

Description
 

svc()
 

ACE_Svc_Handler inherits the svc() hook method from
the ACE_Task class described in Section 6.3. After a
service handler's activate() method is invoked, much of
its subsequent processing can be performed concurrently
within its svc() hook method.
 

handle_*()
 

ACE_Svc_Handler inherits the handle_*() methods from
the ACE_ Event_Handler class described in Section 3.3.
A service handler can therefore register itself with a
reactor to receive callbacks, such as handle_ input() ,
when various events of interest occur, as described in 
Chapter 3.
 

peer()
 

Returns a reference to the underlying PEER_STREAM.
A service handler's PEER_STREAM is ready for use
when its open() hook method is called. Any of the
service processing methods can use this accessor to
obtain a reference to the connected IPC mechanism.
 

Although the ACE_Svc_Handler SYNCH_STRATEGY template argument parameterizes the
ACE_Message_Queue inherited from ACE_Task, it has no effect on the PEER_STREAM IPC endpoint. It's
inappropriate for the ACE Acceptor-Connector framework to unilaterally serialize use of the IPC endpoint since it's
often not accessed concurrently. For example, a service handler may run as an active object with a single thread or
be driven entirely by callbacks from a reactor in a single-threaded configuration.
 

It is possible, however, for a service handler's open() hook method to spawn multiple threads that access its IPC
endpoint concurrently. In such cases, the application code in the service handler must perform any necessary
synchronization. Chapter 10 of C++NPv1 describes ACE synchronization mechanisms that applications can use. For
example, if more than one thread writes to the same socket handle, it's a good idea to serialize it with an
ACE_Thread_Mutex to avoid interleaving data from different send() calls into the same TCP bytestream.
 

3. Service shutdown methods. A service handler can be used in many ways. For example, it can be dispatched by a
reactor, run in its own thread or process, or form part of a thread pool. The ACE_Svc_Handler class therefore
provides the following methods to shut a service handler down:
 

Method
 

Description
 

destroy()
 

Can be called to shut a service handler down directly
 

handle_close()
 

Calls destroy() via a callback from a reactor
 

close()
 

Calls handle_close() on exit from a service thread
 

Service handlers are often closed in accordance with an application-defined protocol, such as when a peer service
handler closes a connection or when a serious communication error occurs. Regardless of the particular
circumstance, however, a service handler's shutdown processing usually undoes the actions performed by the service
handler's open() hook method, and deletes the service handler when needed. The shutdown methods listed in the
table above can be divided into the following three categories:
 

•

• Direct shutdown. An application can invoke the destroy() method directly to shut a service handler down.
This method performs the following steps:

•  
1.

1. Remove the handler from the reactor.
1.  
2.

2. Cancel any timers associated with the handler.
2.  
3.

3. Close the peer stream object to avoid handle leaks.
3.  
4.

4. If the object was allocated dynamically, delete it to avoid memory leaks.
4.  

Chapter 3 of C++NPv1 explained why the destruction of an ACE_SOCK-derived object doesn't close the
encapsulated socket. ACE_Svc_Handler is at a higher level of abstraction, however, and, because it's part of a
framework, it codifies common usage patterns. Since closing the socket is such a common part of shutting down a
service handler, the ACE Acceptor-Connector framework performs this task automatically.
 

ACE_Svc_Handler uses the Storage Class Tracker C++ idiom described in Sidebar 48 (page 212) to check if it
was allocated dynamically or statically. Its destroy() method can therefore tell if a service handler was allocated
dynamically and, if so, delete it. If the service handler was not allocated dynamically, destroy() doesn't delete it.
 

If a service handler is registered with a reactor, it's best to not call destroy() from a thread that's not running the
reactor event loop. Doing so could delete the service handler object out from under a reactor that's dispatching
events to it, causing undefined (and undesired) behavior (this is similar to the issue discussed in Sidebar 46 on page
196). Rather than calling destroy() directly, therefore, use the ACE_Reactor::notify() method (page 77) to transfer
control to a thread dispatching reactor events, where destroy() is safer to use. An even better approach, however, is
to alter the design to use the reactive shutdown technique described next.
 

•

• Reactive shutdown. When an ACE_Svc_Handler is registered with the ACE Reactor framework, it often
detects that the peer application has closed the connection and initiates shutdown locally. A reactor invokes a
service handler's handle_close() method when instructed to remove the handler from its internal tables,
usually when the service handler's handle_input() method returns -1 after a peer closes a connection.
Reactive handlers should consolidate shutdown activities in the handle_close() method, as discussed in 
Sidebar 9 (page 51). As shown in Figure 7.3, the default handle_ close() method calls the destroy() method
(page 211). The handle_close() method can be overridden in subclasses if its default behavior is undesirable.

•  

• Figure 7.3. Reactive Shutdown of ACE_Svc_Handler
 

Sidebar 48: Determining a Service Handler's
Storage Class
 

ACE_Svc_Handler objects are often allocated dynamically by the ACE_Acceptor and
ACE_Connector factories in the ACE Acceptor-Connector framework. There are situations, however,
when service handlers are allocated differently, such as statically or on the stack. To reclaim a handler's
memory correctly, without tightly coupling it with the classes and factories that may instantiate it, the
ACE_Svc_Handler class uses the C++ Storage Class Tracker idiom [vR96]. This idiom performs the
following steps to determine automatically whether a service handler was allocated statically or
dynamically and act accordingly:
 

1.

1. ACE_Svc_Handler overloads operator new, which allocates memory dynamically and sets a
flag in thread-specific storage that notes this fact.

1.  
2.

2. The ACE_Svc_Handler constructor inspects thread-specific storage to see if the object was
allocated dynamically, recording the result in a data member.

2.  
3.

3. When the destroy() method is eventually called, it checks the "dynamically allocated" flag. If the
object was allocated dynamically, destroy() deletes it; if not, it will simply let the
ACE_Svc_Handler destructor clean up the object when it goes out of scope.

3.  

•

• Thread shutdown. As described on page 188, a service handler's close() hook method is called in each of a
task's threads when its svc() method returns. Whereas a reactive service uses the reactor shutdown
mechanism to initiate shutdown activity, an active thread that's handling a peer connection can simply return
when the peer closes the connection. Since a single thread executing the service is a common use case, the
default ACE_Svc_Handler::close() hook method implementation calls the handle_ close() method described
above. This method can be overridden in subclasses to perform application-specific cleanup code if its
default behavior is undesirable.

•  

Example
 

This example illustrates how to use the ACE_Svc_Handler class to implement a logging server based on the
thread-per-connection concurrency model described in Chapter 5 of C++NPv1. The example code is in the
TPC_Logging_Server.cpp and TPC_ Logging_Server.h files. The header file declares the example classes, and
starts by including the necessary header files.
 
#include "ace/Acceptor.h" 
#include "ace/INET_Addr.h" 
#include "ace/Reactor.h" 
#include "ace/Svc_Handler.h" 
#include "ace/FILE_IO.h" 
#include "Logging_Handler.h" 

The TPC_Logging_Handler shown below inherits from ACE_Svc_Handler.
 
class TPC_Logging_Handler 
  : public ACE_Svc_Handler<ACE_SOCK_Stream, ACE_NULL_SYNCH> { 

We parameterize the ACE_Svc_Handler template with an ACE_SOCK_Stream data transfer class and the
ACE_NULL_SYNCH traits class, which designates a no-op synchronization strategy. Sidebar 49 (page 214)
explains how ACE handles C++ compilers that don't support traits classes in templates.
 

TPC_Logging_Handler defines the following two data members that are initialized in its constructor.
 
protected: 
  ACE_FILE_IO log_file_; // File of log records. 

  // Connection to peer service handler. 
  Logging_Handler logging_handler_; 

public: 
  TPC_Logging_Handler (): logging_handler_ (log_file_) {} 

As usual, we reuse the Logging_Handler from Chapter 4 of C++NPv1 to read a log record out of the socket handle
parameter and store it into an ACE_Message_Block.
 

Sidebar 49: Workarounds for Lack of Traits
Class Support
 

If you examine the ACE Acceptor-Connector framework source code closely, you'll notice that the IPC
class template argument to ACE_Acceptor, ACE_Connector, and ACE_Svc_Handler is a macro
rather than a type parameter. Likewise, the synchronization strategy parameter to the
ACE_Svc_Handler is a macro rather than a type parameter. ACE uses these macros to work around
the lack of support for traits classes and templates in some C++ compilers. To work portably on those
platforms, ACE class types, such as ACE_INET_Addr or ACE_Thread_Mutex, must be passed as
explicit template parameters, rather than accessed as traits of traits classes, such as
ACE_SOCK_Addr::PEER_ADDR or ACE_MT_SYNCH::MUTEX.
 

To simplify the efforts of application developers, ACE defines a set of macros that conditionally expand
to the appropriate types. For example, the following table describes the ACE_SOCK* macros:
 

ACE Class
 

Description
 

ACE_SOCK_ACCEPTOR
 

Expands to either ACE_SOCK_Acceptor or
ACE_ SOCK_Acceptor and
ACE_INET_Addr
 

ACE_SOCK_CONNECTOR
 

Expands to either ACE_SOCK_Connector
or to ACE_ SOCK_Connector and
ACE_INET_Addr
 

ACE_SOCK_STREAM
 

Expands to either ACE_SOCK_Stream or
to ACE_ SOCK_Stream and
ACE_INET_Addr
 

These macros supply addressing classes that work properly with all C++ compilers supported by ACE.
For example, they expand to a single class if template traits are supported and two classes if not.
 

ACE uses the ACE_SOCK_STREAM macro internally as the IPC class parameter to the
ACE_Svc_Handler template macro rather than the ACE_SOCK_Stream class to avoid problems when
porting code to older C++ compilers. Most modern C++ compilers no longer have these problems, so
you needn't use these macros in your application code unless portability to legacy compilers is essential.
For simplicity, the code in this book assumes that your C++ compiler fully supports template traits and
traits classes, and therefore doesn't use the ACE macros. The C++NPv2 example code included with
ACE, however, does use the macros to ensure portability to all ACE platforms.
 

Each instance of TPC_Logging_Handler is allocated dynamically by the TPC_ Logging_Acceptor (page 222) when
a connection request arrives from a peer connector. TPC_Logging_Handler overrides the
ACE_Svc_Handler::open() hook method to initialize the handler, as shown below:
 
 1 virtual int open (void *) { 
 2   static const ACE_TCHAR LOGFILE_SUFFIX[] = ACE_TEXT (".log"); 
 3   ACE_TCHAR filename[MAXHOSTNAMELEN + sizeof (LOGFILE_SUFFIX)]; 
 4   ACE_INET_Addr logging_peer_addr; 
 5 
 6   peer ().get_remote_addr (logging_peer_addr); 
 7   logging_peer_addr.get_host_name (filename, MAXHOSTNAMELEN); 
 8   ACE_OS_String::strcat (filename, LOGFILE_SUFFIX); 
 9 
10   ACE_FILE_Connector connector; 
11   connector.connect (log_file_, 
12                      ACE_FILE_Addr (filename), 
13                      0, // No timeout. 
14                      ACE_Addr::sap_any, // Ignored. 
15                      0, // Don't try to reuse the addr. 
16                      O_RDWR|O_CREAT|O_APPEND, 
17                      ACE_DEFAULT_FILE_PERMS); 
18 
19   logging_handler_.peer ().set_handle (peer ().get_handle ()); 
20 
21   return activate (THR_NEW_LWP | THR_DETACHED); 
22 } 

Lines 2?7 Initialize a log file using the same logic described in the Logging_Event_ Handler::open() method (page 59).
 

Line 19 Borrow the socket handle from the service handler and assign it to logging_ handler_, which is then used to
receive and process client log records.
 

Line 21 Convert TPC_Logging_Handler into an active object. The newly spawned detached thread runs the
following TPC_Logging_Handler::svc() hook method:
 
  virtual int svc () { 
    for (;;) 
      switch (logging_handler_.log_record ()) { 
      case -1: return -1; // Error. 
      case 0: return 0; // Client closed connection. 
      default: continue; // Default case. 
      } 
      /* NOTREACHED */ 
        return 0; 
  } 
}; 

This method focuses solely on reading and processing client log records. We break out of the for loop and return
from the method when the log_record() method detects that its peer service handler has closed the connection or
when an error occurs. Returning from the method causes the thread to exit, which in turn triggers
ACE_Task::svc_run() to call the inherited ACE_Svc_Handler::close() method on the object. By default, this method
closes the peer stream and deletes the service handler if it was allocated dynamically, as described in the table on
page 210. Since the thread was spawned using the THR_DETACHED flag, there's no need to wait for it to exit.
 

You may notice that TPC_Logging_Handler::svc() provides no way to stop the thread's processing if the server is
somehow asked to shut down before the peer closes the socket. Adding this capability is left as an exercise for the
reader. Some common techniques for providing this feature are described in Sidebar 50.
 

Sidebar 50: Techniques for Shutting Down
Blocked Service Threads
 

Service threads often perform blocking I/O operations, as shown by the thread-per-connection
concurrency model in TPC_Logging_Handler::svc() (page 215). If the service thread must be stopped
before its normal completion, however, the simplicity of this model can cause problems. Some
techniques for forcing service threads to shut down, along with their potential drawbacks, include:
 

•

• Exit the server process, letting the OS abruptly terminate the peer connection, as well as any
other open resources, such as files (a log file, in the case of this chapter's examples). This
approach can result in lost data and leaked resources. For example, System V IPC objects are
vulnerable in this approach.

•  
•

• Enable asynchronous thread cancellation and cancel the service thread. This design isn't portable
and can also abandon resources if not programmed correctly.

•  
•

• Close the socket, hoping that the blocked I/O call will abort and end the service thread. This
solution can be effective, but doesn't work on all platforms.

•  
•

• Rather than blocking I/O, use timed I/O and check a shutdown flag, or use the
ACE_Thread_Manager cooperative cancellation mechanism, to cleanly shut down between I/O
attempts. This approach is also effective, but may delay the shutdown by up to the specified
timeout.

•  
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7.3 The ACE_Acceptor Class
 

Motivation
 

Many connection-oriented server applications tightly couple their connection establishment and service initialization
code in ways that make it hard to reuse existing code. For example, if you examine the Logging_Acceptor (page 58),
Logging_Acceptor_Ex (page 67), Logging_Acceptor_WFMO (page 112), CLD_Acceptor (page 176), and
TP_Logging_Acceptor (page 193) classes, you'll see that the handle_input() method was rewritten for each logging
handler, even though the structure and behavior of the code was nearly identical. The ACE Acceptor-Connector
framework defines the ACE_Acceptor class so that application developers needn't rewrite this code repeatedly.
 

Class Capabilities
 

ACE_Acceptor is a factory that implements the Acceptor role in the Acceptor-Connector pattern [POSA2]. This
class provides the following capabilities:
 

•

• It decouples the passive connection establishment and service initialization logic from the processing
performed by a service handler after it's connected and initialized.

•  
•

• It provides a passive-mode IPC endpoint used to listen for and accept connections from peers. The type of
this IPC endpoint can be parameterized with many of ACE's IPC wrapper facade classes, thereby separating
lower-level connection mechanisms from application-level service initialization policies.

•  
•

• It automates the steps necessary to connect the IPC endpoint passively and create/activate its associated
service handler.

•  
•

• Since ACE_Acceptor is derived from ACE_Service_Object, it inherits the event-handling and configuration
capabilities described in Chapters 3 and 5.

•  

The interface for ACE_Acceptor is shown in Figure 7.4. As shown in the figure, this class template is parameterized
by:
 

Figure 7.4. The ACE_Acceptor Class
 

•

• An SVC_HANDLER class, which provides an interface for processing services defined by clients, servers,
or both client and server roles in peer-to-peer services. This parameter is instantiated by a subclass of the
ACE_Svc_Handler class described in Section 7.2.

•  
•

• A PEER_ACCEPTOR class, which is able to accept client connections passively. This parameter is often
specified as one of the ACE IPC wrapper facades, such as the ACE_SOCK_Acceptor described in
Chapter 3 of C++NPv1.

•  

Since ACE_Acceptor is a descendant of ACE_Event_Handler, an instance of it can be registered with the ACE
Reactor framework to process ACCEPT events. Its handle_input() method will be dispatched automatically by a
reactor when a new connection request arrives from a client.
 

The ACE_Acceptor class has a flexible interface that can be customized extensively by application developers. We
therefore group the description of its methods into the two categories described below.
 

1. Acceptor initialization, destruction, and accessor methods. The following methods are used to initialize and destroy
an ACE_Acceptor:
 

Method
 

Description
 

ACE_Acceptor() open()
 

Bind an acceptor's passive-mode IPC endpoint to a
particular address, such as a TCP port number and IP
host address, then listen for the arrival of connection
requests.
 

ACE_Acceptor() close()
 

Close the acceptor's IPC endpoint and release its
resources.
 

acceptor()
 

Returns a reference to the underlying
PEER_ACCEPTOR.
 

A portion of ACE_Acceptor::open() is shown below:
 
1 template <class SVC_HANDLER, class PEER_ACCEPTOR> 
2 int ACE_Acceptor<SVC_HANDLER, PEER_ACCEPTOR>::open 
3     (const ACE_TYPENAME PEER_ACCEPTOR::PEER_ADDR &addr, 
4      ACE_Reactor * = ACE_Reactor::instance (), 
5      int flags = 0, 
6      /* ... Other parameters omitted ... */) 
7 { /* ... */ } 

Line 3 To designate the proper type of IPC addressing class, a PEER_ACCEPTOR template parameter must define
a PEER_ADDR trait. Sidebar 5 in Chapter 3 in C++NPv1 illustrates how the ACE_SOCK_Acceptor class meets
this criteria.
 

Line 4 By default, the open() method uses the singleton ACE_Reactor to register the acceptor to handle ACCEPT
events. This reactor can be changed on a per-instance basis, which is useful when a process uses multiple reactors,
for example, one per thread.
 

Line 5 The flags parameter indicates whether a service handler's IPC endpoint initialized by the acceptor should start
in blocking mode (the default) or in nonblocking mode (ACE_NONBLOCK).
 

2. Connection establishment and service handler initialization methods. The following ACE_Acceptor methods can
be used to establish connections passively and initialize their associated service handlers:
 

Method
 

Description
 

handle_input()
 

This template method is called by a reactor when a
connection request arrives from a peer connector. It can
use the three methods outlined below to automate the
steps necessary to connect an IPC endpoint passively,
and to create and activate its associated service handler.
 

make_svc_handler()
 

This factory method creates a service handler to process
data requests emanating from its peer service handler via
its connected IPC endpoint.
 

accept_svc_handler()
 

This hook method uses the acceptor's passive-mode IPC
endpoint to create a connected IPC endpoint and
encapsulate the endpoint with an I/O handle that's
associated with the service handler.
 

activate_svc_handler()
 

This hook method invokes the service handler's open()
hook method, which allows the service handler to finish
initializing itself.
 

Figure 7.5 (page 220) shows the default steps that an ACE_Acceptor performs in its handle_input() template method:
 

Figure 7.5. Steps in ACE_Acceptor Connection Acceptance
 

1.

1. It calls the make_svc_handler() factory method to create a service handler dynamically.
1.  
2.

2. It calls the accept_svc_handler() hook method to accept a connection and store it in the service handler.
2.  
3.

3. It calls the activate_svc_handler() hook method to allow the service handler to finish initializing itself.
3.  

Sidebar 47 (page 209) explains why the ACE_Acceptor::handle_input() template method decouples service handler
creation from activation.
 

ACE_Acceptor::handle_input() uses the Template Method pattern [GoF] to allow application designers to change
the behavior of any of the three steps outlined above. The default behaviors of make_svc_handler(),
accept_svc_handler(), and activate_svc_handler() can therefore be overridden by subclasses. This design allows a
range of behavior modification and customization to support many use cases. The three primary variation points in
ACE_Acceptor::handle_input() are described and illustrated in more detail below.
 

1. Service handler creation. The ACE_Acceptor::handle_input() template method calls the make_svc_handler()
factory method to create a new service handler. The default implementation of make_svc_handler() is shown below:
 
1 template <class SVC_HANDLER, class PEER_ACCEPTOR> int 
2 ACE_Acceptor<SVC_HANDLER, PEER_ACCEPTOR>::make_svc_handler 
3     (SVC_HANDLER *&sh) { 
4   ACE_NEW_RETURN (sh, SVC_HANDLER, -1); 
5   sh->reactor (reactor ()); 
6   return 0; 
7} 

Line 4 Allocate an instance of SVC_HANDLER dynamically. The SVC_HANDLER constructor should initialize
any pointer data members to NULL to avoid subtle run-time problems that can otherwise arise if failures are
detected in ACE_Acceptor::handle_input() template method and the SVC_HANDLER must be closed.
 

Line 5 Set the reactor of the newly created service handler to the same reactor associated with the acceptor.
 

Subclasses can override make_svc_handler() to create service handlers in any way that they like, such as:
 

•

• Creating service handlers based on some criteria, such as the number of CPUs available, a stored
configuration parameter, calculated historical load average, or the current host workload.

•  
•

• Always returning a singleton service handler (page 247) or
•  
•

• Dynamically linking the handler from a DLL by using the ACE_Service_Config or ACE_DLL classes
described in Chapter 5.

•  

2. Connection establishment. The ACE_Acceptor::handle_input() template method calls the accept_svc_handler()
hook method to passively accept a new connection from a peer connector. The default implementation of this method
delegates to the PEER_ACCEPTOR::accept() method, as shown below:
 
template <class SVC_HANDLER, class PEER_ACCEPTOR> int 
ACE_Acceptor<SVC_HANDLER, PEER_ACCEPTOR>::accept_svc_handler 
    (SVC_HANDLER *sh) { 
  if (acceptor ().accept (sh->peer ()) == -1) 
  { sh->close (0); return -1; } 
  return 0; 
} 

For this accept_svc_handler() implementation to compile, the PEER_ACCEPTOR template parameter must have a
public accept() method. ACE_SOCK_Acceptor (Chapter 3 of C++NPv1) meets this requirement, as do most ACE
IPC wrapper facades.
 

Subclasses can override accept_svc_handler() to add extra processing required before or after the connection is
accepted, but before it can be used. For example, this method can authenticate a new connection before activating
the service. The authentication process could validate the peer's host and/or port number, perform a login sequence,
or set up an SSL session on the new socket. The Example section on page 222 illustrates how to implement
authentication by overriding the accept_svc_handler() hook method to perform SSL authentication before activating
the service. Use caution, however, when performing exchanges with the peer in this situation. If
activate_svc_handler() is called via a reactor callback, the application's entire event dispatching loop may block for
an unacceptably long amount of time.
 

3. Service handler activation. The ACE_Acceptor::handle_input() template method calls the activate_svc_handler()
hook method to activate a new service after it has been created and a new connection has been accepted on its
behalf. The default behavior of this method is shown below:
 
 1 template <class SVC_HANDLER, class PEER_ACCEPTOR> int 
 2 ACE_Acceptor<SVC_HANDLER, PEER_ACCEPTOR>::activate_svc_handler 
 3     (SVC_HANDLER *sh) { 
 4   int result = 0; 
 5   if (ACE_BIT_ENABLED (flags_, ACE_NONBLOCK)) { 
 6     if (sh->peer ().enable (ACE_NONBLOCK) == -1) 
 7       result = -1; 
 8   } else if (sh->peer ().disable (ACE_NONBLOCK) == -1) 
 9     result = -1; 
10 
11   if (result == 0 && sh->open (this) == -1) 
12     result = -1; 
13   if (result == -1) sh->close (0); 
14   return result; 
15 } 

Lines 5? The blocking/nonblocking status of a service handler is set to reflect the flags stored by the acceptor in its
constructor. If the acceptor's flag_ designates nonblocking mode, we enable nonblocking I/O on the service handler's
peer stream. Otherwise, the peer stream is set to blocking mode.
 

Lines 11?4 The service handler's open() hook method is called to activate the handler (see page 209 for an
example). If service activation fails, the service handler's close() hook method is called to release any resources
associated with the service handler.
 

Subclasses can override activate_svc_handler() to activate the service in some other way, such as associating it with
a thread pool or spawning a new process or thread to process data sent by clients. Since the
ACE_Acceptor::handle_input() method is virtual it's possible (though rare) to change the sequence of steps
performed to accept a connection and initialize a service handler. Regardless of whether the default ACE_Acceptor
steps are used or not, the functionality of the service handler itself is decoupled completely from the steps used to
passively connect and initialize it. This design maintains the modularity and separation of concerns that are so
important to minimize the cost of the service's future maintenance and development.
 

Example
 

This example is another variant of our server logging daemon. It uses the ACE_Acceptor instantiated with an
ACE_SOCK_Acceptor to listen on a passive-mode TCP socket handle defined by the "ace_logger" service entry in
the system's services database, which is usually /etc/services. This revision of the server uses the
thread-per-connection concurrency model to handle multiple clients simultaneously.
 

As shown in Figure 7.6, the main thread uses a reactor to wait for new connection requests from clients. When a
connection arrives, the acceptor uses the OpenSSL [Ope01] authentication protocol outlined in Sidebar 51 (page
224) to ensure that the client logging daemon is permitted to connect with the server. If the client is legitimate, the
acceptor dynamically creates a TPC_Logging_Handler from the Example part of Section 7.2 to handle the
connection. The TPC_Logging_Handler::open() method (page 214) spawns a thread to process log records sent by
the client over the connection.
 

Figure 7.6. Architecture of the Thread-per-Connection Logging Server
 

Since much of the code is reused from the ACE Acceptor-Connector framework and OpenSSL library, this example
mostly extends, instantiates, and uses existing capabilities. We subclass ACE_Acceptor and override its open()
method and accept_svc_handler() hook method to define the server end of its authentication protocol. The
TPC_Logging_Acceptor class and its protected data members are declared as follows:
 
#include "ace/SOCK_Acceptor.h" 
#include <openssl/ssl.h> 
class TPC_Logging_Acceptor 
  : public ACE_Acceptor<TPC_Logging_Handler, ACE_SOCK_Acceptor> { 
protected: 
  // The SSL ''context'' data structure. 
  SSL_CTX *ssl_ctx_; 

  // The SSL data structure corresponding to authenticated 
  // SSL connections. 
  SSL *ssl_; 

The ssl_ctx_ and ssl_ data members are passed to the OpenSSL API calls made by the following public methods in
TPC_Logging_Acceptor.
 
public: 
  typedef ACE_Acceptor<TPC_Logging_Handler, ACE_SOCK_Acceptor> 
          PARENT; 
  typedef ACE_SOCK_Acceptor::PEER_ADDR PEER_ADDR; 

  TPC_Logging_Acceptor (ACE_Reactor *) 
    : PARENT (r), ssl_ctx_ (0), ssl_ (0) {} 

  // Destructor frees the SSL resources. 

  virtual TPC_Logging_Acceptor (void) { 
    SSL_free (ssl_); 
    SSL_CTX_free (ssl_ctx_); 
  } 
  // Initialize the acceptor instance. 
  virtual int open 
    (const ACE_SOCK_Acceptor::PEER_ADDR &local_addr, 
    ACE_Reactor *reactor = ACE_Reactor::instance (), 
    int flags = 0, int use_select = 1, int reuse_addr = 1); 

  // <ACE_Reactor> close hook method. 
  virtual int handle_close 
    (ACE_HANDLE = ACE_INVALID_HANDLE, 
    ACE_Reactor_Mask = ACE_Event_Handler::ALL_EVENTS_MASK); 

  // Connection establishment and authentication hook method. 
  virtual int accept_svc_handler (TPC_Logging_Handler *sh); 
}; 

Sidebar 51: An Overview of Authentication
and Encryption Protocols
 

To protect against potential attacks or third-party discovery, many networked applications must
authenticate the identities of their peers and encrypt sensitive data sent over a network. To provide these
capabilities, various cryptography packages, such as OpenSSL [Ope01], and security protocols, such
as Transport Layer Security (TLS) [DA99], have been developed. These packages and protocols
provide library calls that ensure authentication, data integrity, and confidentiality between two
communicating applications. For example, the TLS protocol can encrypt/decrypt data sent/received
across a TCP/IP network. TLS is based on an earlier protocol named the Secure Sockets Layer (SSL),
which was developed by Netscape.
 

The OpenSSL toolkit used by the examples in this chapter is based on the SSLeay library written by
Eric Young and Tim Hudson. It is open source, under active development, and runs on multiple
platforms, including most platforms ACE supports, such as Linux, FreeBSD, OpenBSD, NetBSD,
Solaris, AIX, IRIX, HP-UX, OpenUNIX, DG/UX, ReliantUNIX, UnixWare, Cray T90 and T3E,
SCO Unix, Microsoft Windows, and MacOS. OpenSSL is a highly successful open-source package,
as evidenced by its extensive commercial and noncommerical user community.
 

TPC_Logging_Acceptor::open() (in TPC_Logging_Server.cpp) initializes itself using its base class implementation
and establishes the server's identity as follows:
 
 1 #include "ace/OS.h" 
 2 #include "Reactor_Logging_Server_Adapter.h" 
 3 #include "TPC_Logging_Server.h" 
 4 #include "TPCLS_export.h" 
 5 
 6 #if !defined (TPC_CERTIFICATE_FILENAME) 
 7 # define TPC_CERTIFICATE_FILENAME "tpc-cert.pem" 
 8 #endif /* !TPC_CERTIFICATE_FILENAME */ 
 9 #if !defined (TPC_KEY_FILENAME) 
10 # define TPC_KEY_FILENAME "tpc-key.pem" 
11 #endif /* !TPC_KEY_FILENAME */ 
12 
13 int TPC_Logging_Acceptor::open 
14     (const ACE_SOCK_Acceptor::PEER_ADDR &local_addr, 
15            ACE_Reactor *reactor, 
16            int flags, int use_select, int reuse_addr) { 
17   if (PARENT::open (local_addr, reactor, flags, 
18                     use_select, reuse_addr) != 0) 
19     return -1; 
20   OpenSSL_add_ssl_algorithms (); 
21   ssl_ctx_ = SSL_CTX_new (SSLv3_server_method ()); 
22   if (ssl_ctx_ == 0) return -1; 
23 
24   if (SSL_CTX_use_certificate_file (ssl_ctx_, 
25                                     TPC_CERTIFICATE_FILENAME, 
26                                     SSL_FILETYPE_PEM) <= 0 
27       || SSL_CTX_use_PrivateKey_file (ssl_ctx_, 
28                                       TPC_KEY_FILENAME, 
29                                       SSL_FILETYPE_PEM) <= 0 
30       || !SSL_CTX_check_private_key (ssl_ctx_)) 
31     return -1; 
32   ssl_ = SSL_new (ssl_ctx_); 
33   return ssl_ == 0 ? -1 : 0; 
34 } 

Lines 6?1 Since our logging server doesn't have a user interface, its server certificate and accompanying key are
assumed to exist in a default set of files. However, the application may override the default filenames by defining the
specified preprocessor macros.
 

Lines 17?8 Initialize the ACE_Acceptor using the default open() implementation.
 

Line 20 Initialize the OpenSSL library. For brevity, we place the OpenSSL_add_ssl_algorithms() call in
TPC_Logging_Acceptor::open(). Although this function can be called safely multiple times per process, ideally this
call should be made only once per process. Initialization must be synchronized if multiple threads can call the function,
however, since this OpenSSL function isn't thread safe.
 

Lines 21?2 Set up for SSL version 3connection and create the SSL structure corresponding connections to be
authenticated.
 

Lines 24?1 Set up the certificate and accompanying private key used to identify the server when establishing
connections and then verify that the private key matches the correct certificate. This code assumes that the certificate
and key are encoded in Privacy Enhanced Mail (PEM) format within the specified files.
 

Lines 32?3 Initialize a new SSL data structure, which is used in the TPC_Logging_Acceptor::accept_svc_handler()
hook method when establishing SSL connections via the OpenSSL API, as follows:
 
 1 int TPC_Logging_Acceptor::accept_svc_handler 
 2     (TPC_Logging_Handler *sh) { 
 3   if (PARENT::accept_svc_handler (sh) == -1) return -1; 
 4   SSL_clear (ssl_); // Reset for new SSL connection. 
 5   SSL_set_fd 
 6     (ssl_, ACE_reinterpret_cast (int, sh->get_handle ())); 
 7 
 8   SSL_set_verify 
 9     (ssl_, 
10     SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, 
11     0); 
12   if (SSL_accept (ssl_) == -1 
13       || SSL_shutdown (ssl_) == -1) return -1; 
14   return 0; 
15 } 

Line 3 Accept the TCP connection using the default accept_svc_handler() implementation.
 

Lines 4? Reset the SSL data structures for use with a new SSL connection.
 

Lines 8?1 Configure the SSL data structures so that client authentication is performed and enforced when accepting
an SSL connection.
 

Line 12 Perform the actual SSL connection and negotiation. If authentication of the client fails, the SSL_accept() call
will fail.
 

Line 13 Shut down the SSL connection if authentication succeeds. Since we don't actually encrypt the log record
data we simply communicate via the TCP stream from here on. If data encryption were required, we could use the
ACE wrapper facades for OpenSSL described in Sidebar 52.
 

By overriding the open() and accept_svc_handler() hook methods, we added authentication to our server logging
daemon without affecting any other part of its implementation. This extensibility illustrates the power of the Template
Method pattern used in the ACE_Acceptor class design.
 

When our example service is shut down via the ACE Service Configurator framework,
Reactor_Logging_Server_Adapter::fini() (page 123) will end up calling the following handle_close() method:
 
int TPC_Logging_Acceptor::handle_close (ACE_HANDLE h, 
                                        ACE_Reactor_Mask mask) { 
  PARENT::handle_close (h, mask); 
  delete this; 
  return 0; 
} 

Sidebar 52: ACE Wrapper Facades for
OpenSSL
 

Although the OpenSSL API provides a useful set of functions, it suffers from the usual problems
incurred by native OS APIs written in C (see Chapter 2 in C++NPv1). To address these problems,
ACE provides classes that encapsulate OpenSSL using an API similar to the ACE C++ Socket
wrapper facades. For example, the ACE_SOCK_Acceptor, ACE_SOCK_Connector, and
ACE_SOCK_Stream classes described in Chapter 3 of C++NPv1 have their SSL-enabled
counterparts: ACE_SSL_SOCK_Acceptor, ACE_SSL_SOCK_Connector, and
ACE_SSL_SOCK_Stream.
 

The ACE SSL wrapper facades allow networked applications to ensure the integrity and confidentiality
of data exchanged across a network. They also follow the same structure and APIs as their Socket API
counterparts, which makes it easy to replace them wholesale using C++ parameterized types and the
ACE_Svc_Handler template class. For example, to apply the ACE wrapper facades for OpenSSL to
our networked logging server we can simply remove all the OpenSSL API code and instantiate the
ACE_Acceptor, ACE_Connector, and ACE_Svc_Handler with the ACE_SSL_SOCK_Acceptor,
ACE_SSL_SOCK_Connector, and ACE_SSL_SOCK_Stream, respectively.
 

This method calls ACE_Acceptor::handle_close() to close the listening acceptor socket and unregister it from the
reactor framework. To avoid memory leaks, the method then deletes this object, which was allocated dynamically
when the service was initialized.
 

We finally create the TPC_Logging_Server type definition:
 
typedef Reactor_Logging_Server_Adapter<TPC_Logging_Acceptor> 
        TPC_Logging_Server; 

ACE_FACTORY_DEFINE (TPCLS, TPC_Logging_Server) 

We also use the ACE_FACTORY_DEFINE macro described in Sidebar 32 (page 136) to automatically generate
the _make_TPC_Logging_Server() factory function, which is used in the following svc.conf file:
 
dynamic TPC_Logging_Server Service_Object * 
TPCLS:_make_TPC_Logging_Server() "$TPC_LOGGING_SERVER_PORT" 

This file directs the ACE Service Configurator framework to configure the thread-perconnection logging server via
the following steps:
 

1.

1. It dynamically links the TPCLS DLL into the address space of the process.
1.  
2.

2. It uses the ACE_DLL class to extract the _make_TPC_Logging_Server() factory function from the TPCLS
DLL symbol table.

2.  
3.

3. This function is called to allocate a TPC_Logging_Server dynamically and return a pointer to it.
3.  
4.

4. The ACE Service Configurator framework then calls TPC_Logging_Server::init() through this pointer,
passing as its argc/argv argument an expansion of the TPC_LOGGING_SERVER_PORT environment
variable that designates the port number where the logging server listens for client connection requests. The
port number is ultimately passed down to the Reactor_Logging_Server constructor (page 83).

4.  
5.

5. If init() succeeds, the TPC_Logging_Server pointer is stored in the ACE_Service_Repository under the
name "TPC_Logging_Server".

5.  

The various *Logging_Acceptor* classes written by hand for our previous logging server examples are no longer
needed. Their purpose has been subsumed by TPC_Logging_Acceptor, which inherits from ACE_Acceptor. The
first template argument to the ACE_Acceptor base class is TPC_Logging_Handler, which derives from
ACE_Svc_Handler.
 

In the TPC_Logging_Server service, the ACE Acceptor-Connector framework performs most of the basic work of
authenticating a client connection, as well as initializing and operating a service handler. Since the ACE_Acceptor
refactors the functionality of accepting connections, authenticating clients, and activating service handlers into
well-defined steps in its handle_input() template method, the source code for our logging server daemon shrank
considerably. In particular, ACE_Acceptor supplied all of the code we previously had to write manually to
 

•

• Listen for and accept connections
•  
•

• Create and activate new service handlers
•  

Our thread-per-connection logging server also reused classes from earlier solutions that provided the following
capabilities:
 

•

• Initialize the network listener address using the Reactor_Logging_Server_Adapter template defined in Section
5.2 (page 122).

•  
•

• Dynamically configure the logging server and run the ACE Reactor's event loop in the main() function.
•  

Therefore, the only code of any consequence we had to write was the TPC_Logging_Handler class (page 213),
which spawned a thread per connection to receive and process Zlog records, and the
TPC_Logging_Acceptor::accept_svc_handler() method (page 222), which implemented the server end of the
protocol that authenticates the identity of the client and server logging daemons. Once again, due to the flexibility
offered by the ACE Service Configurator framework, we simply reuse the Configurable_Logging_Server main
program from Chapter 5.
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7.4 The ACE_Connector Class
 

Motivation
 

Section 7.3 focused on how to decouple the functionality of service handlers from the steps required to passively
connect and initialize them. It's equally useful to decouple the functionality of service handlers from the steps required
to actively connect and initialize them. Moreover, networked applications that communicate with a large number of
peers may need to actively establish many connections concurrently, handling completions as they occur. To
consolidate these capabilities into a flexible, extensible, and reusable abstraction, the ACE Acceptor-Connector
framework defines the ACE_Connector class.
 

Class Capabilities
 

ACE_Connector is a factory class that implements the Connector role in the Acceptor-Connector pattern [POSA2].
This class provides the following capabilities:
 

•

• It decouples the active connection establishment and service initialization logic from the processing performed
by a service handler after it's connected and initialized.

•  
•

• It provides an IPC factory that can actively establish connections with a peer acceptor either synchronously
or reactively. The type of this IPC endpoint can be parameterized with many of ACE's IPC wrapper facade
classes, thereby separating lower-level connection mechanisms from application-level service initialization
policies.

•  
•

• It automates the steps necessary to connect the IPC endpoint actively as well as to create and activate its
associated service handler.

•  
•

• Since ACE_Connector derives from ACE_Service_Object it inherits all the event handling and dynamic
configuration capabilities described in Chapters 3 and 5, respectively.

•  

The interface for ACE_Connector is shown in Figure 7.7 (page 230). This template class is parameterized by:
 

Figure 7.7. The ACE_Connector Class
 

•

• An SVC_HANDLER class, which provides an interface for processing services defined by clients, servers,
or both client and server roles in peer-to-peer services. This parameter should be an ACE_Svc_Handler
subclass, as described in Section 7.2.

•  
•

• A PEER_CONNECTOR class, which is able to establish client connections actively. This parameter is often
specified as one of ACE's IPC wrapper facades, such as the ACE_SOCK_Connector described in Chapter
3 of C++NPv1.

•  

The ACE_Connector class has a flexible interface that can be customized extensively by developers. We therefore
group the description of its methods into the two categories described on the following page.
 

1. Connector initialization, destruction methods, and accessor methods. The following methods are used to initialize,
destroy, and access an ACE_Connector:
 

Method
 

Description
 

ACE_Connector() open()
 

Methods that initialize a connector.
 

ACE_Connector() close()
 

Methods that release the resources used by a connector.
 

connector()
 

Returns a reference to the underlying
PEER_CONNECTOR.
 

The ACE_Connector's constructor and open() method can be passed a flag indicating whether a service handler's
IPC endpoint initialized by the connector should start in blocking (the default) or nonblocking (ACE_NONBLOCK)
mode. These methods can also be passed the reactor associated with the connector. They use the singleton
ACE_Reactor by default, just like the ACE_Svc_Handler and ACE_Acceptor.
 

An ACE_Connector object is closed either when it's destroyed or when its close() method is called explicitly. An
ACE_Connector allocates no resources for synchronous connections, so there's nothing to clean up if it's used only
synchronously. For asyn-chronous connections, however, these methods release the resources a connector allocates
to track pending connections that haven't completed by the time the connector is closed. Each remaining unconnected
service handler is also closed by invoking its close() hook method.
 

2. Connection establishment and service handler initialization methods. The following ACE_Connector methods can
be used to establish connections actively and initialize their associated service handlers:
 

Method
 

Description
 

connect()
 

This template method is called by an application when it
wants to connect a service handler to a listening peer. It
can use the following three methods to automate the
steps necessary to actively connect an IPC endpoint, as
well as to create and activate its associated service
handler.
 

make_svc_handler()
 

This factory method supplies a service handler that will
use the connected IPC endpoint.
 

connect_svc_handler()
 

This hook method uses the service handler's IPC
endpoint to actively connect the endpoint, either
synchronously or asynchronously.
 

activate_svc_handler()
 

This hook method invokes the service handler's open()
hook method, which allows the service handler to finish
initializing itself after the connection is established.
 

handle_output()
 

This template method is called by a reactor after an
asynchronously initiated connection request completes. It
calls the activate_svc_handler() method to allow the
service handler to initialize itself.
 

cancel()
 

Cancel a service handler whose connection was initiated
asynchronously. The caller?ot the connector?s
responsible for closing the service handler.
 

Networked applications use the connect() template method to initiate a connection attempt actively, regardless of
whether its completion is handled synchronously or asynchronously. This method uses the following steps to connect
and initialize a new service handler:
 

1.

1. It obtains a service handler, either by using the handler passed by the caller or by invoking the
make_svc_handler() factory method.

1.  
2.

2. It then calls the connect_svc_handler() method to initiate the connection. Whereas passive connection
establishment is usually immediate, active connection establishment can take a longer amount of time,
particularly over wide-area networks. The ACE_Connector can therefore be instructed to use the ACE
Reactor framework to handle connection completions asynchronously as they occur, whether they succeed
or fail.

2.  
3.

3. For synchronous connections, connect() calls activate_svc_handler() to allow the service handler to finish
initializing itself. For asynchronous connections, the reactor calls ACE_Connector::handle_output() to finish
service handler initialization after the connection completes. Figure 7.8 illustrates the steps for the
asynchronous case.

3.  

3. Figure 7.8. Steps in ACE_Connector Asynchronous Connection Establishment
 

3. Since ACE_Connector::connect() uses the Template Method pattern [GoF], application designers can
change the behavior of any or all of the three steps outlined above.

3.  

3. As shown in Figure 7.7 (page 230), the ACE_Connector::connect() method is passed the following
arguments:

3.  
•

• A reference to a pointer to a SVC_HANDLER. If the pointer is NULL, the make_svc_handler() factory
method is called to obtain one. The default version of make_svc_handler() allocates one dynamically.

•  
•

• An address argument whose signature matches the peer connector and stream types via C++ traits. The
address specifies the endpoint to which the peer connects. For instance, it could be an ACE_INET_Addr
containing a port number and IP address for service handlers using ACE_SOCK_Stream. For other IPC
mechanisms, it could be the name used to locate a service via a naming service or it could be the hostname of
a port mapping server?t's up to the application designer to decide.

•  
•

• A reference to an ACE_Synch_Options object that consolidates the values of options used to determine the
ACE_Connector's behavior.

•  

Each connect() call tries to establish a connection with the designated peer. If connect() gets an immediate indication
of connection success or failure, it ignores the ACE_Synch_Options parameter. If it doesn't get an immediate
indication of connection success or failure, however, connect() uses its ACE_Synch_Options parameter to vary the
completion processing via two orthogonal factors:
 

1.

1. Whether to use the ACE Reactor framework to detect the connection completion
1.  
2.

2. How long to wait for the connection to complete
2.  

If the reactor is used, the connect() method can register both the PEER_CONNECTOR (for connect completion
detection) and a timer (for the caller-specified time limit) with the reactor and returns -1 to its caller with errno set to
EWOULDBLOCK. The ultimate success or failure of the connect will result in the
ACE_Connector::activate_svc_handler() method's activating the handler for success or the service handler's close()
method for failure. The application runs the reactor's event loop, and the appropriate call will be made during the
course of the reactor's normal event loop processing.
 

If the reactor isn't used, the connect() method doesn't return until the connect attempt completes, fails, or times out.
Its success or failure still results in a call to either the activate_svc_handler() method or the service handler's close()
method, respectively. The table below summarizes the ACE_Connector's behavior, based on the
ACE_Synch_Options values, if the connect request doesn't complete immediately.
 

Reactor
 

Timeout
 

Behavior
 

Yes
 

0,0
 

Return -1 with errno
EWOULDBLOCK; service handler
is closed via reactor event loop.
 

Yes
 

Time
 

Return -1 with errno
EWOULDBLOCK; wait up to
specified amount of time for
completion using the reactor.
 

Yes
 

NULL
 

Return -1 with errno
EWOULDBLOCK; wait for
completion indefinitely using the
reactor.
 

No
 

0,0
 

Close service handler directly; return
-1 with errno EWOULDBLOCK.
 

No
 

Time
 

Block in connect_svc_handler() up to
specified amount of time for
completion; if still not completed,
return -1 with errno ETIME.
 

No
 

NULL
 

Block in connect_svc_handler()
indefinitely for completion.
 

Regardless of how connections are established, any or all of the default make_svc_handler(), connect_svc_handler(),
and activate_svc_handler() methods can be overridden by subclasses. This extensible Template Method pattern
design allows a range of behavior modification and customization to support many use cases. We describe the three
primary variation points in ACE_Connector::connect() on the following page.
 

1. Obtain a service handler. Since an acceptor is often driven by upcalls from a reactor, its make_svc_handler()
factory method usually creates a new service handler. In contrast, a connector can choose to connect and initialize a
service handler as either
 

•

• Caller created, wherein the caller passes a pointer to an existing service handler to the connector's connect()
method

•  
•

• Connector created, wherein the caller passes a NULL service handler pointer to the connector's connect()
method, thereby instructing the make_svc_handler() factory method to obtain a pointer to the service handler
(or even defer this activity altogether until the connect_svc_handler() method to enable connection caching).

•  

The default implementation of ACE_Connector::make_svc_handler() handles these two cases, as follows: 
template <class SVC_HANDLER, class PEER_CONNECTOR> int 
ACE_Connector<SVC_HANDLER, PEER_CONNECTOR>::make_svc_handler 
    (SVC_HANDLER *&sh) { 
  if (sh == 0) ACE_NEW_RETURN (sh, SVC_HANDLER, -1); 
  sh->reactor (reactor ()); 
  return 0; 
} 

This method looks similar to ACE_Acceptor::make_svc_handler() (page 219). However,
ACE_Connector::make_svc_handler() allocates a new service handler only if the pointer passed to it by reference is
NULL, which enables the client application to determine if the caller or the connector should create the service
handler.
 

2. Connection establishment. The ACE_Connector::connect() template method calls its connect_svc_handler() hook
method to initiate a new connection with a peer acceptor. The default implementation of this method simply forwards
to the PEER_CONNECTOR::connect() method to initiate the connection, as shown below: 
template <class SVC_HANDLER, class PEER_CONNECTOR> int 
ACE_Connector<SVC_HANDLER, PEER_CONNECTOR>::connect_svc_handler 
    (SVC_HANDLER *sh, 
     const ACE_TYPENAME PEER_CONNECTOR::PEER_ADDR &remote_addr, 
     ACE_Time_Value *timeout, 
     const ACE_TYPENAME PEER_CONNECTOR::PEER_ADDR &local_addr, 
     int reuse_addr, int flags, int perms) { 
  return connector_.connect (svc_handler->peer (), 
                             remote_addr, 
                             timeout, 
                             local_addr, 
                             reuse_addr, flags, perms); 
} 

More powerful implementations of connect_svc_handler() can be defined by subclasses of ACE_Connector. Here
are some examples:
 

•

• Connection caching. The connect_svc_handler() method can be overridden to search a cache of existing,
connected service handlers. If there's no suitable cached handler, a new SVC_HANDLER can be created
and connected. Since the decision to create a new SVC_HANDLER or not is made in
connect_svc_handler() (which is called after make_svc_handler()), the subclass would probably define its
make_svc_handler() method as a no-op.

•  
•

• Authentication. The connect_svc_handler() method can be overridden to always connect synchronously and
then implement an authentication protocol on the new connection. For example, it may send an encrypted
login password and negotiate access rights with a secure server. If authentication fails, the overridden
connect_svc_handler() method can close the connection and return -1 to indicate an error to
ACE_Connector::connect() so the service handler isn't activated. The Example section below illustrates how
to implement SSL authentication by overrriding connect_svc_handler().

•  

3. Service handler activation. The ACE_Connector can activate service handlers in the following two ways,
depending on how the connection was initiated:
 

•

• If a connection is completed synchronously, the service handler is activated by ACE_Connector::connect()
after connect_svc_handler() returns successfully. At this point, connect() calls activate_svc_handler() so the
service handler can finish initializing itself.

•  
•

• If a connection completion is handled asynchronously using the Reactor framework, the reactor calls
ACE_Connector::handle_output() to inform the connector that the IPC endpoint is connected. At this point,
handle_output() calls the activate_svc_handler() hook method so the service handler can finish initializing itself.

•  

The default behavior of ACE_Connector::activate_svc_handler() is identical to the
ACE_Acceptor::activate_svc_handler() (page 221). This commonality between the ACE_Acceptor and
ACE_Connector underscores the power of the ACE Acceptor-Connector framework, which completely decouples
passive and active connection establishment from the initialization and use of a service handler.
 

Example
 

This example applies the ACE Acceptor-Connector framework to implement another client logging daemon that
extends the one shown in the Example portion of Section 6.2. Rather than using the ad hoc Acceptor-Connector
pattern implementation shown in Figure 6.4 (page 169), we use the ACE_Acceptor, ACE_Connector, and
ACE_Svc_Handler classes described in this chapter. The resulting implementation is more concise and portable since
much of the code we had to write manually in the previous client logging daemon is available as reusable classes from
the ACE Acceptor-Connector framework. Our new implementation is also more powerful since it provides an
authentication protocol that's interposed transparently to ensure that the client logging daemon is permitted to connect
to the server logging daemon.
 

Like the earlier client logging daemon, our new version uses two threads, which perform the following tasks using
various ACE framework classes:
 

•

• Input processing?/span> The main thread uses the singleton ACE_Reactor, an ACE_Acceptor, and an
ACE_Svc_Handler passive object to read log records from sockets connected to client applications via the
network loopback device. Each log record is queued in a second ACE_Svc_Handler that runs as an active
object.

•  
•

• Output processing?/span> The active object ACE_Svc_Handler runs in its own thread. It dequeues
messages from its message queue, buffers the messages into chunks, and forwards these chunks to the server
logging daemon over a TCP connection. A subclass of ACE_Connector is used to establish (and when
necessary reestablish) and authenticate connections with the logging server.

•  

The classes comprising the new client logging daemon based on the ACE Acceptor-Connector framework are
shown in Figure 7.9. The role of each class is outlined below:
 

Figure 7.9. Classes in the Acceptor-Connector Client Logging Daemon
 

Class
 

Description
 

AC_Input_Handler
 

A target of callbacks from the singleton ACE_Reactor
that receives log records from clients, stores each in an
ACE_Message_Block, and passes them to the
AC_Output_Handler for processing.
 

AC_Output_Handler
 

An active object that runs in its own thread. Its put()
method enqueues message blocks passed to it from the
AC_Input_Handler. Its svc() method dequeues messages
from its synchronized message queue and forwards them
to the logging server.
 

AC_CLD_Acceptor
 

A factory that passively accepts connections from clients
and registers them with the singleton ACE_Reactor to be
processed by the AC_Input_Handler.
 

AC_CLD_Connector
 

A factory that actively (re)establishes and authenticates
connections with the logging server.
 

AC_Client_Logging_Daemon
 

A facade class that integrates the other classes together.
 

The interactions between instances of these classes are shown in Figure 7.10 (page 238). When the service is
operating, there are two threads. The first is the initial program thread and it runs the reactor event loop. This thread
performs the following processing:
 

Figure 7.10. Interactions in the Acceptor-Connector Client Logging Daemon
 

•

• It accepts new logging client connections via AC_CLD_Acceptor.
•  
•

• It receives log records and identifies broken logging client connections via AC_Input_Handler; log records
are enqueued on the AC_Output_Handler message queue.

•  
•

• It detects broken logging server connections in AC_Output_Handler and reconnects with the server via
AC_CLD_Connector.

•  

The forwarder thread is started when the initial connection to the logging server is made and continues to run until the
service is terminated. This thread runs the AC_Output_Handler active object service thread.
 

We start our implementation by including the necessary ACE header files.
 
#include "ace/OS.h" 
#include "ace/Acceptor.h" 
#include "ace/Connector.h" 
#include "ace/Get_Opt.h" 
#include "ace/Handle_Set.h" 
#include "ace/INET_Addr.h" 
#include "ace/Log_Record.h" 
#include "ace/Message_Block.h" 
#include "ace/Reactor.h" 
#include "ace/Service_Object.h" 
#include "ace/Signal.h" 
#include "ace/Svc_Handler.h" 
#include "ace/Synch.h" 
#include "ace/SOCK_Acceptor.h" 
#include "ace/SOCK_Connector.h" 
#include "ace/SOCK_Stream.h" 
#include "ace/Thread_Manager.h" 
#include "Logging_Handler.h" 
#include "AC_CLD_export.h" 
#include <openssl/ssl.h> 

The classes in Figure 6.4 are defined in the AC_Client_Logging_Daemon.cpp file and described below.
 

AC_Input_Handler. This class provides the following capabilities:
 

•

• It receives log records from clients.
•  
•

• It stores each log record in an ACE_Message_Block.
•  
•

• It passes the message blocks to the AC_Output_Handler for processing.
•  

The AC_Input_Handler class is shown below:
 
class AC_Input_Handler 
  : public ACE_Svc_Handler<ACE_SOCK_Stream, ACE_NULL_SYNCH> { 
public: 
  AC_Input_Handler (AC_Output_Handler *handler = 0) 
    : output_handler_ (handler) {} 
  virtual int open (void *); // Initialization hook method. 
  virtual int close (u_int = 0); // Shutdown hook method. 

protected: 
  // Reactor hook methods. 
  virtual int handle_input (ACE_HANDLE handle); 
  virtual int handle_close (ACE_HANDLE = ACE_INVALID_HANDLE, 
                            ACE_Reactor_Mask = 0); 

  // Pointer to the output handler. 
  AC_Output_Handler *output_handler_; 

  // Keep track of connected client handles. 
  ACE_Handle_Set connected_clients_; 
}; 

Since AC_Input_Handler uses no per-client state, only a single instance is defined in AC_CLD_Acceptor (page
247) to handle input from all connected clients. We therefore define an ACE_Handle_Set, which is a wrapper facade
for fd_set defined in Chapter 7 of C++NPv1. This ACE_Handle_Set keeps track of all connected client socket
handles so we can remove them from the singleton reactor when the AC_Input_Handler is closed. Sidebar 53(page
240) discusses the pros and cons of different strategies for using multiple versus single service handlers.
 

Since AC_Input_Handler inherits from ACE_Svc_Handler it can use the singleton ACE_Reactor to wait for log
records to arrive from any client applications connected to the client logging daemon via loopback TCP sockets. It
therefore doesn't use its message queue, so it instantiates the ACE_Svc_Handler with the ACE_NULL_SYNCH
strategy to minimize its synchronizer usage. When a log record arrives at the client logging daemon, the singleton
ACE_Reactor dispatches the following AC_Input_Handler::handle_input() hook method:
 
int AC_Input_Handler::handle_input (ACE_HANDLE handle) { 
  ACE_Message_Block *mblk = 0; 
  Logging_Handler logging_handler (handle); 

  if (logging_handler.recv_log_record (mblk) != -1) 
    if (output_handler_->put (mblk->cont ()) != -1) { 
      mblk->cont (0); 
      mblk->release (); 
      return 0; // Success return. 
    } else mblk->release (); 
  return -1; // Error return. 
} 

Sidebar 53: Multiple versus Single Service
Handlers
 

The server logging daemon implementation in the Example part of Section 7.3 dynamically allocates a
new service handler for each connected client. In contrast, the client logging daemon implementation in
this example uses a single service handler for all connected clients. The rationale and tradeoffs for these
approaches are:
 

•

• If each service handler maintains separate state information for each client (in addition to the
connection handle) then allocating a service handler per client is generally the most
straightforward design.

•  
•

• If each service handler does not maintain separate state for each client, then a server that
allocates one service handler for all clients can potentially use less space and perform faster than
if it allocates a handler dynamically for each client. The effect of these improvements increases as
the number of concurrently connected clients grows.

•  
•

• It's generally much easier to manage memory if a separate service handler is allocated
dynamically for each client since the ACE Acceptor-Connector framework classes embody the
most common behavior for this case?he service handler simply calls destroy() from its
handle_close() hook method. In contrast, memory management is trickier if one service handler
is shared by all the clients.

•  
•

• If service handler initialization can be performed from multiple threads, such as when using
multiple dispatching threads with ACE_WFMO_Reactor, the design must take possible race
conditions into account and use appropriate synchronization to avoid mishandling connections.

•  

For completeness, we show both approaches in this chapter. In general, however, the multiple service
handler approach is much easier to program. We therefore recommend using this design in practice,
unless there's a need to save space.
 

This method uses the Logging_Handler from Chapter 4 of C++NPv1 to read a log record out of the socket handle
parameter, store the record into an ACE_Message_Block, and pass this message to the AC_Output_Handler (page
243), which will queue it and service it in a separate thread. We only enqueue the log record data (which is
referenced by mblk->cont()) and not the hostname (which is referenced by mblk).
 

If a client application disconnects the socket or an error occurs, handle_input() returns -1. This value triggers the
singleton reactor to call the following handle_close() hook method that closes the socket.
 
int AC_Input_Handler::handle_close (ACE_HANDLE handle, 
                                    ACE_Reactor_Mask) { 
  connected_clients_.clr_bit (handle); 
  return ACE_OS::closesocket (handle); 
} 

Note that we needn't delete this object in handle_close() since the AC_Input_Handler's memory is managed by the
AC_CLD_Acceptor (page 247). The handle_close() method also removes the specified handle from the
connected_clients_ handle set, where it was added when the connection was opened.
 

When a connection request arrives at the client logging daemon from a client application,
AC_CLD_Acceptor::handle_input() will dispatch the following AC_Input_Handler::open() hook method:
 
1 int AC_Input_Handler::open (void *) { 
2   ACE_HANDLE handle = peer ().get_handle (); 
3   if (reactor ()->register_handler 
4         (handle, this, ACE_Event_Handler::READ_MASK) == -1) 
5     return -1; 
6   connected_clients_.set_bit (handle); 
7   return 0; 
8 } 

Lines 2? The client logging daemon reuses a single AC_Input_Handler object for all of its logging handlers. When
AC_CLD_Acceptor::accept_svc_handler() is called to accept the new connection, it therefore reuses the handle in
the AC_Input_Handler's ACE_SOCK_Stream for each connection. We use the three-parameter
ACE_Reactor::register_handler() method (page 73) to register a pointer to this single object with the singleton
reactor for READ events. When log records arrive, the singleton reactor will dispatch
AC_Input_Handler::handle_input() (page 239).
 

Recall from Sidebar 53 that singleton service handlers and multithreaded event dispatching may introduce a race
condition. We may lose track of some connections if the AC_Input_Handler class is used with a multithreaded
reactor event loop since the AC_Input_Handler object's ACE_SOCK_Stream member can be changed by multiple
threads. Each involved event dispatching thread does the following:
 

1.

1. Calls the AC_CLD_Acceptor::accept_svc_handler() method, which accepts a new socket and stores its
handle in AC_Input_Handler

1.  
2.

2. Calls the AC_CLD_Acceptor::activate_svc_handler() method, which in turn calls AC_Input_Handler::open()
shown above

2.  

If thread B accepts a new connection before thread A completes the two steps above, it's likely that the
AC_Input_Handler::open() invocation in thread A will actually register the socket accepted from thread B. If so, the
first socket accepted would still be open, but never registered with the reactor and, thus, abandoned.
 

To prevent this race condition, synchronization is needed around the code that accesses the shared
ACE_SOCK_Stream object in the AC_Input_Handler. Unfortunately, the synchronization scope includes the two
steps listed above and so must be done from their caller, ACE_Acceptor::handle_input(). The use of multiple reactor
event dispatching threads would therefore end up requiring a new implementation of handle_input to properly
synchronize concurrent connection acceptance. The example in this section therefore uses a single reactor event
dispatching thread.
 

Line 6 Record the handle of the connected client in the connected_clients_ ACE_Handle_Set. We keep track of
connected client handles so we can remove them from the reactor when AC_Input_Handler::close() is called. This
method is called by AC_CLD_Acceptor::handle_close() (page 247) or AC_Client_Logging_Daemon::fini() (page
253) to shut down the client logging daemon:
 
 1 int AC_Input_Handler::close (u_int) { 
 2   ACE_Message_Block *shutdown_message = 0; 
 3   ACE_NEW_RETURN 
 4     (shutdown_message, 
 5     ACE_Message_Block (0, ACE_Message_Block::MB_STOP), -1); 
 6   output_handler_->put (shutdown_message); 
 7 
 8   reactor ()->remove_handler 
 9     (connected_clients_, ACE_Event_Handler::READ_MASK); 
10   return output_handler_->wait (); 
11 } 

Lines 2? Insert a 0-sized message block of type MB_STOP into the message queue. When the forwarder thread
running AC_Output_Handler::svc() (page 244) dequeues this shutdown_message it will flush its remaining log
records to the logging server, close the message queue, and exit the thread.
 

Lines 8? Remove all handles in the connected_clients_ handle set in one operation. Each removed handle will
generate a reactor callback to AC_Input_Handler::handle_close() on its behalf, where the socket handle is closed.
 

Line 10 Use the output_handler_'s wait() method to block until its svc() hook method exits before returning from
AC_Input_Handler::close(). This method reaps the exit status of the forwarder thread to prevent memory leaks.
 

AC_Output_Handler. This class provides the following capabilities:
 

•

• It inserts message blocks passed to it from the AC_Input_Handler into its synchronized message queue.
•  
•

• It runs as an active object in its own thread, dequeueing message blocks from its synchronized message
queue, buffering them into chunks, and forwarding the chunks to the logging server.

•  
•

• It registers with the singleton ACE_Reactor to process disconnects from the logging server and reestablish
connections.

•  

The AC_Output_Handler class is shown below:
 
class AC_Output_Handler 
  : public ACE_Svc_Handler<ACE_SOCK_Stream, ACE_MT_SYNCH> { 
public: 
  enum { QUEUE_MAX = sizeof (ACE_Log_Record) * ACE_IOV_MAX }; 

  virtual int open (void *); // Initialization hook. 

  // Entry point into the <AC_Output_Handler>. 
  virtual int put (ACE_Message_Block *, ACE_Time_Value * = 0); 

protected: 
  // Pointer to connection factory for <AC_Output_Handler>. 
  AC_CLD_Connector *connector_; 

  // Handle disconnects from the logging server. 
  virtual int handle_input (ACE_HANDLE handle); 

  // Hook method forwards log records to server logging daemon. 
  virtual int svc (); 

  // Send buffered log records using a gather-write operation. 
  virtual int send (ACE_Message_Block *chunk[], size_t &count); 
}; 

#if !defined (FLUSH_TIMEOUT) 
#define FLUSH_TIMEOUT 120 /* 120 seconds == 2 minutes. */ 
#endif /* FLUSH_TIMEOUT */ 

Since AC_Output_Handler is derived from ACE_Svc_Handler and instantiates its synchronization traits with
ACE_MT_SYNCH, it inherits the ACE_SOCK_Stream, ACE_Thread_Manager, and synchronized
ACE_Message_Queue, as well as the ability to activate itself to become an active object.
 

AC_Input_Handler::handle_input() (page 239) plays the reactive role in the variant of the Half-Sync/Half-Async
pattern we use to structure the concurrency architecture of this client logging daemon. It passes log records to the
AC_Output_Handler via the following put() method:
 
int AC_Output_Handler::put (ACE_Message_Block *mb, 
                            ACE_Time_Value *timeout) { 
  int result; 
  while ((result = putq (mb, timeout)) == -1) 
    if (msg_queue ()->state () != ACE_Message_Queue_Base::PULSED) 
      break; 
  return result; 
} 

This method simply enqueues the message block onto the AC_Output_Handler's synchronized message queue. If the
putq() call is blocked and the message queue is pulsed, it simply reexecutes the putq() call to try again. The following
two methods explain how this class uses queue pulsing.
 

The AC_CLD_Connector factory (page 248) initializes the AC_Output_Handler by calling its open() hook method
shown below:
 
 1 int AC_Output_Handler::open (void *connector) { 
 2   connector_ = 
 3     ACE_static_cast (AC_CLD_Connector *, connector); 
 4   int bufsiz = ACE_DEFAULT_MAX_SOCKET_BUFSIZ; 
 5   peer ().set_option (SOL_SOCKET, SO_SNDBUF, 
 6                       &bufsiz, sizeof bufsiz); 
 7   if (reactor ()->register_handler 
 8        (this, ACE_Event_Handler::READ_MASK) == -1) 
 9     return -1; 
10   if (msg_queue ()->activate () 
11       == ACE_Message_Queue_Base::ACTIVATED) { 
12     msg_queue ()->high_water_mark (QUEUE_MAX); 
13     return activate (THR_SCOPE_SYSTEM); 
14   } else return 0; 
15 } 

Lines 2? Save the pointer to the AC_CLD_Connector factory that called this method. If the connection to the server
must be reconnected, the same factory will be used.
 

Lines 4? Increase the connected socket's send buffer to its largest size to maximize throughput over long-delay
and/or high-speed networks.
 

Lines 7? Register this object with the singleton reactor so that its handle_input() method (page 246) will be notified
immediately if the logging server disconnects.
 

Lines 10?3 This method is called each time a new connection to the logging server is established. On the initial
connection, the message queue will be in the ACTIVATED state, so we set the message queue's high watermark to
sizeof(ACE_Log_Record) x ACE_IOV_MAX, just like we do on line 6 of CLD_Handler::open() (page 172). We
then spawn a system-scoped thread that runs the AC_Input_Handler::svc() hook method concurrently. Since
AC_Input_Handler::close() (page 242) waits for this thread to exit we don't pass the THR_DETACHED flag to
activate().
 

If the message queue was not in the ACTIVATED state, however, we know the logging server connection was
reestablished. In this case, the message queue's high watermark was already set and the service thread is already
executing.
 

We now show the AC_Output_Handler::svc() hook method, which runs in its own thread and forwards log records
to the server logging daemon. As shown below, this method optimizes network throughput by buffering log records
until a maximum number have arrived or a maximum time elapses.
 
 1 int AC_Output_Handler::svc () { 
 2   ACE_Message_Block *chunk[ACE_IOV_MAX]; 
 3   size_t message_index = 0; 
 4   ACE_Time_Value time_of_last_send (ACE_OS::gettimeofday ()); 
 5   ACE_Time_Value timeout; 
 6   ACE_Sig_Action no_sigpipe ((ACE_SignalHandler) SIG_IGN); 
 7   ACE_Sig_Action original_action; 
 8   no_sigpipe.register_action (SIGPIPE, &original_action); 
 9 
10   for (;;) { 
11     if (message_index == 0) { 
12       timeout = ACE_OS::gettimeofday (); 
13       timeout += FLUSH_TIMEOUT; 
14     } 
15     ACE_Message_Block *mblk = 0; 
16     if (getq (mblk, &timeout) == -1) { 
17       if (errno == ESHUTDOWN) { 
18         if (connector_->reconnect () == -1) break; 
19         continue; 
20       } else if (errno != EWOULDBLOCK) break; 
21       else if (message_index == 0) continue; 
22     } else { 
23       if (mblk->size () == 0 
24           && mblk->msg_type () == ACE_Message_Block::MB_STOP) 
25         { mblk->release (); break; } 
26       chunk[message_index] = mblk; 
27       ++message_index; 
28     } 
29     if (message_index >= ACE_IOV_MAX 
30         || (ACE_OS::gettimeofday () - time_of_last_send 
31             >= FLUSH_TIMEOUT)) { 
32       if (send (chunk, message_index) == -1) break; 
33       time_of_last_send = ACE_OS::gettimeofday (); 
34     } 
35   } 
36 
37   if (message_index > 0) send (chunk, message_index); 
38   no_sigpipe.restore_action (SIGPIPE, original_action); 
39   return 0; 
40 } 

We omit the AC_Output_Handler::send() implementation since it's identical to CLD_Handler::send() (page 175),
which sends log records to the logging server and reconnects to the server if the connection is closed during the send.
In fact, AC_Output_Handler::svc() is similar to CLD_Handler::forward() (page 173). The primary difference is that
lines 17 through 20 above check to see if the queue was pulsed in response to the logging server disconnecting. The
pulse is performed by the AC_Output_Handler::handle_input() method below, which is dispatched by the singleton
reactor when the server closes a connection to the client logging daemon. When the connection is reestablished via
AC_Connector::reconnect(), the ACE_Connector class calls AC_Output_Handler::open() (page 244), which
changes the message queue's state back to ACTIVATED.
 
1 int AC_Output_Handler::handle_input (ACE_HANDLE h) { 
2   peer ().close (); 
3   reactor ()->remove_handler 
4     (h, ACE_Event_Handler::READ_MASK 
5         | ACE_Event_Handler::DONT_CALL); 
6   msg_queue ()->pulse (); 
7   return 0; 
8 } 

Line 2 Close the connection to release the socket handle.
 

Lines 3? Remove the socket handle from the reactor since it's no longer valid. Since we've now taken care of all
required cleanup and this object is not being deleted, the DONT_CALL flag is passed to remove_handler(). When
the connection to the server logging daemon is reestablished, open() will be called again, and a new socket will be
registered for this object.
 

Line 6 To avoid trying to reconnect to the server logging daemon while the forwarder thread may be attempting the
same thing, transfer the work to the forwarder thread using the pulse() method (page 166). If the forwarder thread is
waiting on the synchronized message queue (page 244) (and therefore unaware that the connection is closed), it will
wake up and immediately begin a reconnect. The AC_Input_Handler::handle_input() method can continue to queue
message blocks, ensuring that flow control is properly back-propagated to client applications if the connection can't
be reestablished for a long amount of time.
 

The ACE_Svc_Handler::close() method will be called automatically by the ACE Acceptor-Connector framework
when the thread running the svc() hook method exits. This method cleans up all the dynamically allocated resources,
such as the synchronized message queue and its contents, and removes the AC_Output_Handler from the singleton
reactor.
 

AC_CLD_Acceptor. This class provides the following capabilities: [1] 

[1] Although AC_CLD_Acceptor doesn't perform any authentication on the new logging client, this could be added
to both AC_CLD_Acceptor and in the logging client code. These additions are left as an exercise for the reader.
 

•

• It's a factory that creates a single instance of the AC_Input_Handler (page 238).
•  
•

• It passively accepts connections from clients.
•  
•

• It activates the single instance of AC_Input_Handler, which registers all connections with the singleton
ACE_Reactor.

•  

The AC_CLD_Acceptor class definition is shown below:
 
class AC_CLD_Acceptor 
  : public ACE_Acceptor<AC_Input_Handler, ACE_SOCK_Acceptor> { 
public: 
  AC_CLD_Acceptor (AC_Output_Handler *handler = 0) 
    : output_handler_ (handler), input_handler_ (handler) {} 

protected: 
  typedef ACE_Acceptor<AC_Input_Handler, ACE_SOCK_Acceptor> 
          PARENT; 

  // <ACE_Acceptor> factory method. 
  virtual int make_svc_handler (AC_Input_Handler *&sh); 

  // <ACE_Reactor> close hook method. 
  virtual int handle_close (ACE_HANDLE = ACE_INVALID_HANDLE, 
                            ACE_Reactor_Mask = 0); 

  // Pointer to the output handler. 
  AC_Output_Handler *output_handler_; 

  // Single input handler. 
  AC_Input_Handler input_handler_; 
}; 

AC_CLD_Acceptor is a subclass of ACE_Acceptor, so it inherits all the capabilities described in Section 7.3. Since
we only need one instance of AC_Input_Handler we override the ACE_Acceptor::make_svc_handler() method as
follows:
 
int AC_CLD_Acceptor::make_svc_handler (AC_Input_Handler *&sh) 
{ sh = &input_handler_; return 0; } 

This method sets the service handler to the address of the input_handler_ data member, which ensures there's only
one instance of AC_Input_Handler, regardless of the number of clients that connect.
 

The following AC_CLD_Acceptor::handle_close() method is invoked by the reactor automatically if a failure occurs
while accepting a connection or registering a handle and event handler with the reactor:
 
1 int AC_CLD_Acceptor::handle_close (ACE_HANDLE, 
2                                    ACE_Reactor_Mask) { 
3   PARENT::handle_close (); 
4   input_handler_.close (); 
5   return 0; 
6} 

Line 3 Call up to its parent's handle_close() method to close the acceptor.
 

Line 4 Call the input_handler_'s close() method (page 242) to clean up the AC_Input_Handler's resources and shut
down the AC_Output_Handler's message queue and svc() thread.
 

AC_CLD_Connector. This class provides the following capabilities:
 

•

• It actively establishes (and when necessary reestablishes) and authenticates connections with the logging
server.

•  
•

• It activates a single instance of AC_Output_Handler, which forwards log records to the logging server
concurrently with respect to the reception of log records by the AC_Input_Handler.

•  

The AC_CLD_Connector class definition is shown below:
 
class AC_CLD_Connector 
  : public ACE_Connector<AC_Output_Handler, ACE_SOCK_Connector> { 
public: 
  typedef ACE_Connector<AC_Output_Handler, ACE_SOCK_Connector> 
          PARENT; 

  AC_CLD_Connector (AC_Output_Handler *handler = 0) 
    : handler_ (handler), ssl_ctx_ (0), ssl_ (0) {} 

  virtual AC_CLD_Connector (void) { // Frees the SSL resources. 
    SSL_free (ssl_); 
    SSL_CTX_free (ssl_ctx_); 
  } 

  // Initialize the Connector. 
  virtual int open (ACE_Reactor *r = ACE_Reactor::instance (), 
                    int flags = 0); 
  int reconnect (); // Re-establish connection to server. 

protected: 
  // Connection establishment and authentication hook method. 
  virtual int connect_svc_handler 
    (AC_Output_Handler *svc_handler, 
     const ACE_SOCK_Connector::PEER_ADDR &remote_addr, 
     ACE_Time_Value *timeout, 
     const ACE_SOCK_Connector::PEER_ADDR &local_addr, 
     int reuse_addr, int flags, int perms); 

  // Pointer to <AC_Output_Handler> we're connecting. 
  AC_Output_Handler *handler_; 

  // Address at which logging server listens for connections. 
  ACE_INET_Addr remote_addr_; 

  // The SSL "context" data structure. 
  SSL_CTX *ssl_ctx_; 

  // The SSL data structure corresponding to authenticated SSL 
  // connections. 
  SSL *ssl_; 
}; 

The CLD_Connector::open() method implementation performs the canonical ACE_Connector initialization, in
addition to using OpenSSL to establish the client's identity.
 
#if !defined (CLD_CERTIFICATE_FILENAME) 
#  define CLD_CERTIFICATE_FILENAME "cld-cert.pem" 
#endif /* !CLD_CERTIFICATE_FILENAME */ 
#if !defined (CLD_KEY_FILENAME) 
#  define CLD_KEY_FILENAME "cld-key.pem" 
#endif /* !CLD_KEY_FILENAME */ 

int AC_CLD_Connector::open (ACE_Reactor *r, int flags) { 
  if (PARENT::open (r, flags) != 0) return -1; 
  OpenSSL_add_ssl_algorithms (); 
  ssl_ctx_ = SSL_CTX_new (SSLv3_client_method ()); 
  if (ssl_ctx_ == 0) return -1; 

  if (SSL_CTX_use_certificate_file (ssl_ctx_, 
                                    CLD_CERTIFICATE_FILENAME, 
                                    SSL_FILETYPE_PEM) <= 0 
     || SSL_CTX_use_PrivateKey_file (ssl_ctx_, 
                                     CLD_KEY_FILENAME, 
                                     SSL_FILETYPE_PEM) <= 0 
     || !SSL_CTX_check_private_key (ssl_ctx_)) 
    return -1; 

  ssl_ = SSL_new (ssl_ctx_); 
  if (ssl_ == 0) return -1; 
  return 0; 
} 

This code initializes and validates the OpenSSL data structures using essentially the same logic as the implementation
of TPC_Logging_Acceptor::open() (page 224).
 

Unlike CLD_Connector, AC_CLD_Connector needn't implement a connect() method. Instead, it reuses the
ACE_Connector::connect() template method. When a connection is completed via ACE_Connector, the framework
calls the following AC_CLD_Connector::connect_svc_handler() hook method, which uses OpenSSL to implement
an authentication protocol that ensures the client logging daemon is permitted to connect with the server logging
daemon. The server's identity is also verified. The server logging daemon's end of this protocol appears in
TPC_Logging_Acceptor::accept_svc_handler() (page 222) and the client logging daemon's end is shown below:
 
 1 int AC_CLD_Connector::connect_svc_handler 
 2     (AC_Output_Handler *svc_handler, 
 3      const ACE_SOCK_Connector::PEER_ADDR &remote_addr, 
 4      ACE_Time_Value *timeout, 
 5      const ACE_SOCK_Connector::PEER_ADDR &local_addr, 
 6      int reuse_addr, int flags, int perms) { 
 7   if (PARENT::connect_svc_handler 
 8       (svc_handler, remote_addr, timeout, 
 9       local_addr, reuse_addr, flags, perms) == -1) return -1; 
10   SSL_clear (ssl_); 
11   SSL_set_fd (ssl_, ACE_reinterpret_cast 
12                       (int, svc_handler->get_handle ())); 
13 
14   SSL_set_verify (ssl_, SSL_VERIFY_PEER, 0); 
15 
16   if (SSL_connect (ssl_) == -1 
17       || SSL_shutdown (ssl_) == -1) return -1; 
18   remote_addr_ = remote_addr; 
19   return 0; 
20 } 

Lines 7? Establish the TCP connection using the default connect_svc_handler().
 

Lines 10?2 Reset the SSL data structures for use with a new SSL connection.
 

Line 14 Configure the SSL data structures so that authentication of the server is performed and enforced when
establishing the SSL connection.
 

Line 16 Perform the actual SSL connection/negotiation. If authentication of the server fails, the SSL_connect() call
will fail.
 

Line 17 Shutdown the SSL connection if authentication succeeds. Since we don't actually encrypt the data we can
communicate through the TCP stream from here on. If data encryption is also required, Sidebar 52 (page 227)
describes how the ACE wrapper facades for OpenSSL can be applied.
 

Line 18 Save the address of the connected server logging daemon in case the connection needs to be reestablished
using the AC_CLD_Connector::reconnect() method discussed below.
 

By overriding the open() and connect_svc_handler() hook methods, we can add authentication to our client logging
daemon without affecting any other part of its implementation. This extensibility illustrates the power of the Template
Method pattern used in the ACE_Connector class design.
 

The following AC_CLD_Connector::reconnect() method uses the same exponential backoff algorithm as
CLD_Connector::reconnect() (page 179) to avoid swamping a logging server with connection requests:
 
int AC_CLD_Connector::reconnect () { 
  // Maximum number of times to retry connect. 
  const size_t MAX_RETRIES = 5; 
  ACE_Time_Value timeout (1); 
  size_t i; 
  for (i = 0; i < MAX_RETRIES; ++i) { 
    ACE_Synch_Options options (ACE_Synch_Options::USE_TIMEOUT, 
                               timeout); 
    if (i > 0) ACE_OS::sleep (timeout); 
    if (connect (handler_, remote_addr_, options) == 0) 
      break; 
    timeout *= 2; // Exponential backoff. 
  } 
  return i == MAX_RETRIES ? -1 : 0; 
} 

AC_Client_Logging_Daemon. This class is a facade that integrates the other classes described above to implement
the new client logging daemon. Its definition is shown below:
 
class AC_Client_Logging_Daemon : public ACE_Service_Object { 
protected: 
  // Factory that passively connects the <AC_Input_Handler>. 
  AC_CLD_Acceptor acceptor_; 

  // Factory that actively connects the <AC_Output_Handler>. 
  AC_CLD_Connector connector_; 

  // The <AC_Output_Handler> connected by <AC_CLD_Connector>. 
  AC_Output_Handler output_handler_; 

public: 
  AC_Client_Logging_Daemon () 
    : acceptor_ (&output_handler_), 
      connector_ (&output_handler_) {} 

  // Service Configurator hook methods. 
  virtual int init (int argc, ACE_TCHAR *argv[]); 
  virtual int fini (); 
  virtual int info (ACE_TCHAR **bufferp, size_t length = 0) const; 
  virtual int suspend (); 
  virtual int resume (); 
}; 

AC_Client_Logging_Daemon inherits from ACE_Service_Object. It can therefore be configured dynamically via a
svc.conf file that's processed by the ACE Service Configurator framework described in Chapter 5. When an instance
of AC_Client_Logging_Daemon is linked dynamically, the ACE Service Configurator framework calls the
AC_Client_Logging_Daemon::init() hook method shown below:
 
 1 int AC_Client_Logging_Daemon::init 
 2       (int argc, ACE_TCHAR *argv[]) { 
 3   u_short cld_port = ACE_DEFAULT_SERVICE_PORT; 
 4   u_short sld_port = ACE_DEFAULT_LOGGING_SERVER_PORT; 
 5   ACE_TCHAR sld_host[MAXHOSTNAMELEN]; 
 6   ACE_OS_String::strcpy (sld_host, ACE_LOCALHOST); 
 7   ACE_Get_Opt get_opt (argc, argv, ACE_TEXT ("p:r:s:"), 0); 
 8   get_opt.long_option (ACE_TEXT ("client_port"), 'p', 
 9                        ACE_Get_Opt::ARG_REQUIRED); 
10   get_opt.long_option (ACE_TEXT ("server_port"), 'r', 
11                        ACE_Get_Opt::ARG_REQUIRED); 
12   get_opt.long_option (ACE_TEXT ("server_name"), 's', 
13                        ACE_Get_Opt::ARG_REQUIRED); 
14 
15   for (int c; (c = get_opt ()) != -1;) 
16     switch (c) { 
17     case 'p': // Client logging daemon acceptor port number. 
18       cld_port = ACE_static_cast 
19         (u_short, ACE_OS::atoi (get_opt.opt_arg ())); 
20       break; 
21     case 'r': // Server logging daemon acceptor port number. 
22       sld_port = ACE_static_cast 
23         (u_short, ACE_OS::atoi (get_opt.opt_arg ())); 
24       break; 
25     case 's': // Server logging daemon hostname. 
26       ACE_OS_String::strsncpy 
27         (sld_host, get_opt.opt_arg (), MAXHOSTNAMELEN); 
28       break; 
29     } 
30 
31   ACE_INET_Addr cld_addr (cld_port); 
32   ACE_INET_Addr sld_addr (sld_port, sld_host); 
33 
34   if (acceptor_.open (cld_addr) == -1) return -1; 
35   AC_Output_Handler *oh = &output_handler_; 
36   if (connector_.connect (oh, sld_addr) == -1) 
37   { acceptor_.close (); return -1; } 
38   return 0; 
39 } 

Lines 3? Assign the default client logging daemon listen port (cld_port) and the default server logging daemon port
(sld_port) and hostname (sld_host). These can be changed by arguments passed into this method. In particular, the
server logging daemon hostname will often need to be set using the -s option.
 

Lines 7?9 The ACE_Get_Opt iterator describe in Sidebar 8 (page 47) parses options passed by the svc.conf file.
The final parameter of 0 to ACE_Get_Opt ensures option parsing begins at argv[0] rather than argv[1], which is the
default. If any of the "-p", "-r",or"-s" options, or their long option equivalents, are passed in the argv parameter to
init(), the appropriate port number or hostname is modified accordingly.
 

Lines 31?2 With the port numbers and server logging daemon's hostname now known, form the addresses needed to
establish connections.
 

Lines 34?7 Initialize the acceptor_ (page 247) and connector_ (page 248).
 

When the client logging daemon is removed, the ACE Service Configurator framework calls the following
AC_Client_Logging_Daemon::fini() hook method:
 
int AC_Client_Logging_Daemon::fini () 
{ return acceptor_.close (); } 

The fini() method calls the close() method inherited by AC_CLD_Acceptor. This method in turn calls
AC_CLD_Acceptor::handle_close() to trigger a shutdown of the message queue and forwarder thread. The ACE
Service Configurator framework deletes the AC_Client_Logging_Daemon instance after fini() returns. This shutdown
sequence is depicted in Figure 7.11.
 

Figure 7.11. AC_Client_Logging_Daemon Shutdown Sequence
 

Now that we've implemented all the client logging daemon's classes, we can add the ACE_FACTORY_DEFINE
macro. [2]
 

[2] We leave the suspend(), resume(), and info() hook methods as an exercise for the reader.
 
ACE_FACTORY_DEFINE (AC_CLD, AC_Client_Logging_Daemon) 

This macro automatically defines the _make_AC_Client_Logging_Daemon() factory function, which is used in the
following svc.conf file:
 
dynamic AC_Client_Logging_Daemon Service_Object * 
AC_CLD:_make_AC_Client_Logging_Daemon() 
  "-p $CLIENT_LOGGING_DAEMON_PORT" 

This file directs the ACE Service Configurator framework to configure the client logging daemon via the following
steps:
 

1.

1. It dynamically links the AC_CLD DLL into the address space of the process.
1.  
2.

2. It uses the ACE_DLL class described in Sidebar 33 (page 143) to extract the
_make_AC_Client_Logging_Daemon() factory function from the AC_CLD DLL symbol table.

2.  
3.

3. This function is called to obtain a pointer to a dynamically allocated AC_Client_Logging_Daemon.
3.  
4.

4. The framework then calls AC_Client_Logging_Daemon::init() through this pointer, passing as its argc/argv
argument the string -p followed by an expansion of the CLIENT_LOGGING_DAEMON_PORT
environment variable that designates the port number where the client logging daemon listens for client
application connection requests.

4.  
5.

5. If init() succeeds, the AC_Client_Logging_Daemon pointer is stored in the ACE_Service_Repository as the
"AC_Client_Logging_Daemon".

5.  

We're now ready to show the main() function, in SR_Configurable_Logging_Server.cpp. It's similar to the
Configurable_Logging_Server.cpp program used for other services, but requires slightly different tactics. Sidebar 11
(page 55) discusses some problems that can arise when event handlers don't control their own life cycle. The
AC_Client_Logging_Daemon service in this chapter is allocated dynamically by the ACE Configurator framework
when it's activated. However, its acceptor and service handlers are member objects in the service, and therefore
don't control their own life cycle. Although our design carefully manages all the handlers's life cycle activities,
problems can still occur on Windows because of the ACE_WFMO_Reactor deferred cleanup semantics (page
107). We therefore explicitly set the ACE_Reactor singleton to be an ACE_Select_Reactor.
 
 1 #include "ace/OS.h" 
 2 #include "ace/Reactor.h" 
 3 #include "ace/Select_Reactor.h" 
 4 #include "ace/Service_Config.h" 
 5 
 6 int ACE_TMAIN (int argc, ACE_TCHAR *argv[]) { 
 7   ACE_Select_Reactor *select_reactor; 
 8   ACE_NEW_RETURN (select_reactor, ACE_Select_Reactor, 1); 
 9   ACE_Reactor *reactor; 
10   ACE_NEW_RETURN (reactor, ACE_Reactor (select_reactor, 1), 1); 
11   ACE_Reactor::close_singleton (); 
12   ACE_Reactor::instance (reactor, 1); 
13 
14   ACE_Service_Config::open (argc, argv); 
15 
16   ACE_Reactor::instance ()->run_reactor_event_loop (); 
17   return 0; 
18 } 

Lines 7? The reactor implementation-specific examples in Chapter 4 used automatic instances of the desired reactor
types. In this example, however, the reactor must persist until after the ACE_Object_Manager terminates services at
shutdown time. To ensure this, we allocate the reactor dynamically. The third argument to the
ACE_NEW_RETURN macro is the value to return from main() if allocation fails.
 

Lines 9?0 The ACE_Reactor is also allocated dynamically. The ACE_Select_Reactor is passed as the
implementation to use. The second argument to the ACE_Reactor constructor tells the new ACE_Reactor instance
to delete the implementation object when the reactor closes.
 

Lines 11?2 Close any existing ACE_Reactor singleton and replace it with the new ACE_Select_Reactor-based
instance. The second argument to ACE_Reactor::instance() explcitly turns control of the ACE_Reactor instance's
memory to the ACE_Reactor singleton management mechanism. This design ensures that the reactor singleton
shutdown activity generated by the ACE_Object_Manager will close the reactor and free the dynamically allocated
memory after the services are shut down.
 

Lines 14?6 As usual, configure services and run the reactor event loop.
 

The examples in this chapter have illustrated a number of powerful ACE Acceptor-Connector techniques and
strategies:
 

•

• Using a single ACE_Svc_Handler to process many network connections
•  
•

• Using nondynamic service handlers with a reactor
•  
•

• Pulsing a service handler's message queue to communicate with the handler's service thread
•  
•

• Reconnecting a TCP socket using an exponential backoff strategy
•  
•

• Replacing the singleton ACE_Reactor with one that ACE deletes automatically
•  

The capabilities in this chapter's client and server logging daemons could clearly be implemented using different
mechanisms and protocols. Due to ACE's highly refined framework design, however, none of the different ways to
redesign these daemons will require rewriting the networking code, buffer management, queueing mechanisms,
concurrency strategies, or demultiplexing techniques. The only changes are in the networked service implementation
itself.
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7.5 Summary
 

The ACE Acceptor-Connector framework decouples a service's connection and initialization strategies from its
service handling strategy. This separation of concerns allows each set of strategies to evolve independently and
promotes a modular design of networked applications. The ACE Acceptor-Connector framework factors
connection and initialization strategies into the ACE_Acceptor and ACE_Connector class templates, and the service
handling strategy into the ACE_Svc_Handler class template.
 

The ACE Reactor, Service Configurator, and Task frameworks described in earlier chapters use class inheritance
and virtual methods as their primary extensibility mechanisms. The ACE Acceptor-Connector framework uses these
mechanisms as well, primarily as the means to configure different strategies for connection establishment,
communication, concurrency, and service behavior. Unlike the frameworks in previous chapters, however, classes in
the ACE Acceptor-Connector framework share an inherent relationship in networked application services, so the use
of parameterized types plays a more significant role here. To allow and enforce the relationships between the
strategies, both ACE_Acceptor and ACE_Connector include an ACE_Svc_Handler-derived class in their template
arguments to act as the target of the connection factory.
 

This chapter defined and illustrated the communication and connection roles that networked application services play,
as well as the passive and active connection modes that connection-oriented services use. Although the ACE Socket
wrapper facades described in Chapter 3 of C++NPv1 assist with mastering the problems associated with C
operating system APIs, this chapter illustrated how the design of the ACE Acceptor-Connector framework
encourages modular separation of roles leading to highly extensible and maintainable designs. The examples showed
how easy it is to define an application's service handlers by defining class(es) derived from ACE_Svc_Handler and
adding the service-specific behavior in the hook and callback methods inherited from ACE_Svc_Handler,
ACE_Task, and ACE_Event_Handler. Although the ACE Acceptor-Connector framework encapsulates the most
common use-cases for service establishment, this chapter showed how the framework uses the Template Method
pattern [GoF] to allow application developers to customize the behavior of each service establishment step to match
the requirements, environment, and resources of specific networked applications.
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Chapter 8. The ACE Proactor Framework
 

CHAPTER SYNOPSIS
 

This chapter outlines the asynchronous I/O mechanisms available on today's popular OS platforms and then
describes the design and use of the ACE Proactor framework. This framework implements the Proactor pattern [
POSA2], which allows event-driven applications to efficiently demultiplex and dispatch service requests triggered by
the completion of asynchronous I/O operations. This chapter shows how to enhance our client logging daemon to use
a proactive model that (1) initiates I/O operations, (2) demultiplexes I/O completion events, and (3) dispatches those
completion events to application-defined completion handlers that process the results of asynchronous I/O operations.
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8.1 Overview
 

Chapter 3 described the ACE Reactor framework, which is most often used with a reactive I/O model. An
application based on this model registers event handler objects that are notified by a reactor when it's possible to
perform one or more desired I/O operations, such as receiving data on a socket, with a high likelihood of immediate
completion. I/O operations are often performed in a single thread, driven by the reactor's event dispatching loop.
Although reactive I/O is a common programming model, each thread can execute only one I/O operation at a time.
The sequential nature of the I/O operations can be a bottleneck since applications that transfer large amounts of data
on multiple endpoints can't use the parallelism available from the OS and/or multiple CPUs or network interfaces.
 

One way to alleviate the bottlenecks of reactive I/O is to use synchronous I/O in conjunction with a multithreading
model, such as the thread pool model in Chapter 6 or the thread-per-connection model in Chapter 7. Multithreading
can help parallelize an application's I/O operations and may improve performance. However, adding multiple threads
to a design requires appropriate synchronization mechanisms to avoid concurrency hazards, such as race conditions
and deadlocks [Tan92]. These additional considerations require expertise in concurrency and synchronization
techniques. They also add complexity to both design and code, increasing the risk of subtle defects. Moreover,
multithreading can incur non-trivial time/space overhead due to the resources needed to allocate run-time stacks,
perform context switches [SS95b], and move data between CPU caches [SKT96].
 

A proactive I/O model is often a more scalable way to alleviate reactive I/O bottlenecks without introducing the
complexity and overhead of synchronous I/O and multithreading. This model allows an application to execute I/O
operations via the following two phases:
 

1.

1. The application can initiate one or more asynchronous I/O operations on multiple I/O handles in parallel
without having to wait until they complete.

1.  
2.

2. As each operation completes, the OS notifies an application-defined completion handler that then processes
the results from the completed I/O operation.

2.  

The two phases of the proactive I/O model are essentially the inverse of those in the reactive I/O model, in which an
application
 

1.

1. Uses an event demultiplexer to determine when an I/O operation is possible, and likely to complete
immediately, and then

1.  
2.

2. Performs the operation synchronously
2.  

In addition to improving application scalability via asynchrony, the proactive I/O model can offer other benefits,
depending on the platform's implementation of asynchronous I/O. For example, if multiple asynchronous I/O
operations can be initiated simultaneously and each operation carries extended information, such as file positions for
file I/O, the OS can optimize its internal buffering strategy to avoid unnecessary data copies. It can also optimize file
I/O performance by reordering operations to minimize disk head movement and/or increase cache hit rates.
 

The ACE Proactor framework simplifies the development of programs that use the proactive I/O model. In this
context, the ACE Proactor framework is responsible for
 

•

• Initiating asynchronous I/O operations
•  
•

• Saving each operation's arguments and relaying them to the completion handler
•  
•

• Waiting for completion events that indicate these operations have finished
•  
•

• Demultiplexing the completion events to their associated completion handlers and
•  
•

• Dispatching to hook methods on the handlers to process the events in an application-defined manner
•  

In addition to its I/O-related capabilities, the ACE Proactor framework offers the same timer queue mechanisms
offered by the ACE Reactor framework in Section 3.4.
 

This chapter describes the following ACE Proactor framework classes:
 

ACE Class
 

Description
 

ACE_Handler
 

Defines the interface for receiving the results of
asynchronous I/O operations and handling timer
expirations.
 

ACE_Asynch_Read_Stream
 

ACE_Asynch_Write_Stream
 

ACE_Asynch_Result
 

Initiate asynchronous read and write operations on an
I/O stream and associate each with an ACE_Handler
object that will receive the results of those operations.
 

ACE_Asynch_Acceptor
 

ACE_Asynch_Connector
 

An implementation of the Acceptor-Connector pattern
that establishes new TCP/IP connections asynchronously.
 

ACE_Service_Handler
 

Defines the target of the ACE_Asynch_Acceptor and
ACE_Asynch_Connector connection factories and
provides the hook methods to initialize a
TCP/IP-connected service.
 

ACE_Proactor
 

Manages timers and asynchronous I/O completion event
demultiplexing. This class is analogous to the
ACE_Reactor class in the ACE Reactor framework.
 

The most important relationships between the classes in the ACE Proactor framework are shown in Figure 8.1 (page
260). These classes play the following roles in accordance with the Proactor pattern [POSA2]:
 

Figure 8.1. The ACE Proactor Framework Classes
 

•

• Asynchronous I/O infrastructure layer classes perform application-independent strategies that initiate
asynchronous I/O operations, demultiplex completion events to their completion handlers, and then dispatch
the associated completion handler hook methods.The infrastructure layer classes in the ACE Proactor
framework include ACE_Asynch_Acceptor, ACE_Asynch_Connector, ACE_Asynch_Result,
ACE_Asynch_Read_Stream, ACE_Asynch_Write_Stream, and various implementations of ACE_Proactor.
The infrastructure layer also uses the ACE_Time_Value and ACE timer queue classes from Sections 3.2 and
3.4.

•  
•

• Application layer classes include completion handlers that perform application-defined processing in their
hook methods. In the ACE Proactor framework, these classes are descendants of ACE_Handler and/or
ACE_Service_Handler.

•  

The power of the ACE Proactor framework comes from the separation of concerns between its infrastructure classes
and application classes. By decoupling completion demultiplexing and dispatching mechanisms from
application-defined event processing policies, the ACE Proactor framework provides the following benefits:
 

•

• Improve portability. Applications can take advantage of the proactive I/O model on many platforms that have
diverse asynchronous I/O mechanisms. It uses overlapped I/O on Windows (requires Windows NT version
4.0 and higher) and the Asynchronous I/O (AIO) option of the POSIX.4 Realtime Extension standard [
POS95] on platforms that implement it, including HP-UX, IRIX, Linux, LynxOS, and Solaris.

•  
•

• Automates completion detection, demultiplexing, and dispatching. The ACE Proactor framework isolates
native OS I/O initiation and completion demultiplexing APIs, as well as timer support, in infrastructure layer
framework classes. Applications can use these object-oriented mechanisms to initiate asynchronous
operations, and only need to implement application-defined completion handlers.

•  
•

• Support transparent extensibility. As shown in Section 8.5, the ACE Proactor framework uses the Bridge
pattern [GoF] to export an interface with uniform, well-defined behavior. This design allows the framework
internals to change and adapt to varying OS-provided asynchronous I/O implementations and shortcomings
without requiring any application-layer changes.

•  
•

• Increase reuse and minimize error-prone programming details. By separating asynchronous I/O mechanisms
from application-defined policies and behavior, the ACE Proactor framework can be reused across many
diverse application domains.

•  
•

• Thread safety. Applications can use I/O parallelism offered by the OS platform without needing complicated
application-level synchronization strategies. When application operation initiation and completion handling
code is processed in a single thread, there are only simple data access rules to follow, such as "don't
manipulate a buffer that's been given to the OS for I/O before that I/O is complete."

•  

The ACE Proactor framework is a whitebox framework since networked application event handlers must descend
from ACE_Handler, similar to the ACE Reactor framework.
 

The following sections motivate and describe the capabilities of each class in the ACE Proactor framework. They
also illustrate how this framework can be used to apply asynchronous I/O to our client logging daemon. If you aren't
familiar with the Proactor pattern from POSA2, we recommend that you read about it first before delving into the
detailed examples in this chapter.
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8.2 The Asynchronous I/O Factory Classes
 

Motivation
 

The proactive I/O model is generally harder to program than reactive and synchronous I/O models because
 

•

• I/O initiation and completion are distinct activities that must be handled separately.
•  
•

• Multiple I/O operations can be initiated simultaneously, which requires more recordkeeping.
•  
•

• There's no guaranteed completion order when multiple I/O operations complete simultaneously.
•  
•

• In a multithreaded service a completion handler may execute in a thread other than the one that initiated the
I/O operation.

•  

The proactive I/O model therefore requires a factory to initiate asynchronous I/O operations. Since multiple I/O
operations can execute simultaneously and complete in any order, the proactive model also requires an explicit
binding between each asynchronous operation, its parameters (such as the I/O handle, data buffer, and buffer size),
and the completion handler that will process the results of the operation.
 

In theory, designing classes to generate asynchronous I/O operations and bind them to their completion handlers
should be relatively straightforward. In practice, however, the design is complicated by the fact that asynchronous
I/O is implemented in different ways across today's popular OS platforms. Two common examples include:
 

•

• Windows. The Windows ReadFile() and WriteFile() system functions can either perform synchronous I/O or
initiate an overlapped I/O operation.

•  
•

• POSIX. The POSIX aio_read() and aio_write() functions initiate asynchronous read and write operations,
respectively. These functions are separate from the read() and write() (and Sockets recv() and send())
functions that are used in ACE's IPC wrapper facade classes (see Chapter 3 in C++NPv1).

•  

Each platform's asynchronous I/O facility also includes its own mechanism for binding an I/O operation with its
parameters, such as buffer pointer and transfer size. For example, POSIX AIO provides an AIO control block
(aiocb), whereas Windows provides the OVERLAPPED structure and a completion key argument to the I/O
completion port facility. Sidebar 54 discusses other challenges with OS asynchronous I/O mechanisms.
 

Sidebar 54: Asynchronous I/O Portability
Issues
 

Unlike synchronous I/O and reactive I/O, which are available on most modern operating systems,
asynchronous I/O is not ubiquitous. The following OS platforms supported by ACE provide
asynchronous I/O mechanisms:
 

•

• Windows platforms that support both overlapped I/O and I/O completion ports [Ric97].
Overlapped I/O is an efficient and scalable I/O mechanism on Windows [Sol98]. Windows
performs completion event demultiplexing via I/O completion ports and event handles. An I/O
completion port is a queue managed by the Windows kernel to buffer I/O completion events.

•  
•

• POSIX platforms that implement the POSIX.4 AIO specification [POS95]. This specification
was originally designed for disk file I/O [Gal95], but can also be used for network I/O with
varying degress of success. An application thread can wait for completion events via
aio_suspend() or be notified by real-time signals, which are tricky to integrate into an
event-driven application. In general, POSIX.4 AIO requires extra care to program the proactive
model correctly and efficiently. Despite UNIX's usual interchangeability of I/O system functions
across IPC mechanisms, integration of the POSIX AIO facility with other IPC mechanisms,
such as the Socket API, leaves much to be desired on some platforms. For example, Socket
API functions such as connect() and accept() are not integrated with the POSIX AIO model,
and some AIO implementations can't handle multiple outstanding operations on a handle under
all conditions.

•  

Asynchronous I/O performance characteristics can also vary widely. For example, some operating
systems implement the POSIX AIO functions by spawning a thread for each asynchronous I/O
operation. Although this is a compliant implementation, it provides no performance gain relative to an
application spawning the thread itself. In fact, this implementation can actually degrade the performance
of I/O-intensive applications rather than improve it! Hopefully, OS asynchronous I/O implementations
will soon improve, allowing wider use of this powerful mechanism.
 

All the asynchronous I/O mechanisms discussed above use an I/O handle to refer to the IPC channel or file on which
to perform the I/O. The ACE Proactor framework defines a set of classes that initiate asynchronous I/O on various
IPC mechanisms. These classes enhance portability, minimize complexity, and avoid reintroducing the I/O
handle-related problems mastered in C++NPv1. This book examines the two most popular classes for networked
applications, ACE_Asynch_Read_Stream and ACE_Asynch_Write_Stream.
 

Class Capabilities
 

ACE_Asynch_Read_Stream and ACE_Asynch_Write_Stream are factory classes that enable applications to initiate
portable asynchronous read() and write() operations, respectively. These classes provide the following capabilities:
 

•

• They can initiate asynchronous I/O operations on a stream-oriented IPC mechanism, such as a TCP socket.
•  
•

• They bind an I/O handle, an ACE_Handler object, and an ACE_Proactor to process I/O completion events
correctly and efficiently.

•  
•

• They create an object that carries an operation's parameters through the ACE Proactor framework to its
completion handler.

•  
•

• They derive from ACE_Asynch_Operation, which provides the interface to initialize the object and to
request cancellation of outstanding I/O operations.

•  

ACE_Asynch_Read_Stream and ACE_Asynch_Write_Stream define nested Result classes to represent the binding
between an operation and its parameters. The ACE Proactor framework abstracts common results-oriented
behavior into the ACE_Asynch_Result class from which the nested Result classes derive. Together, this set of classes
provides a completion handler with the following capabilities:
 

•

• It can obtain the original parameters for an I/O operation, such as the requested transfer byte count and the
memory address.

•  
•

• It can determine the success or failure of the associated operation.
•  
•

• It can be passed an asynchronous completion token (ACT) [POSA2] that provides a method to extend the
amount and type of information communicated between the operation initiator and the completion handler.

•  

The interfaces for ACE_Asynch_Result, ACE_Asynch_Read_Stream, ACE_Asynch_Write_Stream and their Result
nested classes are shown in Figure 8.2 (page 264). The following table lists the key methods in
ACE_Asynch_Read_Stream:
 

Figure 8.2. The ACE Asynchronous Read/Write Stream Class Relationships
 

Method
 

Description
 

open()
 

Initialize object to prepare for initiating asynchronous
read() operations.
 

cancel()
 

Attempt to cancel outstanding read() operations initiated
via this object.
 

read()
 

Initiate an asynchronous operation to read from the
associated IPC stream.
 

The key methods in the ACE_Asynch_Write_Stream class are shown in the following table:
 

Method
 

Description
 

open()
 

Initialize object to prepare for initiating asynchronous
write() operations.
 

cancel()
 

Attempt to cancel outstanding write() operations initiated
via this object.
 

write()
 

Initiate an asynchronous operation to write to the
associated IPC stream.
 

The open() methods bind the asynchronous I/O factory object to
 

•

• The handle that's used to initiate I/O operations
•  
•

• The ACE_Proactor object that will detect and demultiplex completion events for those I/O operations
•  
•

• The ACE_Handler object that will handle proactor-dispatched I/O completions
•  

The act parameter is an asynchronous completion token that will be associated with each I/O operation issued via the
I/O factory object. When the operation completes, the act parameter can be retrieved using the act() method in
ACE_Asynch_Result. This feature is specific to Windows, however, so we don't show its use in this book.
 

The read() and write() methods use an ACE_Message_Block to receive into and send from, respectively, thereby
providing the following benefits:
 

•

• Simplified buffer management. Since asynchronous I/O initiation and completion are handled in separate
classes, information concerning buffer addresses, available space, and used space must be associated with
each I/O operation. Reusing ACE_Message_Block addresses these needs portably and efficiently.

•  
•

• Automatic transfer count udpate. The write() method starts transferring bytes from the message block's read
pointer, that is, it reads bytes out of the message. Conversely, the read() method starts reading into the
message block beginning at its write pointer, that is, it writes new bytes into the message. After successful
completion of an I/O operation, the message block's read and write pointers are updated to reflect the
number of bytes transferred successfully. Applications therefore needn't adjust message buffer pointers or
sizes since the ACE Proactor framework handles this automatically. Sidebar 55 (page 275) further describes
how the ACE Proactor framework manages ACE_Message_Block pointers.

•  
•

• Easy integration with other ACE frameworks. The ACE_Message_Block provides a convenient mechanism
to obtain or forward data for further processing in the ACE Task framework (Chapter 6), ACE
Acceptor-Connector framework (Chapter 7), and the ACE Streams framework (Chapter 9).

•  

In contrast to the ACE IPC wrapper facades, such as ACE_SOCK_Stream described in C++NPv1,
ACE_Asynch_Read_Stream and ACE_Asynch_Write_Stream don't encapsulate any underlying IPC mechanisms.
Instead, they define the interface for initiating asynchronous I/O operations. This design yields the following benefits:
 

•

• It allows reuse of ACE's IPC wrapper facade classes, such as ACE_SOCK_Stream and
ACE_SPIPE_Stream, in the ACE Proactor framework and avoids recreating a parallel set of IPC classes
usable only in the Proactor framework.

•  
•

• It imposes a structure to avoid misuse of I/O handles by exposing only the desired I/O operation initiators.
•  
•

• It facilitates use of the same IPC classes for synchronous and asynchronous I/O by giving the I/O handle to
the asynchronous operation factory.

•  

Therefore, networked applications written with ACE can use any combination of synchronous, reactive, and
proactive I/O. The decision concerning which I/O mechanism to use can be made at compile time or run time if
desired. In fact, the decision can be deferred until after the IPC object is set up! For example, an application may
decide which mechanism to use after establishing a socket connection [HPS97].
 

The ACE Proactor framework also contains factory classes for initiating datagram I/O operations
(ACE_Asynch_Read_Dgram and ACE_Asynch_Write_Dgram) and file I/O operations (ACE_Asynch_Read_File,
ACE_Asynch_Write_File, and ACE_Asynch_Transmit_File). The designs and capabilities of these classes are
similar to those described in this chapter. Please consult the online ACE documentation at 
http://ace.ece.uci.edu/Doxygen/ or http://www.riverace.com/docs/ for details.
 

Example
 

This chapter reimplements the client logging daemon service from Chapter 7 using the ACE Proactor framework.
Although the classes used in the proactive client logging daemon service are similar to those in the
Acceptor-Connector version, the proactive version uses a single application thread to initiate and handle completions
for all its I/O operations.
 

The classes comprising the client logging daemon based on the ACE Proactor framework are shown in Figure 8.3.
The role of each class is outlined below:
 

Figure 8.3. Classes in the Proactive Client Logging Daemon
 

Class
 

Description
 

AIO_Output_Handler
 

A message forwarder that initiates asynchronous write
operations to forward messages to the logging server
 

AIO_CLD_Connector
 

A factory that actively (re)establishes and authenticates
connections with the logging server and activates an
AIO_Output_Handler
 

AIO_Input_Handler
 

Processes log record data received from logging clients
via asynchronous read() operations and passes
completed log records to AIO_Output_Handler for
output processing
 

AIO_CLD_Acceptor
 

A factory that accepts connections from logging clients
and creates a new AIO_Input_Handler for each
 

AIO_Client_Logging_Daemon
 

A facade class that integrates the other classes together
 

The interactions between instances of these classes are shown in Figure 8.4 (page 268). We'll start describing the
AIO_Output_Handler class in this example and present the other classes in subsequent sections in this chapter.
 

Figure 8.4. Interactions in the Proactive Client Logging Daemon
 

The source code for this example is in the AIO_Client_Logging_Daemon.cpp file. The AIO_Output_Handler class
forwards log records to a server logging daemon. A portion of its class definition follows:
 
class AIO_Output_Handler 
  : public ACE_Task<ACE_NULL_SYNCH>, 
    public ACE_Service_Handler { 

AIO_Output_Handler inherits from ACE_Task to reuse its ACE_Message_Queue. This queue is unsynchronized
since all work in this service occurs in one application thread. Since AIO_Output_Handler derives from
ACE_Service_Handler, it can process completion events (described in Section 8.3) and act as the target of the
AIO_CLD_Connector asynchronous connection factory (described in Section 8.4).
 
public: 
  AIO_Output_Handler (): can_write_ (0) {} 

  virtual AIO_Output_Handler (); 

  // Entry point into the <AIO_Output_Handler>. 
  virtual int put (ACE_Message_Block *, ACE_Time_Value * = 0); 

  // Hook method called when server connection is established. 
  virtual void open (ACE_HANDLE new_handle, 
                     ACE_Message_Block &message_block); 

protected: 
  ACE_Asynch_Read_Stream reader_; // Detects connection loss. 
  ACE_Asynch_Write_Stream writer_; // Sends records to server. 
  int can_write_; // Safe to begin sending a log record? 

  // Initiate the send of a log record. 
  void start_write (ACE_Message_Block *mblk = 0); 
}; 

typedef ACE_Unmanaged_Singleton<AIO_Output_Handler, 
                                ACE_Null_Mutex> 
        OUTPUT_HANDLER; 

AIO_Output_Handler contains an ACE_Asynch_Read_Stream to detect when the server connection closes. It also
contains an ACE_Asynch_Write_Stream to initiate asynchronous write() operations that send log records to the
server logging daemon.
 

Since there's one TCP connection to the server logging daemon, we use a single AIO_Output_Handler to forward
log records to the server logging daemon. We therefore define OUTPUT_HANDLER as an
ACE_Unmanaged_Singleton (page 194). It's unmanaged to ensure that we control its life cycle since this service may
be stopped and unlinked before the end of the program. The synchronization traits class is ACE_Null_Mutex
because all access to the singleton occurs in one thread.
 

When the server logging daemon connection is established, the following open() hook method is dispatched by the
ACE Proactor framework:
 
 1 void AIO_Output_Handler::open 
 2     (ACE_HANDLE new_handle, ACE_Message_Block &) { 
 3   ACE_SOCK_Stream temp_peer (new_handle); 
 4   int bufsiz = ACE_DEFAULT_MAX_SOCKET_BUFSIZ; 
 5   temp_peer.set_option (SOL_SOCKET, SO_SNDBUF, 
 6                         &bufsiz, sizeof bufsiz); 
 7 
 8   reader_.open (*this, new_handle, 0, proactor ()); 
 9   writer_.open (*this, new_handle, 0, proactor ()); 
10 
11   ACE_Message_Block *mb; 
12   ACE_NEW (mb, ACE_Message_Block (1)); 
13   reader_.read (*mb, 1); 
14   ACE_Sig_Action no_sigpipe ((ACE_SignalHandler) SIG_IGN); 
15   no_sigpipe.register_action (SIGPIPE, 0); 
16   can_write_ = 1; 
17   start_write (0); 
18 } 

Lines 3? Increase the new socket's send buffer to its largest size to maximize throughput over long-delay and/or
high-speed networks. We use a temporary ACE_SOCK_Stream object to set the buffer in a type-safe manner.
 

Lines 8? Initialize the reader_ and writer_ objects. Each specifies this object as the completion handler, the new
socket handle to issue operations on, and the same ACE_Proactor used to open the connection. The completion key
(ACT) facility isn't used, so the third argument is 0. After initialization, the reader_ and writer_ are used to initiate
asynchronous I/O operations.
 

Lines 11?3 The client logging daemon in the Example part of Section 7.4 registered the server socket for input events
in a reactor. In the proactive model, we initiate an asynchronous read() for one byte. If this operation ever completes,
either the server sent data (which violates the protocol) or the server closed its socket endpoint.
 

Lines 14?5 As in other examples that rely on a READ event to detect a closed socket, ignore the SIGPIPE signal so
that asynchronous write() operations won't abort the program if the connection is closed.
 

Lines 16?7 To avoid interleaving log records in the presence of partial writes, we only transmit one log record at a
time. The can_write_ flag indicates whether it's safe to start writing a new log record or not. Since this connection is
newly opened, it's now safe to write, so we set the flag and then call the following start_write() method to initiate an
asynchronous write() operation:
 
 1 void AIO_Output_Handler::start_write 
 2     (ACE_Message_Block *mblk) { 
 3   if (mblk == 0) { 
 4     ACE_Time_Value nonblock (0); 
 5     getq (mblk, &nonblock); 
 6   } 
 7   if (mblk != 0) { 
 8     can_write_ = 0; 
 9     if (writer_.write (*mblk, mblk->length ()) == -1) 
10       ungetq (mblk); 
11   } 
12 } 

Lines 1? The start_write() method can be called with one of two arguments
 

•

• A NULL pointer, which indicates that the first message in the queue should be dequeued and sent
•  
•

• A non-NULL ACE_Message_Block, which indicates to start writing immediately
•  

Lines 7?1 If there's no log record available for sending, we return without doing anything. Otherwise, we reset
can_write_ to 0 to prevent further message blocks from being sent until the current one is finished. The writer_ object
initiates an asynchronous write() operation to send the message block. If the write() initiation fails, the message block
is put back on the queue with the assumption that the socket is closed. The reconnection strategy (page 293) will
trigger an asynchronous write() as soon as the connection is reestablished.
 

When log records are received from logging clients, they are passed to the AIO_Output_Handler using the following
put() method reimplemented from ACE_Task:
 
int AIO_Output_Handler::put (ACE_Message_Block *mb, 
                             ACE_Time_Value *timeout) { 
  if (can_write_) { start_write (mb); return 0; } 
  return putq (mb, timeout); 
} 

If there's no write() operation in progress, call start_write() to immediately initiate sending of the specified
ACE_Message_Block. If a write() can't be started now, we queue the message for later.
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8.3 The ACE_Handler Class
 

Motivation
 

A chief differentiator between the proactive and reactive I/O models is that proactive I/O initiation and completion
are distinct steps that occur separately. Moreover, these two steps may occur in different threads of control. Using
separate classes for the initiation and completion processing avoids unnecessarily coupling the two. Section 8.2
described the ACE_Asynch_Read_Stream and ACE_Asynch_Write_Stream classes used to initiate asynchronous
I/O operations; this section focuses on I/O completion handling.
 

Completion events signify that a previously initiated I/O operation has finished. To process the result of the I/O
operation correctly and efficiently, a completion handler must know all of the arguments specified for the I/O
operation, in addition to the result. Together, this information includes
 

•

• What type of operation was initiated
•  
•

• Whether or not the operation completed successfully
•  
•

• The error code, if the operation failed
•  
•

• The I/O handle that identifies the communication endpoint
•  
•

• The memory address for the transfer
•  
•

• The requested and actual number of bytes transferred
•  

Asynchronous I/O completion processing requires more information than is available to callback methods in the ACE
Reactor framework. The ACE_Event_Handler class presented in Section 3.3 is therefore not suitable for use in the
ACE Proactor framework. Since completion handling also depends on the asynchronous I/O mechanism offered by
the underlying OS platform, it has the same portability issues discussed in Section 8.2. Addressing these issues in
each application is unnecessarily tedious and costly, which is why the ACE Proactor framework provides the
ACE_Handler class.
 

Class Capabilities
 

ACE_Handler is the base class of all asynchronous completion handlers in the ACE Proactor framework. This class
provides the following capabilities:
 

•

• It provides hook methods to handle completion of all asynchronous I/O operations defined in ACE, including
connection establishment and I/O operations on an IPC stream.

•  
•

• It provides a hook method to handle timer expiration.
•  

The interface for ACE_Handler is shown in Figure 8.5 (page 272) and its key methods are shown in the following
table:
 

Method
 

Description
 

handle()
 

Obtains the handle used by this object
 

handle_read_stream()
 

Hook method called on completion of a read() operation
initiated by ACE_Asynch_Read_Stream
 

handle_write_stream()
 

Hook method called on completion of a write() operation
initiated by ACE_Asynch_Write_Stream
 

handle_time_out()
 

Hook method called when a timer scheduled via
ACE_Proactor expires
 

Figure 8.5 The ACE_Handler Class
 
                   ACE_Handler 
# proactor_ : ACE_Proactor * 
+ handle () : ACE_HANDLE 
+ handle_read_stream (result : 
          const ACE_Asynch_Read_Stream::Result &) 
+ handle_write_stream (result : 
          const ACE_Asynch_Write_Stream::Result &) 
+ handle_time_out (tv : const ACE_Time_Value &, 
                   act : const void *) 
+ handle_accept (result : 
          const ACE_Asynch_Accept::Result &) 
+ handle_connect (result : 
          const ACE_Asynch_Connect::Result &) 

The handle_time_out() method is called when a timer scheduled with an ACE_Proactor expires. Its tv argument is
the absolute time of day that the timer was scheduled to expire. The actual time may be different depending on
activity level and dispatched handler delays. Note that this behavior is slightly different than the ACE_Time_Value
passed to ACE_Event_Handler::handle_timeout() (page 49), which is the actual time of day the timer event hook
method was dispatched by the ACE proactor framework.
 

The handle_read_stream() and handle_write_stream() hook methods are called with a reference to the Result object
associated with an asynchronous operation that has completed. The most useful Result object methods that are
accessible from handle_read_stream() and handle_write_stream() are shown in context in Figure 8.2 (page 264) and
listed in the following table:
 

Method
 

Description
 

success()
 

Indicates whether or not the asynchronous operation
succeeded
 

handle()
 

Obtains the I/O handle used by the asynchronous I/O
operation
 

message_block()
 

Obtains a reference to the ACE_Message_Block used in
the operation
 

bytes_transferred()
 

Indicates how many bytes were actually transferred in the
asynchronous operation
 

bytes_to_read()
 

Indicates how many bytes were requested for an
asynchronous read() operation
 

bytes_to_write()
 

Indicates how many bytes were requested for an
asynchronous write() operation
 

Example
 

All previous logging daemons, both client and server, have used the Logging_Handler class developed in Chapter 4
of C++NPv1 to receive log records from logging clients. The Logging_Handler::recv_log_record() method uses
synchronous input operations to receive a log record. Synchronous input operations are relatively straightforward to
program since the activation record of the receiving thread's run-time stack can be used to store bookkeeping
information and data fragments.
 

In contrast, asynchronous input handling is harder to program since the bookkeeping details and data fragments must
be managed explicitly, rather than implicitly on the run-time stack. In this example, the new AIO_Input_Handler class
receives log records from logging clients by initiating asynchronous read() operations and assembling the data
fragments into log records that are then forwarded to the server logging daemon. This class uses the proactive I/O
model and asynchronous input operations to achieve maximum concurrency across all logging clients using a single
thread of control.
 

As shown in Figure 8.3 (page 267), the AIO_Input_Handler class is a descendant of ACE_Handler (Section 8.4
discusses ACE_Service_Handler, which derives from ACE_Handler) and is defined as follows:
 
class AIO_Input_Handler : public ACE_Service_Handler { 
public: 
  AIO_Input_Handler (AIO_CLD_Acceptor *acc = 0) 
    : acceptor_ (acc), mblk_ (0) {} 

  virtual AIO_Input_Handler (); 

  // Called by <ACE_Asynch_Acceptor> when a client connects. 
  virtual void open (ACE_HANDLE new_handle, 
                     ACE_Message_Block &message_block); 

protected: 
  enum { LOG_HEADER_SIZE = 8 };   // Length of CDR header. 
  AIO_CLD_Acceptor *acceptor_;    // Our creator. 
  ACE_Message_Block *mblk_;       // Block to receive log record. 
  ACE_Asynch_Read_Stream reader_; // Asynchronous read() factory. 

  // Handle input from logging clients. 
  virtual void handle_read_stream 
    (const ACE_Asynch_Read_Stream::Result &result); 
}; 

The logging client sends each log record in CDR format, starting with a fixed-length header (Section 4.4.2 in
C++NPv1 presents complete details on the CDR marshaling and log record format). The header has an
ACE_CDR::Boolean to indicate the byte order and an ACE_CDR::ULong holding the length of the payload
following the header. From CDR encoding and alignment rules, we know this to be 8 bytes, so we define the
LOG_HEADER_SIZE enumerator as 8.
 

When a logging client connects to the client logging daemon, the following open() hook method is dispatched by the
ACE Proactor framework:
 
void AIO_Input_Handler::open 
    (ACE_HANDLE new_handle, ACE_Message_Block &) { 
  reader_.open (*this, new_handle, 0, proactor ()); 
  ACE_NEW_NORETURN 
    (mblk_, ACE_Message_Block (ACE_DEFAULT_CDR_BUFSIZE)); 
  ACE_CDR::mb_align (mblk_); 
  reader_.read (*mblk_, LOG_HEADER_SIZE); 
} 

This method allocates an ACE_Message_Block to receive the log record header from the client. Rather than simply
allocating just enough for the header, the message will be large enough for the entire record in many cases.
Moreover, it can be resized when needed. The block's write pointer is aligned correctly for CDR demarshaling, and
then passed to an asynchronous read() operation that's initiated to receive the header.
 

When the read() operation completes, the following completion handler method is invoked by the ACE Proactor
framework:
 
 1 void AIO_Input_Handler::handle_read_stream 
 2     (const ACE_Asynch_Read_Stream::Result &result) { 
 3   if (!result.success () || result.bytes_transferred () == 0) 
 4     delete this; 
 5   else if (result.bytes_transferred() < result.bytes_to_read()) 
 6     reader_.read (*mblk_, result.bytes_to_read () -
 7                           result.bytes_transferred ()); 
 8   else if (mblk_->length () == LOG_HEADER_SIZE) { 
 9     ACE_InputCDR cdr (mblk_); 
10 
11     ACE_CDR::Boolean byte_order; 
12     cdr >> ACE_InputCDR::to_boolean (byte_order); 
13     cdr.reset_byte_order (byte_order); 
14 
15     ACE_CDR::ULong length; 
16     cdr >> length; 
17 
18     mblk_->size (length + LOG_HEADER_SIZE); 
19     reader_.read (*mblk_, length); 
20   } 
21   else { 
22     if (OUTPUT_HANDLER::instance ()->put (mblk_) == -1) 
23       mblk_->release (); 
24 
25     ACE_NEW_NORETURN 
26       (mblk_, ACE_Message_Block (ACE_DEFAULT_CDR_BUFSIZE)); 
27     ACE_CDR::mb_align (mblk_); 
28     reader_.read (*mblk_, LOG_HEADER_SIZE); 
29   } 
30 } 

Lines 3? Delete this object if read() failed or if the peer logging client closed the connection. AIO_Input_Handler's
destructor releases resources to prevent leaks.
 

Lines 5? If fewer bytes were received than requested, initiate another asynchronous read() operation to receive the
remaining bytes. We needn't adjust any pointers when requesting that more data be added to the message block. 
Sidebar 55 describes how the ACE Proactor framework manages ACE_Message_Block pointers automatically.
 

Lines 8?9 If all requested data was received, and it's the size of a log record header, we received the header, not
payload. This test is safe since the data portion of a log record is always larger than the header. We then use the
ACE_InputCDR class to demarshal the header, yielding the number of payload bytes in the record. mblk_ is resized
to accomodate the remaining data and an asynchronous read() is initiated to receive the payload. This method will be
called again upon completion and, if necessary, will continue initiating asynchronous read() operations until the
complete record is received or an error occurs.
 

Lines 22?3 When the complete log record is received, it's forwarded via the AIO_Output_Handler::put() method
(page 270). After forwarding the log record, AIO_Output_Handler will release the message block. If the record
can't be forwarded, however, the message is released immediately, discarding the log record.
 

Lines 25?8 Allocate a new ACE_Message_Block object for the next log record and initiate an asynchronous read()
operation to receive its header.
 

Sidebar 55: How ACE_Message_Block
Pointers are Managed
 

When initiating an asynchronous read() or write() operation, the request must specify an
ACE_Message_Block to either receive or supply the data. The ACE Proactor framework's completion
handling mechanism updates the ACE_Message_Block pointers to reflect the amount of data read or
written as follows:
 

Operation
 

Pointer Usage
 

Read
 

The initial read buffer pointer is the message's
wr_ptr(). At completion, the wr_ptr is
advanced by the number of bytes read.
 

Write
 

The initial write buffer pointer is the message's
rd_ptr(). At completion, the rd_ptr is
advanced by the number of bytes written.
 

It may seem counterintuitive to use the write pointer for reads and the read pointer for writes. It may
therefore help to consider that when reading data, it's being written into the message block. Similarly,
when writing data, it's being read from the message block. Upon completion, the updated length of data
in the ACE_Message_Block is larger for reads (because the write pointer has advanced) and smaller for
writes (because the read pointer has advanced).
 

The AIO_Output_Handler::start_write() method (page 269) initiates an asynchronous write() operation to send a log
record to the server logging daemon. When a write() completes, the following method is called by the ACE Proactor
framework.
 
 1 void AIO_Output_Handler::handle_write_stream 
 2        (const ACE_Asynch_Write_Stream::Result &result) { 
 3   ACE_Message_Block &mblk = result.message_block (); 
 4   if (!result.success ()) { 
 5     mblk.rd_ptr (mblk.base ()); 
 6     ungetq (&mblk); 
 7   } 
 8   else { 
 9     can_write_ = handle () == result.handle (); 
10     if (mblk.length () == 0) { 
11       mblk.release (); 
12       if (can_write_) start_write (); 
13     } 
14     else if (can_write_) start_write (&mblk); 
15     else { mblk.rd_ptr (mblk.base ()); ungetq (&mblk); } 
16   } 
17 } 

Lines 4? If the write() operation failed, reset the message block's rd_ptr() to the beginning of the block. We assume
that if a write() fails, the socket is closed and will be reconnected later, at which point the message block will be
resent from the beginning.
 

Line 9 Re-enable can_write_ only if the socket hasn't been closed. If the socket closes while asynchronous write()
operations are queued or in progress, there is no guarantee that the OS will deliver the completions in a given order.
Thus, we check the handle, which is set to ACE_INVALID_HANDLE when the socket close is handled.
 

Lines 10?3 If the entire block has been written, release it. If another write() is possible, initiate it.
 

Line 14 The write() succeeded, but only part of the message was sent. If the socket is still connected, initiate an
asynchronous write() to send the rest of the message.
 

Line 15 The message block was partially written, but the socket has been disconnected, so rewind the message's
rd_ptr() to the beginning of the block and put it back on the message queue to be resent later.
 

If a write() operation fails, we don't try to clean up the socket since it has an outstanding read() operation to detect
this problem. When the server logging daemon closes the socket, the asynchronous read() operation started in
AIO_Output_Handler::open() (page 268) completes. Upon completion, the following method is called by the ACE
Proactor framework:
 
1 void AIO_Output_Handler::handle_read_stream 
2        (const ACE_Asynch_Read_Stream::Result &result) { 
3   result.message_block ().release (); 
4   writer_.cancel (); 
5   ACE_OS::closesocket (result.handle ()); 
6   handle (ACE_INVALID_HANDLE); 
7   can_write_ = 0; 
8   CLD_CONNECTOR::instance ()->reconnect (); 
9 } 

Lines 3? Release the ACE_Message_Block that was allocated for the read() operation, cancel any outstanding
write() operations, and close the socket.
 

Lines 6? Since the connection is now closed, set the handle to ACE_INVALID_HANDLE and reset the can_write_
flag to prevent any log record transmissions from being initiated until after we reestablish the server connection (the
reconnection mechanism is explained on page 293). Section 8.4 discusses how to passively and actively establish
connections in the ACE Proactor framework.
 

Figure 8.6 shows the sequence of events that occur when receiving a log record from a logging client and forwarding
it to the server logging daemon.
 

Figure 8.6. Sequence of Events to Forward a Log Record
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8.4 The Proactive Acceptor-Connector Classes
 

Motivation
 

TCP/IP connection establishment is a two-step process:
 

1.

1. The application either binds a listening socket to a port and listens, or learns of a listening application and
initiates an active connection request.

1.  
2.

2. The connect operation completes after OS-mediated TCP protocol exchanges open the new connection.
2.  

This two-step process is often performed using either a reactive or synchronous I/O model, as shown in Chapter 3 of
C++NPv1 and in Chapter 7 of this book. However, the initiate/complete protocol of TCP connection establishment
lends itself well to the proactive model. Networked applications that benefit from asynchronous I/O can therefore
also benefit from asynchronous connection establishment capabilities.
 

OS support for asynchronous connection establishment varies. For example, Windows supports asynchronous
connection establishment, whereas POSIX.4 AIO does not. It's possible, however, to emulate asynchronous
connection establishment where it doesn't exist by using other OS mechanisms, such as multithreading (Sidebar 57 on
page 283 discusses the ACE Proactor framework's emulation for POSIX). Since redesigning and rewriting code to
encapsulate or emulate asynchronous connection establishment for each project or platform is tedious and error
prone, the ACE Proactor framework provides the ACE_Asynch_Acceptor, ACE_Asynch_Connector, and
ACE_Service_Handler classes.
 

Class Capabilities
 

ACE_Asynch_Acceptor is another implementation of the acceptor role in the Acceptor-Connector pattern [POSA2].
This class provides the following capabilities:
 

•

• It initiates asynchronous passive connection establishment.
•  
•

• It acts as a factory, creating a new service handler for each accepted connection.
•  
•

• It can cancel a previously initiated asynchronous accept() operation.
•  
•

• It provides a hook method to obtain the peer's address when the new connection is established.
•  
•

• It provides a hook method to validate the peer before initializing the new service handler.
•  

ACE_Asynch_Connector plays the connector role in the ACE Proactor framework's implementation of the
Acceptor-Connector pattern. This class provides the following capabilities:
 

•

• It initiates asynchronous active connection establishment.
•  
•

• It acts as a factory, creating a new service handler for each completed connection.
•  
•

• It can cancel a previously initiated asynchronous connect() operation.
•  
•

• It provides a hook method to obtain the peer's address when the new connection is established.
•  
•

• It provides a hook method to validate the peer before initializing the new service handler.
•  

Unlike the ACE Acceptor-Connector framework described in Chapter 7, these two classes only establish TCP/IP
connections. As discussed in Section 8.2, the ACE Proactor framework focuses on encapsulating operations, not
I/O handles, and these classes encapsulate operations to establish TCP/IP connections. Connectionless IPC
mechanisms (for example, UDP and file I/O) don't require a connection setup, so they can be used directly with the
ACE Proactor framework's I/O factory classes.
 

Similar to ACE_Acceptor and ACE_Connector, ACE_Asynch_Acceptor and ACE_Asynch_Connector are
template class factories that can create a service handler to execute a service on the new connection. The template
parameter for both ACE_Asynch_Acceptor and ACE_Asynch_Connector is the service class the factory generates,
known as ACE_Service_Handler. This class acts as the target of connection completions from
ACE_Asynch_Acceptor and ACE_Asynch_Connector.
 

ACE_Service_Handler provides the following capabilities:
 

•

• It provides the basis for initializing and implementing a networked application service, acting as the target of
the ACE_Asynch_Connector and ACE_Asynch_Acceptor connection factories.

•  
•

• It receives the connected peer's address, which is important on Windows since this address isn't available
after an asynchronous connection completes.

•  
•

• It inherits the ability to handle asynchronous completion events since it derives from ACE_Handler.
•  

Sidebar 56 (page 280) discusses the rationale behind the decision to not reuse ACE_Svc_Handler for the ACE
Proactor framework.
 

The interfaces for all three of the classes in the Proactive Acceptor-Connector mechanism are shown in Figure 8.7
(page 281). The following table outlines the key methods in the ACE_Asynch_Acceptor class:
 

Figure 8.7. The Proactive Acceptor, Connector, and Service Handler Classes
 

Method
 

Description
 

open()
 

Initialize and issue one or more asynchronous accept()
operations.
 

cancel()
 

Cancels all asynchronous accept() operations initiated by
the acceptor.
 

validate_connection()
 

Hook method to validate the peer address before
opening a service for the new connection.
 

make_handler()
 

Hook method to obtain a service handler object for the
new connection.
 

Sidebar 56: ACE_Service?scoreHandler
versus ACE_Svc_Handler
 

The ACE_Service_Handler class plays a role analogous to that of the ACE Acceptor-Connector
framework's ACE_Svc_Handler class covered in Section 7.2. Although the ACE Proactor framework
could have reused ACE_Svc_Handler as the target of ACE_Asynch_Acceptor and
ACE_Asynch_Connector, a separate class was chosen for the following reasons:
 

•

• Networked applications that use proactive connection establishment also often use proactive
I/O. The target of asynchronous connection completions should therefore be a class that can
participate seamlessly with the rest of the ACE Proactor framework.

•  
•

• ACE_Svc_Handler encapsulates an IPC object. The ACE Proactor framework uses I/O
handles internally, so the additional IPC object could be confusing.

•  
•

• ACE_Svc_Handler is designed for use with the ACE Reactor framework since it descends from
ACE_Event_Handler. ACE maintains separation in its frameworks to avoid unnecessary
coupling and faciliate ACE toolkit subsets.

•  

For use cases in which an ACE_Service_Handler benefits by using the ACE Task framework, a
common design is to add ACE_Task as a base class to the service class derived from
ACE_Service_Handler. ACE_Svc_Handler can also be used since it's derived from ACE_Task, but
use of ACE_Task is more common. In fact, this use case is illustrated in the AIO_Output_Handler class
(page 266).
 

The open() method initializes the listening TCP socket and initiates one or more asynchronous accept() operations. If
the argument for reissue_accept is 1 (the default), a new accept() operation will automatically be started as needed.
 

ACE_Asynch_Acceptor implements the ACE_Handler::handle_accept() method (Figure 8.5 on page 272) to
process each accept() completion as follows
 

•

• Collect the ACE_INET_Addr representing each endpoint of the new connection.
•  
•

• If the validate_new_connection parameter to open() was 1, invoke the validate_connection() method,
passing the connected peer's address. If validate_connection() returns -1, the connection is aborted.

•  
•

• Call the make_handler() hook method to obtain the service handler for the new connection. The default
implementation uses operator new to allocate a new handler dynamically.

•  
•

• Set the new handler's ACE_Proactor pointer.
•  
•

• If the pass_address parameter to open() was 1, call the ACE_Service_Handler::addresses() method with
both the local and peer addresses.

•  
•

• Set the new connection's I/O handle and call the new service handler's open() method.
•  

The ACE_Asynch_Connector class provides methods that are similar to those in ACE_Asynch_Acceptor and are
outlined in the following table:
 

Method
 

Description
 

open()
 

Initializes information for the active connection factory
 

connect()
 

Initiates an asynchronous connect() operation
 

cancel()
 

Cancels all asynchronous connect() operations
 

validate_connection()
 

Hook method to learn the connect disposition and
validate the peer address before opening a service for the
new connection
 

make_handler()
 

Hook method to obtain a service handler object for the
new connection.
 

The open() method accepts fewer arguments than ACE_Asynch_Acceptor::open(). In particular, since addressing
information can be different on each connect() operation, it's specified in parameters to the connect() method.
 

ACE_Asynch_Connector implements ACE_Handler::handle_connect() (Figure 8.5 on page 272) to process each
connection completion. The processing steps are the same as for ACE_Asynch_Acceptor, above.
 

Each networked application service class in the ACE Proactor framework derives from ACE_Service_Handler. Its
key methods are shown in the following table:
 

Method
 

Description
 

open()
 

Hook method called to initialize the service after
establishing a new connection
 

addresses()
 

Hook method to capture the local and remote addresses
for the service connection
 

As mentioned above, ACE_Asynch_Acceptor and ACE_Asynch_Connector both call the
ACE_Service_Handler::open() hook method for each new connection established. The handle argument is the handle
for the connected socket. The ACE_Message_Block argument may contain data from the peer if the bytes_to_read
parameter to ACE_Asynch_Acceptor::open() was greater than 0. Since this Windows-specific facility is often used
with non-IP protocols (e.g., X.25), we don't discuss its use here. The ACE Proactor framework manages the
ACE_Message_Block, so the service need not be concerned with it.
 

If the service handler requires either the local or peer addresses on the new connection, it must implement the
addresses() hook method to capture them when the connection is established. The ACE Proactor framework calls
this method if the pass_address argument to the asynchronous connection factory was 1. This method is more
significant on Windows because the connection addresses cannot be obtained any other way when asynchronous
connection establishment is used.
 

Sidebar 57: Emulating Asynchronous
Connections on POSIX
 

Windows has native capability for asynchronously connecting sockets. In contrast, the POSIX.4 AIO
facility was designed primarily for use with disk I/O, so it doesn't include any capability for asynchronous
TCP/IP connection establishment. To provide uniform capability across all asynchronous I/O-enabled
platforms, ACE emulates asynchronous connection establishment where needed.
 

To emulate asynchronous connection establishment, active and passive connection requests are begun in
nonblocking mode by the ACE_Asynch_Acceptor and ACE_Asynch_Connector. If the connection
doesn't complete immediately (which is always the case for passive connections), the socket handle is
registered with an instance of ACE_Select_Reactor managed privately by the framework. An ACE
Proactor framework-spawned thread (unseen by the application) runs the private reactor's event loop.
When the connection request completes, the framework regains control via a reactor callback and posts
the completion event. The original application thread receives the completion event back in the
ACE_Asynch_Acceptor or ACE_Asynch_Connector class, as appropriate.
 

Example
 

As with the client logging daemons in Chapters 6 and 7, the classes in the proactive implementation are separated
into separate input and output roles that are explained below.
 

Input role. The input role of the proactive client logging daemon is performed by the AIO_CLD_Acceptor and
AIO_Input_Handler classes. AIO_Input_Handler was described on page 273, so here we focus on
AIO_CLD_Acceptor, which derives from ACE_Asynch_Acceptor as shown in Figure 8.3 (page 267). The class
definition for AIO_CLD_Acceptor is shown below:
 
class AIO_CLD_Acceptor 
  : public ACE_Asynch_Acceptor<AIO_Input_Handler> { 
public: 
  // Cancel accept and close all clients. 
  void close (void); 

  // Remove handler from client set. 
  void remove (AIO_Input_Handler *ih) 
  { clients_.remove (ih); } 

protected: 
  // Service handler factory method. 
  virtual AIO_Input_Handler *make_handler (void); 

  // Set of all connected clients. 
  ACE_Unbounded_Set<AIO_Input_Handler *> clients_; 
}; 

Since the ACE Proactor framework only keeps track of active I/O operations, it doesn't maintain a set of registered
handlers like the ACE Reactor framework does. Applications must therefore locate and clean up handlers when
necessary. In this chapter's example, the AIO_Input_Handler objects are allocated dynamically, and they must be
readily accessible when the service shuts down. To satisfy this requirement, the AIO_CLD_Acceptor::clients_
member is an ACE_Unbounded_Set that holds pointers to all active AIO_Input_Handler objects. When a logging
client connects to this server, ACE_Asynch_Acceptor::handle_accept() calls the following factory method:
 
AIO_Input_Handler * AIO_CLD_Acceptor::make_handler (void) { 
  AIO_Input_Handler *ih; 
  ACE_NEW_RETURN (ih, AIO_Input_Handler (this), 0); 
  if (clients_.insert (ih) == -1) { delete ih; return 0; } 
  return ih; 
} 

AIO_CLD_Acceptor reimplements the make_handler() factory method that keeps track of each allocated service
handler's pointer in clients_. If the new handler's pointer can't be inserted for some reason, it's deleted; returning 0
will force the ACE Proactor framework to close the newly accepted connection.
 

The make_handler() hook method passes its object pointer to each dynamically allocated AIO_Input_Handler (page
273). When AIO_Input_Handler detects a failed read() (most likely because the logging client closed the
connection), its handle_read_stream() method (page 274) simply deletes itself. The AIO_Input_Handler destructor
cleans up all held resources, and calls the AIO_CLD_Acceptor::remove() method (page 283) to remove itself from
the clients_ set, as shown below:
 
AIO_Input_Handler:: AIO_Input_Handler () { 
  reader_.cancel (); 
  ACE_OS::closesocket (handle ()); 
  if (mblk_ != 0) mblk_->release (); 
  mblk_ = 0; 
  acceptor_->remove (this); 
} 

When this service shuts down in the AIO_Client_Logging_Daemon::svc() method (page 295), all the remaining
AIO_Input_Handler connections and objects are cleaned up by calling the close() method below:
 
void AIO_CLD_Acceptor::close (void) { 
  ACE_Unbounded_Set_Iterator<AIO_Input_Handler *> 
    iter (clients_.begin ()); 
  AIO_Input_Handler **ih; 
  while (iter.next (ih)) delete *ih; 
} 

This method simply iterates through all of the active AIO_Input_Handler objects, deleting each one.
 

Output role. The output role of the proactive client logging daemon is performed by the AIO_CLD_Connector and
AIO_Output_Handler classes. The client logging daemon uses the AIO_CLD_Connector to
 

•

• Establish (and, when necessary, reestablish) a TCP connection to a server logging daemon
•  
•

• Implement the connector half of the SSL authentication with the server logging daemon (the server logging
daemon's SSL authentication is shown on page 224)

•  

It then uses the AIO_Output_Handler to asychronously forward log records from connected logging clients to the
server logging daemon.
 

Part of the AIO_CLD_Connector class definition is below:
 
class AIO_CLD_Connector 
  : public ACE_Asynch_Connector<AIO_Output_Handler> { 
public: 
  enum { INITIAL_RETRY_DELAY = 3, MAX_RETRY_DELAY = 60 }; 

  // Constructor. 
  AIO_CLD_Connector () 
    : retry_delay_ (INITIAL_RETRY_DELAY), ssl_ctx_ (0), ssl_ (0) 
  { open (); } 

  // Hook method to detect failure and validate peer before 
  // opening handler. 
  virtual int validate_connection 
    (const ACE_Asynch_Connect::Result &result, 
     const ACE_INET_Addr &remote, const ACE_INET_Addr &local); 

protected: 
  // Template method to create a new handler 
  virtual AIO_Output_Handler *make_handler (void) 
  { return OUTPUT_HANDLER::instance (); } 

  // Address at which logging server listens for connections. 
  ACE_INET_Addr remote_addr_; 

  // Seconds to wait before trying the next connect 
  int retry_delay_; 

  // The SSL "context" data structure. 
  SSL_CTX *ssl_ctx_; 

  // The SSL data structure corresponding to authenticated 
  // SSL connections. 
  SSL *ssl_; 
}; 

typedef ACE_Unmanaged_Singleton<AIO_CLD_Connector, ACE_Null_Mutex> 
        CLD_CONNECTOR; 

The AIO_CLD_Connector class is accessed as an unmanaged singleton (see Sidebar 45 on page 194) via the
CLD_CONNECTOR typedef. When AIO_CLD_Connector is instantiated, its constructor calls the
ACE_Asynch_Connector::open() method. By default, the validate_connection() method (page 293) will be called on
completion of each connect() attempt.
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8.5 The ACE_Proactor Class
 

Motivation
 

Asynchronous I/O operations are handled in two steps: initiation and completion. Since multiple steps and classes are
involved, there must be a way to demultiplex the completion events and efficiently associate each completion event
with the operation that completed and the completion handler that will process the result. The diversity of OS
asynchronous I/O facilities plays a deeper role here than in the reactive I/O model because
 

•

• Platforms have different ways to receive completion notifications. For example, Windows uses I/O
completion ports or events, whereas POSIX.4 AIO uses real-time signals or the aio_suspend() system
function to wait for a completion.

•  
•

• Platforms use different data structures to maintain state information for asynchronous I/O operations. For
example, Windows uses the OVERLAPPED structure, whereas POSIX.4 AIO uses struct aiocb.

•  

Thus, the chain of knowledge concerning platform-specific mechanisms and data structures runs from initiation
operations through dispatching and into completion handling. In addition to being complicated and hard to
reimplement continually, it's easy to tightly couple proactive I/O designs. To resolve these issues and provide a
portable and flexible completion event demultiplexing and dispatching facility, the ACE Proactor framework defines
the ACE_Proactor class.
 

Class Capabilities
 

ACE_Proactor implements the Facade pattern [GoF] to define an interface that applications can use to access the
various ACE Proactor framework features portably and flexibly. This class provides the following capabilities:
 

•

• It centralizes event loop processing in a proactive application.
•  
•

• It dispatches timer expirations to their associated ACE_Handler objects.
•  
•

• It demultiplexes completion events to completion handlers and dispatches the appropriate hook methods on
completion handlers that then perform application-defined processing in response to the completion events.

•  
•

• It can decouple the thread(s) performing completion event detection, demultiplexing, and dispatching from
thread(s) initiating asynchronous operations.

•  
•

• It mediates between classes that initiate I/O operations and platform-specific asynchronous I/O
implementation details.

•  

The interface for ACE_Proactor is shown in Figure 8.8 (page 288). This class has a rich interface that exports all the
features in the ACE Proactor framework. We therefore group its method descriptions into the four categories
described below.
 

Figure 8.8. The ACE_Proactor Class
 

1. Life cycle management methods. The following methods initialize, destroy, and access an ACE_Proactor:
 

Method
 

Description
 

ACE_Proactor() open()
 

These methods initialize proactor instance.
 

ACE_Proactor() close()
 

These methods clean up the resources allocated when a
proactor was initialized.
 

instance()
 

A static method that returns a pointer to a singleton
ACE_Proactor, which is created and managed by the
Singleton pattern [GoF] combined with the
Double-Checked Locking Optimization [POSA2].
 

The ACE_Proactor can be used in two ways:
 

•

• As a singleton [GoF] via the instance() method shown in the table above.
•  
•

• By instantiating one or more instances. This capability can be used to support multiple proactors within a
process. Each proactor is often associated with a thread running at a particular priority [Sch98].

•  

2. Event loop management methods. Inversion of control is supported by the ACE Proactor framework. Similar to
the ACE Reactor framework, ACE_Proactor implements the following event loop methods that control application
completion handler dispatching:
 

Method
 

Description
 

handle_events()
 

Waits for completion events to occur and then dispatches
the associated completion handler(s). A timeout
parameter can limit the time spent waiting for an event.
 

proactor_run_event_loop()
 

Calls the handle_events() method repeatedly until it fails,
proactor_event_loop_done() returns true, or an optional
timeout occurs.
 

proactor_end_event_loop()
 

Instructs a proactor to shut down its event loop.
 

proactor_event_loop_done()
 

Returns 1 when the proactor's event loop has been
ended, for example, via a call to
proactor_end_event_loop().
 

The ACE Proactor event loop is separate from that provided by the ACE Reactor framework. To use both ACE
Reactor and ACE Proactor event loops in the same application and remain portable across all asynchronous I/O
platforms, the two event loops must be executed in separate threads. However, the Windows implementation of
ACE_Proactor can register its I/O completion port handle with an ACE_WFMO_Reactor instance to tie the two
event loop mechanisms together, allowing them to both be used in one thread. Sidebar 58 (page 290) describes how
to do this.
 

3. Timer management methods. By default, ACE_Proactor uses the ACE_Timer_Heap timer queue mechanism
described in Section 3.4 to schedule and dispatch event handlers in accordance to their timeout deadlines. The timer
management methods exposed by the ACE_Proactor include:
 

Method
 

Description
 

schedule_timer()
 

Registers an ACE_Handler that will be dispatched after a
user-specified amount of time
 

cancel_timer()
 

Cancels one or more timers that were previously
registered
 

When a timer expires, ACE_Handler::handle_time_out() (page 271) is dispatched on the registered handler.
 

4. I/O operation facilitator methods. The ACE_Proactor class has visibility into the platform's asynchronous I/O
implementation details that are useful for operation initiation and completion event processing. Making
ACE_Proactor the central mediator of platform-specific knowledge prevents coupling between the classes in the
ACE Proactor framework. In particular, the ACE Proactor framework uses the Bridge pattern [GoF].
 

ACE_Asynch_Read_Stream and ACE_Asynch_Write_Stream use the Bridge pattern to access flexible
implementations of their I/O operation factories that are specific to the OS platform. Since ACE_Proactor is the
mediator of this platform-specific knowledge, it defines the following methods used by the
ACE_Asynch_Read_Stream and ACE_Asynch_Write_Stream classes:
 

Method
 

Description
 

create_asynch_read_stream()
 

Create an instance of a platform-specific subclass of
ACE_Asynch_Read_Stream_Impl appropriate for
initiating asynchronous read() operations.
 

create_asynch_write_stream()
 

Create an instance of a platform-specific subclass of
ACE_Asynch_Write_Stream_Impl appropriate for
initiating asynchronous write() operations.
 

As seen in Figure 8.8, the ACE_Proactor class refers to an object of type ACE_Proactor_Impl, similar to the design
of ACE Reactor framework shown in Figure 4.1 (page 89). All work dependent on platform-specific mechanisms is
forwarded to the Proactor implementation class for handling. We briefly describe the platform-specific ACE
Proactor framework implementations below.
 

The ACE_WIN32_Proactor Class
 

ACE_WIN32_Proactor is the ACE_Proactor implementation on Windows. This class works on Windows NT 4.0
and newer Windows platforms, such as Windows 2000 and Windows XP. It doesn't work on Windows 95, 98,
Me, or CE, however, since these platforms don't support asynchronous I/O.
 

Implementation overview. ACE_WIN32_Proactor uses an I/O completion port for completion event detection.
When initializing an asynchronous operation factory, such as ACE_Asynch_Read_Stream or
ACE_Asynch_Write_Stream, the I/O handle is associated with the Proactor's I/O completion port. In this
implementation, the Windows GetQueuedCompletionStatus() function paces the event loop.
 

Sidebar 58: Integrating Proactor and
Reactor Events on Windows
 

The ACE Reactor and ACE Proactor event loops require different event detection and demultiplexing
mechanisms. As a result, they are often executed in separate threads. On Windows, however, ACE
provides a way to integrate the two event loop mechanisms so they can both be driven by a single
thread. The advantage of using a single event-loop thread is that it can simplify application-defined event
handlers and completion handlers, since they may no longer require synchronizers to prevent race
conditions.
 

The ACE_Proactor Windows implementation uses an I/O completion port to detect completion events.
When one or more asynchronous operations complete, Windows signals the corresponding I/O
completion port handle. This handle can therefore be registered with an instance of
ACE_WFMO_Reactor (Chapter 4). Using this scheme, the ACE_WFMO_Reactor dispatches the I/O
completion port's "signaled" event to the ACE_Proactor, which in turn dispatches completion events and
returns to the reactor's event loop.
 

To use the scheme outlined above, an application must instantiate an ACE_Proactor with a particular set
of nondefault options. The following code fragment shows how to accomplish this, and should be
executed immediately at program startup: 
1 ACE_Proactor::close_singleton (); 
2 ACE_WIN32_Proactor *impl = new ACE_WIN32_Proactor (0, 1); 
3 ACE_Proactor::instance (new ACE_Proactor (impl, 1), 1); 
4 ACE_Reactor::instance ()->register_handler 
5   (impl, impl->get_handle ()); 
// ... Other registration and initiation code omitted. 
6 ACE_Reactor::instance ()->run_reactor_event_loop (); 
7 ACE_Reactor::instance ()->remove_handler 
8   (impl->get_handle (), ACE_Event_Handler::DONT_CALL); 

Line 1 Close the existing proactor singleton.
 

Line 2 Creates a Windows-specific proactor implementation. The second argument specifies that this
proactor will be used with a reactor.
 

Line 3 Create a new ACE_Proactor for the reactor-enabled implementation and make it the singleton.
The second argument to ACE_Proactor says to delete the implementation when the ACE_Proactor is
closed. The second argument to instance() says to delete the ACE_Proactor object when it's closed.
 

Lines 4? Register the I/O completion port handle with the reactor and run the reactor event loop.
 

Lines 7? After the event loop ends, remove the proactor's I/O completion port from the reactor.
 

All the Result classes defined for use with the ACE_WIN32_Proactor are derived from the Windows
OVERLAPPED structure. Additional information is added to each depending on the operation being performed.
When GetQueuedCompletionStatus() returns a pointer to the completed operation's OVERLAPPED structure, the
ACE_WIN32_Proactor converts it to a pointer to a Result object. This design allows completions to be dispatched
efficiently to the correct ACE_Handler-derived completion handler when I/O operations complete. The
Implementation section of the Proactor pattern in POSA2 illustrates how to implement a proactor using the Windows
asynchrony mechanisms and the Asynchronous Completion Token pattern.
 

Concurrency considerations. Multiple threads can execute the event loop of an ACE_WIN32_Proactor
simultaneously. Since all event registration and dispatching is handled by the I/O completion port mechanism, and not
by the ACE_WIN32_Proactor itself, there's no need to synchronize access to registration-related data structures, as
in the ACE_WFMO_Reactor implementation (page 106).
 

The timer queue expiry management is handled in a separate thread that's managed by the ACE_WIN32_Proactor.
When a timer expires, the timeout mechanism uses the PostQueuedCompletionStatus() function to post a completion
to the proactor's I/O completion port. This design cleanly integrates the timer mechanism with the normal completion
dispatching mechanism. It also ensures that only one thread is awakened to dispatch the timer since all
completion-detection threads wait only for completion events and needn't worry about waking up for a scheduled
timer expiration.
 

The ACE_POSIX_Proactor Class
 

The ACE Proactor implementations on POSIX systems present multiple mechanisms for initiating I/O operations and
detecting their completions. Moreover, Sun's Solaris Operating Environment offers its own proprietary version of
asynchronous I/O. On Solaris 2.6 and above, the performance of the Sun-specific asynchronous I/O functions is
significantly higher than that of Solaris's POSIX.4 AIO implementation. To take advantage of this performance
improvement, ACE also encapsulates this mechanism in a separate set of classes.
 

Implementation overview. The POSIX implementations of asynchronous I/O use a control block (struct aiocb) to
identify each asynchronous I/O request and its controlling information. Each aiocb can be associated with only one
I/O request at a time. The Sun-specific asynchronous I/O uses an additional structure named aio_result_t.
 

Although the encapsulated POSIX asynchronous I/O mechanisms support read() and write() operations, they don't
support any TCP/IP connection-related operations. To support the functions of ACE_Asynch_Acceptor, and
ACE_Asynch_Connector,a separate thread is used to perform connection-related operations. This asynchronous
connection emulation is described in Sidebar 57 (page 283).
 

The three variants of the ACE_POSIX_Proactor implementation are described in the following table:
 

ACE Proactor Variant
 

Description
 

ACE_POSIX_AIOCB_Proactor
 

This implementation maintains a parallel list of aiocb
structures and Result objects. Each outstanding operation
is represented by an entry in each list. The aio_suspend()
function suspends the event loop until one or more
asynchronous I/O operations complete.
 

ACE_POSIX_SIG_Proactor
 

This implementation is derived from
ACE_POSIX_AIOCB_Proactor, but uses POSIX
real-time signals to detect asynchronous I/O completion.
The event loop uses the sigtimedwait() and sigwaitinfo()
functions to pace the loop and retrieve information about
completed operations. Each asynchyronous I/O
operation started using this proactor has a unique value
associated with its aiocb that's communicated with the
signal noting its completion. This design makes it easy to
locate the aiocb and its parallel Result object, and
dispatch the correct completion handler.
 

ACE_SUN_Proactor
 

This implementation is also based on
ACE_POSIX_AIOCB_Proactor, but it uses the
Sun-specific asynchronous I/O facility instead of the
POSIX.4 AIO facility. This implementation works much
like ACE_POSIX_AIOCB_Proactor, but uses the
Sun-specific aiowait() function to detect I/O completions.
 

Concurrency considerations. The ACE_POSIX_SIG_Proactor is the default proactor implementation on POSIX.4
AIO-enabled platforms. Its completion event demultiplexing mechanism uses the sigtimedwait() function. Each
ACE_POSIX_SIG_Proactor instance can specify the set of signals to use with sigtimedwait().To use multiple
threads at different priorities with different ACE_POSIX_SIG_Proactor instances, therefore, each instance should
use a different signal, or set of signals.
 

Limitations and characteristics of some platforms directly affect which ACE_POSIX_Proactor implementation can
be used. On Linux, for instance, threads are actually cloned processes. Since signals can't be sent across processes,
and asynchronous I/O operations and Proactor timer expirations are both implemented using threads, the
ACE_POSIX_SIG_Proactor doesn't work well on Linux. Thus, ACE_POSIX_AIOCB_Proactor is the default
proactor implementation on Linux. The aio_suspend() demultiplexing mechanism used in
ACE_POSIX_AIOCB_Proactor is thread safe, so multiple threads can run its event loop simultaneously.
 

Example
 

The AIO_CLD_Connector reconnection mechanism was mentioned in the discussion of the
AIO_Output_Handler::handle_read_stream() method (page 276). The reconnection mechanism is initiated using the
AIO_CLD_Connector::reconnect() method below:
 
int reconnect (void) { return connect (remote_addr_); } 

This method simply initiates a new asynchronous connection request to the server logging daemon. An exponential
backoff strategy is used to avoid continually initiating connection attempts when, for example, there's no server
logging daemon listening. We use the following validate_connection() hook method to insert application-defined
behavior into ACE_Asynch_Connector's connection completion handling. This method learns the disposition of each
asynchronous connection request and schedules a timer to retry the connect if it failed. If the connect succeeded, this
method executes the SSL authentication with the server logging daemon.
 
 1 int AIO_CLD_Connector::validate_connection 
 2       (const ACE_Asynch_Connect::Result &result, 
 3        const ACE_INET_Addr &remote, const ACE_INET_Addr &) { 
 4   remote_addr_ = remote; 
 5   if (!result.success ()) { 
 6     ACE_Time_Value delay (retry_delay_); 
 7     retry_delay_ *= 2; 
 8     if (retry_delay_ > MAX_RETRY_DELAY) 
 9       retry_delay_ = MAX_RETRY_DELAY; 
10     proactor ()->schedule_timer (*this, 0, delay); 
11     return -1; 
12   } 
13   retry_delay_ = INITIAL_RETRY_DELAY; 
14 
15   if (ssl_ctx_ == 0) { 
16     OpenSSL_add_ssl_algorithms (); 
17     ssl_ctx_ = SSL_CTX_new (SSLv3_client_method ()); 
18     if (ssl_ctx_ == 0) return -1; 
19 
20     if (SSL_CTX_use_certificate_file (ssl_ctx_, 
21                                       CLD_CERTIFICATE_FILENAME, 
22                                       SSL_FILETYPE_PEM) <= 0 
23        || SSL_CTX_use_PrivateKey_file (ssl_ctx_, 
24                                        CLD_KEY_FILENAME, 
25                                        SSL_FILETYPE_PEM) <= 0 
26        || !SSL_CTX_check_private_key (ssl_ctx_)) { 
27       SSL_CTX_free (ssl_ctx_); 
28       ssl_ctx_ = 0; 
29       return -1; 
30     } 
31     ssl_ = SSL_new (ssl_ctx_); 
32     if (ssl_ == 0) { 
33       SSL_CTX_free (ssl_ctx_); ssl_ctx_ = 0; 
34       return -1; 
35     } 
36   } 
37 
38   SSL_clear (ssl_); 
39   SSL_set_fd 
40     (ssl_, ACE_reinterpret_cast (int, result.connect_handle())); 
41 
42   SSL_set_verify (ssl_, SSL_VERIFY_PEER, 0); 
43 
44   if (SSL_connect (ssl_) == -1 
45       || SSL_shutdown (ssl_) == -1) return -1; 
46   return 0; 
47 } 

Line 4 Save the peer address we tried to connect to so it can be reused for future connection attempts, if needed.
 

Lines 5?2 If the connect operation failed, set a timer to retry the connection later, then double the retry timer, up to
the number of seconds specified by MAX_RETRY_DELAY.
 

Line 13 If the connection succeeded, we reset the retry_delay_ back to its initial value for the next reconnection
sequence.
 

Lines 15?6 The rest of validate_connection() is similar to TPC_Logging_Acceptor::open() (page 224), so we don't
explain it here. If the SSL authentication fails, validate_connection() returns -1, causing ACE_Asynch_Connector to
close the new connection before opening a service handler for it. Note that the SSL function calls on lines 43and 44
are synchronous, and therefore the proactor event loop is not processing completion events while these calls are
being made. As with the Reactor framework, developers must be aware of this type of delay in a callback method.
 

When a timer set by the handle_connection() method expires, the following handle_time_out() hook method is called
by the ACE Proactor framework:
 
void AIO_CLD_Connector::handle_time_out (const ACE_Time_Value &, 
                                         const void *) 
{ connect (remote_addr_); } 

This method simply initiates another asynchronous connect() attempt which will trigger another call to
validate_connection(), regardless of whether it succeeds or fails.
 

The AIO client logging daemon service is represented by the following AIO_Client_Logging_Daemon class:
 
class AIO_Client_Logging_Daemon: public ACE_Task<ACE_NULL_SYNCH> { 
protected: 
  ACE_INET_Addr cld_addr_; // Our listener address. 
  ACE_INET_Addr sld_addr_; // The logging server's address. 

  // Factory that passively connects the <AIO_Input_Handler>. 
  AIO_CLD_Acceptor acceptor_; 

public: 
  // Service Configurator hook methods. 
  virtual int init (int argc, ACE_TCHAR *argv[]); 
  virtual int fini (); 
  virtual int svc (void); 
}; 

This class is similar to the AC_Client_Logging_Daemon class (page 251). The primary difference is that
AIO_Client_Logging_Daemon spawns a new thread to run the proactor event loop that the service depends on,
whereas AC_Client_Logging_Daemon relies on the main program thread to run the singleton reactor's event loop.
To activate this thread easily, AIO_Client_Logging_Daemon derives from ACE_Task rather than
ACE_Service_Config.
 

We start a new thread for the proactor event loop because we do still rely on the reactor event loop for service
reconfiguration activity as described in Chapter 5. If our service was designed solely for Windows, we could
integrate the proactor and reactor event loops, as described in Sidebar 58 (page 290). However, this client logging
daemon implementation is portable to all AIO-enabled ACE platforms. After our
AIO_Client_Logging_Daemon::init() method processes the argument list and forms addresses, it then calls
ACE_Task::activate() to spawn a thread running the following svc() method:
 
1   int AIO_Client_Logging_Daemon::svc (void) { 
2   if (acceptor_.open (cld_addr_) == -1) return -1; 
3   if (CLD_CONNECTOR::instance ()->connect (sld_addr_) == 0) 
4     ACE_Proactor::instance ()->proactor_run_event_loop (); 
5   acceptor_.close (); 
6   CLD_CONNECTOR::close (); 
7   OUTPUT_HANDLER::close (); 
8   return 0; 
9 } 

Lines 2? Initialize the acceptor_ object to begin listening for logging client connections and initiate the first connection
attempt to the server logging daemon.
 

Line 4 Call ACE_Proactor::proactor_run_event_loop() to handle asynchronous operation completions. The proactor
event loop is terminated when the service is shut down via the following fini() method:
 
int AIO_Client_Logging_Daemon::fini () { 
  ACE_Proactor::instance ()->proactor_end_event_loop (); 
  wait (); 
  return 0; 
} 

This method calls ACE_Proactor::proactor_end_event_loop() which ends the event loop in the svc() method. It then
calls ACE_Task::wait() to wait for the svc() method to complete and exit its thread.
 

Lines 5? Close all open connections and singleton objects and exit the svc() thread.
 

Lastly, we add the necessary ACE_FACTORY_DEFINE macro to generate the service's factory function:
 
ACE_FACTORY_DEFINE (AIO_CLD, AIO_Client_Logging_Daemon) 

Our new proactive client logging daemon service uses the ACE Service Configurator framework to configure itself
into any main program, such as the Configurable_Logging_Server (page 147) by including the following entry in a
svc.conf file:
 
dynamic AIO_Client_Logging_Daemon Service_Object * 
AIO_CLD:_make_AIO_Client_Logging_Daemon() 
  "-p $CLIENT_LOGGING_DAEMON_PORT" 
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8.6 Summary
 

This chapter explored the concept of proactive I/O and outlined how the proactive model differs from the reactive
model. It also showed how the proactive I/O model can be used to overcome the performance limitations of the
reactive I/O model without incurring certain liabilities associated with the use of multithreaded synchronous I/O.
However, the proactive I/O model presents several challenges:
 

•

• Design challenges. The multistep nature of this model increases the likelihood of overly coupling the I/O
mechanisms that initiate asynchronous operations with the processing of the completions of operations.

•  
•

• Portability challenges. There are highly divergent standards and implementations for asynchronous I/O
offered by today's computing platforms.

•  

The Proactor pattern [POSA2] defines a set of roles and relationships to help simplify applications that use proactive
I/O. The ACE Proactor framework implements the Proactor pattern across a range of operating systems that
support asynchronous I/O. The ACE Proactor framework provides a set of classes that simplify networked
application use of asynchronous I/O capabilities across all platforms that offer it. This chapter discussed each class in
the framework, covering their motivations and capabilities. It showed an implementation of the client logging daemon
that uses the proactive I/O model for all of its network operations. This version of the client logging daemon works
portably on all ACE platforms that offer asynchronous I/O mechanisms.
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Chapter 9. The ACE Streams Framework
 

CHAPTER SYNOPSIS
 

This chapter describes the design and use of the ACE Streams framework. This framework implements the Pipes
and Filters pattern [POSA1], which is an architectural pattern that provides a structure for systems that process
streams of data. We illustrate how the ACE Streams framework can be used to develop a utility program that
formats and prints files of log records stored by our logging servers.
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9.1 Overview
 

The Pipes and Filters architectural pattern is a common way of organizing layered/modular applications [SG96]. This
pattern defines an architecture for processing a stream of data in which each processing step is encapsulated in some
type of filter component. Data is passed between adjacent filters via a communication mechanism, which can range
from IPC channels connecting local or remote processes to simple pointers that reference objects within the same
process. Each filter can add, modify, or remove data before passing it along to the next filter. Filters are often
stateless, in which case data passing through the filter are transformed and passed along to the next filter without
being stored.
 

Common examples of the Pipes and Filters pattern include
 

•

• The UNIX pipe IPC mechanism [Ste92] used by UNIX shells to create unidirectional pipelines
•  
•

• System V STREAMS [Rit84], which provides a framework for integrating bidirectional protocols into the
UNIX kernel

•  

The ACE Streams framework is based on the Pipes and Filters pattern. This framework simplifies the development
of layered/modular applications that can communicate via bidirectional processing modules. This chapter describes
the following classes in the ACE Streams framework:
 

ACE Class
 

Description
 

ACE_Task
 

A cohesive unit of application-defined functionality that
uses messages to communicate requests, responses,
data, and control information and can queue and process
messages sequentially or concurrently.
 

ACE_Module
 

A distinct bidirectional processing layer in an application
that contains two ACE_Task objects?ne for "reading"
and one for "writing"
 

ACE_Stream
 

Contains an ordered list of interconnected ACE_Module
objects that can be used to configure and execute layered
application-defined services
 

The most important relationships between classes in the ACE Streams framework are shown in Figure 9.1. These
classes play the following roles in accordance with the Pipes and Filters pattern [POSA1]:
 

Figure 9.1. The ACE Streams Framework Classes
 

•

• Filter classes are the processing units in a stream that enrich, refine, or transform input data. The filter classes
in the ACE Streams framework are implemented by subclasses of ACE_Task.

•  
•

• Pipe classes denote the interconnections between the filters. The pipe classes in the ACE Streams framework
are provided by ACE_Module objects that contain interconnected ACE_Task objects linked together to
create a complete bidirectional ACE_Stream. Application-defined methods in adjacent interconnected tasks
collaborate by exchanging data and control message blocks.

•  

The ACE Streams framework provides the following benefits:
 

•

• Enhanced reuse and flexibility. Any ACE_Task can be plugged into any ACE_Module and any
ACE_Module can be plugged into any ACE_Stream. This flexibility enables multiple applications to
systematically reuse existing modules and tasks, all of which can be configured dynamically.

•  
•

• Transparent, incremental evolution. Application functionality can be implemented in a controlled manner by
adding, removing, and changing modules and tasks. This ability to evolve an application's design and
functionality is particularly useful in agile development processes, such as Extreme Programming (XP) [Bec00
].

•  
•

• Macro-level performance tuning. Applications can adapt to varying deployment scenarios and run-time
environments by selectively omitting unnecessary service functionality or reconfiguring a mixture of
ACE_Task and ACE_Module objects to provide contextually optimal service functionality.

•  
•

• Inherent modularity. The structure enforced by the ACE Streams framework promotes well-accepted design
practices of strong cohesion and minimal coupling. Modular designs help to reduce the complexity of each
layer and improve the overall implementation of networked applications and services. Testing and
documentation are also more easily accomplished when based on a highly modular design, making
application maintenance and systematic reuse easier, as well.

•  
•

• Easy to learn. The ACE Streams framework contains an intuitive class structure based on the patterns and
design of the System V STREAMS framework, as discussed in Sidebar 59. However, even developers who
haven't been exposed to System V STREAMS can quickly grasp the structure of the Pipes and Filters
pattern and then use that pattern as a basis for learning the rest of the ACE Streams framework classes.

•  

The ACE_Task class was described in Chapter 6. This chapter therefore focuses largely on describing the
capabilities provided by the ACE_Module and ACE_Stream classes. However, we illustrate how all the classes in
the ACE Streams framework can be used to develop a utility program that formats and prints log records stored by
our logging servers. If you aren't familiar with the Pipes and Filters pattern from POSA1, we recommend that you
read about it first before delving into the detailed examples in this chapter.
 

Sidebar 59: ACE Streams Relationship to
System V STREAMS
 

The class names and design of the ACE Streams framework correspond to similar componentry in
System V STREAMS [Rit84, Rag93]. The techniques used to support extensibility and concurrency in
these two frameworks differ significantly, however. For example, application-defined functionality is
added in System V STREAMS via tables of pointers to C functions, whereas in the ACE Streams
framework it's added by subclassing from ACE_Task, which provides greater type safety and
extensibility. The ACE Streams framework also uses the ACE Task framework to enhance the
coroutine-based concurrency mechanisms used in System V STREAMS. These ACE enhancements
enable more effective use of multiple CPUs on shared memory multiprocessing platforms [SS95b] by
reducing the likelihood of deadlock and simplifying flow control between ACE_Task active objects in an
ACE_Stream.
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9.2 The ACE_Module Class
 

Motivation
 

Many networked applications can be modeled as an ordered series of processing layers that are related hierarchically
and that exchange messages between adjacent layers. For example, kernel-level [Rit84, Rag93] and user-level [
SS95b, HJE95] protocol stacks, call center managers [SS94], and other families of networked applications can
benefit from a message-passing design based on a layered/modular service architecture. As discussed in Section 2.1.4
, each layer can handle a self-contained portion (such as input or output, event analysis, event filtering, or service
processing) of a service or networked application.
 

The ACE_Task class provides a reuseable component that can easily be used to separate processing into stages and
pass data between them. Since ACE_Task objects are independent, however, additional structure is required to
order ACE_Task objects into bidirectional "reader-writer" pairs that can be assembled and managed as a unit.
Redeveloping this structure in multiple projects is tedious and unnecessary because the structure is fundamentally
application independent. To avoid this redundant development effort, therefore, the ACE Streams framework defines
the ACE_Module class.
 

Class Capabilities
 

ACE_Module defines a distinct layer of application-defined functionality. This class provides the following capabilities:
 

•

• Each ACE_Module is a bidirectional application-defined processing layer containing a pair of reader and
writer tasks that derive from ACE_Task. Layered designs can be expressed easily using ACE_Module,
which simplifies development, training, and evolution.

•  
•

• The ACE Service Configurator framework supports dynamic construction of ACE_Module objects that can
be configured into an ACE_Stream at run time. Layered designs based on ACE_Module are therefore highly
extensible.

•  
•

• The reader and writer ACE_Task objects contained in an ACE_Module collaborate with adjacent
ACE_Task objects by passing messages via a public hook method, which promotes loose coupling and
simplifies reconfiguration.

•  
•

• The objects composed into an ACE_Module can be varied and replaced independently, which lowers
maintenance and enhancement costs.

•  

The interface for ACE_Module is shown in Figure 9.2 and its key methods are shown in the following table:
 

Figure 9.2. The ACE_Module Class
 

Method
 

Description
 

ACE_Module() open()
 

Initialize a module and allocate its resources.
 

ACE_Module() close()
 

Destroy a module and release its resources.
 

reader() writer()
 

Set/get the reader- and writer-side tasks.
 

name()
 

Set/get the name of the module.
 

The ACE_Task class described in Section 6.3 provides an object-oriented processing abstraction that can be
specialized to target any particular application domain, such as network protocol stacks [SW95] or customer care
call center management [SS94]. The ACE_Task message passing and queueing mechanism provides a
straightforward way to divide a domain's work into distinct steps and move work and data between them efficiently
and bidirectionally. Many domains have symmetric processing steps for data being read and written. For example,
protocol processing often involves symmetric tasks for verifying and applying security transforms, such as encryption.
An ACE_Module provides a uniform and flexible composition mechanism that relates instances of these
application-defined ACE_Task objects into
 

•

• A "reader" side to process messages sent upstream to the ACE_Module layer
•  
•

• A "writer" side to process messages sent downstream to the ACE_Module layer
•  

The two tasks that comprise a bidirectional module are referred to as siblings. In the encryption example, for
instance, the reader task would verify and decrypt received data while its sibling writer task would encrypt data
before it's written. An ACE_Module would be composed from one of each of these tasks, and configured into the
stream appropriately.
 

In cases where a layer actively processes data in only one direction, the inactive sibling task can be specified as a
NULL pointer, which triggers the ACE_Module to install an ACE_Thru_Task that simply forwards all messages to
the next module's task without modifying them. This design maintains the layering even when layers are rearranged,
added, or removed.
 

Example
 

This example develops a utility program called display_logfile, which reads log records stored by our logging servers,
formats the information, and prints it in a human-readable format. As shown on page 90 in C++NPv1, most fields in
a log record are stored in a CDR-encoded binary format, which is concise but not easily understood by humans. To
implement the display_logfile program, we implement the following classes derived from ACE_Module:
 

•

• Logrec Reader is a module that converts the log records in a logfile into a canonical format that's then passed
to, and processed by, other modules in an ACE_Stream.

•  
•

• Logrec Formatter is a module that determines how the fields in the log record will be formatted, for example
by converting them from binary to ASCII.

•  
•

• Logrec Separator is a module that inserts message blocks containing a separator string between the existing
message blocks in a composite log record message.

•  
•

• Logrec Writer is a module that prints formatted log record messages to the standard output, where they can
be redirected to a file, printer, or console.

•  

Figure 9.3 illustrates the structure of the modules in the ACE_Stream that comprise the display_logfile program. This
program uses a producer/consumer concurrency model, where the Logrec_Reader and the Logrec_Writer run as
active objects that produce and consume messages, respectively. Figure 9.3 also illustrates the structure of the
composite ACE_Message_Block created by the Logrec Reader module and manipulated by the other filter modules
in the ACE_Stream.
 

Figure 9.3. The ACE_Stream Structure for the display_logfile Program
 

In the example below, we inherit from ACE_Task and ACE_Module to create the Logrec Reader, Logrec
Formatter, Logrec Separator, and Logrec Writer modules. The following Logrec_Module template and LOGREC
MODULE macro are used to simplify many of the examples below:
 
template <class TASK> 
class Logrec_Module : public ACE_Module<ACE_MT_SYNCH> { 
public: 
  Logrec_Module (const ACE_TCHAR *name) 
    : ACE_Module<ACE_MT_SYNCH> 
                    (name, 
                     &task_, // Initialize writer-side task. 
                     0,      // Ignore reader-side task. 
                     0, 
                     ACE_Module<ACE_MT_SYNCH>::M_DELETE_READER) {} 
private: 
  TASK task_; 
}; 
#define LOGREC_MODULE(NAME) \ 
  typedef Logrec_Module<NAME> NAME##_Module 

Since the flow of messages is unidirectional (from Logrec Reader to Logrec Writer)we initialize only the writer-side
task in the ACE_Module constructor. By passing a NULL pointer to the reader-side task parameter, the
ACE_Module constructor will create an instance of ACE_Thru_Task that forwards all messages along without
modifying them. The M_DELETE_READER flag instructs the ACE_Module destructor to only delete the
reader-side task and not the writer-side task.
 

Logrec_Reader_Module. This module contains an instance of the Logrec_Reader task class that performs the
following activities:
 

1.

1. It opens the designated logfile.
1.  
2.

2. It activates the Logrec_Reader instance to be an active object.
2.  
3.

3. It converts the log records in the logfile into a set of chained message blocks, each containing a field from the
demarshaled log record, which is then processed by subsequent modules in an ACE_Stream.

3.  

The Logrec_Reader class is shown below:
 
class Logrec_Reader : public ACE_Task<ACE_MT_SYNCH> { 
private: 
  ACE_TString filename_; // Name of logfile. 
  ACE_FILE_IO logfile_;  // File containing log records. 
public: 
  enum {MB_CLIENT = ACE_Message_Block::MB_USER, 
        MB_TYPE, MB_PID, MB_TIME, MB_TEXT}; 
  Logrec_Reader (const ACE_TString &file): filename_ (file) {} 
  // ... Other methods shown below ... 
}; 

We define five enumerators to identify the fields in a log record. Rather than store the field indicator in the data itself,
we use the ACE_Message_Block type member to indicate the field type. ACE_Message_Block defines two ranges
of type values?span class="docEmphasis">normal and priority?ith a number of values in each range. It also defines
a third range for user-defined message types. We initialize MB_CLIENT to the value of
ACE_Message_Block::MB_USER, which is the first user-defined message type value guaranteed not to conflict with
other values defined within ACE itself.
 

The Logrec_Reader::open() hook method opens the designated logfile and converts the task into an active object, as
shown below.
 
virtual int open (void *) { 
  ACE_FILE_Addr name (filename_.c_str ()); 
  ACE_FILE_Connector con; 
  if (con.connect (logfile_, name) == -1) return -1; 
  return activate (); 
} 

Logrec_Reader::svc() runs in the active object thread. It reads log records from the logfile, demarshals and stores
each one in a composite message block, and passes each composite message block up the stream for further
processing by other modules. The logfile is written as a series of log records, each consisting of:
 

•

• A string containing the name of the client that sent the log record
•  
•

• A CDR-encoded ACE_Log_Record (see page 79 of C++NPv1 for the marshaling code of the record)
•  

Each log record follows the previous one with no inter-record marker. As shown below, Logrec_Reader::svc() reads
the file contents in large chunks and demarshals them as a stream of data. A for loop reads the file contents until EOF
is reached. An inner for loop demarshals log records from the data chunks.
 
 1  virtual int svc () { 
 2    const size_t FILE_READ_SIZE = 8 * 1024; 
 3    ACE_Message_Block mblk (FILE_READ_SIZE); 
 4 
 5    for (;; mblk.crunch ()) { 
 6      ssize_t bytes_read = logfile_.recv (mblk.wr_ptr (), 
 7                                          mblk.space ()); 
 8      if (bytes_read <= 0) break; 
 9      mblk.wr_ptr (ACE_static_cast (size_t, bytes_read)); 
10      for (;;) { 
11        size_t name_len = ACE_OS_String::strnlen 
12                            (mblk.rd_ptr (), mblk.length ()); 
13        if (name_len == mblk.length ()) break; 
14 
15        char *name_p = mblk.rd_ptr (); 
16        ACE_Message_Block *rec = 0, *head = 0, *temp = 0; 
17        ACE_NEW_RETURN 
18          (head, ACE_Message_Block (name_len, MB_CLIENT), 0); 
19        head->copy (name_p, name_len); 
20        mblk.rd_ptr (name_len + 1);   // Skip nul also 
21 
22        size_t need = mblk.length () + ACE_CDR::MAX_ALIGNMENT; 
23        ACE_NEW_RETURN (rec, ACE_Message_Block (need), 0); 
24        ACE_CDR::mb_align (rec); 
25        rec->copy (mblk.rd_ptr (), mblk.length ()); 
26 
27        ACE_InputCDR cdr (rec); rec->release (); 
28        ACE_CDR::Boolean byte_order; 
29        if (!cdr.read_boolean (byte_order)) { 
30          head->release (); mblk.rd_ptr (name_p); break; 
31        } 
32        cdr.reset_byte_order (byte_order); 
33 
34        ACE_CDR::ULong length; 
35        if (!cdr.read_ulong (length)) { 
36          head->release (); mblk.rd_ptr (name_p); break; 
37        } 
38        if (length > cdr.length ()) { 
39          head->release (); mblk.rd_ptr (name_p); break; 
40        } 
41        ACE_NEW_RETURN 
42          (temp, ACE_Message_Block (length, MB_TEXT), 0); 
43        ACE_NEW_RETURN 
44          (temp, 
45           ACE_Message_Block (2 * sizeof (ACE_CDR::Long), 
46                              MB_TIME, temp), 0); 
47        ACE_NEW_RETURN 
48          (temp, 
49           ACE_Message_Block (sizeof (ACE_CDR::Long), 
50                              MB_PID, temp), 0); 
51        ACE_NEW_RETURN 
52          (temp, 
53           ACE_Message_Block (sizeof (ACE_CDR::Long), 
54                              MB_TYPE, temp), 0); 
55        head->cont (temp); 
56        // Extract the type... 
57        ACE_CDR::Long *lp = ACE_reinterpret_cast 
58                          (ACE_CDR::Long *, temp->wr_ptr ()); 
59        cdr >> *lp; 
60        temp->wr_ptr (sizeof (ACE_CDR::Long)); 
61        temp = temp->cont (); 
62        // Extract the PID... 
63        lp = ACE_reinterpret_cast 
64            (ACE_CDR::Long *, temp->wr_ptr ()); 
65        cdr >> *lp; 
66        temp->wr_ptr (sizeof (ACE_CDR::Long)); 
67        temp = temp->cont (); 
68        // Extract the timestamp... 
69        lp = ACE_reinterpret_cast 
70          (ACE_CDR::Long *, temp->wr_ptr ()); 
71        cdr >> *lp; ++lp; cdr >> *lp; 
72        temp->wr_ptr (2 * sizeof (ACE_CDR::Long)); 
73        temp = temp->cont (); 
74        // Extract the text length, then the text message 
75        ACE_CDR::ULong text_len; 
76        cdr >> text_len; 
77        cdr.read_char_array (temp->wr_ptr (), text_len); 
78        temp->wr_ptr (text_len); 
79 
80        if (put_next (head) == -1) break; 
81        mblk.rd_ptr (mblk.length () - cdr.length ()); 
82      } 
83    } 
84 
85    ACE_Message_Block *stop = 0; 
86    ACE_NEW_RETURN 
87      (stop, 
88       ACE_Message_Block (0, ACE_Message_Block::MB_STOP), 0); 
89    put_next (stop); 
90    return 0; 
91  } 

Lines 5? Begin the loop that reads the file's contents into an ACE_Message_Block, using the space() method to find
out how much free space is available in the block. The block's write pointer is updated to reflect the added data. The
final clause in the for loop uses the ACE_Message_Block::crunch() method to shift any data in mblk to the beginning
of the block's data buffer so there's room to append more data.
 

Lines 10?0 Begin the log record demarshaling loop. We use the ACE_OS_String::strnlen() method to find the length
of the hostname string, but will only look through the characters remaining in mblk.Ifmblk doesn't contain the whole
name, we break out of the loop to read more data from the file. If the name is there, we remember the pointer where
the name starts (name_p) in case we need to get more data and restart the demarshaling. The head
ACE_Message_Block is allocated to hold the name; it will become the first block in the message block chain that's
passed up the stream.
 

Lines 22?5 The mblk read pointer is now at the start of the CDR-encoded ACE_Log_Record. Recall from Chapter
4 of C++NPv1 that a buffer from which ACE's CDR classes will demarshal data must be properly aligned. The
current alignment of the mblk read pointer is unknown, and not likely to be properly aligned. We therefore allocate a
new ACE_Message_Block large enough to hold the remaining data in mblk, plus any needed bytes for CDR
alignment. After calling ACE_CDR::mb_align() to align the new block's write pointer, we copy the remainder of the
file data.
 

Lines 27?2 Create an ACE_InputCDR object to demarshal the log record contents from rec. Since the
ACE_InputCDR constructor increments the reference count on rec, we call rec->release() to release our reference
to it, preventing a memory leak. The first item demarshaled is the byte order indicator. It's used to reset the byte
order of cdr so the remaining data can be demarshaled properly.
 

Lines 34?9 The header written for the marshaled ACE_Log_Record contains a length field designating the number of
bytes in the marshaled log record. That value is demarshaled and compared to the number of bytes remaining in the
cdr object. If not all of the needed bytes are present, release the client name block (head), reset the mblk read
pointer to restart at the host name on the next demarshaling pass, and break out of the record-demarshaling loop to
read more data from the file.
 

Lines 41?5 Allocate message blocks for all of the remaining log record fields. Each has the correct block type for
proper identification in modules further down the stream. They're allocated in reverse order to make it easier to
supply the cont pointer. When the last one is allocated, therefore, it's the first block in the chain after head and is
connected via its continuation pointer.
 

Lines 57?1 Demarshal the type field into the first message block by casting the message block's write pointer to
ACE_CDR::Long * and use the CDR extraction operator to demarshal the type field. Adjust the block's write
pointer to reflect the data just read and move to the next message block in the chain.
 

Lines 63?3 The same technique is used to demarshal the process ID and timestamp.
 

Lines 75?8 The log record's data portion was marshaled as a counted sequence of bytes. The length of the sequence
is demarshaled, and the bytes themselves are then demarshaled into the final message block in the chain.
 

Line 80 Use put_next() to pass the message block to the next module in the stream for further processing. Sidebar 60
(page 308) explains how put_next() works.
 

Line 81 Move the file-content block's read pointer up past all of the data that was just extracted. The cdr object has
been adjusting its internal pointers as a result of the CDR operations, so the length() method indicates how much data
is left. Since the beginning length was the same as mblk.length() (which has not been adjusted during all the
demarshaling), we can determine how much of the original message block was consumed.
 

Lines 85?9 The entire file is processed, so send a 0-sized ACE_Message_Block with type MB_STOP down the
stream. By convention, this message block instructs other modules in the stream to stop their processing.
 

Sidebar 60: ACE_Task Methods Related to
ACE Streams Framework
 

The ACE_Task described in Section 6.3 also contains the following methods that can be used in
conjunction with the ACE Streams framework:
 

Method
 

Description
 

module()
 

Returns a pointer to the task's module if there
is one, else 0
 

next()
 

Returns a pointer to the next task in a stream
if there is one, else 0
 

sibling()
 

Returns a pointer to a task's sibling in a
module
 

put_next()
 

Passes a message block to the adjacent task
in a stream
 

can_put()
 

Returns 1 if a message block can be
enqueued via put_next() without blocking due
to intrastream flow control, else 0
 

reply()
 

Passes a message block to the sibling task's
adjacent task of a stream, which enables a
task to reverse the direction of a message in a
stream
 

An ACE_Task that's part of an ACE_Module can use put_next() to forward a message block to an
adjacent module. This method follows the module's next() pointer to the right task, then calls its put()
hook method, passing it the message block. The put() method borrows the thread from the task that
invoked put_next(). If a task runs as an active object, its put() method can enqueue the message on the
task's message queue and allow its svc() hook method to handle the message concurrently with respect
to other processing in a stream. Sidebar 62 (page 317) outlines the concurrency models supported by
the ACE Streams framework.
 

Since the name of the logfile is passed to the Logrec_Reader_Module constructor, we can't use the
LOGREC_MODULE macro (page 303). Instead, we define the class explicitly, as shown below:
 
class Logrec_Reader_Module : public ACE_Module<ACE_MT_SYNCH> { 
public: 
  Logrec_Reader_Module (const ACE_TString &filename) 
    : ACE_Module<ACE_MT_SYNCH> 
                    (ACE_TEXT ("Logrec Reader"), 
                     &task_, // Initialize writer-side. 
                     0,      // Ignore reader-side. 
                     0, 
                     ACE_Module<ACE_MT_SYNCH>::M_DELETE_READER), 
      task_ (filename) {} 

private: 
  // Converts the logfile into chains of message blocks. 
  Logrec_Reader task_; 
}; 

Logrec_Formatter_Module. This module contains a Logrec_Formatter task that determines how the log record fields
will be formatted, as shown below:
 
class Logrec_Formatter : public ACE_Task<ACE_MT_SYNCH> { 
private: 
  typedef void (*FORMATTER[5])(ACE_Message_Block *); 
  static FORMATTER format_; // Array of format static methods. 

public: 

The synchronization trait for a stream's modules and tasks is set by the ACE_Stream that contains them. Since the
modules and tasks defined above use ACE_MT_SYNCH, Logrec_Formatter also derives from
ACE_Task<ACE_MT_SYNCH>. It runs as a passive object, however, since Logrec_Formatter never calls
activate() and its put() method borrows the thread of its caller to format messages, as shown below:
 
virtual int put (ACE_Message_Block *mblk, ACE_Time_Value *) { 
  if (mblk->msg_type () == Logrec_Reader::MB_CLIENT) 
    for (ACE_Message_Block *temp = mblk; 
         temp != 0; 
         temp = temp->cont ()) { 
      int mb_type = 
        temp->msg_type () - ACE_Message_Block::MB_USER; 
      (*format_[mb_type])(temp); 
    } 
  return put_next (mblk); 
} 

The put() method determines the message type of the ACE_Message_Block forwarded to this module. If the
message type is Logrec_Reader::MB_CLIENT, then it's the first in a set of chained blocks containing log record
fields. In this case, the method iterates through the record fields invoking the appropriate static methods to convert
the fields into a human-readable format. After all the fields are formatted, the message block is passed along to the
next module in the stream. If the forwarded block is not of type Logrec_Reader::MB_CLIENT, it's assumed to be
the MB_STOP block and is simply forwarded to the next module in the stream.
 

The following static methods format their corresponding type of field. We start with format_client():
 
static void format_client (ACE_Message_Block *) { return; } 

The MB_CLIENT block has a known-length text string in it. Since this needs no further formatting, format_client()
simply returns. Note that the text is in ASCII. Any processing required to translate to a wide-character format or
verify the name by looking up its IP address could be added here without disturbing the rest of the stream.
 

We use the following format_long() method to convert the log record's type and process id into an ASCII
representation:
 
static void format_long (ACE_Message_Block *mblk) { 
  ACE_CDR::Long type = * (ACE_CDR::Long *)mblk->rd_ptr (); 
  mblk->size (11); // Max size in ASCII of 32-bit word. 
  mblk->reset (); 
  mblk->wr_ptr ((size_t) sprintf (mblk->wr_ptr (), "%d", type)); 
} 

The size() method call ensures that there's enough space in the message block to hold the textual representation of the
value, reallocating space if necessary. The reset() method call resets the message block's read and write pointers to
the start of its memory buffer in preparation for the call to the standard C sprintf() function that does the actual
formatting. The sprintf() function returns the number of characters used to format the value, not including the
string-terminating NUL character. Since message blocks contain a specific count, we don't include the NUL
character in the new length when updating the message block's write pointer.
 

The format_time() method is more complicated since it converts the seconds and microseconds of the time value into
an ASCII string, as follows:
 
static void format_time (ACE_Message_Block *mblk) { 
  ACE_CDR::Long secs = * (ACE_CDR::Long *)mblk->rd_ptr (); 
  mblk->rd_ptr (sizeof (ACE_CDR::Long)); 
  ACE_CDR::Long usecs = * (ACE_CDR::Long *)mblk->rd_ptr (); 
  char timestamp[26]; // Max size of ctime_r() string. 
  time_t time_secs (secs); 
  ACE_OS::ctime_r (&time_secs, timestamp, sizeof timestamp); 
  mblk->size (26); // Max size of ctime_r() string. 
  mblk->reset (); 
  timestamp[19] = '\0'; // NUL-terminate after the time. 
  timestamp[24] = '\0'; // NUL-terminate after the date. 
  size_t fmt_len (sprintf (mblk->wr_ptr (), 
                           "%s.%03d %s", 
                           timestamp + 4, 
                           usecs / 1000, 
                           timestamp + 20)); 
  mblk->wr_ptr (fmt_len); 
} 

The final format_string() method is identical to format_client() since it also receives a known-length string. Again, if
the string required some manipulation, this processing could easily be added here.
 
  static void format_string (ACE_Message_Block *) { return; } 
}; 

We initialize the array of pointers to formatting methods as follows:
 
Logrec_Formatter::FORMATTER Logrec_Formatter::format_ = { 
  format_client, format_long, 
  format_long, format_time, format_string 
}; 

We use pointers to static methods rather than pointers to nonstatic methods since there's no need to access
Logrec_Formatter state.
 

We next instantiate the LOGREC_MODULE macro with the Logrec_Formatter class to create the
Logrec_Formatter_Module:
 
LOGREC_MODULE (Logrec_Formatter); 

Logrec_Separator_Module. This module contains a Logrec_Separator object that inserts message blocks between
the existing message blocks in a composite log record message, each new message block contains the separator
string.
 
class Logrec_Separator : public ACE_Task<ACE_MT_SYNCH> { 
private: 
  ACE_Lock_Adapter<ACE_Thread_Mutex> lock_strategy_; 
public: 

This class is a passive object, so Logrec_Separator::put() borrows the thread of its caller to insert the separators:
 
 1  virtual int put (ACE_Message_Block *mblk, 
 2                   ACE_Time_Value *) { 
 3    if (mblk->msg_type () == Logrec_Reader::MB_CLIENT) { 
 4      ACE_Message_Block *separator = 0; 
 5      ACE_NEW_RETURN 
 6        (separator, 
 7         ACE_Message_Block (ACE_OS_String::strlen ("|") + 1, 
 8                            ACE_Message_Block::MB_DATA, 
 9                            0, 0, 0, &lock_strategy_), -1); 
10      separator->copy ("|"); 
11 
12      ACE_Message_Block *dup = 0; 
13      for (ACE_Message_Block *temp = mblk; temp != 0; ) { 
14        dup = separator->duplicate (); 
15        dup->cont (temp->cont ()); 
16        temp->cont (dup); 
17        temp = dup->cont (); 
18      } 
19      ACE_Message_Block *nl = 0; 
20      ACE_NEW_RETURN (nl, ACE_Message_Block (2), 0); 
21      nl->copy ("\n"); 
22      dup->cont (nl); 
23      separator->release (); 
24    } 
25 
26    return put_next (mblk); 
27  } 

Line 3 If the block's type is MB_STOP, it's forwarded to the next stream module. Since Logrec_Separator is a
passive object, it needn't take any action when it's done.
 

Lines 4?0 Create a message block to hold the separator string, which is set to "|" (a more flexible implementation
could make the separator string a parameter to the class constructor). Later in this method, we'll use the
ACE_Message_Block::duplicate() method, which returns a "shallow" copy of the message that simply increments its
reference count by one, but doesn't actually make a copy of the data itself. Sidebar 61 explains how and why we
configured the separator ACE_Message_Block with an ACE_Lock_Adapter<ACE_Thread_Mutex> locking
strategy.
 

Lines 12?8 Loop through the list of message blocks to insert a duplicate of separator that contains the separator
string between each of the original message blocks.
 

Lines 19?2 After the separators are inserted, a final block containing a newline is appended to format the output
cleanly when it's eventually written to the standard output.
 

Lines 23?6 The block from which all the separator blocks were duplicated is released, and the revised composite
message is passed along to the next module in the stream.
 

Sidebar 61: Serializing ACE_Message_Block
Reference Counts
 

If shallow copies of a message block are created and/or released in different threads there's a potential
race condition on access to the reference count and shared data. Access to these data must therefore be
serialized. Since there are multiple message blocks involved, an external locking strategy is applied.
Hence, a message block can be associated with an instance of ACE_Lock_Adapter.
Logrec_Separator::put() (page 311) accesses message blocks from multiple threads, so the
ACE_Lock_Adapter is parameterized with an ACE_Thread_Mutex. This locking strategy serializes
calls to the message block's duplicate() and release() methods to avoid race conditions when a message
block is created and released concurrently by different threads. Although Logrec_Separator::put() calls
separator->release() before forwarding the message block to the next module, we take this precaution
because a subsequent module inserted in the stream may process the blocks using multiple threads.
 

We now instantiate the LOGREC_MODULE macro with the Logrec_Separator class to create the
Logrec_Separator_Module:
 
LOGREC_MODULE (Logrec_Separator); 

Logrec_Writer_Module. This module contains a Logrec_Writer task that performs the following activities:
 

•

• It activates the Logrec_Writer instance to be an active object.
•  
•

• It receives formatted log record messages passed by an adjacent module and prints them to its standard
output.

•  

The Logrec_Writer class is shown below:
 
class Logrec_Writer : public ACE_Task<ACE_MT_SYNCH> { 
public: 
  // Initialization hook method. 
  virtual int open (void *) { return activate (); } 

The open() hook method converts Logrec_Writer into an active object. The other two methods in this class leverage
the fact that its ACE_Task subclass is instantiated with the ACE_MT_SYNCH traits class. For example,
Logrec_Writer::put() enqueues messages in its synchronized message queue:
 
virtual int put (ACE_Message_Block *mblk, ACE_Time_Value *to) 
{ return putq (mblk, to); } 

Likewise, Logrec_Writer::svc() runs in its active object thread, dequeueing messages from its message queue and
writing them to standard output:
 
  virtual int svc () { 
    int stop = 0; 
    for (ACE_Message_Block *mb; !stop && getq (mb) != -1; ) { 
      if (mb->msg_type () == ACE_Message_Block::MB_STOP) 
        stop = 1; 
      else ACE::write_n (ACE_STDOUT, mb); 

      put_next (mb); 
    } 
    return 0; 
  } 
}; 

When a MB_STOP block is received, the method will break out of the processing loop and return, ending the
thread. The ACE::write_n() method prints out all other message blocks chained through their cont() pointers using an
efficient gather-write operation. All the message blocks are forwarded to the next module in the stream. By default,
the ACE Streams framework releases all message blocks that are forwarded "off the end" of the stream, as discussed
in the coverage of ACE_Stream_Tail (page 314).
 

Finally, we instantiate the LOGREC_MODULE macro with the Logrec_Writer class to create the
Logrec_Writer_Module:
 
LOGREC_MODULE (Logrec_Writer); 

The Example portion of Section 9.3 illustrates how all the modules shown above can be configured in an
ACE_Stream to create the complete display_logfile program.
 

This document is created with the unregistered version of CHM2PDF Pilot



Ru-Brd

This document is created with the unregistered version of CHM2PDF Pilot



 
Ru-Brd

This document is created with the unregistered version of CHM2PDF Pilot



9.3 The ACE_Stream Class
 

Motivation
 

The ACE_Module class described in Section 9.2 can be used to decompose a networked application into a series of
interconnected, functionally distinct layers. Each module implements a different layer of application-defined
functionality, such as a reader, formatter, separator, and writer of log records. ACE_Module provides methods to
transfer messages between sibling tasks within a module, as well as between modules. It does not, however, provide
a facility to connect or rearrange modules in a particular order. To enable developers to build and manage a series of
hierarchically related module layers as a single object, the ACE Streams framework defines the ACE_Stream class.
 

Class Capabilities
 

ACE_Stream implements the Pipes and Filters pattern [POSA1] to enable developers to configure and execute
hierarchically related services by customizing reusable application-independent framework classes. This class
provides the following capabilities:
 

•

• It provides methods to dynamically add, replace, and remove ACE_Module objects to form various stream
configurations.

•  
•

• It provides methods to send/receive messages to/from an ACE_Stream.
•  
•

• It provides a mechanism to connect two ACE_Stream streams together.
•  
•

• It provides a way to shut down all modules in a stream and wait for them all to stop.
•  

The interface for ACE_Stream is shown in Figure 9.4. Since this class exports many features of the ACE Streams
framework, we group its method descriptions into the three categories described below.
 

Figure 9.4. The ACE_Stream Class
 

1. Stream initialization and destruction methods. The following methods initialize and destroy an ACE_Stream:
 

Method
 

Description
 

ACE_Stream() open()
 

Initialize a stream.
 

ACE_Stream() close()
 

Destroy a stream by releasing its resources and popping
(destroying) each module.
 

wait()
 

Synchronize with the final close of a stream.
 

By default, two ACE-created ACE_Module objects are installed in an ACE_Stream when it's initialized, one at the
head of the stream and the other at the tail. The head module contains ACE_Stream_Head objects in both its reader
and writer sides. Likewise, the tail module contains ACE_Stream_Tail objects in both sides. These two classes
interpret predefined control messages and data message blocks that can be circulated through an ACE_Stream at run
time. The ACE_Message_Block class defines the types of these message blocks as enumerators whose values are all
less than MB_USER.
 

ACE_Stream_Head can queue messages between an application and an instance of ACE_Stream. When a message
is passed to the top module's writer-side ACE_Stream_Head, it's forwarded to the next module in the stream. When
a message is passed to the top module's reader-side ACE_Stream_Head, it's queued on the task's message queue
(unless its type is MB_FLUSH, in which case the message queue is shut down).
 

To prevent resource leaks when messages reach the end of a stream without being processed,
ACE_Stream_Tail::put() releases messages that it receives when acting as writer. This behavior allows the
Logrec_Writer module (page 313) to pass its message blocks through to the next task. Most likely, the next task is
an ACE_Stream_Tail.If the program is extended to add another module at that point in the stream, however, the
module will continue to work as expected.
 

2. Stream configuration methods. The following methods push and pop ACE_Module objects onto and off of an
ACE_Stream:
 

Method
 

Description
 

push()
 

Add a new module to the stream right below the stream
head.
 

pop()
 

Remove the module right below the stream head and
close it down.
 

top()
 

Return a pointer to the module right below the stream
head.
 

insert()
 

Insert a new module below the designated module.
 

replace()
 

Replace the designated module with a new module.
 

remove()
 

Remove the designated module from a stream and close
it down.
 

The push() and pop() methods allow applications to configure a stream at run time by inserting or removing an
instance of ACE_Module at the top of a stream. When a module is pushed onto a stream, the open() hook methods
of the module's writer- and reader-side tasks are called automatically. Likewise, when a module is popped from a
stream the close() hook methods of its writer- and reader-side tasks are invoked.
 

Since a complete stream is represented as an interconnected series of independent modules, it's often useful to insert,
remove, and replace modules at any point in a stream. To support these operations, therefore, ACE_Module objects
are named in the stream, and the insert(), replace() and remove() methods can manipulate a stream's modules.
ACE_Module objects can be composed in essentially arbitrary configurations that satisfy application requirements
and enhance module reuse.
 

3. Stream communication methods. The following methods are used to send and receive messages on an
ACE_Stream:
 

Method
 

Description
 

get()
 

Receive the next message that's stored at the stream head.
 

put()
 

Send a message down a stream, starting at the module
that's below the stream head.
 

The get() and put() methods allow applications to send and receive messages on an ACE_Stream object. Similar to
inserting message blocks in an ACE_Message_Queue, the blocking behavior of these methods can be modified by
passing the following types of ACE_Time_Value values:
 

Value
 

Behavior
 

NULL ACE_Time_Value pointer
 

Indicates that get() or put() should wait indefinitely, that
is, it will block until the method completes.
 

Non-NULL ACE_Time_Value pointer whose sec() and
usec() methods return 0
 

Indicates that get() or put() should perform a nonblocking
operation, that is, if the method doesn't succeed
immediately, return -1 and set errno to
EWOULDBLOCK.
 

A non-NULL ACE_Time_Value pointer whose sec() or
usec() method returns > 0
 

Indicates that get() or put() should wait until the absolute
time of day, returning -1 with errno set to
EWOULDBLOCK if the method does not complete by
this time.
 

When message blocks arrive at an ACE_Stream they can pass through a series of interconnected ACE_Task
objects by calling their put_next() methods, as discussed in Sidebar 60 (page 308). Message blocks can originate
from various sources, such as an application thread, a reactor or proactor, or an ACE timer queue dispatcher. 
Sidebar 62 outlines the concurrency models supported by the ACE Streams framework.
 

Sidebar 62: ACE Streams Framework
Concurrency Models
 

Section 5.6 of C++NPv1 describes the two canonical types of concurrency architectures, task-based
and message-based [SS93], which are supported by the ACE Streams framework. For example, a
put() method may enqueue a message and defer handling to its task's svc() method that executes
concurrently in a separate thread. This approach is illustrated by the task-based architecture shown
below:
 

Conversely, a put() method can borrow the thread of control from its caller to handle a message
immediately. This approach is illustrated by the message-based architecture shown in the figure above.
A stream's concurrency architecture has a significant impact on performance and ease of programming,
as described in [SS95b].
 

Example
 

We conclude by showing how to configure the display_logfile program with an ACE_Stream object that contains the
modules presented in Section 9.2. The program below creates an ACE_Stream and then pushes all of the modules
onto the stream.
 
int ACE_TMAIN (int argc, ACE_TCHAR *argv[]) { 
  if (argc != 2) ACE_ERROR_RETURN 
                  ((LM_ERROR, "usage: %s logfile\n", argv[0]), 1); 
  ACE_TString logfile (argv[1]); 
  ACE_Stream<ACE_MT_SYNCH> stream; 
  if (stream.push 
      (new Logrec_Writer_Module (ACE_TEXT ("Writer"))) != -1 
      && stream.push 
      (new Logrec_Separator_Module (ACE_TEXT ("Separator"))) != -1 
      && stream.push 
      (new Logrec_Formatter_Module (ACE_TEXT ("Formatter"))) != -1 
      && stream.push 
      (new Logrec_Reader_Module (logfile)) != -1) 
    return ACE_Thread_Manager::instance ()->wait () == 0 ? 0 : 1; 
  return 1; 
} 

As each module is pushed onto the stream, the ACE Streams framework calls the open() hook method on its
writer-side task, which initializes the task. The Logrec_Writer_Module and Logrec_Reader_Module's open() hook
methods convert their writer tasks into active objects. The main thread doesn't actually take part in the processing.
After pushing all the modules onto the stream successfully, it simply waits for the other threads to exit from their
active objects when they're done processing the logfile.
 

The main() function on the previous page allocates a number of modules dynamically at program startup and while
processing the logfile. We omit most of the error handling logic from the main() function to save space. Although it's
unlikely that this program would exhaust the heap at startup time, a well-designed production application should
check for errors and handle them appropriately.
 

Implementing the display_logfile program with the ACE Streams framework enables the transparent, incremental
evolution of application functionality. For example, it's straightforward to implement and configure a Logrec Sorter
module that changes the order in which the fields in the log record are displayed. Likewise, the ACE Streams
framework reduces the complexity of each module layer in the display_logfile program, thereby simplifying its
implementation, testing, and maintenance.
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9.4 Summary
 

The ACE Streams framework is an implementation of the Pipes and Filters pattern that employs object-oriented
design techniques, the ACE Task framework, and C++ language features. The ACE Streams framework makes it
easy to incorporate new or modified functionality into an ACE_Stream without modifying the application-independent
framework classes. For example, incorporating a new layer of service functionality into an ACE_Stream involves the
following steps:
 

1.

1. Inheriting from the ACE_Task interface and overriding the open(), close(), put(), and svc() methods in the
ACE_Task subclass to implement application-defined functionality.

1.  
2.

2. Allocating a new ACE_Module that contains one or two instances of the application-defined ACE_Tasks,
one for the reader-side and one for the writer-side.

2.  
3.

3. Inserting the ACE_Module into an ACE_Stream object. Multiple ACE_Modules can be inserted into an
ACE_Stream to form an ordered series of hierarchically related processing capabilities.

3.  

The ACE Streams framework enables developers to create layered, modular networked applications that are easily
extended, tuned, maintained and configured. Moreover, the synergy between the ACE Task, Service Configurator,
and Streams frameworks allows a wide range of designs and configurations that can be extended and modified to suit
countless design situations, run-time environments, and OS platforms.
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Glossary
 Acceptor-Connector Pattern 

A design pattern that decouples the connection and initialization of cooperating peer services in a networked system
from the processing they perform once connected and initialized.
 

Active Connection Establishment 

The connection role played by a peer application that initiates a connection to a remote peer (compare with Passive
Connection Establishment).
 

Active Object 

An object that implements the Active Object pattern. Such objects generally execute service requests in a thread
separate from the caller's (compare with Passive Object).
 

Active Object Pattern 

A design pattern that decouples method execution from method invocation in order to enhance concurrency and
simplify synchronized access to objects that reside in their own threads of control.
 

Architectural Pattern 

A pattern that expresses a fundamental structural organization schema for software systems. It provides a set of
predefined subsystems, specifies their responsibilities, and includes rules and guidelines for organizing the relationships
between them.
 

Aspects 

A property of a program, such as memory management, synchronization, or fault tolerance, that cross-cuts module
boundaries.
 

Asynchronous Completion Token (ACT) 

A developer-supplied value associated with an asynchronous operation. It is used to communicate information
related to the operation to the operation's completion handler.
 

Asynchronous I/O 

A mechanism for sending or receiving data in which an I/O operation is initiated but the caller does not block waiting
for the operation to complete.
 

Barrier Synchronization 

A thread synchronization mechanism that allows a designated group of threads to synchronize their progress when
each attains a certain state, such as completion of some collective operation or task. A barrier represents a specific
point in the execution path. Each thread that reaches the barrier point waits for the other threads to also reach that
point. When all threads in the set reach the barrier, the barrier is "dropped" and all threads simultaneously continue
execution.
 

Bounded Buffer 

A finite-sized buffer that allows two (or more) threads to share the buffer concurrently, with at least one thread
inserting items into the buffer and at least one thread removing items from the buffer.
 

Bridge Pattern 

A design pattern that decouples an abstraction from its implementation so that the two can vary independently.
 

Busy Wait 

A technique used by a thread to wait for a lock by executing a tight loop and polling to see if the lock is available on
each iteration, in contrast to waiting for the lock to be released by sleeping and allowing other threads to run.
 

Cache Affinity 

A thread scheduling optimization that gives preference to dispatching a thread on the CPU on which it most recently
ran to maximize the probability of its state being present in the CPU's instruction and data caches.
 

Callback 

An object registered with a dispatcher, which calls back to a method on the object when a particular event occurs.
 

Collocation 

The locating of objects into a single process or host, often done to improve simplicity or performance (compare with
Distribution).
 

Common Data Representation (CDR) 

The standard format defined by CORBA to marshal and demarshal data. It uses a bicanonical "receiver makes right"
representation that only incurs overhead if the byte order of the sender differs from the byte order of the receiver.
 

Common Middleware Services 

This layer of middleware defines domain-independent services, such as event notifications, logging, multimedia
streaming, persistence, security, global time synchronization, real-time scheduling and distributed resource
management, fault tolerance, concurrency control, and recoverable transactions, that allocate, schedule, and
coordinate various resources throughout a distributed system.
 

Completion Handler 

An object whose interface contains one or more hook methods designed to process completion events.
 

Component 

An encapsulated part of a software system that implements a specific service or set of services. A component has
one or more interfaces that provide access to its services. Components serve as building blocks for the structure of a
system. On a programming language level, components may be represented as modules, classes, objects, or a set of
related functions. A component that does not implement all the elements of its interface is called an abstract
component.
 

Component Configurator Pattern 

A design pattern that allows an application to link and unlink its component implementations at run time without
having to modify, recompile, or relink the application statically.
 

Concurrency 

The ability of an object, component, or system to execute operations that are "logically simultaneous" (compare with
Parallelism).
 

Condition Variable 

A synchronization mechanism used by collaborating threads to suspend themselves temporarily until condition
expressions involving data shared between the threads attain desired states. A condition variable is always used in
conjunction with a mutex, which the thread must acquire before evaluating the condition expression. If the condition
expression is false the thread atomically suspends itself on the condition variable and releases the mutex, so that other
threads can change the shared data. When a cooperating thread changes this data, it can notify the condition variable,
which atomically resumes a thread that had previously suspended on the condition variable and acquires its mutex
again.
 

Container 

A common name for data structures that hold a collection of elements. Examples of containers are lists, sets, and
associative arrays. In addition, component models, such as EJB and ActiveX Controls, define containers that provide
a run-time environment that shields components from the details of their underlying infrastructure, such as an
operating system.
 

Critical Section 

Code that should not execute concurrently in an object or subsystem can be synchronized by a critical section. A
critical section is a sequence of instructions that obeys the following invariant: while one thread or process is executing
in the critical section, no other thread or process can execute in the critical section.
 

Daemon 

A server process that runs continuously in the background performing various services on behalf of clients.
 

Deadlock 

A concurrency hazard that occurs when multiple threads attempt to acquire multiple locks and become blocked
indefinitely in a circular wait state.
 

Demarshaling 

The conversion of a marshaled message to a host-specific format from a host-independent format.
 

Demultiplexing 

A mechanism that routes incoming data from an input port to its intended receivers. There's a 1:N relationship
between input port and receivers. Demultiplexing is commonly applied to incoming events and data streams. The
reverse operation is known as multiplexing.
 

Design Pattern 

A design pattern provides a scheme for refining components of a software system or the relationships between them.
It describes a commonly recurring structure of communicating components that solves a general design problem
within a particular context.
 

Distribution 

The activities associated with placing an object into a different process or host than the clients that access it.
Distribution is often applied to improve fault tolerance or to access remote resources (compare with Collocation).
 

Distribution Middleware 

This layer of middleware automates common network programming tasks, such as connection and memory
management, marshaling and demarshaling, endpoint and request demultiplexing, synchronization, and multithreading,
so that developers can program distributed applications much like stand-alone applications, that is, by invoking
operations on target objects without concern for their location, language, OS, or hardware.
 

Domain 

Denotes concepts, knowledge and other items that are related to a particular problem area. Often used in
"application domain" to denote the problem area addressed by an application. On the Internet, a domain is a logical
addressing entity, such as uci.edu or riverace.com.
 

Domain Analysis 

An inductive, feedback-driven process that examines an application domain systematically to identify its core
challenges and design dimensions in order to map them onto effective solution techniques.
 

Double-Checked Locking Optimization Pattern 

A design pattern that reduces contention and synchronization overhead whenever critical sections of code must
acquire locks in a thread-safe manner just once during program execution.
 

Double-Dispatching 

This technique allows the execution of methods that depend on the type of request and the types of two receivers.
The object that calls the method passes itself as a parameter to the receiver, so the receiver can act differently
depending upon the type of the caller.
 

Dynamically Linked Library(DLL) 

A library that can be shared by multiple processes and linked into and out of a process address space dynamically to
improve application flexibility and extensibility at run time.
 

Event 

A message that conveys the occurrence of a significant activity, together with any data associated with the activity.
 

Event Handler 

An object whose interface consists of one or more hook methods that can process application-specific events.
 

Event Loop 

A program structure that continuously waits for and processes events.
 

Factory 

A method or function that creates and assembles the resources needed to instantiate and initialize an object or
component instance.
 

Flow Control 

A networking protocol mechanism that prevents a fast sender from overrunning the buffering and computing
resources of a slow receiver.
 

Framework See [Object-Oriented Framework] Function Object 

An object that can be called as if it is a function. Also known as a Functor.
 

Gather-Write 

An output operation that transmits the contents of multiple noncontiguous data buffers in a single operation.
 

Generative Programming 

A programming technique focusing on designing and implementing software components that can be combined to
generate specialized and highly optimized systems that fulfill specific requirements.
 

Generic Programming 

A programming technique that unites design patterns and C++ parameterized types to enable developers to achieve
expressive, flexible, efficient, and highly reusable code.
 

Half-Sync/Half-Async Pattern 

An architectural pattern that decouples asynchronous and synchronous processing in concurrent systems, to simplify
programming without reducing performance unduly. This pattern introduces two intercommunicating layers, one for
asynchronous and one for synchronous service processing. A queueing layer mediates communication between
services in the asynchronous and synchronous layers.
 

Handle 

A handle identifies resources that are managed by an operating system kernel. These resources commonly include,
among others, network connections, open files, timers, and synchronization objects.
 

Hook Method 

A framework-prescribed virtual method that acts as the target of framework-initiated callbacks. Use of hook
methods is a technique for integrating application code with framework code.
 

Host Infrastructure Middleware 

This layer of middleware encapsulates concurrency and IPC mechanisms available on hosts to create OO network
programming capabilities that eliminate many tedious, error-prone, and nonportable aspects associated with
developing networked applications via native OS APIs, such as Sockets or Pthreads.
 

Idiom 

A low-level pattern specific to a programming language. An idiom describes how to implement particular aspects of
components or the relationships between them using the features of the given language.
 

Inheritance 

A feature of object-oriented languages that allows new classes to be derived from existing ones. Inheritance defines
implementation reuse, a subtype relationship, or both. Depending on the programming language, single or multiple
inheritance is possible.
 

Inlining 

A compile-time optimization technique that replaces a call to a function or method with the actual code body of that
function or method. Inlining long function/method bodies can lead to code "bloat," with negative effects on storage
consumption and paging.
 

Internet 

A worldwide "network of networks" that is based on the Internet Protocol (IP). Widely considered to be the most
important human invention since fire and MTV.
 

Jitter 

The standard deviation of the latency for a series of operations.
 

Latency 

The delay experienced by operations.
 

Leader/Followers Pattern 

An architectural pattern that provides an efficient concurrency model where multiple threads take turns sharing a set
of event sources in order to detect, demultiplex, dispatch, and process service requests that occur on the event
sources.
 

Lock 

A mechanism used to implement some type of a critical section. A lock that can be acquired and released serially,
such as a static mutex, may be added to a class. If multiple threads attempt to acquire the lock simultaneously, only
one thread will succeed and the others will block until the lock is available. Other locking mechanisms, such as
semaphores or readers/writer locks, define different synchronization semantics.
 

Manager Pattern 

This design pattern controls the life cycle of, or the access to, objects of a class.
 

Marshaling 

The conversion of a set of data from a host-specific format into a host-independent format.
 

Message 

Messages are used to communicate between objects, threads, or processes. In an object-oriented system the term
message is used to describe the selection and activation of an operation or the method of an object. This type of
message is synchronous, which means that the sender waits until the receiver finishes the activated operation. Threads
and processes often communicate asynchronously, in which the sender continues its execution without waiting for the
receiver to reply.
 

Message Passing 

An IPC mechanism used to exchange messages between threads or processes (compare with Shared Memory).
 

Middleware 

A set of layers and components that provides reusable common services and network programming mechanisms.
Middleware resides on top of an operating system and its protocol stacks but below the structure and functionality of
any particular application.
 

Monitor Object Pattern 

A design pattern that synchronizes the execution of concurrent methods to ensure that only one method at a time runs
within an object. It also allows an object's methods to schedule their execution sequences cooperatively.
 

Mutex 

A "mutual exclusion" locking mechanism that ensures only one thread at a time is active concurrently within a critical
section in order to prevent race conditions.
 

Nonrecursive Mutex 

A mutex that must be released before it can be reacquired by any thread, including the thread originally holding it.
Compare with Recursive Mutex.
 

Object-Oriented Framework 

An integrated set of classes that collaborate to provide a reusable software architecture for a family of related
applications. In an object-oriented environment a framework consists of abstract and concrete classes. Instantiation
of such a framework consists of composing and subclassing from existing classes.
 

Overlapped I/O See [asynchronous I/O] Parallelism 

The ability of an object, component, or system to execute operations that are "physically simultaneous" (compare
with Concurrency).
 

Parameterized Type 

A programming language feature that allows classes to be parameterized by various other types (compare with
Template).
 

Passive Connection Establishment 

The connection role played by a peer application that accepts a connection from a remote peer (compare with Active
Connection Establishment).
 

Passive Object 

An object that borrows the thread of its caller to execute its methods (compare with Active Object).
 

Pattern 

A pattern describes a particular recurring design problem that arises in specific design contexts and presents a
well-proven solution for the problem. The solution is specified by describing its constituent participants, their
responsibilities and relationships, and the ways in which they collaborate.
 

Pattern Language 

A family of interrelated patterns that define a process for resolving software development problems systematically.
 

Peer-to-Peer 

In a distributed system peers are processes that communicate with each other. In contrast to components in
client-server architectures, peers may act as clients, as servers, or as both, and may change these roles dynamically.
 

Pipes and Filters Pattern 

An architectural pattern that provides a structure for systems that process a stream of data.
 

Platform 

The combination of hardware and/or software that a system uses for its implementation. Software platforms include
operating systems, libraries, and frameworks. A platform implements a virtual machine with applications running on
top of it.
 

Priority Inversion 

A scheduling hazard that occurs when a lower-priority thread or request blocks the execution of a higher-priority
thread or request.
 

Proactive I/O 

An I/O method in which control returns to the caller initiating the operation immediately, often before the operation
completes. The calling thread can perform other work while the OS carries out the I/O in parallel. The I/O
operation's completion is noted at a later time. Compare with Reactive I/O.
 

Proactor Pattern 

An architectural pattern that allows event-driven applications to efficiently demultiplex and dispatch service requests
triggered by the completion of asynchronous operations, to achieve the performance benefits of concurrency without
incurring certain of its liabilities.
 

Process-Scope Contention 

A concurrency policy whereby the scope of threading or synchronization contention occurs within a process on a
host (compare with System-Scope Contention).
 

Quality of Service (QoS) 

A collection of policies and mechanisms designed to control and enhance communication properties, such as
availability, bandwidth, latency, and jitter.
 

Race Condition 

A race condition is a concurrency hazard that can occur when multiple threads simultaneously execute within a critical
section that is not properly serialized.
 

Reactive I/O 

An I/O model in which an application is notified when desired I/O operation(s) on a particular source are likely to
succeed. The application then performs the desired operation(s) one at a time. Compare with Proactive I/O.
 

Reactor Pattern 

An architectural pattern that allows event-driven applications to demultiplex and dispatch service requests that are
delivered to an application from one or more clients.
 

Recursive Mutex 

A lock that can be reacquired by the thread that owns the mutex without incurring self-deadlock on the thread.
Compare with Nonrecursive Mutex.
 

Refactoring 

An incremental activity that abstracts general-purpose behavior from existing software to enhance the structure and
reusability of components and frameworks.
 

Reify 

The act of creating a concrete instance of an abstraction. For example, a concrete reactor implementation reifies the
Reactor pattern and an object reifies a class.
 

Robust Iterator 

An iterator that ensures insertions and removals won't interfere with traversal.
 

Scatter-Read 

An input operation that stores data into multiple caller-supplied buffers instead of a single contiguous buffer.
 

Scoped Locking Idiom 

A C++ idiom that ensures a lock is acquired when control enters a scope and released automatically when control
leaves the scope, regardless of the return path from the scope.
 

Semaphore 

A locking mechanism that maintains a count. As long as the count is greater than zero a thread can acquire the
semaphore without blocking. After the count becomes zero, however, threads block on the semaphore until its count
becomes greater than zero as a result of another thread releasing the semaphore, which increments the count.
 

Serialization 

A mechanism for ensuring that only one thread at a time executes within a critical section in order to prevent race
conditions.
 

Service 

In the context of network programming, a service can either be (1) a well-defined capability offered by a server, such
as the ECHO service provided by the INETD super-server, (2) a collection of capabilities offered by a server
daemon, such as the INETD super-server itself, or (3) a collection of server processes that cooperate to achieve a
common task, such as a collection of RWHO daemons in a local area network (LAN) subnet that periodically
broadcast and receive status information reporting user activities to other hosts.
 

Shared Library See [Dynamically Linked Library (DLL)] Smart Pointer 

A smart pointer is a C++ object that looks and acts like a built-in pointer but can achieve effects, such as caching,
persistence, or thread-specific storage access, that built-in pointers don't support.
 

Socket 

A family of terms related to network programming. A socket is an endpoint of communication that identifies a
particular network address and port number. The Socket API is a set of function calls supported by most operating
systems and used by network applications to establish connections and communicate via socket endpoints. A
data-mode socket can be used to exchange data between connected peers. A passive-mode socket is a factory that
returns a handle to a connected data-mode socket.
 

Starvation 

A scheduling hazard that occurs when one or more threads are continually preempted by higher-priority threads and
never execute.
 

Strategized Locking Pattern 

A design pattern that parameterizes synchronization mechanisms that protect a component's critical sections from
concurrent access.
 

Strategy Pattern 

A design pattern that defines a family of algorithms, encapsulates each one, and makes them interchangeable.
Strategy lets the algorithms vary independently from clients that use it.
 

Synchronization Mechanism 

A locking mechanism that coordinates the order in which threads execute.
 

Synchronized Message Queue 

A bounded buffer where producer threads can block if the queue is full and consumer threads can block if the queue
is empty.
 

Synchronous Event Demultiplexer 

A mechanism, usually a system function, that demultiplexes events from disparate sources, allowing them to be
processed as part of an application's normal execution flow.
 

Synchronous I/O 

A mechanism for sending or receiving data in which an I/O operation is initiated and the caller blocks waiting for the
operation to complete.
 

System-Scope Contention 

A concurrency policy whereby the scope of threading or synchronization contention occurs between processes on a
host (compare with Process-Scope Contention).
 

Task 

An autonomous or semi-autonomous portion of an application that performs some specific portion of the
application's work, such as receive and demarshal network input, or process requests. A task is executed using one
or more threads.
 

Template 

A C++ programming language feature that enables classes and functions to be parameterized by various types,
constants, or pointers to functions. A template is often called a generic or parameterized type.
 

Thread 

An independent sequence of instructions that executes within an address space that can be shared with other threads.
Each thread has its own run-time stack and registers, which enables it to perform synchronous I/O without blocking
other threads that are executing concurrently. Compared to processes, threads maintain minimal state information,
require relatively little overhead to spawn, synchronize and schedule, and usually communicate with other threads via
objects in their process's memory space, rather than shared memory.
 

Thread-per-Connection 

A concurrency model that associates a separate thread with each network connection. This model handles each client
that connects with a server in a separate thread for the duration of the connection. It is useful for servers that must
support long-duration sessions with multiple clients. It is not useful for clients, such as HTTP 1.0 Web browsers, that
associate a single request with each connection, which is effectively a thread-per-request model.
 

Thread-per-Request 

A concurrency model that spawns a new thread for each request. This model is useful for servers that must handle
long-duration request events from multiple clients, such as database queries. It is less useful for short-duration
requests, due to the overhead of creating a new thread for each request. It can also consume a large number of
operating system resources if many clients send requests simultaneously.
 

Thread Pool 

A concurrency model that allocates a set of threads that can perform requests simultaneously. This model is a variant
of thread-per-request that amortizes thread creation costs by prespawning a pool of threads. It is useful for servers
that want to limit the number of operating system resources they consume. Client requests can be executed
concurrently until the number of simultaneous requests exceeds the number of threads in the pool. At this point,
additional requests must be queued until a thread becomes available.
 

Thread Safe 

Safe from any undesired side effects (race conditions, data collisions, etc.) caused by multiple threads executing the
same section of code concurrently.
 

Thread-Safe Interface Pattern 

A design pattern that minimizes locking overhead and ensures that intracomponent method calls do not incur
"self-deadlock" by trying to reacquire a lock that is held by the component already.
 

Thread-Specific Storage (TSS) Pattern 

A design pattern that allows multiple threads to use one "logically global" access point to retrieve an object that is
local to a thread, without incurring locking overhead on each object access.
 

Traits 

A type that conveys information used by another class or algorithm to determine policies or implementation details at
compile time.
 

Trojan Horse 

A harmful piece of software that is hidden in a seemingly harmless software module such as a trusted run-time library.
 

Type Safe 

A property enforced by a programming language's type system to ensure that only valid operations can be invoked
upon instances of types.
 

Unicode 

A standard for character representation that includes characters for most written languages as well as representations
for punctuation, mathematical notations, and other symbols.
 

Weakly Typed 

A datum whose declared data type does not fully reflect its intended or purported use.
 

Wrapper Facade 

One or more classes that encapsulate functions and data within a type safe object-oriented interface.
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