
ptg5934432

ptg5934432

Praise for Cocoa Design Patterns

“This long-needed book is a great resource for Cocoa newcomers and veterans who
want to get the why behind the what.The list of patterns gives historical perspective and
answers many developer questions and the last three chapters—covering Core Data,
AppKit, and Bindings—are a must-read; they reveal insights that might otherwise
require hours of discussion with Apple engineers or access to source code.”

—Tim Burks, Software Developer and Creator of the Nu Programming Language,
www.programming.nu

“This book is a comprehensive and authoritative treatment of design patterns and their
practical applications in Cocoa projects. I recommend this book to anyone who wants
to advance from intermediate to expert proficiency as a Macintosh developer.”

—John C. Randolph,Vice President Engineering, Stealth Imaging, Inc.

“Cocoa Design Patterns is a fantastic book that will show you the ins and outs of software
design patterns, how Cocoa makes use of them, and how to apply them to your own
applications for better, more robust, and more maintainable software.”

—August Trometer, Owner of FoggyNoggin Software

“Cocoa Design Patterns is superb! It is highly readable, thoroughly enjoyable, and filled to
the brim with wisdom that will make you a more efficient and effective programmer.
The authors utilize a consistent and self-contained approach to each chapter, making it
easy to return to use as a reference. However, the material is so interesting and vital to
Cocoa programmers that you’ll want to read it from cover to cover.”

—David Mandell, Independent Developer

“Erik and Donald’s book really helped me out with the conceptual side of program-
ming. It caused me to realize where I was going wrong in my code and helped me sort
out my design issues.”

—Eoin Houlihan

“This book is recommended for any programmer interested in a deeper understanding
of Cocoa. Reading it might have helped me become a better software engineer in any
object-oriented language. I’ll keep it handy as a constant reference and look forward to
reading it again more carefully.”

—Daryl Spitzer

ptg5934432

This page intentionally left blank

ptg5934432

Cocoa Design
Patterns

ptg5934432

This page intentionally left blank

ptg5934432

Cocoa Design
Patterns

Erik M. Buck
Donald A. Yacktman

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

ptg5934432

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publish-
er was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The authors and publisher have taken care in the preparation of this book but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Buck, Erik M.

Cocoa design patterns / Erik M. Buck, Donald A. Yacktman.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-321-53502-3 (pbk. : alk. paper) 1. Cocoa (Application development environ-
ment) 2. Object-oriented programming (Computer science) 3. Software patterns. 4. Mac
OS. I. Yacktman, Donald A. II. Title.

QA76.64.B82 2009

005.26’8—dc22

2009023288

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For information regarding permis-
sions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-321-53502-3
ISBN-10: 0-321-53502-2
Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville,
Indiana.
First printing September 2009

Editor-in-Chief
Karen Gettman

Acquisitions Editor
Chuck Toporek

Development
Editor
Sheri Cain

Managing Editor
Kristy Hart

Project Editor
Jovana San Nicolas-
Shirley

Copy Editor
Language
Logistics, LLC

Indexer
Rebecca Salerno

Proofreader
Apostrophe Editing
Services

Publishing
Coordinator
Romny French

Cover Designer
Gary Adair

Compositor
Jake McFarland

ptg5934432

❖

To my beloved wife, Michelle, who makes my life
and every accomplishment possible, and to my children,

Joshua, Emma, and Jacob, for their tireless support
and understanding.

—Erik M. Buck

❖

Dedicated to my wife Marcie for her patience and
support and my boys, Joseph and William, for their
never-ending curiosity about how and why things

work the way they do.

—Donald A.Yacktman

❖

ptg5934432

Table of Contents

I: One Pattern to Rule Them All 1

1 Model View Controller 2
MVC in Cocoa 4

Core Data Support for Model Subsystems 5

Application Kit Support for View Subsystems 6

Application Kit Support for Controller Subsystems 8

Cocoa’s Text Architecture 9

Cocoa’s Document Architecture 10

Cocoa Scriptability 13

Cocoa’s Preference Pane Architecture 14

Quartz Composer’s Architecture 15

The QTKit Architecture 15

Summary 15

2 MVC Analyzed and Applied 17
Non-MVC Design 17

Analysis of the Non-MVC Pay Calculator Design 21

MVC Design 22

Analysis of the MVC Pay Calculator Design 26

Summary 27

II: Fundamental Patterns 28

3 Two-Stage Creation 29
Motivation 29

Solution 31

Zones 31

Initializing Allocated Memory 32

Implementing the Designated Initializer 33

Using Zones in Initializers 35

Creating Temporary Instances 37

Examples in Cocoa 38

Consequences 42

ptg5934432

ixContents

4 Template Method 43
Motivation 43

Solution 44

Default Template Methods 45

Designing with Template Methods 46

Examples in Cocoa 47

Using the –drawRect: Template Method 47

Other Cocoa Template Methods 47

Consequences 51

5 Dynamic Creation 53
Motivation 53

Solution 53

Using Dynamic Creation 54

Dynamic Creation to Implement Plug-In
Architectures 60

Examples in Cocoa 61

Consequences 62

6 Category 63
Motivation 63

Solution 64

Informal Protocols 67

The Anonymous Category 68

Code Organization 69

When to Use Categories Versus Subclassing 69

Examples in Cocoa 70

Using Categories for Organization 70

Using Categories for Informal Protocols 71

Using Categories for Framework Division 74

Consequences 74

The Clash of Methods 74

Replacing Methods 75

Software Maintenance 76

ptg5934432

x Contents

7 Anonymous Type and Heterogeneous Containers 77
Motivation 77

Solution 77

The Anonymous Type 78

Assignment 81

Heterogeneous Containers 83

Examples in Cocoa 84

Consequences 84

8 Enumerators 85
Motivation 85

Solution 85

Using Enumerator Objects 86

Using Fast Enumeration 87

Creating Custom Enumerators 87

Implementing Fast Enumeration 92

Internal Enumeration 96

Examples in Cocoa 97

Consequences 97

9 Perform Selector and Delayed Perform 99
Motivation 100

Solution 100

Delayed Perform 102

The Implementation of Objective-C Message
Sending 102

Examples in Cocoa 104

Consequences 106

10 Accessors 107
Motivation 108

Solution 108

Reference Counted Memory Management 110

Accessors That Manage Retain Counts 111

Confining Memory Management to Accessors 114

Mutability 115

NSKeyValueCoding 117

Interface Builder Outlets 118

ptg5934432

xiContents

Objective-C 2.0 Properties 118

Examples in Cocoa 119

Consequences 122

11 Archiving and Unarchiving 123
Motivation 123

Solution 124

Conditional Encoding 125

Examples in Cocoa 127

Implementing the NSCoding Protocol 128

Encoding and Decoding Nonobject Types 131

Object Substitution 133

Nib Awaking 133

Consequences 134

12 Copying 135
Motivation 135

Solution 138

Examples in Cocoa 139

Implementing NSCopying 140

Implementing Deep Copying 141

Implementing NSMutableCopying 142

Required Copying 143

Copying Objective-C 2.0 Properties 144

Avoid NSCopyObject() 146

Consequences 146

III: Patterns That Primarily Empower by
Decoupling 147

13 Singleton 148
Motivation 148

Solution 148

Encapsulating a Shared Resource 149

Creating and Accessing a Shared Instance 150

Controlling Instantiation 153

Deallocation 155

ptg5934432

xii Contents

Determining if the Singleton Has Been Created 155

Thread Safety 156

Working with Interface Builder 156

Examples in Cocoa 157

Consequences 158

14 Notifications 159
Motivation 160

Solution 160

MYNotification 160

MYNotificationCenter 162

Associative Storage 167

Examples in Cocoa 168

Global Notification Names 168

“Will” and “Did” Notifications 169

Synchronous Versus Asynchronous Notifications 169

Distributed Notifications 171

Consequences 172

15 Delegates 175
Motivation 175

Solution 179

Implementing Delegate Support 180

Implementing a Delegate 186

Data Sources 188

Examples in Cocoa 189

Consequences 189

16 Hierarchies 191
Motivation 191

Solution 191

Implementing a Hierarchy 192

The Cocoa View Hierarchy 195

Coordinate Systems in the View Hierarchy 197

Browsing the View Hierarchy 197

Examples in Cocoa 205

Consequences 205

ptg5934432

xiiiContents

17 Outlets, Targets, and Actions 206
Motivation 207

Solution 207

Outlets 211

Targets 211

Actions 212

Actions and Responder Chains 213

Examples in Cocoa 215

Consequences 218

18 Responder Chain 220
Motivation 220

Solution 220

Terminology 221

The Responder Chain 221

The Extended Responder Chain 223

Walking Through the Extended Responder Chain 225

Inserting Objects into the Responder Chain 227

Leveraging the Responder Chain 228

Examples in Cocoa 230

Consequences 231

19 Associative Storage 232
Motivation 232

Solution 232

Simulating Instance Variables 233

Examples in Cocoa 236

Reference Counted Memory Management 237

Key Value Coding 239

Consequences 240

20 Invocations 242
Motivation 242

Solution 242

Method Signatures 243

Using NSInvocation Objects 244

Using Timers 248

Delayed Messaging 253

ptg5934432

xiv Contents

Examples in Cocoa 254

Consequences 254

21 Prototype 255
Motivation 255

Solution 255

Examples in Cocoa 257

Using MYLabeledBarCell Instances as
Prototypes 258

Using MYColorLabeledBarCell Instances
as Prototypes 260

Consequences 262

22 Flyweight 263
Motivation 263

Solution 263

Examples in Cocoa 264

Encapsulating Nonobject Values 264

Reducing Storage Requirements 265

Standing in for Other Objects 266

Consequences 267

23 Decorators 268
Motivation 268

Solution 270

Examples in Cocoa 271

Accessory Views 272

Consequences 273

IV: Patterns That Primarily Hide Complexity 274

24 Bundles 275
Motivation 275

Solution 276

Examples in Cocoa 278

Dynamically Loading Executable Code 279

Consequences 281

ptg5934432

xvContents

25 Class Clusters 282
Motivation 283

Solution 283

Creating a Class Cluster 285

Examples in Cocoa 288

Subclassing a Class Cluster’s Public
Interface Class 288

The MYShortString Subclass of NSString 289

Lessons from MYShortString 300

Consequences 300

26 Façade 302
Motivation 303

Solution 303

Examples in Cocoa 307

The Text Façade 307

The Image Façade 308

The Persistent Storage Facade 309

User Interaction Façades 309

Consequences 311

27 Proxies and Forwarding 312
Motivation 312

Solution 312

Implementing Forwarding 313

Proxies 314

Higher Order Messages 321

Examples in Cocoa 327

Consequences 327

28 Managers 328
Motivation 328

Solution 328

Extending the Singleton Pattern 330

Adding Other Manager Features 333

Examples in Cocoa 335

Consequences 336

ptg5934432

xvi Contents

29 Controllers 337
Motivation 338

Solution 338

MYShapeDraw Model Subsystem 339

MYShapeDraw View Subsystem 340

MYShapeEditor Controller Subsystem 342

Extending the MYShapeDraw View Subsystem for
Editing 353

Redesigning and Generalizing the Solution 355

Examples in Cocoa 360

Controllers and Bindings 361

Consequences 362

V: Practical Tools for Pattern Application 364

30 Core Data Models 365
The Role of the Model Subsystem 366

Core Data Terminology 366

Entity 367

Attributes 367

Relationships 367

Properties 368

Collaboration of Patterns Within Core Data 368

NSManagedObject and
NSEntityDescription 369

Designing Core Data Models 375

NSManagedObjectContext 375

NSPersistentStoreCoordinator and
NSPersistentStore 376

Core Data Limitations and Benefits 377

31 Application Kit Views 379
The Role of the View Subsystem 379

Collaboration of Patterns Within Application Kit 380

NSApplication, Events, and the Run Loop 381

Responders 381

The Responder Chain 382

ptg5934432

xviiContents

NSWindow Overview 383

NSView Overview 385

Targets and Actions 387

Archived Objects and Nibs 388

Undo and Redo 391

Managers 391

Application Kit Limitations and Benefits 392

32 Bindings and Controllers 393
Role of Bindings and Controllers 393

Bindings Avoid Coupling 395

The Importance of Using Controllers
with Bindings 396

Collaboration of Patterns Within Bindings
and Controllers 397

What Happens in
-bind:toObject:withKeyPath:options:? 399

How Does Key Value Observing Detect
Changes to Observed Properties so That
Observing Objects Can Be Notified? 399

What Message Is Sent to Notify Registered
Observers When an Observed Property’s
Value Is Changed? 400

Bindings and Controllers Limitations and Benefits 402

Resources 404
Apple Documentation 404

Books 405

Mailing Lists 405

User Groups 406

Online Groups 406

Conferences/Training 406

Index 407

ptg5934432

Foreword

Grumpy old men are represented poorly by our modern culture.They are always depict-
ed throwing stuff and bellowing lines like,“Hey, you kids, get off my lawn!” In reality,
grumpy old men often say useful things like,“Kid, you should diversify your portfolio—
just in case.”

As someone who has been developing applications with Cocoa and Objective-C for
a long time, one of my important roles is that of a grumpy old man. Programmers who
are new to Cocoa come to me and say things like,“Here’s my program. It works great.
You want to look at the source?”

And I study the source code and growl things like,“Yes, that works, but that isn’t how
we do it.We grumpy old Cocoa programmers have a system worked out, and you are
not following the system.”

And the young programmer says,“Well, why is your system so great?”
And I grunt,“Um...well...it just is! Shut up and get off my lawn, kid.”
The book you are holding is the answer to two important questions:

n How do the grumpy old Cocoa programmers do things?
n Why is that so great?

Through floundering about with bad solutions, grumpy old Cocoa programmers have
figured out some really good solutions to common design problems.The existence of
this book means that you are not required to suffer through the same misery that we
went through.

Both Erik M. Buck and Donald A.Yacktman have earned their grumpy, old Cocoa
programmer status.They each have enough successes and enough failures to recognize
what a good Cocoa design looks like. Beyond presenting these idioms and techniques,
Erik and Donald have included serious meditations on why it was these patterns
emerged from the chaos that was Objective-C programming a decade ago.

Next time some kid shows up at my door asking for a code review, this is the book I
am going to throw at him. It is a pity there is no hardcover edition.

—Aaron Hillegass
Big Nerd Ranch, Inc.
Atlanta, Georgia

ptg5934432

Preface

Much of the technology embodied by Apple’s Cocoa software has been in commercial
use since 1988, and in spite of that maturity, Cocoa is still revolutionary.The technology
has been marketed with a variety of names including NEXTSTEP, OPENSTEP,
Rhapsody, and Yellow Box. It consists of a collection of reusable software frameworks
that contain objects and related resources for building Mac OS X desktop and mobile
applications. In recent years,Apple has expanded Cocoa dramatically and added new
software developer tools to increase programmer productivity beyond the already
famously high levels Cocoa already provided.

Programmers are often overwhelmed by the breadth and sophistication of Cocoa
when they first start using the frameworks. Cocoa encompasses a huge set of features, but
it’s also elegant in its consistency.That consistency results from the application of patterns
throughout Cocoa’s design. Understanding the patterns enables the most effective use of
the frameworks and serves as a guide for writing your own applications.

This book explains the object-oriented design patterns found in Apple’s Cocoa
frameworks. Design patterns aren’t unique to Cocoa; they’re recognized in many reusable
software libraries and available in any software development environment. Design pat-
terns identify recurring software problems and best practices for solving them.The pri-
mary goal of this book is to supply insight into the design and rationale of Cocoa, but
with that insight, you’ll be able to effectively reuse the tried and true patterns in your
own software—even if you aren’t using Cocoa.

What Is a Design Pattern?
Design patterns describe high quality practical solutions to recurring programming prob-
lems. Design patterns don’t require amazing programming tricks.They’re a toolbox of
reusable solutions and best practices that have been refined over many years into a suc-
cinct format.They provide a vocabulary, or shorthand, that programmers can use when
explaining complex software to each other. Design patterns don’t describe specific algo-
rithms or data structures like linked lists or variable length arrays, which are traditionally
implemented in individual classes.The design patterns in this book don’t describe specif-
ic designs for applications even though examples are provided.What the patterns do pro-
vide is a coherent map that leads you through the design of Cocoa itself. Patterns show
how and why some of the best and most reusable software ever created was designed the
way it was.

ptg5934432

xx Preface

At a minimum, design patterns contain four essential elements:
n The pattern name
n A brief description of the motivation for the pattern or the problem solved by the

pattern
n A detailed description of the pattern and examples in Cocoa
n The consequences of using the pattern

Parts II, III, and IV of this book contain a catalog of design patterns. Each chapter in
the pattern catalog introduces a design pattern and provides the essential information
you need to recognize and reuse the pattern.

The pattern’s name helps developers communicate efficiently.A shared vocabulary of
pattern names is invaluable when explaining a system to colleagues or writing design
documentation. Named patterns clarify thought, and the implications of a design—even
the rationale behind a design—can be communicated with just a few words.

Programmers familiar with patterns immediately infer the uses and limitations of
objects composing a named pattern as well as the overall design employed and the
consequences of that design.

Apple’s own documentation occasionally uses design pattern names in both class ref-
erences and programmer’s guides, but the documentation doesn’t always explain what the
patterns are or what they should mean to a developer. In addition,Apple frequently uses
its own names for design patterns instead of the terms commonly used throughout the
industry. In some cases, the differences in terminology are the result of simultaneous
independent discovery. In other cases, the patterns were first recognized in Cocoa or its
predecessor NEXTSTEP, and it’s the industry that changed the name.The patterns
described in this book are identified using both Apple’s terminology and the common
industry names when applicable so you can see the correlation.

Each design pattern includes a description of the problem(s) and motivation for
applying the pattern. Some patterns include a list of problem indicators that suggest the
use of the pattern. Because Cocoa contains many patterns that are applicable in diverse
situations, the patterns have been carefully organized so that the same problems in differ-
ent contexts are readily identified. In some cases, related patterns that should be avoided
are also identified.

Finally, each pattern identifies the consequences that naturally result from its use.The
consequences and trade-offs of design alternatives are crucial when evaluating which
patterns to use in a particular situation.

Why Focus on Design Patterns?
When approaching a software technology as vast as Cocoa, it’s easy to lose sight of the
overall architecture and rationale of the technology. Many programmers comment that
they feel lost in the multitude of classes, functions, and data structures that Cocoa pro-
vides.They can’t see the forest because they’re concentrating too much on individual

ptg5934432

xxiPreface

trees.The patterns used in Cocoa provide a structure and organization that helps pro-
grammers find their way.The patterns show programmers how to reuse groups of coop-
erating classes even when the relationships between the classes are not fully explained in
the documentation for individual classes.

The goal of object-oriented programming is to maximize programmer productivity
by reducing lifetime software development and maintenance costs.The principal tech-
nique used to achieve the goal is object reuse.An object that is reused saves the pro-
grammer time because the object would otherwise need to be reimplemented for each
new project.Another benefit of reusing objects is that when new features are required
or bugs are identified, you only need to make changes to a small number of objects, and
those changes benefit other projects that rely on the same objects. Most importantly, by
reusing objects, fewer total lines of code are written to solve each new problem, and that
means there are fewer lines of code to maintain as well.

Design patterns identify successful strategies for achieving reuse on a larger scale than
individual objects.The patterns themselves and all of the objects involved in the patterns
are proven and have been reused many times.The consistent use of design patterns with-
in Cocoa contributes to the high level of productivity that Cocoa programmers enjoy.
Design patterns advance the art of object-oriented programming.

The patterns within Cocoa provide a guide for designing many different types of
applications. Cocoa contains some of the most famously well-designed software ever
produced, and following the patterns used by Cocoa will make you a better programmer
even when you aren’t using Cocoa.

This book should satisfy your intellectual curiosity. Design patterns answer “why” as
well as “what” and “how.” Knowing how patterns are applied and more importantly why
patterns contribute so much to productivity makes the daily job of programming more
enjoyable.

Guiding Principles of Design
All of the design patterns described in this book have several properties in common. In
each case, the goal of the pattern is to solve a problem in a general, reusable way. Several
guiding principles of design help ensure that the patterns are flexible and applicable in
many contexts.The same strategies that are applied to the design of individual objects are
applied to design patterns as well. In fact, patterns that involve many objects benefit even
more from good object-oriented design than simpler systems. One reason that patterns
exist is to help make sure that productivity gained from reusing the patterns exceeds the
productivity gained from using individual objects—the sum is greater than the parts.

Minimize Coupling
As a general design goal, coupling between classes should be minimized. Coupling refers
to dependencies between objects.Whenever such dependencies exist, they reduce oppor-
tunities for reusing the objects independently. Coupling also applies to subsystems within

ptg5934432

xxii Preface

large systems of objects. It’s important to look for designs that avoid coupling whenever
possible.

All of the Cocoa design patterns exist in part to limit or avoid coupling. For example,
the overarching Model-View-Controller (MVC) pattern described in Part I of this
book,“One Pattern to Rule Them All,” is used throughout Cocoa to organize subsys-
tems of classes and is applied to the design of entire applications.The primary intent of
the MVC pattern is to partition a complex system of objects into three major subsystems
and minimize coupling between the subsystems.

Design for Change
It’s important to use designs that accommodate changes through the lifecycle of a soft-
ware system. Designs that are too inflexible ultimately restrict opportunities for reuse. In
the worst case, no reuse occurs because it’s easier to redesign and reimplement a system
than it is to make changes within an existing rigid design.

It’s possible to anticipate certain types of changes and accommodate them in a design.
For example, the Cocoa Delegates pattern provides a mechanism for one object to mod-
ify and control the behavior of another object without introducing coupling between
them. Cocoa provides many objects that can be controlled by optional delegates, and the
key to the pattern is that the objects acting as delegates might not have even been con-
ceived when Cocoa was designed.All of the Cocoa design patterns exist in part to
accommodate change.That’s just one of the reasons that Cocoa is so flexible.

Emphasize Interfaces Rather Than Implementations
Interfaces provide a kind of metaphorical contract between an object and the users of
the object.An object’s interface tells a programmer what the object is able to do but not
how it will do it. In the context of reusable frameworks like Cocoa, object interfaces
must remain consistent from one version of the framework to the next, or else software
written to use one version of the framework may not work correctly with the next.A
contract is necessary for programmers to feel confident reusing framework objects, but
anyone who has tried to create a truly flexible reusable contract knows that it’s a difficult
task.When implementation details become part of the contract between an object and
its users, it becomes difficult for framework developers to improve objects without
breaking backward compatibility.

Find the Optimal Granularity
Many of the design patterns employed by Cocoa operate at different levels of granularity.
For example, the MVC pattern is usually applied to large subsystems of cooperating
classes and entire applications, but the Singleton pattern is used to make sure that only
one instance of a class is ever created and provides access to that instance.The goal of
patterns is to enhance software reuse.The granularity of a pattern can have a huge
impact on opportunities for reuse.

ptg5934432

xxiiiPreface

Certain problems are best solved by small patterns that involve only a few classes,
while other problems are solved by reusing grand overarching patterns.The key is to find
the optimal balance. In general, the larger patterns provide bigger productivity gains than
the smaller ones, but if a pattern is too big or too general to solve a specific, narrow
problem, it can’t be used. For example, the MVC pattern contributes enormously to
most applications, but there are some specific applications that may not benefit from its
use, and in those cases the pattern provides no value. In contrast, patterns such as
Anonymous Objects and Heterogeneous Containers, Enumerators, Flyweight, and
Singleton are small and contribute value in every application. Cocoa provides patterns all
along the spectrum. Some of the pattern descriptions address the issues of granularity
and the balance that Cocoa strikes.

Use Composition in Preference to Inheritance
It can’t be said enough times that coupling is the enemy. It is ironic that inheritance is
simultaneously one of the most powerful tools in object-oriented programming and one
of the leading causes of coupling. In fact, there is no tighter coupling than the relation-
ship between a class and its inherited superclasses. Many of the patterns described in this
book exist in part to reduce the need to create subclasses.The general rule is that when
there is an alternative to inheritance, use the alternative.

Audience
This book is intended for Mac OS X programmers who are using or considering the
use of Apple’s Cocoa frameworks for Mac OS X or the Cocoa Touch frameworks for
iPhone and iPod Touch. Much of the information in this book also applies directly to
the open source GNUstep project, which is available for Linux and Windows.

Who Should Read This Book
Objective-C, C, C++, and Java programmers should read this book.You should be
familiar with the general principals of object-oriented design and object-oriented
technology to understand and benefit from the design patterns presented here. Many
of Cocoa’s design patterns leverage features of the Objective-C language, which are
not thoroughly explained in this book; however,Apple includes the document, titled
The Objective-C 2.0 Programming Language, along with the free Mac OS Xcode Tools
(http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC).

Some knowledge of Objective-C is required to understand the implementation of
Cocoa, although experienced programmers can pick it up incrementally while reading
this book.That said, this book is not a substitute for a language reference such as The
Objective-C 2.0 Programming Language even though language features that contribute to
Cocoa design patterns are explained as needed within the pattern descriptions.

ptg5934432

Note
If you are developing for the iPhone or iPod Touch, you need to register for the iPhone
Developer Program (http://developer.apple.com/iphone), and then download and install
the iPhone Software Development Kit (SDK) from the iPhone Dev Center after logging in.
The iPhone 3.0 SDK requires an Intel-based Mac which means it cannot be used on older,
PowerPC-based Macs (for example, Macs with the G3, G4, or G5 processors). The iPhone
SDK is available for Mac OS X Leopard (v 10.5) and for Mac OS X Snow Leopard (v 10.6).

xxiv Preface

What You Need to Know
This book doesn’t require guru-level programming skills.The patterns used in the design
of Cocoa are identified and explained in part to demystify the technology. Programmers
who are new to Cocoa will benefit from the insights and wisdom embodied by Cocoa
just as much as experienced veterans. However, if you are completely new to program-
ming with C or languages derived from C, you’ll have difficulty following the in-depth
analysis of how and why patterns work.You need to be comfortable with the object-
oriented concepts of classes, instances, encapsulation, polymorphism, and inheritance.
Without a foundation in the technology of object-oriented software development, the
sometimes advanced descriptions of benefits, consequences, and trade-offs in this book
could be overwhelming.

This book assumes that you know C, C++, or Java and that you’re familiar with
object-oriented software development.As mentioned earlier, you need to know
Objective-C to get the most value from this book, but Objective-C can be learned
along the way.

You need to be running a Mac OS X system with Apple’s Xcode Tools installed. If
you don’t have the Xcode Tools installed on your system, there are a couple things you
can do to obtain them:

n If you purchased new Mac hardware or a boxed release of Mac OS X, the Xcode
Tools can be found on the Install DVD in the Optional Installs folder.

n For Mac OS X Leopard (v 10.5), look in the Xcode Tools folder and
double-click on the XcodeTools.mpkg file to install Xcode.

n For Mac OS X Snow Leopard (v 10.6), double-click on the Xcode.mpkg
file to install Xcode.

n The latest Xcode Tools are available with a free online membership to the Mac
Developer Program which is part of the Apple Developer Connection (ADC) at
http://developer.apple.com/. After you’ve signed up, you can download the Xcode
Tools from the ADC website. (Keep in mind, though, that the download is around
1GB, so you’ll need a fast connection.)

This book is written based on Mac OS X (v 10.5), but ultimately you will want to
leverage Cocoa’s design patterns when creating applications for any version of Mac OS
X, iPhone, iPod Touch, or for Windows and Linux with GNUstep.

ptg5934432

xxvPreface

How This Book Is Organized
This book is organized into five parts. Part I,“One Pattern to Rule Them All,” describes
the Model-View-Controller pattern that provides the overall structure and organization
for Cocoa and most applications that use Cocoa. Part II,“Fundamental Patterns,” identi-
fies the patterns in Cocoa with which all other patterns are built. Part III,“Patterns That
Primarily Empower by Decoupling,” contains patterns that enable you to control and
extend objects without introducing unnecessary coupling. Part IV,“Patterns That
Primarily Hide Complexity,” explains patterns that hide complexity and implementation
details so programmers can confidently focus on solving problems. Part V,“Practical Tools
for Pattern Application,” shows practical applications of the Model-View-Controller
design pattern with examples selected from the Cocoa frameworks.Appendix,
“Resources,” provides additional references for using and understanding Cocoa and
design patterns.

ptg5934432

Acknowledgments

Acknowledgments from Erik M. Buck
Cocoa Design Patterns would not exist without inspiration and trailblazing provided by
Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Richard
Helm, Ralph Johnson, and John M.Vlissides.

Cocoa Design Patterns would have no reason to exist if not for the astounding design
and engineering accomplishment embodied by the Cocoa frameworks. From
NEXTSTEP 0.8 in 1988 to OPENSTEP Enterprise 4.2 for Windows NT, Solaris, and
HPUX in 1997 to Mac OS X 10.0 in 2001 and iPhones in 2007, the creators of Cocoa
continue to advance the state of the art while setting ever higher standards for elegance
and consistency.

Cocoa Design Patterns would have no audience without the vibrant dedication and
camaraderie of the Cocoa developer community embodied by the subscribers to Apple’s
Cocoa-dev mailing list, the countless informative Cocoa-related blogs, and the third-
party application developers large and small.

Acknowledgments from Donald A. Yacktman
I’d like to thank my family for their patience and support and those in the community
who have helped me learn over the years.

ptg5934432

About the Authors

Erik M. Buck founded EMB & Associates, Inc. in 1993 and built the company into
a leader in the aerospace and entertainment software industries by leveraging the
NeXT/Apple software technology that would later become Apple’s Cocoa frameworks.
Mr. Buck has also worked in construction, taught science to 8th graders, exhibited oil on
canvas portraits, and developed alternative fuel vehicles. Mr. Buck sold his company in
2002 and currently holds the title of Senior Staff at Northrop Grumman Corporation.
Mr. Buck received a B.S. degree in computer science from the University of Dayton in
1991 and is a frequent contributor to Cocoa mailing lists and technical forums.

Donald A.Yacktman has been using Cocoa and its predecessor technologies,
OpenStep and NextStep, professionally since 1991. He coauthored the book Cocoa
Programming and has contributed to the Stepwise website as both author and editor.
He has worked for Verio/iServer and illumineX in the past.At present he works as
an independent consultant assisting in the design and implementation of Cocoa and
iPhone applications. Mr.Yacktman received B.S. and M.S. degrees in electrical and
computer engineering from Brigham Young University in 1991 and 1994, respectively.

ptg5934432

This page intentionally left blank

ptg5934432

I
One Pattern to
Rule Them All

All of Cocoa is organized according to the Model View
Controller (MVC) design pattern.Apple’s tools and frame-
works encourage and in some cases enforce the use of
MVC design.The chapters in Part I explain what MVC is,
why it exists, and how it applies to Cocoa programming.

Chapters in this part of the book include

1 Model View Controller

2 MVC Analyzed and Applied

ptg5934432

1
Model View Controller

Model View Controller (MVC) is one of the oldest and most successfully reused soft-
ware design patterns. It was first introduced with the Smalltalk programming language in
the 1970s. MVC defines the overall architecture of the Cocoa frameworks. It’s a high-
level pattern for organizing large groups of cooperating objects into distinct subsystems:
the Model, the View, and the Controller.

To understand the roles that subsystems play in the MVC pattern, it’s useful to analyze
the capabilities and behavior of common applications. Most applications store informa-
tion, retrieve information, present information to a user, and enable a user to edit or oth-
erwise manipulate the information. In an object-oriented application, information isn’t
just bytes; objects encapsulate information along with methods for using the informa-
tion. Each object within your application should fit into exactly one of the following
subsystems:

n Model.The Model subsystem is composed of the objects that provide the unique
capabilities and information storage for an application. Models contain all of the
rules for processing application data.The Model is the key subsystem that makes an
application valuable. It’s critically important that the Model subsystem is able to
stand alone without dependencies on either the View or Controller subsystems.

n View. TheView subsystem presents information gathered from the Model and
provides a way for users to interact with information.The key to understanding
Views is to recognize that there are invariably a multitude ofViews. For example,
there may be a graphical user interfaceView, a printed reportView, a command line
View, a Web-basedView, and a scripting languageView that all interact with the
same Model.

n Controller. The purpose of the Controller is to decouple the Model from the
Views. User interaction with a View results in requests made to the Controller sub-
system, which in turn may request changes to information in the Model.The Con-
troller also handles data translation and formatting for presentation to a user. For
example, a Model may store data in meters, but based on a user’s preference, the
Controller may convert the data to feet.A Model may store objects in an unordered

ptg5934432

3Model View Controller

collection, but the Controller may sort the objects before providing them to a View
for presentation to a user.

The primary purpose of MVC is to decouple the Model subsystem from the Views so
that each can change independently.The Controller subsystem enables that decoupling as
shown in Figure 1.1. In a typical sequence of operations, the user interacts with a slider or
some other interface object.The slider sends a message to tell a Controller object about
the change to the slider’s value as indicated in step 1 in Figure 1.1. In step 2, the con-
troller identifies which Model objects need to be updated based on the new value.The
Controller sends messages to the Model objects to request the updates. In step 3, the Model
objects react to the messages about updates.The Model objects might constrain the up-
dated values to fall within application defined limits or perform other validation.Applica-
tion logic is applied to the updated values, and other Model objects may be updated as a
side effect.The Model then notifies the Controller that the Model has changed. Finally, in
step 4, the Controller sends messages to View objects so that they reflect the changes that
occurred in the Model.There may be many parts of the View that are updated.

You might be tempted to neglect the Controller subsystem because it’s often tricky to
design and seems like it adds needless complexity.After all, the flow of information is ulti-
mately between the Model and the Views, so why introduce another layer? The answer is
that Views tend to change much more often than Models. Not only are there potentially
many Views, but it’s the nature of user interfaces that they change based on customer
feedback and evolving user interface standards. It’s also sometimes important to change
the Model without affecting all of the Views.The Controller subsystem provides insula-
tion between the Model and the Views.

Controller Model

Value

1

2

3

4
4

40

Figure 1.1 The Controller subsystem decouples
the Model and the View.

ptg5934432

The dashed lines in Figure 1.1 emphasize the importance of using messaging ap-
proaches that minimize coupling. Ideally, neither the Model nor the View have dependen-
cies on the Controller. For example,View objects often use the Target Action design
pattern from Chapter 17,“Outlets,Targets, and Actions,” to avoid needing any informa-
tion about the Controller objects that receive messages when the user interacts with user
interface objects. Model objects often use the Notifications pattern in Chapter 14,“Noti-
fications,” to broadcast notification of Model changes to anonymous interested objects
that may be in the Controller subsystem.

MVC in Cocoa
Cocoa is loosely organized into Model,View, and Controller subsystems, as shown in
Figure 1.2. Core Data simplifies the development of Models for many applications.The
Application Kit contains objects for use in both the View and Controller subsystems.The
Foundation framework provides classes used in all three subsystems. Foundation doesn’t
directly provide any View or Controller-specific features, but it provides access to operat-
ing system services, the NSObject base class, scripting support, and other features used in
the implementation of Models,Views, and Controllers.

4 Chapter 1 Model View Controller

Apple supplies a diagram of the classes that comprise the Foundation framework at
http://developer.apple.com/documentation/Cocoa/Reference/Foundation/
ObjC_classic/Intro/IntroFoundation.html.

Note
Model subsystems are often built in straight C or C++. Some applications use a cross-
platform Model that doesn’t depend on Cocoa or other platform-specific technology at all.
One of the virtues of the MVC design is that the Model has no dependence on other sub-
systems, so there is little impact to the Controller or View if the Model is written in a com-
pletely different programming language or is based on different technology. However,
Cocoa’s Foundation and Core Data frameworks contain some of the most powerful, flexible,
and extensible software available. Building your Model using Cocoa technology is a great
choice when cross-platform capabilities are not a primary concern.

View ControllerModel

Core Data Application Kit

Foundation

Figure 1.2 The overall MVC organization of Cocoa

ptg5934432

5MVC in Cocoa

In addition to the overall MVC organization of Cocoa, important subsystems within
Cocoa repeat the MVC design pattern on a smaller scale, for example, Cocoa’s Text Ar-
chitecture groups collaborating classes into Model,View, and Controller roles within the
narrow field of text processing. Cocoa’s Document Architecture is similarly divided into
separate MVC components. Other Mac OS X technologies that aren’t strictly part of Co-
coa reuse the MVC design as well. System preference panes, the Quick Time (QT) Kit,
and Quartz Composer all separate their subcomponents into distinct MVC roles.

Core Data Support for Model Subsystems
Cocoa’s Core Data technology aids Model subsystem development and solves two com-
mon implementation challenges: persistent information storage and object relationship
management.

Almost every Model needs the ability to store information and later reload it. Many
possible implementations of load and store exist. Some applications use binary file formats,
others use human readable text files, and some implementations rely on an underlying
relational database. Core Data implements load and store with a technique called object per-
sistence.The basic approach is to store the Model objects themselves including any encap-
sulated information and the relationships between the objects. Core Data can load and
store the persistent objects from three file formats—human readable XML, binary flat
files, or SQLite databases.

Whether Core Data is used, the design of persistent information storage needs to
weigh several factors. Is the storage intended for easy information exchange between
different applications? If so, a well-defined human readable format like XML is the best
choice. How fast does the load and store need to be? Binary formats usually provide the
best performance.

Core Data includes reusable infrastructure that abstracts the details of particular storage
formats enabling you to concentrate on designing other aspects of your Model.You can
change the preferred Core Data storage format for your Model at any time during devel-
opment and even enable all three supported formats simultaneously.

Almost every Model needs to manage the relationships between objects. Core Data
supports one-to-one and also one-to-many relationships between objects. Each relationship
can be optional or required. If the members of a family are represented by objects, each
member optionally has a relationship to one spouse but always has exactly two biological
parents. Each member can have any number of children. Core Data enables you to specify
relationships, identify constraints, provide default values, and validate relationships.

Although Core Data relationships can be specified through code,Apple’s Xcode tools
include a graphical object modeler that lets you define your Model objects called entities
and their relationships in a graphical way.The NSManagedObject class provides the built-in
support for object relationship management and interacts with an
NSManagedObjectContext to provide persistent storage.When designing your Model in
Xcode, you can use NSManagedObject instances directly. NSManagedObject uses the
Associative Storage pattern, which allows you to add relationships and per-instance

ptg5934432

6 Chapter 1 Model View Controller

information called attributes even without subclassing.Alternatively, you can create your
own subclasses of NSManagedObject right in the modeling tool. Core Data natively stores
attributes in NSNumber, NSData, NSString, and NSSet instances. Subclassing gives you
maximum control over how attributes are stored so that you can use custom objects or C
structures as attributes. Subclassing also provides a convenient way to add arbitrary appli-
cation logic to Model entities.

Core Data is described in more detail in Chapter 30,“Core Data Models.”The support
for relationship management, attribute changing, and persistent storage naturally integrates
with Cocoa’s standard undo and redo features.Any change to an attribute or relationship
can be undone. Core Data automates Attribute and relationship validation so that you can
notify users about inconsistent or invalid changes to Model objects.

Application Kit Support for View Subsystems
Cocoa’s Application Kit contains classes used to build bothView and Controller subsys-
tems. Figure 1.3 identifies the most importantView subsystem classes within the Appli-
cation Kit.These classes present information and enable user interaction.Apple’s diagram
of the entire Application Kit is available at http://developer.apple.com/documentation/
Cocoa/Reference/ApplicationKit/ObjC_classic/Intro/IntroAppKit.html.

The NSMenu, NSWindow, NSApplication, and NSView classes form the core of Cocoa
graphical user interfaces.Almost everything displayed by a Cocoa application is part of a
menu or a window. Each Cocoa application uses an instance of the NSApplication class
to maintain a connection with the operating system for receiving user input events, dis-
playing an icon in the dock, presenting a main menu, and displaying windows. Subclasses
of NSView implement all of the standard user interface elements such as buttons, text, tab
views, progress indicators, and image viewers that form the content of windows.

NSApplication, NSView, and NSWindow are all subclasses of NSResponder.The
NSResponder class is one of the keys to the design of the Application Kit; it encapsulates
handling of user input events and implements the Responder Chain design pattern to en-
sure events and messages are received by the right objects as described in Chapter 18,
“Responder Chain.”

Figure 1.3 shows the many standard NSView subclasses that implement user interfaces.
You can also create application-specific user interface features by making your own sub-
classes of NSView. Some of Apple’s other frameworks such as Web Kit, QTKit, and Quartz
Composer provide specialized NSView subclasses for displaying and editing their respective
media types.

NSView implements the Hierarchies pattern (Chapter 16,“Hierarchies”) and enables
you to compose interfaces that consist of views within views.Any view can contain any
number of subviews. Interface Builder lets you easily develop your view hierarchy, and
you can build it programmatically with NSView methods such as
-(void)addSubview:(NSView *)aView, -(void)removeFromSuperview, and -(void)
replaceSubview:(NSView *)oldView with:(NSView *)newView.

ptg5934432

7MVC in Cocoa

NSObject NSResponder

NSWindow

NSView

NSApplication

NSMenu

NSPanel

NSColorPanel

NSFontPanel

NSSavePanel NSOpenPanel

NSControl NSButton

NSColorWell

NSImageView

NSBrowser

NSDatePicker

NSLevelIndicator

NSMatrix

NSScroller

NSSegmentedControl

NSSlider

NSStepper

NSTableView

NSTextField

NSOutlineView

NSComboBox

NSSearchField

NSSecureTextField

NSTokenField

NSPopUpButton

NSForm

NSClipView

NSBox

NSMenuView

NSOpenGLView

NSProgressIndicator

NSRulerView

NSScrollView

NSSplitView

NSTabView

NSTableHeaderView

NSText NSTextView

NSCell

NSActionCell

NSBrowserCell

NSImageCell

NSTextAttachementCell

NSButtonCell NSMenuItemCell NSPopUpButtonCell

NSDatePickerCell

NSLevelIndicatorCell

NSSliderCell

NSSegmentedCell

NSStepperCell

NSTextFieldCell NSComboBoxCell

NSSearchFieldCell

NSTokenFieldCell

NSTableHeaderCell

NSSecureTextFieldCell

Figure 1.3 Cocoa’s principal View subsystem classes

Some of Cocoa’s subclasses of NSView visually organize their subviews. For example,
the NSBox class can draw a bezel around subviews to visually group them.The
NSTabView class provides a visual metaphor for selecting and displaying any of several
mutually exclusive subviews. NSSplitView uses a graphical divider bar to separate its sub-
views either horizontally or vertically. Users drag the divider bar with the mouse to
control how much of each subview is visible. NSScrollView repositions its subviews as
users drag scroll bars.

Many of Cocoa’s standard user interface components are subclasses of the NSControl
class.The NSControl class plays key roles in the Targets and Actions and the Responder
Chain patterns explained in Chapter 17 and Chapter 18, respectively. For example, when
a user selects a date via an NSDatePicker object, an action message is sent to the date
picker’s target. If no specific target exists, the object that eventually receives the message
is determined by the Responder Chain.

ptg5934432

8 Chapter 1 Model View Controller

The NSCell class implements the Flyweight pattern and is explained in Chapter 22,
“Flyweight.” Flyweights optimize both execution time and memory consumption. In-
stances of the NSControl class use NSCell subclasses as an optimization and to add flexi-
bility. NSTableView is a prime example of the way controls use cells. Separate NSCell
instances determine the way data is presented in each column.You don’t have to subclass
NSTableView just to control how information is presented. Instead, configure the standard
NSTableView with different embedded cells.

Application Kit Support for Controller Subsystems
Cocoa’s NSController class and related classes like NSArrayController fulfill the role of
“mediator” betweenView objects and Model objects. Mediators control the flow of infor-
mation and in some cases supply default “placeholder” values. For example, if aView ob-
ject displays data based on the user’s current selection, a mediator can supply default data
for use when nothing is selected.

The Application Kit supplies the NSController, NSObjectController,
NSArrayController, NSUserDefaultsController, and NSTreeController classes that
mediate data flow using Cocoa’s bindings technology. Bindings establish relationships be-
tween objects and are defined either programmatically or in Interface Builder.When a
binding exists, changes made at runtime to each bound object result in automatic updates
to the other bound object. Bindings can be made directly between Model objects and
View objects or even between objects within a single subsystem, for example, between
two View objects. However, bindings directly between View and Model objects produce
all of the same problems as other dependencies between subsystems. Use NSController
and its subclasses to mediate between the Model and the View. Bindings are explained in
more detail by Chapter 32,“Bindings and Controllers.”

Note
Cocoa bindings simplify the development of Controller subsystems and potentially replace
handwritten code with connections created in Interface Builder. However, even if you choose
not to use bindings, you should still use mediating controllers within your applications. Co-
coa programmers often create simple subclasses of NSObject to act as mediating con-
trollers and implement handwritten methods to synchronize changes in the Model with the
View and vice versa. These custom mediating controllers achieve the MVC goal of decou-
pling the Model and the View.

In addition to mediating the flow of data between the Model and the View, the Con-
troller subsystem is also responsible for the overall control of application behavior.When
multiple View subsystems are available, objects within the Controller subsystem are re-
sponsible for determining which Views to present to users. For example, when a script is
run to extract data from a Model, there may be no need to display a graphical user inter-
face View.The Controller subsystem is the ideal place to encode logic that determines

ptg5934432

9MVC in Cocoa

whether to load and display a graphical user interface View.The Model can’t do it because
the Model isn’t supposed to know what Views exist, and similarly different Views should
not depend on each other.

The Application Kit contains several classes that control application behavior. Cocoa’s
Document Architecture, described later in this chapter, highlights the
NSDocumentController, NSViewController, and NSWindowController classes that
control application documents, views, and windows, respectively.

Cocoa’s Text Architecture
The NSText and NSTextView classes shown in Figure 1.4 provide the user visible portion
of Cocoa’s MVC text architecture.The NSTextStorage class provides a Model for storing
and processing text. In cases in which the layout of text is key to application logic,
NSTextContainer is also part of the text architecture’s Model. NSTextContainer stores
the geometric shape of a block of text. For example, a drawing program that constrains
text to a circular area may need to store that shape in the Model so that it’s restored if the
Model is stored and later reloaded. However, in most applications, default rectangular text
layout is sufficient, and no explicit NSTextContainer is needed.

The NSLayoutManager class acts as a Controller mediating between the View and
Model. Each NSTextView instance asks an associated NSLayoutManager instance to pro-
vide text to be displayed.The NSLayoutManager in turn accesses instances of
NSTextStorage and NSTextContainer to supply the text for display. In the process,
NSLayoutManager converts Unicode characters into glyphs (graphical representations of
characters) that are appropriate for display based on the current font, underline, and other
attributes of the text.

In good MVC style, NSTextStorage is independent of text presentation.A wide range
of text processing tasks are possible entirely within the Model subsystem. For example,
text attributes can be changed, text itself can be modified, text can be searched, text can
be served as web pages over a network, and text can be stored or loaded in a batch pro-
cessing application that doesn’t display any user interface.

Controller

View

Model

NSObject NSResponder NSView NSText NSTextView

NSAttributedString NSMutableAttributedString NSTextStorage

NSLayoutManager

Figure 1.4 The MVC components of Cocoa’s text architecture

ptg5934432

10 Chapter 1 Model View Controller

Cocoa’s text architecture provides a complete solution that meets the needs of most
applications. It’s common to simply drag instances of NSTextView into your user interface
via Apple’s Interface Builder application.Apple provides a tutorial to show you exactly
how it’s done at http://developer.apple.com/documentation/Cocoa/Conceptual/
TextArchitecture/Tasks/TextEditor.html.When you do want to customize text process-
ing, the MVC design of the text architecture enables you to focus your effort on the ap-
propriate subsystem. If you want to store nonstandard attributes along with text, use
NSTextStorage or its superclass, NSMutableAttributedString, which is implemented in
the Foundation framework. NSMutableAttributedString uses the Associative Storage
pattern from Chapter 19,“Associative Storage,” so that you can most likely do what you
want without subclassing. If you need to implement exotic text layout capabilities, start
with NSLayoutManager, and if you want fine control over user input or you want to dis-
play custom text attributes, use subclass NSTextView.

Cocoa’s Document Architecture
Applications for viewing or editing information often adopt the user interface metaphor
of “documents” presented in windows on-screen. Examples include spreadsheets, word
processors, web browsers, and drawing programs.The Cocoa classes shown in Figure 1.5
implement a reusable MVC document architecture.

The document architecture adds an additional wrinkle to the MVC pattern.The Con-
troller subsystem is divided into the Model Controller and the View Controller.The
classes in the Model controller load, store, and access model data.The View Controller
classes access already loaded Model data to enable presentation in the View.

Model Controller

View Controller

View

Model

NSObject NSResponder NSWindow

NSDocument

NSDocumentController

NSWindowController

NSPersistentDocument

NSFileWrapper

NSManagedObjectContext

NSApplication

Figure 1.5 The MVC components of Cocoa’s
document architecture

ptg5934432

11MVC in Cocoa

The division exists in part to simplify the common practice of subclassing the
NSDocument class. NSDocument is a prime example of the Template Method pattern de-
scribed in Chapter 4,“Template Method.” NSDocument itself is abstract, so you must sub-
class it and implement a few critical methods to support loading and saving of Model data
unique to your application.Another reason for the separation is that parts of the Con-
troller layer are dynamically created as needed. For example, it’s possible to load and inter-
act with a document without necessarily displaying any windows associated with the
document.A script might open a document, copy information out of the document, and
paste the information somewhere else without any need to display document windows.

TheView Controllers, NSDocumentController and NSWindowController, mediate
between theView subsystem and the Model to access information to be displayed or
edited.There is only one instance of NSDocumentController in a document-based appli-
cation.At any moment, there are separate instances of NSDocument corresponding to each
open document.There may be zero, one, or more NSWindowController instances associ-
ated with each open document.The use of different numbers of instances of the various
classes is another reason Cocoa distinguishes between document Model Controllers and
View Controllers.Without the distinction, a single object would need to control all of the
windows representing each document and document loading and saving.

In Mac OS X v10.5,Apple added the NSViewController class that fills a role similar
to the NSWindowController class. NSViewController instances mediate between objects
loaded from .nib files and objects that are outside the .nib file. Interface Builder makes it
easy to establish Cocoa bindings that include NSViewController instances.
NSWindowController and NSViewController simplify memory management for objects
loaded from .nib files.

Figure 1.6 identifies the collaborations between the classes in Cocoa’s document archi-
tecture.Within a document-based application, one instance of NSDocumentController
receives and processes messages to create new documents, load documents, and remind
users to save documents before quitting the application. NSDocumentController also
manages the contents of the standard Recent Documents menu. Graphical Cocoa appli-
cations contain an instance of the NSApplication class to enable use of menus and win-
dows as described in the section,“Application Kit Support for View Subsystems.”The
NSDocumentController instance receives delegate messages sent by the NSApplication
instance. If you provide a different delegate object, your delegate will receive the messages
that enable you to control document management behavior without having to subclass
NSDocumentController.The ability to avoid subclassing in some cases is an advantage of
the Delegates pattern explained in Chapter 15,“Delegates.”

You typically use one instance of the NSWindowController class to control each win-
dow associated with a document.A single document may be represented by multiple
windows if necessary. For example, one window might present a document’s Model in-
formation as raw XML and HTML data while simultaneously another window presents
the same Model information as a formatted web page. In another example, if a scheduled
meeting is stored as a single document, one window might contain a table identifying all
of the participants in the meeting, and other windows might display contact information
for the people selected in the table.

ptg5934432

12 Chapter 1 Model View Controller

Each NSDocument instance maintains an array of associated window controllers, and
each window controller also knows which document it belongs to.This bidirectional
communication lets the window controllers access the Model via the NSDocument in-
stance. Similarly, when a document is hidden or closed, the NSDocument instance notifies
associated window controllers.

Each instance of NSWindowController has an outlet that is typically connected in In-
terface Builder to the window to be controlled.You can create your own subclasses of
NSWindowController and add additional Outlets and Actions.The Outlets and Actions
are then connected to View subsystem objects like button and text fields to give the win-
dow controller direct access to those objects.An alternative but equally valid design uses
Cocoa’s Bindings technology explained in Chapter 32 to configure user interface objects
so that they always reflect the current information obtained from the Model via an
NSDocument instance.

Your application’s Model contains the unique information used by the application. If
you use Cocoa’s Core Data technology to implement the Model, an instance of
NSManagedObjectContext provides access to the information and relationships within
the Model and persistent storage in XML, binary, or database formats.Apple provides the
NSPersistentDocument class, an already built subclass of NSDocument, to save and load
using an associated NSManagedObjectContext. If you use the Core Data approach, you
can frequently avoid the need to create your own subclass of NSDocument.

If you don’t use Core Data, you must create your own custom subclass of NSDocument
and implement methods such as (BOOL)writeToURL:(NSURL *)absoluteURL
ofType:(NSString *)typeName error:(NSError **)outError and
(BOOL)readFromURL:(NSURL *)absoluteURL ofType:(NSString *)typeName

error:(NSError **)outError.Your implementations contain whatever logic and data
conversions are needed to save and load the Model using a specific file type and file sys-
tem location.The file type information enables document type conversions when saving
and provides the information your code needs to convert from one type to another when

NSDocumentController 0..*

NSWindowController0..* NSWindow1..*

NSApplication

0.
.*

de
le

ga
te

NSWindowController0..* NSWindow1..*

1

subclass of
NSDocument

NSFileWrapper

NSPersistentDocument

NSManagedObjectContext

Figure 1.6 Collaboration between the objects in Cocoa’s
document architecture

ptg5934432

13MVC in Cocoa

loading.The error: parameter provides a way for your code to report any saving or load-
ing errors that should be presented to users.

Whether you use Core Data, there is often a one-to-one correspondence between
files on disk and documents. In other words, all of the information for one document
is stored in one file. However, if you have more complex storage needs, Cocoa’s
NSFileWrapper class encapsulates the details of using multiple files per document. Each
NSFileWrapper instance manages a whole folder full of files at the location specified by
the URL passed to -readFromURL:ofType:error:. NSFileWrapper can simplify saving
and loading of complex Model information.

Cocoa’s MVC document architecture might seem complex at first, but in practice, you
usually don’t have to spend much time directly interacting with the document architec-
ture. It provides all of the standard behaviors that users expect and requires very little ef-
fort on the developer’s part.The key benefit of the MVC design is that you can tailor the
behavior of multidocument applications without having to touch all of the components
that collaborate to implement the full solution.

Apple’s Xcode application includes a Cocoa document-based application template that
automatically creates an NSDocument subclass and other needed components such as the
application’s NSDocumentController instance.The template even provides an Interface
Builder file containing a window to use as the starting point for defining your document’s
View subsystem.There is a similar Core Data document-based application template that
automatically uses the NSPersistentDocument class.

Cocoa Scriptability
A script interface is much like any other user interface.There are conventions that script
writers expect just like there are standard look and feel expectations for graphical user in-
terfaces. In the MVC design, a script interface is just one of the manyView subsystems
that an application may provide, and like allViews, scripting interfaces should usually in-
teract with the Controller subsystem and not directly with the Model.

When providing a scripting interface, keep in mind that the optimal way in which
script writers interact with an application often differs from the way a graphical user in-
terface is used.Although it’s possible to write scripts that open windows and simulate but-
ton presses or menu selections, that’s seldom efficient. Ideally, a scripting interface works
even if the application doesn’t display anything on screen. Scripts automate complex or
tedious tasks and run in a batch mode.

Cocoa automatically provides basic support for scripting interfaces.The
NSApplication object used in every graphical Cocoa application accepts interprocess
messages and commands called “Apple events.”Apple events use a Mac OS X standard
format for commands, arguments, and return values.The most common and popular
scripting language used to send Apple events is Apple’s own Applescript. However, the
cross-platform Python and Ruby scripting languages included with Mac OS X are also
able to send Apple events.You can even generate Apple events from C and Objective-C

ptg5934432

14 Chapter 1 Model View Controller

programs including Cocoa applications.As of Mac OS X 10.5,Apple provides a technol-
ogy called the Scripting Bridge that simplifies and standardizes the task of integrating
scripting interfaces with Cocoa applications.

In addition to NSApplication, other Cocoa Controller layer classes support scripting.
The NSDocument and NSDocumentController classes respond to standard AppleEvents re-
lated to document selection, loading, and saving. Cocoa’s text architecture handles the
standard text manipulation Apple events for operations like insertion, deletion, text substi-
tution, and searching.

You expose your application’s custom capabilities through new commands provided in
a scripting “dictionary” that is stored as an application resource and loaded by the
NSApplication class when needed.The scripting dictionary is usually an XML file that
specifies how application-specific objects are selected or identified and what commands
may be used with the objects. Script writers use the dictionary to determine what com-
mands to send from scripts. Script development tools like Mac OS X’s Applescript Studio
and Automator applications read the dictionary to validate scripts and detect scripting er-
rors before the scripts are run.

Cocoa’s Preference Pane Architecture
Mac OS X’s built-in System Preferences application is extensible. It has a plug-in archi-
tecture with which new user interfaces called “panes” can be added.When started, the
System Preferences application searches a set of standard file system locations to find and
load any available plug-in panes. It then displays a window in which users choose among
the available loaded preference panes.The System Preferences application as a whole uses
the MVC design, and the panes that you add must also use that design.

The System Preferences Model consists of data files where systemwide and per user
preferences are stored. Preferences include information like the chosen keyboard repeat
speed, the desktop background picture, and the default method of connecting to the In-
ternet.The System Preferences Model is encapsulated by the Core Foundation Preference
Services interface, which is used by all applications and the operating system to access the
preference values.

Each preference pane contains its own Controller subsystem created by subclassing
Cocoa’s NSPreferencePane class. NSPreferencePane handles most of the work of inter-
facing with the System Preferences application. For example, whenever your preference
pane is selected by a user, but before it is displayed, the -(void)willSelect message is
sent to your Controller. Immediately after your View is displayed, System Preferences
sends the -(void)didSelect message to your Controller.Whenever the user unselects
your pane by selecting a different pane, closing the preferences window, or quitting Sys-
tem Preferences, the -(NSPreferencePaneUnselectReply)shouldUnselect message is
sent to your Controller. Depending on the value returned from your implementation of
-shouldUnselect, your pane can postpone the unselect action.As an example, your pane
can implement -shouldUnselect to display an error message indicating any problems
with the current preference values and warning that the values will not be saved.

ptg5934432

15Summary

Finally, each preference pane provides its own View subsystem so that users can interact
with whatever preference values the pane is designed to access. Use Interface Builder to
construct the View and connect it to the Controller with the Outlets,Targets, and Actions
pattern described in Chapter 17 or bindings described in Chapter 29,“Controllers.”

As always in the MVC design, it’s critical that the actual preference values are stored in
the Model and not just in the pane’s user interface. If a value is only stored in the pane’s
user interface, then the value might as well not exist because the system and other appli-
cations will have no way to access it.

Quartz Composer’s Architecture
The Quartz Composer application is one of Apple’s free developer tools. It builds upon
Mac OS X’s Quartz Core Imaging technology to create visual compositions using high
performance graphical operations called “patches.”A group of interconnected patches
along with source data such as images, colors, and text comprise the Model.The Model is
essentially a recipe for creating visual compositions.The QCView is a subclass of NSView
and is able to display final compositions.The QCPatchController class mediates between
the Model and the QCView.

When you embed Quartz compositions in your Cocoa applications, you can connect
your own user interface controls to an QCPatchController to influence the composi-
tions displayed. For example, a group of patches may use a variable to specify how
opaque the resulting composition should be.Your application can use actions or bind-
ings so that the value of a slider sets the opacity variable via the QCPatchController
instance.

The QTKit Architecture
Mac OS X’s QTKit is an Objective-C framework that manipulates and displays Quick-
Time media.The Model used by QTKit is the QTMovie class, which encapsulates movies,
audio streams, animations, and other supported QuickTime media formats defined by the
international MPEG-4 standard. QTMovieView is a subclass of Cocoa’s NSView class and
displays QuickTime media to users.

To use the QTMovie and QTMovieView classes in a Cocoa application, you typically
implement your own Controller layer.The Controller creates QTMovie instances and loads
their content from files or over a network.The Controller then sends messages to tell a
QTMovieView instance which QTMovie to play. Play, pause, fast forward, rewind, and other
operations are implemented by sending messages to the QTMovieView.

Summary
The MVC pattern reduces coupling within applications, but it also increases complexity
in some cases.A clear separation of subsystems pays off in the long term by reducing
maintenance costs and enabling incremental enhancements.The MVC design pattern

ptg5934432

16 Chapter 1 Model View Controller

serves you best if you think there might ever be a version 2.0 of the application you’re
designing, and the larger the application, the more payoff MVC provides.

Another consideration is that it’s usually easier to test a Model directly rather than
through a user interface.When testing through a user interface, extra effort is required to
determine whether a test failure is the result of a bug in the core application logic or a
bug in the user interface or both. Furthermore, the Model is often developed by one
team and the user interfaces by another.The skills needed to develop the Model may be
very different than those needed to produce an excellent user experience.

Even with all of the benefits of the MVC design, it’s not the best fit for every software
project.At one extreme, a web application that runs on a server and displays information in
a web page is the ideal candidate for the MVC design.There is already a clear separation
between theView implemented by a web browser and the Model implemented on the
server.At the other extreme are operating system device drivers and long-running
computation-intensive programs.The application used to configure device drivers might
adopt the MVC design, but the drivers themselves must conform to operating system in-
terfaces and don’t usually present information directly to users. Long-running calculations
are often batch processed and again don’t directly provide a user interface. In between the
extremes, the combination of MVC and Cocoa proves valuable when applied to a wide
range of applications including drawing programs, spreadsheets, games, word processors,
and any sort of information viewer or editor.

ptg5934432

2
MVC Analyzed and Applied

This chapter introduces a tiny Pay Calculator application and provides two separate im-
plementations of the application.The first implementation uses a straightforward but
naive non-MVC design.The second implementation highlights the improvements real-
ized by using the MVC design pattern.

Note
The two implementations of Pay Calculator serve as a high-level whirlwind tour of Cocoa
technologies and developer tools. The example provides a sense of what’s possible, but
there isn’t space in this chapter to describe all of the underlying technology exploited to
build Pay Calculator with drag-and-drop in Interface Builder and Xcode. Pay Calculator shows
the high altitude view looking down on a trivial application built with Cocoa. Starting in
Part II, “Fundamental Patterns,” this book introduces the patterns that provide the founda-
tion upon which the technologies employed in this chapter are built.

Non-MVC Design
A Pay Calculator application multiplies an employee’s hourly rate of pay times the number
of hours worked in the pay period to determine the amount of pay owed to the em-
ployee.To make the example slightly more interesting, we’ll add the rule that some em-
ployees get paid 1.5 times their hourly rate for each hour worked in excess of the standard
number of hours. Other employees are exempt from the special “overtime” pay and re-
ceive the same pay regardless of the number of hours worked. Figure 2.1 shows the user
interface for this simple Pay Calculator.

The Pay Calculator application displays the employee’s name.The user can enter the
employee’s hourly pay rate, the number of hours worked in the current pay period, and
the standard number of hours in the pay period.The user can also select whether the em-
ployee is exempt from overtime pay. Once all of the information has been entered, press-
ing the big Calculate button displays the calculated pay amount.

The user interface is constructed using Apple’s Interface Builder application that’s part
of Apple’s free developer tools. User interface objects are dragged from palettes of
reusable objects and dropped into windows, as shown in Figure 2.2.The objects are then

ptg5934432

18 Chapter 2 MVC Analyzed and Applied

Figure 2.1 The initial user interface for
Pay Calculator

Figure 2.2 A button object is dragged from the Interface Builder Library
to a window under construction.

configured and interconnected via Interface Builder without code.A selection of tutori-
als and documentation for Interface Builder are available at http://developer.apple.com/
documentation/DeveloperTools/Conceptual/IBTips/IBTips.html.

Note
Interface Builder allows you to work with live objects. Drag-and-drop operations copy fully
functioning objects that can be used and tested within Interface Builder. Objects are config-
ured with the desired initial state and then stored in a file. Later, when a Cocoa application
reads the file, all of the stored objects are reconstituted to the state they had been in when
stored. Interface Builder implements this with the Archiving and Unarchiving design pattern
described in Chapter 11, “Archiving and Unarchiving.”

ptg5934432

19Non-MVC Design

The unique application logic for Pay Calculator needs to be implemented with new
code, but this example is so small that only one method of one class is needed.The
PayCalculator class interface declares Outlets to each of the user interface objects and an
Action to calculate the pay amount:

#import <Cocoa/Cocoa.h>

@interface PayCalculator : NSObject

{

IBOutlet NSTextField *employeeNameField;

IBOutlet NSFormCell *hourlyRateField;

IBOutlet NSFormCell *hoursWorkedField;

IBOutlet NSFormCell *standardHoursInPeriodField;

IBOutlet NSTextField *payAmountField;

IBOutlet NSButton *employeeIsExemptButton;

}

- (IBAction)calculatePayAmount:(id)sender;

@end

Outlets are merely pointers to other objects, and Actions are messages that are sent
from object to object. Don’t worry if the terms are unfamiliar. Chapter 17,“Outlets,Tar-
gets, and Actions,” explains the technology in detail.The Outlets are connected to other
objects such as text input fields in Interface Builder, as shown in Figure 2.3. Similarly, a
connection is made from the Calculate button to the -calculatePayAmount: Action to
specify that the calculatePayAmount: message should be sent whenever the button is
pressed.

The PayCalculator class implements -calculatePayAmount: to set the value of the
payAmountField based on the information input by the user.

#import "PayCalculator.h"

@implementation PayCalculator

- (IBAction)calculatePayAmount:(id)sender

{

if(NSOnState == [employeeIsExemptButton state])

{ // Pay the hourly rate times the standard number of hours

// regardless of actual number of hours worked

[payAmountField setFloatValue:[hourlyRateField floatValue] *

[standardHoursInPeriodField floatValue]];

}

else

ptg5934432

20 Chapter 2 MVC Analyzed and Applied

Figure 2.3 A connection from an Outlet to a text field is drawn in Interface
Builder.

{ // Pay the hourly rate times the actual number of hours worked

float payAmount = [hourlyRateField floatValue] *

[hoursWorkedField floatValue];

if([hoursWorkedField floatValue] >

[standardHoursInPeriodField floatValue])

{ // pay 50% extra for overtime hours

float overtimePayAmount = 0.5f *

[hourlyRateField floatValue] *

([hoursWorkedField floatValue] -

[standardHoursInPeriodField floatValue]);

payAmount = payAmount + overtimePayAmount;

}

[payAmountField setFloatValue:payAmount];

}

}

@end

ptg5934432

21Non-MVC Design

Analysis of the Non-MVC Pay Calculator Design
All of the information needed to calculate the pay amount is stored in the objects that
compose the user interface.The design is shown in Figure 2.4.When the user presses
the Calculate button, the -calculatePayAmount: message is sent to a PayCalculator
object as shown in step 1 in Figure 2.4.The implementation of PayCalculator’s
-calculatePayAmount: method extracts information as floating point values from vari-
ous user interface objects in step 2. In step 3, the -calculatePayAmount: method sets the
value displayed by the payAmount user interface object to the result of the calculation.

The non-MVC design can certainly be made to work; a sample implementation of the
Pay Calculator application is available at www.CocoaDesignPatterns.com. However, even
the tiny non-MVC Pay Calculator application example exhibits several serious design
problems.

The first problem is that there’s no way to save the information entered. Every time the
user wants to calculate pay, all of the information has to be entered again. Next, if the user
wants to view or enter information for more than one employee at a time, the entire user
interface must be duplicated for each employee.The duplication is necessary because the
information about each employee is only stored in the user interface objects.The prob-
lems just compound from there. Although Cocoa enables users to print the user interface
just as it appears on-screen, a more concise presentation is more appropriate for printed

PayCalculator

hourlyRateField

hoursWorkedField

standardHoursInPeriodField

payAmountField

employeeIsExemptButton

calculateButton

employeeNameField

1

2

2

2

2

2

3

Figure 2.4 Relationships between objects in the non-
MVC design

ptg5934432

22 Chapter 2 MVC Analyzed and Applied

Figure 2.5 The updated user interface for Pay Calculator using MVC

output.Already there’s a need for two different ways to view the information—a graphical
user interface View and a printing View. However, if all of the information is stored in user
interface objects, then the user interface objects have to be created even if the result of the
calculation is only printed and never displayed on screen.

What happens if user feedback indicates that the standardHoursInPeriodField is not
needed in the user interface? Perhaps users are confident that the standard will always be
40 hours, so the users request that the standardHoursInPeriodField be removed.That
simple change to the user interface requires a change to the calculation of pay amounts to
make the standard number of hours constant or store the information someplace else.The
MVC design pattern exists to prevent situations in which application logic like calculating
pay amounts has to be changed just because the user interface has changed.

MVC Design
The Model View Controller pattern is usually applied to large applications, and each of
the three subsystems is typically composed of many objects. Nevertheless, MVC can be
applied to the simple Pay Calculator application as well. In fact, Cocoa provides objects
and technology that enable the implementation of a much more capable Pay Calculator
application using the MVC design pattern without requiring much more code than the
non-MVC version. Figure 2.5 illustrates an updated user interface for an MVC version of
Pay Calculator.

The updated user interface is developed with Interface Builder and doesn’t require any
code. Interface Builder encourages development of independent View subsystems in two

ptg5934432

23MVC Design

ways: First, it’s so easy to develop user interfaces that multiple interfaces can be created and
evaluated. Each of the interfaces is a separate View, which naturally leads developers to the
habit of making applications work with multiple Views. Second, the objects on Interface
Builder’s palettes are reusable and therefore can’t have any dependence on application-
specific information. Just by dragging and dropping reusable objects, you naturally
produce a decoupled View subsystem. In fact, the interconnection of objects for the non-
MVC version of Pay Calculator actually takes more work to set up than for the MVC ver-
sion because Interface Builder isn’t as well-suited to developing non-MVC applications.

Note
Tools like Interface Builder are handy for developing applications that use the MVC design
pattern, but don’t confuse the tools and the design itself. The MVC design pattern has ex-
isted for a long time and can be used for any kind of software development using any tools.
The tools Apple provides and Cocoa itself encourage the use of MVC.

The important change needed to redesign Pay Calculator using MVC is the creation
of a proper Model subsystem. In this case, the Model only needs one kind of object,
MYEmployee. By creating a MYEmployee class, all of the information for each employee can
be stored in separate instances of MYEmployee.Any number of instances can be created to
store information about any number of employees. Save and load are implemented by
saving and loading the MYEmployee instances in a file.The logic for calculating the pay
amount is encapsulated in the MYEmployee class, so the calculation is done one way and in
one place no matter how many Views are created.

Before diving into the code for the MYEmployee class, consider the following partial list
of features that come for free in the MVC version of Pay Calculator:

n There is automatic support for undo and redo of all changes made to employee
information.

n There is automatic support for save and load of employee information.
n There is automatic support for editing of any number of employee objects.
n There is automatic recalculation of the pay amount; no Calculate button is needed.
n Information about different employees can be viewed and edited without the need

to duplicate user interface components.

The PayCalculator class from the non-MVC design is no longer needed, and the
new MYEmployee class doesn’t require much more code than PayCalculator had.The
first thing to notice is that the MYEmployee class doesn’t need Outlets to access user inter-
face objects. In fact, if MYEmployee had those Outlets, it wouldn’t be a very good Model
class because it would be coupled to a View:

@interface MYEmployee : NSManagedObject

{

}

ptg5934432

24 Chapter 2 MVC Analyzed and Applied

Figure 2.6 The MYEmployee class designed in Xcode

- (NSNumber *)payAmount;

@end

Another thing to notice is that MYEmployee is a subclass of NSManagedObject.The
NSManagedObject class is described in Chapter 30,“Core Data Models.” It’s essentially a
Cocoa class intended to encapsulate persistent data and simplifies the creation of the
Model layer for many applications. NSManagedObject uses the Associative Storage pattern
in Chapter 19,“Associative Storage,” to provide access to data that’s stored in memory or
in files on the disk or in relational databases. NSManagedObject exists to encapsulate the
underlying storage mechanism so that developers don’t need to know details about the
storage.

The MYEmployee class is designed in the Core Data modeling tool included in Apple’s
Xcode application. Like Interface Builder, Xcode is a standard component of Apple’s free
developer tools. Figure 2.6 shows the design of the MYEmployee class.

The MYEmployee design identifies all of the attributes needed for the Pay Calculator
example: hourlyRate, hoursWorked, isExempt, name, payAmount, and standardHours. It
doesn’t really matter how the attributes are stored for each instance of the MYEmployee

class; NSManagedObject makes the underlying storage irrelevant.All that’s needed is to im-
plement the application-specific logic in the MYEmployee class and the Model is complete:

ptg5934432

25MVC Design

#import "MYEmployee.h"

@implementation MYEmployee

+ (NSSet *)keyPathsForValuesAffectingPayAmount

{ // return names of attributes that affect payAmount

return [NSSet setWithObjects:@"isExempt",

@"hourlyRate", @"hoursWorked", @"standardHours", nil];

}

- (NSNumber *)payAmount

{ // return a calculated pay amount based on other attributes

float calculatedPayAmount;

float hourlyRate =

[[self valueForKey:@"hourlyRate"] floatValue];

float standardNumberOfHours =

[[self valueForKey:@"standardHours"] floatValue];

if([[self valueForKey:@"isExempt"] boolValue])

{ // Pay the hourly rate times the standard number of hours

// regardless of the actual number of hours worked

calculatedPayAmount = hourlyRate * standardNumberOfHours;

}

else

{ // Pay the hourly rate times the actual number of hours worked

float numberOfHoursWorked =

[[self valueForKey:@"hoursWorked"] floatValue];

calculatedPayAmount = hourlyRate * numberOfHoursWorked;

if(numberOfHoursWorked > standardNumberOfHours)

{ // pay 50% extra for overtime

float overtimePayAmount = 0.5f * hourlyRate *

(numberOfHoursWorked - standardNumberOfHours);

calculatedPayAmount = calculatedPayAmount +

overtimePayAmount;

}

}

return [NSNumber numberWithFloat:calculatedPayAmount];

}

@end

ptg5934432

26 Chapter 2 MVC Analyzed and Applied

The +(NSSet *)keyPathsForValuesAffectingPayAmount method of the
MYEmployee class tells Cocoa that the payAmount attribute depends on the other
MYEmployee attributes, so any time any of the other attributes changes, the payAmount at-
tribute needs to be recalculated.The ability to access attributes and relationships by name
is inherited from the NSManagedObject class, and the attributes that are available are spec-
ified in Xcode.The ability to make some attributes depend on others is part of Cocoa’s
Key Value Observing technology described in Chapter 32,“Bindings and Controllers.”

The -payAmount method is very similar to the -calculatePayAmount: method in the
non-MVC version.The -payAmount method uses expressions like [self value-
ForKey:@"hourlyRate"] to access the values needed to calculate the amount of pay.The
MYEmployee class can calculate the pay amount without accessing any objects outside of
the Model.

The new version of the Pay Calculator application has a View and a Model, so now
the Controller subsystem needs to be addressed. For an application as simple as Pay Cal-
culator, a single instance of Cocoa’s NSArrayController class suffices.The
NSArrayController instance is created and configured within Interface Builder to pro-
vide access to any and all MYEmployee instances that exist within Pay Calculator when it
runs. No code is needed.The NSArrayController instance even takes care of sorting the
information presented to users into alphabetical order, as shown in Figure 2.5.The table
of employees can be sorted based on any of the columns in the table so that if the user
wants to see them in order of decreasing pay rate, that is also available.

The MVC version of the Pay Calculator application is available at www.CocoaDesign
Patterns.com.The only code in the MVC Pay Calculator that isn’t shown here is some
unmodified boilerplate code supplied by the Xcode project template used to create the
project.

Analysis of the MVC Pay Calculator Design
The user interface objects in Figure 2.5 are connected in Interface Builder so that they
communicate exclusively with the NSArrayController instance, as shown in Figure 2.7.
The objects in the View subsystem have no direct knowledge about the Model or its un-
derlying storage and logic.The View objects are configured in Interface Builder to stay
synchronized with either the arrangedObjects or selectedObject properties of the ar-
ray controller. If the implementation of the View ever changes, only the
NSArrayController instance needs to be reconfigured; the Model is unaffected.

The Model implementation is almost entirely supplied by Cocoa’s Core Data compo-
nents.The example uses Xcode to design a MYEmployee object and store the design in a
configuration file that’s automatically loaded by Core Data when Pay Calculator starts.
Core Data and NSArrayController work well together.The array controller can access
any number of MYEmployee instances because it’s configured in Interface Builder to ask
Core Data to supply them.The array controller responds to -add:, -remove:, and
-fetch: Action messages by asking Core Data to add, remove, or fetch instances of
MYEmployee.

ptg5934432

27Summary

View

Controller

Model

MYEmployee
MYEmployee

MYEmployee

NSArrayController

content

ar
ra

ng
ed

O
bj

ec
ts

selectedObjectse
nd Acti

on m
ess

ages

Figure 2.7 Relationships between objects with MVC design

Summary
Cocoa itself is designed using the Model View Controller pattern, and you’re encouraged
to use MVC in your own applications as well.Apple’s developer tools work best when
applied to MVC designs. In some cases it’s hard to use the tools any other way. Under-
standing the rationale behind the separation of subsystems in MVC helps you understand
how to best use Cocoa. Even the smallest Cocoa applications like the Pay Calculator ex-
ample acquire sophisticated features by conforming to the design implicit within Cocoa.

ptg5934432

II
Fundamental

Patterns

The patterns in this part are fundamental to the architecture
of the Cocoa frameworks. In one sense, you can’t use Cocoa
without using these patterns, but in another sense, these pat-
terns are so low-level and ubiquitous that they can quickly
fade from a programmer’s consciousness.

Chapters in this part of the book include

3 Two-Stage Creation

4 Template Method

5 Dynamic Creation

6 Category

7 Anonymous Type and Heterogeneous
Containers

8 Enumerators

9 Perform Selector and Delayed Perform

10 Accessors

11 Archiving and Unarchiving

12 Copying

ptg5934432

3
Two-Stage Creation

Cocoa relies on conventions established by the NSObject base class to allocate and ini-
tialize new instances of Cocoa classes.The reliance on conventions for something as cen-
tral to an object-oriented language as instance creation may seem problematic at first, but
it works well in practice. Several interrelated patterns are used to assure correct allocation
and initialization of instances.

Many languages, such as Java, C++, Ruby, and Smalltalk use a method named “new”
to allocate and initialize new instances. Even though NSObject implements a +new
method, Cocoa developers seldom, if ever, use it.The Two-Stage Creation pattern
separates the first stage, object memory allocation, from the second stage, object initializa-
tion.The Two-Stage Creation pattern must be followed to effectively use Cocoa.

Motivation
Two-Stage Creation gives programmers control over how objects are allocated in mem-
ory and simultaneously provides flexibility when initializing instances.Two-Stage Cre-
ation simplifies instance initialization when creating subclasses of Cocoa classes and
provides methods for the convenient creation and initialization of temporary objects.

This chapter describes Cocoa’s Two-Stage Creation and explains how it achieves the
following goals:

n Enable the use of initializers regardless of the way memory is allocated
n Avoid the need to implement too many initializers when subclassing
n Simplify the creation and use of temporary instances

A little history helps to emphasize the reasons why Cocoa uses Two-Stage Creation.
Very old versions of the Objective-C class libraries that evolved into Cocoa used class
methods to handle both allocation and initialization.

Note
Class methods operate on class objects rather than instances of the class. Objective-C
classes are themselves objects that conceptually inherit all of the methods of the base
class. Objective-C class methods are superficially similar to static member functions in the

ptg5934432

30 Chapter 3 Two-Stage Creation

C++ language and static methods in Java. Unlike C++ static member functions, Objective-C
class methods have access to the self argument that refers to the class object itself.
Class methods are fully polymorphic (http://developer.apple.com/documentation/Cocoa/
Conceptual/CocoaFundamentals/).

If allocation and initialization are combined in one method, that method has to be a
class method because until allocation is complete, there is no instance.The pattern for im-
plementing a single class method to both allocate and initialize an instance looks like the
following:

+ (id)circleWithCenter:(NSPoint)aPoint radius:(float)radius

{

// allocation and partial initialization are provided by superclass

id newInstance = [[super new] autorelease];

if(nil != newInstance) // verify new instance was created

{

[newInstance setCenter:aPoint];

[newInstance setRadius:radius];

[newInstance setLabel:@”default”];

}

return newInstance;

}

Initializing instances within class methods has many drawbacks. Combined allocation
and initialization results in a combinatorial explosion of methods that must be imple-
mented to handle all of the different ways objects might be allocated and initialized. Con-
sider a hypothetical MYImage object that can be initialized with the contents of a file,
information downloaded using a network Uniform Resource Locator (URL), arbitrary
binary data, the user’s current copy/paste buffer, or empty with a specified size. Now con-
sider that storage for images might be allocated from just two different types of memory,
regular memory or graphics card memory.The MYImage class could easily end up with all
of the following methods:

+imageFromRegularMemoryWithContentsOfFile:

+imageFromRegularMemoryWithContentsOfURL:

+imageFromRegularMemoryWithData:

+imageFromRegularMemoryWithPasteboard:

+imageFromRegularMemoryWithSize:

+imageFromGraphicsMemory:(MYCardID)aCard withContentsOfFile:

+imageFromGraphicsMemory:(MYCardID)aCard withContentsOfURL:

+imageFromGraphicsMemory:(MYCardID)aCard withData:

+imageFromGraphicsMemory:(MYCardID)aCard withPasteboard:

+imageFromGraphicsMemory:(MYCardID)aCard withSize:

Now imagine that it is also possible to store images in special memory shared between
processes or in memory that is mapped into the computer’s virtual address space but not

ptg5934432

31Solution

actually allocated until needed.There may be additional ways image data is obtained such
as by copying an existing image or by screen capture. By the time methods for all of the
combinations are created, there are tens if not hundreds of different methods.

The problem of too many methods that create initialized instances really raises its ugly
head when you try to create a subclass. It may be necessary for the subclass to reimple-
ment every one of the superclass’s instance creation methods and provide new variants for
whatever additional parameters are used to create instances of the new class.

Solution
Cocoa’s NSObject base class provides two methods that allocate memory for new in-
stances, +(id)alloc and +(id)allocWithZone:(NSZone *)aZone.These methods are
inherited by other Cocoa classes and are seldom overridden.The +alloc method is im-
plemented to call the +allocWithZone: method specifying a default zone argument.
Zones are briefly explained in the next section of this chapter.The +alloc and
+allocWithZone: methods each return a pointer to a newly allocated block of memory
large enough to store an instance of the class that executed the method.The allocated
memory contains zeros except for the one instance variable, isa, that all Objective-C
objects are required to have.The isa variable is automatically initialized to point to the
class object that allocated the memory and is the tie-in to the Objective-C language run-
time that enables the instance to receive messages such as -init that are used to com-
plete initialization.

Zones
Memory zones are a feature of Cocoa intended to improve application performance by
keeping the memory for objects that are used together close together in the computer’s
address space.To explain how the location of objects in memory affects performance, it’s
necessary to explain what happens when an application needs more memory than the
amount of physical memory available.

Each Cocoa application has a very large amount of addressable memory.When an ap-
plication dynamically allocates memory, the operating system provides memory even if all
available physical memory in the computer is already being used.To accommodate the al-
location request, the operating system copies the contents of some physical memory to
the hard disk in an operation called paging or swapping.The physical memory that for-
merly contained the data written to disk is then made available to the application that
needed more.

When memory that was copied to disk is needed again, the operating system copies a
different area of physical memory to the disk and pages the old memory back into memory.
The operating system is able to map the address space of each application to the physical
memory even when memory is paged to the disk and back.This feature of the operating
system is called virtual memory.

Using virtual memory affects performance because copying the contents of physical
memory to and from the hard disk is time-consuming.Too much paging degrades system

ptg5934432

32 Chapter 3 Two-Stage Creation

performance and is called thrashing.The location of memory allocated for object instances
is important because if two or more objects that are used together are stored far apart in
memory, the likelihood of thrashing increases.

Consider the following scenario:As the memory for one object is needed, it is paged
into physical memory from the hard disk.That object then needs to access another object
that is still not in physical memory, and even more memory needs be paged in. In the
worst case, memory paged in for the second object forces memory for the first object to
be paged out again.As the objects that reference each other interact, thrashing results.

Zones are used to make sure the memory allocated for objects that are used together is
close together.When one of the objects is needed, the other is almost certainly also
needed. Because the objects are in the same zone, the chances are good that all the needed
objects are paged into memory at the same time, and when the objects are not needed,
they are paged out together as well. Cocoa’s NSZone type specifies a C structure that iden-
tifies a memory zone.The +allocWithZone: method accepts an NSZone argument and
allocates memory from the specified zone. Cocoa provides functions such as
NSDefaultMallocZone(), NSCreateZone(), and NSRecycleZone() for managing
memory zones.These functions are documented at /Developer/Documentation/Cocoa/
Reference/Foundation/ObjC_classic/Functions/FoundationFunctions.html and online at
http://developer.apple.com/.

Note
Zones are a very low level topic, and Apple currently discourages the explicit use of zones in
your code. Zones are automatically used within the implementation of Cocoa. As the amount
of physical memory in computers continues to increase and the sophistication of the operat-
ing system’s memory allocation functions improves, the original motivation for using zones is
gradually evaporating. With Objective-C 2.0 in Mac OS X 10.5, if your application uses Co-
coa’s optional automatic memory garbage collection, zones specified with
+allocWithZone: are ignored by the frameworks.

Initializing Allocated Memory
Once memory for a new instance is allocated, the memory is initialized by calling an in-
stance method. Such instance methods are called initializers and by convention, begin with
the word init, and return an id. Some of the advantages of using the id type are de-
scribed in Chapter 7,“Anonymous Type and Heterogeneous Containers.”Allocation and
initialization are almost always combined in one line of code with the following pattern:
[[SomeClass alloc] init].

Classes can provide any number of initializers, and the different initializers can each ac-
cept different arguments.When multiple initializers are provided, one is usually the Desig-
nated Initializer.The Designated Initializer for the NSObject class is –(id)init, and the
Designated Initializer for the NSView class is –(id)initWithFrame:(NSRect)aFrame.Any
of the provided initializers can be the Designated Initializer, but it must be clearly docu-
mented.The Designated Initializer is usually the one that accepts the most arguments.All
other initializers call the Designated Initializer in their implementations.

ptg5934432

33Solution

Note
When reading Apple’s Cocoa documentation for classes, keep an eye out for references to
the Designated Initializer for each class. Knowing which method is the Designated Initializer
is essential when subclassing Cocoa classes. In a few rare cases such as the NSCell
class, Cocoa classes have more than one documented Designated Initializer.

In addition to the Designated Initializer, most Cocoa classes provide an
–(id)initWithCoder:(NSCoder *)aCoder method.The significance of -initWithCoder:
is explained in Chapter 11,“Archiving and Unarchiving.”

Implementing the Designated Initializer
The Designated Initializer for each class must call the Designated Initializer of its super-
class.The following simple MYCircle class is a subclass of NSObject:

@interface MYCircle : NSObject

{

NSPoint center;

float radius;

}

// Designated Initializer

- (id)initWithCenter:(NSPoint)aPoint radius:(float)aRadius;

@end

@implementation MYCircle

// Designated Initializer

- (id)initWithCenter:(NSPoint)aPoint radius:(float)aRadius

{

self = [super init];

if(nil != self)

{

center = aPoint;

radius = aRadius;

}

return self;

}

@end

The -(id)initWithCenter:(NSPoint)aPoint radius:(float)aRadius method first
assigns the implicit self local variable to the result of calling the superclass’s Designated

ptg5934432

34 Chapter 3 Two-Stage Creation

Initializer.This step is crucial because initializers sometimes return a different object than
the one that received the message.This can happen when it is not possible to initialize the
receiver correctly for some reason or when a pre-existing instance is returned to avoid the
need to initialize a new one.

Note
The self variable is present in all Objective-C methods. It is one of two hidden arguments
passed to code that implements a method. The initial value of self is always the object
that received the message that led to the method’s execution. The other hidden argument is
_cmd, which identifies the message received. The self and _cmd variables are described in
Apple’s document at /Developer/Documentation/Cocoa/ObjectiveC/ObjC.pdf.

After the self variable is set, an if statement is used so that instance variables are only
initialized if self isn’t nil.This is important because if self is nil, accessing the memory
for the instance variables may be an error.This degree of defensive programming is usually
unnecessary because few classes ever return nil from their initializers, but nil is a valid
return value, so getting in the habit of checking for this case will prevent the occasional
problem.

Finally, the -initWithCenter:radius: method returns self.This is the most com-
mon pattern for initializers.

Each class that introduces a new Designated Initializer must also override the inherited
Designated Initializer to call the new one. Because the MYCircle class introduces
-initWithCenter:radius:, it must also implement -init to call -initWithCenter:ra-
dius: as follows:

// Overriden inherited Designated Initializer

- (id)init

{

static const float MYDefaultRadius = 1.0f;

// call Designated Initializer with default arguments

return [self initWithCenter:NSZeroPoint radius:MYDefaultRadius];

}

If you adhere to the following guidelines, calling any initializer implemented or inher-
ited by a class will result in a correctly initialized instance:

n Make sure that the Designated Initializer calls its super class’ implementation of the
super class’ Designated Initializer.

n Assign self to the object returned by the superclass’ Designated Initializer.
n Do not access instance variables if nil is returned by the superclass’ Designated

Initializer.
n Make sure that the superclass’ Designated Initializer is overridden to call the new

Designated Initializer.

ptg5934432

35Solution

n When subclassing, make sure every new initializer that isn’t the Designated Initial-
izer calls the Designated Initializer.

These guidelines greatly simplify the task of creating subclasses. If the guidelines aren’t
followed and some initializers fail to call the Designated Initializer, the only way a subclass
can be implemented to assure correct initialization of instances is to override every inher-
ited initializer.

Note
When subclassing classes that can be archived, it is also necessary to override the inher-
ited -initWithCoder: method to correctly initialize objects that are unarchived as
described in Chapter 11.

Using Zones in Initializers
When using memory zones in your own code, it’s important to allocate memory used by
instance variables from the same zone as the object that owns the instance variables. Stor-
ing references to memory outside of an object’s zone defeats the whole purpose of zones.

The zone used to allocate an object is determined by sending the -zone message to the
object.The MYCircle class can be rewritten so that each instance stores an NSString label
allocated from the same zone as the instance itself.

@interface MYCircle : NSObject

{

NSPoint center;

float radius;

NSString *label;

}

// Designated Initializer

- (id)initWithCenter:(NSPoint)aPoint radius:(float)aRadius;

@end

@implementation MYCircle

// Designated Initializer

- (id)initWithCenter:(NSPoint)aPoint radius:(float)aRadius

{

self = [super init];

if(nil != self)

{

center = aPoint;

radius = aRadius;

label = [[NSString allocFromZone:[self zone]]

initWithString:@”default”];

}

ptg5934432

36 Chapter 3 Two-Stage Creation

return self;

}

// Overriden inherited Designated Initializer

- (id)init

{

// call Designated Initializer with default arguments

return [self initWithCenter:NSZeroPoint radius:1.0f];

}

@end

Objects aren’t the only things that can be allocated from zones.The NSZoneMalloc(),
NSZoneCalloc(), and NSZoneFree() functions documented in /Developer/Documentation/
Cocoa/Reference/Foundation/ObjC_classic/Functions/FoundationFunctions.html are used
to allocate and free blocks of arbitrary memory from specified zones. In Objective-C 2.0
introduced with Mac OS X 10.5, automatic garbage collection automatically frees memory
that is allocated using void *__strong NSAllocateCollectable(NSUInteger size,
NSUInteger options). For backward compatibility, calling NSAllocateCollectable()
with the NSCollectorDisabledOption option has the same behavior as calling
NSZoneMalloc().

Objects can also be copied and unarchived using specified zones.The
–(id)copyWithZone:(NSZone *)aZone and –(id)mutableCopyWithZone::(NSZone

*)aZone methods are explained in Chapter 12,“Copying.”The NSUnarchiver class pro-
vides the - (void)setObjectZone:(NSZone *)aZone method used to specify the zone
in which unarchived objects are allocated.Archiving and Unarchiving are explained in
Chapter 11.

Whenever objects are allocated, they must eventually be deallocated. Cocoa’s reference
counted memory management system helps to ensure this is the case. It is described in
Chapter 10,“Accessors,” which explains how to manage the memory used by objects.
More information about Cocoa’s reference counted memory management is available at
/Developer/Documentation/Cocoa/ObjectiveC/4objc_runtime_overview/
Object_Ownership.html.

In Mac OS X 10.5 and later, you can optionally use automatic garbage collection in-
stead of reference counted memory management. However, because automatic garbage
collection is optional in Cocoa, it’s necessary to correctly implement reference counted
memory management in any new classes you create for the foreseeable future unless you
require that the users of your class also use automatic garbage collection.

Regardless of whether zones are used, when an object is deallocated, its
–(void)dealloc method is called. Don’t call -dealloc yourself. It’s called automatically
when appropriate.The -dealloc method for MYCircle is implemented as follows to
make sure the label instance variable allocated in the Designated Initializer is correctly
handled:

ptg5934432

37Solution

- (void)dealloc

{

[label release];

[super dealloc];

}

If automatic garbage collection is used, the - (void)finalize method is automatically
called instead of the –dealloc method.The MYCircle example doesn’t need to imple-
ment -finalize because the automatic garbage collector, if used, automatically collects
the memory for the label string. MYCircle doesn’t require any special action when its
memory is collected. However, it would be necessary to implement the –finalize
method if MYCircle had allocated any noncollectible memory via
NSAllocateCollectable() with the NSCollectorDisabledOption or needed to per-
form other end-of-life operations like closing open files.

Creating Temporary Instances
Many Cocoa classes provide methods that combine the two stages of allocating and ini-
tializing to return temporary instances. Such methods are called convenience methods.
Convenience methods include the name of the class in the method’s name. For example,
the NSString class provides the +(id)stringWithString:(NSString *)aString con-
venience method that’s similar to the -(id)initWithString:(NSString *)aString ini-
tializer method used by the MYCircle class.When not using automatic garbage collection,
the primary difference between calling [[NSString alloc] initWithString:@”some

string”] and [NSString stringWithString:@”some string”] is that
+stringWithString: returns an instance that will be automatically deallocated unless
you send it a -retain message to prevent deallocation.When using automatic garbage
collection, there is no significant difference between the two techniques for obtaining a
new instance.

Methods like +stringWithString: are usually implemented as follows:

+ (id)stringWithString:(NSString *)aString

{

return [[[self alloc] initWithString:aString] autorelease];

}

The implications of the -retain message and the -autorelease message are explained
in Chapter 10.

The convenience methods for obtaining instances are almost always paired with simi-
larly named initializers. Besides just reducing the amount of code programmers must write
to create and initialize instances, the convenience methods also enable certain optimiza-
tions and are used with other patterns. In particular, convenience methods are used in the
implementation of the Singleton and Class Clusters patterns in Chapter 13,“Singleton,”
and Chapter 25,“Class Clusters,” respectively. Sometimes convenience methods return
Flyweight objects, which are described in Chapter 22,“Flyweight” One drawback to

ptg5934432

38 Chapter 3 Two-Stage Creation

Table 3.1 Prominent Cocoa Classes and Their Designated Initializers

Class Designated Initializer

NSObject -init

NSView -initWithFrame:

NSCell -initImageCell: and -initTextCell:

NSControl -initWithFrame:

NSDocument -init

NSWindowController -initWithWindow:

using the convenience methods is that you give up flexibility in the way instances are allo-
cated because the allocation technique is hard-coded in the method.

Examples in Cocoa
The Two-Stage Creation pattern is used extensively by Cocoa, and you must adhere to it
if you subclass any Cocoa classes.You must be aware of which initializer is the Designated
Initializer to create a properly working subclass.Table 3.1 lists several prominent Cocoa
classes that are frequently subclassed and identifies the Designated Initializers.

The NSCell class actually has two Designated Initializers and both must be overridden
in subclasses, but the subclass is free to call either of the superclass’ Designated Initializers.
As an example of an NSCell subclass, consider a class named MYLabeledBarCell.

MYLabeledBarCell instances each draw a label and a small bar that indicates values be-
tween 0.0 and 1.0.These cells can be used to indicate the percentage of battery charge re-
maining or the speed of mouse acceleration in a preference panel.The bar provides a
quick indication of a value, and the label identifies the value.The bar’s value is set with the
MYLabeledBarCell’s - (void)setBarValue:(float)aValue method, and the label is set
with the - (void)setLabel:(NSString *)aLabel method or the
–(void)setStringValue:(NSString *)aString method inherited from the NSCell
class. Figure 3.1 shows several instances of MYLabeledBarCell, a subclass of NSCell.

ptg5934432

39Examples in Cocoa

Figure 3.1 The window shows a matrix of
MYLabelBarCell instances within a scroll view.

The following implementation of MYLabeledBarCell calls the inherited
- (id)initTextCell:(NSString *)aString from the implementations of both
- (id)initImageCell:(NSImage *)anImage and -initTextCell:.

#import <Cocoa/Cocoa.h>

@interface MYLabeledBarCell : NSCell

{

float barValue; // values in range 0.0 to 1.0

}

// Overriden Designated Initializers

- (id)initImageCell:(NSImage *)anImage;

- (id)initTextCell:(NSString *)aString;

// Overriden configuration

- (BOOL)isOpaque;

// Accessors

- (void)setLabel:(NSString *)aLabel;

- (NSString *)label;

ptg5934432

40 Chapter 3 Two-Stage Creation

- (void)setBarValue:(float)aValue;

- (float)barValue;

// New drawing methods

- (void)drawBarInRect:(NSRect)aRect;

@end

#import “MYLabeledBarCell.h”

@implementation MYLabeledBarCell

// Instances of this class store both a text label and a float value,

// barValue. The label is drawn as an attributed string. A green bar is

// drawn along the bottom of the cell based on the value of barValue

// interpreted as a fraction of full length. If barValue is >= 1.0, the

// bar is drawn full length. If barValue is <= 0, no bar is drawn.

- (id)initImageCell:(NSImage *)anImage

// Overriden Designated Initializer calls -initTextCell:

{
return [self initTextCell:@””];

}

- (id)initTextCell:(NSString *)aString

// Overriden Designated Initializer

{
self = [super initTextCell:aString];

if(nil != self)

{

[self setBarValue: 1.0f];

[self setFont:[NSFont labelFontOfSize:[NSFont labelFontSize]]];

}

return self;

}

- (BOOL)isOpaque

// Returns NO so that background will show through

{

return NO;

}

// Constants used to control drawing

static const float BarHeightWithMargins = 4.0f;

static const float BarMarginFraction = 0.25f;

ptg5934432

41Examples in Cocoa

- (void)drawBarInRect:(NSRect)aRect

// Draw a green bar that fills a portion of aRect specified by barValue

{

aRect.size.width *= barValue;

[[NSColor greenColor] set];

NSRectFill(aRect);

}

- (NSSize)cellSizeForBounds:(NSRect)aRect

// Overridden to return a size large enough for the label and the bar

{

NSSize cellSize = [super cellSizeForBounds:aRect];

// return rectangle large enough for both subcell and text

return NSMakeSize(cellSize.width, cellSize.height +

BarHeightWithMargins);

}

- (void)drawInteriorWithFrame:(NSRect)cellFrame

inView:(NSView *)controlView

// Overridden to draw the label and the bar

{

NSRect barRect;

NSRect labelRect;

// calculate the rectangles containing the bar and label

NSDivideRect(cellFrame, &barRect, &labelRect, BarHeightWithMargins,

NSMaxYEdge);

// draw the label with margins around it

[super drawInteriorWithFrame:labelRect inView:controlView];

// draw the bar with margins around it

barRect = NSInsetRect(barRect, 0.0, BarHeightWithMargins *

BarMarginFraction);

[self drawBarInRect:barRect];

}

- (void)setLabel:(NSString *)aLabel

{

// store the label as the receiver’s string value

[self setStringValue:aLabel];

}

- (NSString *)label

{

ptg5934432

42 Chapter 3 Two-Stage Creation

return [self stringValue];

}

- (void)setBarValue:(float)aValue

{

// store the bar value in instance variable

barValue = MIN(MAX(aValue, 0.0), 1.0);

}

- (float)barValue

{

return barValue;

}

@end

Note
Chapter 21, “Prototype,” includes an example showing one way to populate a regular grid
called a matrix with custom cells.

The Two-Stage Creation pattern plays an imports role in Cocoa’s Flyweight pattern
described in Chapter 22 and the Singleton pattern in Chapter 13, the Archiving and
Unarchiving pattern in Chapter 11, and the Class Clusters pattern in Chapter 25.The Ac-
cessors pattern simplifies the implementation of initializers as described in Chapter 10.

Consequences
Separating the allocation and initialization stages of instance creation provides many ben-
efits. It’s possible to use any variation of the +alloc class method to allocate an instance
and then use any available initializer with the new instance.This makes it possible to cre-
ate your own initialization methods without needing to provide alternate implementa-
tions of all allocation methods.

New allocation methods are seldom created because the existing methods meet almost
every need. However, one or more new initializers are created for almost every class. Due
to the separation of allocation and initialization stages, initializer implementations only
have to deal with the variables of new instances and can completely ignore the issues sur-
rounding allocation.The separation simplifies the process of writing initializers. Further-
more, Cocoa standard initializers like -initWithCoder: work with instances regardless of
the way memory for the instance was allocated.

One negative consequence of the separation of allocation and initialization is the need
to be aware of conventions such as the designated initializer.You must know which meth-
ods are designated initializers and how to create and document new initializers in sub-
classes. In the long run, using designated initializers simplifies software development, but
there is an argument to be made that the Two-Stage Creation pattern adds to the early
learning curve for Cocoa developers.

ptg5934432

4
Template Method

In many cases, an algorithm or process consists of several steps that are needed by many
applications and one or more steps that may be unique to each application.The Template
Method pattern implements the common steps within a reusable class while still enabling
application-specific customization.

The Template Method pattern is also called the “Hollywood Pattern” because of the
Hollywood cliché,“Don’t call us; we’ll call you.”The Template Method pattern identifies
one or more methods that will be called automatically as needed by existing code but
should not be called directly by application code.

A Template Method is nothing more than a special case of a method that is expected
to be overridden in subclasses.The –dealloc method described in Chapter 3,“Two-Stage
Creation” is a Template Method.When automatic garbage collection is not used, the
–dealloc method must be overridden in each subclass of NSObject that needs to explic-
itly de-allocate previously allocated resources.The –dealloc method should almost never
be called directly from code you write except to invoke the superclass’ behavior from
within an overridden implementation. Cocoa automatically calls –dealloc when needed.
Another prominent Template Method is the –drawRect: method provided by the NSView
class. Like –dealloc, -drawRect: should almost never be called directly except to invoke
the superclass implementation and is instead called automatically by Cocoa.

Motivation
Use the Template Method pattern to implement common algorithms or processes in a
highly reusable way while still enabling customization of some process steps.Application
programmers override Template Methods to customize an algorithm or process while
benefiting from substantial reuse of code.

ptg5934432

44 Chapter 4 Template Method

Solution
The following small example illustrates the Template Method pattern in action. Consider
a drawing application that allows users to draw geometric shapes and then later select the
shapes by clicking them with a mouse. In this example, the shapes are represented by the
MYShape class as follows:

@interface MYShape : NSObject

{

NSRect frame; // rectangle that encloses the shape

}

// This is a Template Method to customize selection logic. The default

// implementation returns YES if aPoint is within frame. Override this

// method to be more selective. The default implementation can be

// called from overridden versions.

- (BOOL)doesContainPoint:(NSPoint)aPoint;

@end

The frame variable stores a rectangle that completely encloses the shape.The intent of
the –doesContainPoint: method is to return YES if the receiving shape contains the
specified point and NO if it doesn’t.The basic algorithm for selection is that whenever the
user clicks the mouse to select a shape, the program searches through a collection of
MYShape instances to find one that contains the mouse location.The first shape found that
contains the mouse location is selected. In other words, the drawing application automati-
cally calls –doesContainPoint: in response to mouse events.

Now consider a subclass of MYShape that draws circles:

@interface MYCircleShape : MYShape

{

}

// This method returns YES if aPoint is within a circle inscribed

// within the receiver’s bounds and NO otherwise.

- (BOOL)doesContainPoint:(NSPoint)aPoint;

@end

Assuming the circle represented by MYCircleShape is inscribed within the frame rec-
tangle inherited from the MYShape class, the circles radius is one-half the width of the
frame or one-half the height of the frame, whichever is smaller.The circle’s center is the
center of the frame. MYCircleShape implements –doesContainPoint: as follows:

ptg5934432

45Solution

@implementation MYCircleShape

- (BOOL)doesContainPoint:(NSPoint)aPoint

{
BOOL result = [super doesContainPoint:aPoint];

if(result)

{
NSPoint center = NSMakePoint(NSMidX(frame), NSMidY(frame));

float radius = MIN(NSWidth(frame) / 2.0f,

NSHeight(frame) / 2.0f);

float radiusSquared = radius * radius;

float deltaX = aPoint.x – center.x;

float deltaY = aPoint.y – center.y;

float distanceSquared = (deltaX * deltaX) + (deltaY *

deltaY);

result = (distanceSquared <= radiusSquared);

}

return result;

}

@end

First, the superclass’ implementation of –doesContainPoint: is called because if
aPoint isn’t within the frame, then it also isn’t within a circle inscribed in the frame, so
there is no reason for further calculation. Next, there’s a check to see if the distance
squared from aPoint to the center of the circle is less than or equal to the radius squared
of the circle. Using the radius squared and the distance squared is just a common trick to
avoid having to use a sqrt() function.Algebraically, if one value is less than another, then
its square is also less than the other value squared.

If the program contains a mixed collection of shapes, some of which are MYShape in-
stances and some of which are MYCircleShape instances, when the program asks each shape
if it contains the selection point, the different shapes will respond differently. MYShape in-
stances will return YES if the selection point is anywhere in the frame. MYCircleShape
instances will only return YES if the selection point is within a circle inscribed in the frame.
The essential algorithm for selection has remained the same, and yet it has been customized
for a particular subclass by overriding the –doesContainPoint:Template Method.

Default Template Methods
Any class that provides Template Methods should provide reasonable default implementa-
tions for the methods. Default implementations fall into three general categories that cor-
respond to whether the default implementation can, should, or must be called by
overridden versions.

ptg5934432

46 Chapter 4 Template Method

When You Can Call the Default Implementation
In many cases, a default implementation does nothing. In such cases, it’s safe for the over-
ride to call the default implementation, but it certainly doesn’t need to call it.The NSView
–drawRect: method is such an example: It can be called, but it doesn’t do anything.

When You Should Call the Default Implementation
NSView provides another Template Method called –hitTest: that functions much like
the –doesContainPoint: example. –hitTest: returns the most appropriate object (if
any) to receive a mouse event at a specified point.When overriding –hitTest:, the de-
fault implementation should almost always be called because the selection of the most ap-
propriate object is based on complex but standard logic that you most likely don’t want
to reimplement.You might however want to simulate a round NSView subclass or provide
other unique application behavior. Override -hitTest: and perform additional tests
when it has already been determined that your object is an appropriate receiver for the
mouse event.

When You Must Call the Default Implementation
The –deallocTemplate Method must be called by any overriding method. If the over-
ridden version isn’t called from the subclass’ version, your program will most likely con-
tain memory leaks, which has serious consequences.

Designing with Template Methods
To use the Template Method pattern in your own reusable classes, follow this design
process:

1. Identify the steps of an algorithm and one or more methods to implement each step.

2. Implement the algorithm as a sequence of calls to the identified methods.

3. Factor out the customizable steps of the algorithm into Template Methods and pro-
vide a reasonable default implementation for each Template Method.

4. Document whether the base class’ implementation of each Template Method can,
should, or must be called by subclasses that override them.

Don’t neglect any of the steps in the design process, or you will almost certainly expe-
rience some or all of the negative consequences described in the Consequences section of
this chapter.

ptg5934432

47Examples in Cocoa

Examples in Cocoa
The Template Method pattern is so fundamental to object-oriented programming in gen-
eral and Cocoa in particular that it isn’t practical to identify every occurrence in Cocoa.
The NSView –drawRect: method cited in this chapter is one of the most prominent Co-
coa Template Methods, so it’s worthwhile to examine in a little more detail the uses of
–drawRect: and the algorithm that it customizes.

Using the –drawRect: Template Method
Any Cocoa application that provides a graphical user interface needs to draw within the
application’s windows. Cocoa windows contain instances of the NSView class for that pur-
pose. Each NSView draws in a particular area of the window.The relationship between
views and windows is described in more detail in Chapter 16,“Hierarchies,” and in
Chapter 18,“Responder Chain.”

Several distinct steps are needed to draw. First, the framework determines that a por-
tion of a window needs to be redrawn and sends a message to the window.The window
sends a –display message to each view that is responsible for drawing in the affected
portion of the window. NSView’s –display method configures the graphical coordinate
system, implements graphical “clipping” to constrain drawing to the area where view is
allowed to draw, calls the –drawRect: method to actually draw, and then sends –display
to any subviews nested within the view.The key to this algorithm is that every step is
identical for every view except for the step that actually draws.Within the drawing
process, the difference between a view that draws bar charts and a view that draws text is
the implementation of the –drawRect: method provided by each view.

Cocoa programmers implement application-specific drawing by subclassing NSView
and overriding the –drawRect:Template Method. Cocoa then automatically calls the
-drawRect: method whenever appropriate. Programmers rarely call –drawRect: directly
because if they did, they would be skipping all of the other essential drawing-related
process steps implemented by Cocoa. Instead of invoking –drawRect: directly, Cocoa
programmers typically send the –setNeedsDisplay: message instead.This will trigger
Cocoa to redraw the view at some future time, which will include an invocation of the
–drawRect: method.

Other Cocoa Template Methods
The one Template Method that almost every Cocoa programmer encounters is
NSObject’s –dealloc method.As of Mac OS X 10.5, the - (void)finalize method
may also be overridden to support automatic garbage collection. Other Template Meth-
ods provided by NSObject are identified in Table 4.1.These methods are rarely overrid-
den but essential when they are needed.

ptg5934432

48 Chapter 4 Template Method

Table 4.1 NSObject Template Methods

Method Process Customized

- (id)awakeAfterUsingCoder:(NSCoder *)aDecoder Chapter 11

- (Class)classForArchiver Chapter 11

- (Class)classForCoder Chapter 11

- (Class)classForKeyedArchiver Chapter 11

- (Class)classForPortCoder Chapter 11

- (id)replacementObjectForArchiver:(NSArchiver

*)anArchiver

Chapter 11

+ (NSArray *)classFallbacksForKeyedArchiver Chapter 11

- (id)copyWithZone:(NSZone *)zone Chapter 12

- (id)mutableCopyWithZone:(NSZone *)zone Chapter 12

- (void)forwardInvocation:(NSInvocation

*)anInvocation

Chapter 27

- (NSMethodSignature

*)methodSignatureForSelector:(SEL)aSelector

Chapter 27

The optional NSCoding protocol defines the - (void)encodeWithCoder:(NSCoder
*)encoder and - (id)initWithCoder:(NSCoder *)decoderTemplate Methods de-
scribed in Chapter 11,“Archiving and Unarchiving.” If a class you are writing inherits
from a class that conforms to the NSCoding protocol, you almost certainly need to
override these two methods.

The NSView class provides a large number of Template Methods identified in Table 4.2.
Like all Template Methods, these are occasionally overridden but almost never directly
called. Cocoa calls these methods as steps in built-in processes like drawing, printing, and
event handling.

NSResponder, the superclass of NSView, provides the basic support for handling most
user input events in Cocoa applications. It includes Template Methods that you override
to control event handling and respond to user input events.Template Methods also cus-
tomize management of the Responder Chain described in Chapter 18.Table 4.3 lists the
most important NSResponderTemplate Methods.

ptg5934432

49Examples in Cocoa

Table 4.2 NSView Template Methods

Method Process Customized

+ (NSMenu *)defaultMenu Event Handling

- (BOOL)acceptsFirstMouse:(NSEvent *)theEvent Event Handling

- (NSMenu *)menuForEvent:(NSEvent *)theEvent Event Handling

- (BOOL)needsPanelToBecomeKey Event Handling

- (NSView *)hitTest:(NSPoint)aPoint Event Handling

- (BOOL)performKeyEquivalent:(NSEvent *)theEvent Event Handling

- (void)drawRect:(NSRect)aRect Drawing

- (BOOL)isOpaque Drawing

- (BOOL)isFlipped Drawing

- (BOOL)wantsDefaultClipping Drawing

- (BOOL)preservesContentDuringLiveResize Drawing

- (void)adjustPageHeightNew:(CGFloat *)newBottom

top:(CGFloat)top bottom:(CGFloat)proposedBottom

limit:(CGFloat)bottomLimit

Printing /
Pagination

- (void)adjustPageWidthNew:(CGFloat *)newRight

left:(CGFloat)left right:(CGFloat)proposedRight

limit:(CGFloat)rightLimit

Printing /
Pagination

- (BOOL)knowsPageRange:(NSRangePointer)aRange Printing /
Pagination

- (void)beginDocument Printing /
Pagination

- (void)endDocument Printing /
Pagination

- (void)beginPageInRect:(NSRect)aRect

atPlacement:(NSPoint)location

Printing /
Pagination

- (NSAttributedString *)pageHeader Printing /
Pagination

- (NSAttributedString *)pageFooter Printing /
Pagination

ptg5934432

50 Chapter 4 Template Method

Table 4.3 NSResponder Template Methods

Method Process Customized

- (BOOL)acceptsFirstResponder Responder Chain
Management

- (BOOL)resignFirstResponder Responder Chain
Management

- (void)mouseDown:(NSEvent *)theEvent Event Handling

- (void)mouseDragged:(NSEvent *)theEvent Event Handling

- (void)mouseUp:(NSEvent *)theEvent Event Handling

- (void)mouseMoved:(NSEvent *)theEvent Event Handling

- (void)mouseEntered:(NSEvent *)theEvent Event Handling

- (void)mouseExited:(NSEvent *)theEvent Event Handling

- (void)rightMouseDown:(NSEvent *)theEvent Event Handling

- (void)rightMouseDragged:(NSEvent

*)theEvent

Event Handling

- (void)rightMouseUp:(NSEvent *)theEvent Event Handling

- (void)otherMouseDown:(NSEvent *)theEvent Event Handling

- (void)otherMouseDragged:(NSEvent

*)theEvent

Event Handling

- (void)otherMouseUp:(NSEvent *)theEvent Event Handling

- (void)keyDown:(NSEvent *)theEvent Event Handling

- (void)keyUp:(NSEvent *)theEvent Event Handling

Table 4.2 NSView Template Methods

Method Process Customized

- (void)drawPageBorderWithSize:

(NSSize)borderSize

Printing / Pagination

- (void)drawSheetBorderWithSize:

(NSSize)borderSize

Printing / Pagination

- (NSRect)adjustScroll:

(NSRect)proposedVisibleRect

Scrolling

- (void)didAddSubview:(NSView *)subview Chapter 16

- (void)resetCursorRects Mouse Pointer
Interaction

- (BOOL)mouseDownCanMoveWindow Mouse Pointer
Interaction

ptg5934432

51Examples in Cocoa

Many other Cocoa classes provide Template Methods.The CALayer class introduced
with Mac OS X 10.5 is similar to the NSView class and provides almost as many Template
Methods. CALayers augment NSView drawing and in some cases replace NSView for hard-
ware accelerated OpenGL-based drawing.

The NSTableView class is an interesting example.Although it is an NSView subclass,
custom subclasses do not typically override –drawRect:. Instead, NSTableView uses sev-
eral template methods including –drawRow:clipRect:, –drawBackgroundInClipRect:,
and –drawGridInClipRect: to allow specific portions of its rendering to be customized.
Layout is also controlled with a Template Method. NSTableView and many other complex
views such as NSBrowser and NSScrollView use the –tile method to position their
subviews. It is interesting to note that the data displayed by an NSTableView is not
provided by a subclass, nor are Template Methods used. Instead, a Data Source object
provides the data. Chapter 15,“Delegates,” describes Data Sources in detail.

Whenever you use Apple’s Cocoa documentation, keep an eye out for Template Meth-
ods.Apple doesn’t often use the term Template Method in class reference documentation,
but method descriptions for Template Methods usually contain a phrase such as “...over-
ridden in subclasses to...” or “...subclasses can override...” along with information regard-
ing whether your override can, should, or must call the superclass’ implementation. Often
there is also a warning that you should not directly call the method in question.

Consequences
There are several potentially negative consequences to using the Template Method pat-
tern. First and foremost, the pattern requires the creation of subclasses to override tem-
plate methods. Subclassing produces the tightest possible coupling between the subclass
and its superclass.As always, it’s advisable to avoid coupling. If overriding a Template
Method is the only reason a subclass is created, there are almost certainly better patterns
to apply. In particular, the Delegate pattern described in Chapter 15 is probably more
suitable. On the other hand, when there are reasons to create subclasses anyway,Template
Methods can be ideal.

Table 4.3 NSResponder Template Methods

Method Process Customized

- (void)flagsChanged:(NSEvent *)theEvent Event Handling

- (void)scrollWheel:(NSEvent *)theEvent Event Handling

- (id)validRequestorForSendType:(NSString

*)sendType returnType:(NSString

*)returnType

Services

- (NSUndoManager *)undoManager Undo / Redo
Customization

ptg5934432

52 Chapter 4 Template Method

Second, it can be difficult to document the intended use of Template Methods.The
methods need to be clearly identified so that programmers understand their intended use.
Programmers need to know when and why each Template Method can or should be
overridden.When overriding a template method, is the new version required to call the
inherited version, permitted to call the inherited version, or forbidden to call the inher-
ited version? The special documentation burden of the Template Method pattern must
not be overlooked.

Finally, if you need to subclass to customize an algorithm, what happens when several
unrelated customizations are required? The Delegate Pattern in Chapter 15 exists in part
to avoid the creation of a combinatorial number of subclasses needed to mix and match
the different customizations an application might need.

Because there are potentially negative consequences, the Template Method pattern is
best reserved for use only in the most mature and stable designs in which the reasons for
customization are very well understood.The –drawRect: method of Cocoa’s NSView class
is an effective Template Method because there is only one reason to override
–drawRect:, to perform custom drawing.The –drawRect: method implements one step
in a complex drawing algorithm, and overriding it for any other use is almost certainly an
error. In a round-about way, Cocoa’s implementation of custom drawing via the Template
Method pattern communicates the implicit assumption that you must limit what you do
in –drawRect: to drawing. Reading between the lines and understanding the conse-
quences of design patterns can reveal seldom-documented aspects of the framework de-
signers’ probable intentions.

If you find yourself contemplating the creation of Template Methods in code intended
for reuse, first consider Delegates. In many cases, Delegates provide a more flexible alter-
native to Template Methods.

ptg5934432

5
Dynamic Creation

Cocoa utilizes many features of the underlying Objective-C runtime. One powerful
feature is the ability to create instances of classes that did not exist at the time an applica-
tion was compiled and dynamically load and link new classes at runtime. Scripting lan-
guages such as AppleScript,Tcl, Ruby, Perl, and Python use this technique to provide
interfaces to Cocoa.The core of this pattern is the NSClassFromString() function that
returns the class object with a specified name. NSBundle augments this by implementing
the method –classNamed:, which can dynamically load code for the class if necessary.
Once the named class object is obtained, instances can be created.

Dynamic creation enables scripting language bridges, plug-ins, Interface Builder plug-
ins, unarchiving, nib loading, and overriding which classes the Cocoa frameworks will
utilize when constructing composite objects or instantiating singletons.

Motivation
Decouple classes from each other and postpone decisions about which class to use until
runtime. Provide a simple mechanism for overriding which classes are used for particular
tasks within frameworks. Simplify the creation of plug-in architectures.

Solution
The basis of this pattern is a single function, NSClassFromString(). It takes a single argu-
ment, an NSString containing the name of a class.An Objective-C class object is re-
turned. Once a class object has been obtained, it can be instantiated or otherwise
manipulated.Although this may seem simple, it opens up many powerful options, espe-
cially for framework designers. One very important aspect of this power is the fact that
this function allows a developer to use an object that was unknown to the compiler and
linker when the application was built.

This single function effectively reduces the well-known Factory Method pattern to a
single line of code in many cases.The Factory Method pattern typically requires an ab-
stract method to be overridden to return a subclass of the desired type. By instead using
NSClassFromString(), the desired subclass type can even be named by a string value in

ptg5934432

54 Chapter 5 Dynamic Creation

an application’s property list, to be resolved into a concrete class object at runtime.
Chapter 13,“Singleton,” contains sample code that does this, along with a more complete
explanation of this technique.

Using Dynamic Creation
As an example of a program that can benefit from Dynamic Creation, consider a basic
command line reverse Polish notation (RPN) calculator. Its primary input is a series of
numbers punctuated with commands to execute. Each number should be placed onto a
stack as it is encountered. Commands manipulate the stack. For example, an “add” com-
mand would pop two numbers off the stack, add them together, and then push the result
onto the stack. Some commands would not alter the stack in any way. For example, the
“print” command displays the value at the top of the stack but makes no modifications.

The Dynamic Creation pattern can be used when it comes time to parse the input
and execute the commands. First, a naming convention for the classes that implement the
commands must be decided. In this case, the name can be “MYSomethingCommand” in
which “Something” is replaced by the command. For example, the command “add” is
implemented by the class MYAddCommand. For each input string encountered, an attempt is
made to look it up with NSClassFromString(). If an object is found, we have a com-
mand, and it is executed. If no object is found, and NSClassFromString() returns nil,
then we assume that we have a value to be pushed onto the stack.That’s all there is; the
details are straightforward from here.Adding new commands to the calculator is as simple
as writing a new class, compiling it, and linking it into our application.There is no need
to register the new class with the interpreter or list it anywhere. Its mere presence is suffi-
cient to add it to the parsed language.

The first part of the implementation is a simple support class. MYStack is a basic stack
that internally uses an NSMutableArray to implement its functionality.The end of the ar-
ray is considered to be the top of the stack, so appending an object to the array pushes it
onto the stack.To pop an object off the stack, it is removed from the end of the array.The
method -peekAtIndex: is used to view the stack’s contents without actually altering the
stack.The interface and implementation are as follows:

#import <Cocoa/Cocoa.h>

@interface MYStack : NSObject

{

NSMutableArray *storage;

}

- (void)push:(id)anObject;

- (id)pop;

- (NSInteger)count;

- (id)peekAtIndex:(NSInteger)index;

@end

ptg5934432

55Solution

#import “MYStack.h”

@implementation MYStack

- (id)init

{

self = [super init];

if (self)

{

storage = [[NSMutableArray alloc] init];

}

return self;

}

- (void)dealloc

{

[storage release];

[super dealloc];

}

- (void)push:(id)anObject

{

if (anObject) [storage addObject:anObject];

}

- (id)pop

{

id value = nil;

if ([storage count] > 0)

{

value = [storage lastObject];

[value retain];

[storage removeObjectAtIndex:([storage count] - 1)];

[value autorelease];

}

return value;

}

- (NSInteger)count

{

return [storage count];

}

- (id)peekAtIndex:(NSInteger)index

{

ptg5934432

56 Chapter 5 Dynamic Creation

id value = nil;

if (index < [self count])

{

value = [storage objectAtIndex:([storage count] - 1) - index];

}

return value;

}

@end

A base class is needed for the various commands. For that, the MYCommand class will be
used.To simplify this example, the command objects won’t actually be instantiated. In-
stead, the interpreter will simply call a class method, +executeWithStack:, to perform
the command.This method could have been an instance method instead, in which case
the command object would have to be instantiated before it could be used. In our exam-
ple, there is no persistent data or state that needs to be tracked by the MYCommand sub-
classes, making instantiation an extra, unnecessary step. In a real application, it would be
better to use instance methods and instantiate the command objects.There might be
some commands that need to store specific state, and that would be best accomplished
with an actual instance.The interface for MYCommand defines the +executeWithStack:
method and the possible return values for success or failure.

#import <Cocoa/Cocoa.h>

@class MYStack;

typedef enum {

MYSuccess = 0,

MYError = 1,

MYHaltExecution = 2

} MYCommandReturn;

@interface MYCommand : NSObject

{

}

+ (MYCommandReturn)executeWithStack:(MYStack *)stack;

@end

The implementation of the +executeWithStack: method gives an error message. Be-
cause subclasses are supposed to override this method with their own implementations,
this code will never be called if the subclasses are written correctly.

#import “MYCommand.h”

#import “MYStack.h”

ptg5934432

57Solution

@implementation MYCommand

+ (MYCommandReturn)executeWithStack:(MYStack *)stack;

{

NSLog(@”%@: not implemented yet.\n”, [self className]);

return MYError;

}

@end

With these two classes in place, it is possible to write an implementation of main()
for the interpreter.The implementation is not complex.There is some setup code fol-
lowed by two nested loops.The outer loop reads a line from stdin and breaks the input
up into an array of strings, separated by whitespace.The inner loop considers each of the
strings in the array and either executes it as a command (if the right class exists) or
pushes it onto the stack.As a bonus, an NSDictionary is used to give alternate names to
some of the commands. For example “+” will map to “add,” and “*” will map to “multi-
ply.” Here is the code:

#import <Foundation/Foundation.h>

#import <stdio.h>

#import “MYStack.h”

#import “MYCommand.h”

static NSMutableDictionary *operators = nil;

#define MYMAXSTRING 8192

int main (int argc, const char *argv[])

{

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

MYStack *stack = [[MYStack alloc] init];

BOOL parsing = YES;

char cString[MYMAXSTRING];

// create a substitution dictionary: every time a key is found,

// it will be treated as if the user typed the associated

// object instead

operators = [[NSMutableDictionary alloc] init];

[operators setObject:@”add” forKey:@”+”];

[operators setObject:@”subtract” forKey:@”-”];

[operators setObject:@”multiply” forKey:@”*”];

[operators setObject:@”divide” forKey:@”/”];

// our parsing loop, we parse one line at a time from stdin

while (parsing)

ptg5934432

58 Chapter 5 Dynamic Creation

{

NSString *subString;

// read a line from stdin and break it into

// substrings separated by whitespace

fgets(cString, MYMAXSTRING, stdin);

NSString *inputLine = [NSString stringWithCString:cString];

NSArray *splitLine = [inputLine

componentsSeparatedByCharactersInSet:

[NSCharacterSet whitespaceAndNewlineCharacterSet]];

// step through the substrings, dealing with them

// one at a time

for (subString in splitLine)

{

NSString *operator;

NSString *commandName;

Class commandClass;

// if substring is empty, skip it

if (NSOrderedSame == [subString compare:@””])

{

continue;

}

// if substring matches an operator, change it

// into the associated command name

for (operator in operators)

{

if (NSOrderedSame == [operator compare:subString])

{

subString = [operators objectForKey:operator];

break;

}

}

// look for a command to match the string

commandName = [NSString stringWithFormat:@”MY%@Command”,

[subString capitalizedString]];

commandClass = NSClassFromString(commandName);

// if there’s a command name

if (commandClass)

{

// that matches, then perform the command

MYCommandReturn result = [commandClass executeWithStack:stack];

switch (result)

ptg5934432

59Solution

{ // handle the return codes appropriately

case MYHaltExecution:

parsing = NO;

break;

case MYError:

NSLog(@”Error executing command \”%@\”.”, subString);

break;

case MYSuccess:

default:

break;

}

}

else

{ // if there was no command to execute,

// then push the string onto the stack

[stack push:subString];

}

}

}

[stack release];

[operators release];

[pool drain];

return 0;

}

As it stands, the interpreter is complete and will run. However, it won’t respond to any
commands given that none exist. Each command is very simple code.The code needs to
define a subclass of MYCommand and implement the –executeWithStack: method. For
example, to print out what is at the top of the stack, the “print” command would look
like this:

#import “MYCommand.h”

@interface MYPrintCommand : MYCommand

{

}

@end

#import “MYPrintCommand.h”

#import “MYStack.h”

@implementation MYPrintCommand

+ (MYCommandReturn)executeWithStack:(MYStack *)stack

ptg5934432

60 Chapter 5 Dynamic Creation

{

if ([stack count] < 1) return MYError;

fprintf(stdout, “%s\n”, [[stack peekAtIndex:0]

cStringUsingEncoding:NSASCIIStringEncoding]);

return MYSuccess;

}

@end

All the commands follow a similar template. Only the class name and code inside the
-executeWithStack: method change. For example, here is the code to implement an
“add” command that functions as described at the beginning of this example:

+ (MYCommandReturn)executeWithStack:(MYStack *)stack

{

if ([stack count] < 2) return MYError;

NSString *value1 = [stack pop];

NSString *value2 = [stack pop];

double result = [value2 doubleValue] + [value1 doubleValue];

NSString *resultString = [NSString stringWithFormat:@”%f”, result];

[stack push:resultString];

return MYSuccess;

}

The actual downloadable example code on the book’s website also implements com-
mands for quit, subtract, multiply, divide, and dump.“Dump” displays the entire contents
of the stack; the other commands are self-explanatory. Because of the use of the Dynamic
Creation pattern, it is easy to extend the interpreter with a minimum of code. By simply
adding new MYCommand subclasses to the project, the language is extended.As the inter-
preter parses its input, it will automatically find whatever command classes exist and use
them as needed.

Dynamic Creation to Implement Plug-In Architectures
When creating a plug-in architecture, Dynamic Creation greatly simplifies the process.
The purpose of plug-ins is to allow new code to be loaded into an application dynami-
cally.The NSBundle class provides a solid foundation for creating plug-ins.A bundle can
tie together code, images, Interface Builder interfaces, text and XML files, and so on and
localize them, making it a perfect package for housing all the elements a plug-in might
require.As such, NSBundle is usually used to implement plug-ins.

The NSBundle class defines a method, -classNamed:, which functions much as
NSClassFromString(). Because bundles can contain executable code, the method differs
from the function in two key ways. First, it searches only the bundle itself to find the re-
quested class. Second, it will load executable code and link it into the running application
if necessary.

ptg5934432

61Examples in Cocoa

NSBundle instances representing plug-ins can be obtained using the
+bundleWithPath: method. Keep in mind that the running application is a special type
of bundle, so sending the message [NSBundle mainBundle] will return an NSBundle in-
stance that represents the application. Because frameworks are also bundles, don’t expect
to be able to look up class objects for frameworks in the main bundle.

Once the correct bundle is obtained, there are two methods that can be used to obtain
Objective-C class objects. Most plug-in architectures will use -principalClass to locate
an entry point to the plug-in, given that the names of the classes in the plug-in are proba-
bly not known to the application loading them. Each bundle has a property list (Info.plist)
that can be configured to identify an Objective-C class as that bundle’s principal class by
putting the class name in the “Principal class” key.The -classNamed: method also can be
used to obtain a class object from a bundle, if you know the name of the class you want.
Both methods will cause the bundle’s executable code to be loaded and linked into the
application if necessary.

Underlying all of this NSBundle functionality is the Dynamic Creation pattern. Be-
cause this pattern decouples class names from the code using the classes, it helps to avoid
link time issues when an application that uses plug-ins is compiled.

Examples in Cocoa
Cocoa uses this pattern frequently, often in places where it might be convenient to allow
a custom class to be inserted. Chapter 13, which discusses the Singleton pattern, shows
how dynamic creation can be applied in this way.The NSApplication class is an example
of a singleton in Cocoa, which uses dynamic creation as part of its implementation.

Cocoa uses dynamic creation to implement much of its Applescript support.The refer-
ence documentation lists several classes such as NSCloneCommand, NSCountCommand,
NSCreateCommand, and so on—class names all ending in “Command.”These are used by
Cocoa’s Applscript support in a way similar to the RPN example in this chapter. In this
case,Applescript commands are mapped to a Cocoa objects that implement them. Dy-
namic creation is used to locate and instantiate an object of the correct class for each
command.

In Mac OS X 10.5 (Leopard),Apple added more generic support for scripting lan-
guages.These bridge technologies allow Ruby and Python to be used with Cocoa. On
the Objective-C side of the equation, dynamic creation is required to implement the
bridge. Invocations (Chapter 20,“Invocations”) and Proxies and Forwarding (Chapter 27,
“Proxies and Forwarding”) are also used in the implementation of the bridge.

Core Data relies upon dynamic creation when associating Objective-C classes with
entities.When creating data models in Xcode, it is possible to choose a custom subclass of
NSManagedObject to be used for each entity that is defined.When Core Data instantiates
entities, it uses Dynamic Creation to instantiate an object of the requested class.

When objects are archived, the class name is stored in the archive, and then the class’
data is written.To unarchive an object, the class name is read, and then the dynamic cre-
ation is used to instantiate the object.The object is then sent a message to read its data.

ptg5934432

62 Chapter 5 Dynamic Creation

These are just a few examples of places in which this pattern is used. Cocoa uses Dy-
namic Creation pervasively throughout the frameworks to increase their flexibility.As de-
velopers gain experience with the frameworks, they begin to spot even more places in
which it is being used and often use it more frequently themselves.

Consequences
Dynamic Creation is used to decouple classes from each other, particularly in cases where
one class might be substituted for another.This decoupling makes it easy for developers to
override sections of the Cocoa frameworks by inserting their own custom subclasses. Be-
cause of Dynamic Creation, Cocoa can instantiate and interact with custom classes even
though they were unknown to the linker at the time Cocoa was compiled.

Developers can use Dynamic Creation themselves to create code that isn’t directly
coupled to other code.This is especially useful for creating plug-in architectures. It can
also be employed to develop frameworks that are easily extended.

Several of the other Cocoa patterns often use Dynamic Creation in their implementa-
tion. Singletons (Chapter 13) often use Dynamic Creation to determine which class to
instantiate. Hierarchies (Chapter 16,“Hierarchies”) sometimes use Dynamic Creation to
determine which classes to use when building up their internal object graphs. Dynamic
Creation also makes some features of Bundles (Chapter 24,“Bundles”) possible. By using
Associative Storage (Chapter 19,“Associative Storage”), it is possible to further enhance
the power of this pattern.

ptg5934432

6
Category

The Category pattern adds methods to existing classes and provides an alternative to
subclassing in many situations.The Category pattern is supported directly by the Objec-
tive-C language and is used extensively in the implementation of other Cocoa design pat-
terns.The added methods are inherited by all subclasses of the extended class and are
indistinguishable at runtime from methods originally compiled into the class.

The Category pattern can also be used to replace the implementations of methods in
existing classes, perhaps to fix bugs in framework classes without needing source code for
those classes. However, there is no convenient way to call the original method from the
code that replaces it.When replacing a method, you must be certain to duplicate all of the
functionality that is replaced, or new bugs will be introduced.

Unlike subclasses, categories can’t be used to add instance variables to an existing class,
but the Associative Storage pattern described in Chapter 19,“Associative Storage,” de-
scribes a way to simulate the existence of additional instance variables within a category
implementation.

Often Categories are used as a tool to organize class implementations.

Motivation
Use the Category pattern to accomplish the following:

n Extend existing classes without subclassing.
n Create informal protocols.
n Implement different methods of the same class in different frameworks.
n Spread the implementation of individual classes across multiple source files.
n Simplify development when multiple programmers contribute to the definition of

individual classes.
n Extend the benefits of incremental compilation.

ptg5934432

64 Chapter 6 Category

n Group commonly used methods.
n Fix bugs in existing classes as a last resort when you don’t have access to the origi-

nal source code.

Solution
In Objective-C, a class is declared using the @interface compiler directive as follows:

@interface ClassName : SuperClass

{

variable declarations

}

method declarations

@end

For example, the following code declares a class called MYDie that represents a single
six-sided die like the ones used in popular board games and is a subclass of NSObject:

@interface MYDie : NSObject

{

int value; // stores the last value rolled

}

- (void)roll; // obtain a new random value

- (int)value; // returns the last value rolled

@end

The class is implemented using the @implementation compiler directive, as follows:

@implementation ClassName

method definitions

@end

Here is one possible implementation for the very simple MYDie class:

@implementation MYDie

- (void)roll

// rolls the die to obtain a new random value

{

value = (random() % 6) + 1; // random number in range (1-6)

}

ptg5934432

65Solution

- (int)value

// The last value rolled

{

return value;

}

@end

To add methods to an existing class with a category, use the following syntax:

@implementation ClassName (CategoryName)

method definitions

@end

A category is defined by adding the category name in parentheses after the class name
in an implementation. It isn’t necessary to provide an interface declaration for a category,
but it’s a good idea in many situations. Use @interface ClassName (CategoryName)
followed by method declarations and @end to create the interface for a category.The pri-
mary reason for creating a category interface is to give the compiler information about
the added methods and therefore avoid compiler warnings when code refers to methods
defined only in a category. Cocoa sometimes uses category interfaces without correspon-
ding implementations to create something called an informal protocol, described in its
own section within this chapter.

Note
The compiler and linker report errors when two categories with the same name are added to
the same object. This might happen when multiple developers extend the same framework
classes. Avoid the problem by using prefixes in your category names. The Cocoa frameworks
use the standard “NS” prefix on the names of all categories they define.

Even in a situation where the source code to the MYDie class isn’t available, the follow-
ing category can still be used. In this case, one method is added to the MYDie class, and the
existing - (void)roll method is replaced with a better implementation:

@implementation MYDie (_MYCategory)

- (void)roll

// rolls the die to obtain a new random value

{

// the least significant bits of the value returned by random() are

// not very random. Shifting those bits out of the way produces

// better small random numbers

value = ((random() >> 5) % 6) + 1; // random number in range (1-6)

}

ptg5934432

66 Chapter 6 Category

- (BOOL)isBoxcar

// Returns YES iff the last rolled value is a six

{

return (value == 6);

}

@end

As another example, the following category adds convenient methods to Cocoa’s
NSMutableArray class:

@interface NSMutableArray (MYAdditions)

- (void)addObjectIfAbsent:(id)anObject;

- (void)addObjectIfNotNil:(id)anObject;

@end

@implementation NSMutableArray (MYAdditions)

// Adds useful methods to mutable arrays

- (void)addObjectIfAbsent:(id)anObject

// Adds anObject to the receiver if and only if anObject is not

// nil and already contained by receiver

{

if((nil != anObject) && ![self containsObject:anObject])

{

[self addObject:anObject];

}

}

- (void)addObjectIfNotNil:(id)anObject

// Adds anObject to the receiver if and only if anObject is not nil.

{

if(nil != anObject)

{

[self addObject:anObject];

}

}

@end

The - (void)addObjectIfAbsent:(id)anObject method allows you to treat any in-
stance of NSMutableArray like an ordered set. Each object is present in the array at most
once, and the order in which the objects were added is preserved.

ptg5934432

67Solution

NSMutableArray raises an exception if an attempt is made to insert a nil object.The
- (void)addObjectIfNotNil:(id)anObject method allows you to be a little sloppy in
your own code and avoid redundant checks for nil or exception handlers each time your
code adds objects to an array.

Note
NSMutableArray is a public interface to a class cluster, which means that subclassing
NSMutableArray is troublesome, and many hidden subclasses of NSMutableArray may
exist. See Chapter 25, “Class Clusters.” By adding methods to NSMutableArray with a
category, the need to subclass is avoided, and the added methods are automatically inher-
ited by all of the hidden subclasses of NSMutableArray.

The (MYAdditions) category on NSMutableArray emphasizes one of the reasons cate-
gories are sometimes preferred to subclassing. It’s difficult but possible to subclass
NSMutableArray and add methods in the subclass, but there is no good way to force exist-
ing compiled code to return instances of your subclass instead of instances of
NSMutableArray. For example, Cocoa’s built-in NSArray class responds to the
–(id)mutableCopy method by returning an instance of NSMutableArray.That behavior is
compiled into the Cocoa frameworks.To force –mutableCopy to return an instance of
your hypothetical subclass NSMutableArray, you have to replace the framework’s imple-
mentation of –mutableCopy. Furthermore, you have to replace every framework method
that is compiled to return NSMutableArray if you want them to return your subclass in-
stead.Adding methods via a category sidesteps the problem because methods added by a
category are available for all instances of the extended class and its subclasses.

Informal Protocols
In Objective-C, a formal protocol is a language construct that is used to declare methods
that an object must implement to be used in certain situations.An object is said to con-
form to a protocol if it provides all of the methods declared in the protocol. Formal
protocol conformance is verified by the Objective-C compiler and can also be checked
at runtime. Formal protocols are explained in detail in Apple’s documentation at
/Developer/Documentation/Cocoa/ObjectiveC/3objc_language_overview/Protocols_1_
o_Implement.html if you have Apple’s developer tools installed.The document is also
available online at http://developer.apple.com/.

Apple’s Cocoa documentation uses the term informal protocol to mean that the methods
described as being part of the protocol are theoretically guaranteed to be available in any
object.This guarantee isn’t made by the compiler, which has no knowledge of informal
protocols.The methods of an informal protocol are usually implemented in a category of
the NSObject class.Almost all Cocoa objects inherit directly or indirectly from NSObject,
so methods added to NSObject in a category are automatically inherited by almost all Co-
coa objects.

However, there’s a slight wrinkle when it comes to Cocoa’s use of informal protocols.
Quite often, the interface for a category that adds methods to NSObject exists, but Cocoa

ptg5934432

68 Chapter 6 Category

provides no actual implementation of the added methods. In other words,Apple created a
category interface but no category implementation to fool the compiler into believing
that the added methods are available in almost every class, when in fact they aren’t avail-
able at all.The reason for doing this is to informally declare methods that will be called in
certain circumstances if and only if you actually implement them in one of your classes.
Some prime examples are methods that are implemented by a delegate.The Delegate pat-
tern is described in Chapter 15,“Delegates.” Many Cocoa classes perform a runtime
check to determine if methods are actually available before calling them.

Note
Be careful to avoid conflicts with the method names between multiple categories. Methods
implemented in a category always supercede the implementations of methods with the
same name in the class itself. However, if multiple categories all implement the same
method, there is no guarantee which implementation will be used. To avoid potential name
conflicts, some developers add prefixes to the method names in categories. Most find this
ugly, however, and avoid it. The Cocoa frameworks typically will use very verbose method
names for methods found in informal protocols. This helps reduce the chance for conflict
while at the same time improving the readability and self-documenting nature of Cocoa code.

The Anonymous Category
With the introduction of the Objective-C 2.0 in Mac OS X 10.5,Apple added a new
language feature called Class Extensions, aka “the anonymous category.”The anonymous
category works like any other category with a few exceptions. First, the declaration of
an anonymous category has no category name in parentheses.The following code de-
clares a –(void)setValue:(int)aValue method added to the MYDie class via an anony-
mous category:

@interface MYDie ()

–(void)setValue:(int)aValue;

@end

Second, each class can have at most one anonymous category. Finally, the methods de-
clared in an anonymous category must be implemented in the regular @implementation
block for the class. Unlike named categories, the Objective-C 2.0 compiler verifies that
the methods declared in an anonymous category are actually implemented and will emit a
warning if any declared anonymous category method is missing.

This language feature is normally used as an informal way of organizing an object’s pri-
vate methods. Objective-C doesn’t allow methods to be declared as public or private. By
convention, developers put all the private method declarations into a private header that
contains the anonymous category’s definition.As a result, the private methods do not ap-
pear in the public header, yet the compiler will still emit a warning if a declared method
in missing from the implementation. If a named category is used, the compiler doesn’t of-
fer any warnings for missing method implementations.

ptg5934432

69Solution

Note
Because Objective-C doesn’t directly implement private methods in the language, there’s no
way to prevent messages that use private API from being sent, regardless of how and where
private methods are declared. Client code can simply define, but not implement, a new
named category that contains the method definitions, and then the compiler will allow mes-
sages that invoke the private methods without any error or warning at compile time.

Code Organization
Categories are used to break up the implementation of large classes. Often, the methods of
a class can be logically divided into groups of related methods.The larger the code for a
class becomes, the more useful it is to break the implementation up into several files, each
containing a collection of related methods grouped in a single category. For example, all
accessor methods can be one category, while all methods dealing with Applescript support
can be in another.As the next section notes, the Cocoa frameworks use this technique to
help organize the implementations of many Cocoa classes, including NSObject.

When multiple developers are working on a project, each can be assigned a different cat-
egory to maintain.This makes revision control much simpler because there are fewer con-
flicts. Splitting up a class implementation reduces build times because only files with edited
method implementations need to be recompiled instead of recompiling the entire class’
code. Organizing a large class makes it easier for new team members to digest the code.

When to Use Categories Versus Subclassing
When making the choice between subclassing and categories, there isn’t always a clear-cut
right or wrong choice. Ultimately it comes down to experience and opinion. Examples of
how other Cocoa developers are structuring their code can also be insightful.There are,
however, some factors that can be weighed to guide your decision.

If new instance variables need to be added to a class, then subclassing may be the pre-
ferred choice. Categories can use Associative Storage (Chapter 19) to simulate the addition
of new instance variables, but there is a performance cost in doing so.

Subclassing complex classes, especially those that use the Class Cluster pattern (Chapter
25), is usually discouraged. Categories can be an alternative to subclassing. If the methods
being implemented add functionality that can benefit all subclasses of an existing class,
then adding a category to the base class is probably the best choice.

Sometimes a hybrid approach can work well, too.A subclass can be created alongside a
category.The category implements the methods that are more general extensions to the
existing superclass.The subclass then extends the superclass by adding methods that are
only applicable to the subclass. In general though, subclassing should be confined to cases
where there is a clear need for specialization.

ptg5934432

70 Chapter 6 Category

Examples in Cocoa
Cocoa extensively uses Categories, and this chapter has already described several exam-
ples.The categories in Cocoa can be organized into three groups:

n Categories that only organize methods
n Categories that define informal protocols
n Categories that spread class implementations across multiple frameworks

The remainder of this chapter describes some of Cocoa’s most prominent categories in
each group. Several classes have multiple categories that fall into multiple groups.

Using Categories for Organization
Almost every Cocoa class is organized into multiple categories.As of Mac OS X 10.4, the
base class, NSObject, has 69 category interfaces defined in Cocoa’s public header files.
Most of those categories declare methods of informal protocols, but some important
features of the base class are organized into the categories shown in Table 6.1.

Table 6.1 Principle Categories Used to Organize the Methods Implemented by the
NSObject Base Class

Category Name Description

NSClassDescription Includes methods required to enable the use of ob-
jects with Cocoa’s built-in scripting features

NSKeyValueCoding Provides the methods needed to set and get the val-
ues of any object’s instance variables

NSKeyValueCodingExtras Adds even more features for setting and getting the
values of instance variables

NSKeyValueCodingException Declares methods that are called when something
goes wrong in the process of setting or getting the
values of instance variables

NSDelayedPerforming Provides methods for sending messages to arbitrary
objects after arbitrary delays

NSMainThreadPerformAdditions Provides methods for sending messages between ob-
jects in child threads and objects in the main thread
of an application

NSComparisonMethods Includes methods including -isEqualTo: that are
used to compare any two objects

NSScripting Provides basic scripting support for all Cocoa objects

ptg5934432

71Examples in Cocoa

Table 6.1 isn’t a comprehensive list of all organizational categories for NSObject, but it
serves as an indicator of how the code for a class can be broken up. Nine of the 12 cate-
gories shown in Table 6.1 are related to scripting.When Apple introduced scripting sup-
port in an early version of Cocoa, it chose to implement that one feature in multiple
categories.

Using Categories for Informal Protocols
Informal protocols are often defined as a category of NSObject.The methods specified in
the category interfaces may or may not be actually implemented by framework classes. In-
formal protocols are in a kind of design gray area. Formal protocols are checked by the
compiler and represent a guarantee about an object’s capabilities, but informal protocols
make no guarantees—only hints.When reading Apple’s documentation, pay special atten-
tion when informal protocols are mentioned.Although the documentation is not always
explicit, look for information about whether every object already implements the meth-
ods in the informal protocol or if the methods will only be called if you implement them
in your own classes.

The NSNibAwaking category of NSObject is a prominent example of an informal pro-
tocol that you must implement in your own classes.This category interface is in the
NSNibLoading.h header, which is part of the Cocoa Application Kit framework.The cat-
egory declares only one method, -(void)awakeFromNib.That method is not actually im-
plemented.At runtime, an -awakeFromNib message is sent to each object loaded from an
Interface Builder nib file after all objects in the nib file have been loaded. Cocoa frame-
work code that loads nib files checks each loaded object to see if it actually implements
-awakeFromNib before calling it. In other words, if you implement -awakeFromNib in

Table 6.1 Principle Categories Used to Organize the Methods Implemented by the
NSObject Base Class

Category Name Description

NSScriptClassDescription Specifies the -className and -classCode methods
that are used to enable scripting. The -className
method is also useful in many contexts unrelated to
scripting

NSScriptValueCoding Declares the methods that integrate
NSKeyValueCoding with scripting methods

NSScriptObjectSpecifiers Provides more methods to make arbitrary Cocoa
objects interface well with scripting systems

NSScriptingComparisonMethods Similar to NSComparisonMethods but declares
alternate comparison methods for use with scripting
systems

ptg5934432

72 Chapter 6 Category

your custom class, it will be called, but it’s not an error if you don’t implement it.This
level of dynamism can be unsettling at first, but Cocoa programmers soon become accus-
tomed to it.

The NSAccessibility informal protocol is also declared as a category that extends
NSObject.Although many of Cocoa’s user interface classes implement the
NSAccessibility methods, no implementation of the methods is provided for NSObject.
If you create a new subclass of NSObject that needs to support the accessibility features of
Mac OS X, you need to implement the methods declared in the NSAccessibility cate-
gory interface.

There are many other examples of informal protocols declared as category interfaces
that aren’t completely implemented within the Cocoa frameworks.The only way to cor-
rectly implement the methods of an informal protocol in your own classes is to carefully
read Apple’s documentation about the informal protocols and in some cases resort to trial
and error. In practice, programmers seldom encounter problems related to the implemen-
tation of an informal protocol or for that matter the lack of an implementation.

If a method in an informal protocol is implemented in a class from which your class
inherits, your class’s implementation of the method almost certainly needs to call the in-
herited implementation. Look out for places in Apple’s class documentation in which the
need to call an inherited implementation is specified.The –awakeFromNib method of the
NSNibAwaking informal protocol is a prime example and one of the trickiest.

If you know that your superclass implements -awakeFromNib, you should call it di-
rectly in your subclass’ implementation as follows:

- (void)awakeFromNib

{

[super awakeFromNib];

// Add code unique to this class

}

However, what if you don’t have the source code for the superclass, and the available
documentation doesn’t specify whether the superclass already implements
–awakeFromNib? Consider a hypothetical subclass method of Cocoa’s NSControl class.
The following pattern is a common way to implement –awakeFromNib:

- (void)awakeFromNib

{

if([NSControl instancesRespondToSelector:@selector(awakeFromNib)])

{ // Call superclass implementation

[super awakeFromNib];

}

// Add code unique to this class

}

ptg5934432

73Examples in Cocoa

The code meets the direct need: Only call the superclass’ implementation of
–awakeFromNib if the superclass actually implements it.The preceding code is also future-
proof. Suppose NSControl doesn’t implement –awakeFromNib.Apple might change
NSControl in the next framework version so that it does implement –awakeFromNib. If
that happens, the code will do the right thing and call the new superclass implementation.
Remember, this is only an issue at all because –awakeFromNib is declared (but not imple-
mented) in an informal protocol.

Another solution to the problem is to provide the base class implementation that Apple
“forgot” as follows:

@implementation NSObject (MYAdditions)

- (void)awakeFromNib

{

}

@end

Once you provide a default implementation in the base class, it’s safe for any class’ im-
plementation of –awakeFromNib to call [super awakeFromNib].

Note
Be careful adding your own default implementations for methods like –awakeFromNib. If Ap-
ple adds an –awakeFromNib implementation to NSObject in a future framework version,
any implementation in your category will replace the new implementation provided by Apple.
Your category may prevent you from benefiting from Apple’s implementation and may intro-
duce bugs in other framework classes that assume the availability of Apple’s version.

When you feel comfortable with Cocoa’s use of informal protocols, you may find
yourself creating your own informal protocols as categories of NSObject or other classes
to support the needs of your applications.As the –awakeFromNib example shows, it’s a best
practice to provide a default implementation for each method you declare in your infor-
mal protocol.

Note
Objective-C 2.0 (introduced with Mac OS X 10.5) provides two new language keywords that
enable you to use formal protocols in situations where you previously had to use informal
protocols. The methods in formal protocols can now be declared either @optional or
@required. The compiler doesn’t need to verify whether methods declared after the
@optional keyword are implemented in classes that conform to the protocol. All methods
declared after the @required keyword must be implemented. If you don’t specify either, all
methods in the protocol are @required.

ptg5934432

74 Chapter 6 Category

Using Categories for Framework Division
Cocoa uses categories to enable the implementation and maintenance of code in the
context where it makes the most sense. For example, the NSAttributedString class is
defined in Cocoa’s nongraphical Foundation framework and contains many methods re-
lated to creating and managing strings. Using only Cocoa’s Foundation framework, appli-
cations can perform sophisticated text processing with NSAttributedString, but there
are no methods to draw attributed strings. Cocoa’s Application Kit framework includes a
category that extends the NSAttributedString class with methods related to drawing
strings and other graphical operations.This provides an ideal organization of the code that
implements NSAttributedString.The class can be used in nongraphical applications
without including any overhead or dependencies for unneeded drawing logic and re-
sources, but when the class is used in an Application Kit-based graphical application, all of
the drawing methods are automatically available.

Other examples include the NSNibAwaking and NSNibLoading categories of NSObject
and NSBundle, respectively. NSObject is defined in the Foundation framework and serves
as the base class for almost every Cocoa object. NSBundle is also defined in the Founda-
tion framework and provides a simple means to dynamically load objects and resources
into a running program. NSNibAwaking and NSNibLoading are implemented in the Ap-
plication Kit framework and declare the methods needed when objects are loaded from
an Interface Builder nib file. By extending Foundation framework classes within the Ap-
plication Kit framework, it becomes possible to use any foundation object in a nib file
even though there is no information about or dependence on nib files within the Foun-
dation framework itself.

The practice of implementing part of a class in one framework and other parts in
other frameworks enables the implementation of features where they most make sense
and where they are easiest to maintain, but the technique should only be used when the
groups of methods are truly independent.

Consequences
The ability to add or replace methods in existing classes makes Cocoa very extensible.
Categories are preferred over subclasses in many situations. In particular, categories cir-
cumvent the fact that it isn’t always possible to force an existing framework to use your
subclass instead of whatever class it was compiled to use.The Category pattern is also the
preferred way to extend the classes of a class cluster. However, like all powerful tools, cate-
gories can be misused.

The Clash of Methods
When multiple categories add or replace the same method, the implementation that ends
up replacing all others depends on the order in which code is loaded into a program and
can’t always be predicted or controlled.This limitation means that it’s a bad idea to

ptg5934432

75Examples in Cocoa

replace or add the same method more than once.The problem is compounded when you
don’t necessarily know if other categories already add or replace a method. For example,
any plug-in module or framework that is loaded by an application can conceivably con-
tain a category that implements the same methods you implement in your own category.
There may be no way to know except to observe that the application has stopped work-
ing correctly.

The conflict when multiple categories implement the same method is more of a prob-
lem in theory than in practice, but don’t discount it. If you think of a useful method to
add to a Cocoa class, someone else may have thought of the same thing.The consistency
with which methods are named in Cocoa increases the probability of two independent
categories that add the same functionality independently using the same method name as
well.You can side-step the naming problem in many cases by using a unique prefix in the
methods you add.The -addObjectIfAbsent: method added to NSMutableArray earlier
in this chapter can be named -myAddObjectIfAbsent: or something similar to reduce
the chances of clashing with some other category that extends NSMutableArray.

A related problem with categories crops up over time as users upgrade their systems.
Suppose Apple adds an -addObjectIfAbsent: method to NSMutableArray in the next
Cocoa framework version.The version provided in this chapter will mask the version in
the new framework because an implementation in a category will always supercede the
version in the class implementation. If other framework code depends on a side effect of
Apple’s -addObjectIfAbsent: method that isn’t present in the category implementation,
the framework code can break in very subtle and hard to diagnose ways.The bottom line
is that even if a method added in a category doesn’t cause problems now, it can start caus-
ing problems in the future. Using a unique prefix on methods implemented in a category
is the only defense against these problems.

It is strongly recommended that prefixes be used when adding methods to classes de-
fined by the Cocoa frameworks. Of course, when deliberately overriding a method, perhaps
to fix a bug in the frameworks, no prefix is desired because you want your new implemen-
tation to replace the existing one.When this is done, it’s wise to retest with every new
framework release to see if your override is still necessary and remove it as soon as it
becomes obsolete.

Replacing Methods
Categories make it easy to replace existing method implementations, but there is no con-
venient way to call the replaced methods from the new implementations.You must be
very careful to replace all of the behavior of the method including undocumented side
effects.As a general rule, it’s better to work around a bug in a method implementation
than it is to replace the method in a category. Replacing methods is very difficult, requires
extensive testing, and should be a last resort.

ptg5934432

76 Chapter 6 Category

Software Maintenance
Categories provide an effective way to separate the methods of a class into multiple
source files. One reason to do that is to enable different programmers to work on differ-
ent parts of the same class at the same time.Another reason is to limit the recompilation
that is needed when a method implementation is edited. Only the file that contains the
edited code needs to be recompiled; other files that implement the same class don’t need
recompilation.The most compelling reason to divide the implementation of a class into
several categories is to implement different methods in different frameworks the way
graphics methods are added to Cocoa’s Foundation framework NSAttributedString
class by a category in the Cocoa’s Application Kit framework. However, deciding when
it’s advisable to divide a class implementation into different frameworks or different sub-
systems of an application is a tough judgment call. One purpose of the category pattern is
to enable the implementation and maintenance of code where it makes the most sense,
but misusing categories can actually make software maintenance more difficult.

Keeping all of the method implementations for a class in a single file has the advantage
of limiting changes to the class to that one file. If the implementation of a class is dis-
persed over source files in multiple frameworks and subsystems, the task of isolating code
that needs to be modified and verifying that modifications haven’t introduced new bugs is
complicated. In some cases, the maintainer of a class may not be aware of all of the cate-
gories that exist in other frameworks or even in application plug-ins.

This can be mitigated by using a naming convention for source code files that define
or implement categories. For example, if the category named MYAdditions is extending
the NSArray class, you can name the source files NSArray+MYAdditions.h and
NSArray+MYAdditions.m so that it’s clear at a glance which class is being affected.

ptg5934432

7
Anonymous Type and

Heterogeneous Containers

Objective-C defines the type id, which is known as the Anonymous Type.The id type
tells the compiler that a variable points to an object but doesn’t give the compiler any
more specific information about the kind of object, hence the object is anonymous.
Objective-C programmers quickly become familiar with the pervasive use of the
Anonymous Type and forget that this feature is seldom encountered in other languages.
Objective-C’s Anonymous Type and Cocoa’s Heterogeneous Containers deserve special
recognition as patterns in their own right and facilitators for other patterns.

Motivation
Use the Anonymous Type pattern to send messages to anonymous objects, including ob-
jects that are not available at the time the sending code is compiled. Reduce coupling be-
tween classes by limiting the information that each class has about other classes. Use
Heterogeneous Containers to provide powerful container classes that can each store any
number of objects of any type in any combination.

Solution
Messaging is the key feature of the Objective-C language that makes the language so dy-
namic and flexible. Every feature that Objective-C adds to the base C language is de-
signed to make it easy to define objects and send messages to them. In fact, the definition
of an Objective-C object is “something that can receive messages.” Objective-C classes
are themselves objects that receive messages. Chapter 3,“Two-Stage Creation,” explains
how messages are sent to class objects to create instances.

A message is a request for an object to do something. In Objective-C, the syntax for
sending a message uses square brackets ([and]) to delimit the start and end of a message
sending expression:

[receiver selector]

ptg5934432

78 Chapter 7 Anonymous Type and Heterogeneous Containers

The variable receiver specifies the object that will receive the message.The variable
selector identifies the message to send. Messages can include arguments and can return
values.The syntax and semantics of messaging are explained in detail in Apple’s
Objective-C manual at /Developer/Documentation/Cocoa/ObjectiveC/ObjC.pdf and
http://developer.apple.com.

Messaging is flexible and dynamic because both the receiver and the selector are vari-
ables.The determination of exactly which message is sent to which receiver is deferred
until a program is running.At the time a program is compiled, it’s not always possible to
know the type of object that will receive the message. Many other object-oriented lan-
guages such as C++ and Java require that the type of every object is known to the com-
piler. Objective-C has no such requirement.

Note
When Objective-C programmers send messages, what matters most is whether the object
can receive the message, not what type of object it is. If an object understands the mes-
sage, then the type is irrelevant. This language approach is sometimes called Duck Typing in
reference to an old saying that “if something walks like a duck and quacks like a duck, I
would call it a duck.” In many other languages, it is important first and foremost to know
what type of object you have so you know what messages you can send to it. This is a sub-
tle difference in mindset, but the implications enable and lead to many of the patterns de-
scribed in this book. Duck typing makes the implementation of many patterns much simpler
than they would be in another language.

Arbitrary strings can be converted to selectors while an application is running.The se-
lector to be used can even be provided by user input, though care must be taken to do this
safely. It’s also possible for the selector to be specified by dynamically loaded code that
didn’t exist when the code that sends the message was compiled.

Objective-C messaging is so dynamic that the ultimate receiver of a message might not
even be in the same process as the expression that sends the message. Chapter 27,“Proxies
and Forwarding” explains how Cocoa helps you send messages to objects in different
processes on the same or different computers using the same syntax as local messages. In
many cases, it is not possible for the compiler to determine the ultimate receiver of a
message.

The Anonymous Type
The Objective-C language provides the Anonymous Type, id, which represents a pointer
to any object.The id type conveys no more information than the fact that the object ref-
erenced by a variable with id type can be the receiver of messages.

The id type is used in the same contexts in which any other C type is used including
in the declaration of variables, as a structure or union element, as the type of arguments to
functions and methods, and as a return type.

ptg5934432

79Solution

In C any pointer can store the constant NULL, which equals 0. In Objective-C, any
pointer to an object can store the constant nil, which also equals 0. Messages sent to nil
are not always errors as they would be in Ruby or Java. In Objective-C, such messages im-
mediately return nil.

Note
Don’t rely on the value returned from a message to nil unless the message is expected to
return a pointer or a type convertible to a pointer. For example, messages that return float
or a structure have an undefined return value when sent to nil.

The id type is essential when the maximum flexibility allowed by the Objective-C
language is needed, but as a general rule, the compiler should be given as much informa-
tion about objects as possible.When details about an object are known, use a more specific
type than id to convey the details to the compiler.The more information the compiler
has, the more assistance it can give you in the form of warnings.

To declare a pointer to an instance of a specific class, use the class name as a type. For
example, to declare a reference to an instance of Cocoa’s NSArray class, use the follow-
ing syntax:
NSArray *anArray;

When the compiler subsequently encounters anArray as the receiver of a message, the
compiler can issue warnings if anArray cannot respond the message being sent. It is con-
sidered a best practice to be as specific as possible when defining pointers to objects. For
example, if you know you are manipulating an NSTableView, then use that in the vari-
able declaration. If you only know it will be some NSView subclass, but not necessarily
which one, then use NSView. Finally, if complete flexibility is required, then it is accept-
able to use id.

Objective-C allows the forward declaration of class names using the @class compiler
directive.The following declarations tell the compiler that NSArray, NSDictionary, and
NSNumber are all the names of classes that have yet to be defined:
@class NSArray;

@class NSDictionary, NSNumber;

Use forward declaration of class names in the same situations as when standard C struc-
tures are forward declared, such as solving circular import dependency problems. In partic-
ular, forward declaration of classes is used in class interface declarations so that two or
more classes can refer to each other without error as follows:

@class MYAcademicStatus

@interface MYStudentRecord : NSObject

{

MYAcademicStatus *currentStatus;

}

@end

ptg5934432

80 Chapter 7 Anonymous Type and Heterogeneous Containers

@interface MYAcademicStatus : NSObject

{

BOOL isEnroled;

MYStudentRecord *record;

}

@end

The initial declaration of MYAcademicStatus is needed to make the declaration of
MYStudentRecord possible before the MYAcademicStatus class itself is declared. Once the
MYStudentRecord class has been declared, it can be freely used in the declaration of
MYAcademicStatus.

The id type can be used instead of specific class names when declaring object instance
variables.The MYStudentRecord and MYAcademicStatus classes could have been declared
as follows without the need for the forward declaration of any class name, but the com-
piler would have less information to use when compiling the code:

@interface MYStudentRecord : NSObject

{

id currentStatus;

}

@end

@interface MYAcademicStatus : NSObject

{

BOOL isEnroled;

id record;

}

@end

Regardless of whether the Anonymous Type or a more specific object type is used, any
message can be sent to any object. Providing information to the compiler beyond the in-
formation conveyed by id enables the compiler to generate warnings when it can’t verify
that a receiver responds to a message.Warnings are generated instead of errors because the
compiler can never be sure that the receiver doesn’t respond to a message. It’s possible that
the method to respond to a particular message exists but is not known to the compiler.
That happens when methods are implemented in a class implementation but not declared
in a class interface. It also may happen when methods are added to a class with a
Category that is dynamically loaded at runtime. Categories are explained in Chapter 6,
“Category.”

If a receiver doesn’t respond to a message sent at runtime and no special processing is
used to forward the message to another receiver, a runtime error occurs.This is often
considered a bug of the same severity as an application crash. In practice, errors are easily

ptg5934432

81Solution

avoided because it is possible to determine at runtime whether a particular receiver can
respond to a particular message before the message is sent. Cocoa’s NSObject class pro-
vides the –(BOOL)respondsToSelector:(SEL)aSelector method that returns YES if the
receiver responds to a specified selector and NO otherwise.The -respondsToSelector:
method is inherited by virtually every Cocoa class.

The NSObject class and the -respondsToSelector: method are documented at
/Developer/Documentation/Cocoa/Reference/Foundation/ObjC_classic/Classes/
NSObject.html. YES and NO are two constants that are stored by Objective-C’s BOOL type.
BOOL is declared as follows in /usr/include/objc/objc.h:

typedef char BOOL;

YES and NO are also defined in /usr/include/objc/objc.h:

#define YES (BOOL)1

#define NO (BOOL)0

Note
The header file /usr/include/objc/objc.h also contains the definition of the id type
and others of interest when delving into the implementation of the language runtime.

The objc.h header file is not strictly part of Cocoa. It’s a component of the
Objective-C runtime environment that is provided as part of the underlying open source
Darwin operating system used by Mac OS X. Such system files are normally hidden from
you by Apple’s Finder application, but you can use Finder’s Go, Go to Folder...menu
item to view any file in the file system including the files in /usr/include.Apple’s
Terminal application is also available for viewing system files.

Note
Virtually every Cocoa class is a subclass of NSObject. Many Cocoa classes assume that
methods provided by NSObject are available in any object referenced by the id type. In par-
ticular, Cocoa’s collection classes assume that any object stored in a collection responds to
at least the messages declared for NSObject instances. The compiler doesn’t assure that
any object referenced by an id variable is compatible with NSObject, but when using Cocoa
it’s usually a safe assumption.

Assignment
Any variable of type id can be assigned to any pointer to an instance of a specific class as
follows:

id untypedObject;

NSArray *anArray;

// Assume untypedObject is initialized here

anArray = untypedObject; // This assignment is OK

ptg5934432

82 Chapter 7 Anonymous Type and Heterogeneous Containers

Similarly, a pointer to an instance of any class can be assigned to a variable of type id:

id untypedObject;

NSArray *anArray;

// Assume anArray is initialized here

untypedObject = anArray; // This assignment is OK

If you want to verify at runtime that an assignment involving the Anonymous Type
makes sense, use the -isKindOfClass: method provided by NSObject:

id untypedObject;

NSArray *anArray;

// Assume untypedObject is initialized here

// Verify that an assignment makes sense

if([untypedObject isKindOfClass:[NSArray class])

{

anArray = untypedObject; // This assignment is legal

}

As an alternative to -(BOOL)isKindOfClass:(Class)aClass, the NSObject class also
provides - (BOOL)conformsToProtocol:(Protocol *)aProtocol.An Objective-C pro-
tocol is a list of methods that an object promises to implement regardless of the inheri-
tance hierarchy of the class. In addition to the NSObject class, Cocoa provides an
NSObject protocol that declares the methods that almost every Cocoa class is expected to
provide.When possible, it is more flexible to test if an anonymous object conforms to a
protocol than to check if it inherits from a particular class. Protocols are described in Ap-
ple’s Objective-C reference at /Developer/Documentation/Cocoa/ObjectiveC/ObjC.pdf
and http://developer.apple.com.

It is possible to use protocols to get a compromise between anonymous and static typ-
ing. For example, suppose we don’t care about an object’s class, but we do care that it con-
forms to MYProtocol.We can define a variable in this way:

id <MYProtocol, NSObject> myProtocolObject;

By using id, myProtocolObject is still an anonymous type.The object to which it
points could be of any class. But at the same time, the compiler knows what messages are
safe to send to the object, and it can emit a warning if an attempt is made to send a mes-
sage that is not in one of the listed protocols.

Note
Because protocols can inherit from other protocols, and even multiple inheritance is sup-
ported, MYProtocol could be defined to inherit from the NSObject protocol. Then only
MYProtocol would have been listed in the variable declaration.

ptg5934432

83Solution

Heterogeneous Containers
Cocoa provides a small number of collection classes designed to meet most application
needs. Each collection is designed to store variables of type id.As a result, the collections
are called heterogeneous, meaning that references to objects of any type can be stored in any
combination.The collection classes automatically reserve extra storage as needed to hold
as many objects as required.

Note
Cocoa’s collection classes use the id type to store references to any type of object. How-
ever, unless the optional automatic memory garbage collection introduced in Mac OS X 10.5
is used, the collection classes require that any object referenced within a collection imple-
ments Cocoa’s reference counted memory management conventions described in Chap-
ter 10, “Accessors.”

Cocoa uses the Enumerator pattern described in Chapter 8,“Enumerators,” to provide
flexible access to the objects stored in collections. Using Enumerators frees you to change
the specific collection classes used as an application evolves while minimizing disruption
to program logic.

Cocoa’s collection classes are implemented using the Class Cluster pattern explained in
Chapter 25,“Class Clusters.”The Class Cluster pattern provides simple interfaces to the
collection classes and wide range of behind the scenes optimizations, but the cost of using
the Class Cluster pattern is increased difficulty when subclassing existing collection
classes. Fortunately, Cocoa’s collection classes are time-tested with more that ten years of
use.They meet most application needs and are seldom subclassed.

The collection classes are implemented in both mutable and immutable forms.The
contents stored by mutable collections can be changed throughout the execution of a
program. Immutable collections are created with particular contents, and the contents do
not change.

The NSArray and NSMutableArray classes store ordered collections of object refer-
ences.The NSDictionary and NSMutableDictionary classes store associations of keys
and values for rapid retrieval.The NSSet and NSMutableSet classes store unordered col-
lections of unique object references; each object can be referenced at most once in any
particular set. Finally, NSCountedSet, a subclass of NSMutableSet, provides an unordered
collection, but it allows multiple references to the same object within one collection.

The collection classes are all provided in Cocoa’s Foundation framework.The classes
are used extensively throughout Cocoa and can be adapted to almost any need.They are
documented within the /Developer/Documentation/Cocoa//Reference/Foundation/
ObjC_classic/Classes/ folder installed with Apple’s developer tools and at http://developer.
apple.com/.

ptg5934432

84 Chapter 7 Anonymous Type and Heterogeneous Containers

Examples in Cocoa
Many of Cocoa’s design patterns leverage the Anonymous Type. In particular, powerful
features of Cocoa’s Application Kit framework rely on the Anonymous type. Outlets and
Targets, described in Chapter 17,“Outlets,Targets, and Actions,” use the Anonymous Type
to avoid coupling between user interface objects and custom objects so that both can be
reused with maximum flexibility.The same is true of the Notification pattern described
in Chapter 14,“Notifications,” and Delegates described in Chapter 15,“Delegates.”

Consequences
Errors that might be detected at compile time by some languages cannot be detected un-
til runtime with Objective-C.The Objective-C compiler can never determine for sure
whether the receiver of a message will be able to respond to it.The level of flexibility and
dynamism provided by the Anonymous Type might seem dangerous, but in practice, mes-
sages to objects that cannot respond to them are rare, and runtime checks can be used to
detect and prevent errors.

One of the benefits of Objective-C’s Anonymous Type is the simplicity that it enables.
Objective-C provides a rich object-oriented infrastructure with minimal additions to the
base C language in part because of the Anonymous Type.The Anonymous Type elimi-
nates the need for complex language features like C++ templates and Ada generic pack-
ages.When used with other patterns, the Anonymous Type can dramatically reduce the
amount of code needed to solve common problems.The Anonymous Type also promotes
loose coupling of code.

Finally, the ability to send any message to any receiver and do so without compiler
warnings eliminates the need for complex and error prone ad-hoc extensions to the
Objective-C language.To implement remote messaging and support dynamic loading of
code, many languages require helper languages like Corba’s Interface Definition Language
(IDL) described at http://www.corba.org/.Technologies such as Sun’s Enterprise
JavaBeans (EJB) and Microsoft’s COM and DCOM exist to enable objects in separately
compiled code bases to communicate without being statically linked together.
Objective-C’s Anonymous Type and messaging make it possible for Proxies and
Forwarding (Chapter 27) to provide an elegant solution for remote messaging without
unwieldy language extensions.

ptg5934432

8
Enumerators

Enumerators provide a mechanism for accessing all of the objects in a collection se-
quentially without exposing the collection’s underlying data structures. Enumerators are
used to write flexible and efficient code for using collection classes without tying applica-
tions to specific implementations. Furthermore, enumerators provide a uniform interface
to collection classes that can be extended to meet a wide range of needs including alter-
native traversal orders and algorithms.

Enumerators rely on the Anonymous Type pattern and make Heterogeneous Contain-
ers more powerful. Objective-C 2.0, available with Mac OS 10.5, Leopard, adds language
features to further enhance Enumerators by reducing the amount of repetitive code
needed to use the pattern. In non-Cocoa settings, this pattern is often called an Iterator or
a Cursor.

Motivation
Enumerators provide a uniform means of traversing a collection’s underlying data struc-
tures.The interface presented by Enumerators is independent of the traversal order and
algorithms used for traversal. Enumerators decouple a collection class from code that
traverses it. It is also possible to have multiple traversals active simultaneously, but Cocoa
generally disallows the modification of mutable collections while they are being traversed.

Solution
To traverse a collection, it is necessary to obtain an enumerator object and then construct
a loop that will extract objects from the enumerator one at a time until all objects are ex-
hausted.A developer implementing a custom collection class will want to also create their
own NSEnumerator subclass. Fast enumeration in Objective-C 2.0 simplifies the looping
code at the expense of requiring extra code to be added to a collection class.The follow-
ing sections show in detail how to use Enumerator objects and fast enumeration, how to
create new Enumerators, and how to implement fast enumeration.

ptg5934432

86 Chapter 8 Enumerators

Using Enumerator Objects
In Cocoa, the Enumerator pattern is defined by the abstract NSEnumerator class. Nearly
every collection in Cocoa offers one or more methods that return an instance of a
concrete NSEnumerator subclass. Many other Cocoa objects also have methods to
return an NSEnumerator to iterate over relevant sets of objects. Most commonly the
-objectEnumerator method is used to obtain a relevant Enumerator.

For example, NSArray offers the two methods -objectEnumerator and
- reverseObjectEnumerator to obtain enumerators. Using the -objectEnumerator
method traverses the array’s contents in order from first element to last, starting with the
object at index 0, which is what is normally desired.To traverse the other direction, from
the end to the beginning of the array, use -reverseObjectEnumerator instead.The
NSDictionary class also offers the -objectEnumerator method for traversing a list of all
the contained objects.Alternatively, the -keyEnumerator method can be used to iterate over
the dictionary’s keys instead of the objects it contains.To find out what traversals are possible
for a particular collection, simply look for methods that return NSEnumerator objects.

No matter how you obtain an Enumerator or what objects it will be traversing, it is al-
ways used the same way.The Enumerator’s encapsulation hides the specific traversal algo-
rithms from you to present a simple, uniform interface.

The NSEnumerator class defines only two methods: -nextObject and -allObjects.
Usually only the -nextObject method is used.The first time it’s called, the first object in
the traversal is returned. Subsequent calls return objects one at a time until the list is ex-
hausted. Once all objects have been traversed, -nextObject returns nil.You typically
write code like the following to traverse an enumeration:

id instance;

NSEnumerator *enumerator = [myCollection objectEnumerator];

while (instance = [enumerator nextObject])

{

// do something with instance

}

Use the -allObjects method to obtain an NSArray filled with all the objects
remaining to be enumerated.The -nextObject method always returns nil after the
-allObjects method has been used.

Note
The -allObjects method name can be somewhat confusing, given that the returned
NSArray contains only the objects remaining to be enumerated. The only way for the re-
turned array to actually contain all the objects in the collection is if -allObjects is called
before any calls to –nextObject.

For safety, each NSEnumerator subclass retains the collection it is traversing until the
traversal is complete so that the underlying data will not be deallocated while traversal is
underway.Also if a collection is mutable, it’s considered unsafe to modify the collection

ptg5934432

87Solution

during traversal. Doing so may lead to undesireable behaviors including skipped objects
or repeated objects during traversal, raised exceptions, and even application crashes.

Using Fast Enumeration
Fast enumeration was introduced in Objective-C 2.0 as a way to both simplify and po-
tentially speed up enumeration loops.With fast enumeration, the code from the previ-
ous section is reduced to either of these loops:

id instance;

for (instance in myCollection)

{

// do something with instance

}

// or, alternatively:

for (id instance2 in myCollection)

{

// do something with instance2

}

This decreases the amount of code written, making the programmer’s intent more
clear. In turn, the possibility of bugs is reduced. If the collection class implements fast
enumeration correctly, then using fast enumeration can be more efficient and safer. Be-
cause modifying mutable collections while they are being traversed isn’t allowed in Co-
coa, fast enumeration offers some automatic safeguards to detect such activity and throw
exceptions when it occurs. Not all NSEnumerator subclasses properly detect mutation of
the data they are traversing, which can lead to unpredictable application behavior or
crashing if a collection is modified while it is being enumerated.

Typically the order of enumeration performed by fast enumeration is the same as the
order of enumeration performed by the NSEnumerator instance returned by a call to the
-objectEnumerator method. However, the NSEnumerator class itself supports fast enu-
meration and can be used in the for () statement. For example, here is the code to enu-
merate an NSArray in reverse with fast enumeration:

id instance;

for (instance in [myArrayInstance reverseObjectEnumerator])

{

// do something with instance

}

Creating Custom Enumerators
If you create a custom collection class or have some other object whose contents might
need to be enumerated, then it is necessary to create your own subclass of NSEnumerator
to handle your custom class and add a method to your class that creates and initializes an
instance of this new Enumerator type. For example, suppose you have a very simple
linked list class, built off this interface:

ptg5934432

88 Chapter 8 Enumerators

@interface MYLinkedList : NSObject

{

unsigned long listLength;

MYLinkedListNode *firstNode;

MYLinkedListNode *lastNode;

MYLinkedListNode *markerNode;

}

- (void)appendObject:(id)newObject;

@property (readwrite, retain) MYLinkedListNode *firstNode;

@property (readwrite, retain) MYLinkedListNode *lastNode;

@property (readonly) MYLinkedListNode *markerNode;

@property (readonly) unsigned long listLength;

@end

The private helper class MYLinkedListNode is a simple helper that defines two proper-
ties, object for the contained object and nextNode as a pointer to the next
MYLinkedListNode in the list.The code isn’t shown here, but is part of the downloadable
example on the book’s website at www.CocoaDesignPatterns.com.The only modification
this linked list class supports is appending new nodes to the end of the list.

The one slightly unusual trait of this class is markerNode, which denotes the end of the
list. Usually a nil marks the end of the list, but because of the implementation details of
fast enumeration as shown later in this chapter, a non-nil marker must always be kept at
the end of the list.

Here’s a simple starting implementation of the class as defined:

@implementation MYLinkedList

@synthesize firstNode;

@synthesize lastNode;

@synthesize markerNode;

@synthesize listLength;

- init

{

self = [super init];

markerNode = [[MYLinkedListNode alloc] init];

markerNode.object = [NSNull null];

markerNode.nextNode = nil;

self.firstNode = self.markerNode;

self.lastNode = self.markerNode;

listLength = 0;

return self;

}

ptg5934432

89Solution

- (void)appendObject:(id)newObject

{

MYLinkedListNode *newNode = [[MYLinkedListNode alloc] init];

newNode.object = newObject;

newNode.nextNode = markerNode;

if (self.markerNode == self.firstNode)

{ // first object added

self.firstNode = newNode;

self.lastNode = newNode;

}

else

{

self.lastNode.nextNode = newNode;

self.lastNode = newNode;

}

listLength++;

}

- (void)dealloc

{

MYLinkedListNode *node = firstNode;

MYLinkedListNode *next = firstNode.nextNode;

while (node != markerNode)

{

[node release];

node = next;

next = next.nextNode;

}

firstNode = nil; lastNode = nil;

[markerNode release]; markerNode = nil;

[super dealloc];

}

@end

Now it is time to add a custom NSEnumerator subclass that can enumerate this collec-
tion.We need to create an initialization method that can be used by MYLinkedList to set
up a new enumeration.The only method we need to override in NSEnumerator is
-nextObject.The Enumerator needs to keep track of the collection it is enumerating
and retain it. It also needs to be aware of its current position in the traversal of the collec-
tion’s objects. Finally, to be safe, it should somehow track modifications to the original
list, just in case something is modified while the enumeration is still active. Considering
our list supports only the single action append that increases the length of the list, we can
track the length of the list to detect modification. Here’s an interface for the new
Enumerator meeting these requirements:

ptg5934432

90 Chapter 8 Enumerators

@interface MYLinkedListEnumerator : NSEnumerator

{

MYLinkedList *list;

MYLinkedListNode *currentNode;

unsigned long originalListLength;

}

- (id)initForList:(MYLinkedList *)theList;

@property (readwrite, retain, nonatomic) MYLinkedList *list;

@property (readwrite, retain, nonatomic) MYLinkedListNode *currentNode;

@property (readonly) unsigned long originalListLength;

@end

The following code provides a basic implementation that meets the specification:

@implementation MYLinkedListEnumerator

@synthesize list;

@synthesize currentNode;

@synthesize originalListLength;

- (id)initForList:(MYLinkedList *)theList

{

self = [super init];

self.list = theList;

self.currentNode = theList.firstNode;

originalListLength = theList.listLength;

return self;

}

- (id)nextObject

{

id object = nil; // we return nil if at the end of the list

MYLinkedListNode *nextNode = self.currentNode.nextNode;

// detect mutation and throw an exception if found

if (list.listLength != self.originalListLength)

{

NSException *exception = [NSException exceptionWithName:

@"MYLinkedListMutationException" reason:

@"MYLinkedList was mutated during an enumeration"

userInfo:nil];

@throw exception;

}

ptg5934432

91Solution

// if not at the end, get the next object and return it

if (self.currentNode != self.list.markerNode)

{

object = self.currentNode.object;

self.currentNode = nextNode;

}

return object;

}

@end

The initialization method -initForList: simply sets up the internal state of the
Enumerator.The overridden -nextObject does all the work. First it checks to make sure
that the list hasn’t mutated. In a more robust implementation that allows more list manip-
ulation options, it might make sense to have the list have a property named
numberOfMutations that gets incremented every time the list is altered.Then use
numberOfMutations to detect mutations such as two objects swapping places in the list.
Regardless of how mutations are tracked, if one mutation is discovered during enumera-
tion, it’s a good idea to throw an exception. Finally, as long as we are not at the end of the
list, the next object is returned to the message sender, and our currentNode is updated to
point to the next node in the list.

Note that we did not override the -allObjects method. NSEnumerator actually im-
plements a very basic version of this method so that we don’t have to.A naïve implemen-
tation, if we wanted one, might look something like this:

- (NSArray *)allObjects

{

NSMutableArray *array = [NSMutableArray

arrayWithCapacity:originalListLength];

id object;

// fill the array with all remaining objects to be enumerated

while ((object = [self nextObject]))

{

[array addObject:object];

}

return array;

}

That implementation will work fine but is rather inefficient. If there is a better way to
implement -allObjects based on the data structure of your custom collection, then it
usually makes sense to optimize the -allObjects implementation.The last thing to do is
add the -objectEnumerator method to the MYLinkedList class.All it needs to do is re-
turn an auto-released instance of the Enumerator that is set up and ready to go, like this:

- (NSEnumerator *)objectEnumerator

{

ptg5934432

92 Chapter 8 Enumerators

MYLinkedListEnumerator *enumerator =

[[MYLinkedListEnumerator alloc] initForList:self];

[enumerator autorelease];

return enumerator;

}

With that method complete, it’s possible to use the normal enumeration while()
statement to enumerate MYLinkedList in the same way any Foundation collection class is
enumerated. It’s possible to create multiple NSEnumerator subclasses for any given collec-
tion. Different subclasses might implement other traversal orders or different algorithms.

For example, suppose your data structure has two well-known traversal algorithms.
Further suppose that one algorithm is much faster for large data sets, while the other is
best for small data sets. In that case, consider implementing the -objectEnumerator

method to return an appropriate subclass of NSEnumerator based on analysis of the data
to be traversed.When used this way, NSEnumerator subclasses can take on some aspects of
the well-known Strategy pattern described at http://en.wikipedia.org/wiki/
Strategy_pattern.

Just as arrays allow for reverse enumeration, other possibilities exist, limited only by
developer creativity. For example, a tree data structure might have an associated Enumerator
class that provides a depth first traversal and another to provide a breadth first traversal.
If you have a class which is an Aggregate, made up of several collection instances, use a
custom Enumerator to provide a way of traversing all the collections in turn while hiding
the underlying implementation complexity.

Implementing Fast Enumeration
To use fast enumeration on MYLinkedList, it is necessary to adopt the
NSFastEnumeration protocol.This protocol requires the implementation of a single
method, -countByEnumeratingWithState:objects:count:.As might be imagined from
the name, implementing this method is often nontrivial. Here is the method prototype:

-(NSUInteger)countByEnumeratingWithState:

(NSFastEnumerationState *)state

objects:(id *)stackbuf

count:(NSUInteger)len

The method is set up to allow iterations to be performed in batches. Each time it is
called, one or more objects are indirectly returned; the return value of the method is the
number of objects being returned in each batch.The method will be called multiple
times until the collection has been traversed completely.When the enumeration is com-
plete, zero is returned to signal the end.As a consequence, even if all the collection’s ob-
jects are sent in a single batch, this method will still be called at least twice per
enumeration.

The first parameter to this method, state, is the most important. It is a pointer to a
structure of the type NSFastEnumerationState.This structure serves two purposes. First,
it gives you a place to store state information so that you can pick up where you left off

ptg5934432

93Solution

when it comes time to prepare the next batch. Second, the actual objects being enumer-
ated are returned via this structure. It is defined like this:

typedef struct {

unsigned long state;

id *itemsPtr;

unsigned long *mutationsPtr;

unsigned long extra[5];

} NSFastEnumerationState;

The structure member state is yours, to store whatever information you need to keep
to continue your traversal from where you left off. For traversing a linked list such as the
one in our previous example, it makes sense to simply store a pointer to the current node
here. If you need to preserve more state than just a pointer to a single object, you should
create a new object to hold all the state information and put a pointer to that object here
instead.

The itemsPtr member should be a pointer to a C array of object pointers.The ob-
jects in the C array are the actual objects being returned in the current batch.The return
value of this method tells fast enumeration how many objects are in the array pointed to
by itemsPtr. If you provide your own storage array, then it can be of any length you
wish, allowing you to control the batch size.

To guard against mutation while enumerating, the mutationsPtr should be set to
point to some property of the actual collection object that will accurately flag whether
the object has changed. In the previous example, the NSEnumerator class used the length
of the list to guard against mutation; that works here, too. If it’s possible to mutate your
collection class without change to the length of the collection, then a different means
of detecting mutations is required. If you don’t detect mutations, fast enumeration will
still function, but undesirable side effects like skipped elements during enumeration
may result.

Finally, the extra member of the structure can be safely ignored. It’s possible to safely
store extra state information in the extra member. However, wrapping all state informa-
tion into an object stored in state is preferred, because it’s a more objected-oriented
approach.

The other two parameters of the -countByEnumeratingWithState:objects:count:
method are stackbuf and len. If you are providing your own C array to hold your
batches of objects, then both can safely be ignored.The parameter stackbuf is a C array
of object pointers that you can use to store your objects, and len tells you the maximum
number of objects you can store. If you want to use this storage instead of managing your
own, then state->itemsPtr should be set to be the same as stackbuf.

Now that we know what the method is supposed to do, it’s possible to come up with a
few possible implementations. For example, if a custom class that is implementing fast
enumeration just wants to allow traversal over a group of objects already contained in a
Foundation collection class, then the easiest way to implement fast enumeration is to de-
fer to the collection class itself, like this:

ptg5934432

94 Chapter 8 Enumerators

- (NSUInteger)countByEnumeratingWithState:

(NSFastEnumerationState *)state

objects:(id *)stackbuf count:(NSUInteger)len

{

return [myCollection countByEnumeratingWithState:state

objects:stackbuf count:len];

}

If a custom class has an actual C array of objects already, and is immutable, the imple-
mentation is straightforward.Assume that the C array is called myCArrayOfObjects and
that there is an unsigned long integer property named myObjectsCount that holds the
number of objects in the C array.This yields one of the simplest implementations possible
and sends everything in a single batch:

- (NSUInteger)countByEnumeratingWithState:

(NSFastEnumerationState *)state

objects:(id *)stackbuf count:(NSUInteger)len

{

if (state->state == 0)

{ // first call

state->state = 1; // to flag we've been called

state->itemsPtr = myCArrayOfObjects;

}

else

{ // later calls, only one batch so zero returned now

return 0;

}

return myObjectsCount;

}

In the previous example of MYLinkedList, there is no such convenient C array avail-
able, so an implementation for that class is best served by using the passed-in storage array.
Here is a sample implementation:

- (NSUInteger)countByEnumeratingWithState:

(NSFastEnumerationState *)state

objects:(id *)stackbuf count:(NSUInteger)len

{

MYLinkedListNode *currentNode;

if (nil == (MYLinkedListNode *)state->state)

{ // first call, begin at the start of our list

currentNode = self.firstNode;

}

else

{ // pick up where we left off

currentNode = (MYLinkedListNode *)state->state;

}

ptg5934432

95Solution

// fill stackbuf with objects from our list

// until storage is full or we run out of objects

NSUInteger nodeCount = 0;

while ((currentNode != self.markerNode) && (nodeCount < len))

{

stackbuf[nodeCount] = currentNode.object;

currentNode = currentNode.nextNode;

nodeCount++;

}

state->state = (unsigned long)currentNode;

state->itemsPtr = stackbuf;

// this will change if we are mutated so it's a good guard

state->mutationsPtr = &listLength;

return nodeCount;

}

Now it is possible to use fast enumeration on MYLinkedList instances just as if they
were instances of any Foundation collection class. Because NSEnumerator already has it’s
own support for fast enumeration, it is not necessary to make any changes to
MYLinkedListEnumerator at all. It already supports fast enumeration as it is. Of course,
the default implementation is generic and therefore not as efficient as a custom imple-
mentation. It is possible to add batching code similar to what we added to MYLinkedList
to improve the performance of fast enumeration when used with
MYLinkedListEnumerator, but such improvements are left as an exercise.The main con-
cern is to keep the state information between the Enumerator itself and the fast enumera-
tion code in sync.

For further exploration, download the example code from the book website
www.CocoaDesignPatterns.com.The enumeration example creates a MYLinkedList with
20 nodes and then iterates through it using a variety of enumeration approaches. It also
demonstrates how mutating the list in the middle of enumeration will raise an exception.
Finally, by adding a logging statement at the end of the fast enumeration code, it is possi-
ble to observe the behavior of the batching process:

2008-10-03 17:57:04.436 Enumeration[13663:10b] Fast enumeration called with buffer
size 16; 16 objects loaded.

2008-10-03 17:57:04.437 Enumeration[13663:10b] 1: String #1

2008-10-03 17:57:04.437 Enumeration[13663:10b] 2: String #2

2008-10-03 17:57:04.438 Enumeration[13663:10b] 3: String #3

2008-10-03 17:57:04.438 Enumeration[13663:10b] 4: String #4

2008-10-03 17:57:04.438 Enumeration[13663:10b] 5: String #5

2008-10-03 17:57:04.439 Enumeration[13663:10b] 6: String #6

2008-10-03 17:57:04.439 Enumeration[13663:10b] 7: String #7

2008-10-03 17:57:04.439 Enumeration[13663:10b] 8: String #8

2008-10-03 17:57:04.440 Enumeration[13663:10b] 9: String #9

2008-10-03 17:57:04.446 Enumeration[13663:10b] 10: String #10

ptg5934432

96 Chapter 8 Enumerators

2008-10-03 17:57:04.449 Enumeration[13663:10b] 11: String #11

2008-10-03 17:57:04.449 Enumeration[13663:10b] 12: String #12

2008-10-03 17:57:04.450 Enumeration[13663:10b] 13: String #13

2008-10-03 17:57:04.451 Enumeration[13663:10b] 14: String #14

2008-10-03 17:57:04.451 Enumeration[13663:10b] 15: String #15

2008-10-03 17:57:04.451 Enumeration[13663:10b] 16: String #16

2008-10-03 17:57:04.452 Enumeration[13663:10b] Fast enumeration called with buffer
size 16; 4 objects loaded.

2008-10-03 17:57:04.452 Enumeration[13663:10b] 17: String #17

2008-10-03 17:57:04.452 Enumeration[13663:10b] 18: String #18

2008-10-03 17:57:04.453 Enumeration[13663:10b] 19: String #19

2008-10-03 17:57:04.453 Enumeration[13663:10b] 20: String #20

2008-10-03 17:57:04.453 Enumeration[13663:10b] Fast enumeration called with buffer
size 16; 0 objects loaded.

Obviously, three method calls will be a bit faster than 20, making fast enumeration
more efficient than a standard NSEnumerator loop.

Internal Enumeration
All of the enumeration that has been discussed here is what is known as external or active
iteration, meaning that the iteration loop is completely under control of the programmer
and external to the collection classes themselves. Cocoa does support another type of it-
eration, known as internal or passive iteration. Internal or passive iteration is an implied
iteration; there is no explicit control over the loop itself, even though the existence of a
loop is implied.

For example, consider these two NSArray methods:

- (void)makeObjectsPerformSelector:(SEL)aSelector

- (void)makeObjectsPerformSelector:(SEL)aSelector

withObject:(id)anObject

Both of these methods send the same message to every object in an array.They are a
shortcut that eliminates the need for an explicit enumeration loop.There is still an unseen
loop, of course; the latter of these methods is very likely implemented using fast enumera-
tion as follows:

- (void)makeObjectsPerformSelector:(SEL)aSelector

withObject:(id)anObject

{

id object;

for (object in self)

{

[object performSelector:aSelector withObject:anObject];

}

}

ptg5934432

97Consequences

Examples in Cocoa
It is nearly impossible to do much in Cocoa without encountering enumeration in some
form. Most collection classes such as NSArray, NSDictionary, NSSet, NSCountedSet,
NSHashTable, NSMapTable, and so on all implement the -objectEnumerator method to
return an Enumerator instance. Many collections have other methods that return other
Enumerators. NSArray has -reverseObjectEnumerator to perform a different traversal
order. NSDictionary and NSMapTable use -keyEnumerator for traversing their keys in-
stead of the contained objects.

Typically the same classes that can create and return Enumerators also support fast
enumeration. In general, when fast enumeration is used the traversal will be the same as if
the Enumerator returned by the -objectEnumerator method were used normally. Notable
exceptions to this are NSDictionary and NSMapTable, which iterate over their keys when
fast enumeration is used.When in doubt, always consult Apple’s class documentation.

One interesting special case is the NSPointerArray, a new class introduced in 10.5,
which can store NULL values. NSEnumerator doesn’t work with NSPointerArray because
the first NULL returned during contents traversal ends the traversal.The NSPointerArray
class does, however, support fast enumeration.This works because fast enumeration imple-
mentations return how many references are being batched together.This means that they
can return NULL values for some of the objects in the traversal without causing the loop
to be exited because loop termination conditions do not depend on the return of a NULL
or nil value.

Consequences
Enumerators provide a consistent means of traversing a collection of objects independent
of collection type and traversal algorithm.This decoupling allows a developer to change
from one type of collection to another or choose different traversal algorithms without
incurring the need to change all their collection traversal code.

In Cocoa, enumeration is implemented by subclassing NSEnumerator and by adopting
the NSFastEnumeration protocol. In other frameworks, the role of an NSEnumerator is
commonly called the Iterator pattern, though Enumerators can also act as a special case of
the Strategy pattern by allowing a flexible choice of traversal algorithm.

Because Enumerators retain their own state information, it is possible to have multiple
traversals of a given collection pending simultaneously.Typically NSEnumerator subclasses
are tightly coupled to specific collection classes and have privileged access to the internal
details of the collection’s data structures so that they can implement as efficient a traversal
algorithm as possible.

Cocoa forbids the modification of mutable collections while they are being enumer-
ated. Some environments attempt to create robust iterators that allow modification of un-
derlying collections. Because of the overhead and complexity of this approach, and the
fact that this ability is seldom required in practice, Cocoa chooses to disallow modifica-
tions in favor of enhanced thread safety and faster, more efficient code.

ptg5934432

98 Chapter 8 Enumerators

Enumerators in Cocoa are unidirectional and cannot be reset. Once the end of an
iteration loop is reached, the Enumerator is no longer useful.To traverse again, a new
Enumerator must be requested. It’s possible to create custom subclasses that have more
cursor-like behavior, with the ability to move both forward and backward through a list
and even jump to the start, end, or an arbitrary position, but the standard interface defined
by Cocoa doesn’t support any such behaviors.

ptg5934432

9
Perform Selector and

Delayed Perform

Selectors identify the messages that are sent to Objective-C objects.They’re used by
the receivers of messages to select which methods will be performed. Selectors provide
much of the power, flexibility, and dynamism of the Objective-C language, and they’re
used to implement other Cocoa design patterns. In particular, selectors are key to Cocoa’s
implementation of the Notifications, Delegates,Targets and Actions, Invocations, and For-
warding patterns. Using selectors, Cocoa objects can be asked to perform methods imme-
diately or after arbitrary time delays. Delaying the performance of methods can be very
handy and is sometimes used to keep a user interface responsive while long-running tasks
complete, implement animation, or provide other time-based application features.

Selectors are an object-oriented substitute for C function pointers.A function pointer
is a variable that stores the address of a compiled function. In the C programming lan-
guage and languages derived from it like Objective-C and C++, compilers and linkers
convert explicit function calls in program source code into machine language jumps to
code at predetermined fixed addresses in memory.The conversion of code to fixed ad-
dresses in sometimes called binding. Using a function pointer variable enables program-
mers to postpone binding of a function call until the program is running. For example,
the value of a function pointer might be partly determined by user input at runtime.The
technique is sometimes called late-binding. Just like using function pointers can postpone
specification of precisely what function will be called, using selectors can postpone speci-
fication of precisely what message will be sent to an object.

What makes selectors more object-oriented than function pointers, and why are they
used instead of function pointers? That’s a bit of a trick question because ultimately,
Objective-C uses function pointers.The answer involves the implementation of
Objective-C message sending as described in the “Solution” section of this chapter, but
simply stated, selectors are used by objects to select which method is performed, and then
the implementation of the selected method is accessed via a function pointer.The role of
the object in the selection of a method is key to object orientation.

ptg5934432

100 Chapter 9 Perform Selector and Delayed Perform

Motivation
Use Perform Selector to postpone specifying the message that will be sent to an object
until runtime. Reduce coupling between objects by limiting the information that message
senders need about the message sent.

Use Perform Selector in combination with the Anonymous Type and Heterogeneous
Containers patterns described in Chapter 7,“Anonymous Type and Heterogeneous
Containers,” to completely decouple the sender of a message from the receiver.At
compile time, the sender of a message doesn’t need to know what message is sent or
what object will receive the message.This capability underlies the Targets and Actions
pattern.

Use Delayed Perform to schedule messages to be sent at a specified time in the future.
Use Cocoa’s related ability to send messages that will execute in the main thread even

if sent from a different thread.

Solution
To describe the detailed role of selectors in Objective-C messaging, it’s necessary to intro-
duce the following interdependent concepts:

n Objects have methods of performing operations.A method is composed of program
code that’s part of the implementation of an object.The emphasis on the method of
performing an operation as opposed to the operation itself is important to object-
oriented programming because different objects might have different methods of
performing the same operation.

n A message is a request for an object to perform an operation.The object determines
which method will be used to perform the operation.The same message can be
sent to different objects and produce different results.

n A selector identifies the message sent to an object, and the object that receives the
message uses the selector to select which method to invoke. In some cases, the ob-
ject might apply complex logic to select a method, or it might forward the message
to another object.

With those concepts in mind, using selectors is very straight-forward. Objective-C
provides the SEL data type used to declare variables that store selectors.

SEL aSelector; // declare a variable that stores a selector

A selector variable can be initialized using Objective-C’s @selector() syntax as follows:

SEL aSelector = @selector(update);

Cocoa’s NSObject base class provides the -(id)performSelector:(SEL)aSelector
method, which is used to send a variable message at runtime.The -performSelector:
method can be used in any situation where the message to be sent has no arguments and
returns an object.

ptg5934432

101Solution

SEL aSelector = @selector(update);

// These three lines are interchangeable

id result1 = [someObject update];

id result2 = [someObject performSelector:@selector(update)];

id result3 = [someObject performSelector:aSelector];

The selector used with –performSelector: doesn’t have to be specified at compile
time. For example, Cocoa provides the SEL NSSelectorFromString(NSString *) C
function that converts a string into a selector.The string could come from any source; it
might even be based on user input.A selector can be converted back into a string using
Cocoa’s NSStringFromSelector() C function.

Note
Objective-C allows any message to be sent to any object. If the receiver of a message has
no specific method of responding to the message, the receiver has many options including
forwarding the message to another object, ignoring the message, generating an exception,
or reporting an error.

NSObject provides the –(BOOL)respondsToSelector:(SEL)aSelector method that
can be used to verify that an object responds to a selector before sending a message.The
following code converts a string into a selector but doesn’t use the selector unless the ob-
ject asked to perform can actually respond to the selector:

id MYSendMessageToObject(NSString *userEnteredString, someObject)

{

SEL aSelector = NSSelectorFromString(userEnteredString)];

id result = nil;

if([someObject respondsToSelector:aSelector])

{

result = [someObject performSelector:aSelector];

}

return result;

}

To send a variable message that requires a single object argument, use NSObject’s
- (id)performSelector:(SEL)aSelector withObject:(id)anObject method.
You can send messages that require two object arguments using NSObject’s
- (id)performSelector:(SEL)aSelector withObject:(id)anObject

withObject:(id)anotherObject method. However, if you need to send a variable
message that requires more than two arguments or requires nonobject arguments or
returns a nonobject value, you need to use Cocoa’s NSInvocation class and the
Invocations pattern described in Chapter 20,“Invocations.”

ptg5934432

102 Chapter 9 Perform Selector and Delayed Perform

Delayed Perform
To send a message after a delay, use NSObject’s - (void)performSelector:(SEL)aSelector
withObject:(id)anArgument afterDelay:(NSTimeInterval)delay method.The
message with the specified selector and argument is scheduled and sent sometime after
the specified delay measured in seconds.

Delayed Perform is actually implemented by Cocoa’s NSRunLoop class. NSRunLoop is re-
sponsible for accepting user input and monitoring a Cocoa application’s communication
with the underlying operating system. Requests to send delayed messages are queued with
the run loop associated with the thread making the request. Each time the run loop
checks for user input, it also checks for queued requests. If enough time has elapsed since a
queued request was made, the run loop sends the requested message with the specified ar-
gument.The run loop may not get a chance to run because the application is busy doing
something else.Therefore, the run loop can’t guarantee that the requested message will be
sent at a precise time. It can only guarantee that it won’t be sent too soon. If a zero delay is
specified when requesting the delayed message, the message is sent as soon as possible the
next time the run loop runs. In all cases, - performSelector:withObject:afterDelay:

returns before the requested message is sent.
The NSObject class method, + (void)cancelPreviousPerformRequestsWithTarget:

(id)aTarget selector:(SEL)aSelector object:(id)anArgument, can be used to can-
cel a previously requested delayed message.This will cancel all delayed messages matching
the target, selector, and argument specified and queued by the run loop for the thread
canceling the request.

The NSRunLoop class can operate in several different modes.The modes determine
which sources of input are read by the run loop.The - performSelector:withObject:
afterDelay: method schedules requests in the NSDefaultRunLoopMode, so if the run loop
isn’t in that mode, the requested message won’t be sent.To specify which run loop modes
are used to queue the delayed message request, use NSObject’s - (void)performSelector:
(SEL)aSelector withObject:(id)anArgument afterDelay:(NSTimeInterval)delay

inModes:(NSArray *)modes method.

The Implementation of Objective-C Message Sending
Message sending using selectors is so fundamental to the design of Cocoa that it’s worth-
while to dig into the underlying Objective-C implementation of message sending.You
don’t necessarily need this information to use the Perform Selector and Delayed Perform
patterns in your own code.The implementation of Objective-C messaging is relatively
simple, extremely elegant, and makes Cocoa possible.

Note
Apple’s Objective-C runtime is open source and available as part of the Darwin project at
http://www.opensource.apple.com/projects/darwin. The GNU Compiler Collection also pro-
vides a version of the Objective-C runtime at http://gcc.gnu.org/. Both Apple and the GNU

ptg5934432

103Solution

Compiler Collection’s maintainers endeavor to keep the two runtimes compatible and share
source code, but historically, features that appear in one version have sometimes taken a
while to appear in the other.

The Objective-C language uses a small, fast library of functions and data structures
called a runtime. Many programming languages use a runtime; Java’s Virtual Machine is one
of the best known runtimes, but C++ and even C also have runtimes. Objective-C’s run-
time is primarily written in standard C and can be used from C or C++ programs even if
those programs aren’t compiled with an Objective-C or Objective-C++ compiler.The
Objective-C runtime provides supporting technology used to implement all of Cocoa’s
design patterns, but some of the patterns in this book are little more than specific applica-
tions of language runtime features:

n The runtime enables dynamic loading of Objective-C objects making the Bundles
pattern possible.

n The runtime creates all object instances and underlies the Dynamic Creation pattern.
n The runtime directly implements the Category pattern to add methods to existing

classes.
n The runtime implements the messaging that is key to the Perform Selector and

Delayed Perform patterns and the Proxies and Forwarding patterns.

Messaging is implemented with the following two C functions or variations based on
return types and platform-specific function calling conventions:

id objc_msgSend(id self, SEL op, ...);

id objc_msgSendSuper(struct objc_super *super, SEL op, ...);

The messaging functions are the core of Objective-C.When the Objective-C
compiler encounters a messaging expression such as [receiver someMessageSelector],
it replaces that expression with code to call objc_msgSend(receiver,
@selector(someMessageSelector)) in the compiled result.The objc_msgSend()
function searches for a method implemented by the receiver that corresponds to the
specified selector. More details about the search for a method that corresponds to a
selector are provided in the “How Messaging Works” section of Apple’s documentation at
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/Articles/
chapter_4_6.html. If the search doesn’t find a suitable method, the message may be
forwarded to another object as described by the Proxies and Forwarding patterns.

If a suitable method is found, a corresponding C function pointer is used to call a func-
tion that implements the method. Function pointers that correspond to method imple-
mentations are stored in variables with the IMP type declared as follows: typedef id
(*IMP)(id self, SEL _cmd, ...);.

The first two arguments to the function referenced by an IMP are the same receiver and
selector arguments passed to objc_msgSend(id self, SEL op, ...).Within the
method implementation, the receiver is the self variable used by the method.Additional

ptg5934432

104 Chapter 9 Perform Selector and Delayed Perform

arguments to a method are also passed to the method implementation.Apple’s Objective-
C runtime uses platform-specific assembly language to make additional arguments avail-
able to the method implementation.The GNU Objective-C runtime uses portable C
code to achieve the same result but suffers a small performance penalty when used with
some CPU platforms.

The objc_msgSendSuper(struct objc_super *super, SEL op, ...) function
works exactly the same way as objc_msgSend(id self, SEL op, ...) except that
objc_msgSendSuper(struct objc_super *super, SEL op, ...) begins the search for
a method with the receiver’s superclass and doesn’t consider any methods implemented by
the receiver itself.The Objective-C compiler generates a call to objc_msgSendSuper()
when it encounters a messaging expression containing the super keyword such as [super
someMessageSelector].

Note
Searching for a method to invoke can be time-consuming. Apple’s Objective-C runtime
avoids the search in most cases by caching the IMP for each selector within the class itself.
When the messaging functions are called, they check the cache for an IMP that corresponds
to the specified selector. Most of the time, the IMP is found in the cache, and no search
takes place.

You can convert any code that sends messages into a function call via an IMP. Cocoa’s
NSObject base class provides methods to obtain an IMP directly:

- (IMP)methodForSelector:(SEL)aSelector;

+ (IMP)instanceMethodForSelector:(SEL)aSelector;

Now all of the pieces are in place, and the -(id)performSelector:(SEL)aSelector
method itself can be implemented with the following code:

- (id) performSelector:(SEL)aSelector

{

IMP methodImplementation = [self methodForSelector:aSelector];

return (*IMP)(self, aSelector);

}

Examples in Cocoa
Selectors are used extensively in Cocoa.The -performSelector: method and related
support provided by the NSObject base class are extended in a variety ways.Two of Co-
coa’s collection classes, NSArray and NSSet, implement the following methods to send a
variable message to every object in the collection:

- (void)makeObjectsPerformSelector:(SEL)aSel

- (void)makeObjectsPerformSelector:(SEL)aSel withObject:(id)anObject

ptg5934432

105Examples in Cocoa

Cocoa’s other prominent collection class, NSDictionary, provides arrays of all con-
tained values and all contained keys via the - (NSArray *)allValues and - (NSArray

*)allKeys methods, respectively.You can use the arrays to indirectly send a variable mes-
sage to all objects contained in a dictionary.

Sending messages to the objects in a collection can often be used instead of the
Enumerators pattern described in Chapter 8,“Enumerators.” You shouldn’t rely on
the order in which messages are sent to a collection’s contents when using the
-makeObjectsPerformSelector: and -makeObjectsPerformSelector:withObject:

methods. Nor should the messages sent change the collections themselves. Enumerators
are a better choice if the order is important or you need the return values from the
individual messages that are sent.

The Notifications pattern in Chapter 14,“Notifications,” enables objects to register
for messages to be sent in response to future events.The message to be sent is variable and
specified using a selector. Inside the implementation of the NSNotificationCenter class,
the –perfromSelector:withObject: method is used to actually send the messages.

The messages sent to a Delegate object are usually predefined, but the object that
sends the delegate messages must first determine whether the delegate can respond.The
Delegates pattern in Chapter 15,“Delegates,” shows an example using NSObject’s
–respondsToSelector: method.

Cocoa’s Invocation pattern is used in several situations including automatic undo/redo
support and distributed messaging via the Proxies pattern. Invocation is described in
Chapter 20, and Proxies are described in Chapter 27,“Proxies and Forwarding.” The
Invocation pattern and the NSInvocation class provide a more complete implementation
of late binding of messages than the simple –performSelector: method. NSInvocation
can store messages that have nonobject return types or require complex arguments.
NSInvocation stores the selector of the message to send along with the receiver of the
message and all arguments.

Cocoa’s Targets and Actions Pattern in Chapter 17,“Outlets,Targets, and Actions,”
shows how powerful and flexible late binding with selector can be.An Action is really just
a variable selector, and the target is just an anonymous object as described in Chapter 7.
It’s late binding, the ability to postpone the specification of the Action, and the Target
until runtime that makes the Targets and Actions pattern so useful.

Last but not least, one of Cocoa’s most interesting variations of the Perform Selector
pattern is the ability to safely send messages that will execute in the main thread even if the
messages originate from a different thread.This isn’t a general solution for interthread mes-
saging, but it can be supremely handy.The main thread is the one in which the main() C
function executes. For example, most AppKit drawing has to be performed on the main
thread.Nonmain threads send messages to the main thread to request AppKit-based drawing.

Just like Cocoa’s implementation of Delayed Perform, messages sent from other threads
can be queued with the main thread’s run loop for future execution.Also like Delayed
Perform, the mode of the run loop must sometimes be considered.The following meth-
ods make it possible:
- (void)performSelectorOnMainThread:(SEL)aSelector withObject:(id)arg
waitUntilDone:(BOOL)wait

ptg5934432

106 Chapter 9 Perform Selector and Delayed Perform

- (void)performSelectorOnMainThread:(SEL)aSelector withObject:(id)arg
waitUntilDone:(BOOL)wait modes:(NSArray *)array

When sending a message to be performed on the main thread, it’s not possible to re-
trieve the return value, if any, from the message.The waitUntilDone: argument enables
you to specify whether the sending thread should continue to execute asynchronously or
block until the message has been executed on the main thread. Unlike with Delayed Per-
form, once a message has been queued to execute in the main thread, it can’t be canceled.

Consequences
The Perform Selector and Delayed Perform patterns make it possible to send variable
messages and send messages at variable times in the future.These patterns provide a partial
substitute for the famous Command design pattern described at http://en.wikipedia.org/
wiki/Command_pattern.The Invocations pattern explained in Chapter 20 is a more
complete implementation of the Command pattern.

From a software engineering perspective, Perform Selector and Delayed Perform are
an application of late-binding to object-oriented systems. Objective-C and programming
languages such as Smalltalk, Ruby, and Python have language level runtime support for
various forms of late binding. Microsoft’s Common Language Runtime and the C# pro-
gramming language also support late-binding.To understand the consequences of lan-
guage level support for late binding as used by Cocoa and implemented by Objective-C,
it’s helpful to compare it to the alternative approaches.

Framework developers have attempted to bolt-on object-oriented implementations of
late binding for many programming languages. Some prominent examples include Mi-
crosoft’s Component Object Model (COM) and later the Distributed Component Ob-
ject Model (DCOM), which became known as Active-X. COM provides late binding,
and DCOM uses the late binding to enable communication between objects over a net-
work.The Object Management Group’s Common Object Request Broker Architecture
(CORBA) adds late binding and a variation of messaging over a network to a wide vari-
ety of programming languages.All of the bolt-on approaches either require that program-
mers learn and use an additional language like CORBA’s Interface Definition Language
(IDL) or write extensive and tedious code to use late binding.

In contrast, Cocoa uses late binding ubiquitously and therefore doesn’t require exten-
sive use of the Command pattern or an Interface Definition Language.All Objective-C
messages use late binding, so there is no extra code to write when late binding is needed.
The .NET framework and frameworks for Smalltalk, Ruby, and Python similarly enable
late binding with little or no special code. Frameworks built on top of languages that in-
trinsically support late binding are able to implement distributed communication be-
tween objects without requiring a lot of special effort from programmers. For example,
Cocoa’s Proxies and Forwarding patterns enable programmers to send messages to anony-
mous objects over a network in exactly the same way the messages are sent to local ob-
jects.The .NET framework uses a similar technique.

ptg5934432

10
Accessors

The Accessors pattern (also known as “setters and getters”) describes a technique for
funneling all access to an object’s properties through well-defined and easy to recognize
methods called accessors. Properties are often stored as instance variables but in some cases
may be stored a different way or calculated as needed.The Accessors pattern maximizes
implementation flexibility while minimizing opportunities for errors.The Accessors pat-
tern provides the following benefits:

n Implementation flexibility. Properties can be stored as instance variables or
using other techniques such as the Associative Storage pattern, and the implementa-
tion can be changed without breaking other code.

n Minimum maintenance burden. All uses of an object’s properties are funneled
through a few methods limiting the number of places where code needs to change
if properties change.

n Simple usage of Cocoa’s reference counted memory management
conventions. Restricting memory management to Accessor methods provides the
simplest way to adhere to Cocoa’s conventions and isolates memory management
code to just a few methods.

n Support Cocoa Key Value Coding and Key Value Observing technologies.
The Key Value Coding and Key Value Observing technologies won’t work with
your classes unless you provide correctly named Accessor methods. Cocoa Bindings
(Chapter 32,“Binding and Controllers”) require Key Value Coding and Key Value
Observing.

n Enable special processing when Outlets connected in Interface Builder are reestab-
lished during .nib loading.

The crucial role that accessors play in the Associative Storage pattern is described in
Chapter 19,“Associative Storage.”The Accessor pattern helps to encapsulate data and op-
erations on that data in the best tradition of object-oriented programming. Consistent use
of the Accessor pattern is particularly important when using Cocoa without the optional
automatic memory garbage collection introduced with Mac OS X 10.5.Without garbage

ptg5934432

108 Chapter 10 Accessors

Note
The Objective C 2.0 language introduced the @property and @synthesize compiler direc-
tives to formalize property declaration and generate correctly named accessor methods for
you. This chapter explains how to write your own accessor methods and the code that is
generated by @synthesize. Objective C 2.0 @property syntax is briefly explained in the
“Copying Objective-C 2.0 Properties” section of Chapter 12, “Copying.”

Motivation
Funnel access to an object’s properties through methods to hide implementation details and
confine code related to memory management to those methods. Cocoa’s reference counted
memory management provides a relatively simple pragmatic solution to the difficult
problem of memory management, but patterns must be applied to use reference counting
correctly, and accessors play a pivotal role in keeping memory management simple.

Enable use of higher level Cocoa technologies like Bindings, Key Value Coding, and
key Value Observing with your custom classes.

Solution
Accessors are methods used to set and get the properties of an object.The simplest acces-
sor is a method that returns the value of a nonobject instance variable. For example, given
an object that stores an interest rate as a floating point instance variable named
interestRate, the following method implementation returns that value:

- (float)interestRate

{

return interestRate;

}

Even though the method is extremely simple, it’s still a good idea to provide the acces-
sor method rather than directly accessing to the variable throughout your code. If all code
that uses the interest rate calls the accessor to obtain the value, the implementation of the
class can safely be changed in the future. For example, it may not be necessary to store the
interest rate in an instance variable if the value can be computed as needed.When using
accessors, the implementation of the –(float)interestRate method can be changed to

collection, Cocoa’s reference counted memory management conventions must be fol-
lowed to avoid serious errors. Many of the bugs in computer programs are byproducts of
dynamic memory allocation problems, and the Accessor pattern helps to reduce the num-
ber of places in code where memory allocation problems can occur.

This chapter describes several common implementations of accessors and focuses on
the interaction between accessors and Cocoa’s reference counted memory management
conventions. Reference counted memory management is explained in detail because Co-
coa objects need to support it for the foreseeable future—at least until automatic memory
garbage collection becomes ubiquitous. Using accessors reduces the programming burden
of reference counted memory management.

ptg5934432

109Solution

return a calculated value or a value obtained from a server without concern that the
change will break code elsewhere in an application.

Accessors that return values directly are named after the value returned.The
interestRate value is returned by the -interestRate method. Cocoa uses the word get
in the name of an accessor to indicate that a value will be returned indirectly by reference.
The following implementation returns the interest rate by reference:

- (void)getInterestRate:(float *)aFloatPtr

{

if(NULL != aFloatPtr)

{

*aFloatPtr = interestRate;

}

}

There is seldom a reason to return values by reference, and accessors with the word
get in their names are rare within Cocoa. Cocoa normally returns even complex C struc-
tures by value.As long as the size of the value to be returned is constant, the value should
be returned directly. Methods like NSData’s -(void)getBytes:(void *)aBuffer return
values by reference because the number of bytes that will be returned can’t be determined
at compile time. Other examples of get methods include NSArray’s -(void)getOb-
jects:(id *)aBuffer, NSString’s -(void)getCharacters:(unichar *)aBuffer, and
NSValue’s -(void)getValue:(void *)aBuffer. In each case, the size of the value
copied into the referenced memory is variable.Another reason for returning values by ref-
erence is to enable the return of more than one value from a single method.A good ex-
ample of that is NSColor’s -(void)getRed:(CGFloat *)red green:(CGFloat *)green
blue:(CGFloat *)blue alpha:(CGFloat *)alpha method, which returns four floating
point values by reference.

Accessors for setting nonobject properties are also straightforward.The interest rate stored
by an object can be set by calling a - (void)setInterestRate:(float)aRate method
with the following implementation:

- (void)setInterestRate:(float)aRate

{

interestRate = aRate;

}

It’s important to provide set accessors for the same reasons accessors that return values
are important.As long as there is only one method used to set a property of an object, the
technique used to store that property can be changed without affecting other code. Con-
fining property changes to the implementation of accessors simplifies debugging. During
debugging, if a property has an incorrect or suspicious value, a debugger break-point
set within the implementation of an accessor halts execution whenever the property is
changed and helps track down how and why the value is being changed incorrectly.

The accessors that set values are often more complex than the implementation shown
so far. Set accessors are a natural place to implement application logic that constrains

ptg5934432

110 Chapter 10 Accessors

values, notifies other objects of changes to a property, or prompts recalculation of values
based on the property changed. For objects that display values, schedule redisplay after a
property is changed within an accessor. For example, the NSTextField class in the Appli-
cation Kit Framework implements its -(void)setIntValue:(int)aValue method as
similar to the following:

- (void)setIntValue:(int)aValue

{

[[self cell] setIntValue:aValue]; // Set the value stored by the associated

// NSCell instance

[self setNeedsDisplay:YES]; // Schedule redisplay

}

Cocoa consistently provides accessors for nonobject properties, and doing so in your
own classes is usually a good idea.Accessors for object properties are even more important
because they provide an ideal place to centralize memory management in code. Cocoa’s
reference counted memory management system is simple, powerful, and flexible, but a
clear understanding of the system is essential for correct use of Cocoa classes and for the
implementation of accessors in your own classes.

Reference Counted Memory Management
The memory used by Cocoa objects is allocated dynamically as needed.Whenever mem-
ory is allocated, the application has to keep track of the memory and remember to deallo-
cate (free) it when it is no longer needed. Failure to deallocate memory that is no longer
needed constitutes a memory leak and can cause serious performance problems as a pro-
gram runs.A severe memory leak will eventually cause an application to crash.

As of Mac OS X 10.5, Cocoa provides a built-in memory management feature called
automatic garbage collection.With automatic garbage collection, the programming language
runtime environment detects when allocated memory is no longer used and automatically
deallocates it.Automatic garbage collection can prevent many memory allocation errors,
but it doesn’t come for free. Historically, automatic garbage collection has had a negative
performance impact on software and in some cases restricts the type of software that can
be written. For example, it’s difficult to use automatic garbage collection in conjunction
with the type of distributed messaging technology provided by Cocoa. Cocoa provides a
high performance multithreaded garbage collector, but it’s optional.The garbage collector
is not available for the iPhone as of version 3.0. If you use any code that doesn’t work
with automatic garbage collection (perhaps because the code predates the introduction of
automatic garbage collection), you need to support the older reference counted memory
management.

The NSObject base class provides a set of methods for incrementing and decrementing
a counter that is automatically stored for each object as needed.The counters keep track
of how many other objects reference (use) each object. Chapter 19 includes an example
that shows a partial implementation of the reference counting system.

ptg5934432

111Solution

When a Cocoa object is first allocated, it has an implicit reference count of one. If the
reference count ever reaches zero, the object is immediately deallocated. If an object needs
to store a reference to another object, the reference count of the referenced object is in-
creased by calling the -retain method declared in NSObject.When an object no longer
needs a reference to another object, the reference count of the referenced objects is de-
creased by calling the -release method. Each object starts out with a reference count of
one; therefore, it will not be deallocated until it is released as many times as it has been re-
tained plus one additional release corresponding to the original allocation.As long as ob-
jects follow the convention of calling -retain and -release when appropriate, no object
is deallocated while it is still being used, and all objects are deallocated as soon they are no
longer being used.

Reference counted memory management is less convenient than automatic garbage col-
lection because programmers must remember to call -retain and -release instead of rely-
ing on the language runtime to take care of things. Furthermore, reference counted memory
management is a bit more complicated than has been revealed so far, but it’s flexible, fast,
convenient, and works well with distributed objects. Information about Cocoa’s reference
counted memory management is available from many sources including Apple’s own
Objective-C documentation provided with the developer tools at /Developer/
Documentation/Cocoa/ObjectiveC/4objc_runtime_overview/Object_Ownership.html.
General guidelines and more detailed explanations are available at http://www.stepwise.com/
Articles/Technical/MemoryManagement.html, http://www.stepwise.com/Articles/
Technical/2001-03-11.01.html, and http://www.stepwise.com/Articles/Technical/
HoldMe.html.

Accessors That Manage Retain Counts
The following examples of accessor methods take into account Cocoa memory manage-
ment conventions when setting and returning object properties.The simplest way to re-
turn an object value from an accessor is to return it directly. Given an object that stores a
“title” property as an NSString instance variable named _myTitle, the title is returned by
the -(NSString *)title method as follows:

- (NSString *)title

{

return _myTitle;

}

Note
In the example, a property named “title” is stored in an instance variable named _myTitle.
The Accessor method name must match the property name to be presented to users of a
class, but the implementation of the method is free to supply the property value using any
appropriate logic. Property names and instance variable names do not have to correspond.

The -title implementation is adequate in most cases, but a more sophisticated tech-
nique may be necessary if the application using the title is multithreaded. In a multithreaded

ptg5934432

112 Chapter 10 Accessors

application, there is a chance that another thread of execution may alter _myTitle or
release it after it has been returned from the -title method but before the code that
called -title has had an opportunity to retain the returned object. In that case,
_myTitle’s retain count may reach zero, and the object may be deallocated, leaving the
code that called -title with a pointer to a deallocated (invalid) object.

One solution that supports the multithreaded case is to retain and autorelease the ob-
ject being returned as follows:

- (NSString *)title

{

id result;

// Lock

result = [[_myTitle retain] autorelease];

// Unlock

return result];

}

Each call to -autorelease schedules a call to -release that will happen after a delay.
The -autorelease method can be called in any situation that -release is called, but it’s
less efficient than -release because of extra logic and data structures needed to imple-
ment the delay. Retaining and autoreleasing the object to be returned assures that the ob-
ject’s reference count will not reach zero before the calling code has an opportunity to
retain it.

The comments that specify Lock and Unlock show where locks are needed to assure
thread safety.You must use locks and be aware of possible deadlock scenarios in some
cases. Locks and deadlocks are described in an online document that is frequently
updated at http://developer.apple.com/techpubs/macosx/Cocoa/TasksAndConcepts/
ProgrammingTopics/Multithreading/Multithreading.html. Links on that page describe a
variety of safe interthread and interprocess communication strategies.A version of the
document is also installed with Apple’s developer tools at /Developer/Documentation/
Cocoa/TasksAndConcepts/ProgrammingTopics/Multithreading/index.html.

Note
In most cases, a lock used in a get accessor must also be used in the corresponding set
accessor. In addition, the lock object must be created before any calls to either accessor.
Multithreaded programming is a difficult topic outside the scope of this book.

The most common implementation of a set accessor for an object property uses the
pattern shown in the following implementation of the -(void)setTitle:(NSString
*)aTitle method:

- (void)setTitle:(NSString *)aTitle

{

[aTitle retain];

ptg5934432

113Solution

[_myTitle release];

_myTitle = aTitle;

}

The aTitle argument will be stored as the new value of the _myTitle instance vari-
able.The new object to be stored must be retained so that it isn’t deallocated while it is
still being used.The old object stored in the instance variable is released because it is no
longer being used. If no other object has retained the old value, it is immediately deallo-
cated when it is released. Finally, the _myTitle instance variable is assigned the new value.

Note
Objective-C objects are always stored and passed by reference. The _myTitle instance
variable is actually a pointer to an object. The aTitle argument is a pointer to another ob-
ject. When the statement _myTitle = aTitle; is executed, only a pointer is copied. The
_myTtle instance variable is set to point to the same object as aTitle.

The order in which a new object value is retained and the old value released is impor-
tant.The set Accessor can be called with a nil argument, an object argument that refer-
ences a different object than one already stored, or an argument that references the same
object already stored. In any of these cases, the existing stored object property may be nil.
The following describes the set Accessor’s behavior in each case:

n The argument to the set Accessor is nil—The retain message is harmlessly sent to
nil. It’s safe to send any message to nil as long as you don’t count on any return
value.The currently stored object is released. Finally, nil is stored as the new value
of the object property.

n The argument references an object that isn’t already stored—The new object is re-
tained so that it will not be deallocated.The old object is released and will be deal-
located if it’s not retained by any other objects. Finally, a pointer to the new object is
stored as the value of the property being set.

n The argument references the same object that is already stored—The referenced
object already has a retain count of at least one because it is being used.The first
thing the set Accessor does is retain the object causing its retain count to be no less
than two.The object reference already stored is released, but because it is the same
object that was just retained, its retain count drops to no less than one. Finally a
harmless pointer assignment that sets the property to the same value already stored
takes place.

The case in which the object passed as an argument to a setAccessor is the same as the
object already stored is critical. If the order of the retain and release is changed, it is possi-
ble that the object value will be released and immediately deallocated before the assign-
ment takes place.Then the object property is left storing a pointer to a deallocated object.

ptg5934432

114 Chapter 10 Accessors

The set Accessor pattern shown for the -setTitle: method must be implemented
differently to address multithreading issues.The multithread safe version uses the following
pattern:

- (void)setTitle:(NSString *)aTitle

{

id oldValue;

[aTitle retain];

// Lock

oldValue = _myTitle;

_myTitle = aTitle;

// Unlock

[oldValue release];

}

There are many subtle issues related to multithreading, and using the accessor imple-
mentations shown or related variations is necessary but not sufficient to ensure correct be-
havior in all cases. In most cases, it isn’t worthwhile to try and implement thread safe
accessors.When the same object must be used within multiple threads, it’s often better to
require explicit locks in the code that calls the accessors or use one of the interthread
communications techniques described at /Developer/Documentation/Cocoa/
TasksAndConcepts/ProgrammingTopics/Multithreading/index.html.

Confining Memory Management to Accessors
If the Accessors pattern is consistently applied, almost all memory management for
objects can be confined to accessors.When initializing object instances, use a set
accessor to set the value of each object property. For example, the following imple-
mentation of -(id)initWithStringValue:(NSString *)aValue method uses an
accessor to store the string value rather than making a direct assignment to an
instance variable:

- (id)initWithStringValue:(NSString *)aValue

{

self = [super init];

[self setStringValue:aValue]; // set the initial value of the property

return self;

}

The process of initializing instances is described in Chapter 3,“Two-Stage Creation.”
The -dealloc method can indirectly release referenced objects using the set accessors

and avoid memory management code in its implementation as follows:

ptg5934432

115Solution

- (void)dealloc

{

[self setStringValue:nil]; // any previous string value is released

[super dealloc];

}

Note
Some programmers have historically avoided using accessors within initializer methods and
-dealloc because a subclass may override inherited accessors to cause side effects. Us-
ing the overridden accessors within the superclass’s initializer might invoke side effects be-
fore the subclass instance is fully initialized. Similarly, accessors called from within the
superclass’s -dealloc may cause side effects in partially deallocated instances. However,
there is no practical alternative to using accessors when you use synthesized instance vari-
ables with the modern Objective-C 2.0 runtime or use properties that are not implemented
as instance variables. In such cases, accessors provide the only way to initialize the proper-
ties or set the properties to nil.

Mutability
The accessors described so far have been implemented to set and return the values of in-
stance variables directly.When setting or returning the values of object instance variables,
the mutability of objects must be considered. Mutability refers to the ability of objects to
change state during their lifetimes. If an object is immutable, it is created with a certain
state or set of properties that don’t change until the object is deallocated.The state or
properties of mutable objects can be changed any number of times. Many classes in Co-
coa’s Foundation framework are available in both immutable and mutable forms. For ex-
ample, both the NSString and NSMutableString classes exist along with the NSArray and
NSMutableArray classes and others.

If a pointer to a mutable instance variable is returned from an Accessor method, the
encapsulation of the class that owns the instance variable might be violated.The state or
properties of the returned object could be changed without the knowledge of other ob-
jects that store references to the modified object.This isn’t a danger when immutable ob-
jects are returned.

So far, the examples of accessors for the _myTitle instance variable have assumed that
the object stored by _myTitle is immutable. If _myTitle is stored as a mutable string, it can
still be safely returned from a getAccessor that claims to return an immutable object.The
following complete class definition shows variations on Accessor methods when mutable
objects are involved:

@interface MYTitleStorage

{

NSMutableString *_myTitle;

}

@end

ptg5934432

116 Chapter 10 Accessors

@implementation MYTitleStorage

- (id)init

{

self = [super init];

[self setTitle:@”Default Title”];

return self;

}

- (NSString *)title

{

return _myTitle; // This is safe because the type we claim to return

// is immutable, and other programmers should

// respect that

}

- (NSMutableString *)mutableTitle

{

// Return a copy of the instance variable so that changes made to

// the copy do not affect the instance variable

return [[_myTitle mutableCopy] autorelease];

}

- (void)setTitle:(NSString *)aTitle

{

NSMutableString *newValue = [aTitle mutableCopy];

[_myTitle release];

_myTitle = newValue;

}

- (void)dealloc

{

[self setTitle:nil];

[super dealloc];

}

@end

Accessors that handle mutable object properties often use the -(id)mutableCopy
method declared by the NSMutableCopying protocol to copy the object passed in or

ptg5934432

117Solution

returned so that no reference to the mutable instance variable is available outside the class
where it’s stored.When the -mutableCopy message is received by an object, a new copy
of the receiver is returned.The returned object has a retain count of one and must
eventually be released or autoreleased.The Copying pattern is explained in Chapter 12
and the -mutableCopy method is documented in the Foundation framework and at
/Developer/Documentation/Cocoa/Reference/Foundation/ObjC_classic/Protocols/
NSMutableCopying.html.

NSKeyValueCoding

Cocoa’s NSKeyValueCoding informal protocol is defined as part of the Foundation frame-
work and documented at /Developer/Documentation/Cocoa/Reference/Foundation/
ObjC_classic/Protocols/NSKeyValueCoding.html. Informal protocols are explained in
Chapter 6,“Category.” In the simplest terms, informal protocols are groups of methods that
you can assume are available for use even when you are dealing with an anonymous object.

NSKeyValueCoding defines a mechanism for accessing an object’s properties by name.
The primary methods that enable this access are –setValue:(id)aValue
forKey:(NSString *)aKey and –(id)valueForKey:(NSString *)aKey, which set and
get named properties, respectively. In all cases, the Key: argument is a reference to an
NSString instance that stores the name of the property being accessed.The Value: argu-
ment of the -setValue:forKey: method requires a reference to an object as its argu-
ment, and -valueForKey: returns an object reference. Nonobject properties are set and
returned by wrapping them in instances of Cocoa’s NSValue class.

In some respects, the NSKeyValueCoding protocol provides an alternative to
using accessor methods. However, accessor methods are such a good idea that even
NSKeyValueCoding protocol methods operate with the help of accessor methods when-
ever possible.To set or return an object’s properties, the NSKeyValueCoding methods use
the following techniques in order:

1. Check for the existence of accessor methods named -<key> or -get<Key> and use
the methods if possible to return a value. Check for the existence of a method
named -set<Key>: and use it to set values. For both the -get<Key> and -
set<Key>: methods, the first letter of the Key string is made uppercase to be consis-
tent with Cocoa’s method naming conventions.

2. If an accessor method based directly on the key name is not available, check meth-
ods named -_<key>, -_get<Key>, and -_set<Key>:.

3. If no accessor method is found, attempt to directly access an instance variable.The
instance variable can be named either <key> or _<key>.

4. Finally, if the property cannot be accessed through accessor methods or directly
through an instance variable, invoke one of the NSKeyValueCoding methods
- handleQueryWithUnboundKey: or -handleTakeValue:forUnboundKey: as
appropriate.The default implementations of these methods raise an exception,
but you can override the methods to do something else.

ptg5934432

118 Chapter 10 Accessors

The NSKeyValueCoding protocol declares other methods that are not described here.
The important thing about NSKeyValueCoding in the context of accessors is the fact
that even NSKeyValueCoding methods use accessors. If you implement appropriate
accessors, you can be confident that they will be called whenever your object’s properties
are accessed.

Note
Cocoa’s nib file loading code doesn’t use NSKeyValueCoding methods as of Mac OS X ver-
sion 10.2, but nib loading employs similar strategies for setting object properties. If you pro-
vide Accessor methods, the nib loading code will use them. If you don’t, your object’s
properties will be set directly when possible. The Cocoa frameworks don’t raise exceptions if
properties are not available or can’t be set when loading a nib file.

Interface Builder Outlets
Outlets are instance variables that can be connected to point to other objects within Ap-
ple’s Interface Builder application as explained in Chapter 17,“Outlets,Targets, and Ac-
tions.” Interface Builder saves all of the interconnected objects into files with the .xib
extension by using the Archiving and Unarchiving pattern explained in Chapter 11,
“Archiving and Unarchiving.” As the objects are loaded (unarchived) into a running Cocoa
application, the outlets are reconnected. If you provide properly named accessor methods
for your object’s outlets, your methods will be called to set the values of the outlets.Your
accessor methods are free to perform additional processing as needed. It’s very important
that if you implement set accessor methods, they actually set the value of the affected
outlets, or else the connections established in Interface Builder will not be reestablised
when the .nib file is loaded. If you don’t provide a properly named set accessor
method for each outlet, Cocoa’s .nib loading code will set the outlet variable directly
using Objective-C runtime functions.

Objective-C 2.0 Properties
The Objective-C 2.0 language introduced with Mac OS X 10.5 provides new syntax for
declaring object properties and reduces the amount of typing needed to use the Accessors
pattern in your own classes. If you use the @synthesize directive, the Objective-C 2.0
compiler automatically generates Accessor methods for you based on the way you have
declared Properties.The new Properties syntax is self-documenting. It clarifies how the
Accessor methods behave right in the class declaration.

The new Property declaration syntax is explained at http://developer.apple.com/
documentation/Cocoa/Conceptual/ObjectiveC/Introduction/chapter_1_1.html.The
key to understanding the new syntax is to realize that it’s optional and doesn’t provide any
significant new capability. Using Properties syntax primarily just reduces the amount of
typing needed to implement new classes. However, the code generated by the compiler in
response to @synthesize does not suffer from human error and automatically works

ptg5934432

119Examples in Cocoa

correctly with memory management, Key Value Coding, Key Value Observing, and Inter-
face Builder whether you are using automatic garbage collection.

Examples in Cocoa
Cocoa classes provide accessors for all properties that can be examined or set outside the
class where they are used. Generally, there is no reason to ever directly access the instance
variables of a Cocoa class except when writing a subclass, and even then the practice is
uncommon. For example, when writing a subclass of Cocoa’s NSView class, it is possible
to directly access NSView’s _subviews instance variable. However, it’s almost always better
to access the property through NSView’s -(NSArray *)subviews method. Using the
accessor makes the subclass’s code more flexible and leaves open the possibility that the
implementation of the superclass can change without automatically breaking all sub-
classes.The same principle applies in almost every case when subclassing a Cocoa object.

As a further example of the ability to preserve flexibility in the implementation of
classes by using accessors instead of direct references, consider another property of
NSView. Each NSView instance stores a reference to its superview and a reference to the
window that contains the view respectively in the _superview and _window instance
variables. Because each NSView instance is always in the same window as its superview, the
implementation of NSView could be changed so that a single instance variable stores ei-
ther a reference to a superview or a reference to a window.Views that have a superview
store that reference.Views that don’t have a superview store a reference to the window
that contains the view. NSView’s –(id)window method is then implemented to return
the window if there is no superview or the result of [[self superview] window] if
there is a superview.This example is a bit contrived because there is no compelling reason
to optimize the storage of NSView instances by reducing the number of instance variables,
but it shows the degree of flexibility enabled by consistent use of accessors.The flexibility
provided by accessors is even more important in classes that you choose to redesign or
reimplement many times in the life of a software product.

Cocoa accessors that return nonobject properties by value are so common that there
is no point in listing them here. Just keep in mind that nonobject properties are almost
always returned by value even if the properties have complex types. For example, methods
like NSView’s –(NSRect)frame and –(NSRect)bounds return NSRect structures by value.
The –(void)setFrame:(NSRect)aRect and -setBounds:(NSRect)aRect Accessors re-
quire NSRect structure arguments passed by value.As another example, NSValue’s
–(NSRange)rangeValue Accessor returns an NSRange structure by value.

Cocoa classes rarely provide accessors that return nonobject properties by reference,
and such Accessor methods always include the word “get” in their names.This type of
Accessor is only used when the size of the property returned is variable or multiple
values are returned by one method.Table 10.1 lists all of the common Cocoa Accessor
methods that return nonobject values by reference and the classes that provide the
methods.

ptg5934432

120 Chapter 10 Accessors

Table 10.1 The Accessor Methods That Return Nonobject Values by Reference

Class Accessor

NSArray - (void)getObjects:(id *)objects

- (void)getObjects:(id *)objects range:(NSRange)range

NSData - (void)getBytes:(void *)buffer

- (void)getBytes:(void *)buffer length:(unsigned)length

- (void)getBytes:(void *)buffer range:(NSRange)range

NSFormatter - (BOOL)getObjectValue:(id *)obj forString:(NSString
*)string errorDescription:(NSString **)error

NSInvocation - (void)getReturnValue:(void *)retLoc

- (void)getArgument:(void *)argumentLocation
atIndex:(int)index

NSMethodSignature - (const char *)getArgumentTypeAtIndex:(unsigned)index

NSPathUtilities - (BOOL)getFileSystemRepresentation:(char *)cname
maxLength:(unsigned)max

NSRunLoop - (CFRunLoopRef)getCFRunLoop

NSString - (void)getCharacters:(unichar *)buffer

- (void)getCharacters:(unichar *)buffer
range:(NSRange)aRange

- (void)getLineStart:(unsigned *)startPtr end:(unsigned
*)lineEndPtr contentsEnd:(unsigned *)contentsEndPtr
forRange:(NSRange)range

- (void)getCString:(char *)bytes

- (void)getCString:(char *)bytes
maxLength:(unsigned)maxLength

- (void)getCString:(char *)bytes
maxLength:(unsigned)maxLength range:(NSRange)aRange
remainingRange:(NSRangePointer)leftoverRange

NSBezierPath - (void)getLineDash:(float *)pattern count:(int *)count
phase:(float *)phase

NSValue - (void)getValue:(void *)value

NSBitmapImageRep - (void)getBitmapDataPlanes:(unsigned char **)data

- (void)getCompression:(NSTIFFCompression *)compression
factor:(float *)factor

+ (void)getTIFFCompressionTypes:(const NSTIFFCompression
**)list count:(int *)numTypes

NSButtonCell - (void)getPeriodicDelay:(float *)delay interval:(float
*)interval

ptg5934432

121Examples in Cocoa

Table 10.1 The Accessor Methods That Return Nonobject Values by Reference

Class Accessor

NSButton - (void)getPeriodicDelay:(float *)delay interval:(float
*)interval

NSCell - (void)getPeriodicDelay:(float *)delay interval:(float
*)interval

NSColor - (void)getRed:(float *)red green:(float *)green
blue:(float *)blue alpha:(float *)alpha

- (void)getHue:(float *)hue saturation:(float *)saturation
brightness:(float *)brightness alpha:(float *)alpha

- (void)getWhite:(float *)white alpha:(float *)alpha

- (void)getCyan:(float *)cyan magenta:(float *)magenta
yellow:(float *)yellow black:(float *)black alpha:(float
*)alpha

NSLayoutManager - (unsigned)getGlyphs:(NSGlyph *)glyphArray
range:(NSRange)glyphRange

- (void)getFirstUnlaidCharacterIndex:(unsigned *)charIndex
glyphIndex:(unsigned *)glyphIndex

- (unsigned)getGlyphsInRange:(NSRange)glyphsRange
glyphs:(NSGlyph *)glyphBuffer characterIndexes:(unsigned
*)charIndexBuffer glyphInscriptions:(NSGlyphInscription
*)inscribeBuffer elasticBits:(BOOL *)elasticBuffer
bidiLevels:(unsigned char *)bidiLevelBuffer

- (unsigned)getGlyphsInRange:(NSRange)glyphsRange
glyphs:(NSGlyph *)glyphBuffer characterIndexes:(unsigned
*)charIndexBuffer glyphInscriptions:(NSGlyphInscription
*)inscribeBuffer elasticBits:(BOOL *)elasticBuffer

NSMatrix - (void)getNumberOfRows:(int *)rowCount columns:(int
*)colCount

- (BOOL)getRow:(int *)row column:(int *)col ofCell:(NSCell
*)aCell

- (BOOL)getRow:(int *)row column:(int *)col
forPoint:(NSPoint)aPoint

NSOpenGL - (void)getValues:(long*)vals
forAttribute:(NSOpenGLPixelFormatAttribute)attrib
forVirtualScreen:(int)screen

- (void)getValues:(long *)vals
forParameter:(NSOpenGLContextParameter)param

NSWorkspace - (BOOL)getInfoForFile:(NSString *)fullPath
application:(NSString **)appName type:(NSString **)type

- (BOOL)getFileSystemInfoForPath:(NSString *)fullPath
isRemovable:(BOOL *)removableFlag isWritable:(BOOL
*)writableFlag isUnmountable:(BOOL *)unmountableFlag
description:(NSString **)description type:(NSString
**)fileSystemType

ptg5934432

122 Chapter 10 Accessors

Consequences
Using accessors is almost always the best solution for getting and setting an object’s prop-
erties by code that is not within of the object’s own implementation. In many cases, the
accessors are used exclusively to access instance variables even within the implementation
of a class. Using accessors limits the number of places in code where explicit memory
management is needed and provides many other benefits.

However, accessors require the overhead of at least one method call and usually several.
It’s always more efficient to access instance variables directly. Use accessors until it has
been proven through profiling and other techniques that more performance is required.
Then replace the use of accessors with direct use of variables only when necessary.

ptg5934432

11
Archiving and Unarchiving

Archiving preserves objects including any interrelationships or dependencies among
the archived objects. Unarchiving re-creates the objects and relationships that were previ-
ously archived. Some common object-oriented programming languages such as Ruby,
Python, Java, and C# use the term “Serialization” to describe the Archiving and Unar-
chiving pattern.

Cocoa includes built-in support for interprocess communication that relies on
Archiving and Unarchiving to copy objects from one process to another. Objects
archived by one process are unarchived in another via the NSPortCoder and
NSDistributedNotificationCenter classes.

Apple’s Interface Builder application archives the objects that are configured and con-
nected within the tool. Cocoa applications later unarchive the objects stored in Interface
Builder files to restore the configured objects and connections.A similar process takes
place when Interface Builder enters “Simulation” mode.The objects to be tested are
archived into a memory buffer and then unarchived to produce a fully functioning copy
of the objects ready for you to test.

Archived objects are most commonly stored as binary data. Binary data tends to be fast
to read and write from memory or disk and fast to transmit over a network. However, in
cases where it’s helpful to store the objects in a human readable text format, Cocoa sup-
ports archiving and unarchiving from XML files with a few limitations described in this
chapter.

Motivation
Use the Archiving and Unarchiving pattern any time you need to copy or store a group
of interrelated objects. Some Cocoa applications adopt this approach to store application
data in files. Because most Cocoa objects automatically work with the Archiving and
Unarchiving pattern, it’s straightforward to save application data by just archiving your
application’s objects.To reload the application data, unarchive the objects.The previous
application state is restored.

ptg5934432

124 Chapter 11 Archiving and Unarchiving

The Archiving and Unarchiving pattern is sometimes used to implement the “deep”
Copying pattern as explained in Chapter 12 “Copying.”

Solution
The Archiving and Unarchiving pattern relies on objects to encode their own internal
state into an archive and later decode themselves from an archive. By implementing their
own encoding and decoding, the objects safeguard encapsulation and data hiding. Objects
that reference other objects typically give the referenced objects an opportunity to en-
code themselves as well.Therefore, the act of encoding one object may add many objects
to an archive. For example, if an object being encoded has instance variables that are ob-
jects, the instance variables are usually also encoded. If an object doesn’t encode its in-
stance variables, it might be incomplete when later unarchived. On the other hand, if an
instance variable has a default value or can be calculated from other instance variables, it
often makes sense not to encode it. Each object must make its own determination regard-
ing which instance variables to encode.

The key to implementing the Archiving and Unarchiving pattern is the treatment of
interrelated objects. No matter how complex the relationships between objects, each
object in an archive is only encoded once in that archive.This minimizes the storage re-
quired for an archive, but more importantly, it simplifies the restoration of relationships
when unarchiving. If many archived objects reference the same object, the unarchived
copies will also all reference a single copy of that same object. Similarly, within any group
of objects that are being archived, two or more objects might reference each other. Such
circular references are resolved automatically in part because of the rule that each object
is only represented once in an archive.

Cocoa’s implementation of the Archiving and Unarchiving pattern handles data type
size and byte order issues inherent with cross-platform data exchange.That way, archives
created on a 32-bit computer can be unarchived on a 64-bit computer and vice versa.
Even if objects are archived with a PowerPC processor that uses one byte order for
multibyte values, it’s possible to unarchive the objects with an Intel processor using the
opposite byte order.Automatic byte order conversions are also essential for interprocess
communication between dissimilar computers on a network.

Built-in object versioning provides the ability to unarchive objects that were archived
with different application versions or different operating system releases. Cocoa supports
object substitution during unarchiving. For example, Interface Builder sometimes archives
placeholder objects that have stored connections to other objects within the archive.
When the objects are unarchived into a running application, an application-specific
object is substituted for the placeholder, and connections set in Interface Builder end up
being restored to the application-specific object. Object substitution is combined with
versioning to automatically update objects as they are unarchived. Consider what happens
when a class is deprecated or replaced between version 1.0 and version 2.0 of an application.
When the version 2.0 application unarchives an instance of the old class, the application

ptg5934432

125Solution

can optionally substitute an instance of the new class and perform any necessary data
conversions during the substitution.

Conditional Encoding
Conditional encoding constrains which objects are archived in situations where many ob-
jects are inter-related but not all relationships need to be preserved. Objects can be either
unconditionally encoded or conditionally encoded.When an object is unconditionally
encoded, it’s always added to the archive if it isn’t already there.When unarchived, all
objects that referenced the unconditionally encoded object have their references restored.
Conditional encoding of an object means that references to the object should only be
restored if the object ends up in the archive.To be in an archive, an object has to be
unconditionally encoded at least once. If a conditionally encoded object does end up in
an archive, then references to the object are restored as normal when unarchived. How-
ever, if the object doesn’t make it into the archive, all objects that formerly referenced that
conditionally encoded object have their references set to nil when unarchived. Figure 11.1
illustrates what happens when a particular object is exclusively conditionally encoded.
The object, C, that was conditionally encoded no longer exists when the objects are
decoded.

co
nditio

nal

unconditional

conditional

A

B

C

Object Relationships During Encoding Object Relationships After
Decoding

A

B

Figure 11.1 Exclusively conditionally encoded objects no longer exist when decoded.

ptg5934432

126 Chapter 11 Archiving and Unarchiving

co
nditio

nal

unconditional

conditional

A

B

C

Object Relationships During Encoding

A

B

C

Object Relationships After Encoding

Figure 11.2 Conditional references are preserved if even one object unconditionally encodes
the referenced object.

However, if an object is unconditionally encoded by at least one referencing object,
then when decoded, all references are restored regardless of whether each reference was
conditional or unconditional. Figure 11.2 shows what happens to conditionally encoded
object references when the referenced object is also unconditionally encoded by
another object.

Use conditional encoding when only a subset of the objects in a group needs to be
archived. For example, each Cocoa NSView object has a single reference to its “parent”
(“superview”) and references to all of its “child” views (“subviews”).The relationships
between Cocoa NSView instances are explained in Chapter 16,“Hierarchies.” Each view
conceptually “owns” its subviews and treats them as an intrinsic part itself.Therefore,
when an NSView instance encodes itself, all of the view’s subviews are unconditionally
encoded. In contrast, views have little knowledge about their superview and work correctly
regardless of the specific view that owns them. NSView conditionally encodes its
superview.The concepts of object ownership are elaborated in Apple’s documentation
provided with the developer tools at /Developer/Documentation/Cocoa/ObjectiveC/
4objc_runtime_overview/Object_Ownership.html and in http://developer.apple.com/
documentation/Cocoa/Conceptual/MemoryMgmt/Concepts/ObjectOwnership.html
online.

The fact that NSView conditionally encodes its superview enables you to archive a por-
tion of a view hierarchy without having to archive the entire hierarchy. If you choose to

ptg5934432

127Examples in Cocoa

archive a view in the middle of a hierarchy, the view that you archive will encode all of its
subviews but not necessarily its superview.

Examples in Cocoa
The best way to create an archive of interrelated objects is to use the NSKeyedArchiver
class as shown in the following example:

[NSKeyedArchiver archivedDataWithRootObject:someObject];

The +(NSData *)archivedDataWithRootObject:(id)rootObject method sends a
message asking the specified root object to unconditionally encode itself.The root object
in turn asks any referenced objects to either conditionally or unconditionally encode
themselves.The one line of code that archives a root object is sufficient to archive an en-
tire hierarchy of objects.The root object can be any object that conforms to the
NSCoding protocol including an instance of NSArray or NSDictionary.The NSData in-
stance returned from +archivedDataWithRootObject: may be stored in a file, as a Core
Data attribute, or as a default value in user defaults.

Unarchive an object with NSKeyedUnarchiver’s
+(id)unarchiveObjectWithData:(NSData *)data method as follows:

[NSKeyedUnarchiver unarchiveObjectWithData:someData];

NSKeyedUnarchiver asks the previously encoded root object to decode itself. In the
process of decoding itself, the root object asks referenced objects to decode themselves.As
a result, the entire hierarchy of encoded objects is decoded, and the relationships between
objects are restored.

To see how the Archiving and Unarchiving pattern is used in practice, consider how a
Cocoa application stores a color in user defaults. User defaults provide a standard way to
store system, user, and application preferences or default values.You access user defaults via
the NSUserDefaults class, which uses the Associative Storage pattern from Chapter 19,
“Associative Storage,” to store key value pairs. Code like the following can store a string
value in user defaults:

[[NSUserDefaults standardUserDefaults]

setObject:@"http://www.stepwise.com"

forKey:@"homePage"];

However, NSUserDefaults is only able store to objects that are instances of the fol-
lowing classes: NSData, NSString, NSNumber, NSDate, NSArray, or NSDictionary. Cocoa
encapsulates colors with the NSColor class, which is not in the list of classes directly sup-
ported by NSUserDefaults. If you want to store a color in user defaults, combine the
Category pattern from Chapter 6,“Category,” with Archiving and Unarchiving to extend
NSUserDefaults.The following category methods take advantage of the fact that
NSColor objects already conform to the NSCoding protocol to store and retrieve any
NSColor in user defaults:

ptg5934432

128 Chapter 11 Archiving and Unarchiving

@implementation NSUserDefaults (ColorHandling)

- (void)setColor:(NSColor *)theColor forKey:(NSString *)key

{

NSData *data = [NSKeyedArchiver archivedDataWithRootObject:

theColor];

[self setObject:data forKey:key];

}

- (NSColor *)colorForKey:(NSString *)key

{

NSData *data = [self dataForKey:key];

return [NSKeyedUnarchiver unarchiveObjectWithData:data];

}

@end

Using a similar technique, any object that conforms to the NSCoding protocol can be
archived and stored in user defaults as NSData.

Implementing the NSCoding Protocol
The NSCoding protocol defines only two methods, -encodeWithCoder: and
-initWithCoder:. Objects encode themselves into archives by implementing the
- (void)encodeWithCoder:(NSCoder *)coder method.They decode themselves
by implementing the - (id)initWithCoder:(NSCoder *)coder method. Cocoa’s
NSObject base class doesn’t conform to the NSCoding protocol, but most other Cocoa
classes do. If your class inherits from a Cocoa class that already conforms to the
NSCoding protocol, you must override the NSCoding methods to call the inherited
implementations and then encode or decode the unique information for your class.

Note
The - encodeWithCoder: and - initWithCoder: methods are prime examples of the
Template Method pattern in Chapter 4, “Template Method.” These methods are overridden
in each subclass you create, and the methods are called automatically by Cocoa when
appropriate. You shouldn’t call these methods directly except to invoke the superclass’
implementation from within an override.

To add encoding and decoding support to a class that does not inherit NSCoding
conformance, the class must adopt the NSCoding protocol and implement the
-encodeWithCoder: and -initWithCoder: methods.The following code is excerpted
from the WordInformation class in the WordPuzzle example program available at
www.CocoaDesignPatterns.com.

ptg5934432

129Examples in Cocoa

@interface WordInformation : NSObject <NSCoding>

{

NSString *word;

NSString *clue;

NSMutableDictionary *puzzleSpecificAttributes;

}

@end

// Coding keys

static NSString *CodingKeyWord = @"word";

static NSString *CodingKeyClue = @"clue";

static NSString *CodingKeyPuzzleSpecificAttributes =

@"puzzleSpecificAttributes";

- (id)initWithCoder:(NSCoder *)coder

{

if (nil != (self = [super init]))

{

[self setWord:[coder decodeObjectForKey:CodingKeyWord]];

[self setClue:[coder decodeObjectForKey:CodingKeyClue]];

[self setPuzzleSpecificAttributes:[coder decodeObjectForKey:

CodingKeyPuzzleSpecificAttributes]];

}

return self;

}

- (void)encodeWithCoder:(NSCoder *)coder

{

[coder encodeObject:[self word] forKey:CodingKeyWord];

[coder encodeObject:[self clue] forKey:CodingKeyClue];

[coder encodeObject:[self puzzleSpecificAttributes] forKey:

CodingKeyPuzzleSpecificAttributes];

}

WordInformation is a direct subclass of NSObject. Most of the methods of the
WordInformation class are omitted from the example to keep it short, but the implemen-
tation of the NSCoding protocol is shown.The -encodeWithCoder: method uncondition-
ally encodes each of the receiver’s instance variables using the Accessors pattern from
Chapter 10,“Accessors,” to access the variables.The -initWithCoder: method decodes
the encoded objects and sets the instance variables using the Accessor methods. Using the
Accessor methods help ensure correct memory management for decoded objects whether
automatic garbage collection is used.

Like other initializers explained in Chapter 3,“Two-Stage Creation,” the -initWithCoder:
method assigns self to the value returned from the superclass’ designated initializer.

ptg5934432

130 Chapter 11 Archiving and Unarchiving

The assignment of self is necessary because the inherited initializer is free to return a dif-
ferent object from the one that received the message.

As a direct subclass of NSObject, WordInformation doesn’t call any inherited
NSCoding methods because NSObject doesn’t conform to NSCoding. If your class inherits
NSCoding protocol conformance, you not only need to implement the NSCoding meth-
ods, but you must call the inherited versions as shown in the next code example.The as-
signment of self is still required, but instead of calling the class’ designated initializer, you
must call the inherited version of -initWithCoder:.The following code excerpt is from
the WordMatchPuzzleView class in the WordPuzzle example program:

// Coding keys

static NSString *CodingKeyDataSource = @"dataSource";

static NSString *CodingKeyPrototypeWordView = @"prototypeWordView";

static NSString *CodingKeyPrototypeClueView = @"prototypeClueView";

static NSString *CodingKeyWordConnectionPoints =

@"wordConnectionPoints";

static NSString *CodingKeyClueConnectionPoints =

@"clueConnectionPoints";

static NSString *CodingKeyConnectionLines = @"connectionLines";

// Coding methods

- (id)initWithCoder:(NSCoder *)coder

{

if (nil != (self = [super initWithCoder:coder]))

{

[self setDataSource:[coder decodeObjectForKey:

CodingKeyDataSource]];

[self setPrototypeWordView:[coder decodeObjectForKey:

CodingKeyPrototypeWordView]];

[self setPrototypeClueView:[coder decodeObjectForKey:

CodingKeyPrototypeClueView]];

[self setWordConnectionPoints:[coder decodeObjectForKey:

CodingKeyWordConnectionPoints]];

[self setClueConnectionPoints:[coder decodeObjectForKey:

CodingKeyClueConnectionPoints]];

[self setConnectionLines:[coder decodeObjectForKey:

CodingKeyConnectionLines]];

}

return self;

}

- (void)encodeWithCoder:(NSCoder *)coder

{

[super encodeWithCoder:coder];

[coder encodeConditionalObject:[self dataSource] forKey:

CodingKeyDataSource];

ptg5934432

131Examples in Cocoa

[coder encodeObject:[self prototypeWordView] forKey:

CodingKeyPrototypeWordView];

[coder encodeObject:[self prototypeClueView] forKey:

CodingKeyPrototypeClueView];

[coder encodeObject:[self wordConnectionPoints] forKey:

CodingKeyWordConnectionPoints];

[coder encodeObject:[self clueConnectionPoints] forKey:

CodingKeyClueConnectionPoints];

[coder encodeObject:[self connectionLines] forKey:

CodingKeyConnectionLines];

}

WordMatchPuzzleView conditionally encodes its dataSource instance variable.As a re-
sult, if a WordMatchPuzzleView is encoded by itself, the dataSource will not end up in
the archive. In the WordPuzzle application, the dataSource is used to automatically ini-
tialize a blank puzzle with words and clues. If you archive an already initialized
WordMatchPuzzleView instance by itself, there is no need to preserve the dataSource

used to initialize the instance. On the other hand, if you are archiving a larger group of
objects including the dataSource and one or more WordMatchPuzzleView instances, the
dataSource will end up in the archive and therefore will be available to generate new
puzzles after the group of objects is unarchived.

Encoding and Decoding Nonobject Types
NSKeyedArchiver and NSKeyedUnarchiver provide methods for encoding and decoding
nonobject values including floating point types and 32-bit or 64-bit integers.The Cocoa
BOOL data type and some commonly used C structures such as NSPoint, NSSize, and
NSRect are also directly supported.

The next example of NSCoding is an excerpt from the WordConnectionPoint class in the
same WordPuzzle program. In this example, some nonobject values are encoded and decoded:

// Coding keys

static NSString *CodingKeyFrame = @"frame";

static NSString *CodingKeyColor = @"color";

static NSString *CodingKeyIsFilled = @"isFilled";

static NSString *CodingKeyLineWidth = @"lineWidth";

static NSString *CodingKeyAssociatedWordInformation =

@"associatedWordInformation";

// Coding methods

- (id)initWithCoder:(NSCoder *)coder

{

if(nil != (self = [super init]))

{

[self setFrame:[coder decodeRectForKey:CodingKeyFrame]];

[self setColor:[coder decodeObjectForKey:CodingKeyColor]];

[self setIsFilled:[coder decodeBoolForKey:CodingKeyIsFilled]];

ptg5934432

132 Chapter 11 Archiving and Unarchiving

[self setLineWidth:[coder decodeFloatForKey:

CodingKeyLineWidth]];

[self setAssociatedWordInformation:[coder decodeObjectForKey:

CodingKeyAssociatedWordInformation]];

}

return self;

}

- (void)encodeWithCoder:(NSCoder *)coder

{

[coder encodeRect:[self frame] forKey:CodingKeyFrame];

[coder encodeObject:[self color] forKey:CodingKeyColor];

[coder encodeBool:[self isFilled] forKey:CodingKeyIsFilled];

[coder encodeFloat:[self lineWidth] forKey:CodingKeyLineWidth];

[coder encodeConditionalObject:[self associatedWordInformation]

forKey:CodingKeyAssociatedWordInformation];

}

Cocoa does not provide built-in support for other data types such as arbitrary C struc-
tures, unions, bit fields, nonobject pointers, or arrays of values other than bytes.Apple
supplies extensive advice regarding how to encode unsupported data types in archives
at http://developer.apple.com/documentation/Cocoa/Conceptual/Archiving/Tasks/
codingctypes.html. However, the advice boils down to the following two approaches:
Either wrap the unsupported data types in objects that conform to the NSCoding protocol
and then encode those objects, or break the data types down to supported components
like int and float and encode the individual components.

If you wrap multibyte values in NSData objects, you must handle any byte order (en-
dian) issues in the event that the data is decoded on a different platform. Furthermore, in
all but the simplest cases, wrapping C structures in NSData objects is unworkable.The
memory representation of C structures is not defined by any standard, and as a result
different compilers store structures differently. In particular, compilers are free to insert
padding bytes between structure members or bit fields so that the same structure defini-
tion may have different memory sizes when compiled with different compilers. Similarly,
any encoded structure members that are pointers will become useless gibberish when
decoded into an application running in a different memory space.

Note
By default, objects that are decoded are allocated in the default memory zone. If you need
to decode objects using a different memory zone, specify the zone via NSKeyedUnarchiver’s
- (void)setObjectZone:(NSZone *)zone method before any objects are decoded. You
can find out what zone NSKeyedArchiver is using via the - (NSZone *)objectZone
method. In almost every case, the objects being decoded should be allocated in the same
zone as the object that is decoding them. You can find out the zone of the object requesting
the decoding via NSObject’s - (NSZone *)zone method.

ptg5934432

133Examples in Cocoa

Object Substitution
During encoding, the object being encoded can substitute a replacement class or instance
for itself.As each object is encoded, NSKeyedArchiver calls the object’s - (Class)
classForKeyedArchiver method.You can override -classForKeyedArchiver to return
a class different from the class of the object being encoded. Next, NSKeyedArchiver calls
the - (id)replacementObjectForKeyedArchiver:(NSKeyedArchiver *)archiver

method of the object being encoded. Override -replacementObjectForKeyedArchiver:
to substitute a different instance for the instance being encoded. Finally, NSKeyedArchiver
calls + (NSArray *)classFallbacksForKeyedArchiver: and encodes the array
returned, if any, along with the encoded object. If the actual class of an object doesn’t
exist at the time the object is decoded, NSKeyedUnarchiver substitutes the first class in
the array that does exist to decode the object.Override +classFallbacksForKeyedArchiver:
to provide some compatibility hints so that objects can be decoded in different applica-
tion versions that use different classes.

NSKeyedUnarchiver allows an optional delegate object to control substitution during
decoding. Delegates are explained in Chapter 15,“Delegates.” When NSKeyedUnarchiver
is unable to decode an object, it tries to send the - (Class)unarchiver:
(NSKeyedUnarchiver *)unarchiver cannotDecodeObjectOfClassName:

(NSString *)name originalClasses:(NSArray *)classNames message to its delegate.
The delegate can optionally implement the -unarchiver:cannotDecodeObjectOfClassName:
originalClasses: method to return the class that should be used to continue decoding.

Finally, after an object has been decoded, the -awakeAfterUsingCoder: message is
sent to the decoded object.You can override -awakeAfterUsingCoder: to calculate
values for instance variables that were not successfully decoded or to return a different
object than the one just decoded.

Nib Awaking
A problem can arise when objects that have been encoded into an Interface Builder .nib
file are decoded.As an object is decoded, it might need to send messages to a referenced
object that has not yet been decoded. How does an object know when during decoding
it is safe to access the objects to which it has relationships? The answer is the
–awakeFromNib method.

When objects are decoded from a .nib file, the Application Kit automatically sends the
–awakeFromNib message to every decoded object that can respond to it.The
–awakeFromNib message is only called after all the objects in the archive have been de-
coded and initialized.Therefore, when an object receives an –awakeFromNib message, it’s
guaranteed to have all its outlet instance variables set.The –awakeFromNib message is also
sent to objects when Interface Builder enters “Simulation” mode because Interface Builder
encodes objects into a .nib archive in memory and then immediately decodes them.

When .nib files are unarchived by a Cocoa application, the application specifies an
object outside the .nib that will “own” the objects decoded from the .nib.This outside
object is represented by an icon labeled “File’s Owner” within Interface Builder.Any

ptg5934432

134 Chapter 11 Archiving and Unarchiving

connections or references to the File’s Owner made within the .nib file are reconstituted
to reference the application supplied owner via object substitution.The object specified as
the owner also receives an –awakeFromNib message each time a .nib is unarchived with
that object as the owner. Use the owner’s implementation of –awakeFromNib to complete
any initialization that happens each time a .nib file is loaded. Keep in mind that the
owner’s –awakeFromNib method will be called multiple times if the same owner is used
multiple times to load .nibs.

Consequences
Archiving and Unarchiving provide a convenient standard way to preserve or copy inter-
connected objects.The pattern supports Cocoa’s implementation of distributed messag-
ing. Objects that are passed between applications via distributed messaging are sometimes
archived and unarchived to create copies in the receiving application.As an alternative to
copying the objects, proxies may be used as, described in Chapter 27,“Proxies and
Forwarding.”

Most Cocoa classes conform to the NSCoding protocol and can therefore be used with
Archiving and Unarchiving. Some extra work is needed when creating custom classes to
implement the necessary NSCoding methods. Programmer effort is also required to
achieve backward and forward compatibility between applications and archives so that
older applications can use newer archives and vice versa. Some other languages and
frameworks provide more automatic support for this pattern than Objective-C and
Cocoa. However, Cocoa’s approach maximizes program control of archiving and unar-
chiving. Cocoa’s implementation is extensible and flexible. It provides many hooks like
-awakeAfterUsingCoder: for object substitution, and if necessary, you can create your
own NSCoder subclasses to implement Archiving and Unarchiving using your own
archive formats.

There are a couple of common alternative techniques for Cocoa object persistence.
Consider using Cocoa property lists if all of the objects you want to store can be con-
verted to property list types. Property lists are documented at http://developer.apple.
com/documentation/Cocoa/Conceptual/PropertyLists/PropertyLists.html.The user de-
faults cited in this chapter are actually stored as property lists.

Cocoa’s Core Data framework stores objects and their relationships using technology
adapted from relational databases. Core Data and its patterns are explained in Chapter 30,
“Core Data Models.” Core Data can be used as an alternative to storing application data
in archives, but like property lists, Core Data supports only a limited number of data types
directly. Fortunately, Core Data includes support for storing NSData objects, so it’s possible
to mix approaches and store archived objects via Core Data.

ptg5934432

12
Copying

The Copying pattern is used to create new object instances by copying existing instances.
The act of copying objects is not always as clear cut as you might expect. For example, if
you copy an object that contains other objects, should the copy contain the exact same
objects as the original, or should the copy contain copies of the objects in the original?

Copying serves as an alternative to the Two-Stage Creation pattern introduced in
Chapter 3,“Two-Stage Creation,” and enables the Prototype pattern in Chapter 21,
“Prototype.” Copying also plays a role in the Accessor pattern from Chapter 10,“Acces-
sors.”At a higher level, user interface actions, like copy and paste or drag and drop, are
often implemented by copying application objects.

Motivation
Use the Copying pattern any time you want to create a new object that is a copy of an-
other object. Copying captures the state of an object at a moment in time.

The C programming language uses a technique called pass-by-value to supply argu-
ments to functions. Pass-by-value means that arguments are implicitly copied so that
changes made to the arguments within a function affect only the copies and not the orig-
inal values. If you’re an experienced C or Objective-C programmer, skip to the next sec-
tion of this chapter.The remainder of this section briefly explains pass-by-value semantics
and why Objective-C objects may need to be explicitly copied when used as arguments
to functions or methods.The following command line program is available at www.
CocoaDesignPatterns.com and demonstrates pass-by-value semantics with C types:

#import <Foundation/Foundation.h>

static void SimplePassByValue(float floatArgument)

{

floatArgument = floatArgument * 3.0f;

NSLog(@"Inside SimplePassByValue, floatArgument = %f",

floatArgument);

}

ptg5934432

136 Chapter 12 Copying

int main (int argc, const char * argv[])

{

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

float floatArgument = 1.0f;

NSLog(@"Before SimplePassByValue, floatArgument = %f",

floatArgument);

SimplePassByValue(floatArgument);

NSLog(@"After SimplePassByValue, floatArgument = %f",

floatArgument);

[pool release];

return 0;

}

The program generates the following output, which shows that although
floatArgument is changed inside the SimplePassByValue() function, the changes
affect only the implicit copy of floatArgument within SimplePassByValue() and not
the variable declared in main().

Before SimplePassByValue, floatArgument = 1.000000

Inside SimplePassByValue, floatArgument = 3.000000

After SimplePassByValue, floatArgument = 1.000000

C and therefore Objective-C always passes arguments by value. Even C structures like
Cocoa’s NSRect are passed by value and implicitly copied. However, it’s possible to pass a
pointer to a value and then modify a value indirectly via the pointer.The pointer itself is
implicitly copied, but the value the pointer addresses is not copied.The next example and
its output show what happens when pointers to values are used as arguments.The value
of floatArgument within main() is changed by the call to PassPointer().

#import <Foundation/Foundation.h>

static void PassPointer(float *floatPointer)

{

*floatPointer = *floatPointer * 3.0f;

NSLog(@"Inside PassPointer, *floatPointer = %f", *floatPointer);

}

int main (int argc, const char *argv[])

{

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

float floatArgument = 1.0f;

ptg5934432

137Motivation

NSLog(@"Before PassPointer, floatArgument = %f", floatArgument);

PassPointer(&floatArgument);

NSLog(@"After PassPointer, floatArgument = %f", floatArgument);

[pool release];

return 0;

}

Before PassPointer, floatArgument = 1.000000

Inside PassPointer, *floatPointer = 3.000000

After PassPointer, floatArgument = 3.000000

Objective-C objects are always passed as pointers.You’ll get a compiler error if you at-
tempt to pass an object itself rather than a pointer to the object. So in the following ex-
ample, the NSMutableString, aString, in the main() function is changed by the
PassObjectPointer() function:

#import <Foundation/Foundation.h>

static void PassObjectPointer(NSMutableString *aString)

{

[aString setString:@"Changed"];

NSLog(@"Inside PassObjectPointer, aString = %@", aString);

}

int main (int argc, const char *argv[])

{

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

NSMutableString *aString = [NSMutableString stringWithString:

@"Original"];

NSLog(@"Before PassObjectPointer, aString = %@", aString);

PassObjectPointer(aString);

NSLog(@"After PassObjectPointer, aString = %@", aString);

[pool release];

return 0;

}

Before PassObjectPointer, aString = Original

Inside PassObjectPointer, aString = Changed

After PassObjectPointer, aString = Changed

Objective-C programmers quickly become familiar with the effects of passing objects
by pointer and expect that any C function or Objective-C method that accepts an object
pointer as an argument can modify the object via the pointer. It’s the standard and most

ptg5934432

138 Chapter 12 Copying

often desired behavior. If you need to pass a pointer to one of your objects, but you want
to make sure the object isn’t changed, one approach is to copy the object and pass a
pointer to the copy instead of a pointer to the original. No matter what changes are made
to the copy, the original is preserved.

If you are writing a function or method that will store a pointer to an object, you may
actually want to create a copy and store a pointer to the copy.That way, changes that are
later made to the original object won’t affect the stored copy.

Solution
Not all objects can be meaningfully copied. If an object encapsulates a unique or scarce
resource, it doesn’t make sense to copy the object. For example, Cocoa’s NSHost class
encapsulates information about the unique network names and Internet addresses of a
computer. It doesn’t make sense to copy an NSHost instance because doing so would
duplicate the network names and Internet addresses that are supposed to be unique.The
NSApplication class encapsulates a connection to Mac OS X’s Quartz window server so
that Cocoa applications can draw windows on the screen. Each Cocoa application is per-
mitted exactly one connection to the window server. For that reason, NSApplication uses
the Singleton pattern introduced in Chapter 13,“Singleton.” It makes no sense to copy an
instance of NSApplication because only one instance is permitted in each program.

When copying is supported, consider whether the copy operation is shallow or deep.A
shallow copy is a copy of the object itself, but not any objects contained by the object be-
ing copied. In other words, when an object is shallow copied, the result is a new object
that contains pointers to the exact same objects contained by the first.A deep copy copies
the contained objects as well.The result of a deep copy is a new object that contains
pointers to copies of the objects contained by the original. Usually, deep copies are as
deep as possible. Objects within objects within objects are also copied to as deep a level as
necessary to copy every object in the containment hierarchy.

Cocoa classes that support copying all implement the Copying pattern to return a shal-
low copy.The result of copying an NSArray instance is a new instance that contains point-
ers to the same objects as the original.You are free to implement the pattern in your own
classes to produce shallow or deep copies depending on the needs of your applications.

One convenient way to obtain deep copies of Cocoa objects uses the Archiving and
Unarchiving pattern explained in Chapter 11,“Archiving and Unarchiving.” If the
object to be copied and all the objects contained within that object conform to Cocoa’s
NSCoding protocol, the following code will produce a deep copy. NSCoding is the
Objective-C protocol needed to support Archiving and Unarchiving.

id MYDeepCopyObject(id <NSCoding> anObject)

// This function accepts any object conforming the NSCoding protocol

// and returns a deep copy of that object. The object returned must

// be explicitly released unless automatic garbage collection is used.

{

return [[NSKeyedUnarchiver unarchiveObjectWithData:[NSKeyedArchiver

ptg5934432

139Examples in Cocoa

archivedDataWithRootObject:anObject]] retain];

}

Another issue to consider is the mutability of objects produced by copying. Mutability
refers to the ability to “mutate” or change an instance after the instance is created.An ob-
ject that can’t be changed after creation is called immutable. For example, once an instance
of Cocoa’s NSString class is created, the string data encapsulated by the NSString in-
stance can’t be changed. NSString doesn’t provide any methods that modify the con-
tained string directly. However, Cocoa provides a subclass of NSString,
NSMutableString, that does have methods for changing the contents of the string.There
are also mutable and immutable variants of other classes. For example, Cocoa provides
NSArray and its subclass NSMutableArray, NSDictionary and its subclass
NSMutableDictionary, and NSSet and its subclass NSMutableSet. Some common Cocoa
classes exist only in immutable forms.A partial list of immutable objects includes
NSColor, NSNumber, NSDate, and NSNotification.

Many, but not all, Cocoa classes use the concept of mutability, and programmers new
to Cocoa often ask why immutable objects exist.The best answer is to refer back to the
issue of pass-by-value semantics described in the Motivation section of this chapter.
Copying an object prevents changes made to the original from affecting the copy and
vice versa. However, if an object is immutable and therefore can’t be changed, there is no
need to make a copy. It’s safe to store the pointer to the immutable object without mak-
ing a copy. Immutable objects can be used as if they were ordinary pass-by-value C lan-
guage data types.

If a Cocoa object has both mutable and immutable variants, and the object is copied,
the resulting new object is always immutable. For example, if you send the -copy mes-
sage to an NSMutableSet instance, the object returned is an instance of the immutable
NSSet class.

In some cases, a -(id)mutableCopy method is available that will return a mutable
copy. For example, sending the -mutableCopy message to either an NSMutableSet or
an NSSet will return an instance of NSMutableSet. Mutable copying and the
NSMutableCopying protocol are explained in the next section.

Examples in Cocoa
Cocoa also defines the NSCopying Objective-C protocol to which objects that can be
copied conform. NSCopying declares exactly one method, -(id)copyWithZone:(NSZone
*)zone.The NSZone type and memory zones are introduced in Chapter 3. Cocoa’s
NSObject base class defines the -(id)copy method and implements the -copy method to
check whether the receiver of the -copy message conforms to the NSCopying protocol.
If the receiver does conform to NSCopying, the -copy method calls [self
copyWithZone:[self zone]]. However, NSObject’s implementation of the -copy
method generates an Objective-C exception if the receiver doesn’t conform to the
NSCopying protocol.Therefore, if you create a subclass of NSObject and your subclass

ptg5934432

140 Chapter 12 Copying

instances can be copied, your subclass must either conform to the NSCopying protocol or
override the inherited -copy method.

Implementing NSCopying
The following WordInformation class is a direct subclass of NSObject.
WordInformation is immutable and implements NSCopying to produce a shallow copy
and is part of the WordPuzzle example program available at www.CocoaDesignPatterns.
com. WordInformation is used in Chapter 11 and is extended here to implement
NSCopying:

@interface WordInformation : NSObject <NSCoding, NSCopying>

{

NSString *word;

NSString *clue;

NSMutableDictionary *puzzleSpecificAttributes;

}

@end

@implementation WordInformation

// Several methods are omitted to simplify this example

// NSCopying

- (id)copyWithZone:(NSZone *)aZone

{

return [self retain];

}

@end

The implementation of -copyWithZone: for an immutable class doesn’t need to make
a copy at all. It’s sufficient to return a retained pointer to the object because there is no
danger of the object being changed after it’s returned. Many Cocoa Accessor methods are
implemented using the -copy method, and the ability of immutable objects to skip actu-
ally copying when used in those Accessors is a substantial optimization.

The WordMutableInformation class is a mutable subclass of WordInformation.
WordMutableInformation implements shallow copying for a mutable object as follows:

@interface WordMutableInformation : WordInformation

{

}

@end

@implementation WordMutableInformation

ptg5934432

141Examples in Cocoa

// Several methods are omitted to simplify this example

// NSCopying

- (id)copyWithZone:(NSZone *)aZone

{

// initializer is called for the new instance of the

// immutable class

id result = [[[self class] allocWithZone:aZone]

initWithWord:[self word] clue:[self clue]];

[[result puzzleSpecificAttributes] addEntriesFromDictionary:

[self puzzleSpecificAttributes]];

return self;

}

@end

There is no need for the @interface declaration of WordMutableInformation to in-
clude the <NSCopying> protocol conformance identification because protocol confor-
mance is inherited from the WordInformation class.The WordMutableInformation
implementation of -copyWithZone: allocates a new instance of the immutable
WordInformation class from the specified memory zone.The new instance is then initial-
ized, and its properties are set to match the original’s.

Implementing Deep Copying
The following code extends the WordInformation class using the Category pattern
and the Archiving and Unarchiving pattern to provide deep copying.There is no for-
mal NSDeepCopying protocol, so the name of the -(id)deepCopy method that follows
is arbitrary:

@interface WordInformation (WordDeepCopyingSupport)

- (id)deepCopy;

@end

@implementation WordInformation (WordDeepCopyingSupport)

- (id)deepCopy

{

return [[NSKeyedUnarchiver unarchiveObjectWithData:[NSKeyedArchiver

archivedDataWithRootObject:self]] retain];

}

@end

ptg5934432

142 Chapter 12 Copying

The example -deepCopy method doesn’t specify a memory zone because zones are
seldom used in modern Cocoa applications.The requirement to specify a zone for the
-copyWithZone: method is really just a hold-over that provided backward compatibility
for ancient code.

The -(id)deepCopy method added to WordInformation is automatically inherited by
WordMutableInformation.The implementation of deep copying is the same regardless of
whether an object is mutable.There is a subtlety however; a shallow copy of a mutable
object returns an immutable object, but the implementation of -deepCopy for mutable
objects returns a mutable object.

To following Category adds support for deep copying to every object that conforms
to the NSCoding protocol:

@interface NSObject (DeepCopyingSupport)

- (id)deepCopy;

@end

@implementation NSObject (DeepCopyingSupport)

- (id)deepCopy

{

return [[NSKeyedUnarchiver unarchiveObjectWithData:[NSKeyedArchiver

archivedDataWithRootObject:self]] retain];

}

@end

NSKeyedArchiver’s -archivedDataWithRootObject: method will raise an Objective-
C exception if the object to be archived, self, doesn’t conform to NSCoding.

Implementing NSMutableCopying
Cocoa’s NSMutableCopying protocol declares exactly one method,
-(id)mutableCopyWithZone:(NSZone *)aZone. Just like NSObject provides an
implementation of -copy that calls -copyWithZone:, NSObject also provides a default
-(id)mutableCopy method that calls -mutableCopyWithZone:. If you send the
-mutableCopy message to an object that doesn’t either conform NSMutableCopying or
override the -mutableCopy method, NSObjects’s -mutableCopy implementation raises an
exception.

The following example extends the WordInformation class with an implementation
of shallow NSMutableCopying:

@interface WordInformation : NSObject <NSCoding, NSCopying,

NSMutableCopying>

ptg5934432

143Examples in Cocoa

{

NSString *word;

NSString *clue;

NSMutableDictionary *puzzleSpecificAttributes;

}

@end

@implementation WordInformation

// Several methods are omitted to simplify this example

// NSCopying

- (id)copyWithZone:(NSZone *)aZone

{

return [self retain];

}

// NSMutableCopying

- (id)mutableCopyWithZone:(NSZone *)aZone

{

// initializer is called for the new instance of the

// mutable class

id result = [[[self class] allocWithZone:aZone]

initWithWord:[self word] clue:[self clue]];

[[result puzzleSpecificAttributes] addEntriesFromDictionary:

[self puzzleSpecificAttributes]];

return self;

}

@end

There is no need to override WordInformation’s implementation of
-mutableCopyWithZone: in the WordMutableInformation class. WordInformation’s
implementation does everything needed regardless of whether the receiver of
-mutableCopyWithZone: is mutable.

Required Copying
When using your own classes with Cocoa, there are a few cases in which your classes
must implement NSCopying. For example, Cocoa’s NSDictionary class copies objects
that are used as keys.Therefore, every object used as a key in an NSDictionary must
conform to the NSCopying protocol.The Prototype pattern in Chapter 21 uses the
Copying pattern. Prototype objects are copied as needed. For example, instances of the

ptg5934432

144 Chapter 12 Copying

NSCell class are copied to fill the rows and columns of an NSMatrix instance. NSCell and
NSMatrix are described in Chapter 21 and in Apple’s Cocoa documentation at
http://developer.apple.com/documentation/Cocoa/.

Copying Objective-C 2.0 Properties
The Objective-C 2.0 Properties syntax introduced with Mac OS X 10.5 interacts with
the Copying pattern.The Properties syntax is used to automatically generate accessors for
an object’s properties. Properties are usually instance variables, but they can be imple-
mented using the Associative Storage pattern in Chapter 19,“Associative Storage,” or with
other techniques. Using the Objective-C 2.0 syntax, the publicly immutable
WordInformation class is declared as follows:

@interface WordInformation : NSObject <NSCoding, NSCopying,

NSMutableCopying>

{

NSString *word;

NSString *clue;

NSMutableDictionary *puzzleSpecificAttributes;

}

@property (readonly, retain) NSString *word;

@property (readonly, retain) NSString *clue;

@property (readonly, copy) NSMutableDictionary

*puzzleSpecificAttributes;

@end

The @property (readonly, retain) NSString *word; declaration tells users of the
class and the Objective-C 2.0 compiler how accessor methods that correspond to the
word property are implemented.The word and clue properties are declared readonly in
the class interface so that users of the class know a -(NSString *)word accessor method
will exist but can’t assume that a -(void)setWord:(NSString *)aString method will
exist.The fact that the word property is declared retain has no relevance to users of the
class, but it is very important within the implementation of WordInformation. Properties
that are initially declared readonly are frequently redeclared readwrite in a class exten-
sion as follows: (Class extensions are explained in Chapter 6,“Category.”)

@interface WordInformation ()

@property (readwrite, retain) NSString *word;

@property (readwrite, retain) NSString *clue;

@property (readwrite, copy) NSMutableDictionary

*puzzleSpecificAttributes;

@end

ptg5934432

145Examples in Cocoa

The redeclarations tell the compiler that -setWord:, -setClue:, and
-setPuzzleSpecificAttributes: Accessor methods exist for use solely within the class
implementation. In other words, the WordInformation class interface tells users of the
class that it is externally immutable even though the internal implementation of the class
may mutate properties.The compiler allows redeclarations to replace readonly with
readwrite, but no other attributes of the property can be changed in a redeclaration.The
retain attribute of the word and clue properties means that the corresponding
-setWord: and -setClue: methods retain their arguments as opposed to copying them.

The WordInformation class extension redeclares the puzzleSpecificAttributes
property as @property (readwrite, copy) NSMutableDictionary
*puzzleSpecificAttributes;.The copy attribute specifies that the argument to the
-setPuzzleSpecificAttributes: method will be copied within the implementation
as opposed to being merely retained.Therefore, the object passed to
-setPuzzleSpecificAttributes: must conform to the NSCopying protocol.

The Objective-C 2.0 compiler uses the assign attribute of properties when neither
retain nor copy is specified. Using either @property (readonly, assign) or
@property (readonly) produces identical results. However, the Objective-C 2.0 com-
piler generates a warning when a property declaration defaults to using the assign attrib-
ute for an object property that conforms to the NSCopying protocol.To avoid the
warning, you must explicitly specify one of the assign, retain, or copy attributes.

Use the following Objective-C 2.0 syntax to declare the WordMutableInformation
class:

@interface WordMutableInformation : WordInformation

{

}

@property (readwrite, retain) NSString *word;

@property (readwrite, retain) NSString *clue;

@property (readwrite, copy) NSMutableDictionary

*puzzleSpecificAttributes;

@end

Because the properties are declared readwrite in the class interface, users of the
WordMutableInformation class know its instances are mutable.The compiler will ensure
that accessor methods exist to both set and return the properties.The -(void)set-
Word:(NSString *)aString and -(void)setClue::(NSString *)aString methods re-
tain the respective properties.The -(void)setPuzzleSpecificAttributes:
(NSMutableDictionary *)aDictionary method copies the specified dictionary with
code similar to the following:

–(void)setPuzzleSpecificAttributes:(NSMutableDictionary *)aDictionary

{

if(puzzleSpecificAttributes != aDictionary)

ptg5934432

146 Chapter 12 Copying

{

[puzzleSpecificAttributes release];

puzzleSpecificAttributes = [aDictionary copy];

}

}

Avoid NSCopyObject()
Cocoa provides a C function called NSCopyObject(). Don’t use it.The NSCopyObject()

function makes an exact byte for byte copy of an object. If the object being copied has
instance variables that point to other objects, the pointers are copied, but the retain
counts of the objects are not incremented as required for Cocoa’s reference counted
memory management. Even if you use Objective-C 2.0 and automatic memory garbage
collection, NSCopyObject() doesn’t respect @property declarations and circumvents the
optional __strong and __weak declaration modifiers used with garbage collection.The
__strong and __weak declaration modifiers are documented at http://developer.apple.
com/documentation/Cocoa/Conceptual/GarbageCollection/Articles/gcAPI.html.

Consequences
The ability to copy objects is almost as fundamental as the ability to allocate and initialize
new instances. Cocoa relies on framework level conventions to allocate and initialize new
instances as explained in Chapter 3.The Copying pattern also relies on mere conventions
established by the Cocoa frameworks.The Copying pattern enables the use of value
semantics with objects and is used in the implementation of Accessors and the Prototype
pattern. However, correct implementation of copying conventions requires some
forethought by class designers. Support for Cocoa’s reference counted memory
management must be considered in the implementation of the Copying pattern.

The interdependence of Objective-C 2.0 properties and the NSCopying protocol blurs
the lines between framework features and compiler level language support. Prior to
Objective-C 2.0, it was possible to use every feature of the Objective-C language without
using Cocoa frameworks at all.Apple’s implementation of Objective-C 2.0 depends on
the NSCopying protocol and the Copying pattern as implemented by Cocoa.The source
code for the Objective-C 2.0 compiler is available from the Gnu Compiler Collection at
http://gcc.gnu.org/. Future versions may implement Objective-C 2.0 properties syntax
without dependence on Cocoa-specific protocols.

ptg5934432

III
Patterns That

Primarily Empower
by Decoupling

The patterns in Part III provide powerful built-in frame-
work features and enable you to control and extend those
features without introducing unnecessary coupling between
objects. Minimal coupling is a key guiding principle of
Cocoa’s design and the quality that most contributes to
programmer productivity.These patterns are some of the
most prominent and reused patterns in Cocoa.

Chapters in this part of the book include

13 Singleton

14 Notifications

15 Delegates

16 Hierarchies

17 Outlets, Targets, and Actions

18 Responder Chain

19 Associative Storage

20 Invocations

21 Prototype

22 Flyweight

23 Decorators

ptg5934432

13
Singleton

The Singleton pattern is used when there must be exactly one instance of a class, and it
must be easily accessible to other objects in an application. Usually, the Cocoa documen-
tation uses the term shared instance when the Singleton pattern is in use.

In Cocoa, one example of a Singleton is the NSApplication class. It maintains the ap-
plication’s connection to the window server for drawing and receiving events. Cocoa op-
tionally takes advantage of Dynamic Creation and Bundles to substitute an instance of
your own class for the default NSApplication instance.

Motivation
Define conventions for the creation of and access to an instance in cases where only one
instance of a class should be created. Often singletons represent physical devices.At other
times they represent virtual resources or other system properties that are singular and can-
not or should not be duplicated. It is useful to have a one-to-one relationship between
instances and the devices or concepts they represent.

Solution
Any class that uses the Singleton pattern must achieve three goals:

n Encapsulate a shared resource.
n Provide a standard way to create one shared instance.
n Provide a standard way to access the one shared instance.

Each goal has its own challenges and can be implemented many different ways using
Objective-C.The following sections describe the techniques used to implement the Sin-
gleton pattern in Cocoa and the trade-offs made.

ptg5934432

149Solution

Encapsulating a Shared Resource
A common question arises whenever the Singleton pattern is used with Objective-C:
Why create an instance instead of just using a class object? After all, Objective-C provides
true class objects that can receive messages and can be used in any context where other
objects are used, and Objective-C’s runtime assures that each class object is only stored in
memory once per application.The answer is subtle and has to do with flexibility and the
maintainability.A class can certainly be used to encapsulate a shared resource. Consider a
game written in Cocoa that includes a hypothetical class for managing storage of player
high scores on a particular computer. It might have an interface such as this:

@interface MYGameHighScoreManager : NSObject

{

}

+ (void)registerScore:(NSNumber *)score playerName:(NSString *)name;

+ (NSEnumerator *)scoreEnumerator;

The MYGameHighScoreManager class could provide a much more complicated inter-
face if necessary, but as long as all of the methods are class methods as denoted with the +
symbol, the class can be used without ever creating an instance. For example, when a
game is over, the player’s score may be registered by sending the
+registerScore:playerName: message directly to the MYGameHighScoreManager in
code similar to the following:

[MYGameHighScoreManager

registerScore:[NSNumber numberWithInt:[self score]]

playerName:[self playerName]];

The problem with using the class directly arises when it becomes necessary to subclass
MYGameHighScoreManager. If a subclass of MYGameHighScoreManager called
MYGameNetworkHighScoreManager is created, it becomes necessary to modify existing code
everywhere the MYGameHighScoreManager class is specified and use the
MYGameNetworkHighScoreManager class instead. In other words, hard coding the class name
everywhere the class is used reduces the flexibility to use a different class in the future.

Many techniques could be used to avoid hard coding a class name.The simplest ap-
proach is to use a global variable that stores a pointer to the class that should be used. For
example, the code to register a high score could be altered like this:

extern Class GameHighScoreClass;

[GameHighScoreClass

registerScore:[NSNumber numberWithInt:[self score]]

playerName:[self playerName]];

The global variable GameHighScoreClass would have to be initialized first, of course.
One of the following lines of code would have to appear during the application’s

ptg5934432

150 Chapter 13 Singleton

initialization, perhaps in the -applicationWillFinishLaunching: method of the
NSApplication’s delegate:

// Set up the default high score controller

GameHighScoreClass = [MYGameHighScoreManager class];

// Or alternatively, set up a specialized subclass to be used instead

GameHighScoreClass = [MYGameNetworkHighScoreManager class];

With the added flexibility of a global variable, it is no longer necessary to edit multiple
lines of code just to change the class used to manage high scores. However, using a global
variable brings with it all of the maintenance problems of unencapsulated variables.

One of the important features of object-oriented programming is a reduction of the
need for such global variables. Using a class to encapsulate a global variable is an ideal so-
lution. Classes exist to encapsulate information about instances and provide a single inter-
face for creating instances. Using an instance of MYGameHighScoreManager to manage
scores and using the MYGameHighScoreManager class itself to encapsulate access to the in-
stance is the cleanest way to achieve the goals of flexibility and maintainability.

The remainder of this chapter describes techniques for encapsulating the creation of a
single shared instance and providing access to the shared instance.Although a basic high
scores list as encapsulated by the MYGameHighScoreManager class is a simple shared re-
source, the pattern is applicable to any situation where a shared resource is used.

Creating and Accessing a Shared Instance
To have a shared instance, it is necessary to change the interface of
MYGameHighScoreManager so that the management is done with instance methods.A
class method also needs to be added to allow for access to the shared instance.A com-
monly chosen name is +sharedInstance. Here is the new interface:

@interface MYGameHighScoreManager : NSObject

{

}

+ (id)sharedInstance;

- (void)registerScore:(NSNumber *)score playerName:(NSString *)name;

- (NSEnumerator *)scoreEnumerator;

A basic implementation of the +sharedInstance method might be like this:

+ (MYGameHighScoreManager *)sharedInstance

{

static MYGameHighScoreManager *myInstance = nil;

if (!myInstance)

{

myInstance = [[[self class] alloc] init];

// any other special initialization as required here

}

ptg5934432

151Solution

return myInstance;

}

In this implementation, a local static variable is used to hold a pointer to the shared in-
stance.This forces all access to this value to pass through the +sharedInstance method.
It is initialized to nil by the compiler.The first time the method is called, the code to
create and initialize the shared object will be executed. Finally, the shared object is re-
turned to the caller.

Of special note is the call to +alloc. Instead of sending it to
MYGameHighScoreManager directly, we instead send it to [self class]. Normally they
would give the same result.We use this implementation because we want to take full ad-
vantage of Objective-C’s polymorphism. By dynamically looking up the class object at
runtime, this allows for the shared instance to be an instance of a particular subclass. So to
have the shared instance be a MYGameNetworkHighScoreManager object, code like this
would be placed in the application’s initialization code, probably in the
-applicationDidFinishLaunching: method of the NSApplication’s delegate:

extern Class MYGameNetworkHighScoreManager;

[MYGameNetworkHighScoreManager sharedInstance];

In this example, the return value is thrown away because the actual object isn’t needed.
The message is being sent only to trigger the creation of the shared instance and to en-
sure it is of the desired class.A similar technique can be used for most other Cocoa sin-
gletons if you want to make certain that your custom subclass is used for the shared
instance.

One obvious exception would the NSApplication shared instance, however. It is cre-
ated automatically by Cocoa before any of your code is executed! To solve this problem,
the Dynamic Creation pattern is used.To choose a particular subclass of NSApplication,
select the application target in Xcode, open the Info panel, and select Properties. In the
middle of the panel is a field titled Principal Class, where the name of your
NSApplication subclass can be specified, as shown in Figure 13.1 where
MyApplicationSubclass has been entered.

Making that change in Xcode actually sets the key NSPrincipalClass in the applica-
tion’s Info.plist file to the value you set.When Cocoa starts the application, it looks at this
value and uses Dynamic Creation to instantiate the requested class to be used as the
shared application object. If we wanted, we could use a similar scheme to avoid having to
call +sharedInstance early on in the application initialization. Here is the code for
+sharedInstance updated to look up the class name in the application’s Info.plist, using
the key MYGameHighScoreManagerClass.

+ (MYGameHighScoreManager *)sharedInstance

{

static MYGameHighScoreManager *myInstance = nil;

if (!myInstance)

{

NSBundle *mainBundle = [NSBundle mainBundle];

ptg5934432

152 Chapter 13 Singleton

Figure 13.1 Setting the NSApplication class in
Xcode

NSDictionary *info = [mainBundle infoDictionary];

NSString *className = [info objectForKey:

@"MYGameHighScoreManagerClass"];

Class *myClass = NSClassFromString(className);

if (!myClass)

{

myClass = self; // self is a class within a class method

}

myInstance = [[myClass alloc] init];

// any other special initialization as required here

}

return myInstance;

}

Now, to select the subclass to use, a value would be placed in the Application’s
Info.plist for the key MYGameHighScoreManagerClass. Notice that if the key is missing or
the lookup otherwise fails, this implementation falls back to the value returned by a call
to [self class].

ptg5934432

153Solution

Controlling Instantiation
To fully implement the Singleton pattern, it is necessary to prevent the creation of multi-
ple instances of a class.While the +sharedInstance method implementation controls the
creation and access of a single instance, it does not prevent other code from calling
+alloc to manufacture more instances. It is therefore necessary to make a few more
changes. Every method that causes the allocation of a new instance needs to be overrid-
den to prevent instantiation. Methods of concern would be +new, +alloc,
+allocWithZone:, -copyWithZone:, and -mutableCopyWithZone:. Our
+sharedInstance method needs to be adjusted as well so that it can allocate an instance
without calling the now overridden +alloc method. Here’s one way to accomplish this:

+ (id)hiddenAlloc

{

return [super alloc];

}

+ (id)alloc

{

NSLog(@"%@: use +sharedInstance instead of +alloc",

[[self class] name]);

return nil;

}

+ (id)new

{

return [self alloc];

}

+ (id)allocWithZone:(NSZone *)zone

{

return [self alloc];

}

- (id)copyWithZone:(NSZone *)zone

{ // -copy inherited from NSObject calls -copyWithZone:

NSLog(@"MYGameHighScoreManager: attempt to -copy may be a bug.");

[self retain];

return self;

}

- (id)mutableCopyWithZone:(NSZone *)zone

{

// -mutableCopy inherited from NSObject calls -mutableCopyWithZone:

return [self copyWithZone:zone];

}

ptg5934432

154 Chapter 13 Singleton

+ (MYGameHighScoreManager *)sharedInstance

{

static MYGameHighScoreManager *myInstance = nil;

if (!myInstance)

{

NSBundle *mainBundle = [NSBundle mainBundle];

NSDictionary *info = [mainBundle infoDictionary];

NSString *className = [info objectForKey:

@"MYGameHighScoreManagerClass"];

Class *myClass = NSClassFromString(className);

if (!myClass)

{

myClass = self;

}

myInstance = [[myClass hiddenAlloc] init];

// any other special initialization as required here

}

return myInstance;

}

The method +hiddenAlloc is considered private and is not declared in the class
header.This method could be omitted all together if the singleton will never be sub-
classed because a call to [super alloc] would work. However, because we want to allow
myClass to be determined dynamically at runtime, it is likely that the overridden +alloc
will be called when the +alloc message is sent. Calling +hiddenAlloc prevents this prob-
lem. Furthermore, if there is the possibility of subclassing, then it may be necessary for
subclass code to call or override the original super implementation of +alloc. By creat-
ing +hiddenAlloc, there is now a hook that subclassers may use if needed.

The new implementations of the object creation methods now log an error and return
nil.Alternatively, they could return the results of a call to +sharedInstance if a subse-
quent call to –init would be harmless. Often, it’s best to return nil. Some developers
will prefer to throw an exception instead of just returning nil, though that would be
considered extreme by others.

The new copying methods simply increase the retain count of the object so that the
semantics of the reference counting system remain unchanged.They do not return a new
instance, however.This preserves the Singleton nature of the class. Because technically
copying a singleton is an error that may signal a deeper bug in the calling code, it makes
sense to at least log a message when copying is attempted, though this isn’t strictly re-
quired. Depending on the context and programmer preferences, throwing an exception
or simply leaving out the log message might be preferred over this behavior.

ptg5934432

155Solution

Deallocation
Another issue with Singletons is the destruction of the shared instance. Because the in-
stance is created in +sharedInstance and never released, there should always be a retain
count of at least one as long as no buggy code calls -release more times than it should
have. So in theory the instance will never be deallocated. If a shared instance represents a
physical device, however, it may need to be given the opportunity to shut down cleanly if
the application is terminating.The best way to do this is to have the shared object register
for the NSApplicationWillTerminateNotification notification and shut down when it
is received.

Usually, a shared instance should be instantiated only once during the lifetime of an
application and only be shut down when the application terminates. In some applications
of this pattern, however, it may make sense to allow the shared instance to be deallocated
and then create a new instance later if it is needed again. If this is the case, things get a bit
messy. First, the myInstance static variable needs to be moved out of the implementation
of the +sharedInstance method so that other class methods can access it.Then a method
like +attemptDealloc needs to be created and called whenever your code wants to try to
deallocate the shared instance:

+ (void)attemptDealloc

{

if ([myInstance retainCount] != 1) return;

[myInstance release];

myInstance = nil;

}

If some other object is still retaining the shared object, then we don’t want to actually
attempt to deallocate it. If the class object is the only place left that is still retaining the
shared instance, then it’s safe to send the release message.And of course, this only works if
-dealloc hasn’t been overridden to prevent deallocation.

Considering it’s quite common to assume a shared instance will live until application
death, it’s also quite common for other objects to not retain it even if they keep references
to it.This is a dangerous practice, though. It is safer to never keep a pointer to the shared
instance and instead call +sharedInstance every time a reference is required.

Determining if the Singleton Has Been Created
In some cases it is useful to know if the shared instance has been created yet. Some Cocoa
classes allow this to be determined; others do not. For example, NSSpellChecker imple-
ments the method +sharedSpellCheckerExists that will return YES or NO. On the
other hand, NSApplication has no such method, given that it’s pretty safe to assume the
answer is always YES.

To add such a method to our singleton implementation, the static variable myInstance
needs to be moved out of the implementation of the +sharedInstance method so that

ptg5934432

156 Chapter 13 Singleton

other class methods can access it.Then an implementation of +sharedInstanceExists
might look like this:

+ (BOOL)sharedInstanceExists

{

return (nil != myInstance);

}

Thread Safety
When a singleton is intended for use by multiple threads in a multithreaded application, it
is crucial to implement it in a thread-safe manner.The previous example code omits any
attempt at being thread-safe to keep it simple and clear.This can still work well, given that
it is reasonable to assume that a game’s high score table will only be accessed from the
main thread. If a singleton will be used by multiple threads, however, care should be taken
to make properties atomic as deemed necessary and to use @synchronized() blocks or
NSLock instances as appropriate.

Working with Interface Builder
If a singleton will be used in Interface Builder, then it is necessary to make some alter-
ations to the previous example code.To make connections or bindings to the singleton, it
must be instantiated in Interface Builder, but this instantiation will operate through the
+alloc and -init methods and expect the normal semantic. Having +alloc return
nil will break things.The easiest way to fix this is to no longer treat a call to +alloc as
an error and just have it call +sharedInstance like this:

+ (id)alloc

{

return [self sharedInstance];

}

There is one additional concern, however.The -init method may now potentially be
called multiple times and therefore needs to be made re-entrant. For most singletons, the
best solution is to just have -init return immediately if it has already been called once.
For example:

- (id)init

{

if (![[self class] sharedInstanceExists])

{

// Normal initialization code goes here

}

return self;

}

ptg5934432

157Examples in Cocoa

Examples in Cocoa
There are several classes in Cocoa that are singletons.As mentioned at the start of this
chapter, NSApplication is one such example. It encapsulates the connection between a
Cocoa application and the window server. It receives events and distributes them to the
correct objects via the First Responder pattern. It also sends drawing commands. Finally,
it represents the application itself, handling all application-level events such as hiding and
quitting.The global variable NSApp is a pointer to the shared NSApplication instance.

Another example is NSWorkspace, which encapsulates the application’s communica-
tion with the Mac OS X Finder and underlying file systems. Because there is only one
Finder and it doesn’t make sense to have multiple connections to it, a singleton is used for
this class.

The NSFontManager class is also a singleton. It represents the collection of all the
fonts installed on the system and manages access to them so that all font objects can be
shared.This helps keep an application efficient given that NSFontManager will ensure
that only one instance of NSFont will ever be created for a given font installed on the
system. Because the system only has a single collection of fonts, the manager needs to be
a singleton itself.

Other examples are NSDocumentController, NSHelpManager, NSNull,
NSProcessInfo, NSScriptExecutionContext, and NSUserDefaults. Some of the stan-
dard panels such as NSColorPanel and NSFontPanel are also shared.As you learn about
new Cocoa objects, a quick glance at the class documentation will usually tell you if a
class is a singleton. Simply look for a class method with the word “shared” in the name.

In Cocoa, usually the method used to obtain a shared instance includes the word
“shared” and the name of the class minus the “NS” prefix. For example, use the method
+sharedWorkspace to obtain the shared NSWorkspace instance or +sharedApplication
to obtain the shared NSApplication instance.You might also see the more generic
+sharedInstance method used for some objects.

Shared instances can sometimes be obtained by calling the +new class method.This use
of the +new method is left over from prior versions of the frameworks and is deprecated.
The +new method played a crucial role in the earliest frameworks that were developed for
Objective-C but should not be used with Cocoa.

As Cocoa has matured, the shared nature of some Cocoa classes has changed. For ex-
ample, before the advent of sheets, there were single print and page layout panels for the
entire application. Bringing up either one would halt work in all windows until the panel
was dismissed.As such, the NSPrintPanel and NSPageLayout classes were singletons.
Now that they can appear multiple times simultaneously, as sheets on an application’s
windows, they are no longer shared objects.

Although these types of occurrences are rare, they can affect code that makes too
many assumptions about the shared nature of these objects. For example, some developers
would set up the print panel with some defaults early on and then assume that this setup
would appear automatically every time the panel was displayed.After sheets created the

ptg5934432

158 Chapter 13 Singleton

possibility of more than one print panel, this no longer held true, and code had to be
modified.

Consequences
One of the simplest patterns seen in Cocoa is called the “shared object” in Cocoa’s docu-
mentation.This is commonly known as a “Singleton.”A shared object is used in cases
where a particular class should be instantiated once and only once.

Perhaps the most obvious example of a shared object is the central application object.
Every Cocoa application has a single NSApplication instance.This makes sense; an object
that represents a running application should only appear once per application.

Several other Cocoa classes are also shared objects.These include objects representing
certain user interface panels such as the color and font panel and lower level objects such
as the font manager, some scripting objects, and objects representing system resources
such as the Finder.Any Cocoa objects that have a class method with the word “shared” in
the name are using some variant of this pattern.

It is not difficult to write code for new classes to make them behave as singletons.As
shown in this chapter, it is important to be aware of all class methods that have to do with
object creation, copying, and destruction. Documentation should direct users of the class
to use a specific method to obtain the shared instance.

To implement this pattern, the class object provides a method that is globally accessible
and can be used to obtain the shared-object instance.At the same time, the +alloc
method is disabled to prevent you from creating extra instances.The single, shared in-
stance is created the first time you ask for it, and then the same instance is returned every
time thereafter.

It is important to not over-apply this pattern when designing objects. Only make a
class be a singleton when it represents something that truly should exist only once. Some-
times things that initially seem to fit this criteria will no longer fit as an application
evolves. For example, if the hypothetical game used as an example in this chapter expands
to have multiple game play variants, then each will need its own high score table.The
Singleton approach for the high score table is no longer applicable in this case. Often, the
Manager pattern described in Chapter 28,“Managers,” becomes a better alternative.To
demonstrate this, the high score table example presented in this chapter is extended to
support multiple high score tables in Chapter 28.

ptg5934432

14
Notifications

The Notification pattern enables communication between objects without tight cou-
pling.An object is able to broadcast information to any number of other objects without
any specific information about the other objects.An instance of Cocoa’s NSNotification
class encapsulates the information to be broadcast. Objects that are interested in receiving
the information register themselves with an instance of Cocoa’s NSNotificationCenter
class. Registered objects are called observers, and the Notification pattern is sometimes
called the “Observer” pattern in other frameworks. Registered observers specify the types
of communication desired.

When a notification is sent to a notification center, the notification center distributes
the notification to appropriate observers.A single notification may be broadcast to any
number of observers.The object that sends a message to a notification center doesn’t need
to know what observers exist or how many observers ultimately receive the notification.
Similarly, the observers don’t necessarily need to know where notifications originate.
Figure 14.1 illustrates the relationships between a notification sender, a notification cen-
ter, and the observers.

The NSNotificationCenter class stores registered observers as Anonymous Objects
using the Heterogeneous Container pattern described in Chapter 7,“Anonymous Type
and Heterogeneous Containers.” Notification and Delegation are related patterns, and

ObserverObserver

Any Object

NSNotificationCenter

-postNotification:

-addObserver:selector:name:object::

Notification is delivered
using registered observer’s

specified selector.

Observer
NSNotification

name

object

userInfo

*

*
*

NSNotification instance is created and posted to an NSNotificationCenter.

Figure 14.1 Relationships between notification
centers and observers

ptg5934432

Delegation is explained in Chapter 15,“Delegates.” Notification is also similar to the Key
Value Observing pattern described in Chapter 32,“Bindings and Controllers.”

Motivation
Use the Notification pattern to establish anonymous communication between objects at
runtime.Within the Model View Controller design pattern, notifications safely cross sub-
system boundaries without tying the subsystems together. Model objects often generate
notifications that are ultimately received by controller objects, which react by updating
view objects. In the other direction, model and controller objects observe notifications
that may originate in the view or controller subsystems. For example, when a Cocoa ap-
plication is about to terminate, the NSApplication controller object posts the
NSApplicationWillTerminateNotification to the application’s default notification
center. Model objects that need to perform clean-up processing before the application
terminates register as observers to receive the NSApplicationWillTerminateNotification.

Use the Notification pattern to broadcast messages. Notifications may be posted by
any number of objects and received by any number of objects.The Notification pattern
enables one-to-many and many-to-many relationships between objects.

Use the Notification pattern with Cocoa’s NSDistributedNotificationCenter class
to achieve simple asynchronous interprocess communication.

Use the Notification pattern when anonymous objects need to passively observe and
react to important events. In contrast, use the Delegates pattern when anonymous objects
need to actively influence events as they happen.

Solution
The Notification pattern is not unique to Cocoa, and a simple version can be readily im-
plemented using Foundation classes along with the Anonymous Object, Heterogeneous
Containers, and Perform Selector patterns.The code in this section illustrates how design
patterns are combined to implement the Notification pattern, but the example doesn’t
necessarily reflect the internal implementations of Cocoa classes.A real application should
reuse Cocoa’s NSNotification and NSNotificationCenter classes. If you’re just inter-
ested in observing and sending notifications but not necessarily in how the pattern can be
implemented with other Cocoa patterns, skip ahead to the “Examples in Cocoa” section
of this chapter.

MYNotification
First, create a MYNotification class that will fill a role similar to Cocoa’s
NSNotification class. Instances of the MYNotification class encapsulate information
about notifications, as shown in the following code:

@class MYNotification : NSObject

{
NSString *name; // Identifies the notification
id object; // an anonymous object

160 Chapter 14 Notifications

ptg5934432

161Solution

NSDictionary *infoDictionary; // arbitrary associated info
}

- (id)initWithName:(NSString *)aName object:(id)anObject
userInfo:(NSDictionary *)someUserInfo;

@property (readonly, copy) NSString *name;
@property (readonly, assign) id object;
@property (readonly, copy) NSDictionary *infoDictionary;

@end

The MYNotification class has the following straightforward implementation:

@interface MYNotification ()

// Re-declare the properties so that their values can be set by methods
// within the implementation of this class.
@property (readwrite, copy) NSString *name;
@property (readwrite, assign) id object;
@property (readwrite, copy) NSDictionary *infoDictionary;

@end

@implementation MYNotification

@synthesize name;
@synthesize object;
@synthesize infoDictionary;

- (id)initWithName:(NSString *)aName object:(id)anObject
userInfo:(NSDictionary *)someUserInfo

{
[self setName:aName];
[self setObject:anObject];
[self setInfoDictionary:someUserInfo];

return self;
}

- (void)dealloc
{
[self setName:nil];
[self setObject:nil];
[self setInfoDictionary:nil];
[super dealloc];

}

@end

ptg5934432

MYNotificationCenter
Instances of the MYNotificationCenter class store information about observers in a Het-
erogeneous Container called observersDictionary. MYNotificationCenter is similar to
Cocoa’s NSNotificationCenter class.

@class MYNotificationCenter : NSObject

{

NSMutableDictionary *observersDictionary;

}

+ (id)defaultCenter;

- (void)addObserver:(id)notificationObserver

selector:(SEL)notificationSelector

name:(NSString *)notificationName

object:(id)objectOfInterest;

- (void)removeObserver:(id)notificationObserver;

- (void)postNotification:(MYNotification *)aNotification;

- (void)postNotificationName:(NSString *)aName

object:(id)objectOfInterest userInfo:(NSDictionary *)someUserInfo;

@end

Call MYNotificationCenter’s -addObserver:selector:name:object: method to
register an observer.The first argument is the observer being registered.The second
argument is a selector that identifies the Objective-C message to be sent to the
observer when an appropriate notification is posted.The selector must specify a method
that takes one argument, and that argument must be a pointer to a notification instance.
Selectors are explained in Chapter 9,“Perform Selector and Delayed Perform.”The
third and fourth arguments, name: and object:, identify which notifications the
observer is interested in receiving. Only notifications with names that match the
specified name are delivered to the registered observer. If an observer wants to receive
multiple kinds of notification, the observer can register with the notification center
multiple times, specifying a different notification name each time. Similarly, the
object: argument identifies an object of interest to the observer. Only notifications
with objects that match the specified object are delivered to the registered observer.
The MYNotificationCenter class provides a little bit more flexibility with object
argument: If nil is specified, all notifications that match the specified name are
delivered regardless of the notification’s object.

In many respects, MYNotificationCenter duplicates the capability of
NSNotificationCenter. However, when using Cocoa’s NSNotificationCenter class, if
the name: argument to -addObserver:selector:name:object is nil, the observer is

162 Chapter 14 Notifications

ptg5934432

163Solution

registered to receive all notifications associated with the specified object: argument.
The MYNotificationCenter class doesn’t allow registration with a nil notification
name.

Objects that are registered to observe notifications eventually need to be unregis-
tered.The convention adopted by Cocoa is that registered observers unregister them-
selves by calling the notification center’s –removeObserver: method. One call to a
notification center’s –removeObserver: unregisters all of the observer’s previous regis-
trations with that center.The most common place to call –removeObserver: is within
the observer’s –dealloc implementation. It’s an error to leave a deallocated object
registered as an observer.

Note
When using Cocoa’s automated memory garbage collection introduced in Objective-C 2.0
with Mac OS X 10.5, NSNotificationCenter automatically unregisters observers that are
no longer in use somewhere else in the application.

Neither MYNotificationCenter nor Cocoa’s NSNotificationCenter retain ob-
servers or the objects observers are interested in. If they did retain registered observers, it
would likely cause retain cycles that prevent observer deallocation.The observers’
-dealloc would never be called because each observer would still retained by the
notification center.

The following simple private class stores the information about registered observers
but doesn’t retain the observer or the object of interest to the observer:

@interface _MYNotificationObserverRecord : NSObject

{

id object; // anonymous object of interest

id observer; // anonymous observer

SEL selector; // selector to call

}

@property (readwrite, assign) id object;

@property (readwrite, assign) id observer;

@property (readwrite, assign) SEL selector;

@end

The implementation of _MYNotificationObserverRecord includes only the synthesis
of methods for accessing the class’ properties.

@implementation _MYNotificationObserverRecord

@synthesize object;

@synthesize observer;

ptg5934432

164 Chapter 14 Notifications

@synthesize selector;

@end

MYNotificationCenter stores _MYNotificationObserverRecords indirectly:
MYNotificationCenter’s observersDictionary is a mutable dictionary of mutable ar-
rays keyed to notification names, and each array stores MYNotificationObserverRecord
instances.

@interface MYNotificationCenter ()

@property (readwrite, retain) NSMutableDictionary *observersDictionary;

@end

@implementation MYNotificationCenter

@synthesize observersDictionary;

+ (id)defaultCenter

{

// The shared "default" instance created as needed

static id sharedNotificationCenter = nil;

if(nil == sharedNotificationCenter)

{

sharedNotificationCenter = [[MYNotificationCenter alloc] init];

}

return sharedNotificationCenter;

}

// Designated initializer

- (id)init

{

if(nil != (self = [super init]))

{

[self setObserversDictionary:[NSMutableDictionary dictionary]];

}

return self;

}

ptg5934432

165Solution

- (void)dealloc

{

[self setObserversDictionary:nil];

[super dealloc];

}

- (void)addObserver:(id)notificationObserver

selector:(SEL)notificationSelector

name:(NSString *)notificationName

object:(id)objectOfInterest

{ // This class requires a non-nil notificationName, NSNotification

// has no corresponding restriction.

NSParameterAssert(notificationName);

_MYNotificationObserverRecord *newRecord =

[[[_MYNotificationObserverRecord alloc] init] autorelease];

[newRecord setObject:objectOfInterest];

[newRecord setObserver:notificationObserver];

[newRecord setSelector:notificationSelector];

// There is an array of observer records for each notification name

NSArray *observers = [observersDictionary

objectForKey:notificationName];

if(nil != observers)

{

[observers addObject:newRecord];

}

else

{ // This is the first observer record for notificationName so

// create the array to store this observer record and all

// future observer records for the same notificationName.

[observersDictionary setObject:[NSMutableArray

arrayWithObject:newRecord]

forKey:notificationName];

}

}

- (void)removeObserver:(id)notificationObserver

{

if(nil != notificationObserver)

{

for(NSMutableArray *observers in [self observersDictionary])

ptg5934432

166 Chapter 14 Notifications

{

NSInteger i;

for(i = [observers count] - 1; i >= 0; i—)

{

currentObserverRecord = [observers objectAtIndex:i];

if(notificationObserver == [currentObserverRecord

observer])

{

[observers removeObjectAtIndex:i];

}

}

}

}

}

- (void)postNotification:(MYNotification *)aNotification

{

NSParameterAssert(aNotification);

NSAssert(nil != [aNotification name], @"nil notification name");

NSArray *observers = [observersDictionary objectForKey:

[aNotification name]];

for(id currentObserverRecord in observers)

{

id object = [currentObserverRecord object];

if(nil == object || object == [aNotification object])

{ // observer is either interested in notifications for all

// objects or at least this object.

[[currentObserverRecord observer] performSelector:

[currentObserverRecord selector] withObject:

aNotification];

}

}

}

- (void)postNotificationName:(NSString *)aName

object:(id)objectOfInterest

userInfo:(NSDictionary *)someUserInfo;

{ // This method creates a suitable MYNotification instances and

// then posts it.

MYNotification *newNotification = [[[MYNotification alloc]

ptg5934432

167Solution

initWithName:aName object:objectOfInterest

userInfo:someUserInfo] autorelease];

[self postNotification:newNotification];

}

@end

The sample application provided at www.CocoaDesignPatterns.com includes some
test cases for the MYNotification and MYNotificationCenter classes.

Associative Storage
The MYNotificationCenter implementation uses the Associative Storage pattern ex-
plained in Chapter 19,“Associative Storage.” Associative Storage, embodied by Cocoa’s
NSDictionary class, allows you to store arbitrary objects associated with other objects
called keys.The idea is that you can later quickly look up the object based on its key. In
the MYNotificationCenter example, notification names are used as keys to look up ar-
rays that contain _MYNotificationObserverRecord instances.

There is another subtler use of Associative Storage: Both the MYNotification class
and Cocoa’s NSNotification class allow you to pass along a “userInfo” dictionary with
each notification.The “userInfo” dictionary can contain any combination of key value
pairs that makes sense for your application. Some of the notifications posted by Cocoa
classes make use of the extra information passing capability. For example, Cocoa’s
NSTextView class posts the NSTextViewDidChangeSelectionNotification whenever
the user’s selection changes.The NSTextViewDidChangeSelectionNotification pro-
vides the range of the previous selection using the key, NSOldSelectedCharacterRange,
in the notification’s “userInfo” dictionary.The following code shows how an object regis-
ters itself to receive the NSTextViewDidChangeSelectionNotification notification.

[[NSNotificationCenter defaultCenter]

addObserver:self

selector:@selector(textViewSelectionDidChange:)

name:NSTextViewDidChangeSelectionNotification

object:nil];

An implementation of –(void)textViewSelectionDidChange:(NSNotification
*)aNotification uses the notification’s “userInfo” as follows:

–(void)textViewSelectionDidChange:(NSNotification *)aNotification

{

NSValue *oldSelectionRangeValue = [[aNotification userInfo]

objectForKey:@"NSOldSelectedCharacterRange"];

NSRange oldSelectionRange = [oldSelectionRangeValue rangeValue];

// Do something with oldSelectionRange

}

ptg5934432

168 Chapter 14 Notifications

Examples in Cocoa
The Notification pattern is commonly used within Cocoa, and Apple provides a “Notifi-
cations” section in the documentation for each class that posts notifications. Cocoa classes
post their notifications to the default notification center obtained via
NSNotificationCenter’s +defaultCenter method.You are also free to use the default
notification center. Programmers rarely create application-specific notification centers.

Global Notification Names
Notification names are NSString instances.Cocoa class documentation lists the notifications
posted by each class by identifying global notification names with symbols like
NSApplicationDidFinishLaunchingNotification,NSApplicationDidUpdateNotification,
and NSTableViewColumnDidResizeNotification.Apple recommends that you copy and paste
the notification name symbols into your code exactly as shown in the documentation.

If you look in the Cocoa header files, you will find declarations like the following:
extern NSString *NSTableViewColumnDidResizeNotification;

If you could see Apple’s source code, you would find the
NSTableViewColumnDidResizeNotification global variable initialized similar to the
following:

NSString *NSTableViewColumnDidResizeNotification =

@"NSTableViewColumnDidResizeNotification";

What this means is that for practical purposes, the following two code samples produce
the same result:

// Register for notifications using the global symbol

[[NSNotificationCenter defaultCenter]

addObserver:self

selector:@selector(tableViewColumnDidResize:)

name:NSTableViewColumnDidResizeNotification

object:nil];

//Register for notifications using a local NSString constant

[[NSNotificationCenter defaultCenter]

addObserver:self

selector:@selector(tableViewColumnDidResize:)

name:@"NSTableViewColumnDidResizeNotification"

object:nil];

The global strings declared in the Cocoa header files can be used interchangeably with
the same string values defined as local variables in your code. Use the framework supplied
global variable to avoid hard coding constant strings in your code.

ptg5934432

169Examples in Cocoa

“Will” and “Did” Notifications
Cocoa’s notification names consistently use a naming pattern that helps you determine
which notifications you want to observe. Names that include the word “Will” are used for
notification that tell observers about something that is about to happen. Names that in-
clude the word “Did” are for notifications that tell observers about something that already
happened. In some cases, both types of notification are provided for the same event. For
example, NSApplication posts both NSApplicationWillHideNotification and
NSApplicationDidHideNotification.

Synchronous Versus Asynchronous Notifications
Posting a notification to an NSNotificationCenter is synchronous.What that means is
that when you post a notification with -postNotification: or any of the related
NSNotificationCenter methods, the notification is delivered to all appropriate registered
observers before -postNotification: returns control to your code.The synchronous
behavior also means that you should be mindful of the consequences when you imple-
ment methods to react to notifications. If you perform lengthy operations in your notifi-
cation handling code, you delay the receipt of the notification by other objects and delay
return to the code that posted the notification.

One common trick used to initiate complex processing in response to a notification is
to use delayed perform. In your notification handling code, schedule a future message and
return immediately as follows:

- (void)tableViewSelectionDidChange:(NSNotification *)aNotification

{ // schedule a future message and return from the method

[self performSelector:@selector(doComplexProcessing:)

withObject:[aNotification object] afterDelay:0.0f];

}

- (void)doComplexProcessing:(id)anObject

{ // Do some complex processing based on anObject

}

When you need more complex asynchronous behavior than just delaying a message,
use Cocoa’s NSNotificationQueue class. NSNotificationQueue instances implement an
asynchronous First In First Out (FIFO) queue.When you call NSNotificationQueue’s
- (void)enqueueNotification:(NSNotification *)notification post-

ingStyle:(NSPostingStyle)postingStyle coalesceMask:(NSUInteger)coalesce-

Mask forModes:(NSArray *)modes method, the specified notification is placed in the
back of a queue, and control is returned to the caller. Based on the values of
postingStyle, coalesceMask, and modes, at some later time the NSNotificationQueue
posts the notification to an NSNotificationCenter. From that point on, the notification
is processed synchronously by the NSNotificationCenter. Figure 14.2 identifies the rela-
tionships between the object that enqueues a notification, the notification queue, the
notification center, and the registered observers.

ptg5934432

170 Chapter 14 Notifications

Every thread in a Cocoa application has a default notification queue instance that’s ac-
cessed via the NSNotificationQueue class method, + (NSNotificationQueue *)de-
faultQueue.The default notification queue posts notifications to its thread’s default
notification center. Just like you can create your own application-specific notification
centers, you can also create application-specific notification queues. For example, the fol-
lowing code allocates two new notification queues that will both post notifications to the
same hypothetical pre-existing myApplicationSpecificNotificationCenter object.

NSNotificationQueue *applicationSpecificNotificationQueue1 =

[[NSNotificationQueue alloc]

initWithNotificationCenter:myApplicationSpecificNotificationCenter];

NSNotificationQueue *applicationSpecificNotificationQueue2 =

[[NSNotificationQueue alloc]

initWithNotificationCenter:myApplicationSpecificNotificationCenter];

The postingStyle: argument to NSNotificationQueue’s -enqueueNotification:
postingStyle:coalesceMask:forModes: supports three styles: NSPostASAP,
NSPostWhenIdle, and NSPostNow.The NSPostASAP style directs the queue to post the no-
tification at the beginning of the next run loop iteration and is effectively identical to the
-performSelector:withObject:afterDelay: example provided earlier in this section.
Cocoa’s run loop is documented at http://developer.apple.com/documentation/Cocoa/
Reference/Foundation/Classes/NSRunLoop_Class/Reference/Reference.html.The
NSPostWhenIdle style directs the queue to post the notification the next time the Cocoa
run loop is idle, meaning that there are no user events or other input sources with data
ready for processing. Finally, the NSPostNow style directs the queue to post the notification
immediately and synchronously.The only difference between enqueuing a notification
with NSPostNow style and just calling a Notificationcenter’s –postNotification:

ObserverObserver

Any Object

NSNotificationCenter

-postNotification:

-addObserver:selector:name:object:::

Notification is delivered
using registered observer’s

specified selector.

Observer

NSNotification

name

object

userInfo

*
*

NSNotification instance is created and enqueued in NSNotificationQueue.*

NSNotificationQueue

-enqueueNotification:postingStyle:
coalesceMask:forModes:

Posts Notification Later

Returns Immediately

Figure 14.2 Relationships between notification queues and notification centers

ptg5934432

171Examples in Cocoa

method is that NSNotificationQueue will still coalesce duplicate notifications that might
have been waiting in the queue. Coalescing just means that multiple similar enqueued
notifications can be combined into one and only posted once.

The coalesceMask: argument allows you to specify how you want the queue to han-
dle multiple similar notifications.The available options are
NSNotificationNoCoalescing, NSNotificationCoalescingOnName, and
NSNotificationCoalescingOnSender.You can specify both NSNotification

CoalescingOnName and NSNotificationCoalescingOnSender by using the C language
bit-wise “or” operator. If they are both specified, only enqueued notifications that share
both the same name and the same object are coalesced.

The forModes: argument allows you to specify an array of run loop modes in which
the queue is allowed to post notifications. If you specify nil for the forModes: argument,
the queue will only post notifications when the run loop is in NSDefaultRunLoopMode.
The NSRunLoop class documentation provides a description of the available modes.

Distributed Notifications
Cocoa provides a mechanism for posting notifications that are transmitted to all applica-
tions running on the same computer.These distributed notifications have some limita-
tions and are relatively inefficient compared to other interapplication communication
techniques, but they are very simple to use. Each Cocoa application has a default instance
of the NSDistributedNotificationCenter class that is accessed via NSDistributed
NotificationCenter’s +defaultCenter method.

NSDistributedNotificationCenter is a subclass of NSNotificationCenter, so noti-
fications are posted to the default NSDistributedNotificationCenter in the same way
they are posted to a regular NSNotificationCenter, via the -postNotification:
method. Notifications posted to distributed notification centers are asynchronous and are
therefore not received immediately when they are posted. NSDistributedNotification
Center provides the -(void)postNotificationName: (NSString *)notificationName

object:(NSString *)notificationSender userInfo: (NSDictionary *)userInfo

deliverImmediately:(BOOL)deliverImmediately method so that you are able to spec-
ify how to handle the situation when some of the observers are suspended by the operat-
ing system and therefore not running.

The object: argument of notifications that are posted to a NSNotificationCenter is
required to be an instance of NSString.With distributed notifications, the object: argu-
ments originate in different applications from the observers.Therefore, distributed notifi-
cations are filtered based on the string value of the object: argument instead of its
address.The userInfo: argument to distributed notifications is encoded via the Archiv-
ing and Unarchiving pattern explained in Chapter 11,“Archiving and Unarchiving.”
Therefore, all objects in the userInfo: dictionary are required to implement Archiving
and Unarchiving.

Objects are registered to observe distributed notifications by using one of two
NSDistributedNotificationCenter methods: -(void)addObserver:(id)anObserver

ptg5934432

172 Chapter 14 Notifications

selector:(SEL)aSelector name:(NSString *)notificationName object:

(NSString *)anObject or -(void)addObserver:(id)anObserver selector:(SEL)
aSelector name:(NSString *)notificationName object:(NSString *)anObject

suspensionBehavior:(NSNotificationSuspensionBehavior)suspensionBehavior.
NSDistributedNotificationCenter’s -setSuspended: method is used to suspend

distribution of distributed notifications to observers. If -setSuspended: is called with
YES as the argument, the distributed notification center for that application temporarily
stops receiving notifications.The NSApplication object in Application Kit-based applica-
tions automatically calls -setSuspended:YES when the application is inactive and
calls -setSuspended:NO when the application becomes active. Cocoa applications that
don’t use the Application Kit framework need to explicitly manage suspension of distrib-
uted notifications by calling -setSuspended: when appropriate.

The notifications that are posted but not received by a suspended application are
handled in one of four ways depending on the suspensionBehavior: argument to
-addObserver:selector:name:object:suspensionBehavior:.The available behaviors
are enumerated by Cocoa’s NSNotificationSuspensionBehavior type, which defines
the following constants: NSNotificationSuspensionBehaviorDrop, NSNotification
SuspensionBehaviorCoalesce, NSNotificationSuspensionBehaviorHold, and
NSNotificationSuspensionBehaviorDeliverImmediately.

If NSNotificationSuspensionBehaviorDrop is used, distributed notifications that
would otherwise be received are not received and are not queued for later delivery. If
NSNotificationSuspensionBehaviorCoalesce is used, at most one notification with
each matching name and object arguments queued for delivery when the observer is no
longer suspended. If NSNotificationSuspensionBehaviorHold is used, notifications are
queued, and they are all delivered when the observer is no longer suspended.The number
of notifications that can be queued is undefined but is likely subject to operating system
resource constraints. For that reason, caution must be used when specifying
NSNotificationSuspensionBehaviorHold to avoid misuse of system resources. Finally, if
NSNotificationSuspensionBehaviorDeliverImmediately is used, notifications are sent
to observers immediately regardless of whether the distributed notifications are sus-
pended.The “deliver immediately” behavior should only be used for critical notifications
that cannot be delayed or ignored.

Observers are removed for the distributed notification center with the -remove
Observer:name:object: method that NSDistributedNotificationCenter inherits
from its superclass, NSNotificationCenter.When an object registered to observe distrib-
uted notifications is deallocated, the observer must remove itself from all notification cen-
ters, or there is a risk that notifications will be sent to deallocated objects.

Consequences
The biggest weakness of the Notification pattern is that class designers must anticipate the
need for notifications.The developers at Apple were able to anticipate that programmers
would want to do something special when a window is about to be closed and provided

ptg5934432

the NSWindowWillCloseNotification.There is a trade-off. Posting a notification takes
some processor time even when there are no registered observers for the notification. It’s
not practical to post a notification for every single application state change.Therefore, de-
signers must find a balance between too many and too few notifications.

The Delegates pattern in Chapter 15 is closely related to the Notification pattern. In
fact, Cocoa classes use the Delegate pattern in many of the same cases that notifications
are used.As a general rule, use Notifications when there are potentially many objects that
may observe the notification. Use the Delegates pattern when exactly one object is given
an opportunity to influence or react to changes as they are happening.

173Consequences

ptg5934432

This page intentionally left blank

ptg5934432

15
Delegates

A delegate is an object that’s given an opportunity to react to changes in another object
or influence the behavior of another object.The basic idea is that two objects coordinate
to solve a problem. One object is very general and intended for reuse in a wide variety of
situations. It stores a reference to another object, its delegate, and sends messages to the
delegate at critical times.The messages may just inform the delegate that something has
happened, giving the delegate an opportunity to do extra processing, or the messages may
ask the delegate for critical information that will control what happens.The delegate is
typically a unique custom object within the Controller subsystem of your application.

Delegates are one of the simplest and most flexible patterns in Cocoa and are made
possible by the use of the Anonymous Type pattern described in Chapter 7,“Anonymous
Type and Heterogenous Containers.” Delegates highlight key advantages of using anony-
mous objects when designing reusable classes.

Motivation
Delegates simplify the customization of object behavior while minimizing coupling be-
tween objects. Cocoa’s NSWindow class uses a delegate to control window behavior.
NSWindow is a very general class that encapsulates all aspects of windows in a graphical
user interface.Windows can be resized and moved.They have embedded controls for
closing, minimizing, or maximizing the window.Almost all graphical Cocoa applications
use windows, yet window handling must be customized in many cases. For example, an
application may need to constrain the size of a window or give users a chance to save
changes to the content of a window before the window closes.

One way to customize the behavior of the standard NSWindow class is to subclass it and
implement new behaviors in the subclass. However, subclassing requires very tight cou-
pling between the subclass and its superclass. Overuse of subclassing results in the creation
of many classes that are application-specific and not very reusable. Subclassing statically
establishes the relationship between the subclass and its superclass at compile time. In
many cases, runtime flexibility is desired. For example, constraints on the resizing behav-
ior of a window might change based on user actions at runtime. More importantly, the
logic used to customize window behavior may depend on details of the application’s

ptg5934432

176 Chapter 15 Delegates

implementation. In the Model View Controller pattern emphasized throughout Cocoa,
windows are clearly part of the view subsystem, but application details are better encapsu-
lated within the model or controller subsystems. Subclassing NSWindow to add application
logic causes a contamination between the separate subsystems.

Thanks to the use of delegates, there is usually no need to subclass the NSWindow.The
NSWindow class has a delegate and sends messages to the delegate just before the window
is resized, closed, or otherwise modified.When the window’s delegate receives messages
sent by the window, the delegate can perform necessary application-specific processing
such as checking to see if the window contains any unsaved changes before it is closed
and if so, giving the user a chance to save the changes or cancel the operation.The dele-
gate can be part of the controller subsystem and have little coupling to other subsystems.
All the delegate has to do is implement the appropriate methods corresponding to mes-
sages that the window will send to it.

Using delegates simplifies application development. In many cases, this pattern is si-
multaneously simpler to implement and more flexible than the alternative.The delegate is
free to implement some, all, or none of the methods corresponding to delegate messages.
A single object can be the delegate of multiple objects. For example, a single object might
be the delegate for all of the windows in an application. Conversely, every window might
have a different delegate, or the delegate might be changed at runtime.

To further explore the motivation behind the Delegates pattern, consider the client
side of a hypothetical client-server application.The client application establishes a single
network connection to a server and displays any number of data windows containing in-
formation obtained from the server.The client application may provide many other types
of windows as well such as font panels, spelling checkers, user preferences, and so on. If at
any time, the user closes the last data window, he or she should be presented with the op-
tion to close the network connection to the server or leave it open for future use. Now
consider the information needed to implement this functionality. Determining whether
the window being closed is the last open data window requires information about (cou-
pling with) all other open data windows.The ability to close a network connection re-
quires detailed information about (coupling with) networking classes. Implementing this
behavior within a subclass of NSWindow couples that subclass, which is part of the View
subsystem, to networking classes that are clearly not part of the View subsystem. Further-
more, giving every open data window information about every other open data window
can easily result in difficult to maintain spaghetti code as suggested by Figure 15.1 in
which arrows indicate coupling between objects.

In contrast, when the Delegates pattern is used, each window only has information
about its delegate. Figure 15.2 identifies the coupling between the windows and one ob-
ject that serves as the delegate for all data windows.The lines are drawn dashed to indi-
cate that the coupling is very weak. Each window has little information about its delegate
except that the delegate may be able to receive some of the messages the window might
send.The delegate merely keeps a count of the number of open data windows without
any specific information about the windows themselves.

ptg5934432

177Motivation

Data Window Data Window

Data WindowData Window

Data Window

Network

Figure 15.1 Coupling between objects when NSWindow is
subclassed to implement application behavior

Data Window Data Window

Data WindowData Window

Data Window

Network

Delegate

Figure 15.2 Coupling between objects when the Delegates
pattern is used

Because the coupling between the data windows and the delegate is so loose, it’s very
likely that modification to either the windows or the delegate can be made without
affecting the other objects, and that’s a worthwhile goal. For example, consider what
happens when the client application is enhanced so that different data windows can show

ptg5934432

178 Chapter 15 Delegates

Data Window Data Window

Data WindowData Window

Data Window

Network

DelegateDelegate

Network

Figure 15.3 Coupling between objects when multiple delegates are used

data from different servers. Figure 15.3 shows one possible implementation that takes ad-
vantage of the Delegates pattern.

Because the Delegates pattern is used, there is no need to change any code to enable
multiple network connections.The delegate referenced by each window is assigned at
runtime.When the last window that shows data from one particular server is closed, the
delegate can give the user the option to close the connection to that server without im-
pact to connections maintained by other delegates to other servers.

Delegates eliminate one of the most common situations in which multiple-inheritance
may be desired. If the design goal is to close a network connection when the last window
that displays content from the connection is closed, it might be tempting to try and create
a new class that inherits both the ability to manage a network connection and the ability
to manage window closing. However, multiple-inheritance is not supported by the
Objective-C language, and the Delegates pattern provides a more flexible and simpler
solution than trying to merge two separate inheritance hierarchies.

The Delegates pattern is very general and can be used in many situations.The em-
phasis so far on NSWindow’s delegate just shows one of the most obvious examples.
Many Cocoa classes support the use of delegates as an alternative to subclassing. For
example, Cocoa’s NSApplication class uses a delegate to provide specialized processing
in common situations such as when a Cocoa application has just finished launching or
when it’s about to be quit.

Having an alternative to subclassing becomes more and more important as classes get
more complex. Cocoa classes such as NSBrowser are sufficiently complex that subclassing

ptg5934432

179Solution

them without introducing errors is challenging. In contrast, a class created to act as the
delegate for an NSBrowser instance may be a direct subclass of NSObject, and it can be
implemented very simply with a focus on only the capabilities unique to the application
being built.

Note
Apple’s class documentation for each Cocoa class that uses a delegate includes a section
titled “Methods Implemented by the Delegate.” The section describes each message that in-
stances of the class send to a delegate and the circumstances under which the message
will be sent. Objects acting as delegates are free to implement any subset of the docu-
mented delegate messages.

Solution
A delegate is an object referenced using Objective-C’s anonymous type, id.The reference
to the delegate is typically an instance variable named delegate, and methods that use the
Accessors pattern described in Chapter 10, “Accessors,” are provided to set or return the
current delegate object.The following simple MYBarView class provides a typical imple-
mentation of delegate support:

@interface MYBarView : NSView

{

IBOutlet id delegate; //! The delegate if any

NSColor *barColor; //! The color of the bar

float barValue; //! The value (0.0 to 1.0) to indicate

}

//! Accessors

- (id)delegate;

- (void)setDelegate:(id)anObject;

- (float)barValue;

- (void)setBarValue:(float)aValue;

- (NSColor *)barColor;

- (void)setBarColor:(NSColor *)aColor;

//! Actions

- (IBAction)takeBarValueFrom:(id)sender;

@end

In Cocoa, the NSView class encapsulates a rectangular area within a window and en-
ables drawing within that area. MYBarView is a subclass of NSView that fills a portion of its
area with a colored bar. Figure 15.4 shows a screen shot of a simple Cocoa application
that displays several instance of the MYBarView class.

The MYBarView class implemented in the remainder of this section allows a delegate to
control instance operation:The delegate object can provide easy application-specific
control over the range of values that can be shown by each instance of MYBarView.The

ptg5934432

180 Chapter 15 Delegates

Note
When an Interface Builder .nib file is loaded, the -setDelegate: accessor method will be
called automatically to re-create any connection to the delegate outlet that was made in In-
terface Builder. The automatic use of appropriately named accessor methods is explained in
Chapter 10.

delegate object can also implement application-specific side effects to value changes such
as changing the color of the bar based on its value. Using a delegate allows customization
of behavior without the need to subclass MYBarView. Using different delegate objects for
different MYBarView instances or basing the delegate object’s logic on the specific
MYBarView instance that called each delegate method enables per-instance customization.

Figure 15.4 A simple application that uses several in-
stances of MYBarView with delegates

Implementing Delegate Support
The first key to providing support for a delegate is the delegate instance variable defined
as an IBOutlet of type id.The IBOutlet symbol used in the declaration of an instance
variable is just a hint to Apple’s graphical Interface Builder application that instance
variable accepts connections to other objects. Such instance variables are described in
Chapter 17,“Outlets,Targets, and Actions.” Declaring the delegate variable with type id
tells the Objective-C compiler that any object can be used as the delegate.This use of the
id type is explained in Chapter 7.The -delegate and –setDelegate:(id)anObject

methods are accessors (Chapter 10) that provide a programmatic way to set and get the
delegate objects at runtime.

ptg5934432

181Solution

The next step to supporting delegates is to define the messages that may be sent to a
delegate.The following Objective-C 2.0 formal protocol defines the messages with the
@optional key word so that delegates that conform to the protocol don’t have to imple-
ment all of the methods:

//! Formal protocol defines messages sent from MYBarView to its

// delegate

@protocol MYBarViewDelegate

@optional

- (float)barView:(id)barView shouldChangeValue:(float)newValue;

- (void)barViewWillChangeValue:(NSNotification *)aNotification;

- (void)barViewDidChangeValue:(NSNotification *)aNotification;

@end

All versions of Objective-C that are used with Cocoa support informal protocols.The
following category of NSObject is an informal protocol that declares MYBarView’s delegate
messages:

//! Informal protocol defines messages sent from MYBarView to its

// delegate

@interface NSObject (MYBarViewDelegateSupport)

- (float)barView:(id)barView shouldChangeValue:(float)newValue;

- (void)barViewWillChangeValue:(NSNotification *)aNotification;

- (void)barViewDidChangeValue:(NSNotification *)aNotification;

@end

Categories and informal protocols are an Objective-C feature used frequently in the
implementation of Cocoa. Some of the common Cocoa delegate messages have an
NSNotification argument. Notifications are described by the Notifications pattern in
Chapter 14,“Notifications.”The Notifications pattern is closely related to the Delegates
pattern. In fact, some of the delegate messages provided by the MYBarView class have cor-
responding notifications.The practice of providing both delegate messages and notifica-
tions is common in Cocoa and is reflected in the MYBarView class.Whenever notifications
are used, it’s important to provide unique names for the notifications.The notifications
sent by MYBarView correspond to the related delegate messages and are named with the
following definitions:

//! Notification names

extern NSString *MYBarViewDidChangeValueNotification;

extern NSString *MYBarViewWillChangeValueNotification;

ptg5934432

182 Chapter 15 Delegates

Tip
Naming Delegate Messages
There is a convention to the way messages sent to delegates are named. Each such mes-
sage starts with an identification of the type of object that sends the message. The delegate
messages sent by the MYBarView class all start with barView. Delegate messages usually
include one of three verbs: should, will, or did.

Messages that use should are expected to return a value and usually take an argument
that directly identifies the object sending the message. These messages are sent to the del-
egate before a change to the object sending the message. The delegate is given an opportu-
nity to influence the change. For example, Cocoa’s NSText object sends the
-textShouldBeginEditing: message to its delegate and expects a Boolean return value.
If the delegate returns NO, editing does not begin. In this way, the delegate influences the
behavior of the object that sends the messages.

Messages that use will are not expected to return values. These messages are sent be-
fore a change happens and are strictly informative. The delegate can implement a method to
synchronize the application’s state or perform additional processing when such a message
is received.

Finally, the did messages are sent after a change happens. These messages are also strictly
informative and give the delegate an opportunity to perform processing after the change.

MYBarView’s @interface declaration contains all of the information needed to config-
ure a MYBarView instance in Interface Builder and connect it to a delegate. Before exam-
ining how the delegate itself is written, consider how the MYBarView class is implemented
to use its delegate.The full source code for the MYBarView class is provided at www.
CocoaDesignPatterns.com as part of an example application.The online example shows
how all of the features of the class including drawing and initialization are implemented.
The following code focuses on the implementation of delegate support independent of
the other features of the MYBarView class.

MYBarView’s accessor methods are typical and are shown here to emphasize what they
don’t contain.Accessors generally should not send any messages to the delegate because
the delegate may call the accessors, and calling back to the delegate might then result in
infinite recursion.

//! Accessors

- (float)barValue

//! Returns the receiver's value

{

return barValue;

}

- (void)setBarValue:(float)aValue

//! Sets the receiver's value

{

barValue = aValue;

[self setNeedsDisplay:YES];

ptg5934432

183Solution

}

- (NSColor *)barColor

//! Returns the receiver's color

{

return barColor;

}

- (void)setBarColor:(NSColor *)aColor

//! Sets the receiver's color

{

[aColor retain];

[barColor release];

barColor = aColor;

[self setNeedsDisplay:YES];

}

The -(void)setBarValue:(float)aValue and -(void)setBarColor:(NSColor

*)aColor methods use the most common implementations of accessor methods for a
nonobject and an object property, respectively. In Cocoa, the NSColor class encapsulates
colors, and -setBarColor: is essentially boilerplate code.A critical distinction exists be-
tween a standard accessor like -setBarColor: and the accessor used to set the delegate
object as follows:

- (id)delegate

//! Returns the receiver's delegate

{

return delegate;

}

- (void)setDelegate:(id)anObject

//! Sets the receiver's delegate

{

delegate = anObject; // Note: not retained!

}

The color object set by -setBarColor: is retained, but the delegate object set by
-(void)setDelegate:(id)anObject is not retained.This is a subtle but important
nuance that exists to avoid retain cycles.A retain cycle occurs when two or more objects
each retain a reference to the other(s), resulting in a situation where none of the objects
ever can be deallocated because each is still being used by another. Cocoa conventions for
memory management are briefly explained as part of the Accessor pattern in Chapter 10,
and the specific issue with retain cycles is described in the “Memory Management” sec-
tion of /Developer/Documentation/Cocoa/ObjectiveC/ObjC.pdf.

The general philosophy is that because objects that support a delegate can and do work
perfectly well without any delegate at all, the delegate is not a critical property that should
be retained. Objects are not considered to “own” their delegates and thus shouldn’t retain

ptg5934432

184 Chapter 15 Delegates

them. Objects implemented within the Cocoa frameworks do not retain their delegates. If
an object still has a pointer to its delegate after the delegate has been deallocated, errors
including application crash may result when messages are sent to the deallocated delegate.
Therefore, objects that serve as delegates should implement –dealloc to send
–setDelegate:nil messages as necessary to make sure no other objects have pointers
to the soon to be deallocated object.

MYBarView’s accessor method implementations are shown in this example to accentuate
the differences between the implementations for delegates and other properties.With
Objective-C 2.0, you could have used the following @property declarations in the
MYBarView interface:

@property (assign, nonatomic, readwrite) IBOutlet id delegate;

@property (retain, nonatomic, readwrite) NSColor *barColor;

@property (nonatomic, readwrite) float barValue;

The implementation of MYBarView’s -(IBAction)takeBarValueFrom:(id)sender
method calls private methods of the MYBarView class to send delegate messages to a dele-
gate object:

//! Actions

- (IBAction)takeBarValueFrom:(id)sender

/*! Sets receiver's value to sender's floatValue. The receiver's

delegate is given an opportunity to change the new value before it is

set and the delegate is notified of the change before and after the

value is set. */

{

float newValue = [sender floatValue];

newValue = [self _myBarShouldChangeValue:newValue];

[self _myBarWillChangeValue];

[self setBarValue:newValue];

[self _myBarDidChangeValue];

}

The -takeBarValueFrom: method is typical of Action methods described in
Chapter 17. It can be called by any Cocoa objects that use the Outlets,Targets, and
Actions pattern, and it can be conveniently connected in Interface Builder.Within the
implementation of the method, three private methods are called to indirectly send
messages to the delegate.The first private method is
-(float)_myBarShouldChangeValue:(float)newValue.

Note
In Objective-C, any message can be sent to any receiver. Methods are only private to the ex-
tent that their existence is not advertised in a class interface within a public header file. The
convention of naming so-called private methods with an underscore and a prefix reduces the
chance that someone might inadvertently override or call the method.

ptg5934432

185Solution

- (float)_myBarShouldChangeValue:(float)newValue

/*! Give the delegate a chance to change the new value */

{

if([[self delegate] respondsToSelector:

@selector(barView:shouldChangeValue:)])

{

newValue = [[self delegate] barView:self

shouldChangeValue:newValue];

}

return newValue;

}

If the delegate can respond to a -barView:shouldChangeValue: message, the message
is sent to the delegate, and the value returned by the delegate is used as the new value of
the MYBarView. If the delegate can’t respond to -barView:shouldChangeValue:, the new
value is used unchanged.A delegate that implements -barView:shouldChangeValue:
can veto the change by returning the calling object’s existing value. Similarly, the delegate
can limit or scale the value returned.

The next delegate message is sent by the -(void)_myBarWillChangeValue method:

- (void)_myBarWillChangeValue

/*! Notify the delegate and default notification center that the value

is about to change.*/

{

NSNotification *notification;

notification = [NSNotification notificationWithName:

MYBarViewWillChangeValueNotification object:self];

if([[self delegate] respondsToSelector:

@selector(barViewWillChangeValue:)])

{

[[self delegate] barViewWillChangeValue:notification];

}

[[NSNotificationCenter defaultCenter]

postNotification:notification];

}

A temporary NSNotification instance is created and initialized with a name and the
MYBarView instance that is sending the notification. Just before posting the notification to
the default notification center, the delegate is checked to determine if it responds to the
-barViewWillChangeValue: delegate message. If the delegate does respond, the message
is sent with the notification object as an argument.The delegate that receives the message
can use the object property of the notification to determine which bar view sent the
message.The NSNotification class and its object property are described in Apple’s devel-
oper documentation.

ptg5934432

186 Chapter 15 Delegates

The -(void)_myBarDidChangeValue private method is similar to
-_myBarWillChangeValue: and is called after the bar view’s value is changed.

- (void)_myBarDidChangeValue

/*! Notify the delegate and default notification center that the value

just changed. */

{

NSNotification *notification;

notification = [NSNotification notificationWithName:

MYBarViewDidChangeValueNotification object:self];

if([[self delegate] respondsToSelector:

@selector(barViewDidChangeValue)])

{

[[self delegate] barViewDidChangeValue:notification];

}

[[NSNotificationCenter defaultCenter]

postNotification:notification];

}

Implementing a Delegate
To implement an object that will act as a delegate, simply implement methods correspon-
ding to whichever delegate messages you want to receive. In the following example, the
MYValueLimitColorChanger class implements methods for only two of the three dele-
gate messages a MYBarView object might send.The methods are implemented to constrain
a bar view so that it cannot indicate values less that 0.25 and to change the color of the
bar based on the value being indicated.These are arbitrary behaviors, but they are repre-
sentative of the type of role a delegate can play to provide application-specific behavior.

@implementation MYValueLimitColorChanger

//! Delegate messages

- (float)barView:(id)barView shouldChangeValue:(float)newValue

{

float result = newValue;

if(0.25f > result)

{

result = 0.25f;

}

return result;

}

ptg5934432

187Solution

- (void)barViewDidChangeValue:(NSNotification *)aNotification

{

if(0.75f < [[aNotification object] barValue])

{

[[aNotification object] setBarColor:[NSColor blackColor]];

}

else

{

[[aNotification object] setBarColor:[NSColor grayColor]];

}

}

@end

An instance of MYValueLimitColorChanger can be created in Interface Builder and
connected as the delegate of any number of MYBarView instances.Alternatively, an in-
stance of MYValueLimitColorChanger can be created programmatically and set as the
delegate of one or more bar views via MYBarView’s –setDelegate: method.

The MYValueLimitColorChanger class is as simple as can be.The only methods it adds
to its superclass are methods to handle delegate messages.The real power of delegation is
best shown in more complex situations.The delegate might interact with the bar view
based on complex application logic that depends on many other objects.The following
MYValuePropagator class implements only one of MYBarView’s delegate methods.
MYValuePropagator sets the value of another bar view to mach the value adopted by the
bar view that sent the message.

@class MYBarView;

@interface MYValuePropagator : NSObject

{

IBOutlet MYBarView *barViewToControl; //! The object to control

}

//! Declare accessor as Objective C 2.0 @property

@property (readwrite, retain, nonatomic)

IBOutlet MYBarView *barViewToControl;

@end

@implementation MYValuePropagator

//! Let the Objective C 2.0 compiler generate the accessor code

@synthesize barViewToControl;

ptg5934432

188 Chapter 15 Delegates

- (void)barViewDidChangeValue:(NSNotification *)aNotification

{

if([aNotification object] != [self barViewToControl])

{

[[self barViewToControl] setBarValue:

[[aNotification object] barValue]];

}

}

@end

Data Sources
Data sources are similar to delegates, but they play a different role. Delegates react to
changes or control other objects.A data source provides data to another object whenever
needed. Delegates are always optional; the object that uses a delegate falls back to default
behavior if there is no delegate assigned.An object that uses a data source may not be
functional without a valid data source to supply data.

For example, Cocoa’s NSTableView class retrieves data as needed from a data source.
Using a data source provides several advantages. First and most importantly, using a data
source preserves the separation of subsystems in the Model-View-Controller pattern.The
graphical table drawing and editing features of NSTableView clearly belong in the View
subsystem. Calculation, retrieval, and storage of the data values to be displayed are clearly
part of the Model subsystem.The calculations and storage of data remains the same even if
the mechanism used to display the data changes.The same Model data could be displayed
in a pie chart or output to a file or sent to a printer.The object acting as a data source for
an instance of NSTableView is typically part of the Controller subsystem.The data source
responds to the NSTableView’s requests for data by retrieving the data from the Model.
NSTableView is decoupled from details regarding the retrieval of data from the Model.
Similarly, classes in the Model subsystem have no coupling to the View objects that dis-
play data.

Using a data source has the added advantage of enabling efficient data processing and
memory usage. For example, even if a table has a million rows, at most a few dozen rows
can be seen on the screen at once. NSTableView only asks its data source for the data
needed to display the currently visible rows. If the Model subsystem needs to calculate the
data or the data must be fetched over a network from a database, there is no need to cal-
culate or fetch a million rows of data at once.

Like a delegate, the data source object is not retained by the object that uses it.A single
object acting as a data source may provide data to any number of objects.Apple identifies
the messages that will be sent to a data source in the class documentation for the classes
that require a data source. Just like delegate methods, there is typically an informal proto-
col that declares the methods a data source must implement.

ptg5934432

189Consequences

Examples in Cocoa
The following Cocoa classes use a delegate: NSApplication, NSBrowser, NSControl,
NSDrawer, NSFontManager, NSFontPanel, NSMatrix, NSOutlineView, NSSplitView,
NSTableView, NSTabView, NSText, NSTextField, NSTextView, and NSWindow.The
NSOutlineView and NSTableView classes also use a data source.Apple’s WebKit frame-
work also contains several Objective-C classes that use data sources and delegates.

Almost every nontrivial graphical Cocoa application includes an object that acts as
the delegate for the application’s shared NSApplication instance. NSApplication
provides a little over two dozen delegate methods.They range from
-(void)application:(NSApplication *)sender openFiles:(NSArray *)filenames,
which you can implement to control how your application opens files, to
-(NSApplicationTerminateReply)applicationShouldTerminate:(NSApplication

*)sender, which allows you to control whether the application terminates.
Before you consider subclassing a Cocoa object, make sure you can’t achieve what you

want via a delegate method.

Consequences
The Delegates pattern dramatically reduces the need to subclass Cocoa objects to
implement application-specific behavior. Many of the more complex Cocoa classes such
as NSApplication, NSBrowser, NSTableView, NSText, and NSWindow are rarely if ever
subclassed because the Delegates pattern provides a better alternative.

The Delegates pattern reduces the coupling between objects. Subclassing creates the
tightest possible coupling between the subclass and its superclass.The Delegates pattern
substitutes a much looser relationship based on anonymous objects.The coupling be-
tween an object and its delegate is so loose that the object can function without any dele-
gate at all, and a delegate is free to implement any subset of the potential delegate
methods.

The Delegates pattern provides runtime flexibility. Each instance of a class that sup-
ports delegates can have a different delegate. Each object’s delegate can be set in Interface
Builder or at runtime and can then be changed as needed at runtime.

Using a data source simplifies the separation between the View subsystem and the
Model subsystem in a Model-View-Controller–based application. Just like with delegates,
using Objective-C’s id type reduces coupling between the data source and the object that
needs data.That reduced coupling enhances the opportunities to separately reuse objects
in the View subsystem and the Model subsystem while simultaneously enabling applica-
tion-specific behavior.

However, the need for a delegate or a data source must be foreseen by a class designer.
If no delegate support is provided or delegate messages are not sent in the right
situations, there may be no alternative to subclassing to implement application-specific
behavior.

ptg5934432

190 Chapter 15 Delegates

Providing support for a delegate or a data source in your own classes requires several
lines of code, and specific idioms for using Objective-C and Cocoa’s conventions must be
followed. For example, it’s critical that the object using a delegate or a data source doesn’t
retain the delegate/data source even though that seems contrary to the standard Cocoa
conventions.The practice of not retaining delegates and data sources avoids retain cycles,
but it also means that you must be careful about the order in which objects are deallo-
cated. If a data source is deallocated before the object(s) that asks it for data, runtime er-
rors may result.

ptg5934432

16
Hierarchies

In Cocoa, hierarchical nesting is often used to organize objects.A hierarchy of view
objects is used to organize and control drawing and coordinate systems in Cocoa.The
Responder Chain pattern, described in depth in Chapter 18,“Responder Chain,” leverages
the view hierarchy. Hierarchies are also seen in many data models and parse trees given
that most are hierarchical in nature.

Hierarchies define relationships between objects to avoid ambiguity about which ob-
jects are responsible for storage of other objects. In addition, hierarchies provide an alter-
native to subclassing. In Cocoa, hierarchies are used when objects have a “has-a”
relationship, while subclassing is used only for a true “is-a” relationship. Hierarchies in
Cocoa are closely related to the well-known Composite pattern.

Motivation
Express a has-a relationship between objects.Allow groups of cooperating objects to be
treated as a single object. Enable customization without a need for subclassing by allowing
objects within a group to be reconfigured or swapped out for alternate objects. Reduce
the complexity of a parent class by sharing responsibility for data and behaviors between
child objects.Allow groups of objects to be treated the same as a single object.

Solution
It is common for developers to encounter data that can be stored, manipulated, and
searched most efficiently if it is stored in a tree structure. Likewise, the objects in an appli-
cation often derive similar benefits when they are organized into tree-like structures.

For example, it is common for vector drawing, layout, and diagramming applications
to allow the grouping of objects so that the user can move a complex figure as if it were a
single graphical object. Many such applications even offer a library or palette of prebuilt,
commonly used objects. Internally there is usually a base class, such as MYGraphic, that is
used as a parent for all the graphical elements that the user can manipulate.Typical sub-
classes might be MYSquare, MYCircle, and so on.

ptg5934432

192 Chapter 16 Hierarchies

To implement groups of objects, a class called MYGroup would be created.The MYGroup
class would also be a subclass of MYGraphic. By designing the data model this way, a
group of objects may now be treated just as if it were any normal graphic object.A group
can be resized, and all the child graphics would be resized simultaneously, keeping their
relative sizes constant.The code sending the resize message to the graphic doesn’t need to
know whether it is dealing with one graphic or many.When asked for an object’s bound-
ing box, the group object would accumulate the bounds of all its children and return a
single bound encompassing all its children. Code requesting the bounding box would get
the right answer whether it is dealing with a single graphic or a group, and it wouldn’t
need to know the difference between them.

Graphical applications are not the only ones that can benefit from this kind of a struc-
ture. For example, consider a scripting subsystem that can parse and execute program
scripts. Besides individual statements, there are also blocks of statements. In Objective-C, a
block is all the code found between two brackets.Typically loops and if/then statements
control the execution of blocks. Because a block is actually just a collection of statements
grouped together, a hierarchical structure emerges when a script is parsed.

The elements of a parsed script might be represented as MYStatement objects. Blocks
would then be represented by MYBlock objects, which are a subclass of MYStatement. By
making a block be just another kind of statement, code that manipulates a script becomes
much simpler. Rather than checking to see whether it is a statement or a block of state-
ments to execute, the code running the script can simply call an -execute method, de-
fined by the MYStatement object.This allows single statements and blocks to be treated
the same.

In the end, there still has to be a decision about which code to run because the code
to execute a single statement is obviously different than the code to execute a block.The
block code would require a loop to execute each of the child statements, some of which
may in turn be other blocks. However, instead of forcing the calling code to be aware of
the differences between statements and blocks and pick the right code, the Objective-C
runtime is being leveraged. Based on the object’s class, the right code will be called auto-
matically as a result of the structure of the parsed object hierarchy.

Implementing a Hierarchy
Returning to the example of an application that manipulates graphics and groups of
graphics, the actual code required to support a hierarchical structure is simple. Even with-
out a specific application design in mind, it is still possible to show the parts of the
MYGraphic and MYGroup classes that would support a hierarchy. Suppose that the
MyGraphic class has the following (simplified) interface:

@interface MYGraphic : NSObject

{

NSRect bounds;

}

ptg5934432

193Solution

- (NSRect)bounds;

- (void)draw;

@end

In a real application there would also be methods for setting the bounds and accessors
for other attributes of the graphic such as color, line width, rotation, and so on. Because
this is an abstract base class, the implementation of this class for the methods just shown
would be very simple:

@implementation MYGraphic

- (id)init

{

self = [super init];

if (!self) return nil;

bounds = NSMakeRect(0.0, 0.0, 0.0, 0.0);

return self;

}

- (NSRect)bounds

{

return bounds;

}

- (void)draw

{

// overridden by subclasses to do actual drawing

}

@end

To implement a MYGroup object, some methods are needed to manipulate the child
objects.An array can be added and used to store the children.A basic interface might be
as follows:

@interface MYGroup : MYGraphic

{

NSMutableArray *children;

}

- (void)addChild:(MYGraphic *)aChild;

- (NSArray *)children;

@end

In addition to the new methods for handling child objects, the -bounds and -draw

methods need to be overridden to loop through all the children. In the case of -bounds,

ptg5934432

194 Chapter 16 Hierarchies

the resultant bounding box is stored in the inherited bounds instance variable.An alterna-
tive approach would be to update the bounds variable whenever a child is added or re-
moved, in which case the -bounds method would not need to be overridden at all. Here
is one possible implementation:

@implementation MYGroup

- (id)init

{

self = [super init];

if (!self) return nil;

children = [[NSMutableArray alloc] init];

return self;

}

- (void)dealloc

{

[children release];

[super dealloc];

}

- (void)addChild:(MYGraphic *)aChild

{

[children addObject: aChild];

}

- (NSArray *)children

{

return [[children copy] autorelease];

}

- (NSRect)bounds

{

if ([children count] == 0)

{

bounds = NSZeroRect;

return bounds;

}

else

{

bounds = [[children objectAtIndex:0] bounds];

for (MYGraphic *child in children)

{

bounds = NSUnionRect(bounds, [child bounds]);

}

}

ptg5934432

195Solution

return bounds;

}

- (void)draw

{

for (MYGraphic *child in children)

{

[child draw];

}

}

@end

When dealing with a MYGraphic subclass, the calling code can obtain a bounding box
with the -bounds method without needing to know if there are child graphics. Likewise,
when drawing, there is no need to distinguish between a single graphic and a group.The
MYGroup object simply passes the -draw message on to each of the children.

Sometimes it is useful for child objects to have a pointer that points at their parent ob-
jects.Adding such pointers sometimes makes it easier to implement context-dependent
behaviors. Pointers to parent objects need to be updated whenever an object is added or
removed as a child to another.As an example of the utility of pointers to the parent ob-
jects, consider how NSView objects, described later in this chapter, are also part of a re-
sponder chain as described in Chapter 18.The responder chain wouldn’t be possible at all
if views didn’t have pointers to their parent object, also known as their superview.

When implementing a hierarchy, there are two other ways that the code can be organ-
ized besides what was shown in the previous example. One is to put prototype child han-
dling messages such as -addChild: into the MYGraphic class interface.The default
implementation would then raise an exception.This approach allows all objects in the hi-
erarchy to be treated uniformly, but at the risk of raising runtime exceptions. It doesn’t
make sense to add circles to a square, though it would make sense to add them to a group
of objects.

The other way this could have been organized and implemented would have been to
move the child handling messages into the MYGraphic class and also move the children
instance variable and the child handling code to the MYGraphic class.Then there would
be no runtime exception if a child were added to another graphic.The downside of this is
that, at least for this particular data model, it doesn’t make sense to allow every kind of
graphic to contain child graphics. Cocoa does take this latter approach with its NSView
hierarchy, however. Every Cocoa view is capable of containing subviews.

The Cocoa View Hierarchy
Every graphical Cocoa application has windows, and every window contains a hierarchy
of NSView objects.Although NSView is an abstract class, it does contain all the code and
storage to add and manipulate child objects, known as subviews. In fact, despite being

ptg5934432

196 Chapter 16 Hierarchies

NSView

NSButton NSSlider NSScrollView NSTextField

NSClipView

NSTextView

NSScroller

Figure 16.1 Example of a View hierarchy

basically abstract in nature, actual NSView instances are found at the top of the view hier-
archy in most Cocoa windows.

In Figure 16.1 a typical view hierarchy is shown.The actual user interface is on the
left, and the views in the window are listed on the right.The NSView at the top is the
window’s content view.The four views below it are its subviews, and so on.

As is easy to see in Figure 16.1, many of the more complex Cocoa user interface ele-
ments, such a text editors, are actually composed of several NSView subclasses working
together. NSTableView is another such composite object.The actual NSTableView or
NSTextView objects are really at the bottom of a hierarchy that includes NSScrollView,
NSClipView, and NSScroller instances.

The real power of this design comes into play when customizations of standard view
classes are desired. For example, suppose a developer wants to add a pop-up button to
select the scale of the view that is being controlled by an NSScrollView instance.The
button can be added as a subview to an NSScrollView, and the -tile method can be
overridden in a subclass.All -tile does is set the frames of each of the subviews so that
they are laid out properly next to each other. For an example implementation of this,
look at the example code in /Developer/Examples/AppKit/Sketch.

More often than not, no subclassing is required. It is common to lay out complex user
interfaces in Interface Builder using a combination of standard Cocoa classes. In general,
Cocoa’s design favors constructing user interfaces by composition rather than by subclass-
ing.The advantage to developers is that this reduces the number of classes to maintain and
often simplifies any code that needs to be written.

ptg5934432

197Solution

Coordinate Systems in the View Hierarchy
Every NSView object has its own coordinate system. Drawing done by the view object
treats the lower-left corner of the view as the origin. Because of this, each view actually
keeps track of two rectangles.The bounds rectangle is a rectangle around the view’s draw-
ing area, as is the frame rectangle.The difference is that bounds is represented in the
view’s coordinate system, while frame is in the superview’s coordinate system.This makes
it possible to translate points between different views’ coordinate systems.

Because the bounds and frame rectangles can have different values for their sizes and
different origins, the coordinate systems are not necessarily simple translations. It is also
possible for there to be scaling involved. Because of the inherent complexity of translating
points from one coordinate space to another, Cocoa implements several NSView methods
to help.

To convert points from one coordinate system to another, the NSView class defines the
methods -convertPoint:fromView: and -convertPoint:toView:.There are also
-convertSize:... and -convertRect:... methods. In the “fromView” versions of
these methods, the point, size, or rectangle is being converted from another view’s coordi-
nate system to that of the receiver.The “toView” methods go the opposite direction, from
the receiver’s coordinate system to that of the argument.Whenever the view argument is
nil, the conversion is to or from the window’s coordinate system.The only limitation is
that both views, the receiver and the argument, must be in the same window. In other
words, they both must be part of the same view hierarchy.

Having multiple coordinate systems like this can become very confusing, so it is rea-
sonable to ask why Cocoa goes to so much trouble to offer this feature. One of the key
reasons is so that groups of views can be repositioned and resized relative to each other.
Entire hierarchies of views can be moved around in a window or moved from one win-
dow to another, and only the frame of the topmost view in the hierarchy needs to be al-
tered.This greatly simplifies the manipulation of multiple view objects. Having separate
coordinate systems for each view also makes the drawing code for a particular view much
easier to write, given that translation and scaling do not need to be taken into account
when writing the drawing code.

Browsing the View Hierarchy
One of the best ways to understand how something is put together is to look at each in-
dividual piece in context.Walking through a view hierarchy to see how different Cocoa
interface objects are assembled is often more helpful than simply reading about them.The
ViewFinder application is designed to let a developer browse a view hierarchy.This exam-
ple can be downloaded from the book’s website.

The main interface is an NSBrowser object that lists all the views found in the applica-
tion’s current “main” window. Clicking a window to make it the main window and then
selecting any view listed in the browser draws a highlight around the actual view.
Figure 16.2 shows the application running.

ptg5934432

198 Chapter 16 Hierarchies

Figure 16.2 ViewFinder example interface

To highlight the selected views, an overlay window is used.The ViewFinder applica-
tion uses a custom NSView subclass that draws a rectangle around its bounds.This view is
then placed in a transparent window that is set above the actual window on the screen.
Because this view needs no instance variables, the header only declares it to be a subclass
of NSView:

#import <Cocoa/Cocoa.h>

@interface MYHighlightingView : NSView

{

}

@end

The code simply draws a semi-transparent, red rectangle around the view’s bounds. By
making the view nonopaque, any mouse clicks will pass through to the window below so
that the highlight doesn’t interrupt the functionality of the window or view beneath it.

#import "MYHighlightingView.h"

@implementation MYHighlightingView

- (void)drawRect:(NSRect)rect

{

NSRect myBounds = [self bounds];

[[[NSColor redColor] colorWithAlphaComponent:0.5] set];

NSFrameRectWithWidthUsingOperation(myBounds, 2.0,

NSCompositeSourceOver);

}

- (BOOL)isOpaque

ptg5934432

199Solution

{

return NO;

}

@end

The controller class for the application and the delegate for the NSBrowser in the
graphical user interface is the MYViewFinderController class.The header defines a few
outlets that should be connected to the user interface items in the browser panel. It also
defines the -broswerSelectionChanged: method, which should be the action sent by
the NSBrowser object.The array browserPath is used to keep track of the user’s selection
in the NSBrowser.

#import <Cocoa/Cocoa.h>

@interface MYViewFinderController : NSObject

{

IBOutlet NSBrowser *browser;

IBOutlet NSTextField *viewClassField;

IBOutlet NSTextField *windowPositionField;

IBOutlet NSTextField *sizeField;

NSWindow *viewedWindow;

NSMutableArray *browserPath;

NSWindow *highlightWindow;

}

- (void)mainWindowChanged:(id)sender;

- (IBAction)browserSelectionChanged:(id)sender;

@end

The implementation begins with the -init method. It allocates the browserPath ar-
ray and creates the window that will be used to highlight selected NSView objects. By
making the window nonopaque with a clear background, it will effectively ignore all
events.This is so that the view being highlighted can still be used.The -dealloc method
contains the usual clean-up code.

#import "MYViewFinderController.h"

#import "MYHighlightingView.h"

@implementation MYViewFinderController

- (id)init

{

if (nil != (self = [super init]))

{

browserPath = [[NSMutableArray alloc] init];

ptg5934432

200 Chapter 16 Hierarchies

highlightWindow = [[NSWindow alloc]

initWithContentRect:NSMakeRect(-10.0, 10.0, 5.0, 5.0)

styleMask:NSBorderlessWindowMask

backing:NSBackingStoreBuffered defer:NO];

[highlightWindow setBackgroundColor: [NSColor clearColor]];

[highlightWindow setAlphaValue:1.0];

[highlightWindow setOpaque:NO];

[highlightWindow setLevel:(NSNormalWindowLevel + 1)];

MYHighlightingView *highlightView = [[[MYHighlightingView alloc]

initWithFrame:NSMakeRect(0.0, 0.0, 5.0, 5.0)] autorelease];

[highlightView setAutoresizingMask:

(NSViewWidthSizable | NSViewHeightSizable)];

[highlightWindow setContentView:highlightView];

}

return self;

}

- (void)dealloc

{

[highlightWindow orderOut:self];

[highlightWindow release];

[browserPath release];

[super dealloc];

}

The browser needs to be reset whenever the application’s main window changes and
initially upon launch of the application.This is done by having this controller object be
the application’s delegate and having some of the NSApplication notifications send a
-mainWindowChanged: message to the controller.When the main window changes, the
browser is reset, and the user interface is cleared.

- (void)applicationDidUpdate:(NSNotification *)aNotification

{

[self mainWindowChanged:self];

}

- (void)applicationDidUnhide:(NSNotification *)aNotification

{

[self mainWindowChanged:self];

}

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification

{

[self performSelector:@selector(mainWindowChanged:)

withObject:self afterDelay:0.0];

}

ptg5934432

201Solution

- (void)mainWindowChanged:(id)sender

{

NSWindow *mainWindow = [NSApp mainWindow];

if (mainWindow && (viewedWindow != mainWindow))

{

viewedWindow = mainWindow;

[browserPath removeAllObjects];

[browserPath addObject:[viewedWindow contentView]];

[browser loadColumnZero];

[viewClassField setStringValue:@""];

[windowPositionField setStringValue:@""];

[sizeField setStringValue:@""];

[highlightWindow orderOut:self];

[browser selectRow:0 inColumn:0];

}

}

To implement the required NSBrowser delegate methods, it will be helpful to have a
method that can locate an NSView in the hierarchy when given a browser column and
row as identifiers.As objects are selected in the browser, they will be added to the con-
troller’s browserPath array.Therefore, the requested column can be used as an index to
this array to find the superview.Then the requested row can be used as the index to the
subview array to find the right object.Add some bounds checking, and here’s the code:

-(NSView *)representedViewAtRow:(NSInteger)row

column:(NSInteger)column

{

NSView *representedView = nil;

if (column == 0)

{

if (row != 0) return nil; // should never happen

representedView = [browserPath objectAtIndex:0];

}

else

{

NSView *parent = [browserPath objectAtIndex:(column - 1)];

NSArray *children = [parent subviews];

int numChildren = [children count];

if ((row >= 0) && (row < numChildren))

{

representedView = [children objectAtIndex:row];

}

}

return representedView;

}

ptg5934432

202 Chapter 16 Hierarchies

The first browser delegate method we need, -brower:numberOfRowsInColumn:, is
used by the browser to determine the number of rows in a given column.The method
starts with a little housekeeping to ensure that the browserPath array is up to date. Next,
if it is the item count for column zero that is being requested, then there is always one
object, the window’s content view. Otherwise, the number of subviews of the object se-
lected in the previous column is needed.The selected object is provided by the
browserPath array.

- (NSInteger)browser:(NSBrowser *)sender

numberOfRowsInColumn:(NSInteger)column

{

int ret = 0;

int columnCount = [browserPath count];

if (column >= columnCount)

{

[self browser:sender selectRow:

[sender selectedRowInColumn:(column - 1)]

inColumn:(column - 1)];

columnCount = [browserPath count];

if (column > columnCount)

{

return 0;

}

}

if (column == 0)

{

if (columnCount > 0)

{

ret = 1;

}

else

{

ret = 0;

}

}

else

{

ret = [[[browserPath objectAtIndex:(column - 1)]

subviews] count];

}

return ret;

}

ptg5934432

203Solution

When the browser is about to display one of its cells, the delegate is asked to populate
it.The previously shown method –representedViewAtRow:column: is used to obtain the
view that this cell represents.The title of the cell is set to the object’s class name. If the
object has no subviews, then it is a leaf node.

- (void)browser:(NSBrowser *)sender willDisplayCell:(id)cell

atRow:(NSInteger)row column:(NSInteger)column

{

NSView *representedView =

[self representedViewAtRow:row column:column];

if (representedView)

{

[cell setTitle:[representedView className]];

[cell setLeaf:(([[representedView subviews] count] > 0) ?

NO : YES)];

}

[cell setLoaded:YES];

}

The next method is used to keep the browserPath array up to date as the selection in
the browser changes. If a selection is made in a browser column to the left of the previous
selection, then objects are removed from browserPath.The object most recently selected
is then added to the end of the array.

- (BOOL)browser:(NSBrowser *)sender selectRow:(NSInteger)row

inColumn:(NSInteger)column

{

if ((row < 0) || (column < 0)) return NO;

if (column == 0)

{

while ([browserPath count] > 1)

{

[browserPath removeLastObject];

}

}

else

{

NSView *representedView =

[self representedViewAtRow:row column:column];

while ([browserPath count] > column)

{

[browserPath removeLastObject];

}

ptg5934432

204 Chapter 16 Hierarchies

if (!representedView)

{ // should never happen

return NO;

}

[browserPath addObject:representedView];

}

return YES;

}

The last method required to complete the application’s functionality is the action
method –browerSelectionChanged:. It is called whenever the user clicks a cell in the
browser.This method first makes sure that the browserPath array is updated.Then it
takes the currently selected view, the last item in the array, and displays information about
its class, position in the window, and size. Finally, the highlighting window is resized so
that its frame is the same as the view’s frame rectangle.This causes the red rectangle
around the selected view to be drawn.

- (IBAction)browserSelectionChanged:(id)sender

{

NSView *selectedView = nil;

NSRect selectedFrame;

NSRect windowFrame;

NSRect showFrame;

int lastColumn = [sender selectedColumn];

int row = [sender selectedRowInColumn:lastColumn];

if (row < 0)

{

lastColumn—;

row = [sender selectedRowInColumn:lastColumn];

}

[self browser:sender selectRow:row inColumn:lastColumn];

selectedView = [browserPath lastObject];

[viewClassField setStringValue:[selectedView className]];

selectedFrame = [selectedView convertRect:

[selectedView bounds] toView:nil];

[windowPositionField setStringValue:

[NSString stringWithFormat:@"(%f, %f)",

selectedFrame.origin.x,

selectedFrame.origin.y]];

[sizeField setStringValue:

[NSString stringWithFormat:@"%f x %f",

selectedFrame.size.width,

selectedFrame.size.height]];

windowFrame = [viewedWindow frame];

showFrame = NSMakeRect(

windowFrame.origin.x + selectedFrame.origin.x,

ptg5934432

205Consequences

windowFrame.origin.y + selectedFrame.origin.y,

selectedFrame.size.width,

selectedFrame.size.height);

[highlightWindow setFrame:showFrame display:YES];

[highlightWindow orderFront:self];

}

Examples in Cocoa
As already discussed in this chapter, the most commonly encountered hierarchy in Cocoa is
the NSView hierarchy used to build complex user interfaces.All drawing and user interaction
with a graphical user interface-based Cocoa application funnels through view objects.

Another hierarchy, which is nongraphical in nature, is encountered when working
with XML documents.After parsing XML documents, the NSXML class provides an
NSXMLDocument object as output.This object contains the complete parse tree for the
XML document as a hierarchy of objects.The NSXMLNode class is the base class for the
objects found in the parse tree such as NSXMLDocument and NSXMLElement. NSXMLNode
has methods to add and remove child objects inherited by all the parsed elements of the
document.

Developers will often use hierarchies to create their data models.The collection
classes in Cocoa’s Foundation make this easy. Usually NSMutableArray is used to store
child objects, but NSMutableSet can be used whenever the ordering of the child classes
is unimportant.

Consequences
Because Cocoa uses a hierarchy of views to represent user interfaces, it is possible to re-
duce the need for subclassing. Developers are encouraged to add views to each other as
subviews, building up complex user interfaces from simpler building blocks. Because
each view has its own coordinate system, complex groupings of view objects can be as-
sembled and then easily moved from one window to another, or swapped in and out of a
space in a single window.

Similar benefits can be realized in custom object models by organizing model objects
into hierarchies when appropriate. Hierarchies should be chosen instead of subclassing
when the relationship between two objects is has-a instead of is-a.The flexibility of
Objective-C and the Cocoa Foundation’s collection classes make this easy to accomplish.

ptg5934432

17
Outlets,Targets, and Actions

When you build a graphical user interface, you need a way to configure user interface
objects, such as buttons, sliders, text fields, and menu items, and connect them to
application-specific operations. For example, an application might provide a menu item
to center selected text and another menu item to send a seating request to an airline
reservation system. Finding a good way to connect user interface objects to application-
specific operations is a common recurring problem.

One potential solution is to create application-specific subclasses of the user interface
objects like menu items. For example, you could create a CenterTextMenuItem class and
a SendSeatingRequestMenuItem class. However, there are a number of shortcomings to
creating application-specific subclasses of user interface objects.

The first shortcoming is the number of classes and amount of code you write.You’ll
have to create separate new subclasses for every operation supported by your application,
and you’ll have to do it all again for the next application.The second shortcoming is that
operations like sending a seating request are clearly part of the Model or Controller sub-
systems when using the Model View Controller design pattern. Menu items are clearly
part of the View subsystem. Extending a menu item specifically to send a seating request
couples the menu item to objects that have nothing to do with presentation to a user.
Having numerous subclasses promotes code duplication.What happens when you also
provide a scripting interface to send seating requests or you provide a button and a menu
item? You’ll end up using the similar code related to seat requests in each of the objects
that send requests.

Some object-oriented frameworks provide an alternative to using numerous subclasses
by assigning unique identifiers to each object in the user interface.You search through the
user interface objects to find the one with a desired unique identifier whenever you want
to configure specific objects.When a button or menu item is pressed by the user, the ap-
plication uses a table or C language switch statement to determine what action to take
based on the identifier of the object that was pressed. However, the need to coordinate
the meaning of identifiers between user interface objects and application logic still intro-
duces coupling.There can be issues maintaining the unique identifiers. For example,
when designing a user interface, you might copy and paste user interface objects from one

ptg5934432

207Solution

interface design to another. If the identifiers assigned to each object are copied with the
objects, how to you make sure the copied identifiers are unique in each application?
There may also be concerns regarding the way unique identifiers are correlated with op-
erations to be taken within the application. Ideally, you shouldn’t have to hand code a gi-
ant switch statement or manually populate a look-up table.

What’s needed is a way for applications to configure user interface objects and for user
interface objects to invoke application-specific operations without creating otherwise un-
needed subclasses, without writing any new code in the View subsystem, without cou-
pling between the View subsystem and other application subsystems, and without manual
correlation of unique identifiers with operations. Furthermore, the solution needs to en-
able context-sensitive behavior. For example, when the user presses the menu item to
center selected text, it matters what specific text is selected at that moment.The result of
pressing the menu item needs to change based on user interaction. If there is no text se-
lected, the menu item should probably be disabled to show that it would have no effect if
pressed.

Cocoa provides the needed solution by applying the Outlets,Targets, and Actions de-
sign pattern, which simplify user interface implementation and contribute to the flexibil-
ity and productivity enabled by tools like Interface Builder.

Motivation
Use Cocoa’s Outlets,Targets, and Actions design pattern to achieve the following objectives:

n Support direct programmatic configuration of user interface objects.
n Specify what application actions should take place as the result of user interactions

with user interface objects.
n Avoid coupling between generic reusable user interface objects and application-

specific behavior.
n Avoid code duplication when multiple user interfaces invoke the same application-

specific actions.
n Enable context-sensitive behavior as the result of user interaction with user inter-

face objects.

Solution
An outlet is an instance variable that stores a reference (pointer) to another object such as
a user interface object. Outlets can be set with the Interface Builder tool or programmati-
cally. In Interface Builder, connection lines are drawn from objects that have outlets to the
objects that are referenced. Outlets are set programmatically with the help of Accessor
methods (Chapter 10, “Accessors”) or by using Cocoa’s Key Value Coding technology
described in Chapter 19,“Associative Storage.”

ptg5934432

208 Chapter 17 Outlets, Targets, and Actions

Figure 17.1 Draw connection lines to set outlets in Interface Builder.

Targets are special outlets.You draw connection lines in Interface Builder as shown in
Figure 17.1 to set the object referenced by an outlet. It works the same way for all out-
lets, but Figure 17.1 shows connection of a target outlet.

When you connect a target, Interface Builder allows you to select an action message to
be sent to the target, as shown in Figure 17.2.Action messages can also be specified pro-
grammatically via an Accessor method.

Interface Builder identifies outlets based on criteria shown in the following
MYController class declaration.Any instance variable with type id and a name that
doesn’t start with an underscore character is automatically considered an outlet. In addi-
tion, any instance variable that is a pointer to an object and includes the IBOutlet macro
in its declaration is treated as an outlet.

@interface MYController : NSObject

{

id sampleOutlet; // IB Considers this an outlet

IBOutlet NSMatrix *sampleMatrix; // IB Considers this an outlet

id _myPrivateIVar; // IB ignores this because of the

// leading underscore ‘_'

NSView *sampleView; // IB ignores this because the

// type is not id and the

ptg5934432

209Solution

Figure 17.2 Select the action to send to a target in Interface Builder.

// IBOutlet macro is not used

IBOutlet NSView *_myOtherView; // IB Considers this an outlet

// in spite of the leading ‘_'

// because IBOutlet is used

}

@end

The IBOutlet macro is defined in NSNibDeclarations.h, which is part of Cocoa’s
Application Kit framework, and the C preprocessor replaces it with a single space charac-
ter whenever it’s encountered in source code. IBOutlet doesn’t change the meaning of
compiled code at all. It is just a hint to Interface Builder that identifies outlets with types
more specific than id.When a specific type is declared, Interface Builder will respect it
and use that information to limit what types of objects may be connected to that outlet.

Interface Builder stores information about connections from outlets to other
objects using a class called NSNibOutletConnector.When objects are loaded from a .nib
file into a running application, any loaded NSNibOutletConnector instances automati-
cally receive an -establishConnection message, which directs them to assigning the
values of associated outlet instance variables. NSNibOutletConnector implements

ptg5934432

210 Chapter 17 Outlets, Targets, and Actions

-establishConnection to use the Accessors pattern if a suitable Accessor method is
available.At runtime, NSNibOutletConnector looks for an implemented method with the
name -set<Outlet>: where <Outlet> is the name of an instance variable with its first
letter capitalized. For example, given the following MYController class,
NSNibOutletConnector instances representing Interface Builder connections to
sampleOutlet, sampleMatrix, and _myOtherView will automatically call
-setSampleOutlet:, -setSampleMatrix:, and -set_myOtherView: to re-establish
connections when objects are loaded from a .nib file.

@interface MYController : NSObject

{

id sampleOutlet; // IB Considers this an outlet

IBOutlet NSMatrix *sampleMatrix; // IB Considers this an outlet

id _myPrivateIVar; // IB ignores this because of the

// leading underscore ‘_'

NSView *sampleView; // IB ignores this because the

// type is not id and the

// IBOutlet macro is not used

IBOutlet NSView *_myOtherView; // IB Considers this an outlet

// in spite of the leading ‘_'

// because IBOutlet is used

}

@end

@implementation MYController

- (void)setSampleOutlet:(id)anObject;

- (void)setSampleMatrix:(NSMatrix *)aMatrix;

- (void)set_myOtherView:(NSView *)aView;

@end

The -set_myOtherView: method doesn’t fit the pattern for accessor names. Ordinar-
ily, the first letter in the second word is capitalized like -set_MyOtherView:, but in all
versions of Mac OS X up to and including version 10.5, NSNibOutletConnector doesn’t
follow that convention. Future versions may use Cocoa’s KeyValue Coding system to
implement NSNibOutletConnector, and this behavior could change to become more
standard.

If no appropriate Accessor method is available, NSNibOutletConnector uses informa-
tion stored in the Objective-C runtime to find the address of each outlet in the memory
and then directly assigns each outlet’s value.

ptg5934432

211Solution

Outlets
Outlets are like any other instance variable and can be used programmatically in applica-
tion code.After all objects have been loaded and initialized from a .nib file, an
-awakeFromNib message is sent to each object that was loaded. By the time an object
receives the -awakeFromNib message, all of its outlets have been set to the values they
were given in Interface Builder.

The -awakeFromNib message is also sent to the object that is specified as the “owner”
of the nib when the .nib file is loaded. Nib files are usually loaded with the NSBundle
class +loadNibNamed:owner: method documented at /Developer/Documentation/
Cocoa/TasksAndConcepts/ProgrammingTopics/LoadingResources/index.html. If the
same object is used as the owner in multiple invocations of +loadNibNamed:owner:,
-awakeFromNib will be sent to the owner again each time a .nib file is loaded.

Caution is needed when implementing Accessor methods for objects that may be
loaded from a .nib file.Accessor methods are called whenever possible as .nib files are
loaded, but the order in which objects are loaded from the .nib file is undefined.Acces-
sors can be called in any order, so dependencies on the state of instance variables other
than the one being set need to be avoided. By the time -awakeFromNib is called, all
objects have been restored to the state they were given in Interface Builder. Implement
-awakeFromNib to perform any final initialization logic that depends on multiple outlets
or the state of other objects loaded from the .nib.

TheArchiving and Unarchiving design pattern in Chapter 11, “Archiving and Unarchiving,”
provides a more complete description of the process applied to create and load .nib files.

Targets
Cocoa’s NSControl, NSActionCell, and NSMenuItem classes each provide an outlet named
target and a corresponding instance variable named action. Interface Builder handles
connections to the target outlet as a special case and allows you to specify an associated
action message to be sent to the object referenced by target.Actions are explained in the
“Actions” section of this chapter.Together, the target and action provide much of the
flexibility and power associated with Cocoa.

Any class that provides both target and action instance variables can be used with this
pattern. Interface Builder stores Target/Action connections as instances of the
NSNibControlConnector class.When .nib files are loaded, the Target/Action connec-
tions are reestablished in much same way as outlet connections.The
-establishConnection message is sent automatically and NSNibControlConnector
instances respond by restoring the target and action instance variables to the states
given in Interface Builder.

The ability of the target to point to any object and the fact that the action is variable
provides tremendous flexibility.A single user interface object like NSButton, a subclass of
NSControl, can be used to send any action to any target without the need to subclass or
write custom code; it can be configured entirely in Interface Builder.

ptg5934432

212 Chapter 17 Outlets, Targets, and Actions

NSControl, NSActionCell, and NSMenuItem each implement the –target and
-setTarget: Accessor methods for programmatically getting and setting the target.

Actions
Any method that returns void and accepts one object argument can be used as an action.
NSControl and NSActionCell each provide the -action and -setAction: methods for
programmatically accessing the action.Actions are stored as Objective-C selectors.A se-
lector is a unique identifier for an Objective-C message as described in Chapter 9,“Per-
form Selector and Delayed Perform.”

There are several ways to obtain selectors.The easiest way is to use Objective-C’s
@selector() compiler directive.The following example sends a -setAction: message
with the selector for the -copy: message as an argument:

[someControl setAction:@selector(copy:)];

Any message name can be converted into a selector with Cocoa’s
NSSelectorFromString() function, and any selector can be converted into a string with
NSStringFromSelector().The following example sets the action of an object and then
obtains that action and converts it to a string:

[someControl setAction:NSSelectorFromString(@"copy")];

NSLog(NSStringFromSelector([someControl action]);

The @selector() compiler directive is documented in Apple’s Objective-C manual at
/Developer/Documentation/Cocoa/ObjectiveC/ObjC.pdf.The NSSelectorFromString()
and NSStringFromSelector() functions are documented at /Developer/Documentation/
Cocoa/Reference/Foundation/ObjC_classic/Functions/FoundationFunctions.htm.

Each subclass of NSControl or NSActionCell sends its action message to its target in
different circumstances.The NSButton subclass of NSControl normally sends its action
message after the mouse button has been pressed and released while the mouse pointer is
over the button, but it can be configured for other behaviors.The NSSlider subclass of
NSControl can be configured to send its action message each time the slider is moved or
only when the user releases the slider. Sliders can also be configured to only send values
that correspond to tick marks drawn along the slider’s range of motion. NSButton and
NSSlider are two of the simplest controls. More complex controls like NSMatrix and
NSTableView provide more sophisticated behavior.

Regardless of why an action message is sent, it’s always sent using the NSApplication
class’s -sendAction:to:from: method. NSApplication is an example of the Singleton
pattern, meaning that exactly one instance of the class is used in each application.The
NSApplication instance is obtained by sending the +sharedApplication message to the
NSApplication class as follows:

[NSApplication sharedApplication];

There is also a global variable, NSApp, that points to the single NSApplication instance.

ptg5934432

213Solution

The NSControl and NSActionCell classes send action messages to targets with code
similar to the following:

[[NSApplication sharedApplication] sendAction:[self action]

to:[self target]

from:self];

The first argument to -sendAction:to:from: is the selector stored in the action
instance variable and identifies the message to send.The second argument is the target
object referenced by the target instance variable.The final argument is the object
argument passed to the method identified by the action selector.The from: argument is
usually the sender of the message.The receiver of the message can use the argument to
get more information such as the value of the control that sent the message. For example,
when a slider is moved, it sends its action message to its target with itself as the argument.
When the target object receives the message, it uses the sender argument to get the
value represented by the slider.The following code implements a hypothetical
-volumeSliderDidChange: method called as the action of an NSSlider instance:

- (void)volumeSliderDidChange:(id)sender

{

// make sure the anonymous sender responds to -floatValue

if([sender respondsToSelector:@selector(floatValue)])

{

// set our own volume to the float value of the sender

[self setVolume:[sender floatValue]];

}

}

Actions and Responder Chains
The role of the shared NSApplication object in the Target/Action implementation is
crucial. If the to: argument to NSApplication’s -sendAction:to:from: method is a
valid object, the action message is sent directly to the target, but if the to: argument is
nil, the eventual receiver of the action message is determined by the application’s current
state and the user interface object that has the user’s attention.

When the target of an action message is nil, the -sendAction:to:from: method uses
an expanded version of the Responder Chain to find an object that can respond to the
action and sends the action to that object.As a result, setting the target of a Cocoa object
to nil makes the object’s action context-sensitive.As the user interacts with an applica-
tion, the Responder Chain continuously reflects the current context. Each time the Re-
sponder Chain changes, the set of potential receivers for action messages changes.

For example, a menu item can be configured to send the -copy: message when the
menu item is selected. If the menu item has a nil target, the object that receives the
-copy: message depends on the first responder in the Key window.The first responder
is the object with the user’s focus.The Key window is the currently front-most window

ptg5934432

214 Chapter 17 Outlets, Targets, and Actions

that will receive keyboard input from the user. If the First Responder is a text field,
then that text field receives the -copy: action message sent from the menu item. If
another object has the user’s focus, or then that object receives the -copy: action message
instead.

When Target/Action connections are made to the first responder object in Interface
Builder, as shown in Figure 17.1, the target is actually set to nil.The first responder ob-
ject in Interface Builder is just a placeholder that represents whatever object has the user’s
focus at any given moment while an application is running. Figure 17.3 shows Interface
Builder Inspector panel “Identity” tab, which enables you to define new action messages
that can be sent up the Responder Chain.

Chapter 18,“Responder Chain,” explains Cocoa’s Responder Chain pattern, including
the sequence in which the Responder Chain is searched to find a receiver for each action
message sent to nil.The first object that can respond to an action message in the search
order receives the message. If no object in the Responder Chain can respond to the action
message, Cocoa’s default behavior is to play a beep sound. However, action messages that
can’t be handled by any object in the Responder Chain are rare because Cocoa’s automatic
menu and control validation feature uses the same chain of objects to determine if each ob-
ject that sends the action is enabled. Normally, if there is no responder for an object’s action
message, the object is automatically disabled and can’t send the action message.Automatic
validation is described at /Developer/Documentation/Cocoa/TasksAndConcepts/

Figure 17.3 Interface Builder’s Inspector lets
you define new action messages that can be sent

to First Responder.

ptg5934432

215Examples in Cocoa

ProgrammingTopics/MenuList/Tasls/EnablingMenuItems.html and /Developer/
Documentation/Cocoa/TasksAndConcepts/ProgrammingTopics/Toolbars/Tasls/
ValidatingTBItems.html.

Interface Builder and Xcode communicate to automatically discover the actions pro-
vided by each class.Any method declared with the following pattern is an action method
that Interface Builder can use:

- (IBAction)someAction:(id)sender;

The IBAction type is actually a preprocessor macro that evaluates to the void type.
Action methods are required to return void and accept a single object argument. Use the
IBAction macro in the declaration of methods to help Interface Builder find them.

The object argument to an Action method does not need to have the id type.Any
pointer to an object type can be used. For example, the following declaration is a suitable
Action method:

- (IBAction)volumeSliderDidChange:(NSSlider *)sender

Examples in Cocoa
Almost every introductory tutorial for Cocoa uses Outlets,Targets, and Actions.Apple
provides an online tutorial to get you started with them at http://developer.apple.com/
documentation/Cocoa/Conceptual/ObjCTutorial.

One key to using Outlets,Targets, and Actions when creating your applications is an
understanding of the Responder Chain. NSApplication’s -sendAction:to:from:
method does all of the work needed to correctly dispatch action messages sent to any tar-
get and handles the case when no specific target is specified and the context is used to
find a receiver.

The Outlets,Targets, and Actions design pattern is used in all Cocoa applications that
provide user interfaces via the Model View Controller pattern.Targets usually point to
objects in the View or Controller subsystems. Objects in the Model subsystem should not
have outlets because outlets are intended to point to View or Controller objects, and
Models should not have any dependence on View or Controller objects. Model objects
should not have action methods either because actions are sent by View subsystem ob-
jects, and Model objects should not have direct interaction with the View subsystem.
Figure 17.4 provides an example of the typical connections and sequence of operations
involving Outlets,Targets, and Actions in a Model View Controller application.

Figure 17.4 represents part of the design of a simple song playing application.The abil-
ity to store songs, play songs, keep track of the current song that’s playing, and change the
volume of the current song are all parts of the Model subsystem.The Model should work
regardless of how the user interacts with it. Figure 17.4 shows an application that provides
a “play” button, a “pause” button, and a slider to control volume, but the Model should
work regardless of the user interface. For example, the user might have a script that selects
songs from a play list and asks the player to play them one after another.There might be a
menu item that pauses play or a “mute” button that sets the volume to zero.

ptg5934432

216 Chapter 17 Outlets, Targets, and Actions

Controller ViewModel

NSButton

IBOutlet id target

SEL action = -play:

MYPlayerController

-(IBAction)play:

-sendAction:to:

-(IBAction)pause:

NSButton

IBOutlet id target

SEL action = -pause:

-sendAction:to:-(IBAction)takeVolumeFrom:

IBOutlet id songPlayer

MYSongPlayer

-(IBAction)next:

-(IBAction)previous:

NSSlider

IBOutlet id target

SEL action = -takeVolumeFrom:

-sendAction:to:

NSArray *songs

float volumeDb

-selectNextSong

-selectPreviousSong

-setVolumeDb:

-playCurrentSong

-pauseCurrentSong

-(float)floatValue

float value

1

2

5

7

6

9

8

IBOutlet id pauseButton

IBOutlet id playButton
-setEnabled:

-setEnabled:

3

4 10

11

Figure 17.4 Typical sequences of operations in response to user interaction

The two buttons and the slider in the View subsystem each have their respective tar-
gets set to point to the same MYPlayerController instance in the Controller subsystem.
When a button is pressed or a slider is moved, the button or slider’s own
-sendAction:to: method is invoked, which in turn invokes NSApplication’s
-sendAction:to:from: method, passing the affected button or slider as the from: argu-
ment, which is usually called sender.The targets are explicitly set for each of the buttons
and the slider, so NSApplication will send each action message directly to the
MYPlayerController instance. MYPlayerController has outlets that are connected to
each of the two buttons and to the MYSongPlayer instance in the Model.With regard to
coupling, the MYPlayerController class knows about the MYSongPlayer object in the
Model and is therefore coupled to the Model, but the Model knows nothing about the
Controller subsystem.The MYPlayerController instance also has outlets that are con-
nected to View objects.The Controller is slightly coupled to the View but knows very lit-
tle about the View objects with which it communicates.The View has no dependence on
the Controller.The buttons and slider have targets defined with type id, which means
they could be connected to any objects that respond to the assigned action messages.

The following sequence of operations is depicted in Figure 17.4: In step 1, the user
presses the “Play” button, and MYPlayerController’s -play: method is called with the

ptg5934432

217Examples in Cocoa

pressed button as the sender argument. In step 2, MYPlayerController reacts by calling
[[self songPlayer] playCurrentSong];, which causes MYSongPlayer to start playing
the current song. MYPlayerController just ignores the sender argument within the im-
plementation of -play:. In step 3, MYPlayerController calls [[self playButton]

setEnabled:NO]; because the song is now already playing and it does no good to press
“Play” again. In step 4, MYPlayerController calls [[self pauseButton]

setEnabled:YES]; because now that a song is playing, it makes sense to be able to pause it.

Note
There is no assumption in the design of MYPlayerController that the playButton and
pauseButton outlets will be connected to buttons. In reality, the outlets could be con-
nected to any objects that respond to the –setEnabled: message, and all descendants of
Cocoa’s NSControl and NSActionCell classes respond to -setEnabled: and
-floatValue. MYPlayerController is only slightly coupled to the View objects because
you could replace the buttons with menu items or other user interface objects without any
change or effect on the operation of the MYPlayerController class.

In step 5, the user adjusts the “Volume” slider, and the -takeVolumeFrom: action mes-
sage is sent to the MYPlayerController instance.The slider itself is passed as the sender
of the action message. MYPlayerController implements -takeVolumeFrom: as follows:

- (IBAction)takeVolumeFrom:(id)sender

{

if([sender respondsToSelector:@selector(floatValue)])

{

float newVolume = [sender floatValue]; // step 6

[[self songPlayer] setVolumeDb:newVolume]; // step 7

}

}

In step 6, MYPlayerController asks the sender to provide its floating point value. In
this design, the sender is a slider, but the sender could have been a text field or any
other object that can respond to the -floatValue message. In step 7,
MYSongPlayer’s -setVolumeDb: method is called, and MYSongPlayer reacts by validating
the argument passed and changing the song volume.

In step 8, the user presses the “Pause” button, which results in the -pause: action mes-
sage being sent with the pressed button as the sender argument. In step 9, the
MYPlayerController instance calls MYSongPlayer’s -pauseCurrentSong method. In step
10, MYPlayerController calls [[self playButton] setEnabled:YES]; because now
that the song is paused, it makes sense to press “Play” again. In step 11,
MYPlayerController calls [[self pauseButton] setEnabled:NO]; because the user
can’t pause an already paused song.

The user interface design expressed in Figure 17.4 does not require any code in the
View subsystem at all. Once the class interface for MYPlayerController is created in
Xcode, the entire user interface can be built and connected in Interface Builder with no

ptg5934432

218 Chapter 17 Outlets, Targets, and Actions

custom subclasses of View objects and no generated code. Even if a different interface is
created for scripting or with menu items and text fields instead of buttons and a slider,
you shouldn’t have to change the Controller or Model subsystems at all.

If the MYSongPlayer class is ever changed, there’s a good chance that you can still use
the MYPlayerController class unmodified. In the worst case, you will have to update
MYPlayerController to communicate with a new Model, but under no circumstances
should a change to the Model require any changes to the View.

Consequences
Objective-C’s language level support for selectors and the ability to send any message to
any object provide a flexible solution to the problem of integrating user interface objects
with application code. For example, using Objective-C’s dynamic message sending facili-
ties eliminates the need for manual event handling systems common in other frameworks.
Many user interface frameworks are implemented to post events identified by unique in-
teger tags when user interface objects change state.The objects that receive events are
then responsible for decoding them and interpreting any information sent with the
events.The need to decode events results in the duplication of code such as switch state-
ments or table lookup in multiple places and quickly becomes a maintenance burden.
Objective-C’s built-in messaging system makes manual event processing unnecessary.

The popular Signals and Slots pattern developed by Trolltec for its Qt C++ cross-
platform framework replicates some of the Outlets,Targets, and Actions pattern. Program-
mers must subclass framework user interface classes to add application-specific Signals and
Slots.Trolltec provides a tool called the Meta Object Compiler that pre-processes
application C++ code to generate code that implements the Signals and Slots. Once the
specialized code is generated and compiled into an application, the Signals approximate
Cocoa’s actions, and the Slots approximate Cocoa’s targets. Cocoa and Apple’s develop-
ment tools avoid the need for pre-processing and code generation by using Objective-C’s
dynamism including the Perform Selector,Anonymous Object, and Responder Chain
design patterns.

The ability of tools like Interface Builder to set outlets and actions graphically reduces
the amount of code needed to implement user interfaces and integrate them with appli-
cation code. In many cases, Cocoa applications do not require any custom code to imple-
ment a user interface. Even when tools are used to produce user interfaces with other
frameworks, the tools usually generate code to handle interactions between user interface
objects and other objects.The generated code needs to be maintained over the life of a
project and can easily become a source of bugs. Interface Builder does not generate code.
It creates instances of existing classes, sets the state of the instances, and archives them in
.nib files for later unarchiving by running applications as explained in Chapter 11. No
user interface source code is generated. In many cases, no recompiling is needed when
the user interface is changed.

ptg5934432

219Consequences

Cocoa user interface classes are seldom subclassed. Outlets,Targets, and Actions
provide all of the flexibility needed for most applications. Reduced subclassing results in
reduced coupling and less code to maintain.The Notifications and Delegates patterns in
Chapter 14, “Notifications,” and Chapter 15,“Delegates,” provide additional flexibility
that diminish the need to create subclasses of most View subsystem classes.

Cocoa Bindings provide an automated mechanism for keeping variables synchronized
between objects.When two or more variables are bound together, if one changes value,
the values of all bound variables are automatically changed to correspond. Cocoa Bindings
are described in Chapter 29,“Controllers,” and can sometimes be used as an alternative to
Outlets,Targets, and Actions.

ptg5934432

18
Responder Chain

Cocoa’s Responder Chain is a central and essential element of every graphical Cocoa
application. It routes user events to the correct objects and simplifies the implementation
of context-sensitive application features.The Responder Chain is also known as the
Chain of Responsibility pattern.

This chapter describes the behavioral and logic problems that the Responder Chain
solves.Application features as diverse as user input, automated menu item validation, undo
and redo, copy and paste, font selection, error presentation, and all forms of context-sensitive
input are simplified by the Responder Chain. It is closely related to the Hierarchies pattern
explained in Chapter 16,“Hierarchies.” Hierarchies are primarily structural in nature; the
Responder Chain leverages that structure to implement context-dependent behaviors.

Motivation
Control the routing of user input to the correct user interface element.Allow the dy-
namic retargeting of action messages to currently active or selected user interface ele-
ments. Provide a way for user interface elements to automatically update their status in
response to user input or application state changes. Simplify the creation of context-
sensitive application features.

Solution
Most graphical user interface applications have the notion of a user being focused on a par-
ticular user interface element in a specific window.A common problem is that of routing
messages and events to the currently focused object.As the user’s focus changes, the target
needs to change dynamically to follow the focus. Cocoa solves this by using the Chain of
Responsibility pattern to implement what is commonly called the Responder Chain.

The Chain of Responsibility pattern is designed to decouple a message’s sender from
the receiver.A message or event is passed down a linked list of objects until one of them
handles the message, giving multiple objects the opportunity to handle or ignore the
message. Because of the dynamism of Objective-C, the Cocoa implementation of this

ptg5934432

221Solution

pattern is amazingly powerful and in most cases is also simpler than its counterpart in
other application frameworks.

Terminology
In Cocoa, all objects that respond to user input are subclasses of the abstract class
NSResponder.A responder’s primary task is to respond to user input, which usually comes
from the keyboard or mouse. Because the NSApplication, NSWindow, and NSView classes
are all subclasses of NSResponder, the majority of AppKit classes encountered and used by
Cocoa developers are responders.The NSWindowController, NSViewController, and
NSDrawer classes are also subclasses of NSResponder.

As a user works with an application, Cocoa automatically tracks where the user’s focus
is.The window currently receiving keyboard input is known as the “key” window.The
currently focused document is known as the “main” window. Usually a user is working
directly in the document, so the key and main windows are the same. Sometimes the
user’s focus is actually on two windows, however. For example, in a multidocument appli-
cation with utility panels, the user might be focused on a particular document while
entering something into a utility panel.The input to the utility panel is expected to mod-
ify the focused document in some way. In this case, the utility panel would be the key
window, while the document it affects is the main window.

The application object tracks both the key and main windows. References to the cur-
rent key and main NSWindow objects can be obtained from an NSApplication instance
with the -keyWindow and -mainWindow messages, respectively.

Within a given window, the user will usually be focused on a specific view object. For
example, a user click on a text field will change focus to that field so that the user is able
to type in it.The currently focused view is known as the first responder.This is the start of
the Responder Chain.To obtain a reference to the object that is currently a window’s first
responder, send the -firstResponder message to the window object.

The Responder Chain
Responders are chained together to allow multiple responders to handle an event. If the
first responder cannot handle the user’s input or chooses not to handle it, then it passes
the input to the next responder in the chain.Any responder can be sent the
-nextResponder message to find out which object is next in the chain.The
-setNextResponder: message can be used to modify a Responder Chain.

Chapter 16 described the hierarchy of view objects used by Cocoa.This hierarchy de-
fines most of the Responder Chain. Usually a view’s next responder is its superview.
Sometimes other objects might be inserted into the chain between a view and its super-
view, but this is less common.A window’s content view will point to the window itself as
its next responder. Most windows usually have nil as their next responder, ending the
chain.A window that is being managed by an NSWindowController will point to the
window controller, and the controller will in most cases point to nil.All Responder
Chains eventually end in nil to prevent infinite looping.

ptg5934432

222 Chapter 18 Responder Chain

Figure 18.1 shows an example Responder Chain.The window containing the chain is
shown on the left. If the user has clicked the NSTextView to enter some text, then it will
be the first responder.The resulting Responder Chain for this circumstance is shown on
the right.The NSTextView is first, and then its enclosing NSClipView and NSScrollView.
The window’s content view, an NSView, is next.The NSWindow is last.

In this fashion, each window has its own Responder Chain.As the user changes focus
from one view to another within a window, the Responder Chain for that window is
updated.To change focus, an object is first asked if it is willing to become the next re-
sponder via the -acceptsFirstResponder message.Typically only views that can handle
keyboard input will say YES. If so, the current first responder is asked to relinquish its
first responder status by being sent the -resignFirstResponder message. Sometimes, in
the case of text fields that validate input, the answer might be NO until valid data is en-
tered. Finally, the object to become the new first responder is sent the -becomeFirstRe-
sponder message.

Incoming keyboard and mouse events are converted to NSEvent objects by the
NSApplication object and then dispatched to the correct responder object by passing
them down a Responder Chain. For a keyboard events and mouse moved events, the first
responder of the key window is the head of the chain. For mouse clicks, the most deeply
nested view directly under the mouse is the head. If a responder doesn’t want to handle
the event, then it will pass the event on to the next responder in the chain until either an
object handles the event or the event reaches the end of the chain.

Cocoa handles events in this way to make event dispatching become directed by the
hierarchical structure of the objects in the user interface. Input sources are never directly

Figure 18.1 An example of a Responder Chain

NSTextView

NSClipView

NSScrollView

NSView

NSWindow

ptg5934432

223Solution

coupled to the objects that receive the input. Instead, an ordered list of objects based on
the user’s current focus is given the opportunity to respond. User input is automatically
routed by the application’s current context.

The Extended Responder Chain
A difficult problem to solve when designing an application framework is the question of
how to route messages sent by menu items. Consider some of the more common action
messages that might be sent by a menu item.A message like -copy: will probably be han-
dled by the first responder of the key window.The -miniaturize: method would apply
to the key window.The main window’s delegate, often an NSDocument instance, can prob-
ably handle the -save: message.The message to quit an application, -terminate:, should
be handled by the shared NSApplication instance. Finally, the message to create a new
document, -new:, should be handled by the shared NSDocumentController. Routing all
these messages to the correct object is a tricky problem.

Some frameworks send menu events to the currently active window, leaving it up
to the window to determine how to further dispatch the event.This often requires
subclasses of the window object to be created just to handle events generated by menu
items.

Cocoa’s solution removes the need for any special subclassing while actually being
more precise than simply sending an event to a window. Cocoa sends target/action mes-
sages down a Responder Chain, starting with the key window’s first responder.The tar-
get/action message is sent to the first object that responds to it.

The Responder Chain in the key window is not sufficient to cover all the possibilities,
however. In the earlier example of a document window and utility panel, some menu
items such as “Save” need to operate on the document itself, not the utility panel.There-
fore, messages need to be passed down the Responder Chains in both the key and the
main window if these are two different windows. Furthermore, some messages should go
to the application object, and it is also convenient if the window and application delegates
get an opportunity to respond. In a document-based application, the
NSDocumentController also implements some actions, such as “New Document” and
“Save All.”

Putting this all together, the extended Responder Chain used by Cocoa’s Target/
Action mechanism is as follows:

1. Start with the first responder of the key window.

2. Follow the Responder Chain up the view hierarchy.

3. Try the window object.

4. Try the window’s delegate, which is often an NSDocument instance.

5. Next is an NSWindowController instance, if there is one.

6. Repeat 1-5 starting with the first responder of the main window.

ptg5934432

224 Chapter 18 Responder Chain

7. Try the NSApplication object and its delegate.

8. Try the NSDocumentController, if there is one.

Unfortunately, even though some NSView objects support delegates, those delegates do
not participate in this extended Responder Chain. Only the window and application ob-
jects’ delegates are included.

Figure 18.2 shows an extended Responder Chain for a window and utility panel.
The window at the top is the main window and is part of an NSDocument.The panel at
the bottom is the key window. In both windows, the NSTextView is the first responder.
The resulting extended Responder Chain is shown at the right. Additional labels are
shown to the right of some objects to highlight their roles, such as delegates. If the main
and key windows are the same, this chain is shorter because only one window’s view
hierarchy needs to be traversed. In an application that doesn’t use the Cocoa document
architecture, the document and document controller objects are left out as well.

Figure 18.2 An example of the extended Responder Chain

NSTextView

NSClipView

NSScrollView

NSView

NSPanel
Key Window

First
Responder
of Key
Window

NSTextView

NSClipView

NSScrollView

NSView

NSWindow

MyDocument

NSWindow
Controller

NSApplication

MyAppDelegate

Main Window

First
Responder
of Main
Window

Main
Window
Delegate

Application
Delegate

NSDocument
Controller

ptg5934432

225Solution

When a menu item is connected to the first responder object in an Interface Builder
document, it really means that the action message will be passed down this extended Re-
sponder Chain until an object is found that can respond to the message. Just like with
mouse and keyboard events, this decouples the targets from the senders and automatically
makes menu actions become context-sensitive.

When a developer connects a control in Interface Builder to the “first responder”
placeholder, what happens under the hood is that the action’s target is set to nil.To man-
ually configure a control to send an action down the extended Responder Chain, set the
action normally and use nil as the target. For example, to set an NSControl to send
the -terminate: message (which is what the “Quit” menu item sends), you would use
this code:

[myControl setAction:@selector(terminate)];

[myControl setTarget:nil];

To send a message down the extended Responder Chain, NSApplication implements
the -sendAction:to:from: method.To find out which object would respond if a
message were sent down the chain, without actually sending the message, the
NSApplication method -targetForAction:to:from: would be used instead. For
example:

[NSApp sendAction:@selector(terminate) to:nil from:self];

id myTarget = [NSApp targetForAction:@selector(terminate)

to:nil from:self];

Walking Through the Extended Responder Chain
While learning about the Responder Chain, sometimes it is helpful to see what objects
are actually in the chain at a given moment and to see how application context changes
what objects are present. By including a simple object in any application, you can easily
dump a trace of the Responder Chain to the console.The interface is simple; the
-trace: action method is the most important feature:

#import <Cocoa/Cocoa.h>

@interface MyResponderChainTracer : NSObject

{

int count;

}

- (void)traceChain:(id)currentResponder;

- (IBAction)trace:(id)sender;

@end

ptg5934432

226 Chapter 18 Responder Chain

The implementation simply follows the Responder Chain linked lists for the key and
main windows, printing a line to the log for every object it finds:

#import "MyResponderChainTracer.h"

@implementation MyResponderChainTracer

- (void)traceChain:(id)currentResponder

{

while (currentResponder)

{

NSLog(@"Responder %d: %@", count, currentResponder);

count++;

if ([currentResponder isKindOfClass:[NSWindow class]] ||

[currentResponder isKindOfClass:[NSApplication class]])

{

id delegate = [currentResponder delegate];

if (delegate)

{

NSLog(@"Responder %d (delegate): %@", count,

[currentResponder delegate]);

count++;

}

}

if ([currentResponder respondsToSelector:

@selector(nextResponder)])

{

currentResponder = [currentResponder nextResponder];

}

else

{

currentResponder = nil;

}

}

}

- (IBAction)trace:(id)sender

{

NSWindow *keyWindow = [NSApp keyWindow];

NSWindow *mainWindow = [NSApp mainWindow];

count = 1;

NSLog(@"***** Begin Trace *****");

[self traceChain:[keyWindow firstResponder]];

if (keyWindow != mainWindow)

ptg5934432

227Solution

{

[self traceChain:[mainWindow firstResponder]];

}

[self traceChain:NSApp];

// omit this line if not in an NSDocument-based app:

[self traceChain:

[NSDocumentController sharedDocumentController]];

NSLog(@"***** End Trace *****");

}

@end

To use this object, instantiate it in your application’s Main.nib and create a menu item
that sends the -trace: action to the MyResponderChainTracer instance.When the appli-
cation is run, simply select the menu item at any time to see the Responder Chain at that
given moment.

Inserting Objects into the Responder Chain
It is possible to manually manipulate the Responder Chain to insert other objects.The
only requirement is that inserted objects be subclasses of NSResponder. For example, the
NSViewController class is a subclass of NSResponder. Sometimes it makes sense to insert
a view controller into the Responder Chain between the view it is controlling and that
view’s superview.This is especially true if the view controller is a custom subclass that im-
plements an event handling method or Target/Action method.When a view is added to
another as a subview, the next responder is set automatically.Therefore, the time to alter
the chain is after the view hierarchy has been created. For example, to insert a view con-
troller, code like this might be used:

// myView has been added to it's superview already

NSResponder *theNextResponder = [myView nextResponder];

[myView setNextResponder:myViewController];

[myViewController setNextResponder:theNextResponder];

One reason for something like this might be if the view controller overrides
-keyDown: to allow some keyboard shortcuts to be used, such as the use of the Delete
key.When the view controller is inserted into the chain after the view, it will only re-
spond when the view itself is active.This makes sense if a given window has more than
one view/controller pair. If the view is the only one like it in the window, or the
controller’s actions must be active always, then it might make sense to insert it after
the window controller instead. By inserting it into different parts of the chain, it is
possible to alter behaviors and select when the controller will or won’t respond to user
input.

ptg5934432

228 Chapter 18 Responder Chain

Leveraging the Responder Chain
Any time a developer wants to implement context-sensitive features, it is easiest to do
so by taking advantage of the existing Responder Chains. For example, in the early days
of NeXTStep, Cocoa’s predecessor, menu items had to be enabled or disabled manually.
Eventually automatic menu item validation was added.To make this new feature
easy for developers to adopt, the Responder Chain was used at the core of the
implementation.

Cocoa’s menu validation is a straightforward use of the Responder Chain. If no object
in the Responder Chain responds to the action sent by the menu item, it should obvi-
ously be disabled. In the simplest form of validation, if the user changes focus to a user in-
terface element that responds to the menu item’s action message, then the menu item can
be enabled. However, consider a text object.The cut-and-copy actions do not make sense
if no text is selected.Therefore, it is reasonable to add an optional validation method,
-validateMenuItem: that returns YES or NO to enable the menu item. In effect, the menu
item is asking the target user interface object if the action makes sense given the object’s
current state.

By implementing menu validation in this way, a lot of old code supporting enabling
and disabling menu items could be thrown away, greatly simplifying Cocoa applica-
tions.A similar approach can be taken when trying to implement similar context-
dependent behaviors.As an example, consider creating a button subclass that can
automatically validate itself in the same way NSMenuItem objects do now.The object
would not need to declare any new instance variables or methods, so the header would
be simple:

#import <Cocoa/Cocoa.h>

@interface MyValidatingButton : NSButton

{

}

@end

The implementation does two things. First, the button is set up to observe the
NSApplicationDidUpdateNotification notification so that it can periodically validate
itself.This will cause validation checks that are much more frequent than necessary, but
it is easier than a more efficient alternative and allows us to focus on the validation
itself.

To actually validate the button, it is necessary to determine the button’s target and
then call a validation method on the target. If the validation result requires the button to
change its enabled state, then the change can be made.The complete implementation for
the validating button is as follows:

#import "MyValidatingButton.h"

ptg5934432

229Solution

@implementation MyValidatingButton

- (void)awakeFromNib

{

[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(applicationDidUpdate)

name:NSApplicationDidUpdateNotification object:nil];

}

- (void)applicationDidUpdate:(id)userInfo

{

BOOL validated = NO;

id myTarget = [NSApp targetForAction:[self action]

to:[self target] from:self];

if (myTarget) validated = YES;

if ([myTarget respondsToSelector:@selector(validateMenuItem)])

{

NSMenuItem *myItem = [[NSMenuItem alloc]

initWithTitle:[self title] action:[self action]

keyEquivalent:@""];

validated = [myTarget validateMenuItem:myItem];

[myItem release];

}

if ([self isEnabled] != validated)

{

[self setEnabled:validated];

}

}

@end

If there is no valid target, then the button needs to be disabled. So the first thing to do
is initialize validated to NO.The target is determined by using the NSApplication
method -targetForAction:to:from:. If a target exists, we can tentatively validate the
button and set validated to YES. Next, if the target responds to the menu item valida-
tion method -validateMenuItem:, we can create a dummy menu item mirroring the
button’s title and action and then use the -validateMenuItem: method to do a final vali-
dation. If the final value of validated differs from the button’s enabled state, then
-setEnabled: is used to update it.

A simple application to test this class can be created by placing an NSTextView in a
window along with three buttons that send -cut:, -copy:, and -paste: to the first re-
sponder. Figure 18.3 shows what this looks like.

ptg5934432

230 Chapter 18 Responder Chain

Figure 18.3 MyValidatingButton example
interface

Examples in Cocoa
Responder Chains are a central part of Cocoa’s design. User input from the keyboard and
mouse is dispatched by the NSApplication object and sent down the relevant Responder
Chain. Keyboard events are passed down the Responder Chain of the key window, while
mouse events can be dispatched to different windows depending on the mouse location
and event type. For example, mouse moved events go to the key window, while mouse
down and mouse scroll events go to the window currently under the mouse pointer.

An extended version of the Responder Chain that includes Responder Chains from
the key and main window and the shared NSApplication and NSDocumentController

instances is used to dispatch action messages sent to a nil target. Menu items are one of
the most common places nil-targeted actions are encountered, considering many menu
commands are intended to operate on whatever view and/or window the user has fo-
cused.Any time an action needs to dynamically change its target based on application
context, a nil-targeted action is usually the best solution. Copy and paste, font and color
selection, ruler manipulation, and undo and redo are all examples of actions that are com-
monly sent down the extended Responder Chain.

Because of the way the Responder Chain is designed, it is possible to easily implement
automatic menu-item validation.The menu item and the targeted object are completely
decoupled because neither is aware of the other until the moment of validation.This
helps to keep validation code both simple and well organized.

Contextual menus also leverage the Responder Chain. If a given view doesn’t want to
generate a contextual menu, its superview is given an opportunity to do so.This query can
continue up the Responder Chain. In this way, some views can provide very specific con-
textual menus while others provide a more general menu. Context help works in exactly
the same way, offering each object in the Responder Chain the opportunity to supply help.

ptg5934432

231Consequences

Many of these context-dependent features were not in the original releases Cocoa or
its predecessors and were added later.The power and flexibility of the Responder Chain
has made it possible to implement these features in an elegant way that usually allows de-
velopers to adopt the new features with little, if any, extra work. It is highly likely that fu-
ture major feature additions to the AppKit will further leverage Responder Chains to
present new features that developers can adopt quickly and easily.

Consequences
Cocoa leverages the flexibility of dispatching messages along a chain to automatically pro-
vide application features as diverse as keyboard and mouse event dispatch, menu item vali-
dation, undo and redo, copy and paste, font selection, contextual menus, and contextual
help. Every graphical Cocoa application gets these features and more for free or with very
little code thanks to the Responder Chain.

Developers benefit from being able to include all these features in their applications
with little to no effort. It is also possible for developers to customize the Responder
Chains within their applications and to leverage them to ease the implementation of ap-
plication-specific, context-dependent behaviors.

ptg5934432

19
Associative Storage

Associative Storage is one of the oldest and most used patterns in software develop-
ment. It organizes data and keys so that data can be quickly and easily accessed using the
corresponding keys.Associative Storage promotes flexibility and runtime storage
efficiency.

Motivation
Use Associative Storage to accomplish the following:

n Efficiently store arbitrary data associated with objects.
n Promote flexibility by delaying the selection of which data to access until runtime.
n Provide object extensibility per instance instead of per class.
n Work around an Objective-C programming language limitation that prevents addi-

tion of instance variables without subclassing.

Solution
The NSDictionary and NSMutableDictionary classes in Cocoa’s Foundation framework
are the most prominent classes that provide associative storage.An NSDictionary instance
maps keys to object values.To retrieve an object value previously stored in a dictionary,
use the -objectForKey: method, which returns the object that is associated with a speci-
fied key. NSMutableDictionary is a subclass of NSDictionary and provides the
-setObject:forKey: method used to create new associations in the dictionary.When
keys and values are added and removed from a mutable dictionary, the memory allocated
to store objects grows and shrinks automatically. If -setObject:forKey: is called with a
key that is already in the dictionary, the object associated with that key is replaced by the
new object. Each unique key is stored in each dictionary at most once.

ptg5934432

233Solution

The objects stored in a dictionary are retained when they are added to the collection
and released when they are removed.The implications of retaining and releasing objects
are described in Chapter 10,“Accessors.”The keys that are added to a dictionary are
copied, which means that all objects used as keys in a dictionary must conform to the
NSCopying formal protocol declared in NSObject.h. In addition to conforming to the
NSCopying protocol, objects used as keys in a dictionary must implement the -isEqual:
and -hash methods so that any two objects that are considered equal by the -isEqual:
method also have the same hash value.The -isEqual: and -hash methods are declared in
the NSObject class, which provides basic implementations using the addresses of objects.
In other words, two objects are equal if they have the same address, and the -hash value is
computed from the address.

Subclasses of NSObject override the inherited implementations of -isEqual: and
-hash as needed. For example, instances of the NSString class are compared based on
their stored string values rather than merely their addresses, and the value returned from
-hash is also computed from the stored strings.

Note
NSDictionary and other Associative Storage features of Cocoa are implemented with hash
tables. Hash tables are explained in almost every introductory software data structures text-
book. An excellent introduction is available at http://ciips.ee.uwa.edu.au/~morris/Year2/
PLDS210/hash_tables.html, and an advanced description is available at http://www.cris.
com/~Ttwang/tech/inthash.htm.

Cocoa provides a functional interface for Associative Storage using the NSMapTable
data structure and functions that manipulate it. NSMapTable is used in the following ex-
ample because it provides a little more flexibility than NSDictionary. Dictionaries always
copy their keys, but in the following example it is necessary to store keys without copying
or retaining them.

Simulating Instance Variables
One limitation of the Category pattern described in Chapter 6,“Category” is that cate-
gories can only add methods to a class; instance variables must be declared only in the
main class interface.This example shows one way the Associative Storage pattern is used to
simulate the addition of an instance variable to Cocoa’s NSObject class.The category in
this example provides access to a different label for each instance of NSObject or any class
that inherits from NSObject. Instances that don’t have an assigned label don’t consume any
extra memory.The following category declares the -mySetLabel: and -myLabel methods:

#import <Foundation/Foundation.h>

@interface NSObject (MYSimulateIVar)

ptg5934432

234 Chapter 19 Associative Storage

- (void)setMyLabel:(NSString *)aString;

- (NSString *)myLabel;

@end

Methods like the ones defined in this category are called accessors.Accessors are them-
selves an important pattern described in Chapter 10.The primary purpose of accessors is
to funnel all references to each instance variable through a few, usually only two, methods.
A nice benefit of using accessors in this example is that even though the labels are not
stored as instance variables, programmers using the NSObject class don’t need to know
that.The accessors shield users of a class from the actual implementation.

#import "MYSimulateIvar.h"

@implementation NSObject (MYSimulateIVar)

//

static NSMapTable *_MYSimulatedIVarMapTable = NULL;

+ (NSMapTable *)_mySimulatedIVarMapTable

//

{

if(NULL == _MYSimulatedIVarMapTable)

{

_MYSimulatedIVarMapTable = NSCreateMapTable(

NSNonRetainedObjectMapKeyCallBacks,

NSObjectMapValueCallBacks, 16);

}

return _MYSimulatedIVarMapTable;

}

- (void)dealloc

// Possibly risky implementation

{

NSMapRemove([[self class] _mySimulatedIVarMapTable], self);

NSDeallocateObject(self);

}

- (void)setMyLabel:(NSString *)aString

//

{

NSString *newLabel = [aString copy];

ptg5934432

235Solution

NSMapInsert([[self class] _mySimulatedIVarMapTable], self, newLabel);

[newLabel release];

}

- (NSString *)myLabel

//

{

return NSMapGet([[self class] _mySimulatedIVarMapTable], self);

}

@end

There are several important elements to the implementation of the MYSimulateIVar
category.The +_myRefCountMapTable class method is used to access the NSMapTable data
structure that stores labels associated with NSObject instances.The
+_myRefCountMapTable method is not declared in the category interface because it is a
private implementation detail of the category.The first time +_myRefCountMapTable is
called, the data structure is initialized to store nonretained object keys and retained objects
as values. It is critical that the keys are not retained because if they are retained it will be
impossible to correctly deallocate any instances of NSObject that have associated labels.
The table is initialized with sufficient storage for 16 key/value pairs, but that number is
arbitrary.The storage for the table automatically increases as keys and values are added.
The -dealloc method implemented in the category replaces NSObject’s existing imple-
mentation.The -dealloc method removes any key/value pair associated with an instance
when the instance is deallocated. It is safe to replace NSObject’s -dealloc implementa-
tion in this case because the replaced version is documented to do nothing except call
NSDeallocateObject() as of Mac OS X 10.5. If Apple ever changes the implementation
of -dealloc in the NSObject class, the fact that this category bypasses that implementa-
tion could have undesirable side effects.

To flesh out support for labels associated with objects, it’s necessary to provide encod-
ing and decoding support so that labels are stored along with any other data stored for
objects when they are encoded.An example of using existing accessors in the implemen-
tation of encoding and decoding methods is provided in Chapter 11,“Archiving and
Unarchiving.” Support for copying labels when objects are copied should also be sup-
ported, and a general technique is described in Chapter 12,“Copying.”

Finally, this example is limited to storing labels for objects.A more useful category en-
ables the storage on any amount of data with each object.To enable that, modify the ex-
ample to store dictionaries of key/value pairs with -mySetUserInfo: and -myUserInfo

methods instead of instead of -mySetLabel: and -myLabel methods.

- (void)mySetUserInfo:(NSDictionary *)aDictionary

//

{

NSDictionary *newDictionary = [aDictionary copy];

ptg5934432

236 Chapter 19 Associative Storage

NSMapInsert([[self class] _mySimulatedIVarMapTable], self,

newDictionary);

[newDictionary release];

}

- (NSDictionary *)myUserInfo

//

{

return NSMapGet([[self class] _mySimulatedIVarMapTable], self);

}

Any number of key/value pairs can be stored in the dictionary associated with each
object.To keep the ability to store labels, simply store a label string associated with a key
such as @"Label" in each user info dictionary.

Even though Objective-C doesn’t support true class variables, this technique can be
used to simulate class variables.A generalized implementation of simulated class variables
could use nested Associative Storage.The class name can be used as a key to return a
dictionary for a particular class.The name of the class variable would then be used as a
key to look up the actual value.

Examples in Cocoa
Many Cocoa classes including NSAttributedString, NSFileManager, NSNotification,
and NSProcessInfo use the Associative Storage pattern extensively.The pattern can be
used to simulate instance variables in your own code.The opposite is possible, too. Cocoa
uses the related key value coding system to provide access to instance variables of any
object as if the true instance variables were all simulated with Associative Storage.
Associative Storage also provides the basis of Cocoa’s keyed archiving system described
in Chapter 11.

The use of NSDictionary to provide Associative Storage for arbitrary properties of
NSNotification and NSFileManager objects has already been mentioned.
NSNotification provides the -userInfo method that returns a dictionary containing ar-
bitrary keys and values. NSFileManager’s -fileAttributesAtPath:traverseLink:
method returns a dictionary that stores the subset of possible file attribute key/value pairs
available for a file.Another prominent example is the dictionary of text formatting attrib-
utes stored by NSAttributedString instances. Each string can have different attributes,
and the set of possible attributes is open-ended. Using a dictionary to store attributes
enables the storage of custom application-specific attributes without the need to subclass
NSAtrributedString.The NSProcessInfo class provides the -environment method that
returns a dictionary of environment variable name/value pairs that are defined for a
running process. Once again, because the collection of variable names and values is
open-ended, using the Associative Storage pattern is the perfect solution.

ptg5934432

237Examples in Cocoa

Reference Counted Memory Management
Cocoa uses the Associative Storage pattern to store the reference count needed to imple-
ment reference counted memory management.The following example describes a hypo-
thetical MYRefCounted category of NSObject that stores a reference count for each object
using Associative Storage in much the same way it is implemented in Cocoa.The code
shows the basic technique and highlights some of the advantages and disadvantages of
using Associative Storage:

#import <Foundation/Foundation.h>

@interface NSObject (MYRefCounted)

- (int)retainCount;

- (id)retain;

- (void)release;

@end

The -retainCount, -retain, and -release methods form the core of Cocoa’s refer-
ence counted memory management support.Another critical method, -autorelease,
and the NSAutoreleasePool class used to support -autorelease are not shown here but
are described in Chapter 10.

#import "MYRefCounted.h"

@implementation NSObject (MYRefCounted)

//

static NSMapTable *_MYRefCountMapTable = NULL;

+ (NSMapTable *)_myRefCountMapTable

// Provides access to the table used to store reference counts

{

if(NULL == _MYRefCountMapTable)

{

_MYRefCountMapTable = NSCreateMapTable(

NSNonRetainedObjectMapKeyCallBacks,

NSIntMapValueCallBacks, 16);

}

return _MYRefCountMapTable;

}

ptg5934432

238 Chapter 19 Associative Storage

- (int)retainCount

// Returns the receiver's current reference count

{

int result = 1; // receiver not in table, its count is 1

void *tableValue = NSMapGet(

[[self class] _myRefCountMapTable], self);

if(NULL != tableValue)

{ // if receiver is in table, its count is the value stored

result = (int)tableValue;

}

return result;

}

- (id)retain

// Increases the receiver's reference count

{

// store the increased value in the table

NSMapInsert([[self class] _myRefCountMapTable], self,

(void *)([self retainCount] + 1));

return self;

}

- (void)release

// Decrease the receiver's reference count and dealloc if it reaches

// zero

{

int currentRetainCount = [self retainCount];

if(1 == currentRetainCount)

{ // the reference count is about to reach zero so deallocate

// there is no need to remove receiver from table now because if

// its reference count is 1, it is not in the table

[self dealloc];

}

else if(2 == currentRetainCount)

{

// remove the receiver from the table to indicate that its

// reference count is 1

NSMapRemove([[self class] _myRefCountMapTable], self);

ptg5934432

239Examples in Cocoa

}

else

{ store the decreased value in the table

NSMapInsert([[self class] _myRefCountMapTable], self,

(void *)(currentRetainCount - 1));

}

}

@end

Objects that are not stored in _MYRefCountMapTable have an implicit reference count
of 1. For example, newly allocated objects aren’t stored in the table and therefore have a
reference count of 1, and no extra storage beyond the storage needed for instance vari-
ables is needed.Working on the assumption that at any give time, almost all objects have a
reference count of 1, this system makes efficient use of memory.

Each time an object is retained by calling the -retain method, its reference count in-
creases and is stored in the table. Each time an object is released via the -release
method, the associated reference count stored in the table is decreased. If the reference
count decreases to 1, the association is removed from the table. If the reference count de-
creases to zero, the object is immediately deallocated.

Key Value Coding
Much of this chapter has focused on simulating additional instance variables with the As-
sociative Storage pattern. Cocoa’s Key Value Coding does exactly the opposite. It provides
access to an object’s instance variables using semantics similar to Associative Storage. Key
Value Coding provides access to an object’s properties indirectly using string keys rather
than through accessor methods or direct instance variable references. Key Value Coding
was introduced to simplify the interaction of scripting languages with Cocoa objects, but
the technique has value in many contexts.The two principal methods that implement key
value coding are –valueForKey and -setValue:forkey:.The -setValue:forKey:
method uses the string name specified as a key to identify an accessor method or instance
variable name. If a suitable method or variable is identified, its value is set to the value
specified. Similarly, the -valueForKey: method returns a value obtained by calling an
accessor method or directly accessing the instance variable identified by the key.

Cocoa’s existing implementations of -setValue:forKey: and -valueForKey: first try
to use an accessor method based on the key name.The set accessor needs to have the
form -set<key>: where <key> is the string used as a key.The first letter in the key is
made uppercase if it is not already so that Cocoa’s method naming convention of capital-
izing all but the first word in a method name is preserved. For example, if
-setValue:forKey: is called with @"label" as the key, it will try to use an accessor
method named -setLabel: to set the value.When getting a value with -valueForKey:,
the method tries to use an accessor with the name -<key>. In this case, the first letter of
the key is converted to lowercase if necessary so that the method starts with a lowercase

ptg5934432

240 Chapter 19 Associative Storage

letter. For example, calling -valueForKey: with @"label" as the key ends up calling the
-label method if it exists.

The key value system is very sophisticated and will fall back to using accessors that
start with underscore “_” characters and if all else fails will directly access instance vari-
ables with names derived from the strings used as keys.The key value system allows pro-
grams to interact with objects as if every object is a dictionary that associates its properties
with string keys. Key Value Coding is also described in Chapters 29,“Controllers,” and 30,
“Code Data Models.”

Key Value Coding provides a way for scripting languages to access the values stored in
objects at runtime based on the string name of the value. Perhaps more importantly, Key
Value Coding is the foundation for Cocoa bindings technology. Key Value Coding applies
the Associative Storage pattern to every Cocoa object so that object instance variables or
accessors are selected at runtime via string keys.

Consequences
Associative storage is flexible and can be used to implement previously unanticipated fea-
tures.The uses for a dictionary associated with each NSObject instance are completely
open-ended. However, accessing values stored in a dictionary or map table is not as effi-
cient as accessing instance variables directly.An instance variable can typically be accessed
from program code with a single machine instruction, but Associative Storage requires
multiple method or function calls, calculation of hash values, and indexed memory access
into a table. Storing an associated value requires memory for both the key and the value.
If every object uses associated storage, the memory required to store all of the keys and
values exceeds the memory that would have been required to store the values in instance
variables. If the need to store values is rare, using Associative Storage can be a big win.
Rather than storing unused instance variables in every instance, memory is only reserved
when the values are actually used.

The examples in this chapter use Associative Storage with categories, but the tech-
nique is applicable in many circumstances. In fact, the drawbacks of replacing methods
like -dealloc with methods in categories are serious.When subclassing is an option, sim-
ply adding instance variables in a subclass is probably the best choice. One of the most
flexible techniques for using Associative Storage is to provide an NSDictionary object as
an instance variable. Cocoa’s NSNotification class uses this approach to allow storage of
arbitrary data with each instance.The NSFileManager class uses a similar technique to
store file system-specific information about files.The flexibility is needed in the case of
NSFileManager because each file being managed could be stored in a different file system
with different file system-specific attributes. Using a dictionary of attributes enables the
storage of pertinent attributes without requiring storage for attributes that don’t apply.

Associative Storage is also useful for shortening method names.A complex method
that requires many arguments might be better implemented with a single NSDictionary

argument instead. If some of the arguments are optional, then there is a temptation to
create many convenience methods with shorter names that leave out the optional

ptg5934432

241Consequences

arguments. By using Associative Storage to pass the arguments, it is possible to avoid a
proliferation of methods. Optional keys can simply be omitted when populating the dic-
tionary and the method can supply sensible default values for missing keys.Associative
Storage also helps to insulate senders from future changes. If later versions of the method
allow for new arguments, there is no need to alter the message. More key/value pairs are
simply added to the dictionary. If arguments are removed, any extra keys in the dictionary
will be ignored.The downside of this approach is that the sender needs extra code to
configure and populate an NSDictionary instance.

ptg5934432

20
Invocations

Invocations are a technique for preserving the state of messages, arguments, and return
values. Invocations can be used to completely decouple the sender of a message from the
receiver.The sender and receiver can be in different processes or separated by time. Invo-
cations are implemented by Cocoa’s NSInvocation class and are used in distributed ob-
jects, undo and redo support, and scheduled periodic event processing. Invocations can be
used in applications to provide a wide range of flexible and dynamic behavior. Invocations
are a generalized implementation of the well-known Command pattern described at
http://en.wikipedia.org/wiki/Command_pattern.

Motivation
Provide a means of capturing messages so that they can be stored, delayed, rerouted, or
treated and manipulated as objects.Allow new messages to be constructed and sent at
runtime without requiring a compiler.

Solution
When working with Objective-C, it is important to remember that sending a message to
an object is not the same thing as invoking a method.When an object receives a message,
usually a method is invoked to handle the message. However, this is not always the case.
For example, if an object doesn’t implement a particular method, then there is no method
that can be invoked, and a runtime exception is raised instead. Because of the flexibility of
the Objective-C runtime, it is possible for messages to be delayed, rerouted to other re-
ceivers, or even ignored.

It is sometimes useful to think of Objective-C messages as if they were analogous to a
real-world message. For example, a secretary might receive messages for a corporate ex-
ecutive.The messages might be handled by the secretary, passed on to the executive as-is,
or changed before being passed on.A particularly important message might be copied
and sent on to multiple recipients. In Objective-C, all these scenarios are possible.

ptg5934432

243Solution

Chapter 27,“Proxies and Forwarding,” demonstrates how many of these situations can be
implemented.

At the core of this flexibility is the need to treat a message as if it were an object that
can be created and manipulated.The NSInvocation class is designed to represent an
Objective-C message. NSInvocation instances encapsulate all the attributes of an
Objective-C message.They know the message’s receiver, the message name (both the selec-
tor and method signature), and all the message’s arguments.After invoking an NSInvocation,
the message’s return value (if there is one) may be retrieved from the NSInvocation.

Method Signatures
One point of confusion for many developers is in how messages are named. Each name
has two parts, the selector and the method signature. Both parts are required to properly
configure NSInvocation objects.A selector is the message’s name without any type infor-
mation, for example “countOfObjectsOfType:” is a selector. Objective-C also has the
data type SEL, which is a unique identifier representing a selector.The Objective-C direc-
tive @selector() can be used to obtain a SEL.

Most programmers consider the selector to be the same thing as the message name,
and in most cases this is fine. However, selectors do not provide any type information.
To build a complete message, the types of each argument and the return value’s type
need to be known.This type information is known as a method signature.The class
NSMethodSignature encapsulates this information.

To get an NSMethodSignature instance, typically you would ask an NSObject subclass
for the correct signature given a particular selector.This is necessary because the same
selector can have a different signature depending on which object is responding. For
example, consider two methods with the same selector but different signatures and a
message that invokes one of them:

- (int)countOfObjectsOfType:(id)objectType; // defined in ClassA

- (NSValue *)countOfObjectsOfType:(int)objectType; // defined in ClassB

value = [myObject countOfObjectsOfType:aType];

If the receiver, myObject, is of type id, then this message will create a compiler warn-
ing because the compiler won’t know for certain which method signature to use when
constructing the message. Normally a developer would use static typing on the receiver
to tell the compiler what kind of object will receive the message. It is also possible to use
a type cast when sending a message. One of these two solutions would be used to elimi-
nate the compiler warning:

// if you must use an id type, then use a cast when sending the message

id myObject;

value = [(ClassA *)myObject countOfObjectsOfType:aType];

// otherwise, use static typing instead of a generic id to disambiguate

ClassA *myObject;

value = [myObject countOfObjectsOfType:aType];

ptg5934432

244 Chapter 20 Invocations

At runtime, however, the receiver is known, and it is possible to simply ask it for the
correct message signature, like this:

NSMethodSignature* mySignature = [myObject

methodSignatureForSelector:@selector(countOfObjectsOfType:)];

The designated initializer for NSInvocation instances requires a method signature to
be provided, so you can’t create invocations without first obtaining a method signature.
Because the NSMethodSignature object also knows the return type to expect, it is addi-
tionally needed when retrieving return values from NSInvocation instances.

Using NSInvocation Objects
To use an NSInvocation to send a message, an instance is created and then configured.
Once configured, it may be invoked at the appropriate time, causing an Objective-C mes-
sage to be sent.The return value of the message can then be retrieved from the
NSInvocation object. NSInvocation instances may be invoked multiple times, possibly
with changes made to target, arguments, and even message selector between invocations.

To demonstrate how an NSInvocation can be created and used, we will create a sim-
ple application to perform some basic string manipulations.The user will be able to enter
a string, select an operation to be performed, supply the appropriate arguments, and then
click a button to send a message that will perform the operation on the string and display
the return value. One class, named InvocationController, is required.The interface for
this class is simple:

@interface InvocationController : NSObject

{

IBOutlet NSTextField *receiver;

IBOutlet NSPopUpButton *message;

IBOutlet NSTextField *argument1;

IBOutlet NSTextField *argument2;

IBOutlet NSTextField *result;

}

- (IBAction)inputChanged:(id)sender;

- (IBAction)sendMessage:(id)sender;

@end

Figure 20.1 shows the user interface used by this example, including the connections
to the controller object.

The pop-up button is configured with an NSMenuItem for each operation that will be
performed.The title of each item is the selector for the message to be sent. Proper
spelling and capitalization is very important.The tag for the menu item is the number of
arguments the message requires. For example, the method -lowercaseString takes no
arguments, so the title is “lowercaseString” and the tag is “0.” Figure 20.2 shows all the
pop-up button’s menu items for this example.

ptg5934432

245Solution

Figure 20.1 NSInvocation example interface

The controller’s -inputChanged: method simply enables or disables the argument text
fields based on which menu item has been selected by the user with the pop-up button.

- (IBAction)inputChanged:(id)sender

{

int numberOfArguments = [[message selectedItem] tag];

[argument1 setEnabled:NO];

Figure 20.2 Menu items found in the pop-up button

ptg5934432

246 Chapter 20 Invocations

[argument2 setEnabled:NO];

switch (numberOfArguments)

{

case 2:

[argument2 setEnabled:YES];

case 1:

[argument1 setEnabled:YES];

case 0:

default:

break;

}

}

Now that the interface is in place, it is time for the meat of this example.The
-sendMessage: method of the controller object needs to take the information from the
interface, turn it into an NSInvocation instance, invoke it, and then put the return value
into the interface.

Because the selector is the title of the pop-up button, it is necessary to convert from
an NSString to an Objective-C SEL type.The NSSelectorFromString() function can
convert NSString instances into selectors. Using the receiver and the selector, it is
possible to get the method signature, which can then be used to create an NSInvocation
instance:

NSString *receivingString = [receiver stringValue];

NSString *messageString = [message titleOfSelectedItem];

SEL selector = NSSelectorFromString(messageString);

NSMethodSignature *methodSignature = [receivingString

methodSignatureForSelector:selector];

NSInvocation *invocation = [NSInvocation

invocationWithMethodSignature:methodSignature];

The first step of configuring an invocation is to tell it the message’s receiver (or target)
and the selector.The invocation was created with the method signature, so it knows the
type information, but it also needs to know the selector as well:

[invocation setTarget:receivingString]; // argument 0 is "self"

[invocation setSelector:selector]; // argument 1 is "_cmd"

Every Objective-C method has two hidden arguments.The first and most commonly
used argument is self.The second, containing the selector that invoked the method, is
_cmd. Note that this means it is technically possible to write method implementations
that may be invoked by multiple different selectors.The implementation would use _cmd
to determine which selector was actually used.This works as long as each of the selectors
has the same method signature.This is particularly useful when constructing classes on-
the-fly in a running program, as might be done when bridging between Objective-C and
scripting languages.These hidden arguments are important when building NSInvocation

instances because it is critical that both arguments be supplied. If you forget to use both
-setTarget: and -setSelector:, the invocation will not work.

ptg5934432

247Solution

Returning to the example, the next step is to configure the arguments for the invoca-
tion.The -setArgument:atIndex: method of NSInvocation is used for this.The mes-
sages being sent can have 0, 1, or 2 arguments, and the tag of the selected pop-up button
item tells how many arguments to set up. Because the hidden arguments self and _cmd
take up spots 0 and 1 in the argument list, the first argument to the method is actually ar-
gument 2.Also when using the -setArgument:atIndex: method, pointers to object
pointers must be used instead of just a pointer to the object. Here’s the code:
int numberOfArguments = [[message selectedItem] tag];

if (numberOfArguments > 0)

{

NSString *argumentString1 = [argument1 stringValue];

[invocation setArgument:&argumentString1 atIndex:2];

if (numberOfArguments > 1)

{

NSString *argumentString2 = [argument2 stringValue];

[invocation setArgument:&argumentString2 atIndex:3];

}

}

Invocation objects by default do not retain their arguments. If the arguments are ob-
jects that might be released before the invocation sends its message, then it needs to be
sent the -retainArguments message. Given that this example invocation will be used im-
mediately, there is no need to use -retainArguments.

Now that the invocation is created and has all its arguments configured, it can be sent
the -invoke message.The return value can then be requested with the -getReturnValue:

method, which takes a pointer to void* as its argument.The return value is stored in that
pointer, but the method signature must be queried to know how to interpret the data.
Here is the code to invoke the message and interpret the return value:
[invocation invoke];

void *returnValue = NULL;

[invocation getReturnValue:&returnValue];

const char *returnType = [methodSignature methodReturnType];

if (returnType)

{

switch (returnType[0])

{

case ‘@':

[result setObjectValue:(id)returnValue];

break;

case ‘i':

[result setIntValue:(int)returnValue];

break;

default:

break;

}

}

ptg5934432

248 Chapter 20 Invocations

The interpretation of return values is based on the Objective-C @encode() directive
as described by the documentation for the Objective-C language. Because this is
implementation-dependent, it is wise to carefully test any code that uses this information
directly, such as this example’s switch statement. In this case, because the methods that
would be called in the example only return int (“i”) or id (“@”) types, only two cases
are handled. More robust code would attempt to handle all types supported by
@encode() or throw exceptions for unsupported types.

Figure 20.3 shows this example program in action.A real program probably wouldn’t
put method names on a pop-up button directly as is done by this example. Instead, a dic-
tionary or other mechanism might be used to look up method names so that the pop-up
button’s menu items could have titles that are more user-friendly.

Using Timers
For most Cocoa programmers it is rare to actually manipulate NSInvocation objects di-
rectly as is done in the previous example.That said, many parts of Cocoa use
NSInvocation in their implementation. One example of this is the NSTimer object.A
timer takes a target, a message to be sent to that target, and a time interval. Every time the
interval elapses, the timer sends the message to the target.This can be used to create uni-
formly repeating events.The classic example of this would be an animation loop. For ex-
ample, an animation loop that draws a new frame 24 times per second would use a time
interval of 1/24 second (0.0417 seconds).When a timer’s time interval has elapsed and it
is time to send the message again, the timer is said to “fire,” just like a starter fires a gun at
the start of a race.

To show an example of how this works, let’s create a simple example implementing a
stopwatch that counts upward from one number to another number at a user-specified

Figure 20.3 The Invocation example while running

ptg5934432

249Solution

speed.As in the previous example, a controller object is required.The interface for the
TimerController class is as follows:

@interface TimerController : NSObject

{

NSTimer *myTimer;

IBOutlet NSTextField *startCount;

IBOutlet NSTextField *endCount;

IBOutlet NSTextField *interval;

IBOutlet NSTextField *currentCount;

IBOutlet NSButton *startButton;

IBOutlet NSButton *continueButton;

IBOutlet NSButton *endButton;

int count;

}

- (void)startTimer;

- (void)stopTimer;

- (IBAction)beginTimer:(id)sender;

- (IBAction)continueTimer:(id)sender;

- (IBAction)endTimer:(id)sender;

- (void)count:(id)userInfo;

@end

The interface controlled by this object is shown in Figure 20.4.
The controller’s implementation does some basic initialization in the -init and

-awakeFromNib methods to set up the interface and set the counter to its initial value.
The -dealloc method needs to properly shut things down.The Interface Builder actions
are simple cover methods that call the -startTimer and -stopTimer methods:

- (id)init

{

if(nil != (self = [super init]))

{

count = 0;

}

return self;

}

- (void)awakeFromNib

{

count = [startCount intValue];

[currentCount setIntValue:count];

[self stopTimer];

}

- (void)dealloc

ptg5934432

250 Chapter 20 Invocations

Figure 20.4 The interface for the Timer example

{

[self stopTimer];

}

- (IBAction)beginTimer:(id)sender

{

count = [startCount intValue];

[currentCount setIntValue:count];

[self startTimer];

}

- (IBAction)continueTimer:(id)sender

{

if (!myTimer)

{

[self startTimer];

}

}

- (IBAction)endTimer:(id)sender

{

[self stopTimer];

}

ptg5934432

251Solution

The timer is going to need a message to send to increment the counter.The timer will
be configured so that the -count: message will be sent to the controller every time it
fires.The -count: method simply increments the count and updates the interface unless
the count has reached the last number, in which case it stops the timer. Here is the code
to do this:

- (void)count:(id)userInfo

{

if (count >= [endCount intValue])

{

[self stopTimer];

}

else

{

count++;

[currentCount setIntValue:count];

}

}

Now that the interface is set up and there is a method for the timer to call, it is possi-
ble to write start and stop methods.

Because our controller should only have one timer running at a time, it first stops any
running timers. Next it creates a new timer and then updates the interface so that only
the buttons that make sense to use are enabled.The core of this method is a single mes-
sage that creates the timer.

Typically, a timer is created and then added to an NSRunLoop, a two-step process.As a
shortcut, if you want the timer to be added to the current run loop—which is usually the
case—then you create a “scheduled” timer, which is a single step. Here is the code to cre-
ate and start the timer:

- (void)startTimer

{

if (myTimer)

{

[self stopTimer];

}

myTimer = [NSTimer scheduledTimerWithTimeInterval:

[interval doubleValue]

target:self selector:@selector(count:)

userInfo:nil repeats:YES];

[myTimer retain];

[startButton setEnabled:NO];

[continueButton setEnabled:NO];

[endButton setEnabled:YES];

}

ptg5934432

252 Chapter 20 Invocations

When setting up the timer, the time interval is specified along with the message to
send and whether the timer should repeat. Of course a nonrepeating timer will only fire
once, whereas a repeating timer will keep firing until it is stopped.

The message that is sent by the timer must follow a very specific method signature. It
returns void and takes a single argument, an object called userInfo.The object itself is
arbitrary.When you create the timer, you choose the object that should be sent. It is up to
the method the timer invokes to determine what should be done with the userInfo ob-
ject. Usually it is ignored. Sometimes this object is used to pass data on to the invoked
method. If multiple timers invoke the method, then the userInfo object can be used to
help identify which timer is doing the invoking. If more than one piece of data needs to
be passed, then userInfo can be a dictionary, taking advantage of the Associative Storage
pattern discussed in Chapter 19,“Associative Storage.”

Although messages are being constructed and sent on-the-fly by the timer, no code
involving NSInvocation has to be written.The catch is that only a very specific
method signature can be used by the method invoked when the timer fires. If that is
unsuitable, it is also possible to create timers that will send any message desired.
Instead of specifying a target, selector, and user info object when creating a timer, you
can simply pass an NSInvocation object using the +scheduledTimerWithTimeInterval
:invocation:repeats: method.While this is more flexible, the downside is that, as
seen previously, it can require several lines of extra code to create a suitable
NSInvocation instance.

The final method required by the controller object is used to stop the timer.To stop
a repeating timer, simply send an -invalidate message.As part of invalidating, it will
automatically remove itself from its run loop. Nonrepeating timers automatically re-
move themselves from their run loop after they fire, so there is no need to invalidate
them.The -stopTimer method of the controller simply invalidates the timer and
updates the interface:

- (void)stopTimer

{

[myTimer invalidate];

[myTimer release];

myTimer = nil;

[startButton setEnabled:YES];

if ((count > [startCount intValue]) &&

(count < [endCount intValue]))

{

[continueButton setEnabled:YES];

}

else

{

[continueButton setEnabled:NO];

ptg5934432

253Solution

}

[endButton setEnabled:NO];

}

Delayed Messaging
Sometimes it is useful to delay a message so that it is sent at a later time. Obviously, a
nonrepeating NSTimer can be used for this purpose.As a shortcut, Cocoa provides
the NSObject methods -performSelector:withObject:afterDelay: and
-performSelector:withObject:afterDelay:inModes.The only difference between
them is that the first only sends the message when the run loop is in its default mode. In
order for the message to be sent in a modal loop or other specific run mode, the latter
version needs to be used instead. Both methods create and schedule the appropriate
NSTimer instance. Both methods may also be used with any instance of any NSObject
subclass to cause a delayed message to be sent.

One interesting use for a delayed message is to use a time interval of zero. In this case,
the message will still be delayed, but only until the next pass through the run loop.This
can be useful when a message should be sent after the processing of the current event is
completed.This “next run loop invocation” is a frequently encountered idiom used by
many Cocoa developers.

For example, consider a push button. It is drawn differently, with a “pushed-in”
look, when it is clicked. Supposed that the action invoked by clicking the button
causes an alert panel to come up. If the normal NSRunAlertPanel() function is called
from the code that handles the button push, then the button will remain with the
pushed-in look for as long as the alert panel is on the screen. If, instead, a delayed
perform with a delay of zero is used, then the button click will finish processing, the
button will be drawn to look normal, and only then will the alert panel be placed on
the screen.

You can clearly see the difference between these two approaches in Figure 20.5.
On the left, NSRunAlertPanel() is run immediately. On the right, a delayed perform is
used instead.The code for the two action methods used by the two buttons is very
simple:

- (IBAction)openAlert:(id)sender

{

NSRunAlertPanel(@"Alert", @"This is an alert.",

@"OK", nil, nil);

}

- (IBAction)openDelayedAlert:(id)sender

{

[self performSelector:@selector(openAlert:)

withObject:sender afterDelay:0.0];

}

ptg5934432

254 Chapter 20 Invocations

Examples in Cocoa
Cocoa uses invocations extensively, even though their use is not always immediately obvi-
ous. Invocations are used whenever there is a need to manipulate an Objective-C message
and make it possible to store, delay, resend, or reroute messages. Invocations are imple-
mented directly with the NSInvocation class.

The NSTimer class uses NSInvocation instances but can create its own invocation ob-
jects.This frees most developers from the need to deal with the NSInvocation class di-
rectly. NSObject implements -performSelector:... methods that can even eliminate
the need to directly manipulate NSTimers instances in some cases.The NSOperation class,
new to 10.5, has an NSInvocationOperation subclass that can be used as a generic im-
plementation of operations.The bridges between Objective-C and the Ruby and Python
languages also take advantage of invocations internally.

The two most notable uses of invocations in Cocoa are the undo/redo functionality of
Cocoa’s NSDocument architecture and Distributed Objects.The way these two technolo-
gies leverage invocations is important enough that it is discussed in detail in Chapter 27.

Consequences
Invocations package up an Objective-C method so that it can be handled as if it were an
object. Using invocations, a developer can create and modify Objective-C messages on-
the-fly. Messages can be stored and sent at a later time or repeated periodically. Messages
can also be duplicated and can be captured and forwarded to other objects, even objects
in other applications, as is described in detail in Chapter 27.

Figure 20.5 Using delayed perform to allow a button to redraw

ptg5934432

21
Prototype

A Prototype is an object that is copied to implement application features. In particular,
copying an existing object often provides more flexibility than allocating and initializing
new instances from scratch.The Prototype pattern avoids the need to hardcode relation-
ships between objects. For example, Cocoa’s NSMatrix class displays a grid of objects.As
rows and columns are added to a matrix, more objects are created as needed to fill in every
grid position. NSMatrix wouldn’t be very flexible if it only worked with one kind of ob-
ject.To provide flexibility, NSMatrix allows you to specify a prototype object that
NSMatrix copies as often as necessary to fill in the grid. If you provide a prototype button,
you get a grid of buttons. If you provide a prototype text field, you get a grid of text fields.

Motivation
Use prototypes for the following reasons:

n Minimize dependence between objects that create new instances and the types of
instances created.

n Allow runtime control of the kind of object created instead of specifying that infor-
mation at compile time.

Solution
The most essential feature of prototype objects is that they can be copied. Cocoa provides
the NSCopying and NSCoding protocols that objects implement to assure interoperability
with tools like Interface Builder and classes like NSMatrix.

Note
The Copying pattern and related NSCopying protocol are detailed in Chapter 12, “Copying.”
This chapter focuses on the narrow copying requirements of the Prototype pattern.

ptg5934432

256 Chapter 21 Prototype

The NSCopying protocol, documented at /Developer/Documentation/Cocoa/
Reference/Foundation/ObjC_classic/Protocols/NSCopying.html, defines the
-copyWithZone: method. Instances of any class that implements -copyWithZone: can
be copied.The
-copyWithZone: method must return an object with the same state as the object that
received the message.

There are two common techniques for implementing -copyWithZone:.The first and
most common technique returns a shallow copy.A shallow copy stores exactly the same
values as the object being copied. In other words, if the original object stores a pointer to
memory, the shallow copy will store another pointer to the same memory. Only the
pointer itself is copied; both pointers point to the same thing.

The other technique is a deep copy.A deep copy stores true copies of the values stored
in the original. For example, if the original stores a pointer to an object, the deep copy
ends up with a pointer to a copy of the object.

The Prototype pattern works best with objects that provide deep copies because the
copied objects often need to be truly independent of the original. For example, objects
copied from an Interface Builder library need to work long after Interface Builder itself
has been quit. However, most Cocoa classes implement the NSCopying protocol to return
shallow copies.

It can be tricky to implement deep copies well.The object being copied can send
-copy messages to the objects it references via pointers, but if one or more of the refer-
enced objects implements -copyWithZone: to return a shallow copy, the result will be a
mix of deep and shallow copies. Such a mix is still not a truly independent copy.

Cocoa’s NSCoding protocol and the NSArchiver and NSUnarchiver classes provide a
heavy-handed but easy way to create deep copies of arbitrary graphs of interdependent
objects. If the object being copied and all of the objects it references conform to the
NSCoding protocol, the -copyWithZone: method can be implemented as follows to return
a deep copy:

- (id)copyWithZone:(NSZone *)aZone

// Return a deep copy of the receiver

{

id result;

// archive self and immedaitly unarchive it to craete a deep

// copy

result = [NSKeyedUnarchiver unarchiveObjectWithData:

[NSKeyedArchiver archivedDataWithRootObject:self]];

// return a retained object because by convention, the caller

// is responsible for releasing copied objects

[result retain];

return result;

}

ptg5934432

257Examples in Cocoa

Interface Builder uses exactly this technique to copy objects from libraries.When an
object is dragged and dropped into a .nib file under construction, the object is first
archived from an existing library instance and then unarchived to create a copy for further
editing.When the application under construction is later saved as a .nib file, all of the in-
terconnected objects in the application are archived yet again.A .nib file is just an archive
of objects.When the .nib file is loaded into a running application, the objects are unar-
chived and resume operation right where they left off in Interface Builder.

Chapter 11,“Archiving and Unarchiving,” details the Archiving and Unarchiving
pattern and explains the NSKeyedArchiver and NSKeyedUnarchiver classes.

Archiving and then unarchiving is a brute force technique for creating deep copies,
and it works well for Interface Builder because the tool is expected to work with almost
any object. Interface Builder doesn’t know enough about the objects it copies to reliably
use any other technique.The NSMatrix class only works with NSCell subclasses, and
NSCell implements the NSCopying protocol using another technique, the
NSCopyObject() function.

The NSCopyObject() function is documented at /Developer/Documentation/
Cocoa/Reference/Foundation/ObjC_classic/Functions/FoundationFunctions.htm.Addi-
tional information about copying objects is provided at /Developer/Documentation/Cocoa/
TasksAndConcepts/ProgrammingTopics/MemoryMgmt/Concepts/HowToImplCopy.html.
NSCopyObject() produces a shallow copy of an object by exactly copying the memory
that the original occupies. Once the shallow copy is made, NSCell’s implementation of
-copyWithZone: copies various attributes such as the original’s stored text or image by
sending -copy messages to the referenced objects.This mix of deep and shallow copying
works for the NSCell subclasses provided by Cocoa, but it can be tricky to use with your
own subclasses.As long as added attributes in your subclasses are stored as instance variables
and the attributes are not pointers, you don’t have to write any code to support copying.
NSCell’s use of NSCopyObject() will automatically copy the new attributes along with
the inherited ones. However, if you add instance variables that point to other objects or
store attributes without using instance variables (See Chapter 10,“Accessors”), you must
override NSCell’s implementation of -copyWithZone:.

Note
The MYLabelBarCell class created in Chapter 3, “Two-Stage Creation,” works as the Proto-
type cell for a matrix even without overriding its inherited implementation of -copyWithZone:
because the only attribute added is a floating point value.

Examples in Cocoa
The objects in Interface Builder’s libraries are all Prototypes.When an object is dragged
from a library to an application window, the object is copied including its current config-
uration and state.The set of objects in Interface Builder libraries is open-ended. New
libraries can be created at any time.The paradigm of copying objects from libraries into
applications enables seamless extension of the Interface Builder tool itself without the

ptg5934432

258 Chapter 21 Prototype

need to recompile.As long as library objects can be copied via archiving and unarchiving,
Interface Builder will work with them.

Cocoa’s NSMatrix class uses a Prototype NSCell instance to define how values are
stored and presented.The NSMatrix class implements basic features of spreadsheet or grid
style user interfaces.When the matrix needs to add rows or columns, it simply copies the
Prototype cell as many times as necessary to fill the new positions.The NSMatrix class has
no dependencies on the cells that it uses.Any subclass of NSCell, even subclasses that did-
n’t exist when the matrix was compiled, can be used in a matrix. Furthermore, by config-
uring the Prototype, it’s possible to indirectly specify the initial state of all cells in the
matrix; each cell starts with the same state as the copied Prototype.

The Prototype pattern makes NSMatrix an extremely flexible class and greatly expands
opportunities for reuse. Figure 3.1 in Chapter 3 shows a matrix filled with instances of the
custom MYLabeledBarCell class.The following example shows one way to configure a
matrix to copy a Prototype MYLabeledBarCell instance whenever new cells are needed.

Using MYLabeledBarCell Instances as Prototypes
The MYLabeledBarCell class as implemented in Chapter 3 is ready for use with the Pro-
totype pattern. MYLabeledBarCell is a subclass of NSCell, and the NSCell class conforms
to the NSCopying protocol. Because NSCell uses the NSCopyObject() function in its own
implementation of -copyWithZone:, MYLabeledBarCell’s added instance variable,
barValue, is automatically copied along with the inherited instance variables from NSCell.

The following code creates a new instance of NSMatrix and a new instance of
MYLabeledBarCell that is used as the Prototype cell for the matrix.The matrix is then
passed to a scroll view to be used as the scroll view’s document view.To test this code, you
must create an instance of MYLabeledBarCellTestController in Interface Builder and
connect its scrollView outlet to a scroll view.

/* MYLabeledBarCellTestController */

#import <Cocoa/Cocoa.h>

@interface MYLabeledBarCellTestController : NSObject

{

IBOutlet NSScrollView *scrollView;

}

@end

File MYLabeledBarCellTestController.m

#import “MYLabeledBarCellTestController.h”

#import “MYLabeledBarCell.h”

ptg5934432

259Examples in Cocoa

@implementation MYLabeledBarCellTestController

// Just a simple class to test the MYLabeledBarCell class when used in

// a matrix.

// Create an instance of this class in Interface builder. Connect the

// scrollView outlet to a scroll view.

static const int _MYInitialNumRows = 75;

static const int _MYInitialNumColumns = 5;

- (void)awakeFromNib

// This method is called automatically when an object is unarchived

// from an Interface Builder nib file.

{

NSMatrix *newMatrix;

MYLabeledBarCell *prototype = [[MYLabeledBarCell alloc]

initTextCell:@”Prototype......................................”];

// Set the prototype’s value. All copies will initially have the

// same value.

[prototype setBarValue:0.15f];

// Allocate and initialize a new matrix specifying the prototype to

// use

newMatrix = [[NSMatrix alloc] initWithFrame:[scrollView bounds]

mode:NSRadioModeMatrix prototype:prototype

numberOfRows:_MYInitialNumRows

numberOfColumns:_MYInitialNumColumns];

// The prototype object was allocated in this method so it must be

// released or autoreleased. The matrix that is using it has already

// retained it, so it is safe and efficient to just release it now.

[prototype release];

prototype = nil;

// Install the matrix at the document view of the scroll view

[scrollView setDocumentView:newMatrix];

// Tell the matrix to resize itself to accommodate all of its cells

[newMatrix sizeToCells];

// The matrix was allocated in this method so it must be released or

// autoreleased. The scroll view has already retained it, so just

// release it now.

[newMatrix release];

newMatrix = nil;

}

@end

ptg5934432

260 Chapter 21 Prototype

Using MYColorLabeledBarCell Instances as Prototypes
The following MYColorLabeledBarCell class is a subclass of MYLabeledBarCell that
shows how to correctly override -copyWithZone: when object attributes are added in a
subclass of NSCell. Each MYColorLabeledBarCell instance stores a pointer to an NSColor
instance and uses that color when drawing the bar.

#import “MYLabeledBarCell.h”

@interface MYColorLabeledBarCell : MYLabeledBarCell

{

NSColor *barColor; // The color of the bar

}

// Accessors

- (void)setBarColor:(NSColor *)aColor;

- (NSColor *)barColor;

@end

#import “MYColorLabeledBarCell.h”

@implementation MYColorLabeledBarCell

// Overriden Designated Initializer

- (id)initTextCell:(NSString *)aString

{

self = [super initTextCell:aString];

if(nil != self)

{

[self setBarColor:[NSColor blueColor]];

}

return self;

}

- (void)drawBarInRect:(NSRect)aRect

// Draw a bar that fills a portion of aRect specified by barValue

// using the color returned from [self barColor]

{

aRect.size.width *= barValue;

[[self barColor] set];

ptg5934432

261Examples in Cocoa

NSRectFill(aRect);

}

- (id)copyWithZone:(NSZone *)aZone

{

id result = [super copyWithZone:aZone];

// Ugly hack necessitated by NSCell’s use of NSCopyObject()

// Directly access the copied instance variable and set it to nil

result->barColor = nil;

[result setBarColor:[self barColor]];

return result;

}

// Accessors

- (void)setBarColor:(NSColor *)aColor

{

[aColor retain];

[barColor release];

barColor = aColor;

}

- (NSColor *)barColor

{

return barColor;

}

@end

The key to using an instance of MYColorLabeledBarCell as the prototype cell for a ma-
trix is the implementation of -copyWithZone:.The following lines from that method set
the barColor instance variable of the copy to nil before -setBarColor: is called.

// Ugly hack needed because NSCell’s uses NSCopyObject()

// Directly access the copies instance variable and set it to nil

result->barColor = nil;

The copy’s barColor variable must be set to nil to avoid a serious memory error.The
NSCopyObject() function called by NSCell’s implementation of -copyWithZone: copies
the pointer stored in the prototype’s barColor variable, but the color itself is not retained
or copied.

The second line of code in MYColorLabeledBarCell’s correctly implemented
-setBarColor: method releases the old color pointed to by barColor before assigning
the pointer to the new color. If barColor isn’t set to nil before calling -setBarColor:,
the prototype’s color object will be released without any corresponding -retain message

ptg5934432

262 Chapter 21 Prototype

having been sent.The extra release has the potential to cause a segmentation fault error.
Chapter 10 provides details about the rules for retaining and releasing objects.The
necessary implementation of MYColorLabeledBarCell’s -copyWithZone: method is a
deviation from the otherwise nearly universal rules for Cocoa memory management, and
direct access to the copy’s instance variable is an unfortunate but necessary violation of
good object-oriented programming practices.

In general, the NSCopyObject() function should only be used with classes that do not
store pointers. NSCell’s use of NSCopyObject() is unfortunate and makes subclassing
NSCell to add instance variables that point to objects unnecessarily difficult.

Note
The tricky details of memory management for NSCell copies are avoided by using automatic
memory garbage collection introduced with Objective-C 2.0.

Consequences
Copying objects is often as time-consuming as creating new instances with +alloc and
-init.This is particularly true when deep copies are used.As an optimization, the
NSMatrix class seldom releases copies of its Prototype cell even if the number of cells
needed decreases.The extra copies are preserved in case they are ever needed again so
that making new copies can be avoided.The drawback to this optimization is that in
many cases, memory that could be made available for other uses is consumed storing
unneeded copies.

When using the Prototype pattern with your own classes, it’s necessary to document
the behavior that prototype objects are required to support. For example, the object used
as a Prototype cell for an NSMatrix instance must be a subclass of NSCell and correctly
implement the NSCopying protocol to produce independent copies.All objects on Inter-
face Builder libraries must conform to the NSCoding protocol.

ptg5934432

22
Flyweight

The Flyweight pattern minimizes the amount of memory and/or processor overhead
required to use objects.The advantages of object-oriented programming are sometimes
outweighed by the overhead of using objects particularly when large numbers of object
instances are needed at once.The Flyweight pattern enables instance sharing to reduce
the number of instances needed while preserving the advantages of using objects. Classes
that implement the Flyweight pattern are called “flyweights.”

Motivation
Within Cocoa, flyweights are primarily used for the following three reasons:

n Flyweights encapsulate nonobject data so that the data can be used in contexts
where objects are required.

n Flyweights reduce storage requirements when a large number of instances are needed.
n Flyweights act as stand-ins for other objects.

Solution
There are many applications that require large numbers of objects. Consider a spreadsheet
that contains 100 rows and 100 columns. If every cell in the spreadsheet is represented by
a unique object, 10,000 instances of that object are required. If the spreadsheet has 2,000
rows and 2,000 columns, 4 million instances are required.

The Flyweight pattern is applied to the spreadsheet implementation in several ways.
Assuming each spreadsheet cell is represented by an instance of a hypothetical
SpreadsheetCell class, there are several potential optimizations. First, if many of the cells
in the spreadsheet are empty, a single SpreadsheetCell instance configured as an empty
cell is used to represent all of the empty cells.When the value of an empty cell is set, the
shared instance of SpreadsheetCell is replaced by a new instance that stores the new
value. Second, much of the information stored for each cell is separated out. For example,

ptg5934432

264 Chapter 22 Flyweight

even with four million cells, perhaps only a dozen different cell formats like line style,
font, and color are used. Factor the formatting information out into a hypothetical
SpreadsheetCellFormat class. Every SpreadsheetCell instance points to one of the
dozen SpreadsheetCellFormat instances instead of storing that information redundantly
itself.Third, if there are many cells that store the same value and have the same format,
they can all be replaced by a single SpreadsheetCell instance the same way that all
empty cells are represented by a single SpreadsheetCell instance.

In the spreadsheet application, the SpreadsheetCell and SpreadsheetCellFormat

classes are flyweights. Instances of SpreadsheetCell are shared to reduce the total number
of instances needed.The information stored by each SpreadsheetCell instance is mini-
mized by storing some of the information in shared SpreadsheetCellFormat instances.

Examples in Cocoa
Cocoa uses the Flyweight pattern to achieve three goals: to encapsulate nonobject values,
to reduce memory usage, and to stand-in for other objects.

Encapsulating Nonobject Values
Cocoa’s NSNumber class is a flyweight. Each instance of NSNumber stores a number in one
of the C language’s numeric data types such as char, short, int, long, float, or double.
NSNumber can also store the Objective-C BOOL data type. NSNumber and its superclass,
NSValue, provide object wrappers around the nonobject data types for use in situations
where Cocoa requires objects. For example, the NSArray class is only able to store objects,
so if you need to store float numbers in an NSArray, you use the NSNumber class.

Note
Many object-oriented languages represent everything including numbers as objects.
Objective-C is a hybrid of ANSI/ISO standard C and objects. Objective-C provides direct
programmatic access to the nonobject types provided by C, and Cocoa provides objects
that encapsulate those C data types to enable pure object orientation when you want it.
The down-side of the hybrid approach is that you must sometimes convert back and forth
between objects and nonobjects. On the up-side, the full computer speed that results
from using raw C data types is available when you need it, and it’s easy to use existing C
libraries with your Objective-C code.

Besides NSValue and NSNumber, other classes like NSDecimalNumber, NSDate,
NSCalendarDate, NSString, NSURL, NSFileHandle, NSPipe, and NSAffineTransform all
wrap simple nonobject values or data structures. For example, while providing powerful
international language support for string processing, NSString effectively wraps ordinary

ptg5934432

265Examples in Cocoa

C arrays of Unicode characters. NSFileHandle and NSPipe wrap underlying UNIX file
descriptor data types. NSAffineTransform wraps a 2 x 3 array of C double variables used
to implement 2D drawing transformations such as rotation.

Reducing Storage Requirements
There may be a lot of NSNumber instances in use at any one time in a Cocoa program.
Cocoa optimizes storage for NSNumber instances by sharing them. Each time you call
[NSNumber numberWithInt:0];, you are likely to get the same instance returned. Cocoa
keeps a cache of recently or frequently used NSNumber instances.When you ask for a new
NSNumber that stores the same value as a cached instance, the cached instance is returned
instead of a new instance.

Sharing NSNumber instances only works because the NSNumber class is immutable.That
means that once an instance is created, the value stored by that instance can’t be changed.
Imagine what would happen if you changed the value stored by a shared NSNumber in-
stance.The NSNumber instance storing 300 might be shared in many places to store diverse
information such as the number of available television stations and a current bank bal-
ance. If the value of that shared NSNumber instance was changed to 45 when a different
cable television provider was selected, somebody might notice the unintended change in
the bank balance.

Other Cocoa flyweights like NSFont and NSColor cache and reuse immutable in-
stances. Each of the standard colors used in Mac OS X interfaces are obtained from the
NSColor class using methods like [NSColor redColor];. Each call to +redColor returns
the same shared instance of NSColor. Similarly, even the most complex text rendering is
unlikely to use more than a few different fonts at once. Each time you create an NSFont
instance with a particular font name and size, that instance is cached.The next time you
request an instance of the same font with the same size, the cached instance is returned.
The caching of NSFont instances provides a significant performance benefit for most ap-
plications by reducing the need to read font data from the hard disk.

Cocoa’s NSCell class is another flyweight. NSCell instances are part of theView sub-
system when the Model-View-Controller design pattern is used. NSCell instances draw
user interface components with the assistance of Cocoa’s NSView class. NSMatrix is a
kind of NSView that’s like the hypothetical spreadsheet described in the previous section
of this chapter. NSMatrix uses flyweight NSCell instances to draw each row in each col-
umn instead of using more heavyweight subviews. Subviews are explained in Chapter 16,
“Hierarchies.”

The benefits of using NSCell instead of subviews are dramatic. Each NSCell instance
stores a relatively simple value like a pointer to an NSString or a pointer to an NSImage.
Each NSCell instance uses 20 bytes compared to 80 bytes for a basic NSView instance.
NSCell instances draw with very little computational overhead compared with NSView.
An NSMatrix with 2,000 rows and 2,000 columns stores four million instances of
NSCell, requiring 80MB compared to 320MB of storage required for four million
NSView instances.

ptg5934432

266 Chapter 22 Flyweight

NSMatrix makes minimal use of the Flyweight pattern. It stores cells for every row in
every column, but it still benefits. Cocoa’s NSTableView class is also superficially similar to
a spreadsheet, but NSTableView leverages the Flyweight pattern far beyond NSMatrix.
NSTableView stores a single NSCell instance for each column, and the formatting infor-
mation stored in that cell is applied to every row in the column.As a result, all rows in a
single column are formatted the same way.To draw each row in a single column, the
NSTableView resets the value stored by the column’s NSCell instance to match the row’s
value, tells the cell to draw at the correct location, and then repeats the process for the
next row.An NSTableView with 2,000 rows and 2,000 columns only needs to store 2,000
NSCell instances—one for each column. Reusing the same NSCell instance for every
row in a column requires NSCell instances that are mutable; each instance’s value can be
changed at any time.This is exactly the opposite of the way the immutable NSNumber
flyweight is used.

The NSTableView class depends on the Model-View-Controller design pattern in a
way that NSMatrix does not.An NSTableView doesn’t actually store any of the values it
displays.To redraw itself, each NSTableView instance asks another object called its data
source to provide the needed values.The data source is typically in the Controller subsys-
tem, and the data provided by the data source is usually stored in the Model subsystem.
No matter how many rows or columns the NSTableView instance has, it only asks its data
source to provide values for the rows and columns that are visible. Data sources are
described in Chapter 15,“Delegates,” and Chapter 29,“Controllers,” provides more details
about the use of the Model-View-Controller pattern with NSTableView.

Standing in for Other Objects
Flyweights often act as temporary placeholders for other more heavyweight objects. For
example, displaying text in a user interface can be a complex operation.A single block
of text often contains multiple fonts, colors, underlines, alignments, spacing, and such.
Editing text in a user interface is even more complex.The attributes of the text may be
changed, text may be inserted or deleted causing other text to be repositioned, the current
selection and insertion point must be managed, and features like spell checking must be
considered. Cocoa provides the NSTextView class to handle text display and input. In real-
ity, NSTextView is just part of a text handling subsystem that includes layout, storage, spell
checking and much more implemented by several cooperating classes.As you can imagine,
using separate instances of NSTextView and the entire text management subsystem every
time a text label is drawn next to a button would be a very heavyweight solution.

Cocoa uses NSCell and its subclasses as flyweight placeholders for the complex text
management system. Each Cocoa NSWindow instance provides a single NSTextView

instance called the “field editor” for use by cells within the window. NSCell instances
share the field editor to draw or edit text.This design works because users only edit one
NSCell at a time.When a user starts to edit the text in an NSCell instance, theView
hierarchy is temporarily modified so that the cell is replaced by the field editor, which
actually handles the editing.When editing completes, the field editor is removed from the

ptg5934432

267Consequences

View hierarchy, and the cell is redisplayed.You can read more about theView hierarchy
in Chapter 16.

Consequences
Using the Flyweight pattern is always a trade-off between simplicity, storage, and per-
formance. Invariably, using a Flyweight complicates a design. For example, the existence
and use of Cocoa’s field editor with NSCell instances has consistently generated questions
and confusion from programmers learning the frameworks. Even the simplest flyweights
like NSNumber increase the complexity of applications slightly compared to straightfor-
ward use of built-in C data types as shown in the following two code examples:

double firstFactor = 37.059;

double secondFactor = -18.112;

double sum = firstFactor + secondFactor;

Versus

NSNumber *firstFactor = [NSNumber numberWithDouble:37.059];

NSNumber *secondFactor = [NSNumber numberWithDouble:-18.112];

NSNumber *sum = [NSNumber numberWithDouble:

[[firstFactor doubleValue] + [secondFactor doubleValue]];

Many uses of the Flyweight pattern optimize both storage and performance. Replac-
ing NSView instances with NSCell instances reduces storage and increases drawing per-
formance in almost every case, but not without cost. Cells don’t support advanced view
features like arbitrary clipping paths, transformed coordinate systems, and Core Anima-
tion layers for animation and special effects. Flyweights also have the potential to reduce
performance.Allocating and initializing an instance of NSNumber requires hundreds or
thousands of times more processing cycles than initializing and storing a built-in C data
type. Fortunately, modern processors are fast enough that allocating NSNumber instances
seldom reduces application performance perceptibly, and one of the strengths of Objective-C
is that you can always fall back to using the built-in types when needed.

Finally, optimization of storage is becoming less and less important as computers get
faster and storage becomes cheaper. NSView and NSCell were once used on computers
that had 8MB of RAM. Computers with 1GB of RAM are now common and even con-
sidered low-end.With 125 times more memory available now than when NSCell was first
widely used, many programmers reasonably ask whether the time for using NSCell has
passed. Cocoa’s NSCollectionView was introduced in Mac OS X 10.5 and displays a col-
lection of NSView instances in a grid much the way NSMatrix displays a grid of NSCells.
Because using flyweights increases complexity, avoid creating new flyweight classes in
your own applications unless there really is a need to optimize storage or stand-in for
heavyweight objects.

ptg5934432

23
Decorators

The Decorators pattern adds common reusable capabilities to objects via composition as
an alternative to adding capabilities via subclassing. Decorators can be added or config-
ured at runtime in contrast to defining subclasses at compile time. Cocoa’s NSScrollView
class is a prominent example of the Decorator pattern. Scrolling is a technique that en-
ables users to control which portion of an object is visible when the object is too large to
see in its entirety. Rather than reimplement scrolling capability in every object that draws,
Cocoa provides scrolling by decorating objects with an NSClipView instance, which in
turn is decorated by an NSScrollView instance.The NSClipView hides portions of the
view it decorates.The NSScrollView decorates the clip view and provides NSScroller
instances as needed. NSScrollView coordinates the clip view and the scrollers to indicate
and control the visible portion of object decorated by the clip view. Figure 23.1 illustrates
the typical composition of objects used by Cocoa to enable graphical scrolling.The
NSScrollView, NSClipView, and NSScroller instances decorate an NSImageView instance
by providing a border, clipping, and scrollers that enable user-controlled scrolling.

The Decorator pattern is a special case of the Hierarchies pattern described in
Chapter 16,“Hierarchies.”

Motivation
Programmers often want to add multiple capabilities to an existing object. If all capabili-
ties are added by subclassing, it doesn’t take long before the number of classes needed
explodes. Subclassing defines an is-a relationship between the subclass and its base class.
For example, a hypothetical RulerText object is a Text object with the addition of
support for a ruler to indicate dimensions and tab stops.A BorderedRulerText object
is a RulerText object with the addition of a border.The inheritance hierarchy for the
hypothetical BorderedRulerText class is shown in Figure 23.2.

What happens when an application needs a scrolling text object that has a border and
a ruler? You end up with a ScrollingBorderedRulerText class. For those occasions
when you want scrolling but don’t need the border feature, you’ll need a
ScrollingRulerText class.When no ruler is required, you’ll need a

ptg5934432

269Motivation

NSClipView instance
shows a portion of the
embedded "document

view," which, in this case,
is an NSImageView

instance.

NSScroller instances

NSScrollView instance:
The clip view and scrollers

are subviews.

Figure 23.1 The NSScrollView, NSClipView, and NSScroller instances decorate an
NSImageView instance.

Text RulerText BorderedRulerText

Figure 23.2 The inheritance hierarchy for a hypo-
thetical BorderedRulerText class

Use the Decorators design pattern to accomplish the following goals:

n Customize application behavior via composition rather than inheritance.
n Provide runtime flexibility; capabilities can be added and removed dynamically at

runtime.

ScrollingBorderedText class.The inheritance hierarchy for the combinations of text
with and without borders, scrolling support, and rulers shown in Figure 23.3. Some
frameworks might attempt to implement a simpler hierarchy using multiple inheritance,
but multiple inheritance only changes the inheritance relationships without necessarily
reducing the number of classes.

ptg5934432

270 Chapter 23 Decorators

Solution
In contrast to inheritance, composition defines has-a relationships between objects.The
Decorators pattern uses implied has-a relationships.When you say an NSClipView in-
stance decorates its document view, you’re really saying that the NSClipView instance has
a document view.The “document view” might be an NSTextView instance or any other
kind of Cocoa view. Each NSScrollView instance decorates an NSClipView instance and
therefore has a clip view. NSScrollView can be decorated by NSRulerView instances.
Figure 23.4 shows the composition of an NSTextView instance decorated by an
NSScrollView instance, one NSRulerView instance, and one NSScroller instance.

Text

RulerText

BorderedText

BorderedRulerText

ScrollingBorderedText

ScrollingBorderedRulerText

ScrollingRulerText

ScrollingText

Figure 23.3 An expanded inheritance hierarchy with more combina-
tions and permutations

Figure 23.4 The composition of an NSTextView
instance with multiple decorators

n Add capabilities to individual instances instead of classes.
n Reduce the number of classes needed.

ptg5934432

271Examples in Cocoa

Table 23.1 Prominent Cocoa Decorator Classes

Class Purpose

NSAttributedS

tring

Decorates an NSString instance with arbitrary attributes such as font,
color, or underline style

NSBox Decorates an NSView instance with optional borders and a label

NSClipView Decorates an NSView instance by clipping (hiding) parts of the view

NSRulerView Decorates an NSView instance by providing configurable rulers that indi-
cate view dimensions, mark positions of interest to a user, and enable
users to move positions of interest

Composition is typically established and controlled at runtime, so all of the combina-
tions and permutations of document views with and without rulers, scrolling, and other
features are available and can even be changed dynamically. If you want, your applica-
tion can add or remove a ruler at runtime—perhaps based on user selection of a menu
item.Adding a ruler to a particular scroll view instance has no effect on other scroll
view instances.

NSScrollView provides the -(void)setDocumentView:(NSView *)aView method to
programmatically set the embedded clip view’s document view.The document view can
be any subclass of Cocoa’s NSView class, which means you can use your own custom
views and any number of subviews.To embed a view or collection of views within a
scroll view in Interface Builder, select the views and use Interface Builder’s Layout,
Embed Objects In, Scroll View menu item.

Examples in Cocoa
Although Cocoa primarily uses the Decorator pattern with objects from the View layer of
the Model View Controller architecture, the pattern is by no means limited to that role.
Cocoa’s NSAttributedString is a Model layer class that decorates ordinary NSString in-
stances with attributes to specify fonts, paragraph styles, tab stop positions, embedded im-
ages, or any other user supplied data.The NSAttributedString class provides built-in
support for many attributes defined by standards like Rich Text Format (RTF), Hyper-
Text Markup Language (HTML), and Microsoft’s .doc format. NSAttributedString
doesn’t modify the decorated string; it just stores additional information along with the
string.The approach is similar to the way NSClipView doesn’t modify its document view;
it just controls which portion of the document view is visible.

The prominent Cocoa classes used as decorators are identified in Table 23.1.

ptg5934432

272 Chapter 23 Decorators

Table 23.1 Prominent Cocoa Decorator Classes

Class Purpose

NSScrollView Decorate an NSClipView by providing optional scrollers that indicate
and adjust the visible portion of the view decorated by a clip view

NSSplitView Decorates NSView instances with a graphical bar that users drag to hide
or reveal portions of the decorated views

NSTableHeader

View

Decorates an NSTableView instance with optional column labels and
provides a way for users to resize and control table columns

NSTabView Decorates NSViews instances with a border and graphical "tabs" so
that users can control which of the decorated views are visible

Accessory Views
Many of Cocoa’s standard user interface panels allow you to add your own
decorators. For example, the NSSavePanel, NSFontPanel, NSColorPanel, NSAlert,
NSRulerView, ABPeoplePickerView, and NSSpellChecker classes all provide a
-(void)setAccessoryView:(NSView *)aView method that you use to add any view
you want as the “accessory view” displayed on the related panel.The accessory view
decorates the panel, and because the accessory view can be any view you provide, you’re
able to add buttons or any other user interface elements your application needs.The panels
automatically resize to make the accessory views fit. Use accessory views to add capabilities
to the standard panels without having to subclass the various panel classes.Apple provides
an example using accessory views at http://developer.apple.com/documentation/Cocoa/
Conceptual/AppFileMgmt/Articles/ManagingAccessoryViews.html.

As of Mac OS X 10.5, Cocoa’s NSPrintPanel and NSPageLayout classes provide
a new way to manage accessory views, an - (void)addAccessoryController:

(NSViewController *)accessoryController method.The new method replaces the
deprecated -setAccessoryView: implementations in the print and page layout panels.
This change to the class interfaces may indicate the direction that Apple is moving
Cocoa.The NSViewController class is part of the Controller subsystem in an MVC
application.The change from using accessory views directly to using accessory view
controllers encourages consistent use of the MVC pattern and clarifies where you should
implement the controller code that mediates between the accessory views and application
logic. NSViewController also provides convenient support for bindings, described in
Chapter 32,“Bindings and Controllers.”

ptg5934432

273Consequences

Consequences
Object-oriented inheritance relationships are powerful, but they’re also a primary cause of
coupling within a design. Inheritance relationships are set statically at compile time and
affect all instances of subclasses. Composition using has-a relationships often provides a
flexible alternative to subclassing. Extending an object through composition is dynamic at
runtime and can be applied per instance. It’s possible to add multiple capabilities to the
same objects via composition without an explosion in the number of classes needed.

Other frameworks require decorators to have the same interface, for example, public
methods, as the object being decorated.That restriction isn’t needed when using Cocoa.
The dynamism of Objective-C and the Anonymous Object patterns enables you to ask a
scroll view for its embedded clip view’s document view and dynamically determine the
capabilities of the document view. Similarly, the NSRulerView class is able to interoperate
with any kind of NSView because NSRulerView will determine which methods are imple-
mented at runtime.

ptg5934432

IV
Patterns That

Primarily Hide
Complexity

One of the goals of object-oriented programming is to hide
complexity from programmers. Programmers don’t need to
know the detailed implementations of every object used. If
programmers needed that detailed knowledge, they wouldn’t
be able to reuse more than a few objects before being over-
whelmed by complexity.The same goal applies to patterns
involving multiple objects.The patterns in Part IV hide
complexity and implementation details so programmers
can focus on solving problems.

Chapters in this part of the book include

24 Bundles

25 Class Clusters

26 Façade

27 Proxies and Forwarding

28 Managers

29 Controllers

ptg5934432

24
Bundles

A bundle is a collection of executable code and related resources such as images,
sounds, strings, and .nib files. Ideally, bundles are able to simultaneously store multiple
versions of each resource so that you can use one set of executable code with different
resource versions based on the language or cultural preferences of the user.The Bundles
pattern provides a mechanism for organizing and dynamically loading executable code
and resources.

Like most design patterns, the Bundles pattern exists in many object-oriented devel-
opment environments besides Cocoa.The Java programming language implements the
Bundles pattern with JAR (Java ARchive) files that combine compiled Java classes and
resources into a single compressed file in the file system. JAR files are easy to copy or
download because the complexity of resource file organization is hidden within the JAR
file. However, no standards exist for the organization of noncode resources within JAR
files, so it’s difficult to share JAR files between separately developed applications.

Microsoft’s C# programming language and development tools compile resources in-
cluding sounds, images, and text files into “assemblies” via a program called resgen.exe.
The assemblies are linked into the executable file for the application or plug-in to create a
single file that contains the resources and executable code. However, most developers only
include file system paths to resources when compiling assemblies.The paths end up em-
bedded into the application’s executable, but the actual resource files exist separately, and
users must remember to download or copy the resources along with the application.

Motivation
The Bundles pattern achieves the following goals:

n Keep executable code and related resources together even when there are multiple
versions and multiple files involved in the underlying storage.

n Implement a flexible plug-in mechanism that enables dynamic loading of exe-
cutable code and resources.

ptg5934432

276 Chapter 24 Bundles

Figure 24.1 The layout of a typical application bundle, as might be seen in
Finder

Solution
Both the Cocoa frameworks and Apple’s nonobject-oriented framework, Carbon, imple-
ment the Bundles pattern using file system directories of related files, code, and resources.
Such directories are called bundles and contain a standard hierarchical organization of files.
In Mac OS X, bundles are the preferred way to organize the files that compose applica-
tions, frameworks, and plug-ins regardless of the programming language or framework
used.Apple defines the Mac OS X bundle directory hierarchy at http://developer.apple.
com/documentation/CoreFoundation/Conceptual/CFBundles/Concepts/
BundleAnatomy.html. Each bundle must contain an Info.plist file that among other
things stores a unique bundle identifier string.The Info.plist file can be opened in any
text editor to obtain information about the bundle without having to actually load the
bundle into an application.

Figure 24.1 shows an example of a Cocoa application’s bundle as seen in a Finder’s
browser view.The Contents folder contains all the bundle’s resources.Within Contents is
the Info.plist file that describes the bundle and folders named MacOS and Resources.
The MacOS folder contains the application’s executable.The Resources folder contains
InterfaceBuilder files, graphics, strings, and other resource files needed by the application.
Localized versions of resources are placed inside folders whose names end with the
.lproj extension.All these files are located at very specific places within the bundle.The
Apple documentation referenced previously shows diagrams of the expected layout for all
the bundle types currently defined by Apple.

Mac OS X’s Finder and standard user interface components like the File Open and
File Save panels are able to selectively hide the fact that a bundle directory contains many
files and instead present the bundle to the user so that it appears to be a single file. Direc-
tories that masquerade as single files are called packages, and most bundles are also pack-
ages. However, users can always choose to see the files within a package via the Show
Package Contents item in the context menu that is available when the user right-clicks or
control-left-clicks a package in Finder. Users also see the true nature of packages when
using the UNIX command line interface.

Mac OS X’s use of packages and file system directories to implement bundles has the
following advantages:

ptg5934432

277Solution

n Bundle directories contain other directories and ordinary files, which can be
viewed with standard file viewers and edited with any application that’s appropriate
for the resource file type.

n Users can move, copy, or delete bundle directories just like any other directories in
the file system.

n Naive users are unlikely to inadvertently modify or delete the individual files
within a package because they will most likely never see the individual files.

n The standard bundle hierarchy supports inclusion of multiple language or cultural
localizations for resource files and makes it easy to later remove unwanted localized
resources to save space.

n Just like bundles contain multiple versions of resources, they can also contain multi-
ple versions of the executable code so that one application bundle works on both
PowerPC and Intel-based computers.

n Bundles don’t depend on special file system features like resource forks or file sys-
tem extensions.They can be stored on file servers and nonMac computers running
diverse file systems.

It’s straightforward to distribute Mac OS X application bundles via CD-ROM; just
copy the bundle onto the CD-ROM, and users can copy it from the CD-ROM to their
local hard disk. However, enabling users to download bundles over a network sometimes
presents some issues. For download, it’s desirable to both compress the bundle to reduce
download time and avoid any chance of users inadvertently downloading some parts of
the bundles and not others. One solution is to create a compressed archive of the bundle
using Finder’s File, Compress menu or similar tools such as “gzip.”A compressed bundle is
very similar to a Java JAR file except that the compressed bundle contains the Mac OS X
standard directory hierarchy.Another solution is to create a compressed Mac OS X disk
image. Disk images are files with the .dmg extension, and when a user double-clicks a
.dmg file in Finder, the .dmg file is mounted as a removable disk.The mounted .dmg file
looks a lot like a mounted CD-ROM to users, and the user can copy bundles from the
mounted .dmg to the local hard disk just like they would copy from a CD-ROM.

You aren’t always required to use bundles for your applications. It’s possible to make
stand-alone Cocoa command line programs with the Foundation Kit framework and pro-
duce only a stand-alone executable program with no bundle. However, Cocoa applica-
tions that use the Application Kit framework are almost always implemented as bundles,
and the Cocoa frameworks are themselves stored in bundles.

When building an application or other bundle, XCode will automatically put standard
resources such as image, sound, .nib, and .strings files where they belong.This is done
by the Copy Bundle Resources build phase, as shown in Figure 24.2. If there are other

ptg5934432

278 Chapter 24 Bundles

Figure 24.2 The Copy Bundle Resources build phase in XCode

resource files that need to be copied into the bundle, they can be added to this build
phase, or a new “Copy Files” build phase can be added to the project.

Examples in Cocoa
Cocoa encapsulates bundles with the NSBundle class. Every Application Kit-based appli-
cation has at least one bundle, the main bundle, which is accessed via the [NSBundle
mainBundle] message. Cocoa’s NSApplication class automatically loads the Interface
Builder .nib file that contains the application’s main menu from the main bundle.
NSApplication is a Singleton, as explained in Chapter 13,“Singleton,”and Interface Builder
.nib files are object archives as explained in Chapter 11,“Archiving and Unarchiving.”

Use the NSBundle class to dynamically load executable code and resources.The
following code fragment obtains the file system path to an image resource called
"myImage.tiff" within the main bundle.

NSString *pathToImage = [[NSBundle mainBundle]

pathForResource:@"myImage" ofType:@"tiff"];

Using NSBundle helps you avoid any need to hard code the paths to resources in your
applications. If there are many different versions of the resource for different localizations,
NSBundle’s - (NSString *)pathForResource:(NSString *)name ofType:(NSString
*)extension method automatically returns the path to the most appropriate version
based on the user’s current language and localization preferences. If the resource can’t be
found, -pathForResource:ofType: returns nil. Note that the extension string you
specify to -pathForResource:ofType: should not include the '.' character.

If you need to access a specific version of a resource, NSBundle’s - (NSString
*)pathForResource:(NSString *)name ofType:(NSString *)extension

inDirectory:(NSString *)subpath forLocalization:(NSString *)localizationName

method returns the path to the resource version with the specified localization in
the specified subdirectory of the bundle. If no such specific version exists,
-pathForResource:ofType:inDirectory:forLocalization: returns the path to the
closest match if one can be found and nil otherwise.

The NSBundle class is declared in the Foundation framework, but the Application Kit
framework extends NSBundle in several ways using categories.The Application Kit adds
methods to simplify loading of Interface Builder .nib files, sounds, and images.The most

ptg5934432

279Examples in Cocoa

commonly used methods added by the Application Kit are + (BOOL)loadNibNamed:
(NSString *)aNibName owner:(id)owner, - (NSString *)pathForSoundResource:
(NSString *)name, and - (NSString *)pathForImageResource:(NSString *)name.
You don’t need to specify a file extension when you use -pathForSoundResource: and
-pathForImageResource:. Resources can be stored in any supported sound or image file
format, and NSBundle will find the resource and provide the path.

In addition to the main bundle, you can access the bundle that contains the executable
code that defines any class used in your application.The following code fragment returns
the NSBundle instance that encapsulates the Foundation framework’s own bundle:

// Return the bundle that contains the executable code definition of

// the NSString class

return [NSBundle bundleForClass:[NSString class]];

If one of your objects needs to load resources, one approach is to use [NSBundle
bundleForClass:[self class]] within the instance methods that load the resources.
That way, if your class is compiled and linked directly into an application, the bundle re-
turned at runtime will be the application’s main bundle. However, if you later decide to
put the class and its associated resources into a framework or plug-in, the bundle returned
at runtime will be the framework or plug-in. Using the +bundleForClass: method
avoids any dependence on the future location of the executable code.

You can obtain an array of all nonframework bundles currently loaded into your appli-
cation via NSBundle’s + (NSArray *)allBundles method.You obtain all of the frame-
work bundles with + (NSArray *)allFrameworks.

Dynamically Loading Executable Code
It’s not necessary to explicitly load the code in an application’s main bundle or any frame-
work bundles.Those are loaded automatically when the application starts.

You dynamically load other bundles into your application by first creating an
NSBundle instance with NSBundle’s + (NSBundle *)bundleWithPath:(NSString
*)fullPath method.The following code fragment loads a bundle named
"myPlugin.bundle" from the application support directory:

NSBundle *bundle = nil;

// Get array of paths to standard application support locations in

// the file system

NSArray *bundleSearchPaths = NSSearchPathForDirectoriesInDomains(

NSApplicationSupportDirectory, NSUserDomainMask, YES);

NSString *currentPath = nil;

NSEnumerator *pathEnumerator = [bundleSearchPaths objectEnumerator];

// Find the first bundle with the name @"myPlugin.bundle" in

ptg5934432

280 Chapter 24 Bundles

// bundleSearchPaths

while (nil == bundle &&

nil != (currentPath = [pathEnumerator nextObject]))

{

currentPath = [currentPath stringByAppendingPathComponent:

@"myPlugin.bundle"];

bundle = [NSBundle bundleWithPath:currentPath];

}

return bundle; // return the bundle or nil

Just creating an NSBundle instance to encapsulate a bundle directory doesn’t automati-
cally load the code contained within the bundle.The NSBundle class waits until there is a
need to use code within the bundle. One way to force the bundle’s executable code to be
linked into your application is to call NSBundle’s -load method, which returns YES if the
load was successful. NSBundle’s -principalClass method also forces the linkage of exe-
cutable code.The -principalClass method returns the class object for the “principal
class” within the bundle.The principal class for each bundle can be specified when build-
ing the bundle with Xcode or by editing the “Principal class” key of the Info.plist file
stored within each bundle. If the principal class is not specified, the -principalClass
method returns the first class found within the executable code for the bundle.

The Info.plist file contains key-value pairs that provide information about the bun-
dle. NSBundle’s -infoDictionary method returns the keys and values read from the
Info.plist file.The following code fragment obtains information about a bundle with-
out actually loading the bundle’s executable code into the application:

NSBundle *bundle = [NSBundle bundleWithPath:somePath];

NSDictionary *infoDictionary = [bundle infoDictionary];

Once a bundle’s executable code has been loaded, any class defined within the bundle
can be accessed using NSBundle’s -classNamed: method. For example, the class object for
a hypothetical class named MYApplicationPlugin can be loaded by calling [someBundle
classNamed:@"MYApplicationPlugin"].Apple provides an excellent example of a full-
featured bundle-based plug-in system at http://developer.apple.com/samplecode/
BundleLoader/index.html.

You can determine whether code had been dynamically loaded from an NSBundle in-
stance via NSBundle’s -isLoaded method.

NSBundle provides the -unload method that attempts to unload a bundle’s executable
code and returns YES if the bundle’s code was unloaded. Don’t unload executable code
that contains Objective-C classes or categories.Apple’s documentation states,“It is the
responsibility of the caller to ensure that no in-memory objects or data structures refer
to the code being unloaded.” However, once Objective-C classes and categories have
been installed within the Objective-C runtime, it’s impractical to find and remove all

ptg5934432

281Consequences

dependencies on the loaded code. If a class or category is unloaded while other code or
the runtime itself still depends on the previously loaded code, your application will most
likely crash. Prior to Mac OS X v10.5, the -unload method did nothing and always
returned NO.

Consequences
Cocoa’s implementation of the Bundles pattern keeps executable code and related re-
sources together and enables you to avoid hard-coded paths to resources within your
applications. By using a standard bundle directory hierarchy and providing related
development tools like Xcode, Mac OS X simplifies bundle creation. However, use of a
directory hierarchy to store resources and code has advantages and disadvantages. One
advantage is that users can view each bundle’s contents and edit resources with standard
applications for each resource type.The corresponding disadvantage is that users can
inspect, modify, or delete your applications’ resources at any time.

ptg5934432

25
Class Clusters

The Class Clusters pattern presents a simple interface to a complex underlying imple-
mentation.This pattern is usually used to shield application developers from the details of
performance and storage optimizations provided by frameworks.The pattern provides a
public class for use in application code, but when applications attempt to allocate in-
stances of the public class, the framework actually provides instances of private subclasses
of the public class. Frameworks use information supplied at runtime to select the appro-
priate private subclass on a case-by-case basis. The Class Clusters pattern is sometimes
called the “Abstract Factory” pattern because the public class is abstract.This means in-
stances of the public class itself are never created, and the public class produces instances
of other classes.

For example, Cocoa’s NSData class is the public interface for a class cluster that exists
to efficiently encapsulate arbitrary binary data.The object returned from NSData’s
-(id)initWithContentsOfMappedFile:(NSString *)path method is actually an
instance of a hidden NSData subclass.The hidden subclass leverages Mac OS X’s virtual
memory features to map the data stored in the file into the application’s virtual address
space. Only a small portion of the binary data stored by the object is present in RAM at
any one time.The rest remains on the hard disk.As data is needed, the virtual memory
system automatically reads from the file and discards unused data.This approach avoids
the need to load unneeded data into RAM or store data that is no longer needed.The
data is always recoverable from the source file when needed. In contrast, when NSData’s
-(id)initWithBytes:(const void *)bytes length:(NSUInteger)length method
is used, the object returned may contain just the right amount of heap allocated storage
for optimum random access performance and memory efficiency.

Your code to access the binary data looks exactly the same regardless of which under-
lying subclass of NSData actually gets allocated.You usually don’t need to know or care
how a class cluster is implemented. In the case of NSData, the framework designers make
the trade-offs regarding virtual memory versus heap allocation.The trade-off may differ
based on the version of Mac OS X or the amount of RAM installed in your system.Your
application uses the relatively simple set of methods declared by the NSData class without
concern for implementation complexity.

ptg5934432

283Solution

Motivation
The primary motivation for using class clusters in a framework is to shield application
programmers from framework implementation complexity. Simple concepts might some-
times require complex implementations for reasons of flexibility or optimization. Class
clusters present simple class interfaces that match simple concepts and hide the true com-
plexity. Frameworks hide implementation details and conceal classes as a way to reduce
the number of classes that programmers must learn to use the framework.

Class clusters preserve the ability of framework designers to change the underlying
implementation of a class cluster without losing compatibility with existing code.
Framework designers can add and remove private subclasses without fear of breaking
application code.

Solution
Cocoa’s implementation of class clusters relies on the Two-Stage Creation pattern intro-
duced in Chapter 3,“Two-Stage Creation.” The Two-Stage Creation pattern separates
memory allocation from initialization. Creation of a new instance is usually accomplished
with code similar to the following examples:

// Keep the +alloc and –init messages in the same expression

id newInstance = [[SomeClass alloc] init];

// Here is a similar example with a more precisely specified type

SomeClass *anotherNewInstance = [[SomeClass alloc] init];

// This example uses a more complex initializer

NSError *errorLoadingContents = nil;

NSString *contentOfFile = [[NSString alloc]

initWithContentsOfFile:@"/usr/share/dict/words"

encoding:NSUTF8StringEncoding error:&errorLoadingContents];

With Two-Stage Creation, first a pointer to storage for an uninitialized new instance is
returned from +alloc.Then the new instance is initialized by some variant of the
–(id)init method.

Note
The NSObject's +alloc method calls the “primitive method,” +(id)allocWithZone:
(NSZone *)aZone. Primitive methods are the small number of methods in each class with
which all other methods are implemented. For example, NSCharacterSet adds only one
primitive method, -(BOOL)characterIsMember:(unichar)aCharacter, to the methods
it inherits from NSObject. All other methods of the NSCharacterSet class are imple-
mented to call -characterIsMember: or an inherited method. Apple documents the con-
vention of primitive methods to make it easier for you to subclass framework classes. Your

ptg5934432

284 Chapter 25 Class Clusters

subclass can override the primitive methods and be sure that messages that invoke
nonprimitive methods will still ultimately invoke your implementations of the primitive
methods.

The public interface class in a class cluster overrides +(id)allocWithZone:(NSZone
*)aZone with an implementation that doesn’t actually allocate any storage. Instead,
+allocWithZone: returns a pointer to a shared object that employs the Flyweight pattern
explained in Chapter 22,“Flyweight.”When any variant of the -init method is later sent
to the shared object, the shared object uses the initializer’s arguments (if any) to determine
which private subclass of the class cluster’s public interface class to actually allocate, initial-
ize, and return.The sequence of allocation and initialization with a class cluster is shown
in Figure 25.1.

When you use a class cluster, the pointer returned from the initializer method is not
the same pointer returned by the preceding +alloc message. For example, NSString is the
public interface class of a class cluster.The [NSString alloc] expression returns a pointer
to a shared instance of a private class called NSPlaceholderString.The object returned
from NSPlaceholderString’s – (id)initWithString:(NSString *)string method is
an instance of the private NSCFString class.The following small program and the resulting
output from Mac OS X 10.5 show each step in the process of allocating and initializing
an instance via the NSString class cluster:

T
IM

E

Class Cluster's Public
Interface Class

+allocWithZone:

Shared Flyweight
Instance

-init

A Subclass of the
Public Interface Class

+allocWithZone:

-init

Return

Return

Return

New Instance of
Subclass of Public

Interface Class

Application
Code

Framework
Code

Figure 25.1 The typical sequence of a message sent when creating
a new instance via a class cluster

ptg5934432

285Solution

main()

{

// First allocate

NSString *newInstance = [NSString alloc];

NSLog(@"After +alloc\npointer value:%p description:%@", newInstance,

[newInstance description]);

// Now initialize

newInstance = [newInstance initWithString:@"silly string"];

NSLog(@"After -initWithString:\npointer value:%p description:%@",

newInstance, [newInstance description]);

}

2009-03-19 19:47:48.321 ClassClusterInstantiation[261:10b] After +alloc

pointer value:0x103390

class:NSPlaceholderString

2009-03-19 19:47:48.324 ClassClusterInstantiation[261:10b] After -initWithString:

pointer value:0x2040

class:NSCFString

Apple encourages application programmers to use a single compound expression to
both allocate and initialize new instances as follows: newInstance = [[NSString

alloc] initWithString:@"silly string"]; It is critical to store the value returned
from the initializer because, as shown in the preceding example, the returned value may
be a different object than the one that received the initializer message.The following
code is an error:

// First allocate

NSString *newInstance = [NSString alloc];

// Error: newInstance is initialized but the resulting object is lost

[newInstance initWithString:@"silly string"];

Note
Undocumented details like the existence of the NSPlaceholderString and NSCFString

classes are implementation details that may change in between versions of Mac OS X. This
chapter introduces NSPlaceholderString and NSCFString as specific examples of Co-
coa’s class cluster implementation, but don’t rely on NSPlaceholderString or
NSCFString in your own code.

Creating a Class Cluster
Given that class clusters are meant to hide complexity, a complete and usable example of a
class cluster is too long and complex to be implemented in one chapter.As a consequence,
only skeleton code is presented here.

In the simplest implementation, a class cluster consists of two classes: an abstract
superclass and a concrete subclass.To implement a cluster whose abstract class is
MYClassCluster, define an interface like the following:

ptg5934432

286 Chapter 25 Class Clusters

#import <Cocoa/Cocoa.h>

@interface MYClassCluster : NSObject

// initializers

- (id)initForType:(MYType)type;

- (id)initWithData:(NSData *)data;

// primitive methods here

// derived methods here

@end

In the implementation, the initialization methods need to release the allocated instance
of the abstract class and then create an instance of the desired concrete subclass that can be
returned.The primitive methods are often empty in the abstract class implementation be-
cause they are to be implemented by the concrete subclasses. Some developers prefer to
have the primitive methods raise exceptions so that if a subclass author forgets to imple-
ment one, the omission will be flagged at run time. Finally, any derived methods must be
implemented using calls to the primitive methods to do their work. Here is some code
showing the initialization methods for a cluster with two concrete subclasses,
MYSubclassA and MYSubclassB.

#import "MYClassCluster.h"

@implementation MYClassCluster

- (id)initForType:(MYType)type

{

[self release];

self = nil;

if (/* should use MySubclassA */)

{

self = [[MYSubclassA alloc] initForType:data];

}

else if (/* should use MySubclassB */)

{

self = [[MYSubclassB alloc] initForType:data];

}

return self;

}

- (id)initWithData:(NSData *)data

{

[self release];

ptg5934432

287Solution

self = nil;

if (/* should use MySubclassA */)

{

self = [[MYSubclassA alloc] initWithData:data];

}

else if (/* should use MySubclassB */)

{

self = [[MYSubclassB alloc] initWithData:data];

}

return self;

}

// primitive methods here — all of them should raise exceptions!

// derived methods here

@end

Most class clusters have more than two initialization methods. In many cases, different
initializers return different concrete subclasses.

As an optimization, the class cluster implementations in the Cocoa frameworks use an
additional intermediate “placeholder” class to avoid allocating and then immediately re-
leasing an instance of the abstract superclass.The placeholder is a cross between a Fly-
weight and Singleton.There is one instance created for each memory zone in the
application, and Associative Storage is used to obtain it.The abstract superclass then over-
rides +allocWithZone: to return the placeholder for a given zone.

Note
The placeholders should all be created in the application’s default zone but have an instance
variable that points to the zone they are associated with so that they know from which zone
to allocate instances. This way they do not interfere with the destruction of a zone.

The placeholder is required to implement all the initializer methods that are defined by
the abstract superclass because all the initialization messages will actually be sent to a
placeholder object.The placeholder allocates and initializes an object of the correct con-
crete subclass and returns it.This moves all the logic for choosing which subclass of the
class cluster to use into the placeholder class.The abstract superclass’ initialization methods
should never be called, so when a placeholder is used they would normally be altered to
throw exceptions.

A clever way to throw an exception in an initializer or a primitive method is to send
the message [self doesNotRecognizeSelector: _cmd];.This will ensure that the name
of the offending method is logged.Alternatively, NSAssert(@"message", NO); can be used
to provide a specific message.

For more detailed examples of creating class clusters, including placeholders, see the ar-
ticle at http://www.cocoadev.com/index.pl?ClassClusters.

ptg5934432

288 Chapter 25 Class Clusters

Examples in Cocoa
The Foundation framework’s collection classes like NSString, NSData, NSArray, NSSet,
NSDictionary, and their mutable subclasses are the most prominent public interfaces to
class clusters. Other Foundation framework class cluster interface classes include
NSAttributedString, NSNumber, NSNotification, NSPipe, NSScanner, and
NSCharacterSet.As of Mac OS X 10.5, Core Data’s NSManagedObject class is the public
interface to a class cluster.The existence of class clusters seldom affects application code
that merely uses the class clusters, but it can be difficult to correctly subclass the public in-
terfaces to class clusters. NSManagedObject is frequently subclassed in application code, but
the other public interfaces to class clusters are seldom subclassed.

Subclassing a Class Cluster’s Public Interface Class
To create a new concrete subclass of a class cluster’s abstract public interface class, the fol-
lowing rules must be followed:

n The new class must override the superclass’ primitive methods.
n The new class must override all the superclass’ initializer methods or risk exceptions.
n Every initializer in the new class must call its superclass’ designated initializer,

which is always either -init or -initWithCoder: for the abstract interface to a
class cluster.

Primitive methods provide the core features common to all classes in a class cluster.Ap-
ple’s class documentation identifies the primitive methods of class clusters.The other
methods declared for a class cluster are implemented using the primitive methods.The ex-
istence of primitive methods reduces the number of methods that must be overridden in
each subclass. Implementing the primitive methods for a class cluster ensures that other
inherited methods besides the initializers will continue to operate properly. Implementing
the nonprimitive methods is allowed, even though it is not required.This is usually done
when a subclass can offer optimizations over the default implementations.

Class clusters require special handling for initializer methods.The public interface
classes typically don’t implement the declared initializers because instances of the public
interface classes are never created. Instead, the placeholder class for each class cluster im-
plements the initializers to allocate, initialize, and return instances of the private classes
within the cluster.When you subclass a cluster’s public interface class, you must implement
all of the declared initializers or risk a runtime exception if one of the unimplemented
initializers is ever invoked. In contrast, when you subclass classes that aren’t part of a clus-
ter, you aren’t required to implement any of the inherited initializers.

In Mac OS X 10.5 and later, there is no practical way to get frameworks to return in-
stances of your custom subclass. For example, if you subclass NSString, you can allocate
and initialize instances of your subclass from within your own code.You can even pass in-
stances of your subclass as arguments to framework methods, and everything should work
fine. However, there is no way to force the frameworks to return instances of your subclass

ptg5934432

289Examples in Cocoa

from framework methods.When you send a messages like NSBundle’s - (NSString
*)bundlePath or NSString’s - (NSString *)stringByAppendingString:(NSString
*)aString, the framework will return instances of hidden NSString subclasses instead of
instances of your subclass.

Note
Prior to OS X 10.5, you could use NSObject's + (void)poseAsClass:(Class)aClass
method to inform the Objective-C runtime that your subclass should be used in any situation
where the class cluster’s public interface class would otherwise have been used. In that way,
you could force the frameworks to return instances of your subclass. The +poseAsClass:
method is deprecated in the 32-bit Objective-C runtime for OS X 10.5, and the method is
completely missing from the 64-bit Objective-C runtime. Apple has not provided any replace-
ment for +poseAsClass:.

Before creating a subclass of a class cluster’s public interface class, consider alternatives.
If you need to add methods to a class, the Categories feature of Objective-C might pro-
vide the best solution. Categories are explained in Chapter 6,“Category.” Even if you
need to add instance variables and methods, Chapter 19,“Associative Storage,” describes a
way of simulating the additional instance variables without subclassing.

As another alternative to subclassing, consider composition or “has-a” relationships.You
may be able to accomplish your goals by creating a new class that has an instance of the
class cluster’s public class and other attributes. For example, do you really need a new
NSDictionary subclass, or can your new MYAwsomeDictionary class merely use an in-
stance of NSDictionary to store some of the awesome dictionary’s contents? The Decora-
tors pattern in Chapter 23,“Decorators,” shows a way to use composition. For example,
Cocoa’s NSAttributedString class decorates NSString instances with arbitrary attributes
such as font, color, or underline style.

If your goal is to keep an instance of a class cluster synchronized with other parts of
your application, you may be able to use the Notifications pattern from Chapter 14,
“Notifications,” or Cocoa Bindings from Chapter 32,“Bindings and Controllers.”

The MYShortString Subclass of NSString
Usually when people ask how to subclass a class cluster, the common answer is something
like,“Don’t do it—it’s a waste of time.” Often, the work required far exceeds any benefits
accrued and other patterns provide alternatives to subclassing. One good reason to sub-
class a class cluster is to improve performance if profiling shows that a particular cluster
causes a bottleneck in your application. But as Cocoa matures, even performance reasons
evaporate.

Even after being cautioned, most developers still want to know how to subclass a class
cluster even if it’s just to satisfy curiosity. Here is an example that demonstrates the process
and also shows why you probably don’t really want to subclass a class cluster.

Back in the Mac OS X 10.0 days, profiling a particular large Cocoa application
revealed that a large percentage of processing time in that application was being spent
allocating and deallocating NSString instances.The strings were usually very short, but

ptg5934432

290 Chapter 25 Class Clusters

hundreds of thousands of them were allocated and deallocated every second.The primary
requirement of the application was string processing, so a solution to avoid the dynamic
allocation of string objects was needed.The MYShortString class presented here and at
www.CocoaDesignPatterns.com provided the solution.

MYShortString only handles short strings. Instances of MYShortString are allocated as
needed, but they are seldom deallocated. Instead of being deallocated, the MYShortString
instances are added to a cache of available instances.When a new MYShortString instance
is needed, one of the unused instances in the cache is reused rather than a new one being
allocated.

NSString’s primitive methods are -(NSUInteger)length and -(unichar)

characterAtIndex:(NSUInteger)index.According to the rules for subclassing class
clusters, the MYShortString class must implement -length and -characterAtIndex:

and any of NSString’s initializers that may ever be invoked.The following code declares
the class interface for the MYShortString class.

#import <Foundation/Foundation.h>

#define _MYMAX_SHORT_STRING_LENGTH (40)

@interface MYShortString : NSString

{

// storage for the short string

unichar _myBuffer[_MYMAX_SHORT_STRING_LENGTH+1];

// number of unichars not counting null termination

NSUInteger _myLength;

}

// Overridden allocator

+ (id)allocWithZone:(NSZone *)aZone;

// Shared resource cleanup

+ (void)cleanup;

// Reuse statistics

+ (NSUInteger)numberOfAvailableInstances;

+ (NSUInteger)totalNumberOfInstances;

// Overridden designated initializer

- (id)init;

// Other initializers

- (id)initWithCharacters:(const unichar *)characters

length:(NSUInteger)length;

- (id)initWithUTF8String:(const char *)nullTerminatedCString;

- (id)initWithString:(NSString *)aString;

ptg5934432

291Examples in Cocoa

- (id)initWithFormat:(NSString *)format, ...;

- (id)initWithFormat:(NSString *)format arguments:(va_list)argList;

- (id)initWithFormat:(NSString *)format locale:(id)locale, ...;

- (id)initWithFormat:(NSString *)format locale:(id)locale

arguments:(va_list)argList;

- (id)initWithCString:(const char *)bytes length:(NSUInteger)length;

- (id)initWithCString:(const char *)bytes;

// NSCoding

- (void)encodeWithCoder:(NSCoder *)encoder;

- (id)initWithCoder:(NSCoder *)decoder;

// NSCopying

- (id)copyWithZone:(NSZone *)aZone;

// NSMutableCopying

- (id)mutableCopyWithZone:(NSZone *)aZone;

// Overridden NSString primitive methods

- (NSUInteger)length;

- (unichar)characterAtIndex:(NSUInteger)index;

// Overridden NSString performance methods

- (void)getCharacters:(unichar *)buffer;

- (void)getCharacters:(unichar *)buffer range:(NSRange)aRange;

@end

The following code fragment shows how MYShortString implements
+allocWithZone: and -release to reuse instances:

#import "MYShortString.h"

@implementation MYShortString

#define _MYMaxNumberOfCachedInstance (10000)

// Collection of shared instances

static MYShortString

*_MYShortStringCache[_MYMaxNumberOfCachedInstance];

// Number of instances currently available for reuse

static NSUInteger _MYAvailableInstances = 0;

// Number of instances currently allocated

static NSUInteger _MYTotalNumberOfInstances = 0;

ptg5934432

292 Chapter 25 Class Clusters

// Used to disable caching during cache cleanup

static BOOL _MYCacheIsDisabled = NO;

+ (void)cleanup;

// Releases all cached short string instances

{

_MYCacheIsDisabled = YES; // prevent re-caching when instances

// are released

NSUInteger i;

for(i = 0; i < _MYAvailableInstances; i++)

{

[_MYShortStringCache[i] release];

_MYShortStringCache[i] = nil;

}

_MYAvailableInstances = 0;

_MYCacheIsDisabled = NO;

}

+ (NSUInteger)numberOfAvailableInstances

// Returns number of MYShortString instances available for reuse.

{

return _MYAvailableInstances;

}

+ (NSUInteger)totalNumberOfInstances

// Returns total number of MYShortString instances currently allocated.

{

return _MYTotalNumberOfInstances;

}

// Overridden allocator

+ (id)allocWithZone:(NSZone *)aZone

{

MYShortString *result = nil;

if(_MYAvailableInstances > 0 && aZone == NSDefaultMallocZone())

{ // reuse available instance

_MYAvailableInstances—;

result = _MYShortStringCache[_MYAvailableInstances];

_MYShortStringCache[_MYAvailableInstances] = nil;

}

ptg5934432

293Examples in Cocoa

else

{ // create a new instance (Can't use +alloc here without infinite

// recursion)

result = NSAllocateObject([self class], 0, aZone);

_MYTotalNumberOfInstances++;

}

return result;

}

- (void)release

// Overloaded to cache unused instances for reuse.

{

if([self retainCount] == 1 &&

_MYAvailableInstances < _MYMaxNumberOfCachedInstance &&

!_MYCacheIsDisabled &&

[self zone] == NSDefaultMallocZone())

{

_MYShortStringCache[_MYAvailableInstances] = self;

_MYAvailableInstances++;

}

else

{

[super release];

}

}

- (void)dealloc

// Clean-up

{

_MYTotalNumberOfInstances—;

[super dealloc];

}

MYShortString overrides the -release method to store unused instances for later reuse
rather than letting them be deallocated.The +allocWithZone: method reuses stored in-
stances rather than creating new ones whenever it can.The number of instances available
for reuse is obtained from the + numberOfAvailableInstances method.The total number
of instances that have been allocated is returned from the + totalNumberOfInstances

method.The +cleanup method is used to release all the instances that are cached.

Note
The approach used to cache MYShortString instances for reuse is incompatible with the
automatic memory garbage collection introduced with Objective-C 2.0.

ptg5934432

294 Chapter 25 Class Clusters

The MYShortString class implements some of NSString’s initializers by falling back
to the class cluster’s implementation.The primary reason to fall back in some cases is that
MYShortString can’t store strings that are longer than MYMAX_SHORT_STRING_LENGTH
(40). If the user of MYShortString tries to store a string that’s too long, a suitable
NSString instance that can handle the storage is provided.The following code fragment
continues the implementation of MYShortString and shows how the initializer methods
are implemented:

// Overridden designated initializer

- (id)init;

{

if(nil != (self = [super init]))

{

_myBuffer[0] = 0;

_myLength = 0;

}

return self;

}

// Other initializers

- (id)initWithCharacters:(const unichar *)characters

length:(NSUInteger)length;

{

NSParameterAssert(NULL != characters);

id result = nil;

if(nil != (self = [self init]))

{

if(length < _MYMAX_SHORT_STRING_LENGTH)

{

memcpy(_myBuffer, characters, (length * sizeof(unichar)));

_myLength = length;

_myBuffer[_myLength] = 0;

result = self;

}

else

{

[self release];

self = nil;

result = [[NSString alloc] initWithCharacters:characters

length:length];

ptg5934432

295Examples in Cocoa

}

}

return result;

}

- (id)initWithUTF8String:(const char *)nullTerminatedCString;

{

NSParameterAssert(NULL != nullTerminatedCString);

return [self initWithCString:nullTerminatedCString

encoding:NSUTF8StringEncoding];

}

- (id)initWithString:(NSString *)aString;

{

id result = nil;

const int length = [aString length];

if(nil != (self = [self init]))

{

result = self;

if(length < _MYMAX_SHORT_STRING_LENGTH)

{

NSRange copyRange = NSMakeRange(0, length);

[aString getCharacters:_myBuffer range:copyRange];

_myBuffer[length] = ‘\0';

_myLength = length;

}

else

{

[self release];

self = nil;

result = [[NSString alloc] initWithString:aString];

}

}

return result;

}

- (id)initWithFormat:(NSString *)format, ...;

{

ptg5934432

296 Chapter 25 Class Clusters

NSParameterAssert(nil != format);

id result = nil;

va_list args;

va_start(args, format);

result = [self initWithFormat:format locale:nil arguments:args];

va_end(args);

return result;

}

- (id)initWithFormat:(NSString *)format arguments:(va_list)argList;

{

NSParameterAssert(nil != format);

return [self initWithFormat:format locale:nil arguments:argList];

}

- (id)initWithFormat:(NSString *)format locale:(id)locale, ...;

{

NSParameterAssert(nil != format);

id result = nil;

va_list args;

va_start(args, locale);

result = [self initWithFormat:format locale:locale arguments:args];

va_end(args);

return result;

}

- (id)initWithFormat:(NSString *)format locale:(id)locale

arguments:(va_list)argList;

{

NSParameterAssert(nil != format);

[self release];

self = nil;

return [[NSString alloc] initWithFormat:format

locale:locale arguments:argList];

}

ptg5934432

297Examples in Cocoa

- (id)initWithCString:(const char *)bytes length:(NSUInteger)length;

{

NSParameterAssert(NULL != bytes);

id result = nil;

if(nil != (self = [self init]))

{

if(length < _MYMAX_SHORT_STRING_LENGTH)

{

int i;

for(i = 0; i < length; i++)

{

_myBuffer[i] = bytes[i];

}

_myLength = length;

_myBuffer[_myLength] = 0;

result = self;

}

else

{

[self release];

self = nil;

result = [[NSString alloc] initWithCString:bytes length:length];

}

}

return result;

}

- (id)initWithCString:(const char *)bytes;

{

NSParameterAssert(NULL != bytes);

NSUInteger length = strlen(bytes);

return [self initWithCString:bytes length:length];

}

MYShortString is required to implement NSString’s primitive methods: –length and
–characterAtIndex:.The following code fragment shows how:

// Overridden NSString primitive methods

- (NSUInteger)length;

ptg5934432

298 Chapter 25 Class Clusters

{

return _myLength;

}

- (unichar)characterAtIndex:(NSUInteger)index;

{

if(index >= _myLength)

{

[NSException raise:NSRangeException format:@""];

}

return _myBuffer[index];

}

// Overridden NSString performance methods

- (void)getCharacters:(unichar *)buffer;

{

NSParameterAssert(NULL != buffer);

memcpy(buffer, _myBuffer, ((_myLength) * sizeof(unichar)));

}

- (void)getCharacters:(unichar *)buffer range:(NSRange)aRange;

{

NSParameterAssert(NULL != buffer);

if((aRange.length + aRange.location) > _myLength ||

aRange.location < 0)

{

[NSException raise:NSRangeException format:@""];

}

else

{

memcpy(buffer, &_myBuffer[aRange.location],

(aRange.length * sizeof(unichar)));

}

}

MYShortString isn’t required to override the inherited -getCharacters: and
-getCharacters:range: methods shown in the preceding code.The NSString class
includes implementations of -getCharacters: and -getCharacters:range: based on
the primitive methods. However, these two methods are called frequently by other
NSString methods, and, as an optimization, MYShortString’s implementation avoids
many unnecessary calls to the primitive methods.

ptg5934432

299Examples in Cocoa

Finally, NSString conforms to the NSCoding, NSCopying, and NSMutableCopying pro-
tocols. MYShortString’s implementations of the protocol methods follow:

// NSCoding

- (void)encodeWithCoder:(NSCoder *)encoder;

{

[encoder encodeValueOfObjCType:@encode(NSUInteger) at:&_myLength];

[encoder encodeArrayOfObjCType:@encode(unichar)

count:_myLength at:_myBuffer];

}

- (id)initWithCoder:(NSCoder *)decoder;

{

self = [self init];

[decoder decodeValueOfObjCType:@encode(NSUInteger) at:&_myLength];

[decoder decodeArrayOfObjCType:@encode(unichar)

count:_myLength at:_myBuffer];

return self;

}

// NSCopying

- (id)copyWithZone:(NSZone *)aZone;

{

id result = nil;

if(aZone == [self zone])

{

result = [self retain];

}

else

{

result = [[MYShortString allocWithZone:aZone]

initWithString:self];

}

return result;

}

// NSMutableCopying

- (id)mutableCopyWithZone:(NSZone *)aZone;

{

return [[NSMutableString allocWithZone:aZone] initWithString:self];

}

@end

ptg5934432

300 Chapter 25 Class Clusters

The MYShortString class can be used directly in application code. Instances are cre-
ated by calling [MYShortString alloc] and initialized by calling any of the provided
initializers. However, Cocoa classes that return strings do not automatically take advantage
of the MYShortString class. For example, calling MYShortString’s inherited implementa-
tion of the +stringByAppendingString: method will return an instance of one of Co-
coa’s private concrete NSString subclasses rather than an instance of MYShortString.

Lessons from MYShortString
The MYShortString class was originally developed to improve performance by avoiding
repeated allocation and deallocation of NSString instances. In the Mac OS X 10.0 days,
it accomplished this goal. However, those days are past.The test program at www.
CocoaDesignPatterns.com reveals a startling conclusion: The implementation of
MYShortString is much slower in practice than the framework-supplied private
NSString subclasses. With Mac OS X 10.5,Apple has either optimized allocation and
deallocation to the extent that MYShortString is unneeded, or the frameworks already
use an optimization approach that is superior to MYShortString.

Avoid creating your own subclasses of class cluster public interface classes. It’s difficult
to produce a better result than the frameworks already provide. Furthermore, even if your
custom subclass surpasses the framework behavior today, the frameworks continue to im-
prove. Using your own subclass could prevent your applications from automatically bene-
fiting from future framework enhancements.

NSManagedObject is a special case that must be subclassed to use Core Data effectively.
Chapter 30,“Core Data Models,” includes a section about subclassing NSManagedObject
to add custom behavior such as extra processing whenever a new instance of your
NSManagedObject subclass is inserted into your model.

Consequences
The Class Clusters pattern provides simple programmatic interfaces that solve conceptu-
ally simple problems regardless of the underlying complexity of the solution.The pattern
minimizes the number of classes that programmers need to learn. However, this pattern
complicates the task of creating subclasses.

When debugging Cocoa applications, you may encounter class names that are unfa-
miliar or undocumented. Such classes are usually undocumented concrete classes within a
class cluster. Just remember that all of the classes in a class cluster inherit from the public
interface classes, and you can rely on features and semantics of the public interface classes.

The Class Clusters pattern also complicates the implementation of the Archiving and
Unarchiving pattern from Chapter 11,“Archiving and Unarchiving.” While encoding
an object into an archive, it’s possible to substitute one object for another. Each private
concrete class within a class cluster encodes the name of its public interface class for two

ptg5934432

301Consequences

reasons: First, the existence of the private subclass is an implementation detail that shouldn’t
be exposed in the archive and might change in future framework versions, and second,
the framework’s choice of which concrete private class to use might differ between the
computer that encoded the object and the computer that decodes it. For example, two
different computers might have different framework versions or different amounts of
memory.

ptg5934432

26
Façade

The Façade pattern exists to limit the coupling between objects that interact with a
complex subsystem and the objects that implement the complex subsystem.The Façade
pattern hides complexity.A real-world example of the Façade pattern is the customer in-
teraction when using the phone to order pizza delivery.As a customer, you typically com-
municate with just the order taker who answered the phone at the pizza parlor, but there
may be many people involved in fulfilling your order. Figure 26.1 illustrates the hypothet-
ical relationships between the people, companies, and services that may contribute toward
fulfilling your pizza order.

Customer

Order Taker
(Cashier)
Facade

Pizza Maker

Delivery Driver

Map & GPS

Credit Card
Company

or
Bank

Dish Washer

Ingredients
Supplier

Manager

Simplified
Interface for
Customers

Figure 26.1 Relationships involved in pizza order
fulfillment

ptg5934432

303Solution

As a customer, you don’t normally need to interact with the entire staff of the pizza
parlor.The order taker provides a simplified public face or façade to simplify your inter-
action. In some unusual circumstances, you might need to communicate directly with
the manager, or you might even contest a credit card transaction with the credit card
company or bank. In those cases, you might bypass the façade to enable more compli-
cated interactions.

The Façade software design pattern is directly analogous to the pizza parlor example.
The pattern is used within Cocoa to simplify your custom code’s interaction with com-
plex subsystems like text processing without preventing you from accessing the details
when necessary.The philosophy is to keep common interaction simple while making
complex interaction possible.

Motivation
Apply the Façade pattern to achieve the following goals:

n Provide a simple interface to a complex subsystem.
n Limit coupling between the objects that use a subsystem and the objects that im-

plement the subsystem.

Use the Façade pattern when sophisticated interaction with a complex subsystem is
seldom needed but must be possible.

Solution
Within the pages of a book, it’s difficult to show simple sample code for a representative
implementation of the Façade design pattern because the pattern exists to hide complex-
ity.A useful example must show all of the complexity that is being hidden to reveal the
utility of the pattern.As a compromise to show the concept, the following example lever-
ages the free Google chart generation web service to produce the application shown in
Figure 26.2.The code needed to use the web service is just complicated enough to show
the benefit of a simple façade.

The MYDirectoryChartGenerator class declared in the following code presents a very
simple interface. Use the +sharedGenerator method to access a shared instance of the
MYDirectoryChartGenerator class.Once you have the shared instance,use the - (NSImage *)
chartForDirectory:(NSString *)directoryPath method to obtain the image of a
Google-generated chart showing the relative sizes of the files in the specified directory,
directoryPath.

#import <Cocoa/Cocoa.h>

@interface MYDirectoryChartGenerator : NSObject

{

}

ptg5934432

304 Chapter 26 Façade

Figure 26.2 An application that displays Google-generated charts

+ (MYDirectoryChartGenerator *)sharedGenerator;

- (NSImage *)chartForDirectory:(NSString *)directoryPath;

@end

The implementation of MYDirectoryChartGenerator contains a couple of
helper methods that aren’t declared in the class’ public interface.The - (NSString *)

delimitedFileNamesForDirectory:(NSString *)directoryPath method returns a string
containing the names of the files in directoryPath properly delimited for use by the
Google charting web service.The - (NSString *)delimitedFileSizesForDirectory:

(NSString *)directoryPath similarly returns a delimited string containing the sizes of
the file at directoryPath. In both cases, the UNIX popen() function is used to execute
shell commands that supply the necessary file information.The popen() function is an
example of a nonobject-oriented equivalent of the Façade pattern. The function exposes
the complex and sometimes arcane universe of UNIX shell commands to any C program,
and yet popen() itself could hardly be simpler to use.

#import "MYDirectoryChartGenerator.h"

@implementation MYDirectoryChartGenerator

+ (MYDirectoryChartGenerator *)sharedGenerator

{

static MYDirectoryChartGenerator *sharedInstance = nil;

if(nil == sharedInstance)

{

ptg5934432

305Solution

sharedInstance = [[MYDirectoryChartGenerator alloc] init];

}

return sharedInstance;

}

- (NSString *)delimitedFileNamesForDirectory:(NSString *)directoryPath

{

NSMutableString *fileNames = [NSMutableString string];

NSString *fileNamesCommand = [NSString

stringWithFormat:@"ls %@\n", directoryPath];

FILE *pipe = popen([fileNamesCommand UTF8String], "r");

int currentChar;

while(EOF != (currentChar = fgetc(pipe)))

{

[fileNames appendFormat:@"%c", currentChar];

}

pclose(pipe);

pipe = NULL;

// Add delimiters required by Google's web service

[fileNames replaceOccurrencesOfString:@"\n" withString:

@"|" options:NSLiteralSearch range:

NSMakeRange(0, [fileNames length])];

// Delete the last delimiter because Google doesn't like it

[fileNames deleteCharactersInRange:NSMakeRange(

[fileNames length]-1, 1)];

return fileNames;

}

- (NSString *)delimitedFileSizesForDirectory:(NSString *)directoryPath

{

NSMutableString *fileSizes = [NSMutableString string];

NSString *fileSizesCommand = [NSString stringWithFormat:

@"ls -l %@ | awk ‘{print $2}'\n", directoryPath];

FILE *pipe = popen([fileSizesCommand UTF8String], "r");

int currentChar;

while(EOF != (currentChar = fgetc(pipe)))

{

[fileSizes appendFormat:@"%c", currentChar];

}

ptg5934432

306 Chapter 26 Façade

pclose(pipe);

pipe = NULL;

// Add delimiters required by Google's web service

[fileSizes replaceOccurrencesOfString:@"\n" withString:

@"," range:NSMakeRange(0, [fileSizes length])];

// Delete the last delimiter because Google doesn't like it

[fileSizes deleteCharactersInRange:NSMakeRange(

[fileSizes length]-1, 1)];

return fileSizes;

}

- (NSImage *)chartForDirectory:(NSString *)directoryPath

{

NSString *names = [self delimitedFileNamesForDirectory:

directoryPath];

NSString *sizes = [self delimitedFileSizesForDirectory:

directoryPath];

NSString *chartServiceURL =

@"http://chart.apis.google.com/chart?";

NSString *chartCommand = [NSString stringWithFormat:

@ names, sizes];

NSURL *url = [NSURL URLWithString:[chartCommand

stringByAddingPercentEscapesUsingEncoding:NSUTF8StringEncoding]];

NSImage *chartImage = [[[NSImage alloc]

initWithContentsOfURL:url] autorelease];

return chartImage;

}

@end

In this example, available at www.CocoaDesignPatterns.com, the
MYDirectoryChartGenerator hides the details of reading the filenames and file sizes
from a directory and then using the Google web service to generate an image. One
-delimitedFileSizesForDirectory: message hides a page or so of code, but more to
the point, the popen() function and the web service are each in their own way examples
of the philosophy embodied by the Façade pattern.The example in this chapter isn’t cou-
pled to the specific implementation of UNIX shell commands or Google’s 3D chart
drawing code.

ptg5934432

307Examples in Cocoa

Examples in Cocoa
Cocoa primarily applies the Façade pattern to simplify or reduce the code that must be
written to programmatically use sophisticated features in common situations. Façades are
also used to decouple the programmatic logic of user interaction from the actual user
interface implementations.

The NSTextView and NSImage classes exemplify the Façade pattern’s capability to
simplify programmatic interfaces. Similarly, Core Data’s NSPersistentStoreCoordinator
class provides a simple interface that encapsulates potentially complex interactions be-
tween multiple data storage types.

The Application Kit’s NSColorPanel, NSOpenPanel, NSSavePanel, and NSPrintPanel

all isolate your code for the specific user interface representation of the corresponding
common panels. For example, it’s important for your code to obtain the color selected by
a user via the standard Cocoa color panel, but your code shouldn’t depend on how the
user made the selection. In fact, when future versions of Mac OS X provide new color se-
lection capabilities in the standard panel, your code should continue to work unmodified.

The Text Façade
One of the most compelling implementations of the Façade pattern within Cocoa is the
NSTextView class. NSTextView handles all of the details of interactively displaying and
editing richly formatted text with multiple fonts, paragraph styles, embedded graphics,
multilanguage support, colors, styles, tab stops, and so on. From a programmer’s point of
view, inserting text for display in a text view is as simple as sending the -insertText:

message.The NSTextView that you drag from an Interface Builder library appears to
comprise a sophisticated text editor all by itself. In reality, that NSTextView from the
Interface Builder library only provides the most common and standard configuration.
Most applications only need the standard NSTextView configuration, so the common
simple scenario is supported by drag and drop at design time with no new code at all.
Figure 26.3 shows a more complete picture of the Cocoa components that interact
behind the scenes to implement rich text editing and display.

When you need detailed control over text editing, display, or processing, you are able
to customize each and every component of the Cocoa text system. Extremely complex
configurations are possible, but true to the goals of the Façade pattern, you seldom if ever
need to be concerned about the details.

Cocoa’s text subsystem architecture is documented at http://developer.apple.com/
documentation/Cocoa/Conceptual/TextArchitecture/Concepts/ArchitectureOverview.
html.

ptg5934432

308 Chapter 26 Façade

Your Controller
Code

NSTextView
Facade

NSFont

NSTextContainerNSTextInput

NSParagraphStyle NSTextStorage

NSLayoutManager

NSTypesetter

NSTextAttachementNSTextTab

NSTextAttachement
Cell

Simplified
Interface for
 Common
Operations

Figure 26.3 Components hidden behind the façade of the NSTextView class

The Image Façade
The NSImage class provides another implementation of the Façade pattern. Most appli-
cations that load images can be implemented using the straightforward NSImage meth-
ods, + (id)imageNamed:(NSString *)name or -(id)initByReferencingFile:
(NSString *)filename.The NSImage class is a façade for a sophisticated and flexible
subsystem that supports loading, drawing, and converting a multitude of vector and
bitmap image types.When you use NSImage, you don’t necessarily need to be aware of
the underlying image representation.The image could be Portable Document Format
(PDF), Encapsulated PostsScript (EPS),Tagged Image File Format (TIFF), Joint Photo-
graphic Experts Group (JPEG), Portable Network Graphics (PNG), Graphics Inter-
change Format (GIF), Device Independent Bitmap (DIB), or a whole host of other
formats.The supported formats are listed at http://developer.apple.com/documentation/
Cocoa/Conceptual/CocoaDrawingGuide/Images/chapter_7_3.html.

If all you want to do is load and display the image in your application, you don’t need
to know or care about the details of the various formats.The NSImage class will commu-
nicate with other objects on your behalf and convert between formats as necessary.

ptg5934432

309Examples in Cocoa

NSImage will automatically keep track of multiple representations of the same image. For
example, NSImage might cache a rendered bitmap generated from a vector file format.To
draw the best available representation of an image that has already been loaded, use the
-(void)compositeToPoint:(NSPoint)aPoint operation:(NSCompositingOpera-

tion)op method.
If you ever need to create new images from scratch programmatically or use image

data with OpenGL or support custom image data formats, you can always access
the NSBitmapImageRep, NSCachedImageRep, NSCIImageRep, NSPDFImageRep,
NSEPSImageRep, NSPICTImageRep, or NSCustomImageRep classes directly. For example, the
NSBitmapImageRep class provides a method with one of the longest names in Cocoa to
enable the maximum degree of programmer control: - (id)initWithBitmapDataPlanes:
(unsigned char **)planes pixelsWide:(NSInteger)width pixelsHigh:

(NSInteger)height bitsPerSample:(NSInteger)bps samplesPerPixel:

(NSInteger)spp hasAlpha:(BOOL)alpha isPlanar:(BOOL)isPlanar colorSpaceName:

(NSString *) colorSpaceName bitmapFormat:(NSBitmapFormat)bitmapFormat

bytesPerRow: (NSInteger)rowBytes bitsPerPixel:(NSInteger)pixelBits. If you
need fine control, the options are available, but NSImage takes care of the details in the
vast majority of cases so that you don’t have to be concerned.

More information about image processing in Cocoa is available at http://developer.
apple.com/documentation/Cocoa/Conceptual/CocoaDrawingGuide/Images/chapter_7_1.
html.

The Persistent Storage Facade
Instances of the NSPersistentStoreCoordinator class mediate your application data and
the underlying storage representation of the data. NSPersistentStoreCoordinator
fulfills a role that is conceptually similar to NSImage. Just like NSImage shields you
from the details of specific image file formats, NSPersistentStoreCoordinator
shields you from the details of multiple persistent data storage formats. Using
NSPersistentStoreCoordinator, you can load your application data from an XML
file and save it to an SQLite database without any effect on the data itself.
NSPersistentStoreCoordinator handles data storage in ways that make the type
of storage unimportant to your code that uses the data.

Additional information about the Core Data architecture is provided at http://developer.
apple.com/documentation/Cocoa/Conceptual/CocoaFundamentals/OtherArchitectures/
chapter_8_4.html.

User Interaction Façades
Cocoa uses the Façade design pattern to decouple the programmatic logic of user interac-
tion from the actual user interface implementation. For example, Cocoa’s NSColorPanel

ptg5934432

310 Chapter 26 Façade

Figure 26.4 The standard Cocoa color panel

class provides a simple interface for programmers, and yet it supports a wide range of so-
phisticated color picking user interfaces.The standard color panel supports gray scale, Red
Green Blue (RGB), Cyan MagentaYellow, blacK (CMYK), and Hue Saturation Bright-
ness (HSB) color formats.There is support for per-user color lists, color wheels, and even
a whimsical “Crayon” interface with named colors, as shown in Figure 26.4.

Each Cocoa application has a single instance of NSColorPanel that can be obtained
programmatically by sending the [NSColorPanel sharedColorPanel] message. Even
with all of the capability of the color panel, your application code that interacts with the
color panel is usually limited to implementing the - (void)changeColor:(id)sender
action method similar to the following:

- (void)changeColor:(id)sender

{

NSColor *color = [sender color]; // get user chosen color

// Do something with the color

}

Whenever a user picks a color in any of the color panel’s modes, the shared
NSColorPanel instance sends the -changeColor: action message using the Target and
Action design pattern described in Chapter 17,“Outlets,Targets, and Actions.” The target
of the color panel is usually set to nil, which means that the -changeColor: message is
sent along the Responder Chain to be handled as described in Chapter 18,“Responder
Chain.” In most applications, NSColorPanel’s - (NSColor *)color method is the only
one you will need to use.

ptg5934432

311Consequences

Your code usually has no direct involvement with the multiple picking modes and user
interfaces provided by the standard color panel. Even if your application has special needs,
you can still control the color panel without direct coupling to the user interface. For ex-
ample, you can limit the color panel to accept CMYK format colors exclusively without
needing to know anything about the look and feel of CMYK color selection.Apple oc-
casionally changes the user interface of standard panels, but application code is seldom
broken because the code has no dependence on the specific interface.

Like NSColorPanel, the NSOpenPanel, NSSavePanel, and NSPrintPanel classes simi-
larly isolate application code for the complexities of the corresponding user interfaces.

Consequences
The Façade design pattern hides complexity and reduces code coupling, but the pattern
can be misused.When the full complexity of a subsystem is commonly required, a simpli-
fied façade adds little value and might actually increase the effort needed to effectively use
the subsystem. If the façade interface is too complex or duplicates too many details of the
hidden classes, it probably adds no value.

Facade objects are often singletons. For example, Cocoa provides one instance of
NSColorPanel per application.

The Class Clusters pattern can sometimes be used as an alternative to Façade. Class
clusters also hide implementation complexity for framework users.The Class Cluster’s
user only sees a relatively simple public interface that hides the fact that multiple special-
ized subclasses implement the interface on a case-by-case basis.

ptg5934432

27
Proxies and Forwarding

Proxies are objects that stand in for other objects.They are used in any situation where
an object is needed but the object is not readily available. For example, when distributed
objects are used to provide object-oriented communication between applications, an ac-
tual object in one application may be represented as a proxy in another. Messages sent to
the proxy are transmitted over the network and received by the actual object. Return val-
ues from the actual object are sent back over the network and returned by the proxy.

Forwarding is a feature of the Objective-C runtime that allows an object to capture
messages sent to it and then pass these messages on to another object. Proxies use For-
warding in their implementation. Forwarding is more generally applied to implement
Cocoa’s undo and redo system.The Higher Order Messaging concept explained later in
this chapter also uses the Forwarding pattern. Forwarding relies on the Invocation pattern.

Motivation
The Proxy pattern allows messages to be sent to an object that is separated from the mes-
sage’s sender by time or space. Proxies can also control access to or alter the behavior of
other objects. Forwarding simplifies the capture of messages as invocations so that they
can be resent, delayed, repeated, stored, or altered.

Solution
Forwarding is a feature of the Objective-C language and is built into the runtime’s mes-
sage dispatcher.When a message is sent to an object that doesn’t have a corresponding
method, the runtime offers the receiving object an opportunity to handle the message
before raising an exception.

ptg5934432

313Solution

Implementing Forwarding
NSObject provides Template Methods that you override to tailor message forwarding
behavior. See Chapter 4,“Template Method.” To forward a message, the runtime first calls
the -methodSignatureForSelector: template method to obtain an appropriate method
signature to create an NSInvocation instance. Next, the -forwardInvocation: template
method is called with a newly created NSInvocation instance as its argument. You must
override NSObject’s implementation of -forwardInvocation: to provide custom
behavior. NSObject’s default implementation of -forwardInvocation: sends the
-doesNotRecognizeSelector: message to raise an exception. It’s not sufficient to override
-forwardInvocation:. It is also necessary to override -methodSignatureForSelector:
to enable correct forwarding behavior.

For example, suppose the class MYClass wants to forward any message that it doesn’t
understand to an instance of MYHelperClass. MYClass uses code like the following:

- (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector

{

if ([myHelperClassInstance respondsToSelector:aSelector])

{

return [myHelperClassInstance

methodSignatureForSelector:aSelector];

}

else

{

return [super methodSignatureForSelector:aSelector];

}

}

- (void)forwardInvocation:(NSInvocation *)invocation

{

SEL aSelector = [invocation selector];

if ([myHelperClassInstance respondsToSelector:aSelector])

{

[invocation invokeWithTarget:myHelperClassInstance];

}

else

{

[self doesNotRecognizeSelector:aSelector];

}

}

Because a substantial amount of Objective-C code will test to see if an objects
responds to a selector before sending a message, it is also a good idea to override the
-respondsToSelector: method. In the example of MYClass forwarding messages to
MYHelperClass, the code looks like this:

ptg5934432

314 Chapter 27 Proxies and Forwarding

- (BOOL)respondsToSelector:(SEL)aSelector

{

if ([myHelperClassInstance respondsToSelector:aSelector])

{

return YES;

}

else

{

return [super respondsToSelector:aSelector];

}

}

Of course it is possible to customize behavior beyond simple forwarding in a
-forwardInvocation: implementation.You can implement -forwardInvocation: to
ignore messages. Some forwarding implementations trigger other processing before or
after forwarding a message.The NSInvocation instance can be stored or altered, and it
can be used to construct a message to be transmitted over the network. Proxy objects are
the most common use of forwarding as explained in the next section.

Proxies
A proxy is an object that typically does nothing by itself. It’s linked to some other object
for which it stands in proxy. Nearly every message sent to a proxy ends up passing
through the runtime’s forwarding mechanism. For this to happen, the proxy is constrained
to implement only a bare minimum of methods.The sequence of messages and return
values when passing a message through a proxy is shown in Figure 27.1.

The NSProxy class is used to implement most proxies. Unlike most Objective-C
classes, which inherit from NSObject, the NSProxy class has no superclass. NSProxy imple-
ments as few methods as possible, which means that a lot of the NSObject methods that
developers take for granted, such as -class, -superclass, and even -init, are not imple-
mented by NSProxy.This helps to ensure that most messages will reach the proxy’s
-forwardInvocation: implementation.

The following MYJunction class implements a proxy that forwards action messages
from a user interface to each object in an array.This overcomes a limitation of the Tar-
get/Action design pattern that normally only supports one target.You set the proxy as a
target, and the proxy forwards any received action messages on to multiple other objects.

MYJunction requires an NSMutableArray to contain the targets to which it forwards
the action messages.The public interface declares two methods, one to add a target and

Sender

1

4
Proxy Receiver

2

3

Figure 27.1 A proxy stands between a message sender and receiver.

ptg5934432

315Solution

one to obtain a shared instance.This class isn’t a strict singleton, so multiple instances are
possible.The shared instance is simply provided for convenience when using it in a test
application, as will become clear later. Here is the interface declaration:

#import <Foundation/Foundation.h>

@interface MYJunction : NSProxy

{

NSMutableArray *targets;

}

+ (MYJunction *)sharedJunction;

- (void)addTarget:(id)anObject;

@end

The implementation of +sharedJunction creates an instance the first time it is called
and then returns the same instance thereafter, similar to the code used to create a singleton:

+ (MYJunction *)sharedJunction

{

static MYJunction *sharedJunction = nil;

if (!sharedJunction)

{

sharedJunction = [[MYJunction alloc] init];

}

return sharedJunction;

}

To manage the targets array, the -init, -dealloc, and -addTarget: methods are
required.The -init method creates the targets array while -dealloc disposes of it.
The -addTarget: method simply adds a new target to the array.

- (id)init

{

targets = [[NSMutableArray alloc] init];

return self;

}

- (void)dealloc

{

[targets release];

[super dealloc];

}

- (void)addTarget:(id)anObject

{

[targets addObject:anObject];

}

ptg5934432

316 Chapter 27 Proxies and Forwarding

Notice that the -init method does not call [super init].This is because the super-
class, NSProxy, doesn’t implement an -init method. As an implementation detail, an
NSMutableArray was chosen so that the order in which the targets receive messages is
determined by the order in which targets are added to the MYJunction instance via
-addTarget:.A fully robust implementation should probably ensure that a target is only
added to the targets array if it is not already there, unless the ability to have an action
message sent to a target twice or more is desired. Using NSMutableSet to store targets
guarantees the uniqueness of the targets but doesn’t guarantee the order in which
messages are forwarded to the targets.

The meat of the proxy implementation lies in the implementation of message for-
warding.The following code loops through all the targets, sending the forwarded message
to each in turn.Also, if the message sender is one of the targets, then we don’t forward the
message to that target.

Because this object is primarily interested in forwarding Target/Action messages, it
makes some assumptions about the method signature. Remember that every message has
two hidden arguments, self and _cmd.Therefore, the first user visible argument is actu-
ally the third argument.The following -forwardInvocation: implementation silently
ignores messages that don’t have a third argument and assumes that the third argument is
an object, typically the sender of an action message. For robustness, production code
must verify that the third argument is actually an object.

- (void)forwardInvocation:(NSInvocation *)anInvocation

{

if ([[anInvocation methodSignature] numberOfArguments] > 2)

{

for (id target in targets)

{

id messageSender = nil;

[anInvocation getArgument:&messageSender atIndex:2];

if (messageSender != target)

{

[anInvocation invokeWithTarget:target];

}

}

}

}

This code doesn’t check to see if a given target actually responds to the message.
A possible improvement is to only send to targets that actually respond to a given message.
Another improvement is to keep track of whether or not the message was successfully
forwarded to any of the targets and raise an exception if none of them respond.

In order for forwarding to function properly, an implementation of
-methodSignatureForSelector: is also required. In this case, another assumption is

ptg5934432

317Solution

made. Because only one method signature can be returned, the first target found that can
respond to a selector will be used to generate the method signature. If some targets have
a different method signature, this implementation may result in run time errors.Again,
because the focus is forwarding Target/Action messages, which all have the same signature,
this assumption isn’t a problem in the example code.

- (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector

{

for (id target in targets)

{

if ([target respondsToSelector:aSelector])

{

return [target methodSignatureForSelector:aSelector];

}

}

return nil;

}

Finally, implementations of -conformsToProtocol: and -respondsToSelector: are
usually needed to ensure the proxy is more generally usable in a wide variety of situa-
tions.The following implementation returns YES if any one of the targets returns a YES.

- (BOOL)conformsToProtocol:(Protocol *)aProtocol

{

for (id target in targets)

{

if ([target conformsToProtocol:aProtocol])

{

return YES;

}

}

return NO;

}

- (BOOL)respondsToSelector:(SEL)aSelector

{

for (id target in targets)

{

if ([target respondsToSelector:aSelector])

{

return YES;

}

}

return NO;

}

ptg5934432

318 Chapter 27 Proxies and Forwarding

That is all the code that is necessary to make the proxy functional. However, to use it
in an actual example application, a little bit more code is necessary.The example applica-
tion opens four identical windows, each with an NSSlider and NSTextfield.To do this,
a window is placed in its own .nib file and the file is loaded four times.All of the sliders
and text fields are tied together using a single MYJunction instance so that changing the
value of any one of them causes the other seven to update also.

One of the challenges is that our proxy object is a bit confusing to Interface Builder
when it comes time to make connections.To work around this, we will use a helper ob-
ject.The helper object’s only function is to make the connections to the MYJunction in-
stance once a .nib file is loaded.The helper needs a single outlet for the object it’s
managing.

@interface MYJunctionHelper : NSObject

{

IBOutlet id myObject;

}

@end

When the helper awakens from a .nib file, it will obtain the shared MYJunction in-
stance and add its object to the target list.Additionally, it will set the junction as the ob-
ject’s target, as follows:

#import "MYJunctionHelper.h"

#import "MYJunction.h"

@implementation MYJunctionHelper

- (void)awakeFromNib

{

MYJunction *junction = [MYJunction sharedJunction];

[myObject setTarget:junction];

[junction addTarget:myObject];

}

@end

Using this helper object is simple. One helper is instantiated in Interface Builder for
every control that sends a message to the junction. Because the window has both a slider
and a text field communicating through the junction, two MYJunctionHelper instances
are created. Each instance is connected to one of the controls. Finally, each control is
connected to the First Responder, and an action message is chosen. For the example
application the message -takeDoubleValueFrom: is used.The reason the connection is
made to the first responder is so that any valid action message known to Interface Builder
can be chosen. If it is connected to another object instead, then only action messages

ptg5934432

319Solution

implemented by the chosen target are offered as options. Connecting to the first
responder actually sets a control’s target to nil, but this doesn’t matter because the helper
object will set the target to be the junction as soon as the interface is loaded into the
application.

A final class is used in the example application to open up all four windows when the
application finishes launching.The JunctionAppController class is instantiated in the
Main.nib file and is a delegate of the NSApplication object. It has an NSMutableArray
containing NSWindowControllers for the four windows and implements the method
-openAllWindows: to open all the windows at once.The interface is as follows:

#import <Cocoa/Cocoa.h>

@interface JunctionAppController : NSObject

{

NSMutableArray *windowControllers;

}

- (IBAction)openAllWindows:(id)sender;

@end

The implementation simply manages the creation of the window controllers and opens
all four windows after a brief delay.A delay of zero postpones the -openAllWindows:
message until the “next run loop invocation,” which means that the windows won’t open
until after the application’s event loop starts running.

#import "JunctionAppController.h"

#define NUMBER_OF_WINDOWS 4

@implementation JunctionAppController

- (id)init

{

if(nil != (self = [super init]))

{

windowControllers = [[NSMutableArray alloc] init];

}

return self;

}

- (void)dealloc

{

[windowControllers release];

[super dealloc];

}

ptg5934432

320 Chapter 27 Proxies and Forwarding

- (void)awakeFromNib

{

int i;

for (i=0; i<NUMBER_OF_WINDOWS; i++)

{

NSWindowController *controller = [[NSWindowController alloc]

initWithWindowNibName:@"JunctionWindow"];

[windowControllers addObject:controller];

}

[self performSelector:@selector(openAllWindows:)

withObject:self afterDelay:0.0];

}

- (IBAction)openAllWindows:(id)sender

{

[windowControllers

makeObjectsPerformSelector:@selector(showWindow:)

withObject:self];

}

@end

This is all the code required to make the example work.When run, the controls will
all function together in lock step, as seen in Figure 27.2. This particular example is rather
simple. The same effect could have been achieved by using Cocoa bindings technology
to bind each control to a single value as explained in Chapter 32,“Bindings and Con-
trollers.” Even so, the example shows how to make connections to objects that are in dif-
ferent .nib files and how to send a Target/Action message to more than one object at a
time, both of which can be useful in some situations.

There are other ways in which proxies may be used. If an object has expensive initial-
ization, such as fetching data from a database or loading a file off disk, then use a proxy to

Figure 27.2 MYJunction example interface

ptg5934432

321Solution

stand in for the real object until the real object is needed. If the real object is never
needed, only the lightweight proxy is ever created.When accesses that require the real ob-
ject are requested, the proxy initializes the real object and then forwards messages to it.

Proxies are also used as a way to wrap other objects and control or alter access to the
objects. Depending on a message’s sender, a proxy changes which methods it is willing to
forward to the real object. Some messages might be altered before being forwarded, or
one message might be substituted for another.

Another way a proxy can be used is to create objects that have new behaviors. For ex-
ample, a category can add methods to an existing class, but it cannot add instance vari-
ables.A proxy can simulate a category with instance variables by defining its own variables
and methods and then forwarding everything else to the real object. Furthermore, when a
category overrides an object’s existing methods, it has no easy way to access the original
method, but a proxy can. Proxies are also able to simulate multiple inheritance by for-
warding messages to multiple other objects, creating a form of composite object.

Higher Order Messages
In the MYJunction example, the application’s controller sends a message to the window
controller array invoking the -makeObjectsPerformSelector:withObject: method.
This is a convenient method because it eliminates the need to write loop or iteration
code. It has two downsides, however. First, it somewhat obscures the intent of the code by
hiding the fact that the real message being sent is -showWindow:.There’s a lot of extra text
surrounding the real message. Second, the possible messages that can be sent to every ob-
ject in the array are limited.A very specific method signature is required.The methods
that can be used must all take a single object as an argument.There is no convenient
method to send a message that takes, say, four arguments.The following code is much
cleaner:

// send an arbitrary message to all objects

[[windowControllers makeObjectsPerform] showWindow:self];

The key observation here is that what is really wanted is a message that can take an-
other message as its argument.A message that does this is known as a Higher Order Message
or HOM.The terminology and the basic concept borrow much from the idea of higher
order functions in the Lisp programming language.

Until Objective-C supports a language feature called blocks, there is no direct support
for methods that take messages or other code as arguments. However, through the use of
invocations, forwarding, and proxies, it is possible to capture a message and then use it
elsewhere. In the following example, the -makeObjectsPerform message returns what is
called a trampoline object.

A trampoline is a simple proxy object that captures a message and then passes it back
to the original object.The trampoline returned by -makeObjectsPerform waits until it is
asked to forward the -showWindow: message.At that time, it calls a private method that takes
an NSInvocation as an argument.The private method contains the loop that actually

ptg5934432

322 Chapter 27 Proxies and Forwarding

sends the message to each object in the array.To see how this is implemented, the previous
example is modified to use HOM when opening the windows.The sequence of messages
sent when using -makeObjectsPerform in this example is shown in Figure 27.3.

The first task is to create a class that is used as a trampoline.The trampoline’s job is to
capture a message as an NSInvocation and then send it to a target object. It should avoid
implementing most messages.Therefore, MYTrampoline is a subclass of NSProxy with two
instance variables, target and selector. It implements two methods to aid in the creation
of trampolines, +newForTarget:andSelector: and -initForTarget:andSelector:.

To allow collections to find method signatures from their contained objects, we add a
method named -findMethodSignatureForSelector: to NSObject.The default imple-
mentation simply calls -methodSignatureForSelector:, but collection classes can over-
ride it to search their collected objects for a signature.The interface file for all this is as
follows:

#import <Foundation/Foundation.h>

@interface NSObject(MYTrampoline)

- (NSMethodSignature *)findMethodSignatureForSelector:(SEL)aSelector;

@end

@interface MYTrampoline : NSProxy

{

id target;

SEL selector;

Sender

MYTrampoline

1. makeObjectsPerform

3. Return MYTrampoline

2. newForTarget:
andSelector:

5. forwardInvocation:
(showWindow:)

6. makeObjectsPerformInvocation:
(showWindow:)

4. showWindow:

NSArray

Figure 27.3 Sending a HOM through a trampoline

ptg5934432

323Solution

}

+ (id)newForTarget:(id)aTarget andSelector:(SEL)aSelector;

- (id)initForTarget:(id)aTarget andSelector:(SEL)aSelector;

@end

The implementation of the trampoline is nearly trivial in comparison to the
MYJunction class.The +new... and -init... methods simply set the instance variables
to the arguments that are passed in.To forward the invocation, the trampoline sends a
message to its target using the preconfigured selector.

#import "MYTrampoline.h"

@implementation NSObject(MYTrampoline)

- (NSMethodSignature *)findMethodSignatureForSelector:(SEL)aSelector

{

return [self methodSignatureForSelector:aSelector];

}

@end

@implementation MYTrampoline

+ (id)newForTarget:(id)aTarget andSelector:(SEL)aSelector

{

id newTrampoline = [[[self class] alloc]

initForTarget:aTarget andSelector:aSelector];

[newTrampoline autorelease];

return newTrampoline;

}

- (id)initForTarget:(id)aTarget andSelector:(SEL)aSelector

{

target = aTarget;

[target retain];

selector = aSelector;

return self;

}

- (void)dealloc

{

[target release];

[super dealloc];

}

ptg5934432

324 Chapter 27 Proxies and Forwarding

- (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector

{

return [target findMethodSignatureForSelector:aSelector];

}

- (void)forwardInvocation:(NSInvocation *)anInvocation

{

[target performSelector:selector withObject:anInvocation];

}

@end

The next step is to implement the actual higher order message using a category
on the NSArray class.The category defines two new methods.The first is the HOM
-makeObjectsPerform.The second is the method that will be called by the trampoline,
-makeObjectsPerformInvocation:.To keep this method semi-private, it is not part of the
interface declaration and is only found in the implementation. In this case, the method itself
might be more generally useful to other code, so it makes sense to expose it publically.

#import <Foundation/Foundation.h>

@interface NSArray(HOM)

- (id)makeObjectsPerform;

- (void)makeObjectsPerformInvocation:(NSInvocation *)invocation;

@end

The -makeObjectsPerform method, the actual higher order message, only creates and
returns a trampoline object.The trampoline calls -makeObjectsPerformInvocation: to
loop through all the objects in the array, using the invocation object on each of them.

The implementation must also override the -findMethodSignatureForSelector:
method that is used by the trampoline. Because NSArray is a collection object, this
method searches all the collected objects for the first object that responds to the selector
and then uses it to make a method signature. If no such object is found, then the imple-
mentation falls back to trying to get the NSArray object to create a signature.

#import "NSArray+HOM.h"

#import "MYTrampoline.h"

@implementation NSArray(HOM)

- (NSMethodSignature *)findMethodSignatureForSelector:(SEL)aSelector

{

for (id object in self)

{

ptg5934432

325Solution

if ([object respondsToSelector:aSelector])

{

return [object methodSignatureForSelector:aSelector];

}

}

return [self methodSignatureForSelector:aSelector];

}

- (id)makeObjectsPerform

{

return [MYTrampoline newForTarget:self

andSelector:@selector(makeObjectsPerformInvocation:)];

}

- (void)makeObjectsPerformInvocation:(NSInvocation *)invocation

{

for (id object in self)

{

[invocation invokeWithTarget:object];

}

}

@end

With the trampoline object implementation and the HOM category on NSArray
completed, the code for -openAllWindows: in the JunctionAppController class is now
changed:

- (IBAction)openAllWindows:(id)sender

{

[[windowControllers makeObjectsPerform] showWindow:self];

}

In this example, the HOM doesn’t have a return value. It is possible to create HOMs
that have return values, however. For example, imagine an array populated with person
objects.An HOM such as -select might be used to find all the persons matching partic-
ular criteria, such as all the person objects that respond YES to the message -
livesWithinDistance:ofCity:. In this case, the HOM returns an NSArray containing
all the objects that answered YES.

Handling return values properly adds significant complexity to the implementation of
trampolines and HOMs.To see examples of how such messages might be implemented,
refer to the implementation of HOM found as part of the MPWFoundation framework.
It can be downloaded from http://www.metaobject.com/downloads/Objective-C/.This
implementation is where HOM was first introduced to the Cocoa developer community.

HOMs do not necessarily have to be covers for looping code, either. Consider the fol-
lowing two messages, one as a normal Cocoa method call and one as a possible HOM:

ptg5934432

326 Chapter 27 Proxies and Forwarding

[anObject performSelector:selector(anAction)

withObject:self afterDelay:1.0]; // old way

[[anObject afterDelay:1.0] anAction:self]; // HOM way

HOMs can also be used to simplify common idioms. For example, to send a message
to a delegate only if it can respond to the message, an -ifResponds HOM is used.Any
time you find yourself writing the same basic code repeatedly, you may have a candidate
for HOM.

The Cocoa undo and redo functionality implemented by the NSUndoManager class and
its -prepareWithInvocationTarget: method is a form of HOM because it captures the
messages required to undo or redo a user action. In this case, the undo manager acts as a
trampoline for itself.

Although HOMs aren’t common in Cocoa at present, they do offer several advantages.
The programmer’s intent is made clearer, and less code is required to accomplish the same
actions.This leads to fewer errors in code.

Furthermore, because HOMs only accept one message as an argument, using an
HOM forces developers to put blocks of code into single methods on the object in ques-
tion rather than having sequences of messages buried in multiple loops scattered through-
out the code base.This reduces coupling and improves the organization of code. In some
cases, however, this can lead to an excessive number of extra method implementations.
Such a situation signals that either HOM isn’t the best solution for the problem or that
the design itself is flawed and needs to be refactored.

One negative of HOM is the potential for performance degradation.As implemented
here, there is the need to allocate and set up a trampoline and the overhead of capturing
a message. For messages that aren’t sent very often, this isn’t a significant problem.The
HOM overhead can be reduced by reusing trampoline objects. Instead of allocating a new
trampoline every time one is needed and deallocating after only a single use, keep the old
trampoline around after it’s done it’s job.When a new trampoline is needed, reinitialize
the old one and reuse it. By maintaining a pool of trampoline objects, fewer allocations
and deallocations are performed. Even without this optimization, however, the advantages
to code correctness, readability, and maintainability usually negate any performance con-
cerns about HOM overhead.

When an HOM implies a loop, the HOM overhead is usually not a problem. By push-
ing the code for loops into the implementation of the HOM, optimizations not normally
worth the effort for a typical loop now become worthwhile because the loop is reused
many times.The savings that are achieved when the loop is optimized often dwarf the
overhead of setting up an HOM.The HOM implementation in MPWFoundation demon-
strates several optimizations of this nature.

ptg5934432

327Consequences

Examples in Cocoa
Cocoa uses proxies with Distributed Objects (DO).The NSProxy class implements the
Proxy pattern.When requesting an object in another process or thread, DO returns an
NSProxy instance. Messages sent to the proxy object are captured using Forwarding. DO
then transmits the captured messages to the real object, where the message is received. If
the return value of a message is another object, then a new proxy may be created auto-
matically and returned to the message sender. If a message uses an object as an argument, a
proxy may be automatically created at the receiving end for that argument. It is possible
for each of two applications to have proxies that send messages to the other. Sometimes,
depending on how a method has been declared, DO may use Archiving to send a copy of
an object to the other side of a connection instead of creating a proxy.

The undo and redo features provided by Cocoa use the Forwarding pattern to capture
the actions required to undo or redo a user operation.When the -prepareWithInvoca-
tionTarget: method is sent to an NSUndoManager instance, the undo manager returns
itself, ready to capture the next message sent to itself.The captured message, an
NSInvocation, is then added to either the undo or redo stack as appropriate.

Consequences
Forwarding adds tremendous flexibility to Objective-C objects. Messages may be cap-
tured and re-sent at a different time, re-sent multiple times, sent to another or multiple
other objects, changed or substituted for other messages, conditionally ignored, and so on.
Forwarding can also be used to allow an object to take on some or all of the behaviors of
a child object.

Forwarding enables the implementation of proxy objects. Proxies represent other ob-
jects and stand in for them.This can be used to simplify passing messages between remote
objects because the code to send a message is the same no matter whether you are dealing
with a proxy or an actual object. Proxies control access to other objects or alter behavior
of other objects on an instance-by-instance basis by intercepting messages.

A special kind of proxy, the trampoline, can be used to implement designs where a
message wants to use another message as an argument.The undo and redo system in
Cocoa is one example of this, but Higher Order Messaging generalizes the concept.

ptg5934432

28
Managers

Managers are classes that manage instances of other classes. Examples of Cocoa
manager classes include NSFileManager, NSFontManager, NSInputManager, and
NSLayoutManager. Managers simplify the creation and management of reusable resources
such as fonts and encapsulate implementation details. For example, the NSFileManager

class provides methods for managing files from file systems as diverse as DOS FAT,Apple
HFS+, Network File System, UFS, and ISO 9660 without requiring any system-specific
code in applications. Some managers also act as controllers within the ModelView
Controller pattern.

Motivation
Offer a uniform interface for managing the instantiation of and access to a group of
related objects. Many managers use and extend the Singleton pattern; they are singletons
themselves, and they may ensure that the objects they manage are unique.

Solution
It is common in application design to have a collection of objects that need to be unique
but at the same time are not singletons. For example, consider fonts. Because an applica-
tion may use many different fonts, the object used to encapsulate a font will probably be
instantiated multiple times and therefore is not a singleton.At the same time, there is no
need for multiple instances all encapsulating the same exact font. It makes sense to control
the creation of font instances so that whenever a specific typeface is requested, the same
instance is returned.

One approach is to use class methods to ensure that all instances of an object are
unique. For example, if an NSImage is obtained using the +imageNamed: class method,
the same instance is returned every time a particular name is requested.Associative
Storage, Chapter 19,“Associative Storage,” is commonly used to keep track of the
named instances. One possible implementation for a method like this uses an
NSMutableDictionary to track each object as it is created:

ptg5934432

329Solution

static NSMutableDictionary *imageTable = nil;

+ (NSImage *)imageNamed:(NSString *)name

{

NSImage *image;

if (!imageTable)

{

imageTable = [[NSMutableDictionary alloc] init];

}

image = [imageTable objectForKey:name];

if (!image)

{

image = /* add code to create new image here */ ;

[imageTable setObject:image forKey:name];

}

return image;

}

This approach can be fairly limited, however. Returning to the example of font ob-
jects, there are other necessary tasks involving the manipulation of font objects. One such
manipulation would be to request the italic version of a font.The font class could be
given a method that would look up and return the italic version, but eventually the inter-
face of the font class could become cluttered.

Because the normal and the italic versions of a typeface are actually two different font
objects, it makes sense to have a second class involved that can return the desired font
object.To get the italic version of a font, the programmer would give this managing class
the normal font and request the italic version. In Cocoa, this is exactly how it works.
There are the NSFont and NSFontManager classes.The NSFontManager class has several
-convertFont... methods that, given an NSFont instance, can be used to obtain different
NSFont instances.

The NSFontManager itself is a singleton, and for many manager objects this makes
sense.When a class is controlling uniqueness of another class’ instances, it needs to be a
Singleton to guarantee uniqueness. If there were two manager instances, each would end
up maintaining its own set of objects, and duplicates would be possible.

An added advantage of creating a separate class to manage fonts is that the manager
class can also act as a controller, handling some applicationwide font related tasks. The
NSFontManager class tracks the “current” font so that as text is selected in a Cocoa appli-
cation, the NSFontPanel can be kept up to date. It also manages the application’s Font
menu. In effect, the NSFontManager is managing the interaction between NSFont objects
and various application objects, hence the name “Manager” for this pattern.

ptg5934432

330 Chapter 28 Managers

Extending the Singleton Pattern
If we revisit the example given with the Singleton pattern (Chapter 13,“Singleton”), we
can extend it into a more general Manager-type class. In the example, an object was cre-
ated to manage high scores for a game.The assumption was that there would only be one
high score table for the game. However, there are many games that have different game
settings or gameplay variations. In such cases, it would make sense to have a separate high
score table for each game variant.With this in mind, the MYGameHighScoreManager class
can be rewritten. Because this manager still needs to be a singleton itself, much of the
code presented in Chapter 13 can be retained as-is; most changes will be the addition of
new code.

For this example we will assume the creation of a new class, MYHighScoreTable. This
new class will contain all the actual high score data.The manager class will manage in-
stances of this new class. In the previous example, the manager has the instance methods
-registerScore:playerName: and -scoreEnumerator. Both methods need to be im-
plemented by the new MYHighScoreTable class, but the MYGameHighScoreManager class
will also have implementations of them. Part of the manager’s job is to know which type
of game is being played at the moment and pass score submissions on to the correct table.
Assuming that the game has a window for displaying the high scores,
MYGameHighScoreManager is responsible for displaying and updating that window. Given
all these tasks, we can now create the class interface definition:

@class MYHighScoreTable;

@interface MYGameHighScoreManager : NSObject

{

NSString *currentGameName;

NSMutableDictionary *highScoreTables;

IBOutlet NSWindow *highScoreWindow;

}

@property (readwrite copy) NSString *currentGameName;

+ (MYGameHighScoreManager *)sharedInstance;

+ (BOOL)sharedInstanceExists;

- (MYHighScoreTable *)highScoreTableForGameNamed:(NSString *)gameName;

- (MYHighScoreTable *)highScoreTableForCurrentGame;

- (IBAction)displayHighScoreWindow:(id)sender;

- (void)updateHighScoreWindow;

- (void)registerScore:(NSNumber *)score playerName:(NSString *)name;

- (NSEnumerator *)scoreEnumerator;

@end

There are three instance variables.The variable currentGameName tracks which game
variant is currently being played or has just been played and will be handled as a property
of the class.The dictionary highScoreTables contains all the instances of

ptg5934432

331Solution

MYHighScoreTable that are being managed by the MYGameHighScoreManager. Finally, the
outlet highScoreWindow points to the window that is used for displaying high scores. Pre-
sumably, this window would be set up in an Interface Builder file. In this example, it will be
assumed that the file is called HighScoreWindow.nib.The file would be set up so that an
instance of MYGameHighScoreManager is the File’s Owner, and a connection would be
wired up between the File’s Owner and the window. In a real implementation, there might
be other outlets in the MYHighScoreTable class to connect to instances of NSTableView or
other NSView objects used to display the high scores. For simplicity, those details are omit-
ted here.

Turning to the implementation, all the code to make this class a singleton still applies:

static MYGameHighScoreManager *myInstance = nil;

@implementation MYGameHighScoreManager : NSObject

+ (id)hiddenAlloc

{

return [super alloc];

}

+ (id)alloc

{

NSLog(@"%@: use +sharedInstance instead of +alloc",

[[self class] name]);

return nil;

}

+ (id)new

{

return [self alloc];

}

+ (id)allocWithZone:(NSZone *)zone

{

return [self alloc];

}

- (id)copyWithZone:(NSZone *)zone

{

[self retain];

return self;

}

- (id)mutableCopyWithZone:(NSZone *)zone

{

ptg5934432

332 Chapter 28 Managers

return [self copyWithZone:zone];

}

+ (MYGameHighScoreManager *)sharedInstance

{

if (!myInstance)

{

NSBundle *mainBundle = [NSBundle mainBundle];

NSDictionary *info = [mainBundle infoDictionary];

NSString *className = [info objectForKey:

@"MYGameHighScoreManagerClass"];

Class *myClass = NSClassFromString(className);

if (!myClass)

{

myClass = [self class];

}

myInstance = [[myClass hiddenAlloc] init];

}

return myInstance;

}

+ (BOOL)sharedInstanceExists

{

return (nil != myInstance);

}

@end

Next, the management of the MYHighScoreTable instances needs to be added to the
class.To do this, an -init method is added to create the dictionary that will contain
all the MYHighScoreTable instances and initialize the other instance variables. An
implementation of the -highScoreTableForGameNamed: method is needed. The
-highScoreTableForGameNamed: method will look and function much like the example
code presented previously for a possible implementation of the -imageNamed: method.

- (id)init

{

if(nil != (self = [super init]))

{

highScoreTables = [[NSMutableDictionary alloc] init];

highScoreWindow = nil;

currentGameName = @"";

}

return self;

}

- (MYHighScoreTable *)highScoreTableForGameNamed:(NSString *)gameName

ptg5934432

333Solution

{

MYHighScoreTable *table =

[highScoreTables objectForKey:gameName];

if (!table)

{

table = [[MYHighScoreTable alloc] initWithName:gameName];

[highScoreTables setObject:table forKey:gameName];

}

return table;

}

This code assumes that the MYHighScoreTable class implements an -initWithName:
method that will load the high score table’s data from disk or network when called. The
data for each high score table is also being loaded on demand. Until some application
object requests it, the information is not loaded into the application.

Adding Other Manager Features
Next, code is required to handle tracking the current game. Because currentGameName is
a property, the @synthesize directive can be used to create set and get instance methods.
The -highScoreTableForCurrentGame method is really just for convenience, and the
methods -registerScore:playerName: and -scoreEnumerator now forward to the
current high score table as shown here:

@synthesize currentGameName;

- (MYHighScoreTable *)highScoreTableForCurrentGame

{

return [self highScoreTableForGameNamed:currentGameName];

}

- (void)registerScore:(NSNumber *)score playerName:(NSString *)name

{

[[self highScoreTableForCurrentGame] registerScore:score

playerName:name];

}

- (NSEnumerator *)scoreEnumerator;

{

[[self highScoreTableForCurrentGame] scoreEnumerator];

}

By keeping the methods for registering and enumerating high scores, this new version
of the MYGameHighScoreManager class can still function as a drop-in replacement for the
previous version and yet have the enhanced ability to manage multiple high score tables.

ptg5934432

334 Chapter 28 Managers

Now, whenever the player changes the settings of the game or chooses a new game
variant, a message should be sent to the MYGameHighScoreManager singleton to let it
know that a new high score table should be used.

// tell the high score system to use a new high score table

[[MYGameHighScoreManager sharedInstance]

setCurrentGameName:newGameName];

Finally, some code is needed to display the high scores window. If the Interface Builder
file that contains the window’s interface hasn’t yet been loaded, then it needs to be loaded
first.Then the window itself can be displayed.

- (IBAction)displayHighScoreWindow:(id)sender

{

if (!highScoreWindow)

{ // load the .nib

[NSBundle loadNibNamed:@"HighScoreWindow" owner:self];

}

[self updateHighScoreWindow];

[highScoreWindow makeKeyAndOrderFront:nil];

}

- (void)updateHighScoreWindow

{

// code would be placed here as necessary

}

The -updateHighScoreWindow method’s implementation is dependent on the view
objects used by the game’s high score panel.As such, specific code cannot be shown here.
One change that might be necessary, depending on the game’s user interface require-
ments, is to make sure that the -updateHighScoreWindow method is called whenever
a change is made to the currentGameName instance variable. Depending on the needs
of other objects in the game, it might also be useful to post a notification when
currentGameName changes. It may be necessary to write a custom Accessor method
instead of using @synthesize to add this additional code. For example

- (NSString *)setCurrentGameName:(NSString *)newGameName

{

[currentGameName autorelease];

currentGameName = newGameName;

[currentGameName retain];

[self updateHighScoreWindow];

[[NSNotificationCenter defaultCenter]

postNotificationName:@"HighScoreGameNameChanged"

object:self];

}

ptg5934432

335Examples in Cocoa

At this point, the MYGameHighScoreManager class is performing some controller-like
functions, but it is also managing instances of MYHighScoreTable. It becomes the central
location for the rest of the game’s code to use when accessing high scores.Although this
example doesn’t encapsulate any complex algorithms, some manager classes do.As can be
seen, the Manager pattern incorporates elements of the Singleton, Controller, and Façade
patterns.

Examples in Cocoa
This pattern is seen most clearly with the NSFontManager class. NSFontManager has two
key tasks.The first is to control access to NSFont instances.Additionally, it tracks the cur-
rent font in use so that it can keep the NSFontPanel and the application’s font menu
updated appropriately. In this second role, it is acting as part of the application’s con-
troller layer.

Another Manager, the NSFileManager class, is used to encapsulate all actions related to
the file system. By using this class, an application insulates itself from the details of a spe-
cific type of file system. NSFileManager can also return an NSData object containing the
contents of a given file. It additionally performs file system operations such as changing
file attributes and moving, copying, deleting, and renaming files.

The NSUndoManager class tracks changes made to an application’s model and state.As
changes are made, it creates objects that record the previous state.The objects can later be
used to revert state (undo) or reapply state changes (redo). NSUndoManager decides which
state objects to use when an undo or redo request is made and can group multiple state
changes together into a single operation. If there are limits set to the undo stack size, then
NSUndoManager also controls when its managed objects are released.

In Cocoa not every class whose name ends in “Manager” follows every aspect of this
pattern, however. Some of them only encapsulate specific tasks. For example, Core Data
has the NSMigrationManager class. It encapsulates the specific task of migrating data from
between Core Data persistent stores with different models, but it doesn’t manage in-
stances of another class.

Some manager-named classes are merely singletons that encapsulate APIs to applica-
tions or features that are provided by Apple as part of Mac OS X. For example,
IMAVManager allows applications to provide audio and video to iChat AV. ISyncManager
is used to communicate with the iSync engine.The NSAppleEventManager provides an
interface to Apple Events within a Cocoa application.

The Cocoa Text system uses two manager classes that encapsulate complex algorithms
and behave much like controllers in the MVC pattern.The NSInputManager class works
with NSInputServer and NSTextView objects to handle selection and modification of
text.The NSLayoutManager class is used to handle layout of text, mediating between
NSTextStorage, NSRulerView, and NSTextView objects.

The NSHelpManager class is interesting because it is both a singleton API wrapper and
a manager in the sense of this pattern.As an API wrapper, it has methods to open Apple

ptg5934432

336 Chapter 28 Managers

Help books and search for text in them. But it also associates NSAttributed strings with
NSView objects for use in the display of context-sensitive help.

Consequences
The Manager pattern is a hybrid and a generalization of other patterns such as Singleton,
Façade, and Controllers. Many managers, such as NSFontManager, NSInputManager, and
NSLayoutManager perform controller-like functions within an application.As is the case
with NSFontManager and others, some managers are singletons.

Often managers extend the idea of a singleton by controlling access to related instances
of another class. For example, NSFontManager is used to obtain NSFont objects.An NSFont

is not a singleton because there can be many different NSFont instances.At the same time,
however, NSFont instances should be unique.There’s no need to have a dozen identical
NSFont objects all representing the same typeface. It makes more sense to always use the
same instance to represent a specific font. NSFontManager can ensure this is the case by
always returning the same NSFont instance whenever a given typeface is requested.

Some managers provide wrappers around APIs. NSFileManager is the preferred means
of accessing the file system in Cocoa applications because it decouples a Cocoa applica-
tion from the file system used by the computer or device running the application.

When encountering a class name ending in “Manager” in Cocoa, one or more of
these roles is implied. In custom code, a manager should be used when a class is needed
for managing instances of other classes, especially when uniqueness is required.

ptg5934432

29
Controllers

Within the overarching Model View Controller (MVC) design pattern, the Controller
subsystem has historically lagged the other subsystems when it comes to object reuse.
Controller subsystems are full of “glue” code used to mediate between views and models.
In contrast, the Model and View subsystems are replete with standard reuse scenarios. Ma-
ture flexible data structures, databases, and algorithms for models were well established
decades ago. Standard reusable view objects shipped with the earliest ancestors of Cocoa
in 1988 complete with Interface Builder.The Application Kit leverages patterns to almost
automate the development of View subsystems. But what about controllers? How are
design patterns applied to simplify controllers, promote wide scale controller reuse, and
automate controller development? The Controller subsystem in Cocoa has only lately
matured and standardized, and the only real explanation for the delay is that it has taken
longer to recognize the design patterns that are applicable for controllers.

Consider how controllers differ from views. Conventions and metaphors for user
interaction with views are now standard. For example, users understand the concept of
the “current selection” within a user interface and that using the “Copy” menu item will
copy the current selection and not some other part of the interface.The metaphors and
conventions for views had to be established before design patterns like Cocoa’s Respon-
der Chain were applied to implement those conventions. Conventions and metaphors
for controllers are less clear. Controllers integrate views with models as diverse as games,
employee benefits management, weather simulations, and robotic arm manipulation. This
chapter explores some common controller tasks and identifies opportunities for reuse in
“glue” code. In the process, this chapter exposes the rationale for the various Cocoa
NSController subclasses and the resulting design patterns.

ptg5934432

338 Chapter 29 Controllers

Figure 29.1 The user interface for MYShapeDraw application

Motivation
Reduce the need for recurring error prone code when implementing the Controller
subsystem of the ModelView Controller design pattern.Apply Apple’s Interface Builder
tool and the Controllers pattern to streamline development of the Controller subsystem
for simple applications and substantially reduce the code needed to implement complex
applications.

Solution
This section presents the relatively simple MVC MYShapeDraw application example
shown in Figure 29.1.The example highlights typical tasks a Controller subsystem needs
to perform. Initially, the entire implementation of MYShapeDraw’s controller subsystem is
in just one class.The example includes the kind of code that has historically been writ-
ten and rewritten for almost every MVC application. Once the MYShapeDraw application
is fully developed, the example’s controller is redesigned to make it more general and
reusable. By the end of this section, the example’s Controller subsystem evolves into a
clone of the design used by Cocoa’s NSArrayController class. Following the step-by-
step reinvention of NSArrayController in this chapter reveals why Cocoa’s
NSObjectController and its subclasses exist and how they’re used in applications.

ptg5934432

339Solution

The MYShapeDraw example application has the following features/requirements above
and beyond the features provided by all Cocoa document-based applications:

n Provide a simple Model subsystem: just an array of shape objects.
n Provide a custom graphical view to display shape objects.
n Provide a way to add shape objects to the model.
n Provide a way to select zero, one, or multiple shape objects.
n Provide a way to reposition selected shape objects in the custom view.
n Provide a way to remove selected shape objects from the model.
n Provide a table view to display information about shape objects.
n When either the model or any of the views change, update the others.

There’s a lot of code in this section because controllers can’t be analyzed in isolation.
It’s necessary to develop a minimal model and view just to see how the controller inter-
acts. Some of the code for the Model and View subsystems is omitted from this chapter
for the sake of brevity and to keep the focus on the Controller subsystem. All of the code
is available at www.CocoaDesignPatterns.com.

MYShapeDraw Model Subsystem
The model for this example is just an array of MYShape instances. The MYShape class en-
capsulates a color and a rectangle that defines the shape’s position and size.

Note
The model in this example is deliberately kept simple to preserve the focus on the Con-
troller subsystem. In most applications, properties like rectangles and colors are user
interface concerns that don’t belong in the Model subsystem. However, in this case,
MYShapeDraw is a drawing program. The objects that the user wants to view or edit are
shapes. Imagine that the shapes edited by MYShapeDraw actually represent the holes to
be cut out of a sheet of metal and the colors represent the color of the wires to be routed
through the holes. The model then consists of instructions to be sent to cutting and wire
routing machines.

A more full-featured Model subsystem might include subclasses of MYShape to repre-
sent circles, text, images, and groups of shapes. However, the following base MYShape class
is sufficient for this example:

@interface MYShape : NSObject <NSCoding>

{

NSRect frame;

NSColor *color;

}

@property (readwrite, assign) CGFloat positionX;

@property (readwrite, assign) CGFloat positionY;

ptg5934432

340 Chapter 29 Controllers

@property (readwrite, copy) NSColor *color;

// Returns the receiver's frame

- (NSRect)frame;

// Moves the receiver's frame by the specified amounts

- (void)moveByDeltaX:(float)deltaX deltaY:(float)deltaY;

// This is a Template Method to customize selection logic. The default

// implementation returns YES if aPoint is within frame. Override this

// method to be more selective. The default implementation can be

// called from overridden versions.

- (BOOL)doesContainPoint:(NSPoint)aPoint;

@end

The properties declared for the MYShape class are not identical to the instance variables
declared for the class.There’s no particular reason for properties and instance variables to co-
incide, and it’s convenient for this example to provide positionX and positionY properties.
The Accessor methods (see Chapter 10,“Accessors”) for the properties are implemented to
calculate values relative to the frame.The implementation of the MYShape class is so simple
that it doesn’t need to be shown here, but it’s available in the example source code.

MYShapeDraw View Subsystem
Based on the requirements for this example, there are at least two different ways to view
and interact with the model.A custom NSView subclass is needed to display and select
shapes and enable graphical repositioning of selected shapes. An ordinary NSTableView is
needed to display information about shapes in a table.

This example doesn’t require any code in the View subsystem to use a NSTableView.
All of the table configuration is performed in Interface Builder, and the upcoming Con-
troller subsystem provides the data the table needs.

Implementing the custom NSView subclass is almost as straightforward as the model.
To start, declare the MYShapeView subclass of NSView as follows:

@interface MYShapeView : NSView

{

IBOutlet id dataSource;

}

@property (readwrite, assign) id dataSource; // Don't retain or copy

@end

No new methods are needed.The entire functionality of MYShapeView is either inher-
ited from the NSView class, overridden from the NSView class, or provided by the one and
only property, dataSource.The dataSource is used to implement the Data Source

ptg5934432

341Solution

pattern explained in Chapter 15,“Delegates.” MYShapeView instances interrogate their data
sources to determine what to draw.The MYShapeView is implemented as follows:

@implementation MYShapeView

@synthesize dataSource;

- (void)dealloc

{

[self setDataSource:nil];

[super dealloc];

}

// Draw all of the MYShape instances provided by the dataSource

// from back to front

- (void)drawRect:(NSRect)aRect

{

[[NSColor whiteColor] set];

NSRectFill(aRect); // Erase the background

for(MYShape *currentShape in

[[self dataSource] shapesInOrderBackToFront])

{

[currentShape drawRect:aRect];

}

}

@end

That’s pretty much all it takes to draw shapes.MYShapeView overrides NSView’s –drawRect:
Template Method to get an array of MYShape instances from the dataSource and then send a
message to each shape requesting that it draw itself.Template Methods are explained in
Chapter 4,“Template Method.”An interesting question arises at this point:How do MYShape

instances know how to draw themselves in MYShapeView instances? Drawing is clearly part of
theView subsystem,but the MYShape class is declared in the Model subsystem.The solution
used in this example applies the Category pattern from Chapter 6,“Category,’’ to extend the
MYShape class within theView subsystem using the following declaration and implementation:

// Declare an informal protocol that MYShape instances must implement

// in order to be displayed in a MYShapeView.

@interface MYShape (MYShapeQuartzDrawing)

// This is a Template Method to customize drawing. The default

// implementation fills the receiver's frame with the receiver's color.

// Override this method to customize drawing. The default

ptg5934432

342 Chapter 29 Controllers

// implementation can be called from overridden versions, but it is

// not necessary to call the default version.

- (void)drawRect:(NSRect)aRect;

@end

@implementation MYShape (MYShapeQuartzDrawing)

// Draw the receiver in the current Quartz graphics context

- (void)drawRect:(NSRect)aRect

{

if(NSIntersectsRect(aRect, [self frame]))

{

[[self color] set];

NSRectFill([self frame]);

}

}

@end

The MYShapeQuartzDrawing category is implemented right in the same file as the
MYShapeView class.Therefore, all of the relevant code for drawing MYShape instances in
MYShapeViews is maintained together.

Note
A future MYShapeOpenGLView might draw MYShape instances using Open GL instead of
Quartz. The MYShapeOpenGLView class could provide its own category of MYShape to add a
–drawRect:(NSRect)aRect forOpenGLContext:(NSOpenGLContext *)aContext

method. In that way, the Open GL-specific drawing code could be maintained right next to the
rest of the MYShapeOpenGLView code.

The MYShapeView class provides basic display of the MYShape instances supplied by a
dataSource.The code to support graphical editing features could be added to the
MYShapeView class, but sometimes it’s handy to have a simple display-only class like
MYShapeView.The graphical editing support will be added in a subclass of MYShapeView
called MYEditorShapeView later in the example, but for now, MYShapeView provides
enough capability to move on to the Controller subsystem.

MYShapeEditor Controller Subsystem
So now that the model and view are established, what does the Controller subsystem need
to do? The Controller subsystem needs to initialize the model either from scratch or by
loading a previously saved model.The Controller subsystem must set up the view.The
Controller subsystem must supply an object that will serve as the table view’s data source
and an object that will serve as the custom view’s data source.The Controller subsystem
must enable adding shapes to the model.The Controller subsystem needs to keep track of

ptg5934432

343Solution

which shapes are selected and enable removal of selected shapes from the model. Finally,
the Controller subsystem must keep the model and all views up to date.

The list of controller tasks fall into two general categories, coordinating tasks and me-
diating tasks. Coordinating tasks include loading the Model and View subsystems and pro-
viding data sources. Mediating tasks control the flow of data between view objects and model
objects to minimize coupling between the subsystems, while keeping them synchronized.

Coordinating Controller Tasks
The first step in the implementation of MYShapeEditor’s Controller subsystem is to tackle
the coordinating tasks.Almost every MVC application must set up a view and initialize
a model, and the Cocoa framework provides the NSDocument class for just that purpose.
NSDocument declares the -windowNibNameTemplate Method, which allows subclasses to
identify an Interface Builder file containing the view objects to be loaded. The
-dataOfType:error: and -readFromData:ofType:error:Template Methods support
saving and loading model data.There are alternative, more sophisticated ways to use
NSDocument, but those three methods are a good fit for this example.

Create a MYShapeEditorDocument subclass of NSDocument, provide a pointer to the
array of shapes that will comprise the model, and override the necessary NSDocument

methods.The following is just the starting point; it will be fleshed out as the example
progresses:

@interface MYShapeEditorDocument : NSDocument

{

NSArray *shapesInOrderBackToFront; // The model

}

@property (readonly, copy) NSArray *shapesInOrderBackToFront;

@end

In the implementation of the MYShapeEditorDocument class, the
shapesInOrderBackToFront property is redeclared as readwrite in a class extension
also known as an unnamed category so that when the property is synthesized, a “set”
Accessor method will be generated.

@interface MYShapeEditorDocument ()

@property (readwrite, copy) NSArray *shapesInOrderBackToFront;

@end

The following implementation of MYShapeEditorDocument takes care of the basic
model and view creation:

@implementation MYShapeEditorDocument

@synthesize shapesInOrderBackToFront;

ptg5934432

344 Chapter 29 Controllers

- (NSString *)windowNibName

{ // Identify the nib that contains archived View subsystem objects

return @"MYShapeEditorDocument";

}

- (NSData *)dataOfType:(NSString *)typeName error:(NSError **)outError

{ // Provide data containing archived model objects for document save

NSData *result = [NSKeyedArchiver archivedDataWithRootObject:

[self shapesInOrderBackToFront]];

if ((nil == result) && (NULL != outError))

{ // Report failure to archive the model data

*outError = [NSError errorWithDomain:NSOSStatusErrorDomain

code:unimpErr userInfo:NULL];

}

return result;

}

- (BOOL)readFromData:(NSData *)data ofType:(NSString *)typeName

error:(NSError **)outError

{ // Unarchive the model objects from the loaded data

NSArray *loadedShapes = [NSKeyedUnarchiver

unarchiveObjectWithData:data];

if(nil != loadedShapes)

{

[self setShapesInOrderBackToFront:loadedShapes];

}

else if (NULL != outError)

{ // Report failure to unarchive the model from provided data

*outError = [NSError errorWithDomain:NSOSStatusErrorDomain

code:unimpErr userInfo:NULL];

}

return YES;

}

@end

The -dataOfType:error: method is called by NSDocument as an intermediate step in
the sequence of operations to save the document to a file. MYShapeEditorDocument
archives the model, an array of shapes, using the Archiving and Unarchiving pattern from

ptg5934432

345Solution

Chapter 11 and then returns the resulting NSData instance to be saved. The
-readFromData:ofType:error: method is called by NSDocument when a previously
saved document is loaded. MYShapeEditorDocument unarchives an array of shapes from
the provided data. The -windowNibName method returns the name of the Interface
Builder .nib file that contains an archive of the objects that compose theView subsystem.
NSDocument unarchives the user interface objects in the named .nib file so they can
be displayed on screen.

That’s all it takes to specialize the inherited NSDocument behavior for loading the ex-
ample’s document interface and saving/loading the model. However, it’s still necessary to
create an array to store shapes when a new empty document is created. It’s also necessary
to clean up memory when documents are deallocated.

NSDocument’s -windowControllerDidLoadNib:Template Method is automatically
called after all objects have been unarchived from the document’s .nib file but before any
of the objects from the .nib are displayed. If no array of shapes has been created by the
time -windowControllerDidLoadNib: is called, the following implementation of
-windowControllerDidLoadNib: creates an empty array of shapes to use as the model:

- (void)windowControllerDidLoadNib:(NSWindowController *)aController

{

[super windowControllerDidLoadNib:aController];

if(nil == [self shapesInOrderBackToFront])

{ // Create an empty model if there is no other available

[self setShapesInOrderBackToFront:[NSArray array]];

}

}

MYShapeEditorDocument’s -dealloc method sets the array of shapes to nil thus re-
leasing the model when the document is deallocated.

- (void)dealloc

{

[self setShapesInOrderBackToFront:nil];

[super dealloc];

}

NSDocument is one of the most prominent controller classes in Cocoa. NSDocument
provides lots of features that aren’t directly relevant to this example including manage-
ment of the document window’s title, access to undo and redo support, periodic
auto-save operations, printing, and other standard Cocoa features. NSDocument is
straightforward to use, and there are similar document classes in other object-oriented
user interface frameworks. NSDocument encapsulates most of the coordinating controller
features of any multidocument application and leverages Template Methods extensively
to enable customization.

ptg5934432

346 Chapter 29 Controllers

Mediating Controller Tasks (Providing Information to Views)
Cocoa provides several mediating controller classes, and once you understand the roles
they can play in your design, they’re as easy to reuse as the NSDocument class. However, the
reuse opportunities for mediator code aren’t always readily apparent. For one thing, every
application has a unique model and a different view, so how can the code that glues the
different subsystems together be reused in other applications? To answer that question, the
example implements specific mediator code to meet the application’s requirements and
then explores how that code is made reusable.

Note
The examples in this chapter progressively re-create Cocoa’s NSArrayController class.
The examples refactor MYShapeEditor’s design to reveal why NSArrayController and
other Cocoa mediating controllers exist. Follow the sequence of changes to
MYShapeEditor to see how reusable mediating controllers work.

To get started and keep the design simple, implement all of the custom mediation code
for MYShapeEditor’s Controller subsystem right in the MYShapeEditorDocument class.
Figure 29.2 illustrates the design.

Each MYShapeEditorDocument instance acts as the data source for an associated
custom graphic view and the associated table view. MYEditorShapeView only has one
data source method, -shapesInOrderBackToFront, and that’s already provided by the
@synthesize directive for MYShapeEditorDocument’s shapesInOrderBackToFront
property. The NSTableView class requires its data source to implement
-numberOfRowsInTableView: and -tableView:objectValueForTableColumn:row:, so
those methods are added to the implementation of MYShapeEditorDocument as follows:

- (int)numberOfRowsInTableView:(NSTableView *)aTableView

{

return [[self shapesInOrderBackToFront] count];

}

- (id)tableView:(NSTableView *)aTableView

objectValueForTableColumn:(NSTableColumn *)aTableColumn

row:(int)rowIndex

{

id shape = [[self shapesInOrderBackToFront] objectAtIndex:rowIndex];

return [shape valueForKey:[aTableColumn identifier]];

}

To enable editing in the table view, MYShapeEditorDocument needs to implement the
-tableView:setObjectValue:forTableColumn:row: method.

- (void)tableView:(NSTableView *)aTableView setObjectValue:(id)anObject

forTableColumn:(NSTableColumn *)aTableColumn row:(NSInteger)rowIndex

ptg5934432

347Solution

shapesInOrderBackToFrontcolor

positionX

positionY

MYShape MYShapeEditorDocument

0 - *

da
ta

So
ur

ce

da
ta

So
ur

ce

da
ta

S
ou

rc
e

da
ta

S
ou

rc
e

da
ta

So
ur

ce

da
ta

S
ou

rc
e

Figure 29.2 The initial design for the MYShapeDraw
application.

{

[self controllerDidBeginEditing];

id shape = [[self shapesInOrderBackToFront] objectAtIndex:rowIndex];

[shape setValue:anObject forKey:[aTableColumn identifier]];

[self controllerDidEndEditing];

}

The -controllerDidBeginEditing and -controllerDidEndEditing methods
(shown in bold within the implementation of -tableView:setObjectValue:
forTableColumn:row:) are called before and after a shape is modified. Shapes are part of
the model. MYShapeEditorDocument consolidates the code for synchronizing the model,
the table view, and the custom view into just the -controllerDidBeginEditing and
-controllerDidEndEditing methods so that as long as those methods are called before
and after a change to the model, everything is kept updated.

ptg5934432

348 Chapter 29 Controllers

The -controllerDidBeginEditing and -controllerDidEndEditing methods are
declared in the following informal protocol, a category of the NSObject base class:

@interface NSObject (MYShapeEditorDocumentEditing)

- (void)controllerDidBeginEditing;

- (void)controllerDidEndEditing;

@end

The informal protocol means that MYShapeEditorDocumentEditing messages can
safely be sent to any object descended from NSObject. Informal protocols are explained
in Chapter 6.

MYShapeEditorDocument overrides its inherited -controllerDidEndEditing imple-
mentation with the following code:

- (void)controllerDidEndEditing

{

[[self shapeGraphicView] setNeedsDisplay:YES];

[[self shapeTableView] reloadData];

}

MYShapeEditorDocument’s -controllerEndEditing method tells shapeGraphicView
to redisplay itself at the next opportunity and tells shapeTableView to reload itself from
its data source, which indirectly causes shapeTableView to redisplay itself, too. In order
for -controllerEndEditing to work, Interface Builder outlets for shapeGraphicView
and shapeTableView are needed. Therefore, the MYShapeEditorDocument class interface
is updated to the following, and the connections to the outlets are made in Interface
Builder to match Figure 29.3.

@interface MYShapeEditorDocument : NSDocument

{

NSArray *shapesInOrderBackToFront; // The model

IBOutlet NSView *shapeGraphicView;

IBOutlet NSTableView *shapeTableView;

}

@property (readonly, copy) NSArray *shapesInOrderBackToFront;

@property (readwrite, retain) NSView *shapeGraphicView;

@property (readwrite, retain) NSTableView *shapeTableView;

@end

Add the corresponding @synthesize directives to the MYShapeEditorDocument
implementation:

@synthesize shapeGraphicView;

@synthesize shapeTableView;

ptg5934432

349Solution

shapeGraphicView

shapeTableView

shapesInOrderBackToFrontcolor

positionX

positionY

MYShape MYShapeEditorDocument

0 - *

1
1

da
taS

ou
rce

da
taS

ou
rce

da
ta

S
ou

rc
e

da
ta

S
ou

rc
e

da
taS

ou
rce

da
ta

S
ou

rc
e

Figure 29.3 MYShapeEditorDocument outlets enable
update of the views.

At this point, the example has produced a bare-bones shape viewer application with
minimal shape editing support provided by the table view. The MYShapeEditor0 folder at
www.CocoaDesignPatterns.com contains an Xcode project with all of the code so far.
Build the project and run the resulting application. Use the application to open the
Sample.shape document provided at the same site.You can double-click the X and Y
coordinates displayed in the table view to reposition the shapes in the custom view.

Mediating Controller Tasks (Selection Management)
The next feature to add to the Controller subsystem is the ability to keep track of the se-
lected shapes in each document. One question to ask is whether keeping track of the
selection is really a controller task at all, or should views perform that function? Storing
selection information in the controller enables designs like the one for MYShapeEditor in
which multiple views present information about the same model, and selection changes
made in one view are reflected in the other views.The Consequences section of this
chapter explains how storing selection information in the controller still makes sense even
when multiple views have independent selections.Add an instance variable to store the

ptg5934432

350 Chapter 29 Controllers

indexes of the selected shapes and selection methods to produce the following
MYShapeEditorDocument interface:

@interface MYShapeEditorDocument : NSDocument

{

NSArray *shapesInOrderBackToFront;// The model

IBOutlet NSView *shapeGraphicView;

IBOutlet NSTableView *shapeTableView;

NSIndexSet *selectionIndexes; // selection

}

@property (readonly, copy) NSArray *shapesInOrderBackToFront;

@property (readwrite, nonatomic, retain) NSView *shapeGraphicView;

@property (readwrite, nonatomic, retain) NSTableView *shapeTableView;

// Selection Management

- (BOOL)setShapeSelectionIndexes:(NSIndexSet *)indexes;

- (NSIndexSet *)shapeSelectionIndexes;

- (BOOL)addShapeSelectionIndexes:(NSIndexSet *)indexes;

- (BOOL)removeShapeSelectionIndexes:(NSIndexSet *)indexes;

- (NSArray *)selectedShapes;

@end

The selectionIndexes variable uses an immutable NSIndexSet to efficiently identify
which shapes are selected. Each MYShape instance in a document can be uniquely identi-
fied by the shape’s index (position) within the ordered shapesInOrderBackToFront ar-
ray. If a shape is selected, add the index of the selected shape to selectionIndexes.To
deselect a shape, remove its index from selectionIndexes.To determine whether a
shape is selected, check for the shape’s index in selectionIndexes.The selection man-
agement methods for the following MYShapeEditorDocument class are implemented as
follows:

// Selection Management

- (BOOL)setControllerSelectionIndexes:(NSIndexSet *)indexes

{

[self controllerDidBeginEditing];

[indexes retain];

[selectionIndexes release];

selectionIndexes = indexes;

[self controllerDidEndEditing];

return YES;

}

ptg5934432

351Solution

- (NSIndexSet *)controllerSelectionIndexes

{

if(nil == selectionIndexes)

{ // Set initially empty selection

[self setControllerSelectionIndexes:[NSIndexSet indexSet]];

}

return selectionIndexes;

}

- (BOOL)controllerAddSelectionIndexes:(NSIndexSet *)indexes

{

NSMutableIndexSet *newIndexSet =

[[self controllerSelectionIndexes] mutableCopy];

[newIndexSet addIndexes:indexes];

[self setControllerSelectionIndexes:newIndexSet];

return YES;

}

- (BOOL)controllerRemoveSelectionIndexes:(NSIndexSet *)indexes

{

NSMutableIndexSet *newIndexSet =

[[self controllerSelectionIndexes] mutableCopy];

[newIndexSet removeIndexes:indexes];

[self setControllerSelectionIndexes:newIndexSet];

return YES;

}

- (NSArray *)selectedObjects

{

return [[self shapesInOrderBackToFront] objectsAtIndexes:

[self controllerSelectionIndexes]];

}

All changes to the set of selection indexes are funneled through the
-setShapeSelectionIndexes: method, which calls [self controllerDidBeginEditing]
before updating the selection and [self controllerDidEndEditing] after the update.
As a result, changes to the selection cause refresh of both the custom view and the table
view.A selection change made from one view is automatically reflected in the other.

ptg5934432

352 Chapter 29 Controllers

When the user changes the selection in the table view, NSTableView informs its
delegate and gives the delegate a chance to affect the change via the
-tableView:selectionIndexesForProposedSelection: method. In addition to acting
as the data source for the table view, each MYShapeEditorDocument instance also acts as
the delegate for its table view.The following MYShapeEditorDocument implementation of
-tableView:selectionIndexesForProposedSelection: keeps the controller’s selection
up to date.

// NSTableView delegate methods

- (NSIndexSet *)tableView:(NSTableView *)tableView

selectionIndexesForProposedSelection:

(NSIndexSet *)proposedSelectionIndexes

{

[self setControllerSelectionIndexes:proposedSelectionIndexes];

return proposedSelectionIndexes;

}

Mediating Controller Tasks (Adding and Removing Model Objects)
Adding new shape instances to the model and later removing selected shapes are best per-
formed by Action methods (see Chapter 17,“Outlets,Targets, and Actions”).Add the fol-
lowing two method declarations to the interface for the MYShapeEditorDocument class:

// Actions

- (IBAction)addShape:(id)sender;

- (IBAction)removeSelectedShapes:(id)sender;

The Action methods are called by buttons in the View subsystem. Implement the Ac-
tion methods as follows:

- (IBAction)addShape:(id)sender;

{

[self controllerDidBeginEditing];

[self setShapesInOrderBackToFront:[shapesInOrderBackToFront

arrayByAddingObject:[[[MYShape alloc] init] autorelease]]];

[self controllerDidEndEditing];

}

- (IBAction)removeSelectedShapes:(id)sender;

{

[self controllerDidBeginEditing];

NSRange allShapesRange = NSMakeRange(0,

[[self shapesInOrderBackToFront] count]);

NSMutableIndexSet *indexesToKeep = [NSMutableIndexSet

indexSetWithIndexesInRange:allShapesRange];

ptg5934432

353Solution

[indexesToKeep removeIndexes:[self controllerSelectionIndexes]];

[self setShapesInOrderBackToFront:[[self shapesInOrderBackToFront]

objectsAtIndexes:indexesToKeep]];

[self setControllerSelectionIndexes:[NSIndexSet indexSet]];

[self controllerDidEndEditing];

}

The next step is to add graphical selection and editing of shapes to the application.

Extending the MYShapeDraw View Subsystem for Editing
Create a subclass of MYShapeView called MYEditorShapeView with the following declara-
tion:

@interface MYEditorShapeView : MYShapeView

{

NSPoint dragStartPoint;

}

@end

The dragStartPoint instance variable is just an implementation detail that supports
graphical dragging to reposition shapes with the mouse.The partial implementation of
MYEditorShapeView that follows is provided to show how the custom view uses its data
source to implement selection and editing features, but most of the details aren’t impor-
tant to the Controller subsystem:

@implementation MYEditorShapeView

// Overrides the inherited implementation to first draw the shapes and

// then draw any selection indications

- (void)drawRect:(NSRect)aRect

{

[super drawRect:aRect];

[NSBezierPath setDefaultLineWidth:MYSelectionIndicatorWidth];

[[NSColor selectedControlColor] set];

// Draw selection indication around each selected shape

for(MYShape *currentShape in [[self dataSource] selectedShapes])

{

[NSBezierPath strokeRect:[currentShape frame]];

}

}

// Select or deselect shapes when the mouse button is pressed.

// Standard management for multiple selection is provided. A mouse

ptg5934432

354 Chapter 29 Controllers

// down without modifier key deselects all previously selected shapes

// and selects the shape if any under the mouse. If the Shift modifier

// is used and there is a shape under the mouse, toggle the selection

// of the shape under the mouse without affecting the selection status

// of other shapes.

- (void)mouseDown:(NSEvent *)anEvent

{

NSPoint location = [self convertPoint:[anEvent locationInWindow]

fromView:nil];

// Set the drag start location in case the event starts a drag

// operation

[self setDragStartPoint:location];

// ... The rest of the implementation omitted for brevity ...

}

// Drag repositions any selected shapes

- (void)mouseDragged:(NSEvent *)anEvent

{

[[self dataSource] controllerDidBeginEditing];

NSPoint location = [self convertPoint:

[anEvent locationInWindow] fromView:nil];

NSPoint startPoint = [self dragStartPoint];

float deltaX = location.x - startPoint.x;

float deltaY = location.y - startPoint.y;

for(MYShape *currentShape in [[self dataSource] selectedShapes])

{

[currentShape moveByDeltaX:deltaX deltaY:deltaY];

}

[self setDragStartPoint:location];

[self autoscroll:anEvent]; // scroll to keep shapes in view

[[self dataSource] controllerDidEndEditing];

}

@end

Controllers are responsible for keeping views and models up to date with each other
but can’t fulfill that role if the model is changed behind the controller’s back.Therefore,
views must inform the controller about changes made to the model.The two bold lines

ptg5934432

355Solution

of code in the implementation of MYEditorShapeView’s -mouseDragged: method notify
the controller when model objects are modified directly by the view.

You can inspect the full implementation of MYEditorShapeView and the Interface
Builder .nib files in the MYShapeEditor1 folder at www.CocoaDesignPatterns.com.Take
a little time to explore MYShapeEditor1 application. In spite of the fact that it has taken
quite a few pages to describe how it all works, there really isn’t very much code. Play with
the application.

Redesigning and Generalizing the Solution
MYShapeEditor1 meets all of the example’s requirements with straightforward method
implementations written from scratch. It might seem like the mediation “glue” code is
unique to this example. However, it’s pretty common for Model subsystems to store arrays
of objects. Certainly, more complex models may use more complex data structures or
contain many different arrays of objects, but a class that generalizes the approach used in
this example to mediate between any array of arbitrary model objects and multiple views
can be reused in a wide variety of applications. So the challenge now is to find and
encapsulate the reusable parts of this example to provide that general solution.

Start by creating a new class to implement the general solution and call that class
MYMediatingController.Then examine the current implementation of
MYShapeEditorDocument and identify features to move to the new class.A general
mediating controller must be able to add and remove model objects, so move the –add:
and -remove: Action methods to the new class. Selection management is needed
in the new class, so move the selectionIndexes instance variable from the
MYShapeEditorDocument to the MYMediatingController class. Move all of the
selection management methods like - controllerSetSelectionIndexes: and
-controllerAddSelectionIndexes: to the new class. Finally, a mediator for an arbitrary
array of model objects needs to provide access to that array.Add a method called
–arrangedObjects that returns an NSArray pointer.The MYMediatingController decla-
ration should look like the following:

@interface MYMediatingController : NSObject

{

NSIndexSet *selectionIndexes; // The selection

}

// arranged content

- (NSArray *)arrangedObjects;

// Actions

- (IBAction)add:(id)sender;

- (IBAction)remove:(id)sender;

// Selection Management

- (BOOL)controllerSetSelectionIndexes:(NSIndexSet *)indexes;

ptg5934432

356 Chapter 29 Controllers

- (NSIndexSet *)controllerSelectionIndexes;

- (BOOL)controllerAddSelectionIndexes:(NSIndexSet *)indexes;

- (BOOL)controllerRemoveSelectionIndexes:(NSIndexSet *)indexes;

- (NSArray *)selectedObjects;

@end

After the redesign, all that’s left in the MYShapeEditorDocument interface is the follow-
ing:

@interface MYShapeEditorDocument : NSDocument

{

NSArray *shapesInOrderBackToFront; // The model

IBOutlet NSView *shapeGraphicView;

IBOutlet NSTableView *shapeTableView;

}

@property (readonly, copy) NSArray *shapesInOrderBackToFront;

@property (readwrite, retain) NSView *shapeGraphicView;

@property (readwrite, retain) NSTableView *shapeTableView;

@end

As the coordinating controller, MYShapeEditorDocument needs a way to configure
the mediating controller.Add an outlet called mediatingController to the interface
of MYShapeEditorDocument so that document instances can be connected to a media-
ting controller via Interface Builder. MYShapeEditorDocument also needs a way to be
notified when the model is changed via the Controller subsystem, so add a
-mediatingControllerDidDetectChange: method to MYShapeEditorDocument.
The MYShapeEditorDocument class is now declared as follows:

@interface MYShapeEditorDocument : NSDocument

{

NSArray *shapesInOrderBackToFront; // The model

IBOutlet NSView *shapeGraphicView;

IBOutlet NSTableView *shapeTableView;

IBOutlet MYMediatingController *mediatingController;

}

@property (readonly, copy) NSArray *shapesInOrderBackToFront;

@property (readwrite, retain) NSView *shapeGraphicView;

@property (readwrite, retain) NSTableView *shapeTableView;

@property (readwrite, retain) MYMediatingController

*mediatingController;

- (void)mediatingControllerDidDetectChange:

(NSNotification *)aNotification;

ptg5934432

357Solution

@end

Implement MYShapeEditorDocument’s -mediatingControllerDidDetectChange: to
synchronize the custom shape view and the table view with the model:

- (void)mediatingControllerDidDetectChange:

(NSNotification *)aNotification;

{

[[self shapeGraphicView] setNeedsDisplay:YES];

[[self shapeTableView] reloadData];

[[self shapeTableView] selectRowIndexes:

[[self mediatingController] controllerSelectionIndexes]

byExtendingSelection:NO];

}

The MYShapeEditor2 folder at www.CocoaDesignPatterns.com contains an Xcode
project with the redesign completed.There is an instance of MYMediatingController in
the document .nib, and the dataSource outlets of view objects are connected to the
mediating controller.The new design is illustrated in Figure 29.4.

contentProvider

color

positionX

positionY

MYShape

MYMediatingController

dataSource

MYEditorShapeView

delegate

dataSource

NSTableView

-add:

-remove:

target

NSButton

action = add:

target

NSButton

action = remove:

0 - *

shapeGraphicView

shapeTableView

shapesInOrderBackToFront

MYShapeEditorDocument

mediatingController

defaultNotificationCenter

post:
MYMediatingControllerDidDetectChangeNotification

ob
se

rv
e:

M
Y

M
ed

ia
tin

gC
on

tr
ol

le
rD

id
D

et
ec

tC
ha

ng
eN

ot
ifi

ca
tio

n

contentProviderKey =
shapesInOrderBackToFront

objectClass = MYShape

Figure 29.4 The new design of MYShapeEditor

ptg5934432

358 Chapter 29 Controllers

The implementation MYMediatingController shouldn’t have any dependencies on
other classes in MYShapeEditor, or it won’t be reusable in other applications. For exam-
ple, when MYMediatingController adds new objects to the model, what kind of objects
should it add? The class of added objects must be configurable at runtime to keep
MYMediatingController general. MYMediatingController also needs a general way to
get access to the array of model objects.Add the following instance variable declarations
to MYMediatingController:

Class objectClass; // Class of model objects

IBOutlet id contentProvider; // Provider of model array

NSString *contentProviderKey; // The array property name

At runtime, the contentProvider outlet is connected to whatever application-specific
object provides the array of model objects. The contentProviderKey variable contains
the name of the array property provided by contentProvider. Setting both the provider
and the name of the provider’s array property at runtime ensures maximum flexibility.

All that remains is to implement the MYMediatingController without any applica-
tion-specific dependencies. The implementation of selection management and table view
delegate methods are the same in MYMediatingController as they were in
MYShapeEditorDocument. The rest of the code in MYMediatingController is similar to
the code previously implemented in MYShapeEditorDocument, but the new code can be
reused in any application.The following implementation of MYMediatingController
shows the changes from MYShapeEditorDocument in bold but omits the implementations
of methods that are identical in both classes to keep the listing short.

@implementation MYMediatingController

@synthesize objectClass;

@synthesize contentProvider;

@synthesize contentProviderKey;

- (void)dealloc

{

[self controllerSetSelectionIndexes:nil];

[self setContentProvider:nil];

[self setContentProviderKey:nil];

[super dealloc];

}

// arranged content

- (NSArray *)arrangedObjects

{

return [[self contentProvider] valueForKey:

[self contentProviderKey]];

}

ptg5934432

359Solution

// Actions

- (IBAction)add:(id)sender;

{

[self controllerDidBeginEditing];

NSArray *newContent = [[self arrangedObjects] arrayByAddingObject:

[[[[self objectClass] alloc] init] autorelease]];

[[self contentProvider] setValue:newContent forKey:

[self contentProviderKey]];

[self controllerDidEndEditing];

}

- (IBAction)remove:(id)sender;

{

[self controllerDidBeginEditing];

NSRange allObjectsRange = NSMakeRange(0,

[[self arrangedObjects] count]);

NSMutableIndexSet *indexesToKeep =

[NSMutableIndexSet indexSetWithIndexesInRange:allObjectsRange];

[indexesToKeep removeIndexes:[self controllerSelectionIndexes]];

NSArray *newContent = [[self arrangedObjects]

objectsAtIndexes:indexesToKeep];

[[self contentProvider] setValue:newContent forKey:

[self contentProviderKey]];

[self controllerSetSelectionIndexes:[NSIndexSet indexSet]];

[self controllerDidEndEditing];

}

// Editing

- (void)controllerDidEndEditing

{

[[NSNotificationCenter defaultCenter]

postNotificationName:MYMediatingControllerContentDidChange

object:self];

}

ptg5934432

360 Chapter 29 Controllers

// NSTableView data source methods

- (int)numberOfRowsInTableView:(NSTableView *)aTableView

{

return [[self arrangedObjects] count];

}

- (id)tableView:(NSTableView *)aTableView

objectValueForTableColumn:(NSTableColumn *)aTableColumn

row:(int)rowIndex

{

id shape = [[self arrangedObjects] objectAtIndex:rowIndex];

return [shape valueForKey:[aTableColumn identifier]];

}

- (void)tableView:(NSTableView *)aTableView setObjectValue:(id)anObject

forTableColumn:(NSTableColumn *)aTableColumn row:(NSInteger)rowIndex

{

[self controllerDidBeginEditing];

id shape = [[self arrangedObjects] objectAtIndex:rowIndex];

[shape setValue:anObject forKey:[aTableColumn identifier]];

[self controllerDidEndEditing];

}

@end

Examples in Cocoa
Compare the MYMediatingController class developed in the “Solution” section of
this chapter to Cocoa’s NSController and NSArrayController classes documented at
http://developer.apple.com/documentation/Cocoa/Reference/ApplicationKit/Classes/
NSArrayController_Class/Reference/Reference.html.The example in the Solution
section re-invents the NSArrayController class and reveals both why the
NSArrayController class exists and how it can be used in your applications.

NSArrayController mediates between arrays of model objects and your application’s
view objects; it also keeps track of selection and provides methods to add and remove
model objects.

NSTreeController is similar to NSArrayController but enables you add, remove, and
manage model objects in a tree data structure. NSTreeController is used with
NSOutlineViews.

ptg5934432

361Examples in Cocoa

NSObjectController mediates between a single model object and your application’s
view objects. NSObjectController is the superclass of NSArrayController and
NSTreeController. NSObjectController provides the concept of a single selected object.

NSUserDefaultsController encapsulates reusable code for mediating between user
preferences (the User Defaults system) and your application’s views.

Controllers and Bindings
Cocoa’s NSArrayController class is more or less a drop-in replacement for the devel-
oped MYMediatingController class. However, NSArrayController uses a design that
even further reduces the amount of application-specific code needed in MYShapeEditor.
As shown in Figure 29.5, MYMediatingController posts a notification that’s observed by
MYShapeEditorDocument so that MYShapeEditorDocument can keep the views synchro-
nized with the model. Cocoa provides a technology called “bindings” that provides an al-
ternative technique for keeping objects synchronized.

The MYShapeEditor3 folder at www.CocoaDesignPatterns.com implements the
MYShapeEditor application with bindings and NSArrayController using the design
shown in Figure 29.5.The MYShapeEditorDocument class is simplified in
MYShapeEditor3 by removing all of the coordinating code previously used to synchronize
views with the model. Bindings configured in Interface Builder replace that functionality.

Bindings are a large enough topic that they deserve their own chapter. Chapter 32,
“Bindings and Controllers,” describes the Bindings design pattern and its underlying
implementation using lower level Cocoa design patterns.

color

positionX

positionY

MYShapeNSArrayController

dataSource

MYEditorShapeView NSTableView

-add:

-remove:

target

NSButton

action = add:

target

NSButton

action = remove:

0 - *

shapesInOrderBackToFront

MYShapeEditorDocument

modelKeyPath =
shapesInOrderBackToFront

objectClass = MYShape

observe:
arrangedObjects
selectionIndexes

observe:
arrangedObjects
selectionIndexes

Figure 29.5 MYShapeEditor using NSArrayController

ptg5934432

362 Chapter 29 Controllers

Consequences
Cocoa’s NSController subclasses mediate between models and views.The
MYShapeEditor example in this chapter identifies some of code that the
NSArrayController class replaces in typical applications, but even more controller code
can be removed by using Cocoa’s NSController subclasses together. Consider the com-
mon Master-Detail style of user interface.There is a master list of objects that can be in-
spected.When one of the objects is selected, details about the selected object are
displayed. But what happens when the selected object is complex itself? The details for
the selected object might include another list of subobjects used by the selected object.
One convenient solution is to chain multiple NSArrayController instances together.The
View that displays the selected object’s list of subobjects might access the arranged objects
of an array controller that that in turn accesses the selected object of another array con-
troller, as shown in Figure 29.6.

The pattern of chaining mediating controllers together highlights another reason that
it is best to store selection information in the Controller subsystem instead of views. The
MYShapeEditor example synchronizes selection between two views, but the example can
be modified to enable separate selection in the two views simply by using two separate
array controllers that both mediate access to the same array of model objects. The
MYShapeEditor4 folder at www.CocoaDesignPatterns.com implements the separate
selection design shown in Figure 29.7.

Cocoa’s NSController subclasses reduce the amount of code needed to implement
Controller subsystems and incorporate a very flexible design. Managing selection infor-
mation within the Controller subsystem enables controller chaining and even a few other
features that haven’t been mentioned yet. For example, a button used to remove currently
selected objects from the model should probably be disabled if there are no objects se-
lected. NSArrayController already knows about the selection and even provides a
canRemove property suitable for “binding” to a button’s isEnabled property.

NSArrayController

modelKeyPath = masterList

NSArrayController

modelKeyPath =
selectedObject.subObjectsList

observe:
selectedObject

NSTableView

observe:
arrangedObjects

Figure 29.6 Mediating controllers are chained together to control complex relationships.

ptg5934432

363Consequences

color

positionX

positionY

MYShape

NSArrayController

dataSource

MYEditorShapeView NSTableView

-add:

-remove:

target

NSButton

action = add:

target

NSButton

action = remove:

0 - *

shapesInOrderBackToFront

MYShapeEditorDocument

modelKeyPath =
shapesInOrderBackToFront

objectClass = MYShape

observe:
arrangedObjects
selectionIndexes

observe:
arrangedObjects
selectionIndexes

NSArrayController

-add:

-remove:

modelKeyPath =
shapesInOrderBackToFront

objectClass = MYShape

isEnabled

canRemove

ob
se

rv
e:

ca
nR

em
ov

e

Figure 29.7 Separate NSArrayController instances enable separate selections in
the same model.

ptg5934432

V
Practical Tools for

Pattern Application

This part shows practical applications of the Model View
Controller design pattern with examples selected from the
Cocoa frameworks.

Chapters in this part of the book include

30 Core Data Models

31 Application Kit Views

32 Bindings and Controllers

A Resources

ptg5934432

View ControllerModel

Core Data Application Kit

Foundation

Figure 30.1 Core Data within the Model View
Controller pattern

30
Core Data Models

Core Data is an Apple framework that provides reusable objects to simplify Model sub-
system design and development within the overarching Model View Controller pattern.
Figure 30.1 shows how Core Data relates to the other prominent Cocoa frameworks.

Apple describes Core Data as “not an entry-level technology,” but it’s actually not par-
ticularly complex. Core Data is considered high level or advanced in part because it uses
many lower level design patterns. Some programmers struggle to understand a high level
framework like Core Data because the lower level patterns are unfamiliar. Other pro-
grammers struggle to understand the lower level patterns because they don’t see the
utility of the patterns until high-level uses are apparent.

This chapter explains the uses and collaborations between design patterns as they are
employed by Core Data.There’s no introductory tutorial for using Core Data in this book,
but here are some other resources to gently introduce the framework and related tools:

n http://developer.apple.com/documentation/Cocoa/Conceptual/CoreData/
cdProgrammingGuide.html

n http://developer.apple.com/documentation/Cocoa/Conceptual/
NSPersistentDocumentTutorial/00_Introduction/chapter_1_1.html

n http://developer.apple.com/documentation/Cocoa/Conceptual/
CoreDataUtilityTutorial/00_Introduction/chapter_1_1.html

ptg5934432

366 Chapter 30 Core Data Models

A quick Internet search reveals lots of tutorials available from Apple and third parties,
but tutorials generally don’t dig into the analysis of how and why a technology works the
way it does.Tutorials focus on the basic goal of succinctly explaining how to accomplish
tasks.This chapter provides the deeper analysis and explanation.

The Role of the Model Subsystem
Consider the role of the Model subsystem in a Model View Controller application.The
model is composed of the objects that provide the unique capabilities and information
storage for an application. Models contain the rules for processing application data. Mod-
els provide the in-memory representation of application data to be viewed, edited, or
processed.

Models are also usually responsible for persistent storage of application data.The
model must load or store data in some way. Common forms of persistent storage include
files on a disk drive, client-server databases, and more recently,“cloud” computing where
data is stored on an anonymous remote server and accessed using Universal Resource Lo-
cators (URLs).

Some models need to work with vast amounts of data, and it’s not practical to keep all
of the data in memory at once. In such cases, models sometimes include search features or
filters to limit the amount of data in memory at one time.

Models contain the logic or rules for manipulating data. Some data may be calculated
from other data using application-specific algorithms. Data may be constrained to specific
types like “dates” or “positive integers.” Data values may have defined minimums and
maximums. Models provide data validation to ensure that constraints are met.

Models manage relationships between objects. For example, a model that stores infor-
mation about books and publishers might contain the following rules: “each publisher
has a list of zero or more books that have been published,”“each book has zero or one
identified publisher,” and “whenever a book is added to a publisher’s list of published
books, the book’s identified publisher must be set to correspond.”

Core Data Terminology
Core Data uses objects to encapsulate data and the operations on the data. However, there
isn’t necessarily a one-to-one correspondence between the objects in your application
and the data that’s available. Core Data uses distinct terminology to differentiate between
actual application objects and data modeling concepts used to define the available data.

Note
Core Data is a single-user desktop technology as implemented in Mac OS X 10.5, but it bor-
rows terminology from the world of multiuser client-server database development. Core
Data isn’t a database, but the use of database terminology strongly suggests a way to map
Core Data objects to relational databases. In fact, Core Data is eerily similar to an Apple

ptg5934432

367Core Data Terminology

technology called Enterprise Objects Framework (EOF) that is used with massive client-
server relational databases.

Entity
A Core Data Entity is an abstract description of available data. For example, a drawing
program might use Shape entities and Style entities to store information about a drawing.
Entities are like classes.They have an inheritance hierarchy. Subentities inherit the charac-
teristics of their superentities just like subclasses inherit superclass characteristics. However,
entities aren’t necessarily implemented as separate Objective-C classes. By default, Core
Data represents all entities at runtime using instances of the NSManagedObject class. You
can override the default and use application-specific subclasses of NSManagedObject on a
case by case basis.

Attributes
Each Entity defines associated data items called Attributes. For example, a Shape entity in a
drawing application might have a floating point attribute to specify the shape’s line width.
Core Data validates attribute values based on constraints you specify. For example, you
might constrain a Shape’s line width to be greater than or equal to zero.You can also op-
tionally specify an initial default value for each attribute. Some attributes are identified as
transient, which means they aren’t stored along with the other attributes of the entity. Use
a transient attribute when the attribute can be calculated on demand from other attrib-
utes. For example, a Line entity might have a transient attribute called length that’s
calculated whenever needed.

Relationships
In addition to attributes, each Core Data entity may have “Relationships” to other enti-
ties. For example, each Shape entity might have a relationship to a Style entity that defines
the line color and fill color of the shape. Relationships can be made optional or required.
Core Data will recognize that an object is invalid if a required relationship has not been
assigned. Relationships can be one-to-one or one-to-many. For example, each Shape has
exactly one Style, but the same Style entity can be associated with any number of Shape
entities.Therefore, the relationship between Style entities and Shape entities is a one-to-
many relationship.

Relationships are a two-way street. If each Shape is related to a Style, then each Style
must also be related to a Shape. In other words, each relationship has a corresponding re-
ciprocal relationship. Core Data enforces reciprocal relationships. For example, setting the
Style of a Shape automatically adds the Shape to the collection of Shapes that use that
Style.As a result, you can identify at runtime all the Shapes that have the same Style.

ptg5934432

368 Chapter 30 Core Data Models

Shape
Attributes
Relationships

style

LineColorReference
Attributes
Relationships

style

ColorReference
Attributes
Relationships

color

FillColorReference
Attributes
Relationships

style

CircleShape
Attributes

centerX
centerY
radius

Relationships

Color
Attributes

blue
green
red

references
Relationships

Style
Attributes

centerX
centerY
radius

Relationships

Entity Name

This type of arrow
indicates that each
Style may be related
to many Shapes, but
each Shape has one
Style.

This type of arrow
indicates that
LineColorReference
is a kind of
ColorReference
and inherits all of
ColorReference’s
properties.

Figure 30.2 Core Data models are usually designed in Xcode’s modeling tool.

Properties
The term Properties describes the collection of attributes and relationships for each Core
Data entity.Attributes and relationships are validated differently within Core Data, but
they’re accessed the same way within your application code.The term Property is used
instead of a term like “instance variable” because the underlying storage for properties isn’t
defined for Core Data entities. Properties may be stored in memory as instance variables or
calculated on demand or fetched from persistent storage at the last moment when needed.
The term property exists to explicitly inform you that you can’t count on any underlying
implementation. Figure 30.2 is a partial screen shot of Xcode’s data modeling tool showing
several entities and their properties. Diagrams produced in Xcode define Core Data models
using notation similar to standard Unified Modeling Language (UML) Entity Relationship
diagrams.

Collaboration of Patterns Within Core Data
The extremely brief overview of Core Data terminology in this chapter can’t prepare you
for the actual task of designing a model with entities and properties. There’s no substitute
for working through some of the Core Data tutorials provided by Apple to get a feeling
for how Core Data is used. The remainder of this chapter demystifies the technology by
highlighting the practical application of design patterns within Core Data.

ptg5934432

369Collaboration of Patterns Within Core Data

Anonymous Object and
Heterogenous Container

Chapter 7

Associative Storage,
Key Value Coding

Chapter 19

Template Method
Chapter 4

Dynamic Creation
Chapter 5

Category
Chapter 6

Accessors
Chapter 10

Archiving and Unarchiving
Chapter 11

Flyweight
Chapter 22

Proxies and Forwarding
Chapter 27

Two-Stage Creation
Chapter 3

Core DataFaçade
Chapter 26

Figure 30.3 Primary Core Data pattern collaborations

Figure 30.3 identifies the most prominent design patterns used in the implementation
of Core Data.

NSManagedObject and NSEntityDescription
Instances of Core Data’s NSManagedObject class are the objects used at runtime to store
the properties defined for the entities in your model. Each NSManagedObject instance ref-
erences an NSEntityDescription to find out at runtime what properties are available.As
a result, each NSManagedObject instance is able to represent any kind of entity described
by an NSEntityDescription instance. For example, an NSManagedObject instance might
represent a Shape entity described by one NSEntityDescription instance, and another
NSManagedObject instance might represent a Style entity described by a different
NSEntityDescription instance. However, all NSManagedObject instances that represent
Shape entities reference one NSEntityDescription instance that describes the properties
of Shape entities.All NSManagedObject instances that represent Style entities reference
one NSEntityDescription instance that describes Style entities. Figure 30.4 shows the
relationships between three NSManagedObject instances that all represent Shapes and two
NSManagedObject instances that represent Style as determined by NSEntityDescription
instances.

NSManagedObject uses the Associative Storage pattern described in Chapter 19,“Asso-
ciative Storage,” to decouple access to properties from the underlying storage of proper-
ties. For example, when you attempt to access a property of an NSManagedObject instance
at runtime, NSManagedObject checks to see whether the property being accessed is one
of the properties available for the entity being represented. If the property is available, its
value may have to be fetched from persistent storage. Core Data often postpones property
fetches until necessary.After all, if certain properties are never accessed, why fetch them
into memory at all?

ptg5934432

370 Chapter 30 Core Data Models

entity

NSManagedObject

entity

NSManagedObject

NSEntityDescription

entity

NSManagedObject

entity

NSManagedObject

entity

NSManagedObject

entity

NSManagedObject

This NSEntityDescription instance
describes the properties of your
application's Shape entity.

NSEntityDescription

entity

NSManagedObject

entity

NSManagedObject

entity

NSManagedObject

entity

NSManagedObject

This NSEntityDescription instance
describes the properties of your
application's Style entity.

Figure 30.4 Relationships between NSManagedObject instances and
NSEntityDescription instances

NSManagedObject’s specific implementation of Associative Storage is provided by
Cocoa’s Key Value Coding technology.

Another Look at Key Value Coding
Key Value Coding is implemented in Cocoa’s Foundation framework as an “informal pro-
tocol.”An informal protocol is a Category, described in Chapter 6,“Category,” that adds
methods to the NSObject base class so that all objects can be safely assumed to implement
the methods. Key Value Coding is described in Chapter 19 and is principally implemented
by the -(id)valueForKey:(NSString *)aKey and -(id)setValue:(id)aValue

forKey:(NSString *)aKey methods added to NSObject.The default implementation
provided by NSObject uses the specified string key to lookup an appropriate Accessor
method.Accessor methods are explained in Chapter 10,“Accessors.” For example, if the
specified key is “lineWidth,” the default implementation of -valueForKey: tries to find a
method named “lineWidth” implemented by the receiver of the valueForKey: message. If
such a method exists, it’s called, and its return value is returned by -valueForKey:. If no
such method exists, -valueForKey: looks for other similar methods and as a last resort
will directly access any available instance variable named “lineWidth” or “_lineWidth.”
Finally, if the receiver can’t supply a value for the specified key, -valueForKey: calls the
Key Value Coding method -valueForUndefinedKey:(NSString *)aKey, and NSObject’s
implementation of -valueForUndefinedKey: just raises an NSUndefinedKeyException.

NSObject’s -setValue:forKey: method looks for an Accessor method of the form
“set<aKey>:” such as -setLineWidth:. If necessary, -setValue:forKey: will access an
appropriate instance variable directly. If there is no Accessor method and no instance vari-
able for the specified key, then -setValue:forUndefinedKey: is called, and it raises an
NSUndefinedKeyException.

ptg5934432

371Collaboration of Patterns Within Core Data

Note
-valueForKey: and -setValue:forKey: make use of the Anonymous Type pattern as de-
scribed in Chapter 7, “Anonymous Type and Heterogeneous Containers.” Anonymous types
enable the relatively simple implementation of Key Value Coding, which in turn provides
the fundamental mechanism used to implement Core Data. Anonymous types let
NSManagedObject instances represent any entity regardless of the number or types of
attributes and relationships provided by the entity.

The NSManagedObject class overrides the NSObject implementation of -valueForKey:
to consult with an NSEntityDescription and check whether the requested key corre-
sponds to a property of the entity being represented. If so, NSManagedObject does what-
ever is necessary to obtain the corresponding property’s value and return it. Similarly,
NSManagedObject checks whether properties being set exist within the represented entity.

Accessing Relationships
Entity relationships are accessed via Key Value Coding the same way as attributes. If
you access an NSManagedObject instance’s relationship property, you will get different re-
sults depending on the way the relationship is defined by the associated
NSEntityDescription. If the relationship is a “to-one” relationship, then the accessed
value is simply another NSManagedObject instance that represents the related entity. If the
relationship is “to-many,” the accessed property is an instance of NSSet that contains a
collection of objects corresponding to all of the related entities.

Note
NSSet is an unordered Heterogeneous Container described in Chapter 7 and in Apple’s doc-
umentation at http://developer.apple.com/documentation/Cocoa/Reference/Foundation/
Classes/NSSet_Class/Reference/Reference.html.

There are some subtleties to Core Data’s implementation of relationships. Consider
what happens when an NSManagedObject instance has a “to-many” relationship to thou-
sands of other objects. For example, a “Publisher” entity has a “to-many” relationship to
thousands of “Book” entities. It’s usually not desirable for the Accessor method of a “to-
many” relationship to automatically fetch thousands of objects representing all of the re-
lated Book entities from persistent storage.As an optimization, the NSSet returned from
access to a “to-many” relationship usually contains Proxy objects called faults. Proxies are
described Chapter 27,“Proxies and Forwarding.”A proxy is a stand-in for another object,
and the proxy only accesses the “real” object as a last resort.That way, if the code that uses
a set of proxies only really uses a few objects out of the thousands in the set, only the few
proxies ever fetch objects from persistent storage.The proxies themselves implement the
Flyweight pattern described in Chapter 22,“Flyweight,” and benefit from the memory
and performance advantages provided by the Flyweight pattern.

The technique of delaying fetches from persistent storage until necessary is sometimes
called faulting in Apple’s documentation.Apple describes faulting at http://developer.apple.
com/documentation/Cocoa/Conceptual/CoreData/Articles/cdFaultingUniquing.html.

ptg5934432

372 Chapter 30 Core Data Models

Another key to relationship management is support for inverse relationships. Consider
the following rules:“each publisher has a list of zero or more books that have been pub-
lished,”“each book has zero or one identified publisher,” and “whenever a book is added
to a publisher’s list of published books, the book’s identified publisher must be set to cor-
respond.” Core Data relationships almost always have established inverse relationships. For
example, setting the identified publisher for a book automatically adds the book to the
identified publisher’s list of published books.When you change the identified publisher,
Core Data will even take the book out of any other publisher’s list of books. Similarly, just
adding a book to a publisher’s list of books automatically sets the book’s identified pub-
lisher to match.

Subclassing NSManagedObject
When designing a Core Data model, you’re able to specify application-specific subclasses of
NSManageObject to represent each different type of entity if you want. If you specify a partic-
ular class for use with a particular entity type, the name of the class is stored in the correspon-
ding NSEntityDescription for the entity type. Core Data applies the Dynamic Creation
pattern introduced in Chapter 5,“Dynamic Creation,” to create instances of the class identi-
fied in the NSEntityDescription. If you don’t specify an NSManagedObject subclass for an
entity type, Core Data just creates instances of NSManagedObject for new entities.

Create subclasses of NSManagedObject whenever you want to add application-specific
logic to the objects that represent different entity types. For example, you can create a
MYShapeManagedObject subclass of NSManagedObject, specify MYShapeManagedObject

for use with the NSEntityDescription for Shape entities, and implement a -draw
Template Method (Chapter 4,“Template Method”) within MYShapeManagedObject.
If you have Rectangle and Circle subentities of the Shape entity, you can specify
MYRectangleShapeManagedObject and MYCircleShapeManagedObject subclasses of
MYShapeManagedObject via the NSEntityDescription instances for Rectangle and Circle
respectively. Each of your subclasses of MYShapeManagedObject can then override the
-draw method to draw differently.

When you subclass NSManagedObject you have the ability to add custom behavior at im-
portant moments in the object’s lifecycle. For example, to perform extra processing when-
ever a new instance of your NSManagedObject subclass is inserted into your model, override
NSManageObject’s -(void)awakeFromInsertTemplate Method.The most typical use of -
awakeFromInsert is to calculate and set default property values at runtime as follows:

- (void)awakeFromInsert

{

[super awakeFromInsert];

// Set dateInserted property to the current date and time

[self setValue:[NSDate date] forKey:@"dateInserted"];

}

@end

The -(void)awakeFromFetch method is called whenever an NSManagedObject is
fetched from persistent storage. Override -awakeFromFetch to establish new transient

ptg5934432

373Collaboration of Patterns Within Core Data

relationships based on the situation at runtime, but don’t modify any pre-existing relation-
ships within -awakeFromFetch. Core Data’s built-in change validation is disabled while
-awakeFromFetch is executing, and as a result, relationships modified within
-awakeFromFetch are not being validated, and inverse relationships are not being
automatically maintained.

Note
Recall that any time you override a Template Method, you need to know whether you
can, should, or must call the inherited superclass implementation. In the cases of
-awakeFromInsert and -awakeFromFetch, Apple documents that you must call the inher-
ited superclass implementations. Also recall that the key to the Template Method pattern
is the “don’t call us; we’ll call you” philosophy. Don’t call -awakeFromInsert and
-awakeFromFetch from your own code. The Core Data framework calls those methods at
the appropriate times. You override the method implementations to customize Core
Data operation at key moments.

Transient relationships and other calculated properties that are established in
-awakeFromFetch can be cleaned up in -(void)willTurnIntoFault or
-(void)didTurnIntoFault. Core Data calls -willTurnIntoFault when the framework
has determined that the object is no longer needed in memory. Implement
-willTurnIntoFault to clean up any complex properties such as user preferences or
network connections.The -didTurnIntoFault method is called after all of the transient
properties known to Core Data have already been cleared out of memory but before the
corresponding NSManagedObject instance is actually deallocated or finalized.

Implementing Accessors in NSManagedObject Subclasses
There is usually no need to write custom Accessor methods for properties described by
an NSManagedObject’s NSManagedObjectDescription. NSManagedObject provides all of
the needed logic within its implementations of -valueForKey: and -setValue:forKey:.
As of Mac OS X 10.5, Core Data dynamically generates Accessor method implementa-
tions at runtime for all entity properties so that the following three lines of code are
interchangeable when using Objective-C 2.0:

[someObject valueForKey:@"title"];

someObject.title;

[someObject title];

Both [someObject valueForKey:@"title"] and someObject.title call
[someObject title]. Setting properties also works three ways when using Objective-C
2.0, and the first two ways call the set accessor method:

[someObject setValue:@"Cocoa Design Patterns" forKey:@"title"];

someObject.title = @"Cocoa Design Patterns";

[someObject setTitle:@"Cocoa Design Patterns"];

ptg5934432

374 Chapter 30 Core Data Models

As an alternative to runtime-generated accessor methods, you can use the version of
Apple’s Xcode tool provided with Mac OS X 10.5 to generate source code for correct
accessor methods. If you use Xcode to generate code or if for some reason you provide
handwritten custom accessor methods in your subclass of NSManagedObject, the com-
piled accessor methods supersede dynamically generated ones. Custom accessor methods
must reimplement all of the logic that NSManagedObject would have dynamically gener-
ated. If you don’t provide the essential logic, your NSManagedObject subclass will not
work correctly with Core Data.

For simple property accessor methods, the essential logic is to call
-willAccessValueForKey:, -didAccessValueForKey:, -willChangeValueForKey:,
and -didChangeValueForKey: as shown in the following representative example:

- (NSString *)title

{

[self willAccessValueForKey:@"title"];

NSString *theTitle = [self primitiveTitle];

[self didAccessValueForKey:@"title"];

return theTitle;

}

- (void)setTitle:(NSString *)aTitle

{

[self willChangeValueForKey:@"title"];

[self setPrimitiveTitle:aTitle];

[self didChangeValueForKey:@"title"];

}

The -willAccessValueForKey:, -didAccessValueForKey:,
-willChangeValueForKey:, and -didChangeValueForKey: methods are part of a Cocoa
technology called Key Value Observing.They inform NSManagedObject that properties are
about to be accessed or have just been accessed. NSManagedObject uses the information to
implement automatic undo and redo of changes and lets other interested objects know about
accesses too. Key Value Observing is described in Chapter 32,“Bindings and Controllers.”

Core Data accessor methods must call “primitive methods” to actually access or mod-
ify properties.The primitive methods, -primitiveTitle and -setPrimitiveTitle:, in
the preceding example actually fetch properties from persistent storage if necessary.There
are more details about Core Data primitive methods at http://developer.apple.com/
documentation/Cocoa/Conceptual/CoreData/Articles/cdAccessorMethods.html. In
general, throughout Cocoa, the term primitive method is used to describe the small
number of methods with which other methods of a class are implemented. In the case of
NSManagedObject, Core Data synthesizes/generates primitive accessor methods at run-
time by inserting the words “primitive” or “setPrimitive” in the standard accessor method
names and capitalizing letters to match Cocoa naming conventions. For example, -title
becomes -primitiveTitle, and -setTitle: becomes -setPrimitiveTitle:.

ptg5934432

375Collaboration of Patterns Within Core Data

If you need to use attributes of types that Core Data doesn’t directly support, you
can implement you own “primitive” methods to add support.There are several exam-
ples of custom Core Data primitive accessor methods at http://developer.apple.com/
documentation/Cocoa/Conceptual/CoreData/Articles/cdZ104NSAttributes.html.

Designing Core Data Models
Apple’s Xcode tool includes a graphical Core Data model development capability.The
graphical tool is easy to use once you realize that all you are doing is graphically creating
and configuring instances of NSEntityDescription.The graphical tool provides a more
concise and self-documenting version of the code that you could write if you wanted.
You specify the data types and relationships stored in the NSEntityDescriptions that
compose your model.When you save your graphical model, the NSEntityDescription

instances are archived to files.At runtime, the NSEntityDescription instances are unar-
chived into your running application.Archiving and Unarchiving are described in
Chapter 11,“Archiving and Unarchiving.” Just like with Interface Builder, graphical con-
figuration, archiving, and unarchiving avoid the need to write hundreds or thousands of
lines of usually repetitive and error-prone code.

Apple provides a tutorial that even includes short videos of the various steps needed to
design Core Data models at http://developer.apple.com/cocoa/coredatatutorial/index.
html.

All of the NSEntityDescription instances that compose a single model are stored in
an instance of Core Data’s NSManagedObjectModel class. Each instance of
NSManagedObjectModel is a collection of related NSEntityDescription instances.
NSManagedObjectModel provides the -(NSArray *)entities method to give you direct
access to the entity descriptions if you want them. NSManagedObjectModel loads model
descriptions previously saved from within Xcode. It’s possible to instantiate
NSManagedObjectModel and programmatically add NSEntityDescription instances, but
that approach defeats many of the advantages of rapid Core Data application develop-
ment. Once an NSManagedObjectModel instance is being used to actually access data, the
NSManagedObjectModel instance can no longer be changed.Attempts to change an
NSManagedObjectModel instance that’s in use or any of that NSManagedObjectModel’s
NSEntityDescription instances generate an exception.

NSManagedObjectContext
An instance of NSManagedObjectContext encapsulates a NSManagedObjectModel and all
of the currently existing NSManagedObject instances created from entity descriptions in
the NSManagedObjectModel. NSManagedObjectContext is a mediating controller using
the pattern explained in Chapter 29,“Controllers.” Figure 30.5 illustrates the containment
relationship between NSManagedObjectContext, NSManagedObjectModel,
NSEntityDescription, and NSManagedObject instances. NSManagedObjectContext
keeps the collection of managed objects internally consistent with the context’s
NSManagedObjectModel.

ptg5934432

376 Chapter 30 Core Data Models

NSManagedObjectContext controls the lifecycle of NSManagedObject instances. It’s
actually the NSManagedObjectContext that fetches data from persistent storage as needed.
NSManagedObjectContext observes changes to managed objects via the
NSManagedObject -willChangeValueForKey:, and -didChangeValueForKey: methods
described earlier in this chapter. In response to changes, NSManagedObjectContext con-
sults the NSManagedObjectModel to automatically establish, validate, and control recipro-
cal relationships between objects. NSManagedObjectContext also provides automatic
undo and redo.

NSManagedObject isn’t very useful outside of an NSManagedObjectContext. Newly
created and newly fetched managed objects are therefore always added to an
NSManagedObjectContext. Existing managed objects can also be deleted from an
NSManagedObjectContext.

NSManagedObjectContext provides one of the keys to the efficiency of Core Data.
Changes made within a context only affect the in-memory representation of model data.
Changes made in a managed context must be committed to become permanent in the
underlying persistent storage.

NSPersistentStoreCoordinator and NSPersistentStore
The last major pieces of the Core Data framework are the NSPersistentStoreCoordinator
and NSPersistentStore classes. Core Data supports three basic persistent storage
formats: SQLite relational database, binary flat file, and Extensible Markup Language (XML)
flat file. NSPersistentStore is an abstract base class that defines methods for reading and
writing from the supported persistent file formats. NSPersistentStoreCoordinator is a

NSManagedObjectContext

NSManagedObjectModel

NSEntityDescription

NSEntityDescription

NSEntityDescription
entity

NSManagedObject

entity

NSManagedObject

entity

entity

entity

NSManagedObject

NSManagedObject

NSManagedObject

Figure 30.5 Runtime relationships between
NSManagedObjectContext, NSManagedObjectModel,

NSEntityDescription, and NSManagedObject instances

ptg5934432

377Core Data Limitations and Benefits

controller that mediates between your model objects and one or more NSPersistentStore
instances. NSPersistentStoreCoordinator makes it possible to support multiple persist-
ent storage formats simultaneously. For example, you can load your model from an
XML file and save it to an SQLite database without any effect on the model itself.
NSPersistentStoreCoordinator decouples the model from the storage.

NSPersistentStoreCoordinator implements the Facade pattern defined in Chap-
ter 26,“Façade.” NSPersistentStoreCoordinator provides a simple interface that encap-
sulates potentially complex interactions between multiple storage types and locations.
NSPersistentStoreCoordinator accesses multiple persistent stores in a way that makes
the number and type of stores irrelevant to other parts of your application.

Each NSManagedObjectContext needs an NSPersistentStoreCoordinator to be
able to fetch data or commit changes to data. However, the relationship doesn’t need to
be one-to-one.You can use a single NSPersistentStoreCoordinator with multiple
NSManagedObjectContexts. For example, your application might provide two views
of the same underlying data. One view shows the uncommitted in-memory state of
model data as defined by one NSManagedObjectContext, while the other view
shows the persistent storage state of the same model data as defined by a different
NSManagedObjectContext. Both managed object contexts fetch data from the same
persistent storage, but in-memory changes made in one context have no effect on other
context.

Core Data Limitations and Benefits
The most significant limitation of Core Data is that it stores your model data in undoc-
umented formats even when using the XML persistent storage type.Apple presumably
keeps the storage formats undocumented to preserve the ability to change formats at
some future date.After all, you aren’t supposed to need to know details like low-level
data format because that’s all encapsulated by the reusable framework. However, there
may be legitimate reasons why data formats on disk must be fully specified. For exam-
ple, you may have data retention requirements that mandate the ability to read and
process your data via multiple computer systems or decades later when Apple may no
longer support Core Data. Core Data is not well-suited when existing data standards
or file formats are required. It is not feasible to coerce Core Data to use most standard
storage formats.

Another limitation of Core Data is weak support for data translation between model
versions. It’s generally safe to add entirely new entity descriptions to a pre-existing model.
If you only add information, Core Data will likely be able to continue reading data saved
with previous model versions. However, if you change your model by modifying existing
entity descriptions, you will have to write code to load data stored via the previous model
versions into applications that use the new model version. Unfortunately, there is little or
no framework support for translating data between model versions.

ptg5934432

378 Chapter 30 Core Data Models

The most significant benefit of using Core Data is access to the built-in fast, flexible,
and efficient data management. Using Core Data has the potential to dramatically reduce
the amount of code you write to implement Model subsystems. Core Data also provides
straightforward and almost automatic integration with Mac OS X’s Spotlight search tech-
nology. Finally, Core Data is implemented using modern Cocoa technology like Key
Value Coding and Key Value Observing, which support rapid application development.

If you want to rapidly build full-featured Cocoa applications that include complex
Model subsystems and support for moderately large amounts of data, Core Data is the
right technology. However, you may still need to write code to import and export your
data if pre-existing or standard data formats are required—and be very careful when
changing your data model to avoid introducing incompatibilities with data stored using
prior model versions.

ptg5934432View ControllerModel

Core Data Application Kit

Foundation

Figure 31.1 The Application Kit within the Model
View Controller pattern

31
Application Kit Views

The Application Kit contains most of the classes that provide user interfaces and graph-
ics for Cocoa applications.This chapter focuses on the key patterns employed the Appli-
cation Kit. Effective use of the Application Kit often requires the interaction of multiple
classes and design patterns. Figure 31.1 shows the relationship of the Application Kit to
Cocoa’s overarching Model View Controller pattern.

The Application Kit is large and relatively complex, but its organization and use of de-
sign patterns keeps it manageable.Within Cocoa, the Application Kit is the oldest sub-
framework. Some of the design patterns described in this book were first recognized by
scholars who studied the Application Kit and then later adopted by other frameworks for
other platforms.Almost all of the design patterns in this book are used in one way or an-
other by the Application Kit.This chapter briefly explains how the Application Kit uses
many of the patterns.An understanding of the interactions between multiple patterns
clarifies how the Application Kit works and how patterns are applied in practice.

The Role of the View Subsystem
Within the Model View Controller pattern, the View subsystem presents information and
enables user interaction with the information.The View provides the look (appearance)
and feel (user interaction) for an application. Cocoa’s Application Kit includes default

ptg5934432

380 Chapter 31 Application Kit Views

Archiving and
Unarchiving
Chapter 11

Hierarchies
Chapter 16

Flyweight
Chapter 22

Responder Chain
Chapter 18

Decorators
Chapter 23

Outlets, Targets, and
Actions

Chapter 17

Category
Chapter 6

Template Method
Chapter 26

Application Kit

Notifications
Chapter 14

Invocations
Chapter 20

Singleton
Chapter 13

Bundles
Chapter 24

Copying
Chapter 12

Delegates
Chapter 15

Managers
Chapter 28

Figure 31.2 Key design patterns used to implement the Application Kit

implementations that satisfy almost all standard Mac OS X look and feel expectations in-
cluding menus, windows, undo and redo, text editing, spell checking, help, standard con-
trols, and more. Frequent developer reuse of default implementations contributes to the
Mac’s famous consistency and ease of use. Cocoa developers generally have to perform
extra work to circumvent the standard look and feel.

Users bring certain expectations when interacting with graphical applications. For ex-
ample, they understand the concept of a current selection or “focused” user interface
component. Menu items affect the current selection.The “focused” user interface compo-
nent will respond to text typed by the user. Standard Mac OS X’s look and feel and user
expectations are described in Apple’s Human Interface Guidelines (HIG) which are
available at http://developer.apple.com/documentation/UserExperience/Conceptual/
AppleHIGuidelines/XHIGIntro/chapter_1_1.html. Mac developers need to pay attention
to the HIG, but for the most part, HIG-compliance comes “for free” just by using the
Application Kit.

Collaboration of Patterns Within Application Kit
Figure 31.2 identifies the key patterns used in the implementation of the Application Kit.

ptg5934432

381Collaboration of Patterns Within Application Kit

NSApplication, Events, and the Run Loop
Most graphical user interface toolkits, including the Application Kit, use an event-driven
model.That simply means applications react to events that are sent to the application by
the operating system. Some events originate from user keyboard or mouse input.Timer
events may arrive at periodic intervals. Other input sources like network sockets or inter-
thread message queues may produce events.

Cocoa applications receive events from the operating system with the help of the
NSApplication and NSRunLoop classes. Every graphical Cocoa application contains one
instance of the NSApplication class. NSApplication is a singleton, as described in
Chapter 13,“Singleton.” The NSApplication instance creates an instance of NSRunLoop
to receive events from the operating system. Multithreaded Cocoa application may use up
to one NSRunLoop instance per thread.

Run loops monitor input sources that are part of the operating system and block if
no input is available.That just means that when there is no input available, the run loop
doesn’t consume CPU resources. Many other user interface toolkits make the run loop a
key focus for developers, but in Cocoa, the run loop plays only a small but crucial role.
When input data becomes available, the run loop translates the data into events and sends
Objective-C messages to various objects to process the events.

In most cases, Cocoa programmers don’t need to access run loops directly because
NSApplication takes care of all the details.The Application Kit uses the Hierarchies pat-
tern and the Responder Chain pattern described in Chapters 16,“Hierarchies,” and 18,
“Responder Chain,” respectively. NSApplication uses the hierarchy of objects within your
application and the resulting Responder Chain to determine which objects should
receive which messages in response to events.

The NSApplication class is seldom subclassed. Instead, the behavior of an application
can be modified through the use of an application delegate and notifications. Notification
and Delegation are powerful patterns described in Chapters 14,“Notifications,” and 15,
“Delegates,” respectively.

Responders
When keyboard events, mouse events, timer events, or other events are detected by the
run loop and the NSApplication instance that manages the run loop, those events are
converted into instances of the NSEvent class and dispatched to other objects using
Objective-C messages.The use of messaging is an important difference from other user
interface toolkits and results in much of the power and flexibility of Cocoa.The Applica-
tion Kit does not use C-language switch statements or explicit tables of function pointers.
The messaging capabilities built into the Objective-C runtime are ideally suited to user
interface event dispatching.

Cocoa includes the NSResponder class, which provides basic event handling methods.
NSResponder is an abstract class, which means it’s not intended for direct use by applica-
tion programmers. Instead, abstract classes provide functionality that is used by subclasses.
Some of the most prominent Cocoa subclasses of NSResponder are NSView, NSWindow,

ptg5934432

382 Chapter 31 Application Kit Views

and NSApplication.These subclasses collaborate to manage the flow of events within an
application.

The collaboration between the various subclasses of NSResponder within a Cocoa ap-
plication is so powerful that many applications can be written without any custom event
handling code at all.The event processing within the Application Kit framework takes
care of almost all events automatically.When application-specific, custom-event handling
is needed, one or more of NSResponder’s event-processing Template Methods can be
overridden in a subclass, as explained in Chapter 4,“Template Method.” For example, to
perform processing in response to a mouse button-press event, override NSResponder’s -
(void)mouseDown:(NSEvent *)theEvent template method.

Each of NSResponder’s event processing methods accepts a single argument, which is
an instance of the NSEvent class.Within the event processing methods, the NSEvent in-
stance can be interrogated to obtain more information about the event such as the loca-
tion of the mouse or which modifier keys were pressed.The NSEvent class
documentation describes the information obtainable.The NSResponder class documenta-
tion identifies the event processing methods that you may want to override in subclasses.

The NSEvent passed to each event-processing method is only valid until the next
event. NSEvent is implemented using the Flyweight pattern from Chapter 22,“Flyweight.”
The Cocoa frameworks sometimes reuse existing NSEvent instances.To preserve the in-
formation in an NSEvent instance, copy it or store the information in a separate data
structure. Simply storing and retaining a pointer to the Application Kit provided NSEvent
instance for later use is not sufficient. NSEvent conforms to the NSCopying protocol and
can be copied using the approach described in Chapter 12,“Copying.”

The Responder Chain
Each instance of the NSResponder class stores a pointer to another instance of
NSResponder called the next responder. NSResponder provides Accessor methods for setting
and getting the next responder. Responders are chained together from next responder to
next responder and collectively form a data structure called the Responder Chain. If an
instance of NSResponder doesn’t process a message that it receives, the message can be
passed on to the next responder.The message travels along the chain until the message is
either processed or there is no next responder. Details about the Responder Chain are
presented in Chapter 18.

The Responder Chain plays a crucial role in applications that use the Application Kit.
Many powerful features such as automatic menu validation, context-sensitive menus, text
entry, and automatic spell checking depend on the Responder Chain.The Responder
Chain also provides opportunities for programmers to insert context-sensitive custom
logic and event handling into applications.

Whichever object gets the first chance to respond to an event message is called the first
responder.The first responder is the first link in the Responder Chain. Interface Builder
provides an icon that represents the first responder so that you can make graphical con-
nections and specify application messages that should be sent via the Responder Chain.

ptg5934432

383Collaboration of Patterns Within Application Kit

One of the keys to using this is understanding which responder will be the first responder
in different circumstances.

The Responder Chain and the first responder are managed by three NSResponder
subclasses: NSApplication, NSWindow, and NSView.An instance of the NSApplication
class receives events from the operating system.The events are either sent on to a window
represented by an NSWindow instance or consumed by the application object itself. Every
window in an application stores a pointer to the window’s first responder.The first re-
sponder for a window can change based on user actions or program code.The initial first
responder in each window can be set in Interface Builder or through an NSWindow in-
stance method.

Sometimes the first responder for a window is the window itself.When a window re-
ceives an event from the application object, the event is either forwarded to a responder
within the window or consumed by the window.The responders within a window are
typically instances of NSView subclasses.

The first responder to receive an event message depends on the application object, the
window that is most appropriate for the event, and a responder (view) within the win-
dow. Chapter 18 details the event message processing sequence within windows and be-
tween windows. In some cases, the delegates of each window in the Responder Chain are
automatically included in the Responder Chain. Similarly, the NSApplication object’s
delegate is sometimes automatically part of the Responder Chain.

NSWindow Overview
The NSWindow class is a subclass of NSResponder and extends the capabilities of respon-
ders to provide an area of the display for drawing. In Cocoa applications, every window
onscreen is an instance of the NSWindow class or one of its subclasses such as NSPanel.A
window is needed to display graphical output from an application.Windows have a posi-
tion and size on screen. Following Mac OS X’s standard Quartz graphics conventions,
each window’s position is defined by the screen coordinates of the window’s lower-left
corner.The window’s size is the width and height of the window in screen coordinates.

Windows are composed of three major parts: an optional title bar, optional resize con-
trol, and the content view.The title bar and resize control are standard Decorators as de-
scribed in Chapter 23,“Decorators.” The title bar optionally contains a title and controls
to minimize, fit content, or close the window. NSWindow instances automatically manage
these controls in accordance with Apple’s HIG.The resize control is also managed by the
window itself.The content view is the portion of a window that contains your applica-
tion’s unique interface and is controlled by your application’s code.

Each window takes advantage of the NSApplication singleton’s connection to the op-
erating system to draw onscreen.The pixels drawn by a window are stored in memory
that can be shared by the operating system and the window. Because the operating system
has direct access to the pixel memory, the operating system can move and uncover win-
dows without intervention by the application that owns the window. For example, a win-
dow can be dragged while the application that owns it is busy performing other

ptg5934432

384 Chapter 31 Application Kit Views

computations.The shared memory is also used by the operating system to implement
transparency effects, shadows, and other Quartz graphics features.

The NSApplication class manages all the windows in an application. In addition to a
list of all the application’s windows, NSApplication keeps track of which window, if any,
is the key window and which is the main window.The key window and the main window
are the windows in which the user is currently working.The key window receives key-
board events.The main window is the window that is affected by actions in the key win-
dow.The key window and the main window are usually the same, but in some cases they
might be different.

The key window and main window have darker gray title bars with deeper shadows,
and all other windows have light gray title bars with smaller shadows.The key window is
the only window to which keyboard events are sent.Windows become the key window
and main window automatically as the result of the user actions. If the main window and
key window are different, the main window becomes key if the current key window is
closed or minimized. In most cases, the user can make a window become the key win-
dow by clicking the mouse within the window.

Application developers can prevent a window from becoming the key window by
subclassing NSWindow and overriding NSWindow’s -(BOOL)canBecomeKeyWindow method
to always return NO. However, NSWindow is seldom subclassed for this purpose because the
NSPanel class already provides the desired behavior when configured as a “utility” win-
dow in Interface Builder.A window can also be made the key or main window by calling
NSWindow’s -(void)makeKeyWindow or -(void)makeMainWindow methods, respectively.
The -(void)makeKeyAndOrderFront:(id)sender method is available to make a win-
dow the front-most or top-most window and also the key window in one operation.

Windows in the Responder Chain
NSWindow is a subclass of NSResponder and can be part of a Responder Chain.The role
that a window plays in the Responder Chain depends on the state of the application that
owns the window.Windows are also integral to event distribution. Most events received
by the application are sent on to a window. NSApplication selects the window to receive
an event based on the type of the event.

Mouse events inside a window but outside the window’s content view are handled au-
tomatically by the window. No programmer intervention is required to resize windows or
manage the controls in the window’s title bar.The NSWindow class handles all those details
automatically and sends notifications and/or delegate messages to let other application
objects intervene by constraining the window’s size or saving the contents of the window
before the window closes.

Mouse-down and mouse-move events are sent from the application object to the top-
most window under the mouse pointer.The NSWindow class then distributes received
mouse events to a responder within the window or consumes the events itself. Mouse-up
and mouse-drag events are always sent to the object that received the corresponding

ptg5934432

385Collaboration of Patterns Within Application Kit

mouse-down event even if the mouse has been moved outside the window. Keyboard
events are always sent to the first responder in the key window.

NSView Overview
The NSView class extends the event-handling capabilities of NSResponder to add drawing
and printing capabilities. NSView is an abstract class meaning that instances of NSView are
seldom used directly. Instead, many subclasses of NSView exist to implement particular
combinations of event handling and drawing behavior.Almost everything drawn in a Co-
coa application is drawn by a subclass of NSView. For example, buttons, text fields, sliders,
and even the backgrounds of windows are directly or indirectly subclasses of NSView.The
most prominent subclasses of NSView include NSControl, NSTextView, NSTabView,
NSSplitView, NSScrollView, and NSBox.

The NSView class cannot draw without the help of a graphics context, and that context
is usually provided by a window.When a view is drawn, it writes the data for pixel colors
into memory.A window’s context provides the memory that stores the pixel data.
NSWindow and NSView cooperate to implement user interfaces. Every NSWindow instance
has at least one associated NSView instance, the content view.The content view is used to
draw the content of the window.

View Hierarchy
NSView instances exist in a tree data structure also known as a hierarchy.A view can con-
tain any number of subviews. NSView instances are normally added to a window by mak-
ing each view a subview of the window’s content view. Each view has a reference to the
view that contains it.The containing view is called the superview. Complex user inter-
faces are composed of many views arranged in a hierarchy of superviews and subviews.

Subviews are always drawn after their superview, resulting in subviews always appear-
ing on top of their superview graphically.Views graphically clip their subviews so that no
part of a subview can be drawn outside its superview.The order in which views with the
same superview are drawn was not defined in Mac OS X prior to version 10.5. So-called
sibling views should not be overlapped in early versions of Mac OS X because undefined
drawing order might produce incorrect display.

Each view can have its own coordinate system. By default, a window’s content view
has its origin in the lower-left corner and has a width and height equal to the width and
height of the window’s content area in pixels.The positive-X axis is to the right, and the
positive-Y axis is up.Views store two rectangles to define both the area of the view in its
superview’s coordinate system and the area of the view in its own coordinate system.The
area of a view in its superview coordinate system is called its frame.The same area stored
in the view’s coordinate system is called the bounds.The view’s frame, its bounds, and a
transformation matrix define the coordinate system used by a view.The coordinate sys-
tems used by views are described in detail at http://developer.apple.com/documentation/
Cocoa/Conceptual/CocoaViewsGuide/Coordinates/chapter_3_3.html.

ptg5934432

386 Chapter 31 Application Kit Views

Note
Apple’s Core Animation framework provides a “Layer-Tree” hierarchy that is very similar to
the view hierarchy. The Layer-Tree is described at http://developer.apple.com/documenta-
tion/Cocoa/Conceptual/CoreAnimation_guide/Articles/LayerTreeHierarchy.html. Core Ani-
mation is a framework for developing Open GL-based high performance 2D graphical
animations and special effects. The Layer-Tree reuses many of the patterns applied within
the Application Kit and achieves many of the same goals. Complex animation “layers” are
composed of multiple simpler layers. Each layer defines its own graphical coordinate sys-
tem relative to its parent layer. And layers can be used as decorators that are added, re-
moved, and rearranged dynamically at run time.

Because NSView is a subclass of NSResponder, NSView instances participate in the Re-
sponder Chain. Most responders in an application are actually subclasses of NSView.The
next responder of a view is usually the view’s superview.Arbitrary responders can be
added to the Responder Chain by calling NSResponder’s -(void)setNextResponder:
(NSResponder *)theResponder method, and that technique can be used to insert respon-
ders in the Responder Chain between a view and its superview. If an event-processing
message is sent to a view that doesn’t handle the message, the message is sent to the view’s
next responder, and its next, and so on until the window’s content view, the ultimate
superview of all views in a window, receives the message.

The first view to receive an event-processing message depends on the type of the
event.The first mouse-down event within a window that is not the key window is usually
consumed by the window itself to make the window into the key window and bring it to
the front.This behavior can be modified in several ways. For example, a subclass of NSView
can override the - (BOOL)acceptsFirstMouse:(NSEvent *)theEvent method to return
YES based on the mouse event. Returning YES means that the view is able to use the first
mouse click in an inactive window.

NSWindow sends mouse-down and mouse-move event messages to the top-most view
under the mouse. Subviews are drawn after their superview.The top-most view under the
mouse is therefore usually the most deeply nested view under the mouse. Mouse-move events
occur frequently and are seldom used. NSWindow does not send mouse move event messages
to views by default. If a subclass of NSView needs to receive mouse-move events, it must
tell NSWindow to send them. NSWindow’s -(void)setAcceptsMouseMovedEvents:
(BOOL)acceptMouseMovedEvents method is used to tell the window to send mouse-
move event messages to views. Mouse-drag and mouse-up event messages are sent to the
view that received the corresponding mouse-down event. Keyboard event messages are
sent to the first responder within the window.The NSView class implements the -

(BOOL)acceptsFirstResponder method to always return NO.As a result, most views
never become the first responder within a window.

Subclasses of NSView that implement text processing such as NSTextView override the
- acceptsFirstResponder template method to return YES. If a view accepts becoming the
first responder, the first mouse-down event within the view automatically makes that view
the first responder unless the current first responder refuses to resign its status.The rules for

ptg5934432

387Collaboration of Patterns Within Application Kit

changing the first responder are explained in http://developer.apple.com/documentation/
Cocoa/Conceptual/EventOverview/EventHandlingBasics/chapter_4_6.html.

Targets and Actions
Some of the most powerful features of the Application Kit are provided by the Target and
Action pattern described in Chapter 17,“Outlets,Targets, and Actions.” Objective-C mes-
sages that have one object argument are called actions.The one argument is usually the
sender of the action message.A target is an object that can receive action messages.Targets
and actions are defined programmatically or in Interface Builder.The Target and Action
pattern is a key mechanism with which user interface elements respond to user actions.
The Target and Action pattern is implemented with four parts, the NSApplication class,
the Responder Chain, the NSControl class, and the NSActionCell class. NSApplication
and the Responder Chain have already been introduced in this chapter. NSControl is a
subclass of NSView that adds support for the Target and Action pattern. NSActionCell is a
subclass of the NSCell Flyweight and adds support for the Target and Action pattern.
Almost all user interface elements such as menu items, buttons, and text fields are imple-
mented as subclasses of either NSControl or NSActionCell. For example, buttons in a user
interface are represented by instances of the NSButton class, which is a subclass of
NSControl, which in turn is a subclass of NSView.

When a user presses a button, the button sends its action message to its target object.
Because both the target and action are variables, button instances can be very flexibly con-
figured. For example, a button can be configured to send the -(void)selectAll:
(id) sender action message to a target object that displays editable text.Another button
might be configured to send the -(void)deleteSelectedText:(id)sender action
message to the same text object target.

One of the strengths of the Target and Action pattern is that actions are sent as
Objective-C messages using the standard Objective-C messaging system. Other user inter-
face toolkits use integer event IDs along with large switch statements or tables of function
pointers. Some other toolkits use specialized “command” classes that must be subclassed
for each different command and receiver combination.The Objective-C runtime elimi-
nates the need for extra code and tables. Even more importantly, the Target and Action
pattern used by the Application Kit takes advantage of the Responder Chain to enable
a tremendous amount of flexibility.

When a user interacts with a user interface element that is derived from the NSControl
class or the NSActionCell class, the user interface element asks the shared NSApplication
object to send an action to a target by calling NSApplication’s -(BOOL)sendAction:
(SEL)anAction to:(id)aTarget from:(id)sender method.When an action is sent us-
ing -sendAction:to:from:, the to: argument is the target of the action, and the from:
argument is the object that is sending the action.The -sendAction:to:from: method
sends the action message to the target, passing the sender as the argument.The target of an
action message can use the sender argument to obtain additional information. For exam-
ple, when the user moves a slider, the slider sends an action message to its target with the

ptg5934432

388 Chapter 31 Application Kit Views

slider itself as the argument.The receiver of the action message can ask the sender for
more information such as the current value of the slider.

The role of the shared NSApplication object in the target-action implementation is
important. If the target of a user interface element is specified, the shared application ob-
ject just sends the action message to the target directly. However, if no target is specified
(the to: argument is nil), -sendAction:to:from: uses the Responder Chain to select
the object that receives the action message. Setting the target of a user interface element
to nil makes the target context-sensitive.

If the to: argument to -sendAction:to:from: is nil, NSApplication searches the
Responder Chain for an object that can respond to the action message.The search begins
with the first responder in the key window. If the first responder can’t respond to the ac-
tion message, the next responder is checked and so on until the key window itself is
reached.After the key window gets a chance, the key window’s delegate is checked. If the
key window’s delegate can’t respond to the action message, and the main window is dif-
ferent from the key window, the first responder in the main window is checked.The
search for an object that responds to the action continues up the main window’s Respon-
der Chain to the main window itself and then the main window’s delegate. If no target
has been found, the application object is tried. Finally, if the application object can’t re-
spond to the action, the application object’s delegate is given a chance.

Note
When the target of a user interface element is set to the First Responder in Interface
Builder, the target is actually set to nil so that the expanded Responder Chain is used to
select the target at runtime.

The Responder Chain enables flexible, dynamic message processing that is context-
sensitive in conjunction with the Target and Action pattern. For example, the target of a
-(void)copy:(id)sender action sent from a menu item depends on the current first re-
sponder. If the first responder in the key window is an editable text object with selected
text, pressing the Copy menu item places the selected text on the application’s paste-
board. If the first responder has selected graphics, the graphics are placed on the paste-
board.The result of pressing the Copy menu item depends on the user’s current selection
identified by the first responder.

Note
When Cocoa’s document architecture including the NSDocument class is used, the
NSDocument instance and the document’s delegate are automatically added to the Respon-
der Chain for action messages.

Archived Objects and Nibs
Chapter 11,“Archiving and Unarchiving,” explains the Archiving and Unarchiving pattern.
Most Application Kit objects can be archived and unarchived.Archiving and unarchiving
are frequently used to implement copy-and paste-operations, drag-and-drop operations,
and distributed object messaging.When interconnected objects are encoded as data into a

ptg5934432

389Collaboration of Patterns Within Application Kit

block of memory or a file, the data is called an archive. User interface elements and their
interconnections can be stored in just such an archive.

The objects stored in an archive are conceptually freeze-dried. Each freeze-dried ob-
ject was running in memory at one time but is now in cold storage. It can be unarchived
and revived so that it begins running right where it left off at the time it was frozen. In
fact, when a user interface is designed in Interface Builder, the file that is saved is an
archive of freeze-dried objects. Interface Builder names files that contain such archives
with the extension .nib. Nib originally stood for NeXT Interface Builder, but the term
has become generic and now just refers to an archive of user interface objects.When an
application loads a .nib file, the objects are unarchived to the same state they where in
when archived.

Most object-oriented environments include a visual tool for laying out user interfaces.
Such tools usually generate code and resources that must be edited and compiled. Cocoa’s
Interface Builder generates freeze-dried objects instead of code.This is an important dis-
tinction. Generating code is a static approach, whereas the freeze-dried objects present a
dynamic solution.The static approach mimics the dynamic solution but lacks much of its
underlying power. Freeze dried objects retain all their interconnections including dele-
gates, targets, actions, superviews, current displayed values, and so on. It’s possible to create
nontrivial applications entirely with Interface Builder and run them in Interface Builder’s
Test Interface mode without ever compiling.

Interface Builder could have been called Object Connector because in addition to po-
sitioning and sizing graphical objects, Interface Builder enables the interconnection of
objects. Interface Builder is not limited to editing the objects that Apple provides with
Cocoa.Any object can be instantiated and have outlets and actions that are set within In-
terface Builder. Interface Builder plug-ins can be created to enable more complex editing
and configuration as well.

It’s possible to write Cocoa applications without using Interface Builder or any .nib
files, but loading .nib files is so convenient and powerful that almost every application
uses them. Unless the programmer intervenes, Cocoa applications automatically load a
main .nib file when launched.The main .nib file contains the objects that define the
application’s menu bar.The name of the main .nib file is usually MainMenu.nib, but the
name can be changed in Xcode.

The File’s Owner
When you need direct communication between objects unarchived from a .nib file and
objects outside the .nib, the .nib file’s owner enables that communication.The file’s
owner represents an object that is outside of the .nib file. Connections to the outlets and
actions of the file’s owner can be set in Interface Builder, but the actual object that is used
as the file’s owner is not specified until the .nib is loaded.

In many cases, direct connections between objects can be avoided by using notifica-
tions and the Responder Chain. For example, an object decoded from a .nib can register
to receive notifications from within its -(void)awakeFromNib implementation. Objects

ptg5934432

390 Chapter 31 Application Kit Views

can also send notifications to anonymous receivers or to the current first responder. Ob-
jects within a .nib can use the singleton NSApplication instance via the NSApp global
variable or calling [NSApplication sharedApplication].

The objects in a .nib file are usually unarchived into an application by calling the
+(BOOL)loadNibNamed:(NSString *)aNibName owner:(id)owner method of the
NSBundle class.The NSBundle class is explained in the context of the Bundles pattern in
Chapter 24,“Bundles.”

The +loadNibNamed:owner: method is actually declared in a category that is part of
the Application Kit.The Category pattern is discussed in Chapter 6,“Category.” Because
the +loadNibNamed:owner: method is added by the Application Kit, .nib files cannot be
unarchived by programs that do not link to the Application Kit even if the .nib file being
loaded doesn’t contain any objects that depend on the Application Kit.

The owner argument to +loadNibNamed:owner: is the object that is used as the file’s
owner for the .nib.Any connections made to the file’s owner within the .nib are made
to the owner specified when the .nib is loaded. Connections that cannot be made be-
cause of inconsistencies between the owner used when the .nib is loaded and the outlets
and actions specified for the file’s owner when the .nib was created are discarded.The
-awakeFromNib method is also sent to the file’s owner specified with -loadNibNamed:
owner:.The file’s owner is not technically part of the .nib, but a .nib’s owner can im-
plement -awakeFromNib to perform any logic needed after a .nib has been loaded. If
several .nibs are loaded using the same owner, that owner’s -awakeFromNib method is
called multiple times.

The application’s main .nib is loaded automatically by the NSApplication object
when the application is launched.The NSApplication object itself is the file’s owner of
the main .nib.

NSWindowController Overview
The NSWindowController class is often used as the file’s owner when loading a .nib
containing the definition of a window.The NSWindowController class can be used to
customize a window’s title, preserve the window’s position and size in the user’s defaults
database, cascade windows onscreen, and manage the window’s memory when the win-
dow is closed. NSWindowController isn’t used in every Application Kit-based application,
but it’s available for use when appropriate and can eliminate lines of code that would oth-
erwise be repeated in many applications. NSWindowController can be used to manage
windows that are created programmatically and windows loaded from .nibs.The
NSWindowController class can be used along with Cocoa’s document architecture classes
to implement flexible multidocument support in applications as detailed at http://
developer.apple.com/documentation/Cocoa/Conceptual/Documents/Documents.html.
Cocoa also provides the NSViewController class, which manages views. Like
NSWindowController, NSViewController can be used with views that are programmati-
cally created or loaded from .nibs.

ptg5934432

391Collaboration of Patterns Within Application Kit

Undo and Redo
The Application Kit includes a powerful and flexible system to implement undo and redo
operations by taking advantage of the Invocations pattern (Chapter 20,“Invocations”) to
record the messages sent to objects and play them back later. Many Application Kit classes
including text views already implement undo and redo.

The built-in undo and redo capability is provided by the NSUndoManager class.
NSUndoManager is actually part of the Foundation framework because nongraphical appli-
cations might include undoable operations. NSUndoManager uses instances of the
NSInvocation class to store Objective-C messages and their arguments.

By default, all the messages that are stored in an undo manager within one iteration
of the run loop are grouped into a single undoable operation.This is a sensible policy
because all the messages that result from a single user action should be undoable by a sin-
gle user action. Redo is automatically supported whenever an operation is undone. Just
as messages for undo are recorded when an operation is originally performed, undoing
the operation records messages that enable redo. Redo is essentially implemented as un-
doing undo.

Cocoa’s undo and redo design are explained in more detail at http://developer.apple.
com/documentation/Cocoa/Conceptual/UndoArchitecture/UndoArchitecture.html.

Managers
The NSUndoManager class is a perfect example of the Managers pattern. Objects that are
managers control the lifetime and accessibility of other objects.The NSUndoManager cre-
ates NSInvocation instances, stores them, invokes them as necessary, and destroys them
when they are no longer needed.When you implement undo and redo for your own
classes, you don’t need to worry about managing NSInvocation instances yourself be-
cause NSUndoManager takes care of the details.

The Application Kit provides several other managers to handle the details of common
View layer features.The NSFontManager class is a singleton that juggles all of the NSFont
instances your application may be using.As a behind the scenes optimization,
NSFontManager caches font information and makes sure that your application only has
one instance of NSFont to describe each font face and size that’s in use. NSFontManager
also provides interaction with the standard Cocoa Font panel. NSHelpManager is a single-
ton that handles the details of interoperation with Mac OS X’s standard online help sys-
tem.The NSInputManager class hides the details of interacting with the many different
text input techniques and language/cultural localizations supported by Mac OS X.
NSInputManager hides the details so well that very few Cocoa applications ever use the
class directly. NSLayoutManager converts Unicode characters into the graphical “glyphs”
that represent the characters on screen. Management of glyphs is one of the trickiest parts
of providing rich text display with support for many languages. It’s common for a single
character to be represented by multiple glyphs, and sometimes multiple characters are
condensed into a single glyph.The rules for mapping characters to glyphs and the sheer

ptg5934432

392 Chapter 31 Application Kit Views

number of glyphs needed make NSLayoutManager one of the workhorse Application Kit
classes.

Application Kit Limitations and Benefits
The Application Kit contains standard implementations of almost all the View layer fea-
tures that are common to standard Mac OS X desktop graphical applications.The pat-
terns employed by the Application Kit provide ample hooks and reuse opportunities to
let you extend standard features and provide application-specific features.With the excep-
tion of a few classes like NSView that are intended to be subclassed, most applications cre-
ate very few subclasses of Application Kit classes. Remember that subclassing is one of the
tightest forms of software coupling, and coupling is the enemy of flexible reuse.The mul-
titude of patterns in the Application Kit all exist in part to decouple objects, and the
scarcity of Application Kit subclasses in your applications demonstrates a level of success.

You should use the Application Kit when you want to create full-featured applications
that conform to Apple’s HIG for Mac OS X. It makes sense to use portions of the Appli-
cation Kit such as the NSApplication, NSRunLoop, and custom NSView subclasses even for
full-screen games that draw everything with Open GL and/or Core Animation. However,
the Application Kit is not well-suited to implementing complex user interfaces that differ
substantially from Apple’s HIG.The Application Kit doesn’t exactly enforce the standard
look and feel, but implementing alternate user interfaces with the Application Kit requires
tremendous subtlety and sophistication.The design of the Application Kit makes it easy to
produce standard applications and difficult to deviate from standards.

ptg5934432

32
Bindings and Controllers

Chapter 29,“Controllers,” describes the roles of Coordinating Controllers and Mediat-
ing Controllers within Model View Controller design pattern that permeates Cocoa. Co-
ordinating Controllers initialize, load, and save the Model and View subsystems. Mediating
Controllers manage the flow of data between view objects and model objects to mini-
mize coupling between the subsystems. Cocoa supplies the NSApplication,
NSDocumentController, NSDocument, NSWindowController, and NSViewController
classes among others to provide reusable implementations of most common coordinating
tasks. Cocoa also includes NSObjectController, NSArrayController,
NSTreeController, and NSUserDefaultsController, which provide reusable imple-
mentations of some common mediating tasks.

Cocoa’s reusable Controller subsystem classes go a long way toward simplifying the de-
sign and development of traditional “glue” code needed to meld a model and a view into
a cohesive application.The MYShapeDraw example in Chapter 29 shows how patterns like
Outlets,Targets and Actions, Notifications, and Data Sources are used in combination
with the Controllers pattern to implement full-featured Controller subsystems. However,
starting with Mac OS X version 10.3, Cocoa Bindings technology has enabled a higher
level of abstraction for Mediating Controllers. Bindings further reduce the amount of
code needed to implement Controller subsystems and can be configured in Interface
Builder to nearly eliminate code for mediating tasks.

Role of Bindings and Controllers
Bindings and Controllers work side-by-side with other patterns like Targets and Actions,
Data Sources, and Notifications.You can use Bindings to reduce the amount of mediating
“glue” code in your applications, but as always, there is a trade-off. Look at each applica-
tion design situation on a case-by-case basis to decide which approach makes the most
sense.This chapter provides the information you’ll need to evaluate whether to use Bind-
ings and Controllers or other patterns or some mixture.

Bindings keep model objects and view objects synchronized so that changes in one
subsystem are automatically reflected in the other. Like almost all Cocoa technology,

ptg5934432

394 Chapter 32 Bindings and Controllers

floatValue

MYModel

content

NSObjectController

floatValue

NSTextField

bind floatvalue to
selection.floatvalue

View:

Model:

Controller:

Figure 32.1 Binding within a Model View
Controller application

bindings are implemented to reduce or eliminate coupling between objects. Bindings are
based on the string names of object properties as opposed to compiled addresses or off-
sets, and bindings are configurable at design time and runtime.

NSController classes are valuable components of any Cocoa application that uses the
Model View Controller pattern, whether bindings are used. In contrast, bindings should
only be used in combination with controller objects like NSObjectController and
NSArrayController.Whenever two objects are bound, at least one of them should be a
controller. Controllers can be bound to each other.View objects can be bound to a con-
troller. Model objects can be bound to a controller.Avoid binding View subsystem objects
directly to Model subsystem objects. Don’t bind view objects together or model objects
together.

Note
There is nothing in the bindings technology that prevents direct binding from View subsys-
tem objects to Model subsystem objects or binding View objects to other view objects or
binding model objects together. However, direct bindings without the intervention of a con-
troller are an anti-pattern as explained in “The Importance of Using Controllers with Bind-
ings” section of this chapter.

The simplest example of binding within a Model View Controller application is shown
in Figure 32.1, which depicts a text field with has its own floatValue property bound to
the floatValue property of whatever object is selected by an instance of
NSObjectController. Chapter 29 explains the concept of selection within controllers.
The NSObjectController’s content outlet is set to an instance of MYModel, which pro-
vides a floatValue property.The content of an NSObjectController instance is just one
object unlike an NSArrayController which uses an array of objects as its content.The se-
lection provided by an NSObjectController is always the content object.

ptg5934432

395Role of Bindings and Controllers

View:

Model:

Controller:

floatValue

Model

content

NSObjectController

floatValue

NSTextField

floatValue

NSSlider

selection.floatvalueselection.floatValue

Figure 32.2 More binding within a Model View Controller application

The binding shown in Figure 32.1 keeps the floatValue of the text field synchro-
nized with the floatValue of the MYModel instance. If the value in the text field is
changed by the user, the change is reflected in the bound MYModel instance. Just as impor-
tantly, if the value in the bound MYModel instance is changed, the bound text field is auto-
matically updated.

A slightly more complex binding is shown in Figure 32.2. Both a text field and a slider
are bound to the floatValue property of a MYModel instance. If the user moves the slider,
the floatValue of the MYModel instance is updated, which in turn causes the text field to
be updated. If the user enters a value in the text field, the floatValue of the MYModel in-
stance is updated, which in turn causes the slider to be updated. If the floatValue of the
MYModel instance is changed programmatically through an appropriate Accessor method,
both the slider and the text field are automatically updated to display the new value.

Bindings are used in much more elaborate ways than shown in Figure 32.1 and Figure
32.2.The value of bindings is magnified when you have more complex models and more
complex views. Core Data models, complex views, and the NSController classes integrate
well with bindings and provide opportunities to almost eliminate traditional controller
glue code. Nevertheless, the bindings technology is not dependent on Core Data or com-
plex views, and all of the Cocoa technologies can be used without bindings.

Bindings Avoid Coupling
Bindings are defined by string keys that identify the objects and properties to bind. Key
Value Coding (described in Chapter 19,“Associative Storage”) provides the underlying
mechanism used to obtain the runtime values of properties from associated keys.The use
of string keys avoids any need for the objects that are bound together to know anything
about each other.Any two properties of any two objects can be bound together, and as

ptg5934432

396 Chapter 32 Bindings and Controllers

long as properties corresponding to the string keys can be found at runtime, the binding
will function. String keys minimize coupling between bound objects and allow dynamic
changes at runtime. For example, if you bind a text field’s value to a property of an array
controller’s selection, the text field will be automatically updated any time the selection
changes or the value of the selected object’s bound property changes. In other words, the
text field isn’t bound to any specific object. It’s bound to whatever object is selected by
the controller at any particular moment.

Note
Many bindings provide optional placeholder values. For example, when an object’s property
is bound to the selection of an array controller, it’s possible to specify a placeholder value
to use when there is no selection and another placeholder to use when there is multiple
selection.

String keys provide even more flexibility by supporting key paths.A key path is a series
of '.' separated keys that specify a sequence of properties to access. For example, if each
employee object has a name property and a department property, and each department
object has a manager who is also an employee, you could bind the value of a text field to
the “selection.department.manager.name” key path of an array controller.At runtime,
the text field’s value is then synchronized to the name of the manager of the department
of the selected employee.The selection is an employee object.The binding asks for the se-
lected employee’s “department” property. It then asks for the department’s “manager”
property. It then asks for the manager’s “name” property.

It’s also possible to use operators, which provide synthetic properties. For example, if
each department has an array property called “employees,” you can create a binding to
“selection.department.employees.@count”.The @count operator returns the number
of objects in the array obtained from the employees property of the department property of
the selected employee.A description of the operators supported for use with Cocoa collec-
tion classes is available at http://developer.apple.com/documentation/Cocoa/Conceptual/
KeyValueCoding/Concepts/ArrayOperators.html.

The Importance of Using Controllers with Bindings
Chapter 1,“Model View Controller,” made the case that application data shouldn’t be
stored in the user interface. Instead, the Model View Controller design pattern partitions
the application and stores application in a Model that’s independent of any View. If you
bind the properties of two View objects directly together, you are most likely diluting the
benefits of Model View Controller design pattern. In the worst case, you’re right back to
storing crucial application data in the user interface.Therefore, it’s best to bind View ob-
jects to other objects outside the View layer.

But why not bind View objects directly to Model objects? One reason is that Cocoa’s
NSController subclasses all implement the NSEditorRegistration informal protocol.
Informal protocols are explained in Chapter 6,“Category.” The NSEditorRegistration
protocol provides methods for view objects to inform a controller when editing is underway.

ptg5934432

397Collaboration of Patterns Within Bindings and Controllers

It’s important for controllers to have that information so that partial edits can be validated
and changes can be saved without requiring the user to explicitly commit every edit that’s
started. NSControllers keep track of which view objects have unfinished edits and can
force the view objects to request completion of each edit or discard the intermediate val-
ues. For example, if a user is typing in a text field and then closes the window containing
the text field, the relevant NSControllers update the Model with the contents of the text
field.The Model update causes the document to be marked as needing to be saved and
then you are offered a chance to save changes before the window closes. If you don’t in-
clude a controller in each binding between a View object and a Model object, then you
must replace the NSEditorRegistration protocol functionality, and Model objects are a
poor place to implement requests for completion of edits taking place in the View.There-
fore, you need a controller to mediate between the View and the Model.

Note
Chapter 29 contains an example class similar to NSArrayController to
show how and why reusable controller objects work. The example includes a
MYShapeEditorDocumentEditing informal protocol similar to NSEditorRegistration
and shows how the protocol enables coordination of changes between Model View Controller
subsystems.

Another reason to include controllers in your bindings is that NSControllers keep
track of the current selection and sometimes provide placeholder values for bound prop-
erties. Being able to bind to the current selection as opposed to a specific object makes
bindings very flexible.

Finally, spaghetti bindings are as much of a problem as spaghetti code and lead to simi-
lar maintenance hassles.The discipline of including NSControllers in every binding clari-
fies the relationships between objects and serves as visual documentation for bindings. If
you inspect a controller object in Interface Builder, there is a visible list of all bindings that
involve that controller object, as shown in Figure 32.3. It’s straightforward to inspect the
controller objects whenever you open an unfamiliar .nib file. If bindings exist between
other objects, the only way you can find them is by inspecting each end every object in
the .nib. Religiously including controllers in bindings is a wise design guideline and
serves the same purpose as coding standards: it reduces the number of places programmers
need to look to understand the system.

Collaboration of Patterns Within Bindings and
Controllers
Once the behavior of binding has been explained, programmers commonly want to
know how bindings work.Although bindings are an advanced topic, there’s really no
magic. Interface Builder sends -(void)bind:(NSString *)binding toObject:
(id)observableController withKeyPath:(NSString *)keyPath options:

(NSDictionary *)options messages when it establishes bindings, and you can send
the same messages to establish bindings programmatically.

ptg5934432

398 Chapter 32 Bindings and Controllers

Figure 32.3 Inspecting bindings with
Interface Builder

KeyValue Coding and KeyValue Observing technologies underlie bindings. KeyValue
Coding is briefly described in Chapter 19 and again in Chapter 30,“Core Data Models.” It
is a variation of the Associative Storage pattern, which lets you access the properties of ob-
jects as if every object were a simple dictionary of key/value pairs. See Apple’s conceptual
documentation for KeyValue Coding at http://developer.apple.com/documentation/
Cocoa/Conceptual/KeyValueCoding/KeyValueCoding.html. KeyValue Observing is a
variation of the Notification pattern from Chapter 14,“Notifications.” KeyValue Observ-
ing monitors the values of object properties on behalf of other objects that are interested
observers.The underlying implementation of KeyValue Observing is somewhat different
from the Notification pattern, but in essence, KeyValue Observing serves the same func-
tion: Register to receive messages when something of interest happens.Apple’s conceptual
documentation for KeyValue Observing is at http://developer.apple.com/documentation/
Cocoa/Conceptual/KeyValueObserving/KeyValueObserving.html.

KeyValue Observing is implemented by the NSKeyValueObserving informal protocol,
which adds methods to NSObject from which almost all Cocoa objects inherit. Hidden
deep behind the scenes, Cocoa maintains a collection of some kind that lists all of the ob-
jects that currently observe other objects’ properties.Apple is deliberately vague about the
specific implementation of that collection because it wants to preserve the flexibility to
change the implementation in the future.You add an object to the list of objects that
observe a property by calling NSKeyValueObserving’s -addObserver:forKeyPath:
options:context: method.To remove an observer from the list, use
NSKeyValueObserving’s -removeObserver:forKeyPath:.

ptg5934432

399Collaboration of Patterns Within Bindings and Controllers

What Happens in -bind:toObject:withKeyPath:options:?
Sending the -bind:toObject:withKeyPath:options: message to an object creates a bi-
directional set of Key Value Observing associations. Somewhere inside Apple’s
-(void)bind:(NSString *)binding toObject:(id)observableController

withKeyPath:(NSString *)keyPath options:(NSDictionary *)options implementa-
tion, the following code or something similar is executed:

[self addObserver:observableController forKeyPath:binding

options:(NSKeyValueObservingOptionNew|NSKeyValueObservingOptionOld)

context:nil];

[observableController addObserver:self forKeyPath:keyPath

options:(NSKeyValueObservingOptionNew|NSKeyValueObservingOptionOld)

context:nil];

There isn’t much more involved with the establishment of bindings.Apple documents
the available options at http://developer.apple.com/documentation/Cocoa/Reference/
ApplicationKit/Protocols/NSKeyValueBindingCreation_Protocol/Reference/Reference.
html. If a key path has multiple '.' separated properties, -bind:toObject:
withKeyPath:options: adds observers for all of the individual properties in the path as
needed.You can get information about existing bindings via the -(NSDictionary *)
infoForBinding:(NSString *)binding method. Sending the -(void)unbind:
(NSString *)binding message results in corresponding calls to NSKeyValueObserving’s
-(void)removeObserver:(NSObject *)anObserver forKeyPath:(NSString *)

keyPath method.
Given that bindings are a relatively thin veneer on Key Value Observing, the magic of

bindings resides within Key Value Observing.

How Does Key Value Observing Detect Changes to Observed
Properties so That Observing Objects Can Be Notified?
The answer is that changes to observed properties need to be bracketed by calls to
-(void)willChangeValueForKey:(NSString *)key and -(void)didChangeValueForKey:

(NSString *)key. If you write your own code to programmatically modify the values of
observed properties, you may need to explicitly call -willChangeValueForKey: and
-didChangeValueForKey: like the following method that sets the “counter” property
without calling an appropriate Accessor method:

- (void)incrementCounterByInt:(int)anIncrement {

[self willChangeValueForKey:@"counter"];

counter = counter + anIncrement;

[self didChangeValueForKey:@"counter"];

}

Inside NSObject’s default implementation of the NSKeyValueObserving informal pro-
tocol, -willChangeValueForKey: and -didChangeValueForKey: are implemented to
send messages to registered observers before and after the property value changes.

ptg5934432

400 Chapter 32 Bindings and Controllers

It’s not necessary to explicitly call -willChangeValueForKey: and
-didChangeValueForKey: within correctly named Accessor methods.When you use
Objective-C 2.0’s @synthesize directive to generate Accessor method implementations, the
details are handled for you. Even if you hand-write Accessor methods, Cocoa provides auto-
matic support for KeyValue Observing through a little bit of Objective-C runtime manipu-
lation briefly described at http://developer.apple.com/documentation/Cocoa/Conceptual/
KeyValueObserving/Concepts/KVOImplementation.html.At runtime, Cocoa is able to
replace your implementation of each Accessor method with a version that first calls
-willChangeValueForKey:, then calls your implementation, and finally calls
-didChangeValueForKey:.

When Key Value Coding’s -(void)setValue:(id)value forKey:(NSString *)key
or -(void)setValue:(id)value forKeyPath:(NSString *)keyPath methods are used
to modify an observed property, the appropriate Accessor methods (if any) are called, and
the Accessor methods take care of calling -willChangeValueForKey: and -did-

ChangeValueForKey:. If there aren’t any available Accessor methods, -setValue:forKey:
and -setValue:forKeyPath: call -willChangeValueForKey: and -didChangeValueForKey:

directly. In summary, you only need to explicitly call -willChangeValueForKey: and
-didChangeValueForKey: if you change the value of an observed property without using
Key Value Coding and without using an appropriately named Accessor method.

Note
As recommended in Chapter 10, “Accessors,” if you consistently use Accessor methods to
access or mutate properties, you will save yourself a lot of work. In addition to the memory
management advantages of using accessors, you’ll also avoid the need to ever explicitly call
-willChangeValueForKey: and -didChangeValueForKey:.

What Message Is Sent to Notify Registered Observers When an
Observed Property’s Value Is Changed?
By default, the -didChangeValueForKey: method sends the
- (void)observeValueForKeyPath:(NSString *)keyPath ofObject:(id)object

change:(NSDictionary *)change context:(void *)context message to all
registered observers after an observed property changes value.You can configure the
-willChangeValueForKey: method to send notification before each change if you specify
the NSKeyValueObservingOptionPrior option in the options: argument used to regis-
ter an observer.The options: argument also governs whether the change notification
includes only the previous value, only the new value, or both the old and new values.

Most Cocoa View subsystem classes already implement -observeValueForKeyPath:
ofObject:change:context:.You need to implement that method in your custom View
objects if you want them to work correctly with bindings.You may also need to imple-
ment -observeValueForKeyPath:ofObject:change:context: in model objects if you
want to perform special logic whenever observed properties change. Unfortunately, imple-
menting -observeValueForKeyPath:ofObject:change:context: is one of the least
elegant aspects of using Cocoa.

ptg5934432

401Collaboration of Patterns Within Bindings and Controllers

Note
You are able to specify an Objective-C selector that identifies the message you want to re-
ceive when you use Cocoa’s NSNotificationCenter. Selectors are explained in Chap-
ter 9, “Perform Selector and Delayed Perform,” and NSNotificationCenter is explained
in Chapter 14. In contrast Key Value Observing always notifies observers via the
-observeValueForKeyPath:ofObject:change:context: method.

You almost invariably have to implement -observeValueForKeyPath:
ofObject:change:context: by using string comparisons to determine what logic to
invoke based on which key path changed.The following code is a trivial example imple-
mentation of -observeValueForKeyPath:ofObject:change:context::

- (void)observeValueForKeyPath:(NSString *)keyPath

ofObject:(id)object change:(NSDictionary *)change

context:(void *)context

{

if ([keyPath isEqualToString:@"floatValue"]) {

NSNumber *newValue = [change

objectForKey:NSKeyValueChangeNewKey];

if(0.0 > [newValue floatValue]) {

// Perform special logic for negative values here

}

[self setNeedsDisplay:YES];

}

// be sure to call the super implementation

[super observeValueForKeyPath:keyPath

ofObject:object change:change

context:context];

}

The need to perform explicit string comparisons like [keyPath isEqualToString:
@"floatValue"] in -observeValueForKeyPath:ofObject:change:context: is inele-
gant. It’s easy to imagine an implementation of -observeValueForKeyPath:
ofObject:change:context: that has to perform hundreds of string comparisons after
every observed property change to control application logic. Objective-C selectors and
the Perform Selector pattern from Chapter 9 exist to make string comparisons in branch
logic unnecessary. It’s unfortunate that Apple didn’t take advantage of the pre-existing
patterns like NSNotification and the use of selectors when implementing Key Value
Observing.

Note
The Associative Storage pattern is a prominent building block of Key Value Coding,
Key Value Observing, and Bindings. Dictionaries containing key/value pairs specify the
options to binding methods. A dictionary provides information about changes in

ptg5934432

402 Chapter 32 Bindings and Controllers

-observeValueForKeyPath:ofObject:change:context:. And Key Value Coding is it-
self a variation of the Associative Storage pattern.

One way to make -observeValueForKeyPath:ofObject:change:context: a little
bit more elegant is to use key path strings as notification names as follows:

- (void)observeValueForKeyPath:(NSString *)keyPath

ofObject:(id)object change:(NSDictionary *)changeDictionary

context:(void *)context

{

// copy the change dictionary and add the context to it

NSMutableDictionary *infoDictionary = [NSMutableDictionary

dictionaryWithDictionary:changeDictionary];

[infoDictionary setObject:context forKey:@"MYBindingContext"];

// post a notification to interested observers using the key path as

// the notification name

[[NSNotificationCenter defaultCenter] postNotificationName:keyPath

object:object userInfo:infoDictionary];

// be sure to call the super implementation

[super observeValueForKeyPath:keyPath

ofObject:object change:change

context:context];

}

If you use the approach of converting Key Value Observation notifications into
NSNotifications, you can have any number of observers that each register a different se-
lector for the same key path. Unfortunately, the NSNotification approach has problems
of its own. Using key path strings as notification names is not ideal because key paths are
specified in Interface Builder and must be duplicated exactly in your code that registers
for notifications.A simple change in Interface Builder could necessitate changes to notifi-
cation code in multiple disparate places within your application.The compiler can’t de-
tect errors in the key path strings, so you must test at runtime to detect key path errors.
Nevertheless, NSNotificationCenter provides at least one way to circumvent the use of
explicit string comparisons in your own code.

Bindings and Controllers Limitations and
Benefits
A common criticism of bindings is that there is too much magic happening that the pro-
grammer can’t see.This chapter dispels some of the magic. Bindings are hard to document
because they typically aren’t visible in code.The same criticism can be made for Targets,
Actions, and Outlets that are configured in Interface Builder. However, due in part to the
flexibility and potential complexity of bindings, the need to document bindings is even
greater than the need to document Targets,Actions, and Outlets.

ptg5934432

403Bindings and Controllers Limitations and Benefits

The use of string keys avoids coupling between objects.Any two properties of any two
objects can bind together as long as properties corresponding to the string keys can be
found at runtime. Of course, the corresponding down side is that the compiler can’t de-
termine correctness of bindings.You have to wait until runtime to test bindings.

Bindings interoperate with features like Value Transformers that aren’t covered in
this chapter (see http://developer.apple.com/documentation/Cocoa/Conceptual/
ValueTransformers/Concepts/TransformersAvail.html). Bindings have the potential to
replace code that would otherwise need to be written. Chapter 29 culminated with an
example use of Bindings.That example highlights the code that’s replaced when bindings
are used.

ptg5934432

Resources

This appendix contains a list of resources Mac developers should find handy. Here, you’ll
find our favorite books, and yes, even links to some of Apple’s documentation that we feel
is a must-read for newcomers to Mac development.

Apple Documentation
While Apple’s Technical Publications (TechPubs) group spits out over 10,000 pages of
documentation on everything ranging from Mac and iPhone development to managing
OS X Server, here are the docs we think every Mac developer should take a peek at:

Apple Human Interface Guidelines (better known as “The HIG”) http://developer.
apple.com/documentation/UserExperience/Conceptual/AppleHIGuidelines/
OSXHIGuidelines.pdf

Application Kit Framework Reference http://developer.apple.com/documentation/
Cocoa/Reference/ApplicationKit/ObjC_classic/AppKitObjC.pdf

Cocoa Fundamentals Guide http://developer.apple.com/documentation/
Cocoa/Conceptual/CocoaFundamentals/CocoaFundamentals.pdf

Core Data Programming Guide http://developer.apple.com/documentation/Cocoa/
Conceptual/CoreData/CoreData.pdf

Foundation Framework Reference http://developer.apple.com/documentation/Cocoa/
Reference/Foundation/ObjC_classic/FoundationObjC.pdf

Garbage Collection Programming Guide http://developer.apple.com/documentation/
Cocoa/Conceptual/GarbageCollection/GarbageCollection.pdf

Interface Builder User Guide http://developer.apple.com/documentation/
DeveloperTools/Conceptual/IB_UserGuide/IB_UserGuide.pdf

Key-Value Coding Programming Guide http://developer.apple.com/documentation/
Cocoa/Conceptual/KeyValueCoding/KeyValueCoding.pdf

Object-Oriented Programming with Objective-C http://developer.apple.com/
documentation/Cocoa/Conceptual/OOP_ObjC/OOP_ObjC.pdf

The Objective-C 2.0 Programming Lanuguage http://developer.apple.com/
documentation/Cocoa/Conceptual/ObjectiveC/ObjC.pdf

Reference Library http://developer.apple.com/referencelibrary/

ptg5934432

Xcode Overview http://developer.apple.com/documentation/DeveloperTools/Conceptual/
Xcode_Overview/Contents/Resources/en.lproj/Xcode_Overview.pdf

Xcode Project Management Guide http://developer.apple.com/documentation/
DeveloperTools/Conceptual/XcodeProjectManagement/Xcode_Project_Management.pdf

Xcode Workspace Guide http://developer.apple.com/documentation/DeveloperTools/
Conceptual/XcodeWorkspace/Xcode_Workspace.pdf

Books
The following books are recommended reading both for Mac development and for learn-
ing more about design patterns:

The C Programming Language, Second Edition, by Brian W. Kernighan, Dennis M.
Ritchie (ISBN: 978-0-131-10362-7).

Cocoa Programming for Mac OS X,Third Edition, by Aaron Hillegass (ISBN: 978-0-
321-50361-9).

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson, John M.Vlissides (ISBN: 978-0-201-63361-0).

Head First Design Patterns, by Elisabeth Freeman, Eric Freeman, Bert Bates, Kathy
Sierra (ISBN: 978-0-596-00712-6).

The iPhone Developer’s Cookbook, by Erica Sadun (ISBN: 978-0-321-55545-8).

OpenGL ES 2.0 Programming Guide, by Aaftab Munshi, Dan Ginsburg, Dave
Shreiner (ISBN: 978-0-321-50279-7).

OpenGL Programming on Mac OS X, by Robert P. Kuehne, J. D. Sullivan (ISBN:
978-0-321-35652-9).

Programming in Objective-C 2.0, Second Edition, by Stephen G. Kochan (ISBN: 978-
0-321-56615-7).

Xcode 3 Unleashed, by Fritz Anderson (ISBN: 978-0-321-55263-1).

Mailing Lists
The following mailing lists and groups provide a great wealth of information for Mac de-
velopers of all skills:

Apple’s cocoa-dev mailing list—http://lists.apple.com/mailman/listinfo/cocoa-dev

Apple’s objc-language mailing list—http://lists.apple.com/mailman/listinfo/objc-language

Apple’s xcode-users mailing list—http://lists.apple.com/mailman/listinfo/xcode-users

OmniGroup’s MacOSX-dev list—http://www.omnigroup.com/mailman/listinfo/
macosx-dev

Uli Kusterer’s Mac-GUI-Dev mailing list—http://tech.groups.yahoo.com/group/
mac-gui-dev/

405Mailing Lists

ptg5934432

406 Appendix Resources

User Groups
CocoaHeads user groups can be found in most major cities in the U.S. and also in
nearly 30 cities around the world.Whether you are looking for help or wanting to
present some code you’re working on, there’s most likely a CocoaHeads near you—
http://www.cocoaheads.org.

Online Groups
iPhone Application Developers (Google Groups) http://groups.google.com/group/
iphoneappdev

In addition to CocoaHeads, many Mac user and developer groups can be found in
the online groups from Google and Yahoo!. Just go to the group pages listed here
and search for groups on Cocoa, iPhone, and/or Mac development—http://groups.
google.com and http://groups.yahoo.com.

Conferences/Training
Apple’s Worldwide Developer’s Conference (WWDC). Moscone West, San
Francisco, California (typically held the second week of June). http://developer.apple.
com/wwdc

Big Nerd Ranch. Run by Aaron Hillegass, former NeXT and Apple employee and
best-selling author of Cocoa Programming for Mac OS X. Based in Atlanta, Georgia,
the Big Nerd Ranch offers training for Cocoa and iPhone developers of all levels.
http://www.bignerdranch.com

C4. Organized by Jonathan “Wolf ” Rentzsch, typically held in Chicago, Illinois, in
August or September. Check the website for updates. http://rentzsch.com/c4

NSConference. Organized by Steve “Scotty” Scott and Tim Isted in Hatfield, UK.
The first conference was held April 2009.At the time of this printing, the
conference organizers are planning to hold NSConference in the future and
possibly in more locations, so check the web site. http://www.nsconference.com

ptg5934432

A
ABPeoplePickerView class, 272
Abstract Factory design pattern, 282
-acceptsFirstResponder message, 222
accessing shared instances, 150-152
accessors

benefits, 122
counters, 111-114
deadlocks, 112
defined, 107-110
examples, 119-121
garbage collection, 110
generating, 108
get accessors, 108-109
limitations, 122
locks, 112
memory management, 114
multithreading, 114
mutability, 115-117
nonobject properties, 110
NSKeyValueCoding informal

protocol, 117-118
NSManagedObject subclasses,

373-375
object properties, 110
Objective-C properties, 118-119
outlets, 118
overriding, 115
reference counted memory

management, 108, 110-111
returning nonobject values by

reference, 120-121
set accessors, 109

Accessors design pattern, 107-110
accessory views, 272
action message, 7
-action method, 212
actions, 212-215, 387
addressable memory, 31
algorithms, 43
-allObjects method, 86, 91
allocating objects, 36
Anderson, Fritz, Xcode 3 Unleashed, 405
animation, 386

ptg5934432

anonymous category, 68
anonymous objects, 77
Anonymous Type design pattern, 77-82, 84
Apple

Enterprise Objects Framework
(EOF), 367

Human Interface Guidelines
(HIG), 380

mailing lists, 405
Objective-C runtime, 102
Technical Publications group, 404
Worldwide Developer’s Conference

(WWDC), 406
Apple events, 13
Apple Technical Documentation

Apple Human Interface Guidelines
PDF, 404

Application Kit Framework Reference
PDF, 404

Cocoa Fundamentals Guide PDF, 404
Core Data Programming Guide, 404
Foundation Framework

Reference, 404
Garbage Collection Programming

Guide PDF, 404
Interface Builder User Guide

PDF, 404
Key-Value Coding Programming

Guide, 404
Object-Oriented Programming with

Objective-C PDF, 404
Objective-C 2.0 Programming

Language PDF, 404
Reference Library, 404
Xcode Overview PDF, 405
Xcode Project Management Guide

PDF, 405
Xcode Workspace Guide PDF, 405

Applescript
Apple events, 13
commands, 61
dynamic creation, 61

Application Kit
benefits, 392
diagram, 6

effective use of, 379
events, 381
Human Interface Guidelines

(HIG), 380
limitations, 392
Managers design pattern, 391-392
Model View Controller (MVC)

pattern, 6, 379
NSApplication class, 381
NSFontManager class, 391
NSHelpManager class, 391
NSInputManager class, 391
NSLayoutManager class, 391-392
NSResponder class, 381-382
NSRunLoop class, 381
NSView class, 385-386
NSWindow class, 383-385
NSWindowController class, 390
redo feature, 391
Responder Chain design pattern,

382-385
responders, 381-382
run loops, 381
undo feature, 391
View subsystem, 379-380
views, 385-386

Application Kit Framework Reference PDF
(Apple Technical Documentation), 404

archiving
defined, 123
Interface Builder, 123
NSKeyedArchiver class, 127
relationships, 123
XML files, 123

Archiving design pattern, 123-134, 388-390
archiving objects, 61
arguments

_cmd, 246
messages, 78
self, 246

assemblies, 275
Associative Storage design pattern, 167,

232-241
asynchronous notifications, 169-171
attributes (Core Data Model), 367

408 anonymous category

ptg5934432

automatic garbage collection, 36-37, 110
-autorelease method, 237
-awakeFromFetch method, 372-373
-awakeFromInsert method, 372-373
-awakeFromNib method, 72-73, 133-134

B
Bates, Bert, Head First Design Patterns, 405
-becomeFirstResponder message, 222
Big Nerd Ranch, 406
binary data, 123
bindings

benefits, 402
controllers, 361, 394, 396-397
defined, 8, 99
direct bindings, 394
guidelines, 394
how they work, 397-402
Interface Builder, 397
Key Value Coding design pattern,

398, 400
Key Value Observing design pattern,

398-402
late-binding, 99, 106
limitations, 402
Model View Controller (MVC)

application, 394-395
objects, 8
operators, 396
placeholder values, 396-397
spaghetti bindings, 397
string keys, 395-396, 403
testing, 403
uses, 8
Value Transformers, 403

Bindings design pattern, 393-402
blocks feature (Objective-C), 321
bounds (views), 385
browsing view hierarchy, 197-205
bundles

compressed bundles, 277
Contents folder, 276
Copy Bundle Resources build phase

(Xcode), 277-278
defined, 276

distributing
CD-ROM, 277
disk images, 277
downloads, 277

Info.plist file, 276
Mac OS X bundle directory

hierarchy, 276
MacOS folder, 276
packages, 276-277
Resources folder, 276

Bundles design pattern, 275-281

C
C programming language, 135
The C Programming Language, Second

Edition, (Kernighan and Ritchie), 405
CALayer class, 51
categories

anonymous category, 68
benefits, 74
code organization, 69
creating, 65-67
Framework division, 74
informal protocols, 67-68, 71-73
interfaces, 65
limitations, 74-75
methods, 68, 70-71, 74-75
naming, 65
NSAccessibility, 72
NSClassDescription, 70
NSComparisonMethods, 70
NSDelayedPerforming, 70
NSKeyValueCoding, 70
NSKeyValueCodingException, 70
NSKeyValueCodingExtras, 70
NSMainThreadPerformAdditions, 70
NSNibAwaking, 71-74
NSNibLoading, 74
NSScriptClassDescription, 71
NSScripting, 70
NSScriptingComparisonMethods, 71
NSScriptObjectSpecifiers, 71
NSScriptValueCoding, 71
software maintenance, 76
subclassing, 67, 69
unnamed category, 343

409categories

ptg5934432

Category design pattern
benefits, 74-76
examples, 70-74
limitations, 74-75
Objective-C, 63
subclassing, 63
uses, 63-69

CD-ROM, for bundle distribution, 277
C4, 406
Chain of Responsibility design pattern, 220
class clusters

creating, 285-287
initializers, 287
NSString, 284-285
placeholders, 287
primitive methods, 283, 288
public interface classes, 288
subclassing public interface class,

288-300
Class Clusters design pattern

benefits, 300-301
implementation, 283-285
limitations, 300-301
MYClassCluster class, 285-287
MYShortString class, 289-300
subclassing public interface class,

288-300
uses, 282-283

Class Extensions, 68
class methods, 29-30
class variables, 236
classes

ABPeoplePickerView, 272
CALayer, 51
categories

anonymous, 68
code organization, 69
creating, 65-67
Framework division, 74
informal protocols, 67-68, 71-73
interfaces, 65
limitations, 74-75
methods, 68, 70-71, 74-75
naming, 65
NSAccessibility, 72
NSClassDescription, 70

NSComparisonMethods, 70
NSDelayedPerforming, 70
NSKeyValueCoding, 70
NSKeyValueCodingException, 70
NSKeyValueCodingExtras, 70
NSMainThreadPerformAdditions, 70
NSNibAwaking, 71-74
NSNibLoading, 74
NSScriptClassDescription, 71
NSScripting, 70
NSScriptingComparisonMethods, 71
NSScriptObjectSpecifiers, 71
NSScriptValueCoding, 71
software maintenance, 76
subclassing, 67, 69

collection classes
heterogeneous containers, 83
id type, 83
immutable form, 83
mutable form, 83
operators, 396
storage, 83

coupling, 176, 178
declaring, 64
decorator classes, 271-272
decoupling, 53, 62
Designated Initializer, 33-35, 38-42
IMAVManager, 335
implementing, 64-65
initializers, 32-35
InvocationController, 244
ISyncManager, 335
JunctionAppController, 319-320
MYBarView, 179-180
MYClassCluster, 285-287
MYColorLabeledBarCell, 260-261
MYDirectoryChartGenerator,

303-306
MYEditorShapeView, 353-355
MYEmployee, 23-26
MYGameHighScoreManager,

149-152, 330-335
MYGameNetworkHighScoreManager,

149, 151
MYGraphic, 192-195
MYGroup, 192-195

410 Category design pattern

ptg5934432

MYJunction, 314-320
MYLabeledBarCell, 258-259
MYLinkedList, 92-96
MYMediatingController, 355-360
MYNotification, 160-161
MYNotificationCenter, 162-167
MYPlayerController, 216-217
MYShape, 339-340
MYShapeEditor, 342-346
MYShapeEditorDocument, 343-353
MYShapeView, 340-342
MYShortString, 289-300
MYSongPlayer, 216-218
MYValueLimitColorChanger,

186-188
NSActionCell, 211
NSAffineTransform, 264-265
NSAlert, 272
NSAppleEventManager, 335
NSApplication, 6, 13, 148, 157,

221, 381
NSArchiver, 256-257
NSArray, 83, 104, 120, 264
NSArrayController, 8, 338, 346,

360-363, 394
NSAttributedString, 236, 271
NSAutoreleasePool, 237
NSBezierPath, 120
NSBitmapImageRep, 120, 309
NSBox, 7, 271
NSBrowser, 178
NSBundle, 60-61, 278-281
NSButton, 121
NSButtonCell, 120
NSCachedImageRep, 309
NSCalendarDate, 264
NSCell, 8, 121, 265-267
NSCFString, 285
NSCIImageRep, 309
NSClipView, 268, 271
NSCollectionView, 267
NSColor, 121, 265
NSColorPanel, 157, 272, 307, 310-311
NSControl, 7-8, 211
NSController, 8, 360, 362, 394-397
NSCountedSet, 83

NSCustomImageRep, 309
NSData, 120, 282
NSDate, 264
NSDecimalNumber, 264
NSDefaultRunLoopMode, 102
NSDFileManager, 240
NSDictionary, 83, 105, 143, 232-233,

236, 240-241
NSDistributedNotificationCenter, 123
NSDocument, 11-12, 345
NSDocumentController, 11, 157
NSDrawer, 221
NSEntityDescription, 369-370
NSEnumerator, 86
NSEPSImageRep, 309
NSEvent, 381
NSFileHandle, 264-265
NSFileManager, 236, 328, 335-336
NSFont, 265, 329
NSFontManager, 157, 328-329,

335-336, 391
NSFontPanel, 157, 272
NSFormatter, 120
NSHelpManager, 157, 335, 391
NSImage, 308-309
NSImage class, 307
NSImageView, 268
NSInputManager, 328, 335-336, 391
NSInvocation, 120, 242-248
NSKeyedArchiver, 127, 133
NSKeyedUnarchiver, 127, 133
NSLayoutManager, 9, 121, 328,

335-336, 391-392
NSManagedObject, 5-6, 369-375
NSManagedObjectContext, 375-376
NSManagedObjects, 288, 300
NSMapTable, 233
NSMatrix, 121, 258, 262, 265-267
NSMenu, 6
NSMethodSignature, 120, 243-244
NSMigrationManager, 335
NSMutableArray, 66-67, 83
NSMutableDictionary, 83, 232, 328
NSMutableSet, 83
NSNibOutletConnector, 209-210
NSNotification, 159, 236

411classes

ptg5934432

NSNotificationCenter, 159, 401-402
NSNull, 157
NSNumber, 264-267
NSObject, 47, 81-82
NSObjectController, 8, 338, 361, 394
NSOpenGL, 121
NSOpenPanel, 307, 311
NSPageLayout, 157, 272
NSPathUtilities, 120
NSPDFImageRep, 309
NSPersistentStore, 376-377
NSPersistentStoreCoordinator, 307,

309, 376-377
NSPICTImageRep, 309
NSPipe, 264-265
NSPlaceholderString, 285
NSPointerArray, 97
NSPortCoder, 123
NSPreferencePane, 14
NSPrintPanel, 157, 272, 307, 311
NSProcessInfo, 157, 236
NSProxy, 314-320, 327
NSResponder, 6, 48, 50-51, 221,

381-382
NSRulerView, 271-273
NSRunLoop, 102, 120, 381
NSSavePanel, 272, 307, 311
NSScriptExecutionContext, 157
NSScroller, 268
NSScrollView, 7, 268, 271-272
NSSet, 83, 104
NSSpellChecker, 272
NSSplitView, 7, 272
NSString, 120, 264, 271
NSTableHeaderView, 272
NSTableView, 8, 51, 188, 266
NSTabView, 7, 272
NSText, 9
NSTextContainer, 9
NSTextStorage, 9
NSTextView, 9-10, 266, 307
NSTimer, 248-254
NSTreeController, 8, 360
NSUnarchiver, 256-257
NSUndoManager, 326-327, 335, 391
NSURL, 264

NSUserDefaults, 127, 157
NSUserDefaultsController, 8, 361
NSValue, 120, 264
NSView, 6-7, 48-50, 126, 179, 197,

221, 267, 273, 385-386
NSViewController, 11, 221, 272
NSWindow, 6, 175-176, 178, 221,

383-385
NSWindowController, 11-12,

221, 390
NSWorkspace, 121, 157
Objective-C classes, 29
PayCalculator class, 19, 21
QCPatchController, 15
QCView, 15
QTMovie, 15
QTMovieView, 15
shared instance, 148-158
subclassing, 268-269
TimerController, 249-252
WordConnectionPoint, 131-132
WordInformation, 128-130, 140-145
WordMatchPuzzleView, 130-131
WordMutableInformation,

140-141, 145
_cmd argument, 246
Cocoa Fundamentals Guide PDF (Apple

Technical Documentation), 404
Cocoa Programming for Mac OS X, Third

Edition (Hillegass), 405
CocoaHeads, 406
code organization, 69
code reuse

Delegates, 52
Template Methods, 52

collection classes
heterogeneous containers, 83
id type, 83
immutable form, 83
mutable form, 83
operators, 396
storage, 83

collections, traversing, 85-86, 97-98
COM (Microsoft), 84
Command design pattern, 242
commands in Applescript, 61

412 classes

ptg5934432

communication
Model View Controller (MVC) design

pattern, 160
Notification design pattern, 159-173

composition, 270-273
compressed bundles, 277
conditional encoding, 125-127
conferences, 406
connecting interface objects to

application-specific operations, 206-207
Content folder, 276
context-sensitive application features, 220,

230-231
contextual menus, 220, 230-231
Controller subsystem (MVC), 2-4, 337-338
controllers

bindings, 361, 394-397
defined, 337
inspecting, 397
mediating, 362
mediating controllers, 8
NSArrayController class, 338, 346,

360-363
NSController class, 360-362
NSDocument class, 345
NSObjectController class, 338, 361
NSTreeController class, 360
NSUserDefaultsController class, 361

Controllers design pattern, 393-394
controlling instantiation, 153-154
convenience methods, 37-38
coordinate systems

for NSView objects, 197
for views, 385

Copy Bundle Resources build phase (Xcode),
277-278

copying
deep copying, 141-142, 256
NSCoding protocol, 255-257, 262
NSCopying protocol, 255-256, 262
NSCopyObject() function, 146, 257,

261-262
Objective-C properties, 144-145
objects, 135-141, 146, 257, 262
required copying, 143-144
shallow copy, 256

Copying design pattern, 135-146
Corba, 84
Core Animation framework, 386
Core Data

attributes, 367
benefits, 377-378
design patterns, 369-371
designing, 372-377
Enterprise Objects Framework

(EOF), 367
entities, 367
limitations, 377-378
overview, 365
primitive accessor methods, 374-375
properties, 368
relationships, 367, 371-372
resources, 365
transient attributes, 367
tutorials, 365-366
Xcode’s data modeling tool, 368, 375

Core Data Programming Guide Apple
Technical Documentation, 404

Core Data technology
Model subsystems, 5-6
object persistence, 5
relationships, 5-6

counters, 111-114
coupling, 176-178
crashes, 184
creating

categories, 65-67
class clusters, 285-287
libraries, 257
outlets, 211
shared instances, 150-152
targets, 211-212

custom enumerators, 87-92

D
Darwin Project, 102
data hiding, 124
data modeling tool (Xcode), 368, 375
data models and hierarchies, 205
data sources, 188-190
DCOM (Microsoft), 84

413DCOM (Microsoft)

ptg5934432

deadlocks, 112
-dealloc method, 47, 114
deallocating

objects, 36
shared instance, 155

declaring classes, 64
decoding

benefits of, 124
memory zones, 132
nib awaking, 133-134
NSKeyedUnarchiver class, 133

decorator classes, 271-272
Decorators design pattern, 268-273
decoupling classes, 53, 62
deep copying, 141-142, 256
defaults, 127
delayed messaging, 253-254
Delayed Perform design pattern, 102,

105-106
Delayed Selector design pattern, 100
delegates

benefits, 189
client-server application, 176-178
code reuse, 52
crashes, 184
data sources, 188-190
defined, 175
examples, 189
implementation, 186-188
messages, 182
methods, 179
MYBarView class, 179-180
NSBrowser class, 178
NSWindow class, 175-178
support, 180-186

Delegates design pattern, 175-190
design patterns

Abstract Factory, 282
Accessors, 107-110
Anonymous Type, 77-84
Archiving, 123-134, 388-390
Associative Storage, 167, 232-241
Bindings, 393-402
Bundles, 275-281
Category, 63-76
Chain of Responsibility, 220

Class Clusters, 282-301
Command, 242
Controllers, 393-394
Copying, 135-146
Core Data Model, 369-371
Decorators, 268-273
Delayed Perform, 102, 105-106
Delayed Selector, 100
Delegates, 175-190
Dynamic Creation pattern, 54-62
Enumerator, 85-98
Façade, 302-311
Factory Method pattern, 53
Flyweight, 8, 263-267
Forwarding, 312-314, 327
Hollywood, 43-52
Key Value Coding, 239-240, 370-371,

398, 400
Key Value Observing, 398-402
Manager, 328-336, 391-392
Model View Controller (MVC), 2-6,

9-16, 160, 337-338, 379-380
Notification, 159-173
Observer, 159
Outlets,Targets, and Actions, 207-219
Perform Selector, 100, 104-106
Prototype, 255-262
Proxy, 312, 314-321, 327
Responder Chain, 191, 213-214,

220-231, 382-385
Signals and Slots, 218
Singleton, 148-158, 328
Target and Action, 387-388
Template Method pattern, 43-52
Two-Stage Creation, 29-31,

38-42, 283
Unarchiving, 123-134, 388-390

Design Patterns: Elements of Reusable
Object-Oriented Software (Gamma, Helm,
Johnson, and Vlissides), 405

Designated Initializer, 32-35, 38-42
designing Core Data Model, 372-377
destruction of shared instance, 155
determining singleton creation, 155-156
developer groups, 406
developer resources, 404-405

414 deadlocks

ptg5934432

diagrams, 6
dictionaries, 232-233
Did notifications, 169
direct bindings, 394
disk images, 277
distributed notifications, 171-172
Distributed Objects, 254, 327
distributing bundles, 277
dmg extension, 277
document architecture, 10-13
document views, 271
downloads, for bundles, 277
drawing application, 44-45
–drawRect method, 47, 52
Duck Typing, 78
Dynamic Creation pattern, 54-62

E
EJB (Enterprise JavaBeans), 84
encapsulation

defined, 124
nonobject values, 264-265
shared resources, 149-150

-encodeWithCoder method, 128
encoding

benefits of, 124
conditional encoding, 125-127
NSCoding protocol, 128-132
NSKeyedArchiver class, 133
object references, 124
unsupported data types, 132

Enterprise JavaBeans (EJB), 84
Enterprise Objects Framework (EOF), 367
entities (Core Data Model), 367
Enumerator design pattern, 85-98
enumerators

custom enumerators, 87-92
examples, 97
fast enumeration, 87, 92-96
internal enumeration, 96
limitations, 97-98
NSEnumerator class, 86
resetting, 98
uses, 85

EOF (Enterprise Objects Framework), 367

event dispatching, 222
events, 381
executable code

assemblies, 275
JAR files, 275
loading, 275, 279-280
organizing, 275
unloading, 280-281

F
Façade design pattern, 302-311
Factory Method pattern, 53
fast enumeration, 87, 92-96
faulting, 371
faults, 371
file management, 328
first responder, 221, 382
Flyweight design pattern, 8, 263-267
font management, 328-329
formal protocols, 67, 73
Forwarding design pattern, 312-314, 327
Foundation Framework Reference Apple

Technical Documentation, 404
frame (views), 385
Framework division, 74
Freeman, Elisabeth and Eric, Head First

Design Patterns, 405
function pointers, 99
functions

NSClassFromString(), 53
NSCopyObject(), 146, 257, 261-262
NSRunAlertPanel(), 253
NSSelectorFromString(), 212, 246
NSStringFromSelector(), 212
PassObjectPointer(), 137
popen(), 304
SimplePassByValue(), 136

G
Gamma, Erich, Design Patterns: Elements of

Reusable Object-Oriented Software, 405
garbage collection, 36-37, 110
Garbage Collection Programming Guide PDF

(Apple Technical Documentation), 404
get accessors, 108-109

415get accessors

ptg5934432

glue code, 337, 393
Google

chart generation web service, 303-306
groups, 406

graphical applications, 191-192
graphical user interfaces, 6
grouping objects, 191-192

H
hardcoding relationships, 255
has-a relationship, 270
hash tables, 233
Helm, Richard, Design Patterns: Elements of

Reusable Object-Oriented Software, 405
helper languages, 84
heterogeneous containers, 83
hierarchies

benefits, 205
data models, 205
implementing, 192-195
Layer-Tree hierarchy, 386
relationships, 191
Responder Chain pattern, 191, 221
subclassing, 191
uses, 191
view hierarchy, 195-205, 385-386
view objects, 221
XML documents, 205

HIG (Human Interface Guidelines), 380, 404
Higher Order Message (HOM), 321-327
Hillegass, Aaron, Cocoa Programming for

Mac OS X, Third Edition, 405
Hollywood pattern, 43-52
HOM (Higher Order Message), 321-327
Human Interface Guidelines (HIG), 380, 404

I
IBAction type, 215
IBOutlet macro, 208-209
id type, 77-83
+(id)alloc method, 31
+(id)allocWithZone:(NSZone *)aZone

method, 31

-(id)copy method, 138
-(id)deepCopy method, 141-142
-(id)initWithCoder:(NSCoder *)aCoder

method, 33
IDL (Interface Definition Language), 84
image processing, 309
IMAVManager class, 335
immutable form (collection classes), 83
immutable objects, 139
@implementation compiler directive, 64-65
implementing

classes, 64-65
delegates, 186-188
hierarchies, 192-195

Info.plist file, 276
informal protocols

categories, 67-68, 71-73
defined, 67-68

initializers, 32-35, 287
initializing allocated memory, 32-35
-initWithCoder method, 128
inputChanged: method, 245
inspecting controllers, 397
instance variables, 233-235
instances, temporary, 37-38
Interface Builder

archiving, 123
bindings, 397
defined, 6
.nib file, 133-134, 397
objects, 18
outlets, 118, 207-210
Simulation mode, 123
singletons, 156
targets, 208-209

Interface Builder User Guide PDF (Apple
Technical Documentation), 404

@interface compiler directive, 64
Interface Definition Language (IDL), 84
interface objects, connecting to

application-specific operations, 206-207
interfaces, categories of, 65
internal enumeration, 96
inverse relationships, 372
InvocationController class, 244

416 glue code

ptg5934432

invocations
benefits, 254
defined, 242
Distributed Objects, 254
InvocationController class, 244
limitations, 254
NSDocument, 254
NSInvocation class, 242-248
use of, 254

iPhone Application Developers Google
Group, 406

The iPhone Developer’s Cookbook
(Sadun), 405

is-a relationship, 268
ISyncManager class, 335

J–K
JAR files, 275
Johnson, Ralph, Design Patterns: Elements

of Reusable Object-Oriented Software, 405
JunctionAppController class, 319-320

Kernighan, Brian W., The C Programming
Language, Second Edition, 405

Key Value Coding design pattern, 239-240,
370-371, 398, 400

Key-Value Coding Programming Guide Apple
Technical Documentation, 404

Key Value Observing design pattern,
398-402

key window, 221, 384
keyboard, and user input, 221
-keyEnumerator method, 97
Kochan, Stephen G., Programming in

Objective-C 2.0, Second Edition, 405
Kuehne, Robert P., OpenGL Programming on

Mac OS X, 405

L–M
late-binding, 99, 106
Layer-Tree hierarchy, 386
libraries, creating, 257
loading executable code, 275, 279-280
locks, 112
loops, 87

Mac developer resources, 404-405
Mac OS X bundle directory hierarchy, 276
MacOS folder, 276
mailing lists, 405
main window, 221, 384
Manager design pattern, 328-336, 391-392
managing

files, 328
fonts, 328-329

mediating controllers, 8, 362
memory

addressable memory, 31
automatic garbage collection, 36
initializing allocated memory, 32-35
minimizing amount of overhead

required, 263
physical memory, 31
reference counted memory

management, 36, 110-111, 237-239
virtual memory, 31
zones, 31-32, 35-37, 132

memory management, 114
menu validation, 228-230
messages

action message, 7
arguments, 78
defined, 77, 100
delayed messaging, 253-254
delegates, 182
forwarding, 312-314
Higher Order Message (HOM),

321-327
implementation of Objective-C

message sending, 102-104
invocations

defined, 242
InvocationController class, 244
NSInvocation class, 242-248
use of, 254

method signatures, 243-244
naming, 243
nil value, 79
Objective-C, 77
proxies, 312

417messages

ptg5934432

receiver variable, 78
remote messaging, 84
selector variable, 78
selectors

Cocoa examples, 104-106
defined, 99-100
Delayed Perform design pattern,

105-106
Delayed Selector design pattern,

100, 102
Perform Selector design pattern,

100, 104-106
role of, 100-101
SEL data type, 100
versus function pointers, 99

semantics, 78
sending, 242
syntax, 78
timers, 248-254
trampoline object, 321-325
values, 78
warnings, 80

Meta Object Compiler, 218
method signatures, 243-244
methods

accessor methods
benefits, 122
counters, 111-114
deadlocks, 112
defined, 107-110
examples, 119-121
garbage collection, 110
generating, 108
get accessors, 108-109
limitations, 122
locks, 112
memory management, 114
multithreading, 114
mutability, 115-117
nonobject properties, 110
NSKeyValueCoding informal

protocol, 117-118
object properties, 110
Objective-C properties, 118-119
outlets, 118
overriding, 115

reference counted memory
management, 108, 110-111

returning nonobject values by
reference, 120-121

set accessors, 109
-action, 212
-allObjects, 86, 91
-autorelease, 237
-awakeFromFetch, 372-373
-awakeFromInsert, 372-373
-awakeFromNib, 72-73, 133-134
categories, 68, 70-71, 74-75
class methods, 29-30
convenience methods, 37-38
-dealloc, 47, 114
defined, 100
delegates, 179
-drawRect, 47, 52
-encodeWithCoder, 128
formal protocols, 73
+(id)alloc, 31
+(id)allocWithZone:(NSZone *)

aZone, 31
-(id)copy, 138
-(id)deepCopy, 141-142
-(id)initWithCoder:(NSCoder *)

aCoder, 33
-initWithCoder, 128
inputChanged:, 245
-keyEnumerator, 97
+new, 29
-nextObject, 86
-objectForKey, 232
-performSelector, 100-101, 104
primitive methods

class clusters, 283, 288
Core Data Model, 374-375

private methods, 69
-release, 237
replacing, 75
-retain, 237
-retainCount, 237
-reverseObjectEnumerator, 97
-sendMessage:, 246
-setAction, 212
-setObject:forKey:, 232

418 messages

ptg5934432

-setvalueForKey, 239
+sharedInstance, 157
-valueForKey, 239

Microsoft COM/DCOM, 84
minimizing amount of memory/processor

overhead required, 263
Model subsystem (MVC), 2, 4, 366
Model View Controller (MVC) design pattern

Application Kit, 6, 379
benefits, 15-16
bindings, 394-395
Cocoa implementation, 4-5
Controller subsystem, 2-4, 337-338
document architecture, 10-13
history of, 2
Model subsystem, 2, 4, 366
notifications, 160
objects, 2
Pay Calculator

MVC design, 22-26
non-MVC design, 17-22

purpose of, 3
QTKit architecture, 15
Quartz Composer application, 15
System Preferences application, 14-15
text architecture, 9-10
View subsystem, 2, 379-380

models
object-oriented, 366
purpose of, 366

mouse, and user input, 221
multithreading, 114, 156
mutability, 115-117, 139
mutable form (collection classes), 83
MVC (Model View Controller) design

pattern. See Model View Controller
(MVC) design pattern

MYBarView class, 179-180
MYClassCluster class, 285-287
MYColorLabeledBarCell class, 260-261
MYDirectoryChartGenerator class, 303-306
MYEditorShapeView class, 353-355
MYEmployee class, 23-26
MYGameHighScoreManager class, 149-152,

330-335

MYGameNetworkHighScoreManager class,
149-151

MYGraphic class, 192-195
MYGroup class, 192-195
MYJunction class, 314-320
MYJunctionHelper instance, 318-319
MYLabeledBarCell class, 258-259
MYLinkedList class, 92-96
MYMediatingController class, 355-360
MYNotification class, 160-161
MYNotificationCenter class, 162-167
MYPlayerController class, 216-217
MYShape class, 339-340
MYShapeDraw application

controller subsystem, 338, 342-353
features, 339
model subsystem, 339-340
redesigning, 355-360
user interface, 338
view subsystem, 340-342, 353-355

MYShapeEditor class, 342-346
MYShapeEditorDocument class, 343-353
MYShapeView class, 340-342
MYShortString class, 289-300
MYSongPlayer class, 216-218
MYValueLimitColorChanger class, 186-188

N
naming

categories, 65
messages, 243
notifications, 168-169

+new method, 29
next responder, 382
-nextObject method, 86
-nextResponder message, 221
nib awaking, 133-134
.nib files, 11, 133-134, 397
nil value (messages), 79
non-object values, encapsulating, 264-265
Notification design pattern, 159-173
notifications

asynchronous, 169-171
Did notifications, 169

419notifications

ptg5934432

distributed, 171-172
how they work, 159
MYNotification class, 160-161
MYNotificationCenter class, 162-167
naming, 168-169
registering for, 159
relationships, 159
synchronous, 169-171
Will notifications, 169

NSAccessibility category, 72
NSActionCell class, 211
NSAffineTransform class, 264-265
NSAlert class, 272
NSAppleEventManager class, 335
NSApplication class, 6, 13, 148, 157,

221, 381
NSArchiver class, 256-257
NSArray class, 83, 104, 120, 264
NSArrayController class, 8, 338, 346,

360-363, 394
NSAttributedString class, 236, 271
NSAutoreleasePool class, 237
NSBezierPath class, 120
NSBitmapImageRep class, 120, 309
NSBox class, 7, 271
NSBrowser class, 178
NSBundle class, 60-61, 278-281
NSButton class, 121
NSButtonCell class, 120
NSCachedImageRep class, 309
NSCalendarDate class, 264
NSCell class, 8, 121, 265-267
NSCFString class, 285
NSCIImageRep class, 309
NSClassDescription category, 70
NSClassFromString() function, 53
NSClipView class, 268, 271
NSCoding protocol, 128-132, 134,

255-257, 262
NSCollectionView class, 267
NSColor class, 121, 265
NSColorPanel class, 157, 272, 307, 310-311
NSComparisonMethods category, 70
NSConference, 406
NSControl class, 7-8, 211
NSController class, 8, 360, 362, 394-397

NSCopying protocol, 139-146, 255-256, 262
NSCopyObject() function, 146, 257,

261-262
NSCountedSet class, 83
NSCustomImageRep class, 309
NSData class, 120, 282
NSDataPicker object, 7
NSDate class, 264
NSDecimalNumber class, 264
NSDefaultRunLoopMode class, 102
NSDelayedPerforming category, 70
NSDictionary class, 83, 105, 143, 232-233,

236, 240-241
NSDistributedNotificationCenter class, 123
NSDocument architecture, 254
NSDocument class, 11-12, 345
NSDocumentController class, 11, 157
NSDrawer class, 221
NSEditorRegistration protocol, 396-397
NSEntityDescription class, 369-370
NSEnumerator class, 86
NSEPSImageRep class, 309
NSEvent class, 381
NSFileHandle class, 264-265
NSFileManager class, 236, 240, 328,

335-336
NSFont class, 265, 329
NSFontManager class, 157, 328-329,

335-336, 391
NSFontPanel class, 157, 272
NSFormatter class, 120
NSHelpManager class, 157, 335, 391
NSImage class, 307-309
NSImageView class, 268
NSInputManager class, 328, 335-336, 391
NSInvocation class, 120, 242-248
NSKeyedArchiver class, 127, 133
NSKeyedUnarchiver class, 127, 133
NSKeyValueCoding category, 70
NSKeyValueCoding informal protocol,

117-118
NSKeyValueCodingException category, 70
NSKeyValueCodingExtras category, 70
NSLayoutManager class, 9, 121, 328,

335-336, 391-392
NSMainThreadPerformAdditions category, 70

420 notifications

ptg5934432

NSManagedObject class, 5-6, 369-375
NSManagedObjectContext class, 375-376
NSManagedObjects class, 288, 300
NSMapTable class, 233
NSMatrix class, 121, 258, 262, 265-267
NSMenu class, 6
NSMethodSignature class, 120, 243-244
NSMigrationManager class, 335
NSMutableArray class, 66-67, 83
NSMutableCopying protocol, 116, 142-143
NSMutableDictionary class, 83, 232, 328
NSMutableSet class, 83
NSNibAwaking category, 71-72, 74
NSNibLoading category, 74
NSNibOutletConnector class, 209-210
NSNotification class, 159, 236
NSNotificationCenter class, 159, 401-402
NSNull class, 157
NSNumber class, 264-265, 267
NSObject class, 47, 81-82
NSObjectController class, 8, 338, 361, 394
NSOpenGL class, 121
NSOpenPanel class, 307, 311
NSPageLayout class, 157, 272
NSPathUtilities class, 120
NSPDFImageRep class, 309
NSPersistentStore class, 376-377
NSPersistentStoreCoordinator class, 307,

309, 376-377
NSPICTImageRep class, 309
NSPipe class, 264-265
NSPlaceholderString class, 285
NSPointerArray class, 97
NSPortCoder class, 123
NSPreferencePane class, 14
NSPrintPanel class, 157, 272, 307, 311
NSProcessInfo class, 157, 236
NSProxy class, 314-320, 327
NSResponder class, 6, 48, 50-51, 221,

381-382
NSRulerView class, 271-273
NSRunAlertPanel() function, 253
NSRunLoop class, 102, 120, 381
NSSavePanel class, 272, 307, 311
NSScriptClassDescription category, 71
NSScriptExecutionContext class, 157

NSScripting category, 70
NSScriptingComparisonMethods category, 71
NSScriptObjectSpecifiers category, 71
NSScriptValueCoding category, 71
NSScroller class, 268
NSScrollView class, 7, 268, 271-272
NSSelectorFromString() function, 212, 246
NSSet class, 83, 104
NSSpellChecker class, 272
NSSplitView class, 7, 272
NSString class, 120, 264, 271
NSString class cluster, 284-285
NSStringFromSelector() function, 212
NSTableHeaderView class, 272
NSTableView class, 8, 51, 188, 266
NSTabView class, 7, 272
NSText class, 9
NSTextContainer class, 9
NSTextStorage class, 9
NSTextView class, 9-10, 266, 307
NSTimer class, 248-254
NSTreeController class, 8, 360
NSUnarchiver class, 256-257
NSUndoManager class, 326-327, 335, 391
NSURL class, 264
NSUserDefaults class, 127, 157
NSUserDefaultsController class, 8, 361
NSValue class, 120, 264
NSView class, 6-7, 48-50, 126, 179, 197,

221, 267, 273, 385-386
NSViewController class, 11, 221, 272
NSWindow class, 6, 175-176, 178, 221,

383-385
NSWindowController class, 11-12, 221, 390
NSWorkspace class, 121, 157
numbers, 264

O
objc.h header file, 81
object-oriented models, 366
Object-Oriented Programming with

Objective-C PDF (Apple Technical
Documentation), 404

-objectForKey method, 232
object persistence, 5

421object persistence

ptg5934432

Objective-C
Anonymous Type design pattern,

77-82, 84
ANSI/ISO standard, 264
blocks feature, 321
Category design pattern, 63
classes, 29
copying properties, 144-145
forwarding

defined, 312
implementation, 313-314
uses, 312

id type, 77-83
@implementation compiler directive,

64-65
implementation of message sending,

102-104
@interface compiler directive, 64
messaging, 77
properties, 118-119
runtime, 102-103
SEL data type, 100
@selector() compiler directive, 212
selectors, 99

Objective-C 2.0
Programming Language PDF (Apple

Technical Documentation), 404
@property compiler directive, 108
@synthesize compiler directive, 108

objects
allocating, 36
anonymous objects, 77
archiving, 61, 123, 127
bindings, 8
class methods, 29-30
communication

Model View Controller (MVC)
design pattern, 160

Notification design pattern,
159-173

composition, 270-271, 273
copying, 135-141, 146, 257, 262
data hiding, 124
deallocating, 36

decoding
benefits of, 124
memory zones, 132
nib awaking, 133-134
NSKeyedUnarchiver class, 133

deep copying, 141-142
delegates

benefits, 189
client-server application, 176-178
crashes, 184
data sources, 188-190
defined, 175
examples, 189
implementation, 186-188
messages, 182
methods, 179
MYBarView class, 179-180
NSBrowser class, 178
NSWindow class, 175-178
support, 180-186

encapsulating nonobject values,
264-265

encapsulation, 124
encoding

benefits of, 124
conditional encoding, 125-127
NSCoding protocol, 128-132
NSKeyedArchiver class, 133
unsupported data types, 132

enumerators
custom enumerators, 87-92
examples, 97
fast enumeration, 87, 92-96
internal enumeration, 96
limitations, 97-98
NSEnumerator class, 86
resetting, 98
uses, 85

grouping, 191-192
immutable objects, 139
Interface Builder, 18
libraries, 257
messages, 77
methods

defined, 100
-performSelector, 100-101, 104

422 Objective-C

ptg5934432

minimizing amount of
memory/processor overhead
required, 263

Model View Controller (MVC)
pattern, 2

mutability, 115-117, 139
.nib files, 11
NSDatePicker, 7
numbers, 264
observers, 159
ownership, 126
placeholders, 266
property lists, 134
proxies

defined, 312
Distributed Objects, 327
JunctionAppController class,

319-320
messages, 312
MYJunction class, 314-320
MYJunctionHelper instance,

318-319
NSProxy class, 314-320, 327
trampoline object, 321-325
uses, 312, 314, 320-321, 327

references
circular references, 124
conditional references, 126
encoding, 124

registering for notifications, 159
relationships

hardcoding, 255
has-a relationship, 270
is-a relationship, 268

retain cycles, 183
scrolling capability, 268
subclassing, limitations of,

268-269, 273
substitution, 124, 133
targets, 387
tree structures, 191-192
unarchiving, 61, 123, 127
versioning, 124
view objects, 221

Observer design pattern, 159
observers, 159

OmniGroup’s MacOSX-dev list, 405
online groups, 406
OpenGL Programming on Mac OS X (Kuehne

and Sullivan), 405
operators, 396
@optional key word, 73, 181
organizing executable code, 275
outlets

creating, 211
defined, 118, 207
IBOutlet macro, 208-209
Interface Builder, 207-210
NSNibOutletConnector class,

209-210
targets, 208-209, 211-212

Outlets, Targets, and Actions design pattern,
207-219

overriding
accessors, 115
Template Method, 51

ownership of objects, 126

P
packages, 276-277
panels, 272
pass-by-value, 135
PassObjectPointer() function, 137
patches, 15
patterns. See design patterns
Pay Calculator

MVC design, 22-26
MYEmployee class, 23-26
non-MVC design, 17-22
PayCalculator class, 19-21

Perform Selector design pattern, 100,
104-106

-performSelector method, 100-101, 104
physical devices, 148, 155
physical memory, 31
placeholder values for bindings, 396-397
placeholders

class clusters, 287
objects, 266

plug-in architectures
Dynamic Creation pattern, 60-61
NSBundle class, 60-61

423plug-in architectures

ptg5934432

popen() function, 304
preference pane architecture, 14-15
primitive accessor methods (Core Data

Model), 283, 288, 374-375
private methods, 69
processors, minimizing amount of overhead

required, 263
Programming in Objective-C 2.0, Second

Edition (Kochan), 405
properties

Core Data Model, 368
Objective-C, 144-145
Objective-C properties, 118-119
system properties, 148

@property compiler directive, 108
property lists, 134
protocols

formal protocols, 67, 73
informal protocols

categories, 67-68, 71-73
defined, 67-68

NSCoding, 128-132, 134,
255-257, 262

NSCopying, 139-146, 255-256, 262
NSEditorRegistration, 396-397
NSKeyValueCoding, 117-118
NSMutableCopying, 116, 142-143

Prototype design pattern, 255-262
proxies

defined, 312, 371
Distributed Objects, 327
JunctionAppController class, 319-320
messages, 312
MYJunction class, 314-320
MYJunctionHelper instance, 318-319
NSProxy class, 314-320, 327
trampoline object, 321-325
uses, 312, 314, 320-321, 327

Proxy design pattern, 312, 314-321, 327

Q–R
QCPatchController class, 15
QCView class, 15
QTKit architecture, 15
QTMovie class, 15

QTMovieView class, 15
Quartz Composer application, 15
QuickTime movies, 15

receiver variable, 78
redo feature, 326-327, 391
reducing storage requirements, 265-266
reference counted memory management,

36, 110-111, 237-239
Reference Library Apple Technical

Documentation, 404
referencing objects

circular references, 124
conditional references, 126
encoding, 124

relationships
archiving, 123
Core Data Model, 367, 371-372
Core Data technology, 5-6
hardcoding, 255
has-a relationship, 270
hierarchies, 191
inverse relationships, 372
is-a relationship, 268
notification, 159
unarchiving, 123
Unified Modeling Language (UML)

Entity Relationship diagrams, 368
-release method, 237
remote messaging, 84
replacing methods, 75
required copying, 143-144
@required key word, 73
resetting enumerators, 98
resgen.exe program, 275
-resignFirstResponder message, 222
Resources folder, 276
resources for Mac developers, 404-405
Responder Chain design pattern, 191,

213-214, 220-231, 382-385
responders

-acceptsFirstResponder message, 222
Application Kit, 381-382
-becomeFirstResponder message, 222
defined, 221
first responder, 221, 382
next responder, 382

424 popen() function

ptg5934432

-nextResponder message, 221
NSResponder class, 381-382
-resignFirstResponder message, 222
-setNextResponder message, 221

retain cycles, 183
-retain method, 237
-retainCount method, 237
-reverseObjectEnumerator method, 97
Ritchie, Dennis M., The C Programming

Language, Second Edition, 405
routing user input, 220-221
run loops, 102, 381
runtime (Objective-C), 103

S
Sadun, Erica, The iPhone Developer’s

Cookbook, 405
script interface, 13-14
scripting, 192
scrolling capability, 268
SEL data type, 100
@selector() compiler directive, 212
selector variable, 78
selectors

Cocoa examples, 104-106
defined, 99-100
Delayed Perform design pattern,

105-106
Delayed Selector design pattern,

100, 102
Perform Selector design pattern, 100,

104-106
role of, 100-101
SEL data type, 100
versus function pointers, 99

self argument, 246
self variable, 34
semantics of messages, 78
sending messages, 242
-sendMessage: method, 246
serialization, 123
set accessors, 109
-setAction method, 212
-setNextResponder message, 221
-setObjectForKey: method, 232

setters and getters, 107
-setvalueForKey method, 239
shallow copy, 256
shared instance, 148-158
+sharedInstance method, 157
shared resources, 149-150
Sierra, Kathy, Head First Design

Patterns, 405
Signals and Slots design pattern, 218
SimplePassByValue() function, 136
Simulation mode (Interface Builder), 123
Singleton design pattern, 148-158, 328
Smalltalk programming language, 2
software maintenance, 76
song playing application, 215-218
spaghetti bindings, 397
storage

Associative Storage design pattern,
232-241

collection classes, 83
dictionaries, 232-233
hash tables, 233
requirements, reducing, 265-266

string keys, 395-396, 403
subclassing

categories, 67-69
Category design pattern, 63
class cluster’s public interface class,

288-300
hierarchies, 191
limitations of, 268-269, 273
NSApplication class, 381
NSBrowser class, 179
NSMutableArray class, 67
NSWindow class, 175, 384

substitution, 124, 133
subviews, 195-196
Sullivan, J.D., OpenGL Programming on

Mac OS X, 405
Sun, 84
synchronous notifications, 169-171
syntax of messages, 78
@synthesize compiler directive, 108
System Preferences application, 14-15
system properties, 148

425system properties

ptg5934432

T
Target and Action design pattern, 387-388
targets

creating, 211-212
defined, 208-209, 387
Interface Builder, 208-209
NSActionCell class, 211
NSControl class, 211

Technical Publications group (Apple), 404
Template Method pattern, 43-52
temporary instances, 37-38
testing bindings, 403
text architecture, 9-10
text subsystem architecture, 307
thrashing, 32
thread safety, 156
TimerController class, 249-252
timers, 248-254
training, 406
trampoline object, 321-325
transient attributes (Core Data Model), 367
traversing collections, 85-86, 97-98
tree structures, 191-192
Trolltec, 218
Two-Stage Creation design pattern, 283
Two-Stage Creation pattern

consequences, 42
defined, 29
examples, 38-42
how it works, 29-31

U
Uli Kusterer’s Mac-GUI-Dev mailing list, 405
unarchiving

defined, 123
NSKeyedUnarchiver class, 127
relationships, 123
XML files, 123

Unarchiving design pattern, 123-134,
388-390

unarchiving objects, 61
undo feature, 326-327, 391
undo manager, 326-327
Unified Modeling Language (UML) Entity

Relationship diagrams, 368

unloading executable code, 280-281
unnamed category, 343
unsupported data types, 132
user defaults, 127
user groups, 406
user input

event dispatching, 222
key window, 221
keyboard, 221
main window, 221
mouse, 221
routing, 220-221

user interaction, 309-311

V
Value Transformers, 403
–valueForKey method, 239
values of messages, 78
versioning, 124
view hierarchy, 195-205
view object hierarchy, 221
View subsystem (Model View Controller

design pattern), 2, 379-380
ViewFinder application, 197-205
views

Application Kit, 385-386
bounds, 385
coordinate systems, 385
frame, 385
hierarchy, 385-386
subviews, 195-196

virtual memory, 31
virtual resources, 148
Vlissides, John M., Design Patterns: Elements

of Reusable Object-Oriented Software, 405

W
warnings, 80
Will notifications, 169
windows

Application Kit, 383-385
key window, 384
main window, 384

WordConnectionPoint class, 131-132
WordInformation class, 128-130, 140-145

426 Target and Action design pattern

ptg5934432

WordMatchPuzzleView class, 130-131
WordMutableInformation class,

140-141, 145
Worldwide Developer’s Conference

(WWDC), 406

X–Z
Xcode

Copy Bundle Resources build phase,
277-278

data modeling tool, 368, 375
Xcode 3 Unleashed (Anderson), 405
Xcode Overview PDF (Apple Technical

Documentation), 405
Xcode Project Management Guide PDF

(Apple Technical Documentation), 405
Xcode Workspace Guide PDF (Apple

Technical Documentation), 405
XML documents, 205
XML files, 123

zones, 31-32, 35-37, 132

427zones

ptg5934432

Your purchase of Cocoa Design Patterns includes access to a free online edition
for 45 days through the Safari Books Online subscription service. Nearly every
Addison-Wesley Professional book is available online through Safari Books Online,
along with more than 5,000 other technical books and videos from publishers such as
Cisco Press, Exam Cram, IBM Press, O’Reilly, Prentice Hall, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specific answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at

www.informit.com/safarifree

STEP 1: Enter the coupon code: XEJIZAA.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have difficulty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

	Addison Wesley - Cocoa Design Patterns (10-2009) (ATTiCA)
	I: One Pattern to Rule Them All
	1 Model View Controller
	MVC in Cocoa
	Summary

	2 MVC Analyzed and Applied
	Non-MVC Design
	MVC Design
	Summary

	II: Fundamental Patterns
	3 Two-Stage Creation
	Motivation
	Solution
	Examples in Cocoa
	Consequences

	4 Template Method
	Motivation
	Solution
	Examples in Cocoa
	Consequences

	5 Dynamic Creation
	Motivation
	Solution
	Examples in Cocoa
	Consequences

	6 Category
	Motivation
	Solution
	Examples in Cocoa
	Consequences

	7 Anonymous Type and Heterogeneous Containers
	Motivation
	Solution
	Examples in Cocoa
	Consequences

	8 Enumerators
	Motivation
	Solution
	Examples in Cocoa
	Consequences

	9 Perform Selector and Delayed Perform
	Motivation
	Solution
	Examples in Cocoa
	Consequences

	10 Accessors
	Motivation
	Solution
	Examples in Cocoa
	Consequences

	11 Archiving and Unarchiving
	Motivation
	Solution
	Examples in Cocoa
	Consequences

	12 Copying
	Motivation
	Solution
	Examples in Cocoa
	Consequences

	III: Patterns That Primarily Empower by Decoupling
	13 Singleton
	Motivation
	Solution
	Examples in Cocoa
	Consequences

	14 Notifications
	Motivation
	Solution
	Examples in Cocoa
	Consequences

	15 Delegates
	Motivation
	Solution
	Examples in Cocoa
	Consequences

	16 Hierarchies
	Motivation
	Solution
	Examples in Cocoa
	Consequences

	17 Outlets, Targets, and Actions
	Motivation
	Solution
	Examples in Cocoa
	Consequences

	18 Responder Chain
	Motivation
	Solution
	Examples in Cocoa
	Consequences

	19 Associative Storage
	Motivation
	Solution
	Examples in Cocoa
	Consequences

	20 Invocations
	Motivation
	Solution
	Examples in Cocoa
	Consequences

	21 Prototype
	Motivation
	Solution
	Examples in Cocoa
	Consequences

	22 Flyweight
	Motivation
	Solution
	Examples in Cocoa
	Consequences

	23 Decorators
	Motivation
	Solution
	Examples in Cocoa
	Consequences

	IV: Patterns That Primarily Hide Complexity
	24 Bundles
	Motivation
	Solution
	Examples in Cocoa
	Consequences

	25 Class Clusters
	Motivation
	Solution
	Examples in Cocoa
	Consequences

	26 Façade
	Motivation
	Solution
	Examples in Cocoa
	Consequences

	27 Proxies and Forwarding
	Motivation
	Solution
	Examples in Cocoa
	Consequences

	28 Managers
	Motivation
	Solution
	Examples in Cocoa
	Consequences

	29 Controllers
	Motivation
	Solution
	Examples in Cocoa
	Consequences

	V: Practical Tools for Pattern Application
	30 Core Data Models
	The Role of the Model Subsystem
	Core Data Terminology
	Collaboration of Patterns Within Core Data
	Core Data Limitations and Benefits

	31 Application Kit Views
	The Role of the View Subsystem
	Collaboration of Patterns Within Application Kit
	Application Kit Limitations and Benefits

	32 Bindings and Controllers
	Role of Bindings and Controllers
	Collaboration of Patterns Within Bindings and Controllers
	Bindings and Controllers Limitations and Benefits

	Resources
	Apple Documentation
	Books
	Mailing Lists
	User Groups
	Online Groups
	Conferences/Training

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J–K
	L–M
	N
	O
	P
	Q–R
	S
	T
	U
	V
	W
	X–Z

