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Do you need to develop flexible software that can be customized quickly? Do you need to add the power and
efficiency of frameworksto your software? The ADAPTIVE Communication Environment (ACE) is an open-source
toolkit for building high-performance networked applications and next-generation middieware. ACE's power and
flexibility arise from object-oriented frameworks, used to achieve the systematic reuse of networked application
software. ACE frameworks handle common network programming tasks and can be customized using C++ language
features to produce complete distributed applications.

C++ Network Programming, Volume 2, focuses on ACE frameworks, providing thorough coverage of the concepts,
patterns, and usage rules that form their structure. Thisbook isapractica guide to designing object-oriented
frameworks and shows devel opers how to apply frameworks to concurrent networked applications. C++
Networking, Volume 1, introduced ACE and the wrapper facades, which are basic network computing ingredients.
Volume 2 explains how frameworks build on wrapper facades to provide higher-level communication services.

Written by two expertsin the ACE community, thisbook contains:

An overview of ACE frameworks

Design dimensions for networked services

Descriptions of the key capabilities of the most important ACE frameworks
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*  Numerous C++ code examples that demonstrate how to use ACE frameworks

C++ Network Programming, Volume 2, teaches how to use frameworks to write networked applications quickly,
reducing development effort and overhead. 1t will be an invaluable asset to any C++ developer working on
networked applications.
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Foreword

The ADAPTIVE Communication Environment (ACE) toolkit has achieved enormous successin the area of
middleware for networked computing. Dueto itsflexibility, performance, platform coverage, and other key
properties, ACE enjoys broad acceptance by the networked application software community, as evidenced by its
use in thousands of applications, in scores of countries, and in dozens of domains. ACE has a so received
condderable attention beyond the middleware community since it's an open-source role model for high-quality and
well-designed pattern-oriented software architectures.

But why is ACE so successful? Addressing this question properly takes some thought. To start off, let'sreconsider
the Foreword from C++ Network Programming: Mastering Complexity with ACE and Peatterns (C++NPv1) and
resume the mass trangit andlogy presented there by my colleague Steve Vinoski. Steve'sright that ahigh-quality mass
trangt system consists of more than just aircraft, airports, trains, train stations, and rails. It aso needs|ess obvious
infragtructure, such as scheduling, routing, ticketing, maintenance, and monitoring. But even a complete collection of
ingredientsis dill not sufficient to devel op an effective mass trangt system. Arranging these ingredients so they
seamlesdly fulfill their primary objective?ast and reliable trangportation of people?s equally important. Would you
use amass trangt system whose ticketing was located in atrain maintenance location or an airport hangar, or whose
planned and actua scheduling and routing weren't available to the public? | doubt it!

The success of masstrangit systems depends on more than the knowledge of the infrastructure partsthat are
provided? depends on how these different parts must be connected and integrated with their environment. This
knowledge enables architects of masstrangt systemsto integrate individua partsinto higher-level building blocks and
to connect these building blocks effectively. For example, ticketing, information points, baggage offices, and boarding
areintegrated in train stations located at city centers or magjor suburban centers. Likewise, airports are often located
near large cities and connected by frequent expresstrains.

Even masstrangt centers themsalves are arranged so that activities can be performed effectively. For example, when
you enter atrain station or arport viathe main entrance, you find ticket agents, information centers, and timetables.

Y ou dso find shopsto satisfy your travel needs. Asyou enter the main train hall or airport concourse, you find other
information centers, up-to-date scheduling information, and the platforms and gates for boarding the trainsand
planes. Mass trangit centers thus not only provide al necessary servicesto begin and end ajourney, they aso
organizetherr interna "control flows' effectively. While the core structures and control flowsin most train stations and
arportsare smilar, their concrete redlization can differ widdly. Y et we dl recognize these mass trangit center patterns
immediately sncethey follow key invariants that we've learned through years of experience.

So what's the connection between successful masstrangt system design and the success of ACE? The answer is
smple: In addition to the basic network computing ingredients (the wrapper facades that Doug and Steve introduced
in C++NPv1), ACE aso includes useful object-oriented frameworks that build upon these wrapper facades and
provide useful higher-level communication services, such as event demultiplexing and dispatching, connection
management, service configuration, concurrency, and hierarchicaly layered stream processing. The ACE framework
services satisfy many networked software needs by organizing the structures and interna control flows of your
gpplications effectively viakey patterns|earned through years of experience.

The ACE frameworks offer you anumber of important benefits:



This document is created with the unregistered version of CHM2PDF Pilot

4 FREWIOUS || MEXT k




This document is created with the unregistered version of CHM2PDF Pilot

4 FREWIOUE || HEXT #




This document is created with the unregistered version of CHM2PDF Pilot

About This Book

Software for networked applications must possess the following qualities to be successful in today's competitive,
fast-paced computing industry:

Affordability, to ensure that the total ownership costs of software acquisition and evolution are not
prohibitively high

Extensbility, to support successions of quick updates and additions to address new requirements and take
advantage of emerging markets

Fexibility, to support agrowing range of multimedia data types, traffic patterns, and end-to-end qudlity of
sarvice (QoS) requirements

Portability, to reduce the effort required to support applications on heterogeneous OS platforms and
compilers

Predictability and efficiency, to provide low latency to delay-sengtive red-time applications, high
performance to bandwidth-intensive applications, and usability over low-bandwidth networks, such as
wirdesslinks

Rdiability, to ensure that applications are robugt, fault tolerant, and highly available

Scaability, to enable gpplications to handle large numbers of clients Smultaneoudy

Writing high-quality networked applications that exhibit these quditiesis hard?t's expensive, complicated, and error
prone. The patterns, C++ language features, and object-oriented design principles presented in C++ Network
Programming, Volume 1: Mastering Complexity with ACE and Patterns (C++NPv1) help to minimize complexity
and mistakes in networked gpplications by refactoring common structure and functionality into reusable wrapper
facade classlibraries. The key benefits of reuse will belost, however, if large parts of the gpplication software that
uses these class libraries? worse, the class libraries themselves?ust be rewritten for each new project.

Historically, many networked application software projects began by

7.

|
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| ntended Audience

Thisbook isintended for "hands on" C++ developers or advanced students interested in understanding how to
design object-oriented frameworks and apply them to devel op networked applications. It builds upon materiad from
C++NPv1 that shows how developers can gpply patterns to master complexities arisng from using native OS APIs
to program networked gpplications. It's therefore important to have a solid grasp of the following topics covered in
C++NPv1 before reading this book:

*  Networked gpplication design dimensions, including the dternative communication protocols and data
transfer mechanisms discussed in Chapter 1 of C++NPv1

* Internet programming mechanisms, such as TCP/IP connection management and datatransfer APIs [ Ste98]
discussed in Chapter 2 of C++NPv1

e Concurrency design dimensions, including the use of processes and threads, iterative versus concurrent
versus reactive servers, and threading models [ Ste99] discussed in Chapters 5 through 9 of C++NPv1

»  Synchronization techniques necessary to coordinate the interactions of processes and threads on various OS
platforms[KSS96, Lew95, Ric97] discussed in Chapter 10 of C++NPv1

»  Object-oriented design and programming techniques[Boo94, Mey97] that can smplify OS APIsand avoid
programming mistakes through the use of patterns, such as Wrapper Facade [ POSA 2] and Proxy [ POSA1,
GoF] discussed in Chapter 3 and Appendix A of C++NPv1

The ACE frameworks are highly flexible and powerful, duein large part to their use of C++ language features[ Bja00
]. You should therefore be familiar with C++ classinheritance and virtud functions (dynamic binding) aswell as
templates (parameterized types) and the mechanisms your compiler(s) offer to instantiate them. ACE provides agreat
ded of assistance in overcoming differences between C++ compilers. Asaways, however, you need to know the
capabilities of your development tools and how to use them. Knowing your tools makesit easier to follow the source
code examplesin thisbook and to build and run them on your systems. Findlly, asyou read the examplesin this
book, keep in mind the points noted in Sidebar 7 (page 46) regarding UML diagrams and C++ code.

Ru-Brd
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Structure and Content

Our C++NPv1 book addressed how to master certain complexities of developing networked applications, focusing
on the use of ACE'swrapper facadesto avoid problemswith operating system APIswritten in C. Thisbook (which
we call C++NPv2) devates our focus to motivate and demystify the patterns, design techniques, and C++ features
associated with developing and using the ACE frameworks. These frameworks help reduce the cost and improve the
qudity of networked applications by reifying proven software designs and patternsinto frameworks that can be
reused systematically across projects and enterprises. The ACE frameworks expand reuse technology far beyond
what can be achieved by reusing individua classes or even classlibraries.

Thisbook presents numerous C++ gpplications to reinforce the design discussions by showing concrete examples of
how to use the ACE frameworks. These examples provide step-by-step guidance that can help you apply key
object-oriented techniques and patterns to your own networked applications. The book also shows how to enhance
your design skills, focusing on the key concepts and principles that shape the design of successful object-oriented
frameworks for networked applications and middieware.

The chaptersin the book are organized asfollows:

»  Chapter 1 introduces the concept of an object-oriented framework and shows how frameworks differ from
other reuse techniques, such as classlibraries, components, patterns, and modd-integrated computing. We
then outline the frameworksin the ACE toolkit that are covered in subsequent chapters.

»  Chapter 2 completes the domain analysis begun in C++NPv1, which covered the communication protocols
and mechanisms, and the concurrency architectures used by networked applications. The focusin this book
ison the service and configuration design dimensions that address key networked application properties,
such as duration and structure, how networked services are identified, and the time at which they are bound
together to form complete gpplications.

» Chapter 3 describesthe design and use of the ACE Reactor framework, which implements the Reactor
pattern [ POSA 2] to alow event-driven gpplications to demultiplex and dispatch service requests that are
delivered to an application from one or more clients.

»  Chapter 4 then describes the design and use of the most common implementations of the ACE_Reactor
Interface, which support awide range of OS event demulltiplexing mechanisms, including select(),
WaitForMultipleObjects(), XtAppMainLoop(), and /dev/poll.

» Chapter 5 describes the design and use of the ACE Service Configurator framework. This framework
implements the Component Configurator pattern [ POSA 2] to dlow an gpplication to link/unlink its
component service implementations at run time without having to modify, recompile, or relink the gpplication

~ddi A~ s
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Related M aterial

Thisbook isbased on ACE verson 5.3, released in thefall of 2002. ACE 5.3 and dl the sample applications
described in our books are open-source software. Sidebar 3 (page 19) explains how you can obtain acopy of ACE
s0 you can follow along, see the actua ACE classes and frameworksin complete detail, and run the code examples
interactively as you read the book.

To learn more about ACE, or to report errors you find in the book, we recommend you subscribe to the ACE
mailing lig, ace-users@cs.wustl.edu. Y ou can subscribe by sending arequest to ace-users-request@cs.wustl.edu.
Include the following command in the body of the e-mail (the subject isignored):

subscri be ace-users [enmil address@ilonai n]

Y ou must supply emailaddress@domain only if your message's From addressis not the address you wish to
subscribe. If you use this dternate address method, the list server will require an extraauthorization step before
dlowingyoutojointhelis.

Postings to the ace-userslist are also forwarded to the comp.soft-sys.ace USENET newsgroup, along with postings
to severd other ACE-related mailing lists. Reading the messages via the newsgroup isagood way to keep up with
ACE news and activity if you don't require immediate delivery of the 30 to 50 messages that are posted daily on the
mallingligs

Archives of postings to the comp.soft-sys.ace newsgroup are available at http://groups.google.conV. Enter
comp.soft-sys.ace in the search box to go to alist of archived messages. Google has acomplete, searchable archive
of over 40,000 messages. Y ou can aso post a message to the newsgroup from Google's site.
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Chapter 1. Object-Oriented Frameworksfor
Networ k Programming

CHAPTER SYNOPSIS

Object-oriented frameworks help reduce the cost and improve the quality of networked gpplications by reifying
software designs and pattern languages that have proven effectivein particular application domains. This chapter
illustrates what frameworks are and compares them with other popular software devel opment techniques, such as
classlibraries, components, patterns, and mode-integrated computing. It then illustrates the process of applying
frameworks to networked applications and outlines the ACE frameworks that are the focus of this book. These
frameworks are based on a pattern language [ POSA 1, POSA 2] that has been applied to thousands of production
networked applications and middleware worldwide.

Ru-Brd
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1.1 An Overview of Object-Oriented Frameworks

Even as computing power and network bandwidth increase dramaticdly, the devel opment of networked application
software remains expensive, time consuming, and error prone. The cost and effort slems from the growing demands
placed on networked software, aswell as the continua rediscovery and reinvention of core software design and
implementation artifacts throughout the software industry. Moreover, the heterogenety of hardware architectures,
diversty of OS and network platforms, and tiff globa competition makesit increasingly hard to build high-qudity
networked application software from scratch.

The key to building high-quaity networked software in atime-to-market-driven environment isthe ability to reuse
successful software designs and implementations that have aready been devel oped. Reuse has been a popular topic
of debate and discussion for over 30 yearsin the software community [ Mcl68]. There are two genera types of reuse:

*  Opportunistic reuse, in which devel opers cut and paste code from existing programs to create new ones.
Opportunigtic reuse worksin alimited way for individua programmers or small groups. It doesn't scale up
across business units or enterprises, however, and therefore doesn't Significantly reduce development cycle
time and cost or improve software quality. Worse, opportunistic reuse can actudly impede devel opment
progress since cut-and-paste code often beginsto diverge asit proliferates, forcing developersto fix the
same bugs multipletimesin multiple places.

» Systematic reuse, which isan intentiona and concerted effort to create and apply multiuse software
architectures, patterns, frameworks, and components throughout a product line[ CNO2]. In awell-honed
systematic reuse process, each new project leverages time-proven designs and implementations, only adding
new code that's specific to a particular application. Thistype of reuseis essentia to increase software
productivity and quaity by breaking the costly cycle of rediscovering, reinventing, and revaidating common
software artifacts.

Middleware [ SS02] isaclass of software that can increase systematic reuse levels sgnificantly by functionally
bridging the gap between the end-to-end functional requirements of networked applications and the underlying
operating systems and network protocol stacks. Middleware provides capabilitiesthat are critica to networked
gpplications because they automate common network programming tasks. Developers who use middleware can
therefore program their networked applications more like stand-al one gpplications, rather than wrestling with the
many tedious and error-prone details associated with low-level OS event demulltiplexing, message buffering and
queueing, marshaing and demarshaing, and connection management mechanisms. Popular examples of middleware
include Java virtua machines (JVMs), Enterprise JavaBeans (EJB), .NET, the Common Object Request Broker
Architecture (CORBA), and the ADAPTIVE Communication Environment (ACE).

Systematicaly developing high-quality, reusable middieware for networked applications presents many hard technica
chdlenges indluding

» Detecting and recovering from trangent and partia failures of networks and hostsin an
gpplication-independent manner
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1.2 Comparing Softwar e Development and Reuse Techniques

Object-oriented frameworks don't exist in isolation. Class libraries, components, patterns, and mode-integrated
computing are other techniques that are being applied to reuse software and increase productivity. This section
compares frameworks with these techniquesto illugtrate their smilarities and differences, aswell asto show how the
techniques can be combined to enhance systematic reuse for networked applications.

1.2.1 Comparing Frameworks and Class Libraries

A classisagenerd-purpose, reusable building block that specifies an interface and encapsul ates the representation of
itsinterna dataand the functionality of itsingtances. A library of classes was the most common firgt-generation
object-oriented development technique [ Mey97]. Class libraries generaly support reuse-in-the-small more effectively
than function libraries since classes emphasi ze the cohesion of data and methods that operate on the data.

Although classlibraries are often domain independent and can be applied widely, their effective scope of reuseis
limited because they don't capture the canonical control flow, collaboration, and variability among families of related
software artifacts. The total amount of reuse with classlibrariesistherefore reatively small, compared with the
amount of gpplication-defined code that must be rewritten for each application. The need to reinvent and reimplement
the overd| software architecture and much of the control logic for each new application is a prime source of cost and
delay for many software projects.

The C++ standard library [ Bja00] isagood casein point. It provides classes for strings, vectors, and other
containers. Although these classes can be reused in many application domains, they arerdatively low levd.
Application developers are therefore responsble for (re)writing much of the "glue code” that performs the bulk of the
application control flow and classintegration logic, asshownin Figure 1.2 (1).

Figure1.2. ClassLibrary versus Framework Architectures
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Frameworks are a second-generation development technique [ Joh97] that extends the benefits of classlibrariesin
severd ways. Most importantly, classesin aframework collaborate to provide a reusable architecture for afamily of
related gpplications. Class collaboration in aframework yields" semi-complete” gpplications that embody
domain-specific object sructures and functiondity. Frameworks can be classified by various means, such asthe
blackbox and whitebox distinctions described in Sidebar 1 (page 6).
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1.3 Applying Framewor ks to Networ k Programming

Onereason why it's hard to write robust, extensible, and efficient networked applicationsis that developers must
master many complex networking programming concepts and mechaniams, including

* Network addressing and service identification/discovery

* Presentation layer conversons, such as marshaing, demarshaing, and encryption, to handle heterogeneous
hosts with aternative processor byte orderings

* Locd and remote interprocess communication (1PC) mechanisms

»  Event demultiplexing and event handler dispatching

»  Process'thread lifetime management and synchronization

Application programming interfaces (APIs) and tools have evolved over the yearsto smplify the devel opment of
networked applications and middleware. Figure 1.6 illustrates the IPC APIs available on OS platforms ranging from
UNIX to many real-time operating systems. Thisfigure shows how applications can access networking APIsfor

local and remote |PC at several levels of abstraction. We briefly discuss each level of abstraction below, starting
from the lower-level kernd APIsto the native OS user-level networking API's and the host infrastructure middieware.

Figure 1.6. Levelsof Abstraction for Network Programming
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Kernd-level networking APIs. Lower-leve networking APIs are availablein an OS kernd's /0O subsystem. For
example, the UNIX putmsg() and getmsy() system functions can be used to access the Transport Provider Interface
(TPI) [OSI92b] and the Data Link Provider Interface (DLPI) [OSI92a] availablein System V STREAMS[Rit84].
It'saso possible to develop network services, such as routers [ KM C+00], network file systems [ WL S+85], or even
Web servers [ JKN+01], that reside entirely within an OS kernel.

Proaorammina directlv to kernd-levd networkina APIsisrardyv portable between different OS platforms. however.
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1.4 A Tour through the ACE Frameworks

1.4.1 An Overview of ACE

ACE isahighly portable, widely used, open-source host infrastructure middieware toolkit. The source code isfredy
availablefrom http://ace.ece.uci.edu/ or http://mww.riverace.conV. The core ACE library contains roughly a quarter
million lines of C++ code that comprises approximately 500 classes. Many of these classes cooperate to form ACE's
magor frameworks. The ACE toolkit aso includes higher-level components, aswel asalarge set of examplesand an
extendve automated regression test suite.

To separate concerns, reduce complexity, and permit functional subsetting, ACE isdesigned using alayered
architecture[POSA 1], shownin Figure 1.7. The capabilities provided by ACE span the session, presentation, and
application layersin the OSl reference model [ Bla91]. The foundation of the ACE toolkit isits combination of an OS
adaptation layer and C++ wrapper facades, which together encapsulate core OS network programming mechanisms
to run portably on dl the OS platforms shown in Sidebar 2 (page 16). The higher layers of ACE build on this
foundation to provide reusable frameworks, networked service components, and standards-based middleware.

Figure 1.7. The Layered Architecture of ACE
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1.4.2 A Synopsis of the ACE Frameworks

The ACE frameworks are an integrated set of classesthat can be ingtantiated and customized to provide complete
networked applications and service components. These frameworks help to transfer decades of accumulated
knowledge directly from the ACE developersto ACE usersin the form of expertise embodied in well-tested and
reusable C++ software artifacts. The ACE frameworks implement a pattern language for programming concurrent
object-oriented networked applications. Figure 1.8 illustrates the ACE frameworks. To illustrate how the ACE
frameworks rely on and use each other, the lines between boxes represent a dependency in the direction of the
arrow. Each framework is outlined below.

N o srrem 1 O TIlhanl/ ~ 2, MFMu i rarntomitlo e AT
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1.5 Example: A Networked Logging Service

It's been our experience that the principles, methods, and skills required to devel op and use reusable networked
application software cannot be learned soldly by generdities or toy examples. Ingtead, programmers must learn
concrete technical skills and gain hands-on experience by developing and using red frameworks and gpplications.
Wethereforeillustrate key points and ACE capabilities throughout this book by extending and enhancing the
networked logging service example introduced in C++NPv1, which collects and records diagnostic information sent
from one or more client gpplications.

Thelogging servicein C++NPv1 used many of ACE's wrapper facadesin atwo-tier client/server architecture. This
book's logging service examples use amore powerful architecture that illustrates a broader complement of
capabilities and patterns, and demonstrates how ACE's frameworks can help achieve efficient, predictable, and
scalable networked applications. This service dso hepsto demondtrate key design and implementation

cong derations and solutions that will arise when you develop your own concurrent object-oriented networked
goplications.

Figure 1.10 illustrates the application processes and daemonsin our networked logging service, which we outline
below.

Figure 1.10. Processes and Daemonsin the Networked L ogging Service
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Client gpplication processes (such as P1,P2, and P3) run on client hosts and generate log records ranging from
debugging messagesto critica error messages. Thelogging information sent by aclient gpplication containsthetime
the log record was created, the process identifier of the application, the priority level of thelog record, and a
variable-sized string containing the log record text message. Client applications send these log recordsto aclient
logging daemon running on their loca hog.
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1.6 Summary

Networked application software has been developed manualy from scratch for decades. The continud rediscovery
and reinvention of core concepts and capabilities associated with this process has kept the costs of engineering and
evolving networked gpplications too high for too long. Improving the quality and quantity of systematic software
reuseis essentia to resolvethis problem.

Middlewareisaclass of software that's particularly effective a providing systematicaly reusable artifactsfor
networked applications. Developing and using middleware is therefore an important way to increasereuse. There are
many technical and nontechnica chalengesthat make middleware development and reuse hard, however. This
chapter described how object-oriented frameworks can be applied to overcome many of these cha-lenges. To make
the most appropriate choice of software development technologies, we a so described the differences between
frameworks and classlibraries, components, patterns, and modd-integrated computing. Each technology plays a part
in reducing software development costs and life cycles and increasing software qudity, functiondity, and performance.

The result of applying framework devel opment principles and patterns to the domain of networked applications has
yielded the ACE frameworks. These frameworks handle common network programming tasks and can be
customized via C++ language features to produce compl ete networked applications. When used together, the ACE
frameworks smplify the creation, composition, configuration, and porting of networked applications without incurring
significant performance overhead. The rest of this book explains how and why the ACE frameworks were devel oped
and shows many examples of how ACE uses C++ featuresto achieveits goals.

Anintangible, but valuable, benefit of ACE isitstransfer of decades of accumulated knowledge from ACE
framework developersto ACE framework usersin the form of expertise embodied in well-tested C++ classes that
implement time-proven networked application software development strategies. These frameworks took scores of
person-yearsto develop, optimize, and mature. Fortunately, you can take advantage of the expertise embodied in
these frameworks without having to independently rediscover or reinvent the patterns and classes that underlie them.

Ru-Brd
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Chapter 2. Service and Configuration Design
Dimensions

CHAPTER SYNOPSIS

A sarviceisaset of functionality offered to aclient by a server. Common services available on the Internet today
indude

*  Web content retrieval services, such as Apache and Google

»  Software digtribution services, such as Castanet, Citrix, or Softricity
» Electronic mail and network news transfer services

»  Fileaccess on remote machines

*  Network time synchronization

»  Payment processing services

»  Streaming audio/video services, such as Red Player and QuickTime

Networked applications can be created by configuring their constituent services together at various points of time,
such ascompiletime, Setic link time, ingtdlation time, or runtime.

Chapters 1 and 5 of C++NPv1 provided adomain analysis of the communication protocols and mechanisms and the
concurrency architectures used by networked applications. This chapter expands that coverage to anadyze other
design dimensions that address key networked application properties. These properties include service duration and
sructure, how networked services are identified, and the time at which they are bound together to form complete
gpplications. These design dimensons areimportant in any networked application, and of particular importance to the
ACE Service Configurator framework (Chapter 5). If you're aready familiar with these design dimensions, however,
you may want to skip ahead to Chapter 3, which begins the coverage of the ACE frameworks.
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2.1 Service and Server Design Dimensions

When designing networked gpplications, it'simportant to recognize the difference between aservice, whichisa
capability offered to clients, and a server, which is the mechanism by which the service is offered. Thedesign
decisionsregarding services and servers are easily confused, but should be considered separately. This section
coversthefollowing service and server design dimensions:

Short- versus|ong-duration services

¢ |nternd versus externa sarvices

o Stateful versus statd ess services

» Layered/modular versus monolithic services

e Single- versusmultiservice servers

e One-shot versus standing servers

2.1.1 Short-Duration versus Long-Duration Services

The services offered by network servers can be classified as short duration or long duration. These time durations
reflect how long a service holds system resources. The primary tradeoff in this design dimension involves holding
system resources when they may be better used e sewhere versus the overhead of restarting aservicewhenit's
needed. In anetworked application, thisdimension is closaly related to protocol selection because setup
requirements for different protocols can vary significantly.

Short-duration services execute in brief, often fixed, amounts of time and usually handle asingle request at atime.
Examples of short-duration servicesinclude computing the current time of day, resolving the Ethernet number of an
|P address, and retrieving adisk block from the cache of anetwork file server. To minimize the amount of time spent
Setting up a connection, short-duration services are often implemented using connectionless protocols, such as
UDP/IP [ Ste94].

Long-duration services run for extended, often variable, lengths of time and may handle numerous requests during
ther lifetime. Examples of long-duration servicesinclude transferring large software releases via FTP, downloading
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2.2 Configuration Design Dimensions

This section coversthe following configuration design dimensions.

Static versus dynamic naming

o Staticversusdynamic linking

Static versus dynamic configuration

2.2.1 Static versus Dynamic Naming

Applications can be categorized according to whether their services are named Statically or dynamicaly. The primary
tradeoff in this dimengon involves run-time efficiency versusflexihbility.

Statically named services associate the name of a service with object code that exists at compile time and/or static
link time. For example, INETD'sinterna services, such asECHO and DAY TIME, are bound to statically named

functions stored interndly in the INETD program. A statically named service can be implemented in either static or
dynamiclibraries.

Dynamicaly named services defer the association of a service name with the object code that implements the service.
Code therefore needn't be identified?or even be written, compiled, and linked™ntil an application begins executing
the corresponding service a run time. A common example of dynamic naming isdemongrated by INETD's handling
of TELNET, whichisan externd service. Externa services can be updated by modifying theinetd.conf configuration
file and sending the SIGHUP signa to the INETD process. When INETD receivesthissignd, it rereads inetd.conf
and dynamicaly rebindsthe servicesit offersto their new executables.

2.2.2 Static versus Dynamic Linking

Applications can aso be categorized according to whether their services are linked into a process address space
daticdly or dynamicaly. The primary tradeoffsin this dimension involve extensbility, security, reliability, and
effidency.

Static linking creates a compl ete executable program by binding together al its object files at compile time and/or
detic link time, asshown in Figure 2.6 (1).

Figure 2.6. Static Linking ver sus Dynamic Linking
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2.3 Summary

This chapter described two groups of design dimensions related to the successful development and deployment of
networked gpplications. Service design dimens ons affect the ways in which application services are structured,
developed, and ingtantiated. Service configuration dimengons affect user or adminigtrator abilitiesto vary the run-time
placement and configuration of networked services after ddlivery and deployment.

Service design dimensions have asignificant impact on how effectively applications use system and network
resources. Efficient resource usageis closely linked to application response time, aswell asto overal system
performance and scaability. Performanceis an important factor that's visible to end users. Though a coherent and
modular designislessvisbleto end users, it'scritica to aproduct'slong-term success.

Good design smplifies maintenance and alows gpplication functiondity to evolvein response to market changes and
competitive pressures without losing quaity or performance. Fortunately, performance and modularity needn't be an
ether/or propogition. By carefully consdering service design dimensons and gpplying ACE judicioudy, you'l be able
to create highly efficient and well-designed networked applications.

Even well-designed services and gpplications may need to adapt to avariety of deployment environments and user
demands. Service configuration dimensonsinvolve tradeoffs between design decisons associated with identifying a
particular set of services and linking these servicesinto the address space of one or more applications. To produce
successful solutions, a networked gpplication's flexibility must be weighed againgt its security, packaging, and
complexity concerns.

When devel oping networked applications, the two sets of design dimensionsin this chapter should be considered
aong with the dimensions described in Chapters 1 and 5 of C++NPv1. The ACE frameworks described in this book
offer powerful toolsto implement flexible and extensible designs with many combinations of tradeoffs and capatilities.

Ru-Brd
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Chapter 3. The ACE Reactor Framework

CHAPTER SYNOPSIS

This chapter describes the design and use of the ACE Reactor framework. This framework implements the Reactor
pattern [ POSA 2], which alows event-driven applications to react to events originating from anumber of disparate
sources, such as1/0O handles, timers, and Signds. Applications override framework-defined hook methods, which the
framework then dispatch to process events. We show how to implement alogging server using areactor that (1)
detects and demultiplexes different types of connection and data events from various event sources and (2) then
dispatches the events to application-defined handlers that process the events.

Ru-Brd
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3.1 Overview

The ACE Reactor framework smplifies the development of event-driven programs, which characterize many
networked applications. Common sources of eventsin these gpplicationsinclude activity on an |PC stream for 1/0
operations, POSIX sgnds, Windows handle signaing, and timer expirations. In this context, the ACE Reactor
framework isrespongblefor

Detecting the occurrence of events from various event sources

» Demultiplexing the eventsto their preregistered event handlers

Digpatching to hook methods defined by the handlersto process the eventsin an application-defined manner

This chapter describes the following ACE Reactor framework classes that networked applications can use to detect
the occurrence of events and then demultiplex and dispatch the eventsto their event handlers:

ACE Class Description

ACE Time Vdue Provides a portable, normalized representation of time
and duration that uses C++ operator overloading to
amplify time-related arithmetic and relational operations.

ACE_Event Handler An abgtract class whose interface defines the hook
methods that are the target of ACE_Reactor callbacks.
Most application event handlers developed with ACE are
descendants of ACE_Event Handler.

ACE_Timer_Queue An abgtract class defining the capabilities and interface
for atimer queue. ACE containsavariety of classes
derived from ACE_Timer_Queuethat provide flexible
support for different timing requirements.

ACE_Resactor Providesthe interface for managing event handler
registrations and executing the event loop that drives
event detection, demultiplexing, and dispatching in the
Reactor framework.
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3.2The ACE_Time ValueClass

M otivation

Different operating systems provide different functions and data to access and manipul ate the time and date. For
example, UNIX platforms definethetimeva structure asfollows:

struct timeval {
| ong secs;
| ong usecs;

};

Different date and time representations are used on other OS platforms, such as POSIX, Windows, and proprietary
redl-time operating systems. Time values are used in anumber of Stuations, including timeout pecifiers. As described
in Sidebar 6 (page 45), ACE specifiestimeouts in absolute time for some Situations, such as the concurrency and
synchronization wrapper facadesin C++NPv1, and in relative timefor other Situations, such asthe ACE_Reactor
I/O timeouts and timer settings. The wide range of uses and different representations across platforms makes
addressing these portability differencesin each application unnecessarily tedious and costly, which iswhy the ACE
Reactor framework providesthe ACE_Time Vaueclass.

Class Capabilities

ACE_Time Vaue appliesthe Wrapper Facade pattern [ POSA 2] and C++ operator overloading to smplify the use
of portable time and duration related operations. This class provides the following capabilities:

* It provides a standardized representation of time that's portable across OS platforms.

* It can convert between different platform time representations, such astimespec _t and timeva on UNIX, and
FILETIME and timeva on Windows.

» It usesoperator overloading to smplify time-based comparisons by permitting standard C++ syntax for
time-based arithmetic and relationd expressions.

» Itscongructors and methods normalize time quantities by converting thefieldsin atimeva Structureinto a
canonica format that ensures accurate comparisons between ACE_Time Vaueinstances.

» |t can represent either aduration, such as 5 seconds and 310,000 microseconds, or an absol ute date and
time, such as 2001-09-11-08.46.00. Note that some methods, such as operator* =(), are meaningless with
absolutetimes.
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3.3The ACE_Event Handler Class

M otivation

Networked applications are often based on areactive modd, in which they respond to various types of events, such
as /O activity, expired timers, or signas. Application-independent mechanismsthat detect events and dispatch them
to event-handling code should be reused across applications, while application-defined code that responds to the
events should reside in the event handlers. To reduce coupling and increase reuse, aframework separatesthe
reuseable mechanisms and provides the means to incorporate application-defined event handlers. This separation of
concernsisthe basis of the ACE Reactor framework's inversion of control. Its event detection and dispatching
mechanisms control execution flow and invoke event-handling callback hook methods when there's gpplication
processing to perform.

Sidebar 8: The ACE_Get_Opt Class

ACE_Get Optisaniterator for parsng options from command-line arguments. Options passed in an
optstring are preceded by *-' for short options or --' for long options. ACE_Get_Opt can be used to
parse argc/argv arguments, such as those passed as a program's main() command line or to an init()
hook method. This class providesthe following capabilities:

* A thin C++ wrapper facade for the standard POSIX getopt() function. Unlike getopt(),
however, each instance of ACE_Get_Opt maintainsits own state, so it can be used reentrantly.
ACE_Get_Optisaso easier to use than getopt() since the optstring and argc/argv arguments
are only passed onceto its constructor, rather than to each iterator call.

» It canbetoldto start processing the command line at an arbitrary point specified by the
skip_args parameter, which dlowsit to skip the program name when parsing acommand line
passed to main() or continue processing where it left off at alater time.

* It canregroup dl the option arguments at the beginning of the command line, while maintaining
their relative order, which smplifies option and nonoption argument processing. After dl the
options are scanned, it returns EOF and opt_ind() pointsto the first nonoption argument, so the
program can continue process ng the remaining arguments.

* Multiple argument ordering modes. PERMUTE_ARGS, REQUIRE_ORDER, and
RETURN_IN_ORDER.
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3.4The ACE Time Queue Classes

M otivation

Many networked gpplications perform activities periodically or must be notified when specified time periods have
elapsed. For example, Web servers require watchdog timers that rel ease resourcesiif clientsdon't sendan HTTP
GET request shortly after they connect.

Native OStimer capabilities vary, but many platforms share the following problems:

» Limited number of timers. Many platforms alow applicationsto set alimited number of timers. For example,
the POSIX darm() and udarm() system functions each reset asingle "aarm clock™ timer on each call.
Managing multiple timer periods therefore often involves devel oping atimer queue mechanism that keeps
track of the next scheduled expiration. Scheduling anew "earliet” timer can (re)set the larm clock if

necessary.

» Timer expiraionraisesasignd. For example, theaarm() system function raisesthe SSIGALRM sgna when
thetimer expires. Programming timer signasis hard because gpplication actions are restricted in signa
context. Applications can minimize processing in signa context on UNIX platforms by using the deep()
system function or using the sigsuspend() system function. These solutions are nonportable, however, and
they block the calling thread, which can impede concurrency and complicate programming.

Oneway to avoid these problemsisto manage timersin the normal course of event handling, asfollows:

1.

=

Develop atimer queue mechanism that orderstimers and associates each timer with an action to perform
when atimer expires

Integrate the timer queue with the application's use of a synchronous event demultiplexer, such as select() or
WaitForMultipleObjects), to integrate the handling of timer expirations with other event processing.

N

2.

It's hard to devel op this type of timer facility portably across OS platforms, however, due to the wide range of
capabilities and restrictions. Moreover, this capability is often redeveloped for many projects due to tight coupling
between the timer queue mechanism and the synchronous event demultiplexing mechanism. To aleviate the need for
gpplication developersto rewrite efficient, scaable, and portable time-driven dispatchersin an ad hoc manner, the
ACE Reactor framework definesafamily of reusable timer queue classes.

Class Capabilities

The ACE timer queue classes dlow applicationsto register time-driven event handlers derived from
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3.5 The ACE_Reactor Class

M otivation

Event-driven networked applications have higtoricaly been programmed using native OS mechanisms, such asthe
Socket API and the select() synchronous event demultiplexer. Applications devel oped this way, however, are not
only nonportable, they are inflexible because they tightly couple low-level event detection, demultiplexing, and
digpatching code together with application event processing code. Devel opers must therefore rewrite al this code for
each new networked application, which is tedious, expensive, and error prone. It's aso unnecessary because much
of event detection, demultiplexing, and dispatching can be generalized and reused across many networked
aoplications.

One way to address these problemsis to combine skilled object-oriented design with networked application domain
experience to produce a set of framework classes that separates application event handling code from the reusable
event detection, demultiplexing, and digpatching code in the framework. Sections 3.2 through 3.4 laid the
groundwork for thisframework by describing reusable time vaue and timer queue classes, and by defining the
interface between framework and gpplication event processing code with the ACE_Event_ Handler class. This
section describes how the ACE_Reactor class at the heart of the ACE Reactor framework defines how applications
can regigter for, and be notified about, events from multiple sources.

Class Capabilities

ACE_Reactor implements the Facade pattern [ GoF] to define an interface that applications can use to accessthe
various ACE Reactor framework features. This class providesthe following capabilities:

» It centralizes event loop processing in areactive application.

» |t detects eventsviaan event demultiplexer, such as sdlect() or WaitForMultipleObjects(), provided by the
OS and used by the reactor implementation.

* It demultiplexes eventsto event handlers when the event demultiplexer indicates the occurrence of the
designated events.

» It digpatchesthe appropriate hook methods on registered event handlers to perform application-defined
processing in response to the events.

» Itensuresthat any thread can change a Reactor's event set or queue acalback to an event handler and
expect the Reactor to act on the request promptly.
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3.6 Summary

This chapter showed how the ACE Reactor framework can smplify the development of concise, correct, portable,
and efficient event-driven networked gpplications by encapsulating OS event demulltiplexing mechanismswithin an
object-oriented C++ interface. Likewise, it showed how the ACE Reactor framework enhances reuse, improves
portability, and enables the extengbility of event handlers by separating event detection, demultiplexing, and
dispatching mechanisms from application-defined event processing policies.

Since reusable classes in the ACE Reactor framework perform the lower-level event detection, demultiplexing, and
event handler dispatching, ardatively smal amount of application-defined code must be written. For example, the
logging servicein Sections 3.3 and 3.4 ismostly concerned with application-defined processing activities, such as
receiving client log records. Any applications that reuse the ACE_Reactor class described in Section 3.5 can
therefore leverage the knowledge and experience of its skilled middieware developers, aswdl asitsfuture
enhancements and optimizations.

The ACE Reactor framework uses dynamic binding extensvely since the dramatic improvementsin clarity,
extengbility, and modularity it provides usualy compensate for any decrease in efficiency resulting from itsindirect
virtua table digoatching [HLS97]. The ACE Reactor framework is often used to devel op networked applications,
where the mgjor sources of overhead result from caching, latency, network/host interface hardware,
presentation-level formatting, dynamic memory alocation and copying, synchronization, and concurrency
management. The additiona indirection caused by dynamic binding is often inggnificant by comparison [Koe92]. In
addition, good C++ compilers can diminate virtua method overhead completely viathe use of "adjustor thunk™
optimizations [ Lip96].

One of the most powerful properties of the ACE Reactor framework designisits ability to enhance extensibility both
above and below its public interface. The Reactor implementations provide agood example of how applying patterns
can provide aset of classesthat take advantage of unique platform capabilities, while maintaining the ability for
networked gpplications to run unchanged across diverse computing platforms. The next chapter sudiesthe
techniquesthat ACE usesto achievethisflexibility.

Ru-Brd
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Chapter 4. ACE Reactor | mplementations

CHAPTER SYNOPSIS

This chapter describes the design and use of severa implementations of the ACE _Reactor interface described in
Chapter 3. Theseimplementations support adiverse collection of operating system synchronous event demultiplexing
mechanisms, including select(), WaitForMultipleObjects(), XtAppMainLoop(), and /dev/poll. We explain the
motivationsfor, and capabilities provided by, the most common reactor implementations available in the ACE
Reactor framework. We dso illustrate how to use three different implementations of the ACE_Reactor to improve
our logging server example. In addition, we show the range of concurrency models supported by these
ACE_Reector implementations.

Ru-Brd
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4.1 Overview

The ACE Reactor framework discussed in Chapter 3 presents areal-world example of aframework that's designed
for extensbility. The origina ACE_Reactor implementation was based solely on the select() synchronous event
demultiplexing mechanism. As application requirements and ACE platform support evolved, however, theinterna
design of the ACE Reactor framework changed to support new application needs and new OS platform capahilities.
Fortunately, the ACE_Reactor interface has remained rlatively consistent. This stability isimportant snceit
smultaneoudy helpsto

Ensure compatibility with gpplicationswritten for previous ACE versons

Allow each gpplication to take advantage of new reactor capabilities as the need arises

This chapter focuses on the most common implementations of the ACE Reactor framework, which are listed in the

following teble:

ACE Class Description

ACE_Sdlect Reactor Usesthe sdlect() synchronous event demultiplexer
function to detect I/0O and timer events; incorporates
orderly handling of POSIX sgnds.

ACE_TP_Reactor Uses the Leader/Followers pattern [ POSA 2] to extend
ACE_Sdect_Reactor event handling to apool of threads.

ACE WFMO_Reactor Uses the Windows WaitForM ultipleObjects() event
demultiplexer function to detect socket 1/0, timeouts, and
Windows synchronization events.

ACE dso offers other more speciaized reactor implementations that are outlined in Section 4.5. The variety of
reactor requirements motivating al these reactors grew out of the popular reactive model of networked application
design, coupled with:

The growing popularity and availability of multithreaded systems

Thaoa additian Af \ A indAAawietn A CE'ec et F a innarted nl atfAarme
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4.2 The ACE_Select Reactor Class

M otivation

Asdiscussed in Chapter 5 of C++NPv1, areactive server responds to events from one or more sources. Idedlly,
response to eventsis quick enough so that al requests appear to be processed s multaneoudy, athough event
processing isusualy handled by asinglethread. A synchronous event demultiplexer isat the heart of each reactive
server. Thisdemultiplexer mechanism detects and reacts to events originating from anumber of sources, making the
events available to the server synchronoudly, as part of itsnormal execution path.

The sdlect() function isthe most common synchronous event demulltiplexer. This system function waitsfor specified
events to occur on aset of 1/0 handles. [1] When one or more of the I/O handles become active, or &fter a
designated amount of time elapses, select() returns. Its return value indicates the number of handlesthat are active,
that the caller-specified time e apsed before an event occurred, or an error occurred. The caler can then take
appropriate action. Additional coverage of select() isavailablein Chapter 6 of C++NPv1 and in [ Ste98].

[1] The Windows version of sdlect() works only on socket handles.

Although sdlect() isavailable on most OS platforms, programming to the native select() C API requires developersto
wrestle with many low-leve detals, such as

* Seting and clearing fd_sets

» Detecting events and responding to signd interrupts

* Managinginternd locks

» Demultiplexing eventsto associated event handlers

» Digpatching functionsthat process1/O, sgnd, and timer events
Chapter 7 of C++NPv1 discussed severa wrapper facade classes that can be used to master many complexities

associated with these low-level details. 1t's dso useful, however, to use select() in environments where it's necessary
to
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4.3 The ACE_TP_Reactor Class

M otivation

Althoughthe ACE_Sdect Reactor isflexible, it's somewhat limited in multithreaded applications because only the
owner thread can call its handle_events() method. ACE_Select Reactor therefore serializes processing at the event
demultiplexing layer, which may be overly redtrictive and nonscalable for certain networked applications. Oneway to
solve this problem isto spawn multiple threads and run the event loop of a separate instance of ACE_Sedlect Reactor
in each of them. This design can be hard to program, however, since it requires devel opersto implement a proxy that
partitions event handlers evenly between the reactors to divide the load evenly across threads. Often, amore
effective way to address the limitationswith ACE_Select Reactor isto use the ACE Reactor framework's
ACE_TP_Reactor class, where"TP" standsfor "thread poal.”

Class Capabilities

ACE_TP_Reactor isanother implementation of the ACE_Reactor interface. This classimplementsthe

L eader/Followers architectural pattern [ POSA 2], which provides an efficient concurrency model where multiple
threads take turns calling salect() on sets of 1/0 handles to detect, demultiplex, dipatch, and process service
requests that occur. In addition to supporting al the features of the ACE_Reactor interface, the ACE_TP_Reactor
providesthe following capabilities:

* Itenablesapool of threadsto cdl its handle_events() method, which can improve scaability by handling
events on multiple handles concurrently. Asaresult, the ACE_TP_Reactor::owner() method is ano-op.

* It preventsmultiple 1/O eventsfrom being dispatched to the same event handler smultaneoudy in different
threads. This congtraint preserves the 1/0 digpatching behavior of ACE_Sdlect Reector, dleviating the need
to add synchronization locksto ahandler's 1/0 processing.

» After athread obtains a set of active handles from sdlect(), the other reactor threads dispatch from that
handle set instead of cdling sdlect() again.

Implementation overview. ACE_TP_Reector is adescendant of ACE_Reactor_Impl, as shown in Figure 4.1 (page
89). It so serves as a concrete implementation of the ACE_Reactor interface, just like ACE_Sdlect Reactor. In
fact, ACE_TP_Reactor derivesfrom ACE_Sdect Reactor and reuses much of itsinterna design.

Concurrency consderations. Multiple threads running an ACE_TP_Reactor event loop can process events
concurrently on different handles. They can aso dispatch timeout and 1/0 callback methods concurrently on the same
event handler. Theonly seridization inthe ACE_TP_Reactor occurs when 1/0 events occur concurrently on the
same handle. In contrast, the ACE_Sdlect Reactor seridizesdl its dispatching to handlers whose handles are active
inthe handle st.
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4.4 TheACE_ WFMO_Reactor Class

M otivation

Although the sdlect() function is available on most operating systems, it's not aways the most efficient or most
powerful event demultiplexer on any given OS platform. In particular, select() hasthefollowing limitations:

On UNIX platforms, it only supports demultiplexing of 1/0 handles, such asfiles, termina devices, FIFOs,
and pipes. It does not portably support demultiplexing of synchronizers, threads, or System V Message
Queues.

On Windows, sdlect() only supports demultiplexing of socket handles.

It can only be cdled by one thread at atime for a particular set of 1/0 handles, which can degrade potentia
pardldiam.

Windows defines the WaitForM ultipleObjects() system function, described in Sidebar 24 (page 104), to aleviate
these problems. This function works with many Windows handle types that can be signaled. Although it doesn't work
directly with 1/0 handles, it can be used to demultiplex 1/0O-related eventsin two ways.

1.

ol o

N

2.

Event handles used in overlapped 1/0 operations

Event handles associated with socket handles viaWSA EventSdlect()

Moreover, multiple threads can call WaitForMultipleObjects() concurrently on the same set of handles, thereby
enhancing potentid pardleiam.

WaitForMultipleObjects() istricky to use correctly, however, for the following reasons [ SS95al:

WaitForMultipleObjects() returns an index to the first handle array dot with asignaled handle. 1t does not,
however, indicate the number of handlesthat are Ssgnded, and thereis no smple way to scan the handles and
check which are. WaitForMultipleObjects() must therefore be invoked numeroustimesto find al sgnaed
handles. In contrast, select() returns a set of active 1/0 handles and a count of how many are active.
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4.5 Summary

This chapter described how the most common ACE_Reactor implementations are designed and illustrated some
subtle nuances of their different cgpahiilities. In addition to giving some guiddines on when to use each, our
discussions emphasized two points.

1.

1. Different implementations of OS event demultiplexing mechanisms can present Sgnificant challenges, aswell
asimportant opportunities.

=

2. A wdl-desgned framework can be extended to use OS capabilities effectively whileisolating complex design
issuesin the framework, rather than in application code.
2.

Anintdligently designed framework can sgnificantly improve the portability and extenghility of both gpplicationsand
the framework itself. The ACE Reactor framework implementations are good examples of how applying patterns,
such as Wrapper Facade, Facade, and Bridge, and C++ features, such asinheritance and dynamic binding, canyield
ahigh-qudity, highly reusable framework with these dusive qudities. The ACE Reactor framework implementations
described in this chapter encapsulate many complex capabilities, alowing networked application devel opersto focus
on application-specific concerns.

One of the most powerful properties of the ACE Reactor framework design isits ability to enhance extensbility at
thefollowing variation points.

» Cugomized event handlers. It's straightforward to extend gpplication functiondity by inheriting from the
ACE_Event Handler classor one of its pre-defined ACE subclasses (such as ACE_Service Object,
ACE Task,orACE_Svc Handler) and sdlectively implementing the necessary virtual method(s). For
example, Chapter 7 illustrates how event handlersin our client and server logging daemons can be
customized trangparently to support authentication.

* Cugomized ACE_Reactor implementations. It's straightforward to modify the underlying event
demultiplexing mechanism of an ACE_Reactor without affecting existing application code. For example,
porting areactive logging server from aUNIX platform to aWindows platform requires no visible changesto
gpplication code. In contrast, porting a C implementation of the server from select() to
WaitForMultipleObjects() istedious and error-prone.

Over the previous decade, ACE's use in new environments has yielded new requirements for event-driven
gpplication support. For example, GUI integration is an important area due to new GUI toolkits and event loop
requirements. The following new Reactor implementations were made easier due to the ACE Reactor framework's
modular design:
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Chapter 5. The ACE Service Configurator
Framework

CHAPTER SYNOPSIS

This chapter describes the design and use of the ACE Service Configurator framework, which isan implementation
of the Component Configurator pattern [ POSA2]. This pattern hel psincrease gpplication extengbility and flexibility
by decoupling the behavior of services from the point of time when implementations of these services are configured

into gpplication processes. The chapter concludes by illustrating how the ACE Service Configurator framework can
help to improve the extensibility of our networked logging server.

Ru-Brd HES
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5.1 Overview

Section 2.2 described the naming and linking design dimensions that devel opers need to consider when configuring
networked applications. An extensible strategy for addressing these design dimensionsisto apply the Component
Configurator design pattern [ POSA2]. This pattern allows an gpplication to reconfigure its services at run time
without having to modify, recompile, or relink the program itself, or shut down and restart the application.

The ACE Service Configurator framework is a portable implementation of the Component Configurator pattern that
alows gpplicationsto defer configuration and implementation decisons about their services until latein the design
cycleXslate asingalation time or even a run time. The ACE Service Configurator framework supports the ability
to activate services selectively at run time regardiess of whether they are

Static services, which arelinked satically into an gpplication program

Dynamic services, which are linked from one or more shared libraries (DLLS)

Each service can a so be passed argc/argv-style arguments to set certain information at run time. Dueto ACE's
integrated framework design, services using the ACE Service Configurator framework can a so be dispatched by the
ACE Reactor framework.

This chapter examines the following ACE Service Configurator framework classes:

ACE Class Description

ACE_Service Object Definesauniform interface that the ACE Service
Configurator framework usesto configure and control a
sarvice implementation. Control operationsinclude
initidizing, suspending, resuming, and terminating a
svice

ACE _Service Repostory A centrd repository for al services managed using the
ACE Service Configurator framework. It provides
methods for locating, reporting on, and controlling al of
an gpplication's configured services.

ACE_Service Repository Iterator A portable mechaniam for iterating through dl the
servicesin arepostory.



This document is created with the unregistered version of CHM2PDF Pilot

4 FREWIOUS || MEXT k




This document is created with the unregistered version of CHM2PDF Pilot

4 FREWIOUE || HEXT #




This document is created with the unregistered version of CHM2PDF Pilot

5.2 The ACE_Service Object Class

M otivation

Service configuration and life cycle management involves the following aspects that we've aluded to briefly above:

» [nitidization. A service must beinitidized, which may involve creating one or more objectsor invoking a
factory method. Configuration parameters are passed to the service at thistime.

»  Execution control. Certain applications require the ability to suspend and resume services. Offering this
capability therefore requires amechanism by which amanagement application can locate the desired services
and then contact the services to request or force the suspend/resume operation.

» Reporting. Misson-critica services often require the ability to respond to requests for information concerning
their gatus and availability in auniform way.

e Termination. Orderly shutdown processes are required to ensure that a service's resources are released
properly, any necessary status information is updated, and that service shutdown is ordered properly to avoid
Improper service interactions.

Designing and implementing these capatiilitiesin an ad hoc manner often producestightly coupled data structures and
classes, which are hard to evolve and reuse in future projects.

Moreover, if multiple projects or development groups undertake similar efforts, the primary benefits of service
configuration will belogt becauseit'shighly unlikdly that multiple desgnswill interoperate at either the service or
management leve.

Since service configuration and management are largely application-independent they are good candidates to
incorporate into aframework. Enforcing auniform interface across al networked services makesit easier to
configure and manage them congstently. In turn, this consstency smplifies application devel opment and deployment
by mitigating key chalengesinherent in creating reusable adminigtrative configuration tools. To provide auniform
interface between the ACE Service Configurator framework and the application-defined services, each service must
be a descendant of a common base class cdled ACE_Service Object.

Class Capabilities

ACE_Service Object provides auniform interface that alows service implementations to be configured and
managed by the ACE Service Configurator framework. This class provides the following capabilities:
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5.3 The ACE_Service Repository Classes

M otivation

The ACE Service Configurator framework supports the configuration of both single-service and multiservice servers.
Section 5.2 explained why the gods of initidization, execution control, reporting, and termination require application
sarvicesto be based on acommon framework class. For the framework to leverage the accessibility provided by
ACE _Service Object effectively, it must store service information in awell-known repository and be able to access
and control these service objectsindividualy or collectively.

Application servicesin multiservice servers so may require access to each other. To avoid tightly coupling these
sarvices, and to preserve the benefits of delayed configuration decisions, services should be able to locate each other
a runtime. Therefore, to satisfy the needs of the framework and applications without requiring devel opersto provide
these capabilitiesin an ad hoc way, the ACE Service Configurator framework providesthe

ACE_Service Repository and ACE_Service Repostory lterator classes.

Class Capabilities

ACE_Sarvice Repoditory implements the Manager pattern [ Som98] to control thelife cycle of, and the accessto,
service objects configured by the ACE Service Configurator framework. This class provides the following capabilities:

» It keepstrack of al serviceimplementationsthat are configured into an application and maintains each
sarvice's gatus, such aswhether it's active or suspended.

* It providesthe mechanism by which the ACE Service Configurator framework inserts, manages, and
removes Services.

* It providesaconvenient mechanism to terminate al services, in reverse order of therr initidization.

» [tdlowsanindividua serviceto belocated by its name.

Theinterface for ACE_Service Repository isshown in Figure 5.4 (page 128) and its key methods are outlined in the
following teble

Figure5.4. The ACE_Service Repository Class

ACE Service Repository
BYC rep  : ACE Service Repository *
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5.4 The ACE_Service Config Class

M otivation

Before a service can execute, it must be configured into an application's address space. One way to configure
sarvices into a networked gpplication isto gaticdly link the functionality provided by its various classes and functions
into separate OS processes, and then manudly ingtantiate or initidize them at run time. We used this approach in the
logging server examplesin Chapters 3 and 4 and throughout C++NPv1, where the logging server program runsin a
process that handles | og records from client gpplications. Although our use of the ACE Reactor framework in earlier
chaptersimproved the networked logging server's modularity and portability, the following drawbacks arose from
daticaly configuring the Reactor_L ogging_Server classwith itsmain() program:

»  Sarvice configuration decisons are made prematurely in the development cycle, which isundesirableif
developers don't know the best way to collocate or distribute services in advance. Moreover, the "best”
configuration may change as the computing context changes. For example, an gpplication may writelog
recordsto alocd file when it's running on a disconnected laptop computer. When the laptop is connected to
aLAN, however, it may forward log records to a centralized logging server. Forcing networked applications
to commit prematurely to a particular service configuration impedestheir flexibility and can reduce their
performance and functiondity. It can aso force costly redesign and reimplementation later in aproject'slife
cyde.

* Modifying aservice may affect other services adversdy if the implementation of aserviceis coupled tightly
withitsinitid configuration. To enhance reuse, for example, alogging server may initidly resdein the same
program as other services, such asaname service. If the other services change, however, for exampleif the
name service lookup agorithm changes, dl exigting codein the server would require modification,
recompilation, and gtatic relinking. Moreover, terminating arunning process to change some of its service
code would a so terminate the collocated logging service. Thisdisruption in service may not be acceptable for
highly available systems, such as telecommunication switches or customer care call centers[ SS94].

» System performance may scale poorly since associating a separate process with each serviceties up OS
resources, such as 1/0O handles, virtual memory, and processtable dots. Thisdesign is particularly wasteful if
sarvices are often idle. Moreover, processes can be inefficient for many short-lived communication tasks,
such as asking atime service for the current time or resolving ahost address request viathe Domain Name
Service (DNS).

To address the drawbacks of purdly static configurations, the ACE Service Configurator framework definesthe
ACE _Service Configclass.

Class Capabilities
ACE_Service Config implementsthe Facade pattern [ GoF] to integrate other classesin the ACE Service

Configurator framework and coordinate the activities necessary to manage the servicesin an application. Thisclass
provides thefollowing capahilities:
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5.5 Summary

Traditiond software development techniques that staticaly link and configure a networked gpplication's services
together can be limiting. For example, the effort and time needed to rebuild an entire program for each new or
modified service increases devel opment and maintenance costs substantialy. Moreover, making these changesin the
fiddisinefficient and error prone, and can cause support costs to soar and customer satisfaction to plummet.

This chapter described the ACE Service Configurator framework, which implements the Component Configurator
pattern [ POSA 2] to provide a portable way to aticaly and/or dynamically link services and then initiate, suspend,
resume, and shut them down dynamically a run time. Thisframework hel psto improve the extensibility of networked
software by alowing applicationsto defer the selection of a particular service implementation until late in the software
life cycle™slate asingdlation time or even run time. Thisflexibility yidds the following important advantages:

* Applications can be composed and (re)configured at run time using mix-and-match, independently developed
SENViCes.

»  Deveaopers can concentrate on aservice's functionality and other key design dimensions without committing
prematurely to a particular service configuration.

* Applications are composed of multiple servicesthat are devel oped independently, so they don't require
advanced globa knowledge of each other, yet can till collaborate.

This chapter explained the origin and usage of each of the ACE Service Configurator framework's classes and hel per
macros. We aso used these capabilities to separate parts of the previous chapter's logging serversinto independently
linkable and configurable services. The result was a networked logging service that can be configured and deployed
in variousways. The extensihility afforded by the ACE Service Configurator framework allows operators and
adminigtrators to select the features and dternative implementation strategies that make the most sensein aparticular
context, aswell as make locdized decisions on how best to initidize and evolve them.

Ru-Brd
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Chapter 6. The ACE Task Framework

CHAPTER SYNOPSIS

This chapter describes the design and use of the ACE Task framework. Thisframework helpsto enhance the
modularity and extengibility of concurrent object-oriented networked applications. The ACE Task framework forms
the basis of common concurrency patterns, such as Active Object and Half-Sync/Half-Async [ POSA2]. After
discussing the motivation and usage of the framework's classes, we apply the ACE Task framework to enhance the
concurrency and scalability of our networked logging service.

Ru-Brd e
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6.1 Overview

The ACE Task framework provides powerful and extensible object-oriented concurrency capabilitiesthat can spawn
threads in the context of an object, aswell astransfer and queue messages between objects executing in separate
threads. Thisframework can be applied to implement key concurrency patterns [ POSA2], such as.

* TheActive Object pattern, which decouples the thread that invokes a method from the thread that executes
the method. This pattern enhances concurrency and smplifies synchronized access to objects executing in the
context of one or more threads.

*  TheHdf-Sync/Haf-Async pattern, which decouples asynchronous and synchronous processing in
concurrent systems to smplify programming without unduly reducing performance. This pattern introduces
three layers. one for asynchronous (or reactive) processing, one for synchronous service processing, and a
queueing layer that mediates communication between the asynchronous/reactive and synchronous layers.

This chapter shows how these patterns, and the ACE Task framework that reifies them, can be applied to develop
concurrent object-oriented gpplications a ahigher leve of abstraction than existing C operating system APIsand
C++ wrapper facades. The ACE Task framework consists of the following classes that networked applications can
use to spawn and manage threads and pass messages between one or more threads within a process.

ACE Class Description

ACE _Message Block Implements the Composite pattern [ GoF] to enable
efficient manipulation of fixed- and variable-sized
messages

ACE_Message Queue Provides an intraprocess message queue that enables

gpplicationsto pass and buffer messages between
threadsin a process

ACE _Thread Manager Allows applicationsto portably create and manage the
lifetime, synchronization, and properties of one or more
threads

ACE Task Allows applicationsto create passve or active objects

that decouple different units of processing; use messages
to communicate requests, responses, data, and control
information; and can queue and process Mmessages
sequentialy or concurrently
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6.2 The ACE_Message Queue Class

M otivation

Asdiscussed in Section 2.1.4 on page 27, networked applications whose services are layered/modular are often
composed of aset of collaborating tasks within a process. To smplify interfaces and design, minimize maintenance
cogts, and maximize reuse, these tasks should have the following properties:

Low intertask coupling, that is, separate task objects should have minimal dependencies on each other's data
and methods.

High intratask cohesion, that is, the methods and datain atask should focus on arelated set of functionality.

To achieve these properties, tasks often communicate by passing messages via a generic method, such as push() or
put(), rather than caling specific statically typed methods directly. M essages can represent work requests, work
results, or other types of datato process. They can a so represent control requests that direct tasksto alter their
processing, for example, to shut down or reconfigure themsalves.

When producer and consumer tasks are collocated in the same process, tasks often exchange messagesviaan
intraprocess message queue. In thisdesign, producer task(s) insert messages into a synchronized message queue
serviced by consumer task(s) that remove and process the messages. If the queueisfull, producers can either block
or wait abounded amount of timeto insert their messages. Likewisg, if the queue is empty, consumers can either
block or wait a bounded amount of time to remove messages.

Although some operating systems supply intraprocess message queues natively, this capability isn't available on dl
platforms. Moreover, when it is offered, it's often either highly platform specific, such as VxWorks message queues,
and/or inefficient, tedious, and error prone to use, such as System V |PC message queues [ Ste99]. Examples of how
to create wrapper facade classes to handle these problems appear in C++NPv1. Wrapper facades could
encapsulate the spectrum of available intraprocess message queue mechanisms behind a common interface, emulating
missing capabilities where needed. ACE takes a different approach, however, for the following reasons:

* Toavoid unnecessary complexity. Native message queueing mechanisms, where they exist, can be hard to
program correctly since they use low-level C APIs. They can aso impose congtraints on system
administration that reflect poorly on aproduct's operationa procedures, which can increase product support
cogts. For example, System V 1PC message queues can persist after aprogram finishes execution if not
cleaned up properly. These remnants may prevent an application from restarting, or contribute to resource
leaks and often require a system administrator's intervention to repair the syssem manudly. Likewise, System
V IPC message queues offer interprocess queueing that incurs more overhead than the intraprocess queueing
that's the target use case for many networked applications.
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6.3 The ACE_Task_Class

M otivation

The ACE_Message Queue class described in Section 6.2 can be used to

Decouple the flow of information from its processing

Link threads that execute producer/consumer services concurrently

To use aproducer/consumer concurrency model effectively in an object-oriented program, however, each thread
should be associated with the message queue and any other service-related information. To preserve modularity and
cohesion, and to reduce coupling, it's therefore best to encapsulate an ACE_Message Queue with its associated
data and methods into one class whose service threads can access it directly.

Thread-spawning capabilities provided by popular OS platforms are based on each spawned thread invoking a
C-stylefunction call. The ACE_Thread Manager wrapper facade class described in Chapter 9 of C++NPv1
implements portable multithreading capabilities. However, programmers must gtill passa C-gtylefunctiontoits
spawn() and spawn_n() methods. Providing a spawned thread with accessto a C++ object requires abridge to the
C++ object environment. The CLD_Handler::open() method (page 172) illustrated this technique. Since
implementing this technique manually for each classisrepstitive, it'sagood candidate for reuse. The ACE Task
framework therefore defines ACE_Task to encapsulate a class's messaging capability and provide a portable way for
thread(s) to execute in the context of an object.

Class Capabilities

ACE Task isthe basis of ACE's object-oriented concurrency framework. It providesthe following capabilities:

* [tusesaningance of ACE_Message Queuefrom Section 6.2 to separate data and requests from their
processng.

* Itusesthe ACE_Thread Manager classto activate the task so it runs as an active object [ POSA 2] that
processes its queued messages in one or more threads of control. Since each thread runs a designated class
method, they can access dl of the task's data members directly.

* Itinheritsfrom ACE_Service Object, so itsinstances can be configured dynamically viathe ACE Service
Configurator framework from Chapter 5.
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6.4 Summary

The ACE Task framework alows developersto create and configure concurrent networked applications using
powerful and extensible object-oriented designs. This framework providesthe ACE_Task classthat integrates
multithreading with object-oriented programming and queueing. The queueing mechanismin ACE_Task usesthe
ACE_Message Queue classto transfer messages between tasks efficiently. Since ACE_Task derives from the
ACE_Service Object in Section 5.2, it'seasy to design servicesthat can be configured dynamicdly to run asactive
objects and be dispatched by the ACE Reactor framework.

This chapter illustrated how the ACE Reactor framework can be combined with the ACE Task framework to
implement variants of the Half-Sync/Half-Async pattern [ POSA2]. The ACE Task framework classes can also be
combined with the ACE_Future, ACE_Method Request, and ACE_Activation_List classesto implement the Active
Object pattern [ POSA2]. A subset of the ACE_Message Queue implementation is presented in Chapter 10 of
C++NPv1.

Ru-Brd



This document is created with the unregistered version of CHM2PDF Pilot

Ru-Brd

Chapter 7. The ACE Acceptor-Connector
Framework

CHAPTER SYNOPSIS

This chapter describes the design and use of the ACE Acceptor-Connector framework. This framework implements
the Acceptor-Connector pattern [ POSA 2], which decouples the connection and initiaization of cooperating peer
sarvicesin anetworked application from the processing they perform after being connected and initidized. The
Acceptor-Connector framework alows applications to configure key properties of their connection topologies
independently from the servicesthey provide. Weillustrate how thisframework can be combined with the ACE
Reactor and Task frameworks and applied to enhance the reusability, extengbility, security, and scalability of our
networked logging service.

Ru-Brd
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7.1 Overview

Many networked applications, such as e-mail, remote file backups, and Web services, use connection-oriented
services containing classesthat play the following roles:

The connection role determines how an gpplication establishes connections.

The communication role determines whether an gpplication playstherole of aclient, aserver, or both client
and server in apeer-to-peer configuration.

Networked applications that communicate via connection-oriented protocols (e.g., TCP/IP) aretypified by the
following asymmetric connection roles between clientsand servers.

Servers often wait passively to accept connections by listening on adesignated TCP port.

Clients often initiate connections actively by connecting to aserver'slistening port.

Even in peer-to-peer gpplications, where applications play both client and server roles, connections must be initiated
actively by one peer and accepted passively by the other. To enhance reuse and extensibility, networked applications
should be designed to easily change connection and communication rolesto support different requirements and
environments.

The ACE Acceptor-Connector framework implements the Acceptor-Connector design pattern [ POSA 2], which
enhances software reuse and extensibility by decoupling the activities required to connect and initialize cooperating
peer servicesin anetworked application from the processing they perform once they're connected and initialized.
This chapter describes the following ACE Acceptor-Connector framework classes that networked applications can
use to establish connections and initiaize peer services.

ACE Class Description

ACE_Svc Handler Representsthelocal end of a connected service and
contains an | PC endpoint used to communicate with a
connected peer.

ACE_Acceptor Thisfactory waits passively to accept a connection and

theninitidizesan ACE_Svc Handler in reponseto an
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7.2 The ACE_Svc Handler Class

M otivation

Chapter 2 defined aservice asaset of functionality offered to aclient by aserver. A service handler isthe portion of
anetworked application that either implements or accesses (or both, in the case of a peer-to-peer arrangement) a
service. Connection-oriented networked applications require at least two communicating service handlers?ne for
each end of every connection. Incidentally, applications using multicast or broadcast communication may have
multiple service handlers. Although these connectionless communication protocols don't cleanly fit the
Acceptor-Connector modd, the ACE_Svc Handler classis often agood choice for implementing a service handler
and should be considered.

When designing the service handlersinvolved in aservice, developers should a so take into account the
communication design dimensions discussed in Chapter 1 of C++NPv1. In generd, the gpplication functionaity
defined by aservice handler can be decoupled from the following design aspects:

How the service handler was connected (actively or passively) and initidized

» The protocols used to connect, authenticate, and exchange messages between two service handlers

The network programming APl used to access the OS IPC mechanisms

In generd, connection/authentication protocols and service initialization strategies change less frequently than the
service handler functionality implemented by an gpplication. To separate these concerns and allow devel opersto
focus on the functiondity of their service handlers, the ACE Acceptor-Connector framework definesthe
ACE_Svc Handler class.

Class Capabilities

ACE_Svc Handler isthe basis of ACE's synchronous and reactive data transfer and service processing mechanisms.
This class provides the following capabilities:

» It providesthe basisfor initidizing and implementing a service in asynchronous and/or reactive networked
application, acting asthe target of the ACE_Connector and ACE_Acceptor connection factories.

* It providesan IPC endpoint used by a service handler to communicate with its peer service handler(s). The
type of this IPC endpoint can be parameterized with many of ACE's IPC wrapper facade classes, thereby
separating lower-level communi cation mechanisms from application-leve service processing policies.
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7.3 The ACE_Acceptor Class

M otivation

Many connection-oriented server gpplicationstightly couple their connection establishment and serviceinitidization
code in ways that make it hard to reuse existing code. For example, if you examinethe Logging Acceptor (page 58),
Logging_Acceptor_Ex (page 67), Logging_Acceptor WFMO (page 112), CLD_Acceptor (page 176), and
TP_Logging Acceptor (page 193) classes, you'll seethat the handle input() method was rewritten for each logging
handler, even though the structure and behavior of the code was nearly identical. The ACE A cceptor-Connector
framework definesthe ACE_Acceptor class so that application developers needn't rewrite this code repeatedly.

Class Capabilities

ACE_Acceptor isafactory that implements the Acceptor role in the Acceptor-Connector pattern [ POSA2]. This
class provides the following capabilities:

It decouples the passive connection establishment and serviceinitidization logic from the processing
performed by aservice handler after it's connected and initidized.

e It provides apassive-mode | PC endpoint used to listen for and accept connections from peers. The type of
this IPC endpoint can be parameterized with many of ACE's |PC wrapper facade classes, thereby separating
lower-level connection mechanismsfrom gpplication-level serviceinitidization policies.

* It automates the steps necessary to connect the IPC endpoint passively and create/activate its associated
sarvice handler.

» Since ACE_Acceptor isderived from ACE_Service Object, it inherits the event-handling and configuration
capabilities described in Chapters 3 and 5.

Theinterface for ACE_Acceptor isshown in Figure 7.4. Asshown in thefigure, this classtemplate is parameterized
by:

Figure7.4. The ACE_Acceptor Class

ACE Service Object PEER_ACCEPTOR

" SVC HANDLER,

ACE Acceptor PEER_ACCEPTOR

# flags : int
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7.4 The ACE_Connector Class

M otivation

Section 7.3 focused on how to decouple the functionality of service handlers from the steps required to passively
connect and initiaize them. It's equally useful to decouple the functiondity of service handlers from the steps required
to actively connect and initidize them. Moreover, networked gpplications that communicate with alarge number of
peers may need to actively establish many connections concurrently, handling completions asthey occur. To
consolidate these capabilitiesinto aflexible, extensible, and reusable abstraction, the ACE A cceptor-Connector
framework definesthe ACE_Connector class.

Class Capabilities

ACE_Connector isafactory class that implements the Connector rolein the Acceptor-Connector pattern [ POSA2].
This class provides the following capabilities:

» It decouplesthe active connection establishment and service initialization logic from the processing performed
by aservice handler after it's connected and initidized.

» Itprovidesan |PC factory that can actively establish connections with apeer acceptor elther synchronoudy
or reactively. Thetype of thisIPC endpoint can be parameterized with many of ACE's IPC wrapper facade
classes, thereby separating lower-level connection mechanisms from application-level serviceinitidization
policies.

» It automates the steps necessary to connect the IPC endpoint actively aswell asto create and activate its
associated service handler.

* Since ACE_Connector derivesfrom ACE_Service Object it inheritsal the event handling and dynamic
configuration capabilities described in Chapters 3 and 5, respectively.

Theinterface for ACE_Connector isshown in Figure 7.7 (page 230). Thistemplate classis parameterized by:

Figure7.7. The ACE_Connector Class
ACE Service Object PEER_CONNECTOR

’ EVC_HANDLER,
PEER_CONNECTOR

ACE Connector

# flags_ : int
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7.5 Summary

The ACE A cceptor-Connector framework decouples a service's connection and initidization strategies from its
sarvice handling strategy. This separation of concerns alows each set of strategiesto evolve independently and
promotes amodular design of networked applications. The ACE Acceptor-Connector framework factors
connection and initiaization strategies into the ACE_Acceptor and ACE_Connector class templates, and the service
handling strategy into the ACE_Svc Handler classtemplate.

The ACE Reactor, Service Configurator, and Task frameworks described in earlier chapters use classinheritance
and virtual methods asthelr primary extens bility mechanisms. The ACE A cceptor-Connector framework usesthese
mechanisms aswdll, primarily asthe meansto configure different strategies for connection establishment,
communication, concurrency, and service behavior. Unlike the frameworksin previous chapters, however, classesin
the ACE Acceptor-Connector framework share an inherent relationship in networked application services, so the use
of parameterized types plays amore sgnificant role here. To dlow and enforce the rel ationships between the
srategies, both ACE_Acceptor and ACE_Connector include an ACE_Svc Handler-derived classin their template
argumentsto act asthetarget of the connection factory.

This chapter defined and illustrated the communication and connection roles that networked application services play,
aswell asthe passive and active connection modes that connection-oriented services use. Although the ACE Socket
wrapper facades described in Chapter 3 of C++NPv1 assist with mastering the problems associated with C
operating system APIs, this chapter illustrated how the design of the ACE A cceptor-Connector framework
encourages modular separation of rolesleading to highly extensible and maintainable designs. The examples showed
how easy it isto define an gpplication's service handlers by defining class(es) derived from ACE_Svc Handler and
adding the service-specific behavior in the hook and calback methodsinherited from ACE_Svc Handler,

ACE Task, and ACE_Event_Handler. Although the ACE Acceptor-Connector framework encapsulates the most
common use-cases for service establishment, this chapter showed how the framework uses the Template Method
pattern [ GoF] to allow application devel opersto customize the behavior of each service establishment step to match
the requirements, environment, and resources of specific networked applications.

Ru-Brd
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Chapter 8. The ACE Proactor Framework

CHAPTER SYNOPSIS

This chapter outlines the asynchronous I/O mechanisms available on today's popular OS platforms and then

describes the design and use of the ACE Proactor framework. This framework implements the Proactor pattern [
POSA 2], which dlows event-driven applications to efficiently demultiplex and dispatch service requeststriggered by
the completion of asynchronous I/O operations. This chapter shows how to enhance our client logging daemon to use
aproactive modd that (1) initiates I/O operations, (2) demultiplexes 1/O completion events, and (3) dispatchesthose
completion events to application-defined completion handlers that process the results of asynchronous I/O operations.

Ru-Brd
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8.1 Overview

Chapter 3 described the ACE Reactor framework, which ismost often used with areactive /O modd. An
application based on thismodd registers event handler objectsthat are notified by areactor when it's possibleto
perform one or more desired 1/0 operations, such as receiving data on asocket, with ahigh likelihood of immediate
completion. /O operations are often performed in asingle thread, driven by the reactor's event dispatching loop.
Although reective 1/0 isacommon programming model, each thread can execute only one 1/0 operation at atime.
The sequentia nature of the 1/0 operations can be a bottleneck since applicationsthat transfer large amounts of data
on multiple endpoints can't use the pardldism available from the OS and/or multiple CPUs or network interfaces.

Oneway to dleviate the bottlenecks of reactive I/O isto use synchronous I/O in conjunction with amultithreading
model, such asthe thread pool model in Chapter 6 or the thread-per-connection model in Chapter 7. Multithreading
can help pardl€eize an gpplication's 1/0 operations and may improve performance. However, adding multiple threads
to adesign requires gppropriate synchroni zation mechanisms to avoid concurrency hazards, such as race conditions
and deadlocks [ Tan92]. These additiona congiderations require expertise in concurrency and synchronization
techniques. They aso add complexity to both design and code, increasing the risk of subtle defects. Moreover,
multithreading can incur non-trivial time/space overhead due to the resources needed to alocate run-time stacks,
perform context switches [ SS95b], and move data between CPU caches [ SKT96].

A proactive I/O mode is often amore scalable way to dleviate reactive 1/0 bottlenecks without introducing the
complexity and overhead of synchronous 1/0 and multithreading. This moded alows an gpplication to execute 1/0
operations viathe following two phases:

1.

1. Theagpplication can initiate one or more asynchronous /O operations on multiple I/0O handlesin pardld
without having to wait until they complete.

Lo

2. Aseach operation completes, the OS notifies an gpplication-defined compl etion handler that then processes
the results from the completed 1/O operation.
2.

The two phases of the proactive I/0 modd are essentidly the inverse of thosein the reactive I/0 model, in which an
goplication

1.

1. Usesan event demultiplexer to determine when an 1/O operation is possible, and likely to complete
immediately, and then

1.

2.

2. Peformsthe operation synchronoudy
2.

In addition to improving application scalability via asynchrony, the proactive I/O modd can offer other benefits,
depending on the platform'simplementation of asynchronous1/O. For example, if multiple asynchronous1/0O
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8.2 The Asynchronous |/O Factory Classes

M otivation

The proactive I/0 modd is generally harder to program than reactive and synchronous /0O models because

* |/Oinitiation and completion are distinct activities that must be handled separately.

* Multiple1/O operations can beinitiated S multaneoudy, which requires more recordkesping.

*  Therésno guaranteed completion order when multiple 1/0 operations complete smultaneoudly.

* Inamultithreaded service acompletion handler may execute in athread other than the one that initiated the
I/O operation.

The proactive I/O model therefore requires afactory to initiate asynchronous 1/0 operations. Since multiple I/0
operations can execute S multaneoudy and complete in any order, the proactive modd aso requires an explicit
binding between each asynchronous operation, its parameters (such asthe I/O handle, data buffer, and buffer sze),
and the completion handler that will process the results of the operation.

In theory, designing classes to generate asynchronous 1/0 operations and bind them to their completion handlers
should be rdlatively straightforward. In practice, however, the design is complicated by the fact that asynchronous
I/0 isimplemented in different ways across today's popular OS platforms. Two common examplesinclude:

*  Windows. The Windows ReadFile() and WriteFile() system functions can elther perform synchronous 1/0 or
initiate an overlapped /O operation.

» POSIX. ThePOSIX a0 read() and aio_write() functionsinitiate asynchronous read and write operations,
respectively. These functions are separate from the read() and write() (and Sockets recv() and send())
functionsthat are used in ACE's | PC wrapper facade classes (see Chapter 3 in C++NPv1).

Each platform's asynchronous 1/O facility also includesits own mechanism for binding an 1/O operation with its
parameters, such as buffer pointer and transfer size. For example, POSIX AlO provides an AlO control block
(aloch), whereas Windows provides the OVERL APPED structure and a completion key argument to the 1/0
completion port facility. Sidebar 54 discusses other challenges with OS asynchronous I/0 mechanisms.
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8.3 The ACE_Handler Class

M otivation

A chief differentiator between the proactive and reactive 1/0 moddsisthat proactive I/O initiation and completion
are distinct stepsthat occur separately. Moreover, these two steps may occur in different threads of control. Using
separate classesfor the initiation and completion processing avoids unnecessarily coupling the two. Section 8.2
described the ACE_Asynch Read Stream and ACE_Asynch_ Write Stream classes used to initiate asynchronous
I/0O operations; this section focuses on I/O completion handling.

Completion events signify that aprevioudy initiated I/O operation hasfinished. To processthe result of thel/O
operation correctly and efficiently, acompletion handler must know dl of the arguments specified for the 1/0
operation, in addition to the result. Together, thisinformation includes

*  What type of operation wasinitiated

*  Whether or not the operation completed successfully

» Theeror codg, if the operation failed

*  Thel/O handle that identifies the communication endpoint

*  Thememory addressfor the transfer

* Therequested and actud number of bytestransferred

Asynchronous I/O completion processing requires more information than is available to callback methodsin the ACE
Reactor framework. The ACE_Event Handler class presented in Section 3.3 istherefore not suitable for usein the
ACE Proactor framework. Since completion handling a so depends on the asynchronous I/O mechanism offered by
the underlying OS platform, it has the same portability issues discussed in Section 8.2. Addressing theseissuesin
each gpplication is unnecessarily tedious and costly, which iswhy the ACE Proactor framework providesthe

ACE _Handler class.

Class Capabilities

ACE Handler isthe base class of al asynchronous completion handlersin the ACE Proactor framework. This class
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8.4 The Proactive Acceptor-Connector Classes

M otivation

TCP/IP connection establishment is atwo-step process.
1.

1. Theagpplication either binds alistening socket to a port and listens, or learns of alistening application and
initiates an active connection request.

1.

2.

2. The connect operation completes after OS-mediated TCP protocol exchanges open the new connection.
2.

Thistwo-step processis often performed using elther areactive or synchronous 1/0 model, as shown in Chapter 3 of
C++NPv1 andin Chapter 7 of thisbook. However, the initiate/complete protocol of TCP connection establishment
lendsitself well to the proactive mode . Networked applications that benefit from asynchronous 1/0 can therefore

a so benefit from asynchronous connection establishment capabilities.

OS support for asynchronous connection establishment varies. For example, Windows supports asynchronous
connection establishment, whereas POSIX.4 AlO does not. It's possible, however, to emulate asynchronous
connection establishment where it doesn't exist by using other OS mechanisms, such as multithreading (Sidebar 57 on
page 283 discusses the ACE Proactor framework's emulation for POSIX). Since redesigning and rewriting code to
encapsulate or emulate asynchronous connection establishment for each project or platform istedious and error
prone, the ACE Proactor framework providesthe ACE_Asynch_Acceptor, ACE_Asynch Connector, and

ACE _Service Handler classes.

Class Capabilities

ACE_Asynch_Acceptor is another implementation of the acceptor role in the Acceptor-Connector pattern [ POSA2].
Thisclass providesthe following capahilities:

* Itinitiates asynchronous passve connection establishment.

* Itactsasafactory, creating anew service handler for each accepted connection.

* It can cancd aprevioudy initiated asynchronous accept() operation.

e |t provides a hook method to obtain the pear's address when the new connection is established.
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8.5 The ACE_Proactor Class

M otivation

Asynchronous 1/0 operations are handled in two steps: initiation and completion. Since multiple steps and classesare
involved, there must be away to demultiplex the completion events and efficiently associate each completion event
with the operation that completed and the completion handler that will processthe result. The divergity of OS
asynchronous I/0O facilities plays a deeper role here than in the reactive 1/O modd because

» Patformshave different waysto receive completion notifications. For example, Windows uses /0O
completion ports or events, whereas POSIX.4 AlO usesred-time sgnasor theaio_suspend() system
function to wait for acompletion.

» Patformsuse different data structures to maintain state information for asynchronous 1/0 operations. For
example, Windows uses the OVERL APPED structure, whereas POSI X.4 AlO uses struct aioch.

Thus, the chain of knowledge concerning platform-specific mechanisms and data structures runsfrom initiation
operations through dispatching and into completion handling. In addition to being complicated and hard to
reimplement continudly, it's easy to tightly couple proactive 1/0 designs. To resolve these issues and provide a
portable and flexible completion event demultiplexing and dispatching facility, the ACE Proactor framework defines
the ACE_Proactor class.

Class Capabilities

ACE_Proactor implements the Facade pattern [ GoF] to define an interface that applications can use to accessthe
various ACE Proactor framework features portably and flexibly. This class provides the following capabilities:

» It centralizes event loop processing in a proactive gpplication.

» It digpatchestimer expirationsto their associated ACE_Handler objects.

e It demultiplexes completion events to completion handlers and dispatches the gppropriate hook methods on
completion handlers that then perform application-defined processing in response to the completion events.

* It can decouple the thread(s) performing completion event detection, demultiplexing, and dispatching from
thread(s) initiating asynchronous operations.
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8.6 Summary

This chapter explored the concept of proactive I/0 and outlined how the proactive modd differs from the reactive
modédl. It also showed how the proactive 1/O model can be used to overcome the performance limitations of the
reactive 1/0 model without incurring certain liabilities associated with the use of multithreaded synchronous 1/0O.
However, the proactive 1/O modd presents several challenges:.

» Dedgn chalenges. The multistep nature of thismodel increasesthe likelihood of overly coupling the 1/0
mechanisms that initiate asynchronous operations with the processing of the completions of operations.

» Portability chalenges. There are highly divergent standards and implementations for asynchronous 1/0
offered by today's computing platforms.

The Proactor pattern [ POSA 2] defines a set of roles and relationships to help smplify applications that use proactive
I/0. The ACE Proactor framework implements the Proactor pattern across arange of operating systems that
support asynchronous I/0. The ACE Proactor framework provides a set of classes that smplify networked
gpplication use of asynchronous /0O capabilities across al platformsthat offer it. This chapter discussed each classin
the framework, covering their motivations and capabilities. It showed an implementation of the client logging daemon
that usesthe proactive 1/0 modd for al of its network operations. Thisversion of the client logging daemon works
portably on al ACE platformsthat offer asynchronous /0O mechanisms.

Ru-Brd
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Chapter 9. The ACE Streams Framework

CHAPTER SYNOPSIS

This chapter describes the design and use of the ACE Streams framework. This framework implements the Pipes
and Filters pattern [ POSA 1], which is an architectural pattern that provides a structure for systems that process
sreams of data. Weillustrate how the ACE Streams framework can be used to develop a utility program that
formats and printsfiles of log records stored by our logging servers.

Ru-Brd



This document is created with the unregistered version of CHM2PDF Pilot

4 FREWIOUE || HEXT #




This document is created with the unregistered version of CHM2PDF Pilot

9.1 Overview

The Pipes and Filters architecturd pattern isacommon way of organizing layered/modular applications[ SG96]. This
pattern defines an architecture for processing a stream of datain which each processing step is encapsulated in some
type of filter component. Dataiis passed between adjacent filters viaa communication mechanism, which can range
from IPC channdls connecting loca or remote processes to Ssmple pointers that reference objects within the same
process. Each filter can add, modify, or remove data before passing it long to the next filter. Filters are often
sateless, in which case data passing through thefilter are transformed and passed dong to the next filter without
being stored.

Common examples of the Pipes and Filters pattern include

The UNIX pipe IPC mechanism [ Ste92] used by UNIX shellsto create unidirectiona pipelines

SysemV STREAMS[RIit84], which provides aframework for integrating bidirectiona protocolsinto the
UNIX kernd

The ACE Streams framework is based on the Pipes and Filters pattern. Thisframework smplifies the development
of layered/modular applications that can communicate viabidirectiona processng modules. This chapter describes
thefollowing classesin the ACE Streams framework:

ACE Class Description

ACE Task A cohesive unit of gpplication-defined functiondity that
uses messages to communicate requests, responses,
data, and control information and can queue and process
messages sequentidly or concurrently.

ACE_Module A digtinct bidirectiond processing layer in an gpplication
that containstwo ACE_Task objects?efor "reading”
and onefor "writing"

ACE_Stream Contains an ordered list of interconnected ACE_Module
objects that can be used to configure and execute layered
goplication-defined services

The most important relationships between classesin the ACE Streams framework are shown in Figure 9.1. These
classes play the following rolesin accordance with the Pipes and Filters pattern [ POSAL]:
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9.2 The ACE_Module Class

M otivation

Many networked applications can be modeled as an ordered series of processing layersthat are related hierarchically
and that exchange messages between adjacent layers. For example, kernel-leve [Rit84, Rag93] and user-leve [
SS95b, HIE9S] protocol stacks, call center managers [ SS94], and other families of networked gpplications can
benefit from a message-passing design based on alayered/modular service architecture. Asdiscussed in Section 2.1.4
, eéach layer can handle a salf-contained portion (such asinput or output, event analys's, event filtering, or service
processing) of aservice or networked application.

The ACE_Task class provides areuseable component that can easily be used to separate processing into stages and
pass data between them. Since ACE_Task objects are independent, however, additiona structureisrequired to
order ACE_Task objectsinto bidirectiona "reader-writer" pairsthat can be assembled and managed as a unit.
Redevel oping this structure in multiple projectsis tedious and unnecessary because the structure is fundamentally
application independent. To avoid this redundant development effort, therefore, the ACE Streams framework defines
the ACE_Moduleclass.

Class Capabilities

ACE_Moduledefinesadigtinct layer of application-defined functiondity. This class provides the following capabilities:

« Each ACE Moduleisabidirectiona application-defined processing layer containing apair of reader and
writer tasksthat derive from ACE_Task. Layered designs can be expressed easily using ACE_Module,
which smplifies devel opment, training, and evolution.

»  The ACE Service Configurator framework supports dynamic congtruction of ACE_Module objectsthat can
be configured into an ACE_Stream at run time. Layered designs based on ACE_Module are therefore highly
extensble

*  Thereader and writer ACE_Task objects contained in an ACE_Modul e collaborate with adjacent
ACE _Task objects by passng messages viaa public hook method, which promotes loose coupling and
amplifiesreconfiguration.

e Theobjects composed into an ACE_Module can be varied and replaced independently, which lowers
mai ntenance and enhancement codts.

Theinterfacefor ACE_Moduleisshown in Figure 9.2 and its key methods are shown in the following table:
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9.3 The ACE_Stream Class

M otivation

The ACE_Module class described in Section 9.2 can be used to decompose a networked application into a series of
interconnected, functionaly digtinct layers. Each module implements adifferent layer of application-defined
functionality, such as areader, formatter, separator, and writer of log records. ACE_Module provides methods to
transfer messages between sibling tasks within amodule, aswell as between modules. It does not, however, provide
afacility to connect or rearrange modulesin aparticular order. To enable developersto build and manage a series of
hierarchicdly related module layers as a single object, the ACE Streams framework defines the ACE_Stream class.

Class Capabilities
ACE_Stream implementsthe Pipes and Filters pattern [ POSA 1] to enable devel opersto configure and execute

hierarchically related services by customizing reusable application-independent framework classes. Thisclass
providesthe following capabilities:

* It provides methods to dynamicaly add, replace, and remove ACE_M odule objects to form various stream
configurations.

* It provides methods to send/receive messages to/from an ACE_Stream.

* It provides amechanism to connect two ACE_Stream streams together.

It provides away to shut down al modulesin a stream and wait for them al to stop.

Theinterfacefor ACE_Stream is shown in Figure 9.4. Since this class exports many festures of the ACE Streams
framework, we group its method descriptionsinto the three categories described bel ow.

Figure9.4. The ACE_Stream Class

SYHCH

ACE Stream

+ ACE Stream (arg : woid * = 0, SYHCH
head - .-'n.ffFf_}'I-.":-:"]'.l].A-:!‘:.-'r'r-ll._.'l-::w o= [,
cail : :.r:r:_}m-ri-.n9-:5‘r'rir.'|—::~ * = 0)
+ open {arg : volid = = 4,
head : ACE_Module<SYNCH> * =
tail : ACE Module<SYNCH> * =
close (flags : int = M DELETE)} : in
wait () : int
push (mod : ACE Module«<S¥NCH= #*} : int
pop (Flags : int = M DELETE) : int

ACE Module

+ 4 4 &
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9.4 Summary

The ACE Streams framework is an implementation of the Pipes and Filters pattern that employs object-oriented
design techniques, the ACE Task framework, and C++ language features. The ACE Streams framework makesit
easy to incorporate new or modified functiondity into an ACE_Stream without modifying the gpplication-independent
framework classes. For example, incorporating anew layer of service functionality into an ACE_Stream involvesthe
following geps

1.

1. Inheriting from the ACE_Task interface and overriding the open(), close(), put(), and svc() methodsin the
ACE_Task subclassto implement application-defined functiondlity.

2. Allocating anew ACE_Module that contains one or two instances of the application-defined ACE_Tasks,
onefor the reader-sde and one for the writer-side.

3. Inserting the ACE_Moduleinto an ACE_Stream object. Multiple ACE_Modules can be inserted into an
ACE_Stream to form an ordered series of hierarchicaly related processing capabilities.
3.

The ACE Streams framework enables developersto create layered, modular networked applicationsthat are easily
extended, tuned, maintained and configured. Moreover, the synergy between the ACE Task, Service Configurator,
and Streams frameworks alows awide range of designs and configurationsthat can be extended and modified to suit
countless design Situations, run-time environments, and OS platforms.

Ru-Brd
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Glossary

Acceptor-Connector Pattern

A design pattern that decouples the connection and initidization of cooperating peer servicesin anetworked system
from the processing they perform once connected and initidized.

Active Connection Establishment

The connection role played by a peer application that initiates a connection to aremote peer (compare with Passive
Connection Establishment).

Active Object

An object that implements the Active Object pattern. Such objects generaly execute service requestsin athread
separate from the caller's (compare with Passive Object).

Active Object Pattern

A design pattern that decouples method execution from method invocation in order to enhance concurrency and
samplify synchronized accessto objectsthat resdein their own threads of contral.

Architectural Pattern

A pattern that expresses afundamentd structura organization schemafor software systems. It provides a set of
predefined subsystems, specifiesther respongibilities, and includes rules and guidelines for organizing the relationships
between them.

Aspects

A property of aprogram, such as memory management, synchronization, or fault tolerance, that cross-cuts module
boundaries.

Asynchronous Completion Token (ACT)

A devel oper-supplied value associated with an asynchronous operation. It is used to communicate information
related to the operation to the operation's completion handler.

Asynchronous|/O

A mechanism for sending or receiving datain which an 1/0 operation isinitiated but the caller does not block waiting

for the operation to complete.

Barrier Synchronization



This document is created with the unregistered version of CHM2PDF Pilot

4 FREWIOUS || MEXT k




This document is created with the unregistered version of CHM2PDF Pilot



This document is created with the unregistered version of CHM2PDF Pilot
Bibliography

[Ale01] Andrel Alexandrescu. Modern C++ Design: Generic Programming and Design Petterns Applied.
Addison-Wedey, Boston, 2001.

[Al0OZ] Paul Allen. Model Driven Architecture. Component Devel opment Strategies, 12(1), January 2002.

[Aus99] Matthew H. Austern. Generic Programming and the STL: Using and Extending the C++ Standard.
Addison-Wedey, Reading, MA, 1999.

[BA9O] M. Ben-Ari. Principles of Concurrent and Distributed Programming. Prentice Hall International Seriesin
Computer Science, 1990.

[Bay02] John Bay. Recent Advances in the Design of Distributed Embedded Systems. In Proceedings of
Proceedings of SPIE, Volume 47: Battlespace Digitization and Network Centric Warfare, April 2002.

[BecO0] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wedey, Boston, 2000.

[Ber95] Steve Berczuk. A Pattern for Separating Assembly and Processing. In James O. Coplien and Douglas
C. Schmidt, editors, Pattern Languages of Program Design. Addison-Wedey, Reading, MA, 1995.

[BHLM94] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A Framework for Smulating and
Prototyping Heterogeneous Systems. Internationd Journd of Computer Simulation, Specia 1ssue on Simulation
Software Devel opment Component Development Strategies, >4, April 1994.

[Bja0q] Bjarne Stroustrup. The C++ Programming Language, Specia Edition. Addison-Wed ey, Boston, 2000.

[BL88] Ronald E. Barkley and T. Paul Lee. A Heap-based Callout |mplementation to Meet Real-time Needs. In
Proceedings of the USENIX Summer Conference, pages 213722. USENIX Association, June 1988.

[Bla91] U. Black. OSI: A Mode for Computer Communications Standards. Prentice-Hall, Englewood Cliffs, NJ,
1991.

[BM 98] Gaurav Banga and Jeffrey C. Mogul. Scalable Kernel Performance for Internet Servers under Realistic
Loads. In Proceedings of the USENIX 1998 Annua Technical Conference, New Orleans, LA, June 1998.
USENIX.

[Boo94] Grady Booch. Object Oriented Analysis and Design with Applications, 2nd Edition. Benjamin/Cummings,

DAarhaAandA iy A 1001



This document is created with the unregistered version of CHM2PDF Pilot



	Main Page
	Table of content
	Copyright
	Foreword
	About This Book
	Intended Audience
	Structure and Content
	Related Material
	Acknowledgments

	Chapter 1. Object-Oriented Frameworks for Network Programming
	1.1 An Overview of Object-Oriented Frameworks
	1.2 Comparing Software Development and Reuse Techniques
	1.3 Applying Frameworks to Network Programming
	1.4 A Tour through the ACE Frameworks
	1.5 Example: A Networked Logging Service
	1.6 Summary

	Chapter 2. Service and Configuration Design Dimensions
	2.1 Service and Server Design Dimensions
	2.2 Configuration Design Dimensions
	2.3 Summary

	Chapter 3. The ACE Reactor Framework
	3.1 Overview
	3.2 The ACE_Time_Value Class
	3.3 The ACE_Event_Handler Class
	3.4 The ACE Timer Queue Classes
	3.5 The ACE_Reactor Class
	3.6 Summary

	Chapter 4. ACE Reactor Implementations
	4.1 Overview
	4.2 The ACE_Select_Reactor Class
	4.3 The ACE_TP_Reactor Class
	4.4 The ACE_WFMO_Reactor Class
	4.5 Summary

	Chapter 5. The ACE Service Configurator Framework
	5.1 Overview
	5.2 The ACE_Service_Object Class
	5.3 The ACE_Service_Repository Classes
	5.4 The ACE_Service_Config Class
	5.5 Summary

	Chapter 6. The ACE Task Framework
	6.1 Overview
	6.2 The ACE_Message_Queue Class
	6.3 The ACE_Task_Class
	6.4 Summary

	Chapter 7. The ACE Acceptor-Connector Framework
	7.1 Overview
	7.2 The ACE_Svc_Handler Class
	7.3 The ACE_Acceptor Class
	7.4 The ACE_Connector Class
	7.5 Summary

	Chapter 8. The ACE Proactor Framework
	8.1 Overview
	8.2 The Asynchronous I/O Factory Classes
	8.3 The ACE_Handler Class
	8.4 The Proactive Acceptor-Connector Classes
	8.5 The ACE_Proactor Class
	8.6 Summary

	Chapter 9. The ACE Streams Framework
	9.1 Overview
	9.2 The ACE_Module Class
	9.3 The ACE_Stream Class
	9.4 Summary

	Glossary
	Bibliography

