


ptg

Charlie Calvert
Dinesh Kulkarni

Essential LINQ

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City



ptg

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The .NET logo is either a registered trademark or trademark of Microsoft Corporation in the
United States and/or other countries and is used under license from Microsoft.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: www.informit.com/msdotnetseries

Library of Congress Cataloging-in-Publication Data:

Calvert, Charles
Essential LINQ / Charlie Calvert, Dinesh Kulkarni. — 1st ed.

p. cm.
ISBN 0-321-56416-2 (pbk. : alk. paper)  1.  Microsoft LINQ. 2.  C# (Computer program

language) 3.  Query languages (Computer science) 4.  Microsoft .NET Framework.
I. Kulkarni, Dinesh, 1968- II. Title. 

QA76.7.C35 2009
006.7’882—dc22

2008052508

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-321-56416-0
ISBN-10: 0-321-56416-2
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.
First printing March 2009

www.informit.com/msdotnetseries


ptg

This book is dedicated to my wife Margie. When authors dedicate their
books to their wife or parents, I perhaps unfairly suspect them of a fail-
ure of imagination or paucity of emotional range. I would have no prob-
lem coming up with other worthies to whom I could dedicate this book.
My good friends, such as David Intersimone, Lino Tadros, John Kaster,
and Steve Teixeira, have been a joy to me for many years. I’m blessed
with a wonderful father, and I would be happy to dedicate another book
to him. My siblings, nieces, nephews, and other relatives are deserving of
a dedication. So are my godparents, George and MaryAnn Kephart. I’ve
recently been reintroduced to the Pacific Northwest, and I undoubtedly
could never have written a word of this text were it not for the regular
support I get from the mountains, forests, and waterways of this won-
derful land. My many spiritual mentors—Christian, Buddhist, and
Hindu—have been the very air I breathe for many years, and I could do
nothing without them. I also lucked into—through no skill of my own,
and despite all my best efforts to deny myself the privilege—a wonderful
wife to whom I can never sufficiently offer enough thanks. Margie, I
once again find myself dedicating a book to you, wishing only that this
simple dedication were worthy of even some small portion of all that you
have done for me.

—Charlie Calvert

Dedicated to the Lord for all he has given and continues to give.
—Dinesh Kulkarni



ptg

This page intentionally left blank 



ptg

ix

Contents at a Glance

Foreword xxi
Acknowledgments xxv
About the Authors xxix

1 Introduction 1

2 Getting Started 13

3 The Essence of LINQ 39

4 C# 3.0 Technical Overview 65

5 Writing Query Expressions 129

6 Query Operators 175

7 A Quick Tour of LINQ to SQL 231

8 Reading Objects with LINQ to SQL 247

9 Modifying Objects with LINQ to SQL 281

10 Using Stored Procedures and Database Functions
with LINQ to SQL 319

11 Customizing Entity Persistence and Adding Business Logic 337

12 LINQ to Entities Overview 349

13 LINQ to XML: Creation 369



ptg

14 Querying and Editing XML 387

15 XML Namespaces, Transforms, and Schema Validation 423

16 Introduction to LINQ Patterns and Practices 465

17 LINQ Everywhere 487

18 Conclusion 515

A Tips for Developers 519

Index 547

Contents at a Glancex



ptg

Contents

Foreword    xxi
Acknowledgments    xxv
About the Author    xxix

1 Introduction 1
The Varied Uses of the LINQ Syntax 2
LINQ Is a Practical Technology 3
Audience and Subject Matter 3
The Essence of LINQ 7
Comparing LINQ to SQL and LINQ to Objects 8
A Few Words About Generics 9
Source for the Samples and Troubleshooting Resources 10
Summary 11

2 Getting Started 13
Querying a Collection of Integers 14

Collection Initializers 16

Query Expressions 16

Type Inference 18

Introduction to IEnumerable<T> 19

Querying a Collection of Objects 20
Introducing Automatic Properties 21

Introducing Object Initializers 22

Introducing Anonymous Types 24

xi



ptg

A Simple LINQ to SQL Example 26
LINQ to XML 30

Parsing XML 31

Creating XML 34

Summary 37

3 The Essence of LINQ 39
Integrated 40
Unitive 41
Extensible Provider Model 43

Query Operators 46

Declarative: Not How, But What 48
Hierarchical 53
Composable 58
Transformative 60
Summary 62

4 C# 3.0 Technical Overview 65
C# 2.0 and 3.0 Features Related to LINQ 66
Partial Methods 66
Automatically Implemented Properties 69
Initializers 74

Collection Initializers 74

Object Initializers 76

Types in C# 3.0 77
Type Inference 78

Anonymous Types 79

Generic Methods, Delegates, and Lambdas 83
Delegates 83

Generic Delegates 86

Lambdas 89

Extension Methods 94
Scoping Issues 98
IEnumerable<T> 103

Understanding Sequences 106

Enumeration 106

Iterators 108

Contentsxii



ptg

Deferred Execution 111
Overriding LINQ Operators 117
Expression Trees 122
Summary 128

5 Writing Query Expressions 129
Syntactical Analysis 130

Nomenclature 130

Clauses 131

Range Variables 133

Composing Queries 135
Group-by Clauses at the End of a Query Expression 136

Group-by Clauses and the into Keyword 139

Let Clauses 141

Joins 143
Inner Joins 143

Group Joins 147

Left Outer Joins 149

Using the Object Model to “Join” Classes 152

Projections 153
Overview of Projections 154

Projections and Deferred Execution 156

Projections with SelectMany 159

The SelectMany Overloads 164

Query Expressions and Other Flavors of LINQ 167
LINQ to MyNumberServer 168

Thinking About IQueryable 172

Summary 173

6 Query Operators 175
Locating and Grouping the LINQ Operators 175

Code Reuse 178

Locating the LINQ Operators 179

Generation Operators 181
Range 182

Repeat 183

Empty 186

Contents xiii



ptg

Any 186

All 187

Contains 188

SequenceEqual 190

Partitioning Operators 192
Take 193

Skip 193

TakeWhile 194

SkipWhile 196

Element Operators 198
First and FirstOrDefault 198

Last and LastOrDefault 200

Single 201

ElementAt 202

Element Operators and Composition 202

DefaultIfEmpty 203

Set Operators 204
Union 205

Intersect 206

Distinct 207

Except 207

In the Context of LINQ 208

Aggregate Operators 210
The Count and LongCount Operators 211

The Min and Max Operators 212

The Average Operator 214

The Sum Operator 215

The Aggregate Operator 216

Ordering Operators 219
OrderBy 220

OrderByDescending 221

ThenBy 222

Reverse 223

Conversion Operators 223
ToList 224

Contentsxiv



ptg

ToArray 226

OfType 226

ToDictionary 227

Conversion Between IEnumerable and IQueryable 228

Summary 229

7 A Quick Tour of LINQ to SQL 231
Mapping Classes to Tables 233

Creating Entity Classes 233

The DataContext 234

Working with Relationships 236
Defining Relationships 236

Querying Across Relationships 238

Modifying and Saving Entities 239
Using the Graphical Designer for Mapping 240
Using the Command-Line Tool for Mapping 243
Summary 244

8 Reading Objects with LINQ to SQL 247
Using LINQ and Databases 247

Translating LINQ to SQL 248

Understanding the Nuances of Translation 250

Retrieving Objects: Entities and Projections 252

The Importance of Object Identity 255
Using Relationships 256

Joining Tables 260

Mapping Different Types of Relationships 262

Loading Options 264
Deferred Loading 264

Eager Loading 266

Defining Inheritance 269
Performance and Security 274

Query Versus Results 275

Compiled Queries 277

Security 278

Summary 280

Contents xv



ptg

9 Modifying Objects withLINQ to SQL 281
Entity Lifecycle 282

Inserting and Deleting Entities 282

Updating Entities 285

Automatically Maintained Relationships 286

Submitting Changes 288

Simultaneous Changes 290
Optimistic Concurrency 292

Refreshing Entities 297

Transactions and Connection Management 299
Attaching Multitier Entities 302
Data Binding 305

Smart Client Data Binding 306

ASP.NET Data Binding 310

Creating a Database 316
Summary 318

10 Using Stored Procedures and Database Functions
with LINQ to SQL 319
Stored Procedures and Functions for Querying 319

Mapping and Using a Stored Procedure 320

Using Table-Valued Functions 326

Using Scalar-Valued Functions 328

Stored Procedures for Inserts, Updates, and Deletes 330
Stored Procedures for Loading Relationships 333
Summary 335

11 Customizing Entity Persistence and Adding Business Logic 337
Customizing Generated Code 337

Customizing the DataContext Class 338

Customizing the Entity Classes 341

Writing Your Own Persistent Classes 345
Summary 348

Contentsxvi



ptg

12 LINQ to Entities Overview 349
Understanding Entity Framework Concepts

and Components 349
The Entity Data Model 350

Entity Framework Components 352

Using the Entity Framework 353
Entity Model Generation 354

Understanding the Generated Code 359

Performing CRUD Operations 361

Using Stored Procedures 362

Making Sense of LINQ to Relational Choices 366
Summary 367

13 LINQ to XML: Creation 369
XML Fundamentals 370
Understanding the LINQ to XML API 374

Creating XML Elements 375

Creating XML Attributes 377

Creating an XML Document 378

Creating an XML Declaration 378

Creating a Document from Raw Text 382

Building a Document One Node at a Time 382

Reading and Writing XML 383

Summary 386

14 Querying and Editing XML 387
More on XDocument, XElement, and XAttribute 387
Querying with Element and Elements 392
XML Descendants 397
Composition and XML Queries 400
DescendantNodes, XText, and CData 402

DescendantNodesAndSelf 404

Searching for Text Nodes 405

CData 406

Parents and Ancestors 407
Elements After or Before Self 409

Contents xvii



ptg

Working with Missing Nodes 411
Working with Line Numbers 414
Modifying XML 417

Removing Nodes 417

Editing Nodes 418

Inserting Nodes 420

Summary 422

15 XML Namespaces, Transformations, and Schema Validation 423
XML and Namespaces 424

Default Namespaces 426

XML Transformations 429
Transforming XML from One Format to Another 430

Creating XHTML Through a Transformation 431

Transforming Relational Data into XML 437

Programmatically Creating the Database 442

Transferring Data from an XML File to a Database 447

Viewing the Data Schemas 449

XML Schema Validation 451
Validation 455

Namespaces and Validation 458

Annotations 459
Should You Use C# or VB? 461
Summary 463

16 Introduction to LINQ Patterns and Practices 465
Using Language Features Judiciously 466
Going Beyond Stored Procedures: The Dynamic SQL Debate 468
Designing Mid-tier with Persistent Entities and Business Logic 469

Data Shaping 470

Separation of Concerns 473

Managing Concurrency 476
Limitations of Optimistic Concurrency Checks 478

Unit of Work and Reusing a DataContext Instance 478

Understanding Performance 479
Defining Context 479

Costs and Optimizations 480

Contentsxviii



ptg

Improving Security 484
Summary 486

17 LINQ Everywhere 487
Other Flavors of LINQ 487
Parallel LINQ 488

Query Data with Parallel LINQ 490

LINQ to Flicker 495
LINQ to SharePoint 499
Working with Processes 509
Summary 512

18 Conclusion 515

A Tips for Developers 519
Accessing the Source Code 519
Northwind and the Visual Studio Samples 520
Version Numbers 521
Essential Downloads 521

Installing Visual Studio Express 522

Installing the .NET Framework 522

Installing SQL Server Express 523

Compiling C# Programs 524
Compiling from the Command Line 527
Connecting to a Database 528

Using the Object Relational Designer 531

Summary 534

Important Resources 534
Reference Materials: Getting Help 535
Finding LINQ Providers 536
Including Data Files in Your Project 536
C# Keywords and Contextual Keywords 537
Visual C# 2008 Key Bindings 539
Answers to Chapter 4 Exercises 544

Index 547

Contents xix



ptg

This page intentionally left blank 



ptg

Foreword

For years I have been fascinated with the differences between general-
purpose programming languages and databases. Practically every enter-
prise application built today is coded in a general-purpose programming
language and talks to a database, yet the two ecosystems are amazingly dif-
ferent and quite poorly integrated—the impedance mismatch between
object-oriented programming and the relational model is the gift that keeps
on giving when it comes to application complexity.

But the thing I find particularly puzzling is the lack of query capabilities
in general-purpose programming languages. Why is it you can query data-
base tables but not in-memory objects? Why are XPath and XQuery so arbi-
trarily different from SQL? Why is it so hard to transform data between the
object, relational, and XML domains? These are the kinds of questions that
launched us on the Language Integrated Query (LINQ) journey. Along the
way we got wise to the wonders of functional programming, lambda
expressions, type inference, monads, O/R mapping, and all sorts of fasci-
nating computer science. Fortunately, we managed to boil our learnings
down to a set of pragmatic language features and APIs that are useful in
practically any .NET application.

LINQ extends the .NET Framework and programming languages with
a uniform model for querying and transforming in-memory collections,
relational data, and XML documents. With LINQ, C# 3.0 and VB 9.0 gain
the expressive power of SQL and XQuery to become the first general-
purpose programming languages to natively support queries and trans-
formations over all classes of data.

xxi



ptg

LINQ was a very interesting and unique project to work on. One reason
is that it wasn’t just about language features. In order to gain experience
with the query capabilities we were developing, we needed to validate
them against the important data domains—objects, relational, and XML.
That led us to create the LINQ to Objects, LINQ to SQL, and LINQ to XML
APIs, all of which were built alongside the language features. The synergy
and agility we got from having a joint team working on both language and
APIs was just amazing—and loads of fun!

Also, LINQ isn’t just a single monolithic language feature, but rather a
collection of several smaller and individually useful features—such as
lambda expressions, extension methods, expression trees, object initializers,
and anonymous types—that all come together to form the concept of Lan-
guage Integrated Query. This made our work much more relevant and
leveraged.

Finally, LINQ is big step toward a more declarative style of program-
ming. This may be subtle, but it is really important. Programs written in
today’s imperative programming languages are too much about the “how”
and too little about the “what.” We tend to over-specify the solutions to our
programming problems—for example, by deconstructing queries into for
loops, if statements, manipulation of temporary collections, and so on. By
the time such programs run, it is all but impossible for the execution envi-
ronment to “understand” what they do. The higher level semantic meaning
has been lost in a sea of imperative, low-level instructions that must be
blindly executed in exact sequence. This contrasts with LINQ queries,
which preserve the programmer’s exact intent and allows the execution
infrastructure to be much smarter. A great example here is the Parallel
LINQ (PLINQ) API that parallelizes query execution on concurrent hard-
ware with practically no changes required to the source code.

Of course, the creation of a new technology such as LINQ is really only
the first part of our job. The next step is to find ways to explain our new
technology to the world of developers.

Essential LINQ is an important book because it provides a clear, easy-to-
understand explanation of what LINQ does, how it does it, and the many
practical ways you can use this technology to make your daily program-
ming life easier and more productive.

Forewordxxii



ptg

Both authors of this text bring an important set of skills to this project.
Throughout the development of LINQ, I worked daily with Dinesh Kulka-
rni in this role as Program Manager for the LINQ to SQL project. Few
understand LINQ to SQL better than Dinesh, and the many insights he pro-
vides into LINQ will prove to be an invaluable tool for any reader of this
book. The chapters Dinesh contributed to this book will be a resource that
developers will frequently mine for their rich, well-thought-out content.

I’ve known Charlie Calvert since we worked together on Turbo Pascal
and Delphi at Borland International. Charlie is an accomplished author
with a gift for finding the key threads in a technology and explaining them
to readers in a clear, easy-to-understand prose style. He is also one of nicest
people I’ve met.

Charlie and Dinesh each bring important skills to this project that have
enabled them to create an excellent book that shows how LINQ works and
the many practical ways you can use it in your daily development process.

Anders Hejlsberg
Redmond, WA
February 2009

Foreword xxiii



ptg

This page intentionally left blank 



ptg

Acknowledgments

Charlie Calvert:

Like most authors, I feel a deep and true gratitude to those who helped me
complete this text. Many of them made major contributions to the finished
product and deserve much more acclaim than the conventions of book pub-
lishing allow them to receive. I’m very grateful to everyone who has helped
me, and I hope that everyone mentioned here and those who I uninten-
tionally left out understand that my gratitude extends beyond what can be
expressed in these few paragraphs.

I want to thank Nick Paldino, Christophe Nazarre, and Ron Landers for
their excellent technical review. All three did a fine job, and I learned much
from each of them. Although each reviewer had his own set of valuable
contributions, I should perhaps add that Christophe did an unusually
excellent job, providing one of the best reviews of a technical document I’ve
ever seen. It’s interesting to trace the arc that a writer’s reaction to reviews
swings through over the years. When I was in grade school, I took the
marks on my paper by teachers as the word of God and never thought to
question them. Later I learned to plumb the depths of ingratitude by learn-
ing to resent the numerous and well-deserved red scratchings that showed
up on college papers and early professional manuscripts. At last I learned
to endure the criticism with feigned good will, knowing that the medicine
might taste badly but ultimately would be beneficial. And now, after all
these years, my only reaction is wonder and amazement that anyone is
willing to take the time to help me clean up what I have written. Ron,

xxv



ptg

Christophe, and Nick: Your review of this text saved me from numerous
egregious blunders and made many worthwhile contributions to the pages
of this book. Thank you for your excellent and thoughtful review of my
writing, and thank you to my publishers for assembling this excellent team!
Whatever merit there may be in the chapters I contributed to this book
owes much of its value to your efforts.

At one time or another, nearly every engineer on the teams I work with
has given me valuable help. However, four people have consistently come
to my aid with excellent explanations of some of the trickiest and most
interesting parts of the C# language. In no particular order, I want to thank
Eric Lippert, Luke Hoban, Alex Turner, and Mads Torgersen for the support
they have so generously given me. These are four of the most talented engi-
neers I’ve ever spoken with, but I value them even more for their ability to
take complex ideas and put them in language that anyone can understand.

Other folks at work who deserve thanks include Damien Watkins,
Dustin Campbell, Kirill Osenkov, DJ Park, Marcelo Guerra Hahn, David
Sterling, Matteo Taveggia, Anders Hejlsberg, Eric Maino, Mary Deyo, Lisa
Feigenbaum, Beth Massi, Jomo Fisher, Sam Ng, Tim Ng, Kevin Pilch-
Bisson, Wes Dyer, Esen Tuna, Luca Bolognese, Scott Nonnenberg, and
Karen Liu. Lists like this always leave out nearly as many people as they
include. I hope that those who are deserving of mention, but don’t see their
names here, will forgive me the omission.

I also want to thank my coauthor, Dinesh Kulkarni, for giving me the
chance to work with him on this book. That Dinesh is an excellent engineer
and manager goes without saying. My special privilege has been to get to
know him so well. In the rarified technical atmosphere where Dinesh
dwells, one encounters many extraordinary professionals. Dinesh’s special
gift is to combine his technical talent with the warmth, wit, and generosity
of a first-class human being. If there were more people like Dinesh, this
would be a better world.

My editors at Addison Wesley, most particularly the redoubtable Joan
Murray and the ever-helpful Olivia Basegio, were both patient and sup-
portive. I have to confess that I was completely outclassed by them nearly
every step of the way, and I feel very privileged to have had the chance to
work with such extraordinary professionals. Joan, Olivia, and the others at

Acknowledgmentsxxvi



ptg

Addison Wesley give me something to aspire to: They demonstrate how it
ought to be done. What a joy it has been to work with you all!

I have to thank my wife Margie for her otherworldly patience and an
understanding beyond the capacity of mere mortals. Margie is an angel,
and the support she gave me while I wrote this book is but one of the many,
many things for which I owe her my undying gratitude and love.

Dinesh Kulkarni:
For me, this book is the culmination of an incubation project I joined almost
four years ago. Although my name appears as one of the two authors, the
book is a record of the work done by a large number of people inside and
outside Microsoft. I am fortunate to have had a chance to write about the
work, and I acknowledge their contributions here. 

I would like to start with Erik Meijer, who introduced and urged me to
join the Language-Integrated Query incubation project headed by Anders
Hejlsberg in the small but elite C# Product Unit at Microsoft. There, the
design of LINQ was carried out primarily in the grueling but delightful lan-
guage design meetings attended by a small group of dedicated people.
There I had the privilege of joining Anders Hejlsberg, Matt Warren, Erik
Meijer, Peter Hallam, and later, Mads Torgersen, for some intense design
discussions about all aspects of LINQ. That is where I learned the essence
of language and API design with LINQ as a working example. It was as
much a work of art as a product of engineering practices.

The response of the .NET community to our LINQ previews in Fall 2005
and Spring 2006 was phenomenal. Their continued encouragement, sup-
port, and criticisms throughout the process helped shape LINQ. They have
had a significant impact on the subject of this book.

The C# product unit was a perfect place for turning the incubation and
previews into a shippable product. That is where C# 3.0, LINQ to Objects,
and LINQ to SQL morphed from preview into products. Matt Warren built
most of the LINQ preview components and was the architect and super
developer for the LINQ to SQL component that I ended up driving as the
program manager. He is one of the best developers I have ever had a chance
to work with. Likewise, the development team lead by Terry Adams and
the QA team lead by Daigo Hamura provided great examples of engineer-
ing and innovation required to go from a preview to a product under very

Acknowledgments xxvii



ptg

challenging conditions. A partner team led by Antoine Cote, Jay Hickerson,
and Young Joo provided a great designer experience for our run-time work
and also provided a foundation for the Entity Framework designer. Thank
you for building a wonderful product and for being so supportive through-
out the process. From that team, Mathew Charles and Vijay Upadya con-
tinue to inspire me as colleagues on our new project to build a multitier
application framework using LINQ. Overall, the heroic efforts of the team
really motivated me to tell the story of LINQ through this book.

My management chain—especially Luca Bolognese, Raj Pai, and Drew
Fletcher—struck a great balance between being demanding and nurturing.
Alex Turner, who joined as an intern and developed more than 300 samples
(with $1/sample bounty) for the preview, perfectly rounded out the team. 

I was fortunate to find an experienced and well-known coauthor—
Charlie Calvert. He set an example for making the most complex topics
simple through his writing. Charlie’s empathy for the common developer
and his understanding of the developer community are truly exceptional,
and I feel privileged to have had a chance to learn from him about the
process of writing a book. His constant encouragement and calm approach
were essential for me to get to the finish line. His exemplary dedication and
professionalism will continue to inspire me well into the future.

I would like to thank Nick Paldino, Christophe Nazarre, and Ron Lan-
ders for their detailed reviews that have significantly improved the clarity
and accuracy. Each of them had a unique perspective that nicely comple-
mented the other. Nick has been a reviewer of LINQ and C# since the early
previews and continues to be an advocate for clarity and precision. Ron’s
insistence on better explanation has hopefully made the book more acces-
sible. Christophe in particular did such a wonderful job finding subtle
errors that I would not want to write again without having him as a
reviewer. 

The patience and sacrifice of my family enabled me to complete the
book. My children, Siddharth and Shruti, and my wife, Devaki, put up with
my regular absence as I kept writing and revising chapters for twice as long
as expected. Devaki also helped with preliminary reviews of my early
drafts. I am thankful to them for being the silent and patient contributors.

Acknowledgmentsxxviii



ptg

About the Authors

Charlie Calvert is the Community Program Manager for the Microsoft C#
team. While working on outreach and bridge building to both external and
internal teams through the Web and live events, Charlie focuses his tech-
nical energies on LINQ and core C# language scenarios such as generics. He
has degrees in Journalism and Computer Science from the Evergreen State
College. The author of ten technical books that have sold more than 100,000
copies, Charlie currently lives in the Seattle area where he enjoys outdoor
activities such as hiking, sailing, and skiing in the mountains.

Dinesh Kulkarni is a Senior Program Manager in the Microsoft .NET
Developer Platform team working on framework support for multitier
applications. Before that he worked on the LINQ project in the C# team
from the incubation phase through the shipping of the first release with
Visual Studio 2008. He received his Ph.D. in Computer Science from the
University of Notre Dame, Indiana, and B.Tech. from IIT Bombay, India. He
has published extensively in technical journals and filed more than a dozen
patents. He lives in the Seattle area and enjoys outdoor activities with his
family.

xxix



ptg

This page intentionally left blank 



ptg

1
Introduction

W E L C O M E TO ES S E N T I A L LINQ . This book was written by two man-
agers from the Microsoft C# team. One is the Program Manager who

guided the design and development of LINQ to SQL, and the other worked
daily with the engineers, testers, and designers who built LINQ to SQL and
LINQ to Objects. All the key ideas in this book were vetted with the design-
ers of LINQ and reflect the current best practices for LINQ development.

LINQ is an acronym for Language Integrated Query. It is pronounced
“link.” You may sometimes hear it pronounced “lin-queue,” but that is
incorrect.

LINQ introduces querying into the C# language as a first-class citizen.
The compiler type checks LINQ queries. Inside Visual Studio LINQ queries
are syntax-highlighted and IntelliSense-aware. They provide developers
with a strongly typed, logically structured syntax for querying data.

Before LINQ there was no single native syntax for querying data in the
C# language. There were tools for branching and looping, tools for writing
object-oriented code, even tools for creating delegates or serializing data.
But there was no single, standardized way to query multiple data sources.

You can use LINQ’s SQL-like syntax to query SQL databases, XML files,
or generic data structures such as lists and queues. LINQ can also be
extended to allow developers to access virtually any other data source.

1



ptg

Developers have always been able to query databases, XML files, and
other data sources. LINQ’s contribution is to provide a single, unified syn-
tax for performing these queries. In the past, developers used one syntax
to query SQL data, another to query XML, a third to query a collection, and
so on. Now we have a single syntax for performing all these tasks. Just as
�� statements provide an integrated way to branch, and ��� and ����	

statements provide a technique for looping over data, LINQ provides a sin-
gle, integrated syntax for querying data.

The introduction of LINQ is one of the biggest changes in the C# world
since the inception of the language. The only other change of comparable
magnitude was the introduction of generics, but even that change probably
does not have as many long-term implications.

This book is designed to introduce you to LINQ and to explain the most
important of its advanced features. When you finish reading this book, you
will have received a thorough introduction to the LINQ syntax. You will
know how to query all the major LINQ data sources, such as SQL databases
and XML files. The text also provides sections on best practices for LINQ
development and provides tips on how to integrate the technology into
your projects.

The Varied Uses of the LINQ Syntax

The introduction of LINQ into C# has broad implications. Although LINQ’s
primary purpose is to allow you to query data, the syntax that enables this
technology also allows developers to write a new style of code.

New syntactical features include lambdas and extension methods. Devel-
opers will find these useful even when they are not writing LINQ queries.
Other LINQ-related concepts, such as deferred execution and composition,
also have far-reaching implications. These features give the language new
flexibility that can be invaluable in some scenarios.

LINQ does more than simply add new features to the language. It intro-
duces a declarative style of programming into the C# language. The
declarative programming model allows developers to craft code that suc-
cinctly captures their intent, without forcing them to worry about the order
in which events take place, or their precise implementation. It allows devel-
opers to state what they want to do, rather than how it will be done.

Chapter 1: Introduction2



ptg

LINQ is flexible enough that you can apply new syntax features, and the
declarative style of programming, to domains other than querying data.
Creating programs that run on multiple threads has proven to be one of the
most difficult hurdles for modern developers to cross. LINQ is a particu-
larly efficient tool for creating threads that run concurrently. By develop-
ing an understanding of the LINQ syntax, you will be able to take
advantage of PLINQ, or Parallel LINQ, a technology that was being devel-
oped as this book was written.

LINQ Is a Practical Technology

You might find this talk of declarative programming and composition a bit
abstract. However, this book is a practical text designed primarily to give
you the information you need to use LINQ to get work done quickly, easily,
and in a style that is easy to maintain. When more abstract ideas are intro-
duced, they are explained slowly and carefully, making it easy to under-
stand exactly how they work and why they are important.

You will find that LINQ introduces a number of exciting new concepts
into the life of the average C# developer, but none of them are particularly
difficult to understand if they are properly introduced. The goal of this
book is to ease you into these technologies so that you will become con-
versant with LINQ queries and LINQ syntax sooner and more easily than
you might expect.

LINQ is designed to help you get your work done quickly and to write
code that can be easily maintained. New ideas are useless if they don’t have
practical implications. LINQ’s syntax may be exciting, but developers will
love this technology because it helps them get a lot of work done in a short
period of time. The primary goal of this book is to help you learn how to use
LINQ to get practical work done in as short a period of time as possible.

Audience and Subject Matter

This book is designed to present LINQ to the average developer. In simple
terms it explains why LINQ is important and how to use it. You are
expected to have an intermediate-level understanding of C#.

Audience and Subject Matter 3



ptg

This book is designed as a general introduction to LINQ, but it can be
especially helpful if you

• Want to focus on practical solutions rather than abstract theory.

• Prefer high-performance tools that are lightweight and highly
scalable.

• Have an interest in understanding the C# language and how to use
it to solve problems quickly and efficiently.

LINQ is a useful tool designed for use by typical C# developers. You
might have to do some work to understand how to use LINQ, but it is not
an advanced tool for use only by the most sophisticated developers. It is a
general-purpose tool that any competent C# developer can easily incorpo-
rate into his or her daily development cycle.

Read this book to obtain a comprehensive overview of all the major fea-
tures of LINQ, including advanced features such as deferred execution,
lambdas, and expression trees. However, make sure that you never lose
sight of LINQ’s primary goal, which is to make it easy for you to quickly
query data from multiple sources. Understanding the advanced features is
valuable, but not if it diverts you from LINQ’s primary purpose as a prac-
tical tool.

This book is divided into 18 chapters:

• Chapter 1, “Introduction”: This chapter.

• Chapter 2, “Getting Started”: Here you find a few simple examples
of the major features of LINQ. Use these examples to help get
started with this new technology.

• Chapter 3, “The Essence of LINQ”: An overview of the LINQ tech-
nology from a theoretical perspective. Here you read about the main
ideas around which the LINQ architecture is organized.

• Chapter 4, “C# 3.0 Technical Overview”: In this chapter you learn
about the various features of C# 3.0 and C# 2.0 that come together to
make LINQ possible. Lambdas, extension methods, and deferred
execution are a few of the features outlined in this chapter.

Chapter 1: Introduction4



ptg

• Chapter 5, “Writing Query Expressions”: Most LINQ developers
spend the majority of their time writing expressions. This is the pri-
mary syntax for writing LINQ queries. If you become an expert at
writing query expressions, you will be an expert at LINQ.

• Chapter 6, “Query Operators”: The LINQ query operators give
LINQ its power and flexibility. These operators are a set of tools
built into the LINQ language that allow you to accomplish a wide
range of tasks.

• Chapter 7, “A Quick Tour of LINQ to SQL”: You might be reading
this book primarily to learn about LINQ to SQL. The first six chap-
ters of this book give you the background you need to understand
how LINQ works. Now at last you can begin learning how to query
a SQL database with LINQ.

• Chapter 8, “Reading Objects with LINQ to SQL”: You can use LINQ
to SQL to populate the objects in your program with relational data.
This chapter explains the nuances of how to write LINQ to SQL
queries.

• Chapter 9, “Modifying Objects with LINQ to SQL”: No API for
querying relational data would be complete without the ability to
post changes back to the database. This chapter explains how to pro-
ceed.

• Chapter 10, “Using Stored Procedures and Database Functions with
LINQ to SQL”: Modern database development relies on the devel-
oper’s ability to work with stored procedures and table and scalar
functions. You also read about how to use stored procedures when
performing inserts, updates, and deletes.

• Chapter 11, “Customizing Entity Persistence and Adding Business
Logic”: LINQ provides developers with many opportunities to cus-
tomize their code. This chapter shows you how to take control of
LINQ so that you can bend it to your specific needs and the needs of
your business.

Audience and Subject Matter 5



ptg

• Chapter 12, “LINQ to Entities Overview”: Like LINQ to SQL,
the Entity Framework allows developers to use LINQ to access
relational databases. This chapter explains how to use LINQ to
Entities and how it differs from LINQ to SQL. Entity Framework is
a large component that is evolving substantially, and it includes
many concepts beyond LINQ. Hence, we have scoped the discussion
to an overview of LINQ to Entities.

• Chapter 13, “LINQ to XML: Creation”: Shows you how to create
XML files with LINQ.

• Chapter 14, “Querying and Editing XML”: Shows you how to query
XML data with LINQ.

• Chapter 15, “XML Namespaces, Transformations, and Schema Vali-
dation”: Shows you how to transform XML data. This chapter
focuses primarily on transforming SQL data into XML and XML into
relational data. It also explains the general principles behind trans-
forming one LINQ data source into another.

• Chapter 16, “Introduction to LINQ Patterns and Practices”: LINQ is
a new technology, and developers will have many questions about
how best to use it. This chapter lays out some best practices and
common patterns that LINQ developers can use to help them write
robust code that is easy to maintain.

• Chapter 17, “LINQ Everywhere”: Microsoft or third-party devel-
opers can extend LINQ by writing providers that give developers
access to new data sources or to new functionality. Three LINQ
providers currently under development are reviewed in this chapter.
Perhaps the most important is Parallel LINQ (PLINQ), which
enables you to write LINQ queries that automatically execute
simultaneously on multiple processors.

• Chapter 18, “Conclusion”: This chapter reviews the book’s main
themes.

Chapter 1: Introduction6



ptg

The Essence of LINQ

Seven key themes, outlined in Chapter 3, recur throughout this text. I’ll out-
line them here briefly to give you an easy-to-find reference to these central
and very important concepts. These seven foundational principles state
that LINQ is

• Integrated: LINQ is a first-class citizen of .NET languages such as
C# and VB and as such is fully type-checked. Inside Visual Studio it
is syntax-highlighted and IntelliSense-aware.

• Unitive: LINQ provides a single syntax for querying multiple data
sources, including relational data found in a SQL database, XML
data, and the objects in a program.

• Extensible: LINQ can be adapted to work with multiple languages
and to query multiple data sources. LINQ to XML, LINQ to SQL,
and LINQ to Objects are only three possible forms of LINQ. Devel-
opers can extend the language to query almost any arbitrary data
source, such as a file system, web service, or network protocol.

• Declarative: A LINQ developer tells the compiler what to do, with-
out focusing on how to perform a task or in what order tasks must
be performed.

• Hierarchical: LINQ provides a rich, object-oriented view of data. A
more rigorous or mathematical view of this same theme would focus
on LINQ’s capability to generate and manipulate graphs.

• Composable: The results of one query can be used by a second
query, and one query can be a subclause of another query. In many
cases, this can be done without forcing the execution of any one
query until the developer wants that execution to take place. Thus,
you can write three separate but related queries. LINQ automatically
notes the connections between them and combines them into a

The Essence of LINQ 7



ptg

single, efficient query that executes only once. This allows you to
“divide and conquer” by breaking up the logic of your query just as
you divide the logic of your program across multiple classes and
methods.

• Transformative: The results of a LINQ query against one data
source can be transformed into a second data source. For instance, a
query against a SQL database can produce an XML file as output.

These ideas represent the heart of LINQ, and they reappear in many differ-
ent forms throughout this book. They are the exclusive focus of Chapter 3.
That chapter is one of the cornerstones of this book, so you might want to
refer to it while reading other chapters. Chapter 15 also is one of the key
parts of the book.

Comparing LINQ to SQL and LINQ to Objects

We know that many, but by no means all, of the readers of this book are
very interested in learning how to query a relational database using LINQ
to SQL. Nevertheless, the book begins by studying LINQ to Objects. An in-
depth exploration of LINQ to SQL does not begin until nearly halfway
through the book, in Chapter 7. Why did we wait so long to introduce such
an important topic?

LINQ to SQL is not innately more difficult to understand than LINQ to
Objects. In many cases, it is not even possible to distinguish a LINQ to SQL
query from a LINQ to Objects query without seeing the context in which
the two queries occur. So the delay in introducing LINQ to SQL has nothing
to do with its complexity.

The great advantage of LINQ to Objects over LINQ to SQL is that it does
not require a connection to a database. Most of the examples in the first six
chapters are designed to be run quickly and easily by anyone with an up-
to-date C# compiler. With a few brief exceptions, there is no need to have
a SQL database available, or to worry about connection strings and data
access rights. This ease of use is perhaps the primary reason why LINQ to
Objects is introduced before LINQ to SQL.

Chapter 1: Introduction8



ptg

If you are eager to get to the material on LINQ to SQL, please keep in
mind that in many cases the syntax of a LINQ to SQL query is nearly iden-
tical to the syntax for a LINQ to Objects query. Every topic in the first six
chapters, and every sample that is shown, contains information that LINQ
to SQL developers need to know. Each query shown in these opening chap-
ters contains information directly applicable to LINQ to SQL.

However, there’s another very important reason to begin with LINQ to
Objects. When many developers hear that LINQ is a tool for querying data,
they begin thinking about querying relational databases. That is an impor-
tant part of LINQ development, but it is not the only or even the primary
reason to write LINQ code.

In later chapters you learn that many ��� and ����	 loops—
particularly nested ��� and ����	 loops—can be more easily, and more
intuitively, expressed as LINQ statements. Just as developers new to gener-
ics are encouraged to consider converting their old-style collections into
generic collections, so should you consider translating ��� and ����	 loops
into LINQ statements.

LINQ is not just a tool for querying databases. It is true that LINQ to SQL
is a powerful, intuitive, and time-saving way to query a database, but that
is only one facet of LINQ. Anytime you find yourself working with collec-
tions of data, you should look for ways to introduce LINQ queries into your
project. A great deal of the development that we do involves working with
lists, queues, collections, and other data structures. All of this code lends
itself to LINQ development, and in many cases we can improve our code by
judiciously introducing LINQ queries into all parts of our programs.

A Few Words About Generics

Generics play a key role in LINQ. To read this book, you need to know a
few basic facts about generics, none of which are particularly difficult to
grasp. This book assumes that you understand the basics of generics. Par-
ticularly during the discussion of lambdas, it will become important for
you to understand generic methods. This is not a widely understood topic,

A Few Words About Generics 9



ptg

so this text explores it in enough depth to make sure that you can follow the
discussion.

Even if you’re familiar with generic syntax, you might not know how
to pronounce the elements of that syntax. Consider the following code frag-
ment:


����������

This should be read as “list of string.” You are about to read an entire book
that uses this kind of generic syntax often. When most of us read, we tend
to hear the sound of the words we encounter. It would be painful for you
to go through this entire book seeing syntax like this and pronouncing it
“list open bracket string close bracket.” It would be worse to say something
like “list, some funny-looking stuff with the word string in it.” Your com-
fort level will increase considerably if you read 
���������� as “list of
string.”

Another type that you will see frequently in this book is �����	��
���	��. You should pronounce this type as “I enumerable of T.”

Both 
����� and �����	����	�� are collections: they are containers
for elements of a similar type. �����	����	�� is an interface that is imple-
mented by 
�����.

Source for the Samples and Troubleshooting Resources

Appendix A contains information about downloading and installing the
samples that accompany this book. It also has additional information in
case you’re new to C#.

Many of the programs in this book are console applications. If you run
a console application by pressing F5, the output often disappears before
you have a chance to read it. Some developers solve this problem by plac-
ing a call to ������	��	��
��	�� at the end of their program. If you are
working in Visual Studio, that is not necessary. Instead, press Ctrl-F5
(Debug | Start Without Debugging) to run the program. A console window
appears as usual, but it pauses and waits for a keystroke before it closes.

Additional information about this book is available on the web. Char-
lie Calvert maintains a blog and a web site:

Chapter 1: Introduction10



ptg

http://blogs.msdn.com/charlie
http://www.elvenware.com

You can find Dinesh Kulkarni’s blog here:
http://blogs.msdn.com/dinesh.kulkarni/

Information about LINQ and C# often can be found at the C# Development
Center:

http://csharp.net
The publisher’s web site for this book is located here:

http://www.informit.com/register

Summary

LINQ is a practical technology. As you read this text, your primary goal
should be to learn how to write LINQ queries. If you have a confident and
thorough knowledge of how to write a LINQ query, you will be able to use
LINQ to reliably and speedily complete your day’s work. The bottom line
is efficiency, and LINQ is designed to help you become a more efficient
developer.

All the ideas and technologies presented in this text are designed to help
you become a better developer. Absorb these technologies as best you can,
but always remember that these are practical tools designed to make your
life easier and your work more robust. If the subject matter occasionally
becomes too abstract for your tastes, absorb it as best you can, and rest
assured that more practical subject matter is usually no more than a page or
two away.

As always, do everything you can to enjoy both this book and your jour-
ney into the exciting and exotic land of LINQ development. Writing code
is not easy. No one should try programming in C# unless they enjoy it. I
find development rewarding because I frequently get excited about the
technologies behind the C# language. Do everything you can to cultivate
that sense of excitement and to explore LINQ with a sense of adventure. All
the great developers I’ve met get excited about the art of programming.
They pursue it with passion and obviously derive great joy from the work.
Partake of that spirit as best you can, knowing that one part of the path to
excellence is learning how to enjoy your work.

Summary 11

http://www.elvenware.com
http://www.informit.com/register
http://blogs.msdn.com/charlie
http://blogs.msdn.com/dinesh.kulkarni/
http://csharp.net


ptg

This page intentionally left blank 



ptg

2
Getting Started

M A N Y D E V E L O P E R S P R E F E R to use a new technology rather than sim-
ply read about it. Practical experience provides a foundation on

which to construct the theoretical understanding needed when mastering a
new skill.

This chapter helps you understand LINQ by showing several simple
programs that illustrate

• LINQ to Objects

• LINQ to SQL

• LINQ to XML

These examples demonstrate three themes that recur frequently in this
book:

• The usefulness of query expressions

• The significance of deferred execution

• The primacy of �����	����	��

The examples shown in this chapter also illustrate how to write query
expressions, the key syntactic construct used by LINQ developers to query
a data source. When executing even these simple LINQ queries, you will

13



ptg

encounter deferred execution, a characteristic of LINQ that developers must
comprehend if they want to claim a thorough knowledge of the subject.
Finally, you will be introduced to �����	����	��, the data source for
LINQ to Objects and LINQ to XML queries. These queries usually also
return a variable of this type. A thorough understanding of LINQ is impos-
sible without first becoming acquainted with �����	����	��.

This chapter also introduces several new features of C# 3.0 that are not
LINQ-specific:

• Type inference

• Collection initializers

• Object initializers

• Automatic properties

These features are discussed in more depth in Chapter 4, “C# 3.0 Technical
Overview.” That chapter also covers other important features, such as
lambdas and extension methods.

Querying a Collection of Integers

Our first query will be run against a collection of integers. Listing 2.1 shows
a complete program demonstrating how to write a LINQ query against a
collection that contains the numbers 1, 2, and 3. The query selects the num-
bers in the collection that are smaller than 3 and prints them to the screen.

Listing 2.1 When Compiled, the Source for the SimpleNumericQuery Program Returns
the Values 1 and 2

����� � ��	�!
����� � ��	������	"������#	�	��"!
����� � ��	��
��$!

���	�%�"	 &��	��"'�	� 
(

"���� )������
(

�����" *��� +����������,-.�����
(


�������.����./.�	� 
���������.(.01.21.3.4!

Chapter 2: Getting Started14



ptg

*�� $�	� ./.���� ����	�.�� ����
��	�	 ����	�..3
�	�	"� ����	�!

���	�"� �*�� ����	�.�� $�	� �
(

������	�5���	
��	�����	��!
4

4
4

4

There are two simple ways to compile and run this program:

• Method 1:

1. Enter the program directly into a default console application in
Visual Studio 2008 or later.

2. Press F5 to run it. (If you press Ctrl-F5, it will run and the console
window will stay open so that you can view the results. Alterna-
tively, you could add a ������	��	�����	�� statement to the end
of the listing.)

• Method 2:

1. Open a text editor and enter Listing 2.1.

2. Save the text file as SimpleNumericQuery.cs.

3. Compile and run the program by entering the following at the
command prompt:

)6�7/8)6�78!8������89+�"�������&��9:���	���;9*3�<9
"�"�	=	.���%�	&��	��"'�	� �"�
���%�	&��	��"'�	� �	=	

The first line sets the path to give you access to the .NET Framework. The
second line compiles the program. The third line executes it. When run, the
program’s output displays the numbers 1 and 2. I should add that two
assemblies, � ��	� and � ��	�����	, are implicitly included in your appli-
cation when you compile it. Appendix A contains more information on
compiling and running C# programs.

Querying a Collection of Integers 15



ptg

Collection Initializers
The first line of code in the body of the SimpleNumericQuery program uses
a new feature of C# 3.0 called collection initializers. This feature helps you
populate a collection using a concise and easy-to-read syntax.

Consider this single line of code that initializes a collection with three
integers:


�������.����./.�	� 
���������.(.01.21.3.4!

This single line of code is called a collection initializer. It is a shorthand way
of writing the following code:


�������.����./.�	� 
���������!
�����6���0�!
�����6���2�!
�����6���3�!

Although collection initializers are not part of LINQ proper, they are
written in the spirit of LINQ in that they allow you to concisely declare
your intentions in code that is easy to understand.

Query Expressions
The centerpiece of Listing 2.1 resides in three lines of code called a LINQ
query expression:

*�� $�	� ./.���� ����	�.�� ����
��	�	 ����	�..3
�	�	"� ����	�!

Query expressions will be analyzed in more depth in later chapters; for
now we will only take a quick look at their most salient features.

On the right side of the / operator, you see the body of the query:

���� ����	�.��.����
��	�	 ����	�..3
�	�	"� ����	�!

All query expressions begin with the keyword ���� and end with a line
that begins with the �	�	"� or ����% � contextual keywords. It is impor-
tant that you fully understand these keywords or the query operators that

Chapter 2: Getting Started16



ptg

underlie them. It is also important to know that query expressions always
begin with a ���� clause and usually end with a �	�	"� clause.

The ��	�	 clause in the second line of the query expression shown in
Listing 2.1 instructs the compiler to filter the numbers in the list, returning
only those that are smaller than 3. Chapter 6, “Query Operators,” describes
49 different operators, such as ��	�	 and �	�	"�, that are available in LINQ
to Objects. However, the pattern shown here, with a ����, ��	�	, and
�	�	"� clause, is the most commonly used.

Querying a Collection of Integers 17

Contextual Keywords

Contextual keywords are not reserved words in any traditional sense.
They are words that have a significant meaning only when used in a
particular setting. For instance, the words ����, ��	�	, and �	�	"�,
when used in a query expression with the pattern just shown, have
specific and important significance. Some contextual keywords may
have more than one meaning, depending on their context. For
instance, ��	�	 can also be used as a contextual keyword to define a
generic constraint. The following are the contextual keywords used in
C# 3.0:

• LINQ contextual keywords found in query expressions: ����,
��	�	, >���, ��, 	$����, ����, �	�, ���	�� , ��"	�����, �	�"	���
���, �	�	"�, ����%, and � 

• Property-based contextual keywords: �	�, �	�, *���	

• Other contextual keywords: %������, *��,  �	��

The �	�	"� clause in a query expression comes on the last line. This
might seem counterintuitive if you’re not used to SQL queries. Here is why
the �	�	"� clause appears on the last line of a LINQ query:

• Query expressions in LINQ are fully type-checked and IntelliSense-
aware.

• If the �	�	"� clause came first, the IDE and the compiler would not
immediately know the type of data you wanted to query. As a result,
they could not provide type checking or IntelliSense while you were
composing your query.



ptg

• If you place the ���� clause first, the compiler is immediately
informed of the type of data you want to query, and it can begin giv-
ing you feedback as you type. In strongly typed languages such as
C#, you always establish the type as quickly as possible, and LINQ
simply follows that well-established pattern by beginning query
expressions with a ���� clause.

Although it may seem strange at first, I’ve found that the logic that led
the team to begin query expressions with a ���� clause is so compelling that
it quickly became second nature to me. I’ve been told that in Microsoft SQL
Server, the ���� clause of a T-SQL query is actually executed first, and then
the >���s, and then the ��	�	 clause. The �	�	"� clause is actually the last
part of the query to be evaluated.

Type Inference
On the left of the / operator, you see the words *�� $�	� . The new con-
textual keyword *�� tells the compiler to rely on type inference to infer the
type of the identifier $�	� . The type is determined by an analysis of the
expression on the right of the operator.

Chapter 2: Getting Started18

Quick Insight into Type Inference

In Visual Studio, if you hover the mouse over the word *��, a window
appears showing its underlying type.

This query, like most LINQ to Objects queries, returns a variable of type
�����	����	��. In this case, � is of type ���. Therefore, you could have
declared the query expression as follows:

�����	����	����.$�	� ./.���� ����	�.�� ����
��	�	 ����	�..3
�	�	"� ����	�!

Although this code is valid, the preferred style is to use the contextual key-
word *��. Type inference provides several benefits. It ensures that strong
typing is enforced, and it also



ptg

• Eliminates the need to guess the type of the data returned from a
LINQ query.

• Eliminates verbose and repetitive code in some circumstances.

• Makes possible the use of a new feature of C# 3.0 called anonymous
types when you’re writing query expressions.

• Allows you to easily use a powerful feature of LINQ called compos-
ability.

All these features of type inference are discussed in more depth later in this
book. Anonymous types are discussed in this chapter, and composability in
the next.

Our sample uses a ���	�"� loop to iterate over the results of the query.
As mentioned, this loop prints the numbers 1 and 2.

Introduction to IEnumerable<T>
A���	�"� loop can iterate over the results of this query because it is of type
�����	����	��. Objects that implement �����	����	�� have access to
the methods and properties +�*	&	=���, ����	��, and �	�	���. They can
all be enumerated like this:


������������	����� 	./.�����#	�����	�������!

����	 �	�+�*	&	=����
(

������	�5���	
��	�	�����	���!
4

A ���	�"� loop is simply the preferred shorthand way of writing the pre-
ceding code:

���	�"� �*�� ����	�.�� $�	� �
(

������	�5���	
��	�����	��!
4

The ���	�"� loop is preferable because it expands into a �� /"��"�/
������ construct that calls the ?��%��	 method of �����	����	��� The
example shown here does not.

Querying a Collection of Integers 19



ptg

Let’s take a moment to review and emphasize the central role of
�����	����	�� in LINQ to Objects. Here are the key points:

• LINQ to Objects queries are run against variables that support the
�����	����	�� interface.

• They also usually return a variable of type �����	����	��. To see
the return type, hover the mouse over the word *��, as described
earlier in this chapter.

This simple program has introduced four key concepts:

• Collection initializers

• Type inference

• Query expressions

• �����	����	��

All these technologies are important, but the latter three are central, recur-
ring themes of this text.

Querying a Collection of Objects

The previous example showed how to query a collection of the simple
���	�	� type. This next example demonstrates how to query a collection
of objects. The objects are of a custom type called ������	�:

"����.������	�
(

%����".������.������	��?.(.�	�!.�	�!.4
%����".������.�����"�&��	.(.�	�!.�	�!.4
%����".������.��� .(.�	�!.�	�!.4

4

The declaration for this class uses a new C# 3.0 feature called automatic
properties that is designed to help you easily declare properties in a concise
style.

Chapter 2: Getting Started20



ptg

Introducing Automatic Properties
The original C# syntax for properties involved using �	� and �	� methods
to access data. For instance, the ��� property shown previously would
look like this in C# 2.0:

%��*��	 ������ "�� !

%����" ������ ��� 
(

�	�
(

�	���� "�� !
4

�	�
(

"�� ./.*���	!
4

4

This syntax still works in C# 3.0, but now you can also use this simple short-
hand to produce semantically equivalent code.

The code produced when you use automatic properties includes an
inaccessible private backing store. One way to see this is to use the free pro-
gram available on the Internet called Red Gate’s .NET Reflector. If you
right-click the ������	� class and choose Disassemble, that program pro-
duces the following code:

���	���� "���� �������	
(

@@.:�	���
,���%��	�#	�	���	�-
%��*��	 ������ 
�������������������!
,���%��	�#	�	���	�-
%��*��	 ������ 
��������������������������!
,���%��	�#	�	���	�-
%��*��	 ������.
�������	�����������������!

@@.+	�����
%����" �������	��!

Querying a Collection of Objects 21



ptg

@@.)��%	���	�
%����" ������.���� (.,���%��	�#	�	���	�-.�	�!.,���%��	�#	�	���	�-
�	�!.4
%����" ������.����������� (.,���%��	�#	�	���	�-.�	�!

,���%��	�#	�	���	�-.�	�!.4
%����" ������.�������	�� (.,���%��	�#	�	���	�-.�	�!

,���%��	�#	�	���	�-.�	�!.4
4

Three backing fields are declared with oddly shaped identifiers such as
������	��?�;AAB�";���:�	��. They would never compile in C#, although
they are valid Intermediate Language (IL) identifiers. Code similar to what
is shown here is generated for you in the background whenever you use
automatic properties.

Chapter 2: Getting Started22

Intermediate Language (IL)

The C# compiler translates the code that we write into Intermediate
Language (IL). IL is executed at runtime by the .NET Common Lan-
guage Runtime (CLR).

If you want to access the backing fields of a property, you must declare
them using the traditional property style. Automatic properties are useful
only as a means of doing less typing and keeping your code short and
precise.

Introducing Object Initializers
In the preceding section, you saw how to initialize a collection of integers
in C# 3.0. Here is how to use similar syntax to initialize a collection of
objects:

%��*��	 �����" 
���������	��.#	�������	����
(

�	����.�	�.
���������	��
(

�	� ������	� (.������	��?./.C6
:D�C1.�����"�&��	./.C+����.6��	��C1
��� ./.CB	����C 41

�	� ������	� (.������	��?./.C6&6��C1.�����"�&��	./.C6��.���>����C1



ptg

��� ./.C+	=�"�.?�:�C 41
�	� ������	� (.������	��?./.C6&�E&C1.�����"�&��	./.C6������.+��	��C1

��� ./.C+	=�"�.?�:�C 4
4!

4

The lines beginning with the word �	� are examples of object initializers.
They instantiate an instance of the object ������	� and initialize all three
of its public properties. You can also initialize fields with this same syntax.

Like collection initializers, object initializers are a shorthand way of 
performing a common task. In particular, the first �	� statement in the 
#	�������	�� method looks like this in C# 2.0 syntax:

������	� "�����	�0./.�	� ������	���!

"�����	�0�������	��?./.C6
:D�C!
"�����	�0���� ./.CB	����C!
"�����	�0������"�&��	./.C+����.6��	��C!

This code still compiles, but the new syntax is clearly more concise.
The entire body of the #	�������	�� method is a collection initializer.

This time, instead of initializing a collection of integers, three objects are
placed in the collection. I won’t waste space in this text showing how much
code it would take to perform the same task using C# 2.0 syntax. It should
be obvious that the new syntax is both shorter and easier to read.

The code in Listing 2.2 is a complete program demonstrating how to use
LINQ to Objects to query a collection of ������	� objects.

Listing 2.2 A Simple LINQ to Objects Query Against a Collection of ������	� Objects

����� � ��	�!
����� � ��	������	"������#	�	��"!
����� � ��	��
��$!

���	�%�"	 ���%�	
��$��E�>	"��
(

"����.������	�
(

%����" ������ ������	��?.(.�	�!.�	�!.4
%����" ������ �����"�&��	.(.�	�!.�	�!.4
%����" ������ ��� .(.�	�!.�	�!.4

4

Querying a Collection of Objects 23

continues



ptg

Listing 2.2 (continued)

"����.)������
(

%��*��	 �����" 
���������	��.#	�������	����
(
�	���� �	� 
���������	��
(

�	� ������	� (.�����"�&��	./.C+����.6��	��C1.��� ./.CB	����C 41
�	� ������	� (.�����"�&��	./.C6��.���>����C1.��� ./

C+	=�"�.?�:�C 41
�	� ������	� (.�����"�&��	/C6������.+��	��C1.��� /C+	=�"�.?�:�C 4

4!
4

�����" *��� +����������,-.�����
(
*�� $�	� ./.���� ".��.#	�������	����

��	�	 "���� .//.C+	=�"�.?�:�C
�	�	"� �	� (.��� ./."���� 1.�����"�&��	./

"������"�&��	.4!

���	�"� �*�� "�� 6�������"�.�� $�	� �
(

������	�5���	
��	�"�� 6�������"��!
4

4
4

4

As in the previous example, the query expression in this program is
three lines long:

*�� $�	� ./.���� ".��.#	�������	����
��	�	 "���� .//.C+	=�"�.?�:�C
�	�	"� �	� (.��� ./."���� 1.�����"�&��	./."������"�&��	.4!

It takes each of the three customers and filters out those in which the ��� 
field is not set to +	=�"� ?�:�

Introducing Anonymous Types
Notice the last line of the preceding query:

�	�	"� �	� (.��� ./."���� 1.�����"�&��	./."������"�&��	.4!

Chapter 2: Getting Started24



ptg

This line creates an anonymous type. Behind the scenes, at compile time, a
very simple class is generated automatically. In this particular case, two
properties, ��� and �����"�&��	, are added to the class.

In this case the names of these properties are explicitly called out:

��� ./."���� 1.�����"�&��	./."������"�&��	

However, you could allow the compiler to derive the names from the fields
themselves:

�	�	"� �	� (."���� 1."������"�&��	.4!

This code would again create two properties called ��� and �����"�&��	.
In many cases, you can use either syntax, depending on your preference.
In some cases you might choose to change the name of one or more fields:

�	�	"� �	� (.����./."���� 1.�����"�./."������"�&��	.4!

In later chapters, you will see cases in which the compiler forces you to cre-
ate names to distinguish fields from two objects that have the same name.

The ���	�"� loop at the end of the program implicitly calls the auto-
matically implemented ���������� method for this anonymous object to
format the program’s output:

(.��� ./.+	=�"�.?�:�1.�����"�&��	./.6��.���>����.4
(.��� ./.+	=�"�.?�:�1.�����"�&��	./.6������.+��	��.4

Here you see output based on the two fields of our very simple anonymous
class.

The example shown in this section demonstrated how to write a simple
LINQ query that retrieves data from a collection of objects. You might still
have questions about the three technologies introduced here:

• Object initializers

• Automatic properties

• Anonymous types

These subjects are covered in more depth in Chapter 4.

Querying a Collection of Objects 25



ptg

A Simple LINQ to SQL Example

Listing 2.3 illustrates the technology on which LINQ to SQL is built. To keep
this example as concise as possible, much of the machinery that makes this
technology powerful and flexible has been stripped away. All that is left is
the minimum code required to query a database with LINQ to SQL.

Listing 2.3 The 
��$���$�5������?	����	� Sample Demonstrates How to Use LINQ to
SQL to Query a Database

����� � ��	�!
����� � ��	��?����
��$!
����� � ��	��?����
��$�+�%%���!
����� � ��	��
��$!

���	�%�"	 
��$���$�5������?	����	�
(

,����	�&��	./.C������	��C�-
"���� ������	�
(

,������-
%����" ������ ������	��?!
,������-
%����" ������ ��� !

4

"���� )������
(

�����" *��� +����������,-.�����
(

?�������	=� ��./.�	� ?�������	=��FC"G9����9������������C�!

*�� $�	� ./.���� ".�� ���#	�����	������	����
��	�	 "���� .//.C
�����C
�	�	"� �	� (.������./."�������	��?1.��� ./

"���� .4!

���	�"� �*�� "���.�� $�	� �
(

������	�5���	
��	�"����!
4

4
4

4

Chapter 2: Getting Started26



ptg

This code assumes the presence of SQL Server Express on your devel-
opment system. You also need a copy of the Northwind database. It is avail-
able as a free download over the web. It also ships with the official C#
samples found in the MSDN Code Gallery. See Appendix A for additional
information on obtaining and setting up the Northwind database. In this
example, I have stored the database in a directory on the C drive called
Data. You can change the path if you want to, but you must have a copy of
the database to run this sample. If you meet these prerequisites, you should
be able to compile and run the program using the same commands you
used in the previous examples. If you need help meeting these require-
ments, or if you are having trouble connecting to the database, see Appen-
dix A.

A Simple LINQ to SQL Example 27

User Instances Enabled

To compile this program, you need to include a reference to Sys-
tem.Data.Linq.dll. If you are working in Visual Studio, bring up the
Solution Explorer, open the References node, and right-click to add
this assembly from the .NET page.

To get this sample to run correctly, you may also have to run these
commands in a query window in SQL Server Management Studio
Express:

	=	".�%A"�������	.H��	�.������"	�.	����	�H1.0�
�	"�������	

The preceding code has two interesting sections. The first is the decla-
ration of the class called ������	�. In LINQ, classes like this are called
entities.

Entity classes are designed to map directly to a table in a database. The
compiler knows to perform this mapping because of the ����	 attribute
above the declaration of the class:

,����	�&��	./.C������	��C�-
"����.������	�



ptg

This simple attribute tells the LINQ runtime that this class is designed to
mirror a table in the database. As soon as LINQ knows to link the table to
the class, it can automatically populate instances of the class with the data
from the database.

Before LINQ can correctly map the ������	� table to the ������	� class,
it must know how the fields in the database table map to the fields in the C#
class. The two ������ attributes shown in the declaration of the ������	�
class map the properties of the class in your program to the fields of the
table in the database:

,������-
%����" ������ ������	��?!

LINQ uses this information when it maps data pulled from the database
to instances of the ������	� class.

Let’s now consider the initialization of the ?�������	=�. This class per-
forms several tasks for developers including:

• It automatically sets up a connection to the database.

• It maps the rows of data retrieved from the database to instances of
the ������	� class.

To set up the connection, we only need to pass the location of the database
that we want to query to one of the ?�������	=�’s constructors:

?�������	=�.��./.�	� ?�������	=��FC"G9����9������������C�!

The ?�������	=� also plays a role in the query expression run against
the data in the database:

*�� $�	� ./.���� ".�� ���#	�����	������	����
��	�	 "���� .//.C+	=�"�.?�:�C
�	�	"� �	� (.������./."�������	��?1.��� ./."���� .4!

The query expression shown here looks very much like those that we wrote
in the previous LINQ to Objects example. The only difference between the
two queries is in the last part of the ���� clause:

Chapter 2: Getting Started28



ptg

*�� $�	� ./.���� ".��.#	�������	����............@@.
�&'.��.E�>	"��
��	�	 "���� .//.C+	=�"�.?�:�C
�	�	"� �	� (.��� ./."���� 1.�����"�&��	./."������"�&��	.4!

*�� $�	� ./.���� ".�� ���#	�����	������	����...@@.
�&'.��.�'

��	�	 "���� .//.C+	=�"�.?�:�C
�	�	"� �	� (.��� ./."���� 1.�����"�&��	./."������"�&��	.4!

Other than the ���� clause, the entire query expression—including the
��	�	 clause, the �	�	"� clause, and the anonymous type—is identical. This
fact is emphasized again in the next chapter, which discusses the unitive
principle of LINQ development.

Despite the similar syntax, the LINQ to SQL example is, in fact, very dif-
ferent from the LINQ to Objects example. In LINQ to Objects, the data is
pulled from a collection in your program. In LINQ to SQL, the entire query
expression is converted into a SQL statement, and the statement is executed
against a database that resides in a different process. Finally, the data
returned from the query is ferried between processes and is converted into
instances of the ������	� object.

One of this book’s primary goals is to explain exactly how LINQ to SQL
works. To fully understand that subject, you need to study lambdas,
expression trees, and extension methods. You also need to understand how
�����	����	�� and �'�	� ���	�� are implemented, and why they were
implemented. All of that lies before us.

This chapter’s purpose, however, is simply to give you a working exam-
ple of LINQ to SQL and to point out some of its most salient features. If you
now also find yourself anticipating the unveiling of some of the secrets
behind this fascinating technology, all the better.

I’d like to close this section by showing you a simple program that I do
not expect you to compile. In Listing 2.3, you saw the declaration for the
������	� entity class and learned how it was mapped to a class in the data-
base. The average database in a line-of-business application might have
more than 100 tables, and many of those tables might have as many as 20 or
more fields. Clearly, it would be a major undertaking to map each of those
tables to handmade C# classes.

A Simple LINQ to SQL Example 29



ptg

Fortunately, LINQ ships with Object Relational Mapping (ORM) tools
that automatically create classes that map to the tables in your database.
These tools relieve you of the need to manage the entity classes in your pro-
gram. As a result, you will be able to write programs like the one shown in
Listing 2.4. This program, has no declaration for the ������	� entity class.
Instead, it was created behind the scenes by the ORM tools that ship with
Visual Studio or the .NET Framework 3.5. All of this will be described in
some depth in Chapters 7 through 10.

Listing 2.4 A Simple Example of Using LINQ to SQL to Query a Database After Running the
Object Relational Designer

����� � ��	�!
����� � ��	���E!
����� � ��	��
��$!
����� � ��	��5�������:����!

���	�%�"	 #	����������	�5���
��$���$�
(

"���� )������
(

�����" *��� +����������,-.�����
(

&�������� ��./.�	� &���������FC�G9?���9&�����������C�!

*�� $�	� ./.���� ".�� ���������	��
��	�	 "���� .//.C&���	�C
�	�	"� �	� (."���� 1."����%�� &��	.4!

���	�"� �*�� $.�� $�	� �
(

������	�5���	
��	�$�!
4

4
4

4

LINQ to XML

LINQ to XML makes it easy for you to create, parse, and transform XML
files. In this section you see two programs. The first, shown in Listings 2.5
and 2.6, reads in a simple XML file and runs a query against it. The second,

Chapter 2: Getting Started30



ptg

shown in Listing 2.7, demonstrates how to create the XML file used in the
first program.

Parsing XML
Let’s begin by studying the code shown in Listing 2.5. This program reads
in a simple XML file and queries the data in the file to retrieve only the rows
where the ��� attribute is set to +	=�"� ?�:� To run this program, you need
to reference the System.Xml.Linq.dll assembly, which is included by default
when you create a console application in Visual Studio.

Listing 2.5 A Simple LINQ to XML Program That Parses a Small XML File and Finds
Customers Who Live in Mexico D.F.

����� � ��	�!
����� � ��	��
��$!
����� � ��	��I���
��$!

���	�%�"	 ���%�	I��������	��
(

"���� )������
(

�����" *��� +����������,-.�����
(

I?�"��	�� "�����	��./.I?�"��	���
����FC������	���=��C�!

*�� =��./.���� =.�� "�����	���?	�"	�������C������	�C�
��	�	 =�6�������	�C��� C��J���	.//.C+	=�"�.?�:�C
�	�	"� =!

���	�"� �*�� =.�� =���
(

������	�5���	
��	�=�!
4

4
4

4

Listing 2.6 The Data Stored in the Customers.xml File Used in the ���%�	I��������	��
Program

K=�� *	�����/C0�LC.	�"�����/C����MC.K�
������	���
������	� �����"�&��	/C+����.6��	��C.��� /CB	����C.@�
������	� �����"�&��	/C6��.���>����C.��� /C+	=�"�.?�:�C.@�
������	� �����"�&��	/C6������.+��	��C.��� /C+	=�"�.?�:�C.@�

@������	���

LINQ to XML 31



ptg

In Listing 2.5, notice the ����� statement that introduces the � ��	��
I���
��$ namespace. All the key types you will use in LINQ to XML are
found in this namespace. Each one is discussed in depth in Chapter 13,
“LINQ to XML: Creation.”

Listing 2.6 contains a short XML file that you can easily type in by hand.
If you download the samples, you can find longer copies of this file that you
can use when composing more complex queries.

The code for loading this XML file is very simple:

I?�"��	�� "�����	��./.I?�"��	���
����FC������	���=��C�!

The I?�"��	�� class is declared in the � ��	��I���
��$ namespace. The
static 
��� method of this class is used to transfer the XML file from disk
into memory. After its execution, the "�����	�� object contains a fully
parsed XML file.

The following code shows how to write a query against the XML that
has been loaded into memory:

*�� =��./.���� =.�� "�����	���?	�"	�������C������	�C�
��	�	 =�6�������	�C��� C��J���	.//.C+	=�"�.?�:�C
�	�	"� =!

This query looks very much like the LINQ to SQL query, which, in turn,
looked much like the LINQ to Objects query. The overall pattern of the
three queries is essentially identical:

���� =.�� III
��	�	 =.//.NNN
�	�	"�.=

In this case, however, the details are quite different from what you saw in
the LINQ to Objects and LINQ to SQL examples. Why is this?

• Both CSharp collections and SQL databases contain discrete types
and rigid structures that are easily mapped to C# objects. Although
XML schemas can help you pin down the types in an XML file, cur-
rently there is no way to directly map a C# object to a row in an
XML file.

Chapter 2: Getting Started32



ptg

• The “rows” of data in an XML file can contain elements, attributes,
comments, or other XML types such as �?6�6. As a result, we need
to have classes with names such as I��	�	��, I6�������	, and
I����	�� to work with these different types. There was no inherent
need for this kind of complexity when working with LINQ to SQL
or LINQ to Objects.

For both of these reasons, LINQ to XML queries differ substantially from
the queries shown earlier in this chapter. An entire lengthy section of this
book is dedicated to explaining how LINQ to XML works. In this chapter,
however, I’ll just say a few simple words to help walk you through the most
obvious sections of our LINQ to XML sample.

Take a look at the ���� clause in the query expression. The ?	�"	������
operator of the I?�"��	�� class locates all the descendants of the XML doc-
ument, starting at a specified depth. In particular, the code is designed to
search only the “Customer” elements in our document:

���� =.�� "�����	���?	�"	�������C������	�C�

Here are those nodes as they appear in the XML document itself:

������	� �����"�&��	/C+����.6��	��C.��� /CB	����C.@�
������	� �����"�&��	/C6��.���>����C.��� /C+	=�"�.?�:�C.@�
������	� �����"�&��	/C6������.+��	��C.��� /C+	=�"�.?�:�C.@�

As you can see, these customer nodes correspond, roughly, to rows in a
database.

When iterating over the data at runtime, the range variable = in the ����
clause of this query contains a single XML "�����	� node and its �����"��
&��	 and ��� attributes:

������	� �����"�&��	/C+����.6��	��C.��� /CB	����C.@�

A LINQ to XML type called I��	�	�� is used to store this data. Inside each
I��	�	�� you will find the attributes called �����"�&��	 and ��� . This
data is stored in instances of a type called I6�������	. To get started using
LINQ to XML, you only need to know that these types are wrappers

LINQ to XML 33



ptg

around their respective node types in the XML file. For instance, in this case
an I��	�	�� wraps a single ������	� node, and an I6�������	 type wraps
the �����"�&��	 and ��� attributes of that node.

A filter also is specified in our query:

��	�	 =�6�������	�C��� C��J���	.//.C+	=�"�.?�:�C

The ��	�	 operator is used here to filter out all the ������	� nodes that do
not have their city set to +	=�"� ?�:� The 6�������	 method of the range
variable = returns a variable of type I6�������	.

The final line in the query projects the result returned to the user. In this
case, we are simply selecting the ������	� nodes that have their ��� attrib-
ute set to +	=�"� ?�:� As a result, the program prints the following:

������	�.������	��?/C6&6��C.�����"�&��	/C6��.���>����C.��� /
C+	=�"�.?�:�C.@�

������	�.������	��?/C6&�E&C.�����"�&��	/C6������.+��	C.��� /
C+	=�"�.?�:�C.@�

Although there is no need to do so in this case, you could create an anony-
mous object in the �	�	"� statement:

�	�	"� �	� (.�����"�&��	./.=�6�������	�C�����"�&��	C��J���	1
��� ./.=�6�������	�C��� C��J���	.4.!

Creating XML
Now that you have learned a little about querying an XML file, the next
step is to learn how to create an XML file. Listing 2.7 shows the code for
building the XML shown in Listing 2.6.

Listing 2.7 Creating the Simple XML File Shown in Listing 2.6

����� � ��	�!
����� � ��	��I���
��$!

���	�%�"	 ��	��	I��������	��
(

"���� )������
(

�����" *��� +����������,-.�����
(

Chapter 2: Getting Started34



ptg

I?�"��	�� ��"./.�	� I?�"��	����	� I?	"���������C0�LC1
C����MC1.C 	�C�1

�	� I��	�	���C������	��C1
�	� I��	�	���C������	�C1

�	� I6�������	�C�����"�&��	C1.C+����.6��	��C�1
�	� I6�������	�C��� C1.CB	����C��1

�	� I��	�	���C������	�C1
�	� I6�������	�C�����"�&��	C1.C6��.���>����C�1
�	� I6�������	�C��� C1.C+	=�"�.?�:�C��1

�	� I��	�	���C������	�C1
�	� I6�������	�C�����"�&��	C1.C6������.+��	��C�1
�	� I6�������	�C��� C1.C+	=�"�.?�:�C��

��!

������	�5���	
��	���"�?	"���������!
������	�5���	
��	���"�!
��"���*	�FC������	���=��C�!

4
4

4

The document is created in a single statement that is written in the func-
tional style. Many other XML tools have you create the various attributes
and elements one at a time and then add them to the document individu-
ally. LINQ to XML also supports that syntax, but the preferred technique
is to create a single statement, as shown here, that reflects the document’s
structure.

This program uses four types, two of which you saw in the previous
example. For now, I will be content to describe the roles they play in this
example:

• I?�"��	��: A wrapper for an XML tree that contains I��	�	��s,
I6�������	s, I?	"��������s, and other types such as I����	��.

• I?	"��������: An optional type used to specify the XML version,
the encoding, and whether the XML document is stand-alone.

• I��	�	��: This type represents an XML element. Like an I?�"��	��,
it can be used to construct XML trees. It typically contains a name
and some content. It can contain other types such as I6�������	s
and I����	��s.

• I6�������	: Represents an XML attribute. Each I6�������	 contains
a name-value pair.

LINQ to XML 35



ptg

If you wanted to create a single I��	�	��, you could write code like this:

I��	�	�� =��./.�	� I��	�	���C&��	C1.C����	��C�!

This code creates a valid XML element. When written to the console, the
output of the variable =�� would look like this:

&��	�����	��@&��	�

If you wanted to add an attribute to your node, you could write the fol-
lowing code:

=��./.�	� I��	�	���C��	�	��&��	C1
�	� I6�������	�C6�������	&��	C1.C*���	C��!

When written to the console with a 5���	
��	 statement, this code pro-
duces the following simple XML tree:

��	�	��&��	.6�������	&��	/C*���	C.@�

If you wanted to use an I?�"��	��, you could write the following code:

I?�"��	�� ��"��	��./.�	� I?�"��	���
�	� I��	�	���C��	�	��&��	C1

�	� I6�������	�C6�������	&��	C1.C*���	C���!

This document, when written to the console, produces exactly the same out-
put as the previous example. The I?�"��	�� type adds something of value
to your code only when you want to use a type, such as I?	"��������, that
is specific to the I?�"��	�� type.

Listing 2.7 shows an example of using the I?	"�������� type with an
I?�"��	��. You should now be able to go back to Listing 2.7 and apply the
principles shown in the sample examples we have been studying. You
should be able to see how I?�"��	��, I?	"��������, I��	�	��, and
I6�������	 types were combined to create an XML document.

The simple examples in this subsection aim to initiate you into the world
of LINQ to XML. Designed to pique your curiosity, they have almost cer-
tainly raised as many questions as they have answered. More in-depth
coverage of this subject will be included in Chapter 13.

Chapter 2: Getting Started36



ptg

Summary

This chapter contained several fairly short programs designed to introduce
you to the most common forms of LINQ programs: LINQ to Objects, LINQ
to SQL, and LINQ to XML. All the programs were simple, and many impor-
tant details were covered only in passing. This is an important chapter nev-
ertheless, because it gave you an opportunity to work with real LINQ code.
Technologies often become real to you only when you actually start to use
them. This chapter gave you a chance to run real LINQ programs that you
can easily create by hand in just a few minutes.

Several technologies were introduced that will be touched on repeatedly
in this book. They include two LINQ technologies:

• Query expressions

• Deferred execution

and four new features of C# 3.0:

• Object initializers

• Collection initializers

• Automatic properties

• Type inference

You also learned that all the generic collections in C# support �����	��
���	��. Thus, the 
������� collection used in the first query in this chap-
ter supports that interface. If it did not, we could not use that type in a ����
clause:

���� ����	�.��.����

All LINQ to Objects queries follow this pattern:

���� =.�� ���	J������	������%%���������	����	��

LINQ to Objects revolves around �����	����	��. It is the alpha and
omega of LINQ to Objects. Each query consumes this type, and they usu-
ally return it.

Summary 37



ptg

LINQ to SQL is the subject of several weighty chapters at the heart of
this book. Using LINQ to write SQL queries is a very important subject, and
one that will be explored in considerable depth. This chapter includes only
the minimum code necessary to introduce you to the topic.

You also had a quick look at LINQ to XML. You saw that the I?�"��	��
class contains a method called ?	�"	������ that can be used to discover a
particular node type in a document. When converted into LINQ to XML,
these nodes typically are of type I��	�	��, and they frequently contain
subnodes of type I6�������	. In Chapter 13, you will learn more about
these types and how to use them when you parse, transform, and create
XML documents.

This chapter gave you just enough information to help you understand
the basics of LINQ. In the next chapter, you will learn about the theoretical
foundation on which LINQ is built. The practical knowledge in this chap-
ter, and the theoretical knowledge found in the next chapter, will give you
a strong foundation on which to begin an in-depth study of how to use
LINQ to query data.

Chapter 2: Getting Started38



ptg

3
The Essence of LINQ

N O W T H AT Y O U’V E S E E N several practical examples of LINQ’s syntax,
it is time to view the technology from a more theoretical perspective.

This chapter covers the seven foundations on which an understanding of
LINQ can be built. LINQ is

• Integrated

• Unitive

• Extensible

• Declarative

• Hierarchical

• Composable

• Transformative

These ideas may sound esoteric at first, but I believe you will find them
quite easy to understand. LINQ has a fundamental simplicity and elegance.
In this chapter and the next, we explore LINQ’s architecture, giving you a
chance to understand how it was built and why it was built that way. This
chapter explains goals that LINQ aims to achieve. The next chapter explains
each of the pieces of the LINQ architecture and shows how they come
together to achieve those goals.

39



ptg

Integrated

LINQ stands for Language Integrated Query. One of the central, and most
important, features of LINQ is its integration of a flexible query syntax into
the C# language.

Developers have many tools that have been crafted to neatly solve dif-
ficult tasks. Yet there are still dark corners in the development landscape.
Querying data is one area in which developers frequently encounter prob-
lems with no clear resolution. LINQ aims to remove that uncertainty and to
show a clearly defined path that is well-lit and easy to follow.

In Visual Studio 2005, attempts to query data in a SQL database from a
C# program revealed an impedance mismatch between code and data. SQL
is native to neither .NET nor C#. As a result, SQL code embedded in a C#
program is neither type-checked nor IntelliSense-aware. From the perspec-
tive of a C# developer, SQL is shrouded in darkness.

Here is an example of one of several different techniques developers
used in the past when querying data:

�$�����	"���� �$�����	"����./.�	� �$�����	"�����"���	"��������!
�$�����	"�����E%	���!
� ��	��?�����$����	����$�������� �$��������./.�	� �$����������!
�$�������������	"����./.�$�����	"����!
�$�����������������	=�./.C�	�	"�.O.����.������	�C!
�	���� �$����������=	"��	�	��	���������B	��*��������	����	"�����

Of these six lines of code, only the last two directly define a query. The
rest of the lines involve setup code that allows developers to connect and
call objects in the database. The query string shown in the next-to-last line
is neither type-checked nor IntelliSense-aware.

After these six lines of code execute, the developers may have more
work to do, because the data returned from the query is not readily
addressable by an object-oriented programmer. You might have to write
more lines of code to access this data, or convert it into a format that is eas-
ier to use.

The LINQ version of this same query is shorter, easier to read, color-
coded, fully type-checked, and IntelliSense-aware. The result set is cleanly
converted into a well-defined object-oriented format:

Chapter 3: The Essence of LINQ40



ptg

&��������.��./.�	� &���������FC�G9?���9&�����������C�!

*�� $�	� ./.���� ".�� ���������	��
�	�	"� "!

By fully integrating the syntax for querying data into .NET languages
such as C# and VB, LINQ resolves a problem that has long plagued the
development world. Queries become first-class citizens of our primary lan-
guages; they are both type-checked and supported by the powerful Intel-
liSense technology provided inside the Visual Studio IDE. LINQ brings the
experience of writing queries into the well-lit world of the 21st century.

A few benefits accrue automatically as a result of integrating querying
into the C# language:

• The syntax highlighting and IntelliSense support allow you to get
more work done in less time. The Visual Studio editor automatically
shows you the tables in your database, the correctly spelled names
and types of your fields, and the operators you can use when query-
ing data. This helps you save time and avoid careless mistakes.

• LINQ code is shorter and cleaner than traditional techniques for
querying data and, therefore, is much easier to maintain.

• LINQ allows you to fully harness the power of your C# debugger
while writing and maintaining queries. You can step through your
queries and related code in your LINQ projects.

If language integration were the only feature that LINQ offered, that
alone would have been a significant accomplishment. But we are only one-
seventh of the way through our description of the foundations of LINQ.
Many of the best and most important features are still to be covered.

Unitive

Before LINQ, developers who queried data frequently needed to master
multiple technologies. They needed to learn the following:

• SQL to query a database

• XPath, Dom, XSLT, or XQuery to query and transform XML data

Unitive 41



ptg

• Web services to access some forms of remote data

• Looping and branching to query the collections in their own
programs

These diverse APIs and technologies forced developers to frantically
juggle their tight schedules while struggling to run similar queries against
dissimilar data sources. Projects often encountered unexpected delays sim-
ply because it was easier to talk about querying XML, SQL, and other data
than it was to actually implement the queries against these diverse data
sources. If you have to juggle too many technologies, eventually something
important will break.

LINQ simplifies these tasks by providing a single, unified method for
querying diverse types of data. Developers don’t have to master a new
technology simply because they want to query a new data source. They can
call on their knowledge of querying local collections when they query rela-
tional data, and vice versa.

This point was illustrated in the preceding chapter, where you saw three
very similar queries that drew data from three different data sources:
objects, an SQL database, and XML:

*�� $�	� ./.���� ".�� #	�������	����
��	�	 "���� .//.C+	=�"�.?�:�C
�	�	"� �	� (.��� ./."���� 1.�����"�&��	./."������"�&��	.4!

*�� $�	� ./.���� ".�� ���������	��
��	�	 "���� .//.C+	=�"�.?�:�C
�	�	"� �	� (.��� ./."���� 1.�����"�&��	./."������"�&��	.4!

*�� $�	� ./.���� =.�� "�����	���?	�"	�������C������	�C�
��	�	 =�6�������	�C��� C��J���	.//.C+	=�"�.?�:�C
�	�	"� =!

As you can see, the syntax for each of these queries is not identical, but
it is very similar. This illustrates one of LINQ’s core strengths: a single, uni-
tive syntax can be used to query diverse types of data. It is not that you
never have to scale a learning curve when approaching a new data source,
but only that the principles, overall syntax, and theory are the same even
if some of the details differ.

Chapter 3: The Essence of LINQ42



ptg

You enjoy two primary benefits because LINQ is unitive:

• The similar syntax used in all LINQ queries helps you quickly get
up to speed when querying new data sources.

• Your code is easier to maintain, because you are using the same
syntax regardless of the type of data you query.

Although it arises naturally from this discussion, it is worth noting that
SQL and other query languages do not have this capability to access mul-
tiple data sources with a single syntax. Those who advocate using SQL or
the DOM instead of LINQ often forget that their decision forces their team
to invest additional time in learning these diverse technologies.

Extensible Provider Model

In this text I have tended to define LINQ as a tool for querying SQL, XML,
and the collections in a program. Strictly speaking, this is not an accurate
description of LINQ. Although such a view is useful when you first
encounter LINQ, it needs to be abandoned if you want to gain deeper
insight. LINQ is not designed to query any particular data source; rather,
it is a technology for defining providers that can be used to access any arbi-
trary data source. LINQ happens to ship with providers for querying SQL,
XML, and objects, but this was simply a practical decision, not a preor-
dained necessity.

LINQ provides developers with a syntax for querying data. This syntax
is enabled by a series of C# 3.0 and C# 2.0 features. These include lambdas,
iterator blocks, expression trees, anonymous types, type inference, query
expressions, and extension methods. All of these features are covered in this
book. For now you need only understand that they make LINQ possible.

When Visual Studio 2008 shipped, Microsoft employees frequently
showed the image shown in Figure 3.1. Although people tend to think of
LINQ as a means of enabling access to these data sources, this diagram
actually depicts nothing more than the set of LINQ providers that were
implemented by Microsoft at the time Visual Studio shipped. Granted, the
team carefully planned which providers they wanted to ship, but their deci-
sions were based on strategic, rather than technical, criteria.

Extensible Provider Model 43



ptg

Chapter 3: The Essence of LINQ44

C# 3.0 Visual Basic 9.0 Others

.NET Language Integrated Query.NET Language Integrated Query

LINQ to
Objects

LINQ to
DataSets

LINQ to
SQL

LINQ to
Entities

LINQ to
XML

Objects

<book>
    <title/>

<author/>
    <year/>
    <price/>
</book>

XMLRelational

Figure 3.1 VB and C# ship with LINQ providers for databases, XML, and data structures
found in a typical program.

Using the LINQ provider model, developers can extend LINQ to query
other data sources besides those shown in Figure 3.1. The following are a
few of the data sources currently enabled by third-party LINQ providers:

LINQ Extender

LINQ over C# project

LINQ to Active Directory

LINQ to Amazon

LINQ to Bindable Sources

LINQ to CRM

LINQ to Excel

LINQ to Expressions

LINQ to Flickr

LINQ to Geo

LINQ to Google

LINQ to Indexes

LINQ to �'�	� ���	

LINQ to JavaScript

LINQ to JSON

LINQ to LDAP

LINQ to LLBLGen Pro

LINQ to Lucene

LINQ to Metaweb

LINQ to MySQL



ptg

LINQ to NCover

LINQ to NHibernate

LINQ to Opf3

LINQ to Parallel (PLINQ)

LINQ to RDF Files

LINQ to Sharepoint

LINQ to SimpleDB

LINQ to Streams

LINQ to WebQueries

LINQ to WMI

Extensible Provider Model 45

These projects are of varying quality. Some, such as the LINQ Extender
and LINQ to �'�	� ���	, are merely tools for helping developers create
providers. Nevertheless, you can see that an active community is interested
in creating LINQ providers, and this community is producing some inter-
esting products. By the time you read this, I’m sure the list of providers will
be longer. See Appendix A for information on how to get updated infor-
mation on existing providers.

One easily available provider called LinqToTerraServer can be found
among the downloadable samples that ship with Visual Studio 2008. You
can download the VS samples from the release tab found at http://code.
msdn.microsoft.com/csharpsamples.

After unzipping the download, if you look in the ...\LinqSamples\
WebServiceLinqProvider directory, you will find a sample called Linq-
ToTerraServer. The TerraServer web site, http://terraserver-usa.com, is a
vast repository of pictures and information about geographic information.
The LinqToTerraServer example shows you how to create a LINQ provider
that queries the web services provided on the TerraServer site. For example,
the following query returns all U.S. cities and towns named Portland:

*�� $�	� 0./.���� %��"	.�� �	���)��"	�
��	�	 %��"	�&��	.//.C)�������C
�	�	"� �	� (.%��"	�&��	1.%��"	�����	.4!

This query returns a number of locations, but here are a few of the more
prominent:

(.&��	./.)�������1.����	./.�������.4
(.&��	./.)�������1.����	./.+���	.4
(.&��	./.)�������1.����	./.+�"�����.4
(.&��	./.)�������1.����	./.E�	���.4
(.&��	./.)�������1.����	./.�	=��.4

http://code.msdn.microsoft.com/csharpsamples
http://code.msdn.microsoft.com/csharpsamples
http://terraserver-usa.com


ptg

(.&��	./.)�������1.����	./.6������.4
(.&��	./.)�������1.����	./.6�;�����.4
(.&��	./.)�������1.����	./.��������.4

In Chapter 17, “LINQ Everywhere,” you will see examples of several other
providers, including LINQ to Flickr and LINQ to SharePoint. It is not easy
to create a provider.. After the code is written, however, it is easy to use the
provider. In fact, you should already have enough familiarity with LINQ to
see that it would be easy to modify the preceding query to suit your own
purposes.

The LINQ provider model has hidden benefits that might not be evident
at first glance:

• It is relatively open to examination and modification. As you read
the next few chapters, you will find that most of the LINQ query
pipeline is accessible to developers.

• It allows developers to be intelligent about how queries execute. You
can get a surprising degree of control over the execution of a query.
If you care about optimizing a query, in many cases you can opti-
mize it, because you can see how it works.

• You can create a provider to publicize a data source that you have
created. For instance, if you have a web service that you want C#
developers to access, you can create a provider to give them a
simple, extensible way to access your data.

I will return to the subject of LINQ providers later in the book. In this
chapter, my goal is simply to make it clear that LINQ is extensible, and that
its provider model is the basis on which each LINQ query model is built.

Query Operators
You don’t always need to use a LINQ provider to run queries against what
might—at least at first—appear to be nontraditional data sources. By using
the LINQ to Objects provider, and a set of built-in LINQ operators, you can
run queries against a data source that does not look at all like XML or SQL
data. For instance, LINQ to Objects gives you access to the reflection model
that is built into C#.

Chapter 3: The Essence of LINQ46



ptg

The following query retrieves all the methods of the ������ class that
are static:

*�� $�	� ./.���� �.�� � %	�����������#	�+	�������
��	�	 ���������".//.���	
�	�	"� �!

The following are a few of the many results that this query returns:

� ��	��������.P����� ��	��������1.� ��	��������,-�
� ��	��������.P����� ��	��������1.� ��	��������,-1.���321.���32�
B���	��.�$������ ��	��������1.� ��	���������
B���	��.�$������ ��	��������1.� ��	��������1.� ��	�����������%�������
B���	��.�%A�$����� �� ��	��������1.� ��	���������
B���	��.�%A��	$����� �� ��	��������1.� ��	���������
B���	��.��&���E���%� �� ��	���������
���32.���%��	�� ��	��������1.� ��	���������
���32.���%��	�� ��	��������1.� ��	��������1.B���	���
���32.���%��	�� ��	��������1.� ��	��������1.� ��	�����������%�������

Using the power of LINQ, it is easy to drill into these methods to find
out more about them. In particular, LINQ uses the extension methods men-
tioned in the preceding section to define a set of methods that can perform
specific query operations such as ordering and grouping data. For instance,
the following query retrieves the methods of the ������ class that are static,
finds out how many overloads each method has, and then orders them first
by the number of overloads and then alphabetically:

*�� $�	� ./.���� �.�� � %	�����������#	�+	�������
��	�	 ���������".//.���	
���	�� ��&��	
����% �.� ��&��	.���� �
���	�� ���������
�	�	"� �	� (.&��	./.��D	 1.E*	������./.���������.4!

���	�"� �*�� ��	�.�� $�	� �
(

������	�5���	
��	���	��!
4

The results of this query look like this:

(.E*	������./.01.&��	./.��% .4
(.E*	������./.01.&��	./.���	��.4
(.E*	������./.01.&��	./.�����	��	�.4
(.E*	������./.01.&��	./.��&���E���%� .4

Extensible Provider Model 47



ptg

(.E*	������./.01.&��	./.�%A�$����� .4
(.E*	������./.01.&��	./.�%A��	$����� .4
(.E*	������./.21.&��	./.���%��	E������.4
(.E*	������./.21.&��	./.�$����.4
(.E*	������./.21.&��	./.P���.4
(.E*	������./.<1.&��	./.:�����.4
(.E*	������./.Q1.&��	./.���"��.4
(.E*	������./.0L1.&��	./.���%��	.4

This makes it obvious that :�����, ���%��	, and ���"�� are the most fre-
quently overloaded methods of the ������ class, and it presents all the
methods with the same number of overloads in alphabetical order.

You can run this code in your own copy of Visual Studio because the
LINQ to Objects provider ships with C# 3.0. Other third-party extensions to
LINQ, such as LINQ to Amazon, are not included with Visual Studio. If you
want to run a sample based on LINQ to Amazon or some other provider
that does not ship with Visual Studio, you must download and install the
provider before you can use it.

Declarative: Not How, But What

LINQ is declarative, not imperative. It allows developers to simply state
what they want to do without worrying about how it is done.

Imperative programming requires developers to define step by step
how code should be executed. To give directions in an imperative fashion,
you say, “Go to 1st Street, turn left onto Main, drive two blocks, turn right
onto Maple, and stop at the third house on the left.” The declarative version
might sound something like this: “Drive to Sue’s house.” One says how to
do something; the other says what needs to be done.

The declarative style has two advantages over the imperative style:

• It does not force the traveler to memorize a long set of instructions.

• It allows the traveler to optimize the route when possible.

It should be obvious that there is little opportunity to optimize the first
set of instructions for getting to Sue’s house: You simply have to follow
them by rote. The second set, however, allows the traveler to use his or her
knowledge of the neighborhood to find a shortcut. For instance, a bike

Chapter 3: The Essence of LINQ48



ptg

might be the best way to travel at rush hour, whereas a car might be best
at night. On occasion, going on foot and cutting through the local park
might be the best solution.

Here is another example of the difference between declarative and
imperative code:

@@.��%	����*	.�� �	

�������.��%	����*	
���./.�	� 
���������!
��%	����*	
����6���0�!
��%	����*	
����6���2�!
��%	����*	
����6���3�!

@@.�	"������*	.�� �	

�������.�	"����"��*	
���./.�	� 
�������.(.01.21.3.4!

The first example details exactly how to add items to a list. The second
example states what you want to do and allows the compiler to figure out
the best way to do it. As you will learn in the next chapter, both styles are
valid C# 3.0 syntax. The declarative form of this code, however, is shorter,
easier to understand, easier to maintain, and, at least in theory, leaves the
compiler free to optimize how a task is performed.

These two styles differ in both the amount of detail they require a devel-
oper to master and the amount of freedom that each affords the compiler.
Detailed instructions not only place a burden on the developer, but also
restrict the compiler’s capability to optimize code.

Let’s consider another example of the imperative style of programming.
As developers, we frequently end up in a situation where we are dealing
with a list of lists:


�������.����L0./.�	� 
�������.(.01.21.3.4!

�������.����L2./.�	� 
�������.(.R1.<1.S.4!

�������.����L3./.�	� 
�������.(.T1.M1.Q.4!


���
��������.�����./.�	� 
���
��������.(.����L01.����L21.����L3.4!

Here is imperative code for accessing the members of this list:


�������.�	�
���./.�	� 
���������!

���	�"� �*�� ��	�.�� ������
(

���	�"� �*�� ����	�.�� ��	��

Declarative: Not How, But What 49



ptg

(
�	�
����6�������	��!

4
4

This code produces a single list containing all the data from the three nested
lists:

0
2
3
R
<
S
T
M
Q

Notice that we have to write nested ��� loops to allow access to our data. In
a simple case like this, nested loops are not terribly complicated to use, but
they can become very cumbersome in more complex problem domains.

Contrast this code with the declarative style used in a LINQ program:

*�� �	�
���./.���� ����.�� �����
���� ���.�� ����
�	�	"� ���!

You can access the results of these two “query techniques” in the same way:

���	�"� �*�� ��	�.�� �	�
����
(

������	�5���	
��	���	��!
4

This code writes the results of either query, producing identical results,
regardless of whether you used the imperative or declarative technique to
query the data:

0
2
3
R
<
S
T
M
Q

Chapter 3: The Essence of LINQ50



ptg

The difference here is not in the query’s results, or in how we access the
results, but in how we compose our query against our nested list. The
imperative style can sometimes be verbose and hard to read. The declara-
tive code is usually short and easy to read and scales more easily to com-
plex cases. For instance, you can add an ���	�� clause to reverse the order
of the integers in your result set:

*�� $�	� ./.���� ����.�� �����
���� ���.�� ����
���	�� ���.�	�"	�����
�	�	"� ���!

You probably know how to achieve the same results using the impera-
tive style. But it was knowledge that you had to struggle to learn, and it is
knowledge that applies only to working with sequences of numbers stored
in a 
�����. The LINQ code for reordering results, however, is easy to
understand. It can be used to reorder not only nested collections, but also
SQL data, XML data, or the many other data sources we query using LINQ.

To get the even numbers from our nested lists, we need only do this:

*�� $�	� ./.���� ����.�� �����
���� ���.�� ����
��	�	 ���.8.2.//.L
���	�� ���.�	�"	�����
�	�	"� ���!

Contrast this code with the imperative equivalent:


�������.�	�
���./.�	� 
���������!

���	�"� �*�� ��	�.�� ������
(

���	�"� �*�� ����	�.�� ��	��
(

�� �����	�.8.2.//.L�
(

�	�
����6�������	��!
4

4
4

�	�
�����	*	��	��!

Declarative: Not How, But What 51



ptg

This imperative style of programming now has an �� block nested
inside the nested ���	�"� loops. This is not only verbose and applicable to
only a specific type of data, it also can be like a straight jacket for both the
compiler and the developer. Commands must be issued and followed in a
rote fashion, leaving little room for optimizations.

The equivalent LINQ query expression does not describe in a step-by-
step fashion how to query our list of lists. It simply lets the developer state
what he wants to do and lets the compiler determine the best path to the
destination.

After nearly 50 years of steady development, the possibilities inherent in
imperative programming have been extensively explored. Innovations in
the field are now rare. Declarative programming, on the other hand, offers
opportunities for growth. Although it is not a new field of study, it is still
rich in possibilities.

Chapter 3: The Essence of LINQ52

Use the Right Tool for the Job

In extolling the virtues of LINQ’s declarative syntax, I should be care-
ful not to overstate my case. For instance, the LINQ operator called
��
��� is provided to allow developers to easily translate the sequence
of results returned by a LINQ query into a traditional 
�����. This
functionality is useful because some operations, such as randomly
accessing items in a list (� 
���,2-), are more easily performed using
the imperative syntax. One of the great virtues of C# 3.0 is that it allows
you to easily move between imperative and declarative syntax, allow-
ing you to choose the best tool for the job. My job right now is to help
you understand the value of LINQ and the declarative style of pro-
gramming. LINQ is indeed a very powerful and useful tool, but it is
not the solution to all your problems.

Because LINQ is a new technology from Microsoft, you might find it a
bit jarring to see me write that declarative programming is not new. In fact,
declarative code has been with us nearly as long as imperative code. Some
older languages such as LISP (which was first specified in 1958) make heavy
use of the declarative style of programming. Haskel and F# are examples of



ptg

other languages that use it extensively. One reason LINQ and SQL look so
much alike is that they are both forms of declarative programming.

The point of LINQ is not that it will replace SQL, but that it will bring the
benefits of SQL to C# developers. LINQ is a technology for enabling a SQL-
like declarative programming style inside a native C# program. It brings
you the benefits of SQL but adds declarative syntax, as well as syntax high-
lighting, IntelliSense support, type checking, debugging support, the abil-
ity to query multiple data sources with the same syntax, and much more.

Hierarchical

Complex relationships can be expressed in a relational database, but the
results of a SQL query can take only one shape: a rectangular grid. LINQ
has no such restrictions. Built into its very foundation is the idea that data
is hierarchical (see Figure 3.2). If you want to, you can write LINQ queries
that return flat, SQL-like datasets, but this is an option, not a necessity.

Hierarchical 53

Grid versus Hierarchies

LINQ’s hierarchical data
model is more flexible
than the grid-like data
returned from a SQL
query.

Name Company OrderId

John Boring,inc 332121

Mary RidgeCo, A.E. 322336

Figure 3.2 Both object-oriented languages and the developers who use them have a
natural tendency to think in terms of hierarchies. SQL data is arranged in a simple grid.

Consider a simple relational database that has tables called Customers,
Orders, and OrderDetails. It is possible to capture the relationship between
these tables in a SQL database, but you cannot directly depict the relationship



ptg

in the results of a single query. Instead, you are forced to show the result as
a join that binds the tables into a single array of columns and rows.

LINQ, on the other hand, can return a set of ������	� objects, each of
which owns a set of 0-to-n E��	��. Each E��	� can be associated with a set
of E��	�?	�����. This is a classic hierarchical relationship that can be per-
fectly expressed with a set of objects:

Customer

Orders

OrderDetails

Consider the following simple hierarchical query that captures the rela-
tionship between two objects:

*��.$�	� ./.����.".�� ���������	��
�	�	"�.�	� (.��� ./."���� 1

���	��./.����.�.�� "�E��	��
�	�	"�.�	� (.��E��	��?.4

4!

This query asks for the city in which a customer lives and a list of the orders
the person has made. Rather than returning a rectangular dataset as a SQL
query would, this query returns hierarchical data that lists the city associ-
ated with each customer and the ID associated with each order:

��� /7	����;�...���	��/���
���	��G.E��	��?/0LS0<
���	��G.E��	��?/0LST3
���	��G.E��	��?/0LSQ<
���	��G.E��	��?/0LMT3
���	��G.E��	��?/0LMTQ
���	��G.E��	��?/0LQ0L
���	��G.E��	��?/00LL<

��� /5���U���...���	��/���
���	��G.E��	��?/0L3TR
���	��G.E��	��?/0LS00
���	��G.E��	��?/0LTQ2
���	��G.E��	��?/0LMTL
���	��G.E��	��?/0LQLS
���	��G.E��	��?/0LQQM

This result set is multidimensional, nesting one set of columns and rows
inside another set of columns and rows.

Chapter 3: The Essence of LINQ54



ptg

Look again at the query, and notice how we gain access to the Orders
table:

���	��./.����.�.�� "�E��	��

The identifier " is an instance of a ������	� object. As you will learn
later in the book, LINQ to SQL has tools for automatically generating ����
���	� objects given the presence of the Customer table in the database.
Here you can see that the ������	� object is not flat; instead, it contains a set
of nested E��	� objects.

Listing 3.1 shows a simplified version of the ������	� object that is auto-
matically generated by the LINQ to SQL designer. Notice how LINQ to SQL
wraps the fields of the Customer table. Later in this book, you will learn
how to automatically generate ������	� objects that wrap the fields of a
Customer table.

Listing 3.1 A Simplified Version of the ������	� Object That the LINQ to SQL Designer
Generates Automatically

%����".%������."����.������	�
(

���.@@.���	.�����	�.�	�	
%��*��	 ������ A������	��?!
%��*��	 ������ A���%�� &��	!
%��*��	 ������ A�����"�&��	!
%��*��	 ������ A�����"�����	!
%��*��	 ������ A6���	��!
%��*��	 ������ A��� !
%��*��	 ������ A�	����!
%��*��	 ������ A)��������	!
%��*��	 ������ A������ !
%��*��	 ������ A)���	!
%��*��	 ������ A:�=!
%��*��	 ����� �	�E��	��.AE��	��!
���.@@.���	.�����	�.�	�	

4

The first 11 private fields of the ������	� object simply reference the
fields of the Customer table in the database. Taken together, they provide
a location to store the data from a single row of the Customer table. Notice,
however, the last item, which is a collection of E��	� objects. Because it is

Hierarchical 55



ptg

bound to the Orders table in a one-to-many relationship, each customer has
from 0-to-n orders associated with it, and LINQ to SQL stores those orders
in this field. This automatically gives you a hierarchical view of your data.

The same thing is true of the Order table, only it shows not a one-to-
many relationship with the Customer table, but a one-to-one relationship:

%����".%������."����.E��	�
(

���.@@.���	.�����	�.�	�	
%��*��	 ��� AE��	��?!
%��*��	 ������ A������	��?!
%��*��	 � ��	��&������	����.A��%�� 		�?!
%��*��	 � ��	��&������	� ��	��?��	���	�.AE��	�?��	!
%��*��	 � ��	��&������	� ��	��?��	���	�.A�	$���	�?��	!
%��*��	 � ��	��&������	� ��	��?��	���	�.A���%%	�?��	!
%��*��	 � ��	��&������	����.A���%J��!
%��*��	 � ��	��&������	�	"�����.A:�	����!
%��*��	 ������ A���%&��	!
%��*��	 ������ A���%6���	��!
%��*��	 ������ A���%��� !
%��*��	 ������ A���%�	����!
%��*��	 ������ A���%)��������	!
%��*��	 ������ A���%������ !
%��*��	 ����� �	�������	��.A������	�!
���.@@.���	.�����	�.�	�	

4

Again we see all the fields of the Orders table, their types, and whether
they can be set to Null. The difference here is that the last field points back
to the Customer table not with an ����� �	���, but an ����� �	���. This
is not the proper place to delve into the ����� �	� and ����� �	� classes.
However, it should be obvious to you that an ����� �	� refers to a set of
objects, and an ����� �	� references a single object. Thus, an ����� �	�
captures a one-to-many relationship, and an ����� �	� captures a one-to-
one relationship.

The point to take away from this discussion is that LINQ to SQL cap-
tures not a flat view of your data, but a hierarchical view. A ������	� class
is connected to a set of orders in a clearly defined hierarchical relationship,
and each order is related to the customer who owns it. LINQ gives you a
hierarchical view of your data.

In a simple case like this, such a hierarchical relationship has obvious
utility, but it is possible to imagine getting along without it. More complex

Chapter 3: The Essence of LINQ56



ptg

queries, however, are obviously greatly simplified by this architecture.
Consider the following LINQ to SQL query:

*�� $�	� ./.���� ".�� ���������	��
��	�	 "����%�� &��	.//."��%�� &��	
���� �.�� "�E��	��
���� =.�� ��E��	�A?	�����
��	�	 =�)����"�����	��� ����	��� &��	.//.C����	"�����C
���	�� =�)����"��)����"�&��	
����% =.� =�)����"��)����"�&��	.���� �
���	�� ���������
�	�	"� �	� (.�����./.���������1.)����"�./.��D	 .4!

Here we use LINQ’s hierarchical structure to move from the Customers
table to the Orders table to the Order_Details table without breaking a
sweat:

*�� $�	� ./.���� ".�� ���������	��
���� �.�� "�E��	��
���� =.�� ��E��	�A?	�����

The next line really helps show the power of LINQ hierarchies:

��	�	 =�)����"�����	��� ����	��� &��	.//.C����	"�����C

The identifier = represents an instance of a class containing the data from a
row of the Order_Details table. Order_Details has a relationship with the
Product table, which has a relationship with the Category table, which has
a field called ���	��� &��	. We can slice right through that complex rela-
tionship by simply writing this:

=�)����"�����	��� ����	��� &��	

LINQ’s hierarchical structure shines a clarifying light on the relational data
in your programs. Even complex relational models become intuitive and
easy to manipulate.

We can then order and group the results of our query with a few simple
LINQ operators:

���	�� =�)����"��)����"�&��	
����% =.� =�)����"��)����"�&��	.���� �
���	�� ���������

Hierarchical 57



ptg

Trying to write the equivalent code using a more conventional C# style of
programming is an exercise that might take two or three pages of convo-
luted code and involve a number of nested loops and �� statements. Even
writing the same query in standard SQL would be a challenge for many
developers. Here we perform the whole operation in nine easy-to-read lines
of code.

In this section, I have introduced you to the power of LINQ’s hierarchi-
cal style of programming without delving into the details of how such
queries work. Later in this book you will learn how easy it is to compose
your own hierarchical queries. For now you only need to understand two
simple points:

• There is a big difference between LINQ’s hierarchical structure and
the flat, rectangular columns and rows returned by an SQL query.

• Many benefits arise from this more powerful structure. These
include the intuitive structure of the data and the ease with which
you can write queries against this model.

Composable

The last two foundations of LINQ shed light on its flexibility and power. If
you understand these two features and how to use them, you will be able
to tap into some very powerful technology. Of course, this chapter only
introduces these features; they are discussed in more detail in the rest of
the book.

LINQ queries are composable: You can combine them in multiple ways,
and one query can be used as the building block for yet another query. To
see how this works, let’s look at a simple query:

*�� $�	� ./.���� "�����	�.�� ���������	��
��	�	 "�����	����� .//.C)����C
�	�	"� "�����	�!

The variable that is returned from the query is sometimes called a compu-
tation. If you write a ���	�"� loop and display the address field from the
customers returned by this computation, you see the following output:

Chapter 3: The Essence of LINQ58



ptg

2S<1.����	*���.�������	
2<1.��	.
��������

You can now write a second query against the results of this query:

$�	� 2./.���� "�����	�.�� $�	� 
��	�	 "�����	��6���	���������5����C2<C�
�	�	"� "�����	�!

Notice that the last word in the first line of this query is the computation
returned from the previous query. This second query produces the follow-
ing output:

2<1.��	.
��������

LINQ to Objects queries are composable because they operate on and
usually return variables of type �����	����	��. In other words, LINQ
queries typically follow this pattern:

�����	����	��.$�	� ./.���� =.�� �����	����	��
�	�	"� =!

This is a simple mechanism to understand, but it yields powerful results. It
allows you to take complex problems, break them into manageable pieces,
and solve them with code that is easy to understand and easy to maintain.
You will hear much more about �����	����	�� in the next chapter.

The next chapter also details a feature called deferred execution.
Although it can be confusing to newcomers, one of the benefits of deferred
execution is that it allows you to compose multiple queries and string them
together without necessarily needing to have each query entail an expen-
sive hit against the server. Instead, three or four queries can “execute” with-
out ever sending a query across the wire to your database. Then, when you
need to access the result from your query, a SQL statement is written that
combines the results of all your queries and sends it across the wire only
once. Deferred execution is a powerful feature, but you need to wait until
the next chapter for a full explanation of how and why it works. The key
point to grasp now is that it enables you to compose multiple queries
as shown here, without having to take an expensive hit each time one
“executes.”

Composable 59



ptg

Transformative

SQL is poor at transformations, so we are unaccustomed to thinking about
query languages as a tool for converting data from one format to another.
Instead, we usually use specialized tools such as XSLT or brute-force tech-
niques to transform data.

LINQ, however, has transformational powers built directly into its syn-
tax. We can compose a LINQ query against a SQL database that effortlessly
performs a variety of transforms. For instance, with LINQ it is easy to trans-
form the result of a SQL query into a hierarchical XML document. You can
also easily transform one XML document into another with a different
structure. SQL data is transformed into a hierarchical set of objects auto-
matically when you use LINQ to SQL. In short, LINQ is very good at trans-
forming data, and this adds a new dimension to our conception of what we
can do with a query language.

Listing 3.2 shows code that takes the results of a query against relational
data and transforms it into XML.

Listing 3.2 A Simple Query That Transforms the Results of a LINQ to SQL Query into XML

*�� $�	� ./.�	� I��	�	���CE��	��C1.���� ".�� ���������	��
��	�	 "���� .//.C)����C
�	�	"� �	� I��	�	���CE��	�C1

�	� I6�������	�C6���	��C1."�6���	���1
�	� I6�������	�V��� W1."���� ���!

Embedded in this query is a simple LINQ to SQL query that returns the
6���	�� and ��� fields from all the customers who live in Paris. In Listing 3.3
I’ve stripped away the LINQ to XML code from Listing 3.2 to show you the
underlying LINQ to SQL query.

Chapter 3: The Essence of LINQ60

Discreet Computations and PLINQ

LINQ queries are not only composable, but also discreet. In other
words, the computation returned by a query is a single self-contained
expression with only a single entry point. This has important conse-
quences for a field of study called Parallel LINQ (PLINQ). Because
each computation returned by a query is discreet, it can easily be run
concurrently on its own thread. PLINQ is discussed briefly in Chap-
ter 17, “LINQ Everywhere.



ptg

Listing 3.3 The Simple LINQ to SQL Query Found at the Heart of Listing 3.2

*�� $�	� ./.���� ".�� ���������	��
��	�	 "���� .//.C)����C
�	�	"� �	� (."�6���	��1."���� .4!

Here is the output from Listing 3.3:

2S<1.����	*���.�������	
2<1.��	.
��������

Here is the output from Listing 3.2:

E��	���
E��	�.6���	��/C2S<1.����	*���.�������	C.��� /C)����C.@�
E��	�.6���	��/C2<1.��	.
��������C.��� /C)����C.@�

@E��	���

As you can see, the code in Listing 3.2 performs a transform on the results
of the LINQ to SQL query, converting it into XML data.

Because LINQ is composable, the following query could then be used to
run a second transform on this data:

*�� $�	� 0./.�	� I��	�	���CE��	��C1.�	� I6�������	�C��� C1.C)����C�1
���� =.�� $�	� �?	�"	�������CE��	�C�
��	�	 =�6�������	�C��� C��J���	.//.C)����C
�	�	"� �	� I��	�	���C6���	��C1.=�6�������	�C6���	��C��J���	��!

This query takes the XML results of the first query and transforms that XML
into the following format:

E��	��.��� /C)����C�
6���	���2S<1.����	*���.�������	@6���	���
6���	���2<1.��	.
��������@6���	���

@E��	���

LINQ is constantly transforming one type of data into another type. It
takes relational data and transforms it into objects; it takes XML and trans-
forms it into relational data. Because LINQ is extensible, it is at least theo-
retically possible to use it to tear down the walls that separate any two
arbitrary data domains.

Because LINQ is both composable and transformative, you can use it in
a number of unexpected ways:

Transformative 61



ptg

• You can compose multiple queries, linking them in discrete chunks.
This often allows you to write code that is easier to understand and
maintain than traditional nested SQL queries.

• You can easily transform data from one data source into some other
type. For instance, you can transform SQL data into XML.

• Even if you do not switch data sources, you can still transform the
shape of data. For instance, you can transform one XML format into
another format. If you look back at the section “Declarative: Not
How, But What,” you will see that we transformed data that was
stored in nested lists into data that was stored in a single list. These
kinds of transformations are easy with LINQ.

Summary

In this chapter you have read about the foundations of LINQ. These foun-
dations represent the core architectural ideas on which LINQ is built. Taken
together, they form the essence of LINQ. We can summarize these founda-
tions by saying the following about LINQ:

• It is a technique for querying data that is integrated into .NET lan-
guages such as C# and VB. As such, it is both strongly typed and
IntelliSense-aware.

• It has a single unitive syntax for querying multiple data sources such
as relational data and XML data.

• It is extensible; talented developers can write providers that allow
LINQ to query any arbitrary data source.

• It uses a declarative syntax that allows developers to tell the compiler
or provider what to do, not how to do it.

• It is hierarchical, in that it provides a rich, object-oriented view of
data.

• It is composable, in that the results of one query can be used by a sec-
ond query, and one query can be a subclause of another query. In
many cases, this can be done without forcing the execution of any
one query until the developer wants that execution to take place.

Chapter 3: The Essence of LINQ62



ptg

• It is transformative, in that the results of a LINQ query against one
data source can be morphed into a second format. For instance, a
query against a SQL database can produce an XML file as output.

Scattered throughout this chapter are references to some of the impor-
tant benefits of LINQ that emerge from these building blocks. Although
these benefits were mentioned throughout this chapter, I’ll bring them
together here in one place as a way of reviewing and summarizing the
material discussed in this chapter:

• Because LINQ is integrated into the C# language, it provides syntax
highlighting and IntelliSense. These features make it easy to write
accurate queries and to discover mistakes at design time.

• Because LINQ queries are integrated into the C# language, it is pos-
sible for you to write code much faster than if you were writing old-
style queries. In some cases, developers have seen their
development time cut in half.

• The integration of queries into the C# language also makes it easy
for you to step through your queries with the integrated debugger.

• The hierarchical feature of LINQ allows you to easily see the rela-
tionship between tables, thereby making it easy to quickly compose
queries that join multiple tables.

• The unitive foundation of LINQ allows you to use a single LINQ
syntax when querying multiple data sources. This allows you to get
up to speed on new technologies much more quickly. If you know
how to use LINQ to Objects, it is not hard to learn how to use LINQ
to SQL, and it is relatively easy to master LINQ to XML.

• Because LINQ is extensible, you can use your knowledge of LINQ
to make new types of data sources queriable.

• After creating or discovering a new LINQ provider, you can lever-
age your knowledge of LINQ to quickly understand how to write
queries against these new data sources.

• Because LINQ is composable, you can easily join multiple data
sources in a single query, or in a series of related queries.

Summary 63



ptg

• The composable feature of LINQ also makes it easy to break com-
plex problems into a series of short, comprehensible queries that are
easy to debug.

• The transformational features of LINQ make it easy to convert data
of one type into a second type. For instance, you can easily trans-
form SQL data into XML data using LINQ.

• Because LINQ is declarative, it usually allows you to write concise
code that is easy to understand and maintain.

• The compiler and provider translate declarative code into the code
that is actually executed. As a rule, LINQ knows more than the aver-
age developer about how to write highly optimized, efficient code.
For instance, the provider might optimize or reduce nested queries.

• LINQ is a transparent process, not a black box. If you are concerned
about how a particular query executes, you usually have a way to
examine what is taking place and to introduce optimizations into
your query.

This chapter touched on many other benefits of LINQ. These are
described throughout this book. This entire text is designed to make you
aware of the benefits that LINQ can bring to your development process. It
also shows you how to write code that makes those benefits available to
you and the other developers on your team.

The more you understand LINQ, the more useful it will be to you. As I
have dug more deeply into this technology, I have found myself integrating
LINQ into many different parts of my development process. When I use
LINQ, I can get more work done in less time. The more I use it, the more
completely these benefits accrue.

Chapter 3: The Essence of LINQ64



ptg

4
C# 3.0 Technical Overview

L INQ I S B U I LT on a set of language features included in C# 3.0 and
C# 2.0. Each feature was carefully crafted to fulfill a vision. The pur-

pose of this chapter is to describe all these key features and to show exactly
how they align to make LINQ possible.

LINQ to Objects can be used to query the collections found in the
� ��	������	"������#	�	��" namespace. These include 
�����,
���";��, 
��;	�
�����, '�	�	��, 7����	���, and ?�"������ �D	 1
J���	�. One particular C# type, �����	����	��, is implemented by all
these classes and plays an especially important role in LINQ to Objects. One
of the purposes of this chapter is to explain how �����	����	�� and iter-
ators contribute to the LINQ architecture.

Although LINQ to Objects has pride of place in this chapter, the lessons
you learn also apply to LINQ to SQL and LINQ to XML. In truth, the
changes you can run on �����	����	�� and the other features covered in
this chapter apply to any version of LINQ.

Toward the end of the chapter, I relax the focus a bit and allow the text
to zoom out far enough to encompass LINQ to SQL and expression trees.
With the inclusion of this final subject, this chapter can stand on its own as
a complete description of the LINQ architecture.

65



ptg

C# 2.0 and 3.0 Features Related to LINQ

The following technologies are covered in this chapter:

• Partial methods

• Automatically implemented properties

• Collection initializers

• Object initializers

• Type inference

• Anonymous types

• Generic methods, delegates, and lambda expressions

• Extension methods

• Scoping issues

• �����	����	�� and iterator blocks

• Deferred execution

• Overriding LINQ operators

• Expression trees

The first four features are only tangentially related to LINQ, but they are
new to C# 3.0 and are used throughout this book and in much of the LINQ
code you encounter. Because they are easy to explain and easy to under-
stand, I’ve decided to include a brief description of them in this chapter for
the sake of completeness. These features help you write code that is both
concise and easy to understand.

Partial Methods

Partial methods are a C# 3.0 feature that help developers modify autogen-
erated code without fearing that their changes will be overwritten if the
code is regenerated. In Visual Studio 2008, they are used by the Object Rela-
tional Designer and SqlMetal, two tools that play an important role in LINQ
to SQL development. Although code generation is the primary scenario for
partial methods, they are now a standard feature of the C# language, and
developers can use them when and where they want.

Chapter 4: C# 3.0 Technical Over view66



ptg

Partial methods allow developers to reserve a name for a method that
can optionally be implemented by consumers of their code. They are
declared inside partial classes, as shown in Listing 4.1.

Listing 4.1 A Simple Example of a Partial Method

����� � ��	�!
����� � ��	���E!

���	�%�"	 6�����"�+	����
(

%����" %������ "���� + )�����������
(

%������ *��� + )������+	������!

%����" *��� 5���	:��	������� ���	&��	1.������ "���	����
(

����� ��	=�5���	� �	=�5���	�./.�	� ���	��5���	�����	&��	��
(

�	=�5���	��5���	�"���	����!
4

+ )������+	������!
4

4

%����" %������ "���� + )�����������
(

%������ *��� + )������+	������
(

������	�5���	
��	�C:��	.�����	�C�!
4

4

"���� )������
(

�����" *��� +����������,-.�����
(

+ )����������� �./.�	� + )�������������!
��5���	:��	�FC�9������=�C1.C%��������C�!

4
4

4

Notice that + )����������� is declared as %������, as is + )�������
+	����:

%������ *��� + )������+	������!

Partial Methods 67



ptg

In the first declaration of + )�����������, + )������+	���� appears as a
header and as a call in the method called 5���	:��	. Note, however,
that + )������+	���� is not implemented in this first declaration for
+ )�����������. In effect, this is an invitation to the developer to imple-
ment this method if desired in a second declaration for + )�����������. In
our case, the invitation provides consumers of this class with the opportu-
nity to extend the method called 5���	:��	. The invitation is called a defin-
ing partial method declaration.

If the developer accepts the invitation and creates the second half of
+ )����������� and includes an implementation of + )������+	����, the
implementation is compiled into the code. At runtime, it is called by the
5���	:��	 method in the first part of this partial class. The implementation
of the method is called an implementing partial method declaration.

If the developer decides to decline the invitation, the declaration of
+ )������+	���� and the code to call it are optimized out of the program
by the compiler, causing all traces of + )������+	���� to disappear. This
ensures that no unnecessary overhead results when partial methods are
used.

Suppose the first of the two partial classes shown in Listing 4.1 were
autogenerated. The developer would be free to rerun the designer that cre-
ated the first part of + )����������� without fear that this action would
overwrite the code in the developers’ implementation of the second half of
+ )�����������. It also allows the developer to work with a relatively
small implementation of + )����������� that contains only a few methods,
without needing to wrestle with the potentially long and complex listings
that are often found in autogenerated code.

Although partial methods are easy to use, a number of rules govern
their use. Partial methods

• Must be declared inside a partial class.

• Must not return a type. Their declarations contain the keyword
%������ followed by the keyword *���. %������ is a contextual
keyword and can be used as a regular variable if it is not followed
by *���.

• Cannot be marked as 	=�	��.

Chapter 4: C# 3.0 Technical Over view68



ptg

• Can be marked �����" or �����	.

• Can be generic.

• Can have �	� parameters, but not ��� parameters.

• Cannot be referenced as a delegate until they are implemented.

• Cannot have access modifiers such as %����", %��*��	, or ���	����.
Partial methods are implicitly marked as %��*��	. This means that
they cannot be called from outside the partial class and cannot be
declared as *������.

• Can be implemented in the same half of a partial class in which it is
defined, although this is not a common practice.

Although partial methods are primarily designed as a tool for use with
autogenerated code, there may be occasions when you would want to use
this technology in your own code, giving consumers of your objects a place
where they can hook into events in your class. For instance, in Listing 4.1
the 5���	�	=� method uses a partial method as a means of broadcasting a
notification that a text file is being written. Although there are other ways
to perform this same task, this is a useful technique whether or not code is
autogenerated.

Automatically Implemented Properties

Automatic properties were touched on briefly in Chapter 2, “Getting
Started.” Here the subject is explored in more depth.

Automatically implemented properties are a convenience. They are
valuable because their syntax is concise. Consider the simple class shown
in Listing 4.2, which contains two properties declared with the new syntax.

Listing 4.2 Using the C# 3.0 Feature Called Automatic Properties

"���� E%	�����
(

%����" ��� E%	�������.(.�	�!.�	�!.4
%����" ������ E%	�����&��	.(.�	�!.�	�!.4

4

Automatically Implemented Properties 69



ptg

Both E%	������� and E%	�����&��	 are automatic properties. They are
a shorthand way of telling the compiler that you want it to automatically
generate the most obvious, default implementation for your property.
Notice that their getters and setters have no explicit implementation. When
you declare properties in this manner, the C# compiler automatically gen-
erates backing fields and fully implemented accessors behind the scenes.
You never see the getters and setters, and you cannot see or access the back-
ing fields.

Chapter 4: C# 3.0 Technical Over view70

Using the %��% Snippet

You can use the %��% snippet to help you quickly declare an automatic
property. Just type %��% and then press Tab twice.

The E%	����� class just shown is roughly semantically equivalent to the
C# 2.0 code shown in Listing 4.3. Automatic properties are an alternative
to the C# 2.0 syntax; they do not eclipse or replace it.

Listing 4.3 C# 2.0-Style Properties Have Fully Implemented Getters and Setters and
an Explicitly Declared Backing Field

"����.E%	�����
(

%��*��	 ��� �%	�������!
%��*��	 ������ �%	�����&��	!

%����".���.E%	�������
(

�	�
(

�	����.�%	�������!
4

�	�
(

�%	�������./.*���	!
4

4

%����" ������ E%	�����&��	
(

�	�



ptg

(
�	���� �%	�����&��	!

4

�	�
(

�%	�����&��	./.*���	!
4

4
4

The patterns followed in Listing 4.3 are repeated often in production C#
code. This syntax is valuable because it allows developers to add validation
code, or side effects, to their getters and setters. Nevertheless, they fre-
quently use the default implementation shown a moment ago. Automatic
properties are simply a shorthand means of writing the default implemen-
tation. They make your code more concise and, hence, easier to read and
maintain.

To get a deeper understanding of automatic properties, focus for a
moment on just the declaration for E%	�������:

%����" ��� E%	�������.(.�	�!.�	�!.4

Reflector shows that the compiler generates the code shown in Listing 4.4
behind the scenes when you create the E%	������� property.

Automatically Implemented Properties 71

Reflector

Reflector is a free third-party tool you can download from http://
www.aisto.com/roeder/dotnet/. It can sometimes be used to translate
IL into standard C# code, thus giving you a peek behind the scenes in
a C# program.

Listing 4.4 The Code Generated by Reflector for an Automatic Property

,���%��	�#	�	���	�-
%��*��	 ��� E%	��������;AAB�";���:�	��!

%����" ��� E%	�������
(

,���%��	�#	�	���	�-
�	�

http://www.aisto.com/roeder/dotnet/
http://www.aisto.com/roeder/dotnet/


ptg

(
�	���� �����E%	��������;AAB�";���:�	��!

4

,���%��	�#	�	���	�-
�	�
(

�����E%	��������;AAB�";���:�	��./.*���	!
4

4

This code is similar to a C# 2.0-style property. The big difference is the
presence of the ,���%��	�#	�	���	�- attribute and the funny-looking
name of the backing field: E%	��������;AAB�";���:�	��. This name is not
a valid C# identifier, but it is a valid CLR identifier. Because these are not
valid C# names, you are unable to access these fields in your own C# code.
This was an intentional decision, but it is not inconceivable that the team
may provide access to these backing fields in some future version of C#.

Chapter 4: C# 3.0 Technical Over view72

About the Code Generated by Reflector

The ,���%��	�#	�	���	�- attribute simply marks code so that certain
tools can choose to ignore it.

The use of invalid C# identifiers for variable names is a theme that will
recur throughout this chapter. I’ll show you the Reflector code for
them in only this one case, but that tool can be useful when working
with the code seen in several sections of this chapter.

You must keep in mind a few caveats when working with automatic
properties:

• You must declare both a getter and setter.

• Because you do not have access to the backing field, read-only and write-

only properties would not be useful, so they are not allowed. You can,
however, place the %����" or %��*��	 modifiers before one of the
two accessors.



ptg

• You should not use automatic properties as an excuse not to include
validation code or other safety checks in your program. If you need
getters and setters, you should implement them.

Here is an example of placing the modifier %��*��	 before your setter:

%����" ��� ?���.(.�	�!.%��*��	.�	�!.4

Technically there is a difference between having a private setter and creat-
ing a read-only property, but in practice the difference is not significant.

The following code will not compile because both accessors have
modifiers:

%����".��� ?���.(.%���	"�	�.�	�!.%��*��	.�	�!.4

This code will not compile because it does not contain both a setter and
a getter:

%����" ��� ?���.(.�	�!.4

The following property would be a poor candidate for an automatic
property because it contains validation code that could not be easily imple-
mented with automatic properties:

%��*��	.��� ����!
%����".��� ?���
(

�	�
(

�� �����./.�<�
(

�����.�	� �="	%�����C?���.���.��.��*����.����	C�!
4
�	���� ����!

4
�	�
(

����./.*���	!
4

4

In general, automatic properties are a simple feature, designed to help
you get more work done with less code. Use them with care, but use them.

Automatically Implemented Properties 73



ptg

Initializers

C# 3.0 includes two new ways to initialize the elements of a collection or the
fields and properties of an object. These techniques, called collection initial-
izers and object initializers, are designed to help you write a more declarative
style of code that is more succinct, easier to read, and easier to maintain.
Again, you were introduced to these topics earlier in the book, but they
are covered in more depth here. Later in this chapter, you will read
about anonymous types, which use a technology closely related to object
initializers.

Collection Initializers
Collection initializers save typing and make code more readable. They pro-
vide a means of quickly initializing any collection that implements
� ��	������	"�����������	����	 and includes an 6�� method. Consider
this code fragment that creates and initializes a simple collection:


����������.����./.�	� 
������������!
�����6���C
�&'C�!
�����6���C$�	� C�!
�����6���C��*	����	C�!

Because 
����� implements �����	����	 and has an 6�� method, you
can use collection initializers to condense these four lines into one:


����������.����./.�	� 
����������.(.C
�&'C1.C$�	� C1.C��*	����	C.4!

The same simple technique can be used to initialize an array of integers:


�������.����0./.�	� 
�������.(.01.21.31.R.4!

In either case, you can optionally include parentheses for a call to the
default constructor:


�������.����2./.�	� 
���������.(.01.21.31.R.4!

Of course, other types have elements that can be initialized with this
syntax. Here is how to use collection initializers with the ?�"������ class:

*�� � ?�"������ ./.�	� ?�"������ ������1.���������
(

Chapter 4: C# 3.0 Technical Over view74



ptg

(.C*��C1.C� %	.���	�	�"	C 41
(.C����	.*������	C1.C:����.��.$�	� .	=%�	�����.���	�.��	.����.����C 4

4!

�� �� ?�"������ ���������D	 �C����	.*������	C��
(

������	�5���	
��	�� ?�"������ ,C����	.*������	C-�!
4

A ����	�
��� works almost exactly the same way. Only the name of the
object to be created differs:

����	�
���������1.�������.����	�
���./.�	� ����	�
���������1.���������!

The rest of the code is identical.
Here is how to initialize and use 7����	�s:

7����	�����.����0./.�	� 7����	�����.(.01.21.3.4!
7����	�����.����2./.�	� 7����	�����.(.31.R1.<.4!

����0����	��	"�5��������2�!

���	�"� �*�� ��	�.�� ����0�
(

������	�5���	
��	���	��!.@@.5���	.��	.����	�.3
4

You would not be able to use collection initializers with a '�	�	��,

��;	�
�����, or ���";��, because they have no 6�� methods. Here, for
instance, is an attempt to use collection initializers with a ���";:

���";����.���";./.�	� ���";������.(.01.21.3.4!

This code fails with the following error:

� ��	������	"������#	�	��"����";����H.��	�.���."������.�.�	��������
���.H6���H

The important case of initializing a collection with a set of objects is shown
in the next section.

In general, collection initializers are useful, easy to implement, and
without significant drawbacks. It is recommended that you use them when-
ever possible.

Initializers 75



ptg

Object Initializers
C# 3.0 also provides a concise way to initialize one or more of the proper-
ties or fields of an object. Consider the E%	����� class declared in the sec-
tion called Automatically Implemented Properties:

"���� E%	�����
(

%����" ��� E%	�������.(.�	�!.�	�!.4
%����" ������ E%	�����&��	.(.�	�!.�	�!.4

4

Regardless of whether you used automatic properties, you can now initial-
ize an instance of the E%	����� class with this simple syntax:

E%	����� �./.�	� E%	�������.(.E%	�������./.01.E%	�����&��	./.C5�	�	C 4!

Compare this with the old style of object initialization:

E%	�����.�./.�	� E%	�������!
��E%	�������./.0!
��E%	�����&��	./.C5�	�	C!

Clearly the new style is more succinct.
You may combine object and collection initializers in a single statement:

%��*��	 
���E%	������.E%	�����
���!

%��*��	 *��� ��	��	
������
(

@@.����	"����.��������U	�
E%	�����
���./.�	� 
���E%	������
(

�	� E%	�������.(.E%	�������./.01.E%	�����&��	./.C5�	�	C 41
�	� E%	�������.(.E%	�������./.21.E%	�����&��	./.C�	�	"�C 41
�	� E%	�������.(.E%	�������./.31.E%	�����&��	./.C�	�	"�+�� C 4

4!
������	�5���	
��	�E%	�����
���,0-�E%	�����&��	�!

4

This code folds three object initializers inside a collection initializer. Declar-
ative syntax of this kind is both orderly and concise.

You can pass in parameters to the constructor of an object when using
object initializers, and you can omit any properties you don’t want to
initialize:

Chapter 4: C# 3.0 Technical Over view76



ptg

"����.E%	�����
(

%����" E%	�������.(.4
%����" E%	��������� ��.(.E%	�������./.�!.4
%����" ��� E%	�������.(.�	�!.�	�!.4
%����" ������ E%	�����&��	.(.�	�!.�	�!.4

%����" �*	����	 ������ ����������
(

�	���� ��������:������C��./.(L41.E%./.(04C1
E%	�������1.E%	�����&��	��!

4

4

"���� )������
(

�����" *��� +����������,-.�����
(

E%	����� �./.�	� E%	������0�.(.E%	�����&��	./.C5�	�	C 4!

� ��	��������	�5���	
��	���!
4

4

The initialization code in the +��� method explicitly uses the E%	�����&��	
property. The same line of code calls a constructor of class E%	����� that
takes the integer value 0 to initialize the E%	�������. I’ve also added an
optional �������� method that is used in the call to 5���	
��	. I’ve added
it simply in the hopes that it will better help those who type in the code to
understand what is happening. Try changing the call to the constructor to
pass in the number 2, and then check the result:

E%	����� �./.�	� E%	������2�.(.E%	�����&��	./.C5�	�	C 4!

Types in C# 3.0

C# 3.0 introduced two major changes to the type system. One is type infer-
ence, which allows the compiler to automatically infer the type of a vari-
able. The other is anonymous types, which allows you to declare a new
type without explicitly giving it a name. Both of these features play a sig-
nificant role in LINQ.

Types in C# 3.0 77



ptg

Type Inference
The *�� keyword tells the compiler to use type inference to determine the
type of a variable. The developer never explicitly states the type of these
variables; instead, it is up to the compiler to infer their type based on their
context.

Consider the following simple statements:

*�� �./.2!
�./.C
�&'.��.������� .� %	��C!.@@ 6�.	����.��.�	�	���	�.� .����.���	�

The first line uses type inference to determine the type of the variable �. The
literal value 2 is of type � ��	�����32, so the compiler infers that � is an
integer.

C# has always been a strongly typed language, and type inference does
nothing to change this state of affairs. The second line of code shown here
illustrates this fact. In the first line, the compiler infers that the type of �
must be an ���. C# does not allow assigning a ������ to an ���. As a result,
the second line of code creates a compile-time error stating that the com-
piler "����� ��%��"��� "��*	�� � %	 ������ �� ���. The lesson: Inferred
types are strongly typed.

Do not use type inference unless you have a need for it, or if a devel-
oper reading the code could not possibly be confused about its type. As you
will see later in this chapter, LINQ query expressions are one place where
type inference is needed. However, on other occasions you can safely
choose to use it. Consider the following code:


�������.����./.�	� 
�������.(.01.21.3.4!

This code repeats the declaration for 
����������. Use type inference to
remove the repetition:

*�� ����./.�	� 
�������.(.01.21.3.4!

This code is arguably cleaner and easier to read.
The following code compiles cleanly but is probably not a good candi-

date for type inference:

%����" �����" 
�������.#	�
�����
(

Chapter 4: C# 3.0 Technical Over view78



ptg

�	���� �	� 
�������.(01.21.34!
4

�����" *��� +����������,-.�����
(

*�� ����./.#	�
�����!
4

The compiler will have no problem determining that ���� is of type

�������, but a developer browsing the code might become confused,
particularly in a large, complex program. As a result, it is probably best to
explicitly declare the type of the list returned by the call to #	�
���:


�������.���� /.#	�
�����!

You cannot use type inference in the parameters of a method or in the
return type of a method:

%����" *�� + +	�����*�� � )����	�	��.@@.�	�	���	�.���.	�����
(
4

In the cases shown here, the compiler complains, stating:

��	."���	=����.;	 ����.H*��H.�� .��� .�%%	��.������.�.��"��.*������	
�	"���������

Because *�� is a contextual keyword, the following compiles cleanly, and
the word *�� is treated as a standard identifier, not as a keyword:

������ *��./.C���C!
������	�5���	
��	�*���!

The subjects of type inference and anonymous types are interrelated. As
a result, you will read more about type inference in the next section. In par-
ticular, you will see that in the case of anonymous types, type inference is
not just useful, but a necessity.

Anonymous Types
Anonymous types provide a shorthand means of creating read-only classes
with a few simple properties. They are both a new type and a form of ini-
tializer. Anonymous types play an important role in LINQ.

Types in C# 3.0 79



ptg

Consider the following statement, which declares and initializes an
anonymous type:

*�� ��������./.�	� (.&��	./.C�����	�C1.7	����./.R3Q21.����	./.C56C 4!

This statement has three parts:

• On the right is an object initializer.

• In the middle is the keyword �	�.

• On the left, type inference is used to determine the type of the iden-
tifier ��������.

Note that there is no type declaration between the word �	� and the open-
ing curly brace:

*�� ��������./.�	� ,���������	
������	������-(.&��	./.���.4!

Anonymous types get their name because they are never explicitly named.
In the preceding section, you saw cases when type inference is useful.

Here is a case when it is a necessity. It is not possible to declare the variable
�������� without using type inference, because we do not, and cannot,
know or write the name of its type at compile time. From the point of view
of a C# developer, anonymous types have no name, just as we cannot know
the name of a backing field for an automatic property. In the background,
a “funny-looking” name is generated like those we saw in the backing
fields for automatic properties. But this name is not valid C# code and can-
not be known by C# developers at design time.

You can, however, learn the name of an anonymous class by calling
�	�� %	 at runtime:

���	�"� �*�� ��� 6�������"�.�� $�	� �
(

������	�5���	
��	���� 6�������"��#	�� %	��������������!
4

You can also view the type name in Reflector. However, very little can be
gained by learning the name, because it is not valid C# code. It is primarily
of academic interest.

Chapter 4: C# 3.0 Technical Over view80



ptg

When it creates an anonymous class like the one shown here, the
C# compiler fully and properly implements the ����������, �$������,
#	�7������	��, and #	�� %	�� methods. You will never see this class, but
the pseudocode in Listing 4.5 gives you a very general sense of what it
looks like. (You can use Reflector to learn more details.)

Listing 4.5 The Compiler Generates Code for Your Anonymous Classes That Looks
Something Like the Pseudocode Shown in This Listing

"���� ���	X�;����:��� 
��;���&��	&��J�����������%
(

%����" ������ &��	.(.�	�!4
%����" ��� 7	����.(.�	�!.4
%����" ������ ����	.(.�	�!.4

%����" �*	����	 ������ �������������
%����".���.#	�7������	��.���
%����".� %	.#	�� %	��.���
���� �$�������>	"� ��>�.���

4

Note that the properties are read-only. I include #	�� %	 in this pseudocode
because it is properly implemented even though it is not really overridden.
Finally, remember that you can’t use *�� in the parameter list or the return
type of a method, so you can use this class only within the scope of the cur-
rent method. There is usually no way to pass it to another method or give
it broader scope.

Types in C# 3.0 81

Every Rule Has an Exception

In his review of this text, Nick Paldino found exceptions to the rule I
just stated. His comments on the subject are clear, so I’ll include them
almost exactly as he presented them to me: You can pass an anony-
mous type out of a method by passing it as type E�>	"�, and Reflec-
tion will be able to parse it. Anders Hejlsberg gave a presentation at the
MVP summit in 2007 that bound the output of an anonymous type to
a ?���#���J�	�; he could do that because the ?���#���J�	� uses reflec-
tion to get the information on the type. Also, the extension methods
that LINQ uses actually are outside of the method. When anonymous
types are used, they are passed to the �	�	"��� extension method on
the ����	����	 class. Technically, that is a means of passing an anony-
mous type out of a method.



ptg

Anonymous types are also used in LINQ queries. Consider this LINQ to
Objects code fragment borrowed from one of the samples in Chapter 2:

*�� $�	� ./.���� ".�� ������	��
��	�	 "���� .//.C
�����C
�	�	"� �	� (."���� 1."����%�� &��	.4!

The �	�	"� clause contains an anonymous type. You could create your own
type and use it instead, but it is a common and useful practice to write code
like that shown here.

Because this LINQ query uses an anonymous type, developers must use
type inference to declare its return type. In the section “Composable” in the
preceding chapter, you learned that query expressions both return and
operate on instances of �����	����	��. In this case � is some anonymous
type with two fields of type ������. This means that again we must use
type inference to declare the identifier $�	� . Without type inference, code
of this type would not be possible.

Consider this code fragment, which operates on the variable returned
from the query we are studying:

���	�"� �*�� =.�� $�	� �
(

������	�5���	
��	�=�!
4

In the current context, = is an anonymous type, so again it would be impos-
sible to declare it explicitly. This is yet another case where we could not go
forward if type inference did not exist.

Even if we could explicitly declare the type used in this ���	�"� state-
ment, it would probably cause us more trouble than it would be worth. The
problem is that the type of = could easily change if we made small changes
to the query expression from which it is derived. In complex LINQ queries,
especially those that use composability, this could cause a cascading
series of changes. All of this is avoided by using the keyword *�� and type
inference.

In this section you have learned about anonymous types and type infer-
ence. You have seen that these subjects are inextricably linked, because only
rarely can you make use of anonymous types without also needing to use
type inference.

Chapter 4: C# 3.0 Technical Over view82



ptg

Generic Methods, Delegates, and Lambdas

Lambdas are important both as a stand-alone C# 3.0 feature and as a sig-
nificant part of the LINQ architecture. The C# 2.0 technologies called dele-
gates and generic methods serve as stepping-stones and building blocks for
lambdas. Thus, I will cover them first and then focus on lambdas. I will also
briefly mention a C# 2.0 technology called anonymous methods that has
been eclipsed by lambdas.

Delegates
Delegates provide a means of declaring a variable that references an indi-
vidual method. Developers can invoke the delegate, and the delegate, in
turn, calls the method it references. Because the delegate is just a variable,
you can pass it to other methods and perform similar tricks with it that
would otherwise be impossible.

In many other languages, delegates are called and implemented as func-
tion pointers. In C#, however, a delegate is implemented as a class, rather
than as a pointer. The advantage of this system is that you can fully type-
check a class, whereas a pointer is less type-safe.

Consider the code shown in Listing 4.6. It shows a simple delegate type
called + ?	�	���	, used to reference the 6�� method.

Listing 4.6 A Simple Delegate

����� � ��	�!

���	�%�"	 ���%�	
�����
(

"���� )������
(

%����" �	�	���	 ��� + ?	�	���	���� �1.��� ��!

%����" �����" ��� 6������ �1.��� ��
(

�	���� �.Y.�!
4

%����" �����" *��� ����?	�	���	�+ ?	�	���	 ���"�
(

Generic Methods, Delegates, and Lambdas 83



ptg

������	�5���	
��	����"�2T21.0<3��!
4

�����" *��� +����������,-.�����
(

+ ?	�	���	 � ?	�	���	./.6��!

������	�5���	
��	�� ?	�	���	�2T01.0<2��!

����?	�	���	�� ?	�	���	�!
4

4
4

Before we examine this code in depth, let’s take a moment to simply
describe what it does. The code defines a delegate type that has the same
signature as the 6�� method. An instance of this delegate type is used to call
the 6�� method. The same instance is then passed to another method that,
in turn, calls the 6�� method.

Now let’s step back and examine the code in more depth. We first need
to declare a type that is compatible with the 6�� method:

%����" �	�	���	.��� + ?	�	���	���� �1.��� ��!

Notice that this type has the same signature as the 6�� method:

%����" �����".��� 6������ �1.��� ��

Both declarations are for a type that takes two integers and returns an inte-
ger. This is why it is possible to assign the 6�� method to an instance of
+ ?	�	���	:

+ ?	�	���	 � ?	�	���	./.6��!

After this assignment is made, a call to the � ?	�	���	 variable translates
into a call to the 6�� method. For instance, the following call returns the
sum of 271 and 152, which is 423:

� ?	�	���	�2T01.0<2�!

Chapter 4: C# 3.0 Technical Over view84



ptg

To pass around delegate instances, we must first declare a method that
takes our delegate as a parameter:

%����" �����" *��� ����?	�	���	�+ ?	�	���	 � ?	�	���	�
(

� ?	�	���	�2T21.0<3�!
4

As you would expect, calls to the + ?	�	���	 instance resolve to calls to the
6�� method and thus return the value 425 in this case. Here is how you call
this method:

+ ?	�	���	 � ?	�	���	./.6��!
����?	�	���	�� ?	�	���	�!

We will use delegates in LINQ, but you should understand that they
existed before LINQ and have value in their own right. In particular, a com-
monly used pattern for sorting data uses delegates. When implementing
this pattern, consumers of a hypothetical sort routine pass in a delegate,
which a user defines to compare two items and decide which is “larger”:

%����".*���.����������%��	?	�	���	."��%��	1.
�����.��	���!

Users of this method define their own implementation of "��%��	, which,
in turn, is called by the ���� routine. Please recall that I’m providing this
example simply to illustrate that delegates have practical uses outside of
LINQ. It is not really that important that you understand the particular
example I show here.

Generic Methods, Delegates, and Lambdas 85

More on Assigning Delegates

The code I’ve shown here is valid shorthand for the following syntax,
which is actually generated behind the scenes:

+ ?	�	���	 � ?	�	���	./.�	� + ?	�	���	�6���!

I believe, however, that it is easier to read and understand delegates if
you use the shorthand without calling �	�.



ptg

In this section you saw that delegates consist of two parts—a delegate
type and a delegate instance. You learned how to declare delegates and
how to use them to call a method and pass a reference to a method. This is
just enough information to ensure that you can understand the role they
will play in LINQ. I have not, however, covered other aspects of delegates,
such as their role in C#’s event processing.

Generic Delegates
Before we cover lambdas, you need to understand one other C# 2.0 tech-
nology. Generic methods are one of the most powerful features of the C#
language, and they play a key role in LINQ. Let’s take a moment to be sure
you know how they work.

As things stand, our + ?	�	���	 type can work with any routine that
takes two integers and returns an integer:

%����".�	�	���	.��� + ?	�	���	���� �1.��� ��!

This delegate would be considerably more flexible if it worked with all
routines that took two parameters of any type and returned a parameter of
any type. If we had that ability, this delegate would no longer be confined
to use with methods that accepted and returned integers. It could, for
instance, be used with methods that accepted and returned �����	s, or that
accepted ���	�	�s and returned a ����.

Here is how to declare a generic delegate that does exactly that:

%����" �	�	���	 ��	����.+ ?	�	���	�01.�21.��	�������0.�1.�2.��!

To understand this code, we need to break it into two parts. Look at the fol-
lowing pseudo-declaration, and you will see that it still has the same gen-
eral signature as the 6�� method: it takes two parameters and returns a
parameter:

%����" �	�	���	 ��	����.+ ?	�	���	��0.�1.�2.��!

The problem here is that we don’t know the type of �0, �2, and ��	����. C#
solves that problem by providing a place where you can declare the types
of the parameters used by this delegate:

%����" �	�	���	 ��	����.+ ?	�	���	�01.�21.��	�������0.�1.�2.��!

Chapter 4: C# 3.0 Technical Over view86



ptg

Notice the funny-looking syntax after the word + ?	�	���	: �01 �21

��	�����. This is a place where you can pass in type parameters that define
what types you want to work with when you declare an instance of this
type:

+ ?	�	���	
������������� � ?	�	���	./.6��!

This declaration declares the types of �0, �2, and ��	���� as integers, thus
resolving the ambiguity that is inherent in the generic declaration of
+ ?	�	���	. In particular, it states that �0 maps to an integer, �2 to an inte-
ger, and ��	���� to an integer. In effect, it transforms, through substitution,
our generic declaration for + ?	�	���	 back into a standard method dec-
laration. We start with this declaration:

%����" �	�	���	 ��	����.+ ?	�	���	
��������� �������0.�1.�2.��!

�0, �2, and ��	���� are mapped to the type ���, and somewhere behind the
scenes we end up with this declaration:

%����".�	�	���	.��� + ?	�	���	���� �1.��� ��!

A delegate of this type is compatible with our 6�� method.
Let me show a second example to help further illustrate how this works.

Instead of working with integers, we could have used doubles:

%����" �����" �����	 6��?����	�������	 �1.�����	 ��
(

�	���� �.Y.�!
4

+ ?	�	���	
���!�������!�������!�� � ?	�	���	./.6��?����	���!

In this case the delegate would be transformed behind the scenes as
follows:

%����" �	�	���	 �����	 + ?	�	���	������	 �1.�����	 ��!

These substitutions take place at compile time and have no effect on the run-
time performance of your code. Note also that I had to create a new stan-
dard method called 6��?����	� that was compatible with our new delegate.

Generic Methods, Delegates, and Lambdas 87



ptg

A generic declaration for a delegate is so flexible that you can easily
imagine a small set of such declarations that would cover nearly every
function any reasonable developer would be likely to declare. This is an
excellent opportunity to employ the 80 percent rule: Most functions that
return a value take between zero and four parameters. Stick with those five
cases, and safely ignore the rare method that takes more than four param-
eters. Or rather, you can leave it for the developer to declare any such dec-
laration should he or she need it.

The developers of C# have done exactly that—they have declared two
sets of delegates in the � ��	� namespace. One set called :��" returns a
value, and another set called 6"���� does not. Here are the ones that do
return a value:

%����" �	�	���	 ��	����.:��"��	�������!
%����" �	�	���	 ��	����.:��"�1.��	�������.��!
%����" �	�	���	 ��	����.:��"�01.�21.��	�������0.�1.�2.��!
%����" �	�	���	 ��	����.:��"�01.�21.�31.��	�������0.�1.�2.�1.�3."�!
%����" �	�	���	 ��	����.:��"�01.�21.�31.�R1.��	�������0.�1.�2.�1.�3."1

�R.��!

Here are the declarations for the type that do not return a value:

%����" �	�	���	 *��� 6"������!
%����" �	�	���	 *��� 6"��������.��!
%����" �	�	���	 *��� 6"�����01.�2���0.�1.�2.��!
%����" �	�	���	 *��� 6"�����01.�21.�3���0.�1.�2.�1.�3."�!
%����" �	�	���	 *��� 6"�����01.�21.�31.�R���0.�1.�2.�1.�3."1.�R.��!

Given the presence of these declarations in the � ��	� namespace, we can
modify our program as shown in Listing 4.7.

Listing 4.7 Using the Predeclared :��" Delegates

����� � ��	�!

���	�%�"	 ���%�	
�����
(

"���� )������
(

%����" �����" ��� 6������ �1.��� ��
(

�	���� �.Y.�!
4

Chapter 4: C# 3.0 Technical Over view88



ptg

%����" �����" *��� ����?	�	���	�:��"���1.���1.����.���"�
(

������	�5���	
��	����"�2T01.0<2��!
4

�����" *��� +����������,-.�����
(

:��"���1.���1.����.� ?	�	���	./.6��!

������	�5���	
��	�� ?	�	���	�2T01.0<2��!

����?	�	���	�� ?	�	���	�!
4

4
4

The declaration of our delegate has been deleted and replaced with the
:��"�01 �21 ��	����� declaration from the � ��	� namespace. Otherwise,
the code is the same as that found in Listing 4.7.

The last two sections have focused only on the features of generic meth-
ods and generic delegates that are directly applicable to LINQ. More could
be said about this subject, but that information would be outside the scope
of this book.

Lambdas
Lambdas are a simple technology with an intimidating name. They sound
like they will be difficult to understand, but in practice they are relatively
trivial.

For reasons that will become clear later in this chapter, LINQ has an
almost inordinate need for its users to declare a large number of small, sim-
ple delegates. The architects of C# decided that forcing the users of LINQ to
declare delegates using the syntax shown in the previous two sections was
too verbose. They wanted to find a shorter, more concise way to accomplish
the same task.

The syntax they settled on looks like this:

:��"���1.���1.����.� 
�����./.��1.��./�.��.Y.��!

This is a shorthand way of writing code that is roughly semantically equiv-
alent to the following:

Generic Methods, Delegates, and Lambdas 89



ptg

%����" �����" ��� 6������ �1.��� ��
(

�	���� �.Y.�!
4

:��"���1.���1.����.� ?	�	���	./.6��!

In the next few paragraphs I will compare these two ways of creating a del-
egate instance and explain how they map back and forth.

It is obvious that the left sides of the following two code fragments have
the same meaning:

:��"���1.���1.����.� 
�����./.��1.��./�.��.Y.��!
:��"���1.���1.����.� ?	�	���	./.6��!

But how can the right sides be the same?
The expression on the right side of the first statement is a shorthand way

of writing a method that is semantically equivalent to the 6�� method. Just
to be clear, a lambda is not a reference to the 6�� method; it is second
method that does the same thing as the 6�� method.

Here is the lambda:

��1.��./�.��.Y.��!

And here is the 6�� method:

%����" �����" ��� 6������ �1.��� ��
(

�	���� �.Y.�!
4

Here is the place in the 6�� method where we define the parameters it will
take:

���� �1.��� ��

Here is the place in the lambda where we define the parameters it will take:

��1.��

Here is the place in the 6�� method where we define what it will return:

�	���� �.Y.�!

Chapter 4: C# 3.0 Technical Over view90



ptg

Here is the place in the lambda where we define what it will return:

��.Y.��

As you can see, a lambda and a method do the same thing: They define a set
of parameters and an executable body of code.

The type declarations for a lambda are resolved using a technique very
similar to the one we employ for generic methods and generic delegates. To
see how this works, look again at the full declaration for the lambda:

:��"���1.���1.����.� 
�����./.��1.��./�.��.Y.��!

The generic delegate :��" says that the method being implemented takes
two integers as parameters and returns an integer. The compiler takes this
information and applies it to the lambda. Behind the scenes it resolves
��1 �� to ���� �1 ��� �� and defines the function such that the body of the
lambda �� Y �� returns an integer. Thus, we give the compiler enough infor-
mation to convert our lambda into a method that performs the same action
as the 6�� method.

The /� symbol is called a lambda operator and is usually pronounced
“goes to.” Thus, the lambda just shown can be read as “a comma b goes to
a plus b” or “a and b goes to a plus b.”

Although you will rarely need to do so, you can explicitly declare the
type of parameters to a lambda expression:

:��"���1.���1.����.�./.����.�1.���.��./�.��.Y.��!

For void functions that do not return a value, just use an empty set of paren-
theses:

��./�.������	�5���	
��	��!

Lambdas have access to local variables:

%����".�����".*��� X�	
�"����
(

��� �!
:��"����.���"./.��./�.(.�./.S!.�	���� �!.4!
�./.���"��!
������	�5���	
��	���!.@@.E��%���.��	.����	�.S

4

Generic Methods, Delegates, and Lambdas 91



ptg

You saw earlier that the compiler generates “funny-looking” names that
we never see for the backing fields of automatic properties, and for the
classes created when we declare an anonymous type. A similar process is
employed for lambdas. Behind the scenes, the compiler generates code that
looks much like the 6�� method, but it gives the method a “funny-looking”
name that is valid in the CLR but illegal—hence, by necessity, invisible—
to the C# programmer.

Exercises

In the beginning of this section, I said that lambdas are easy to understand.
To help reinforce that point, I’ve included a few quick exercises. When you
have had an “aha!” moment when the idea behind lambdas becomes clear,
you should find these exercises, and lambdas in general, very simple.
Appendix A contains the answers.

Chapter 4: C# 3.0 Technical Over view92

Lambdas and Anonymous Methods

You might be familiar with anonymous methods from C# 2.0. Seman-
tically, anonymous methods and lambdas are identical, but the lambda
syntax is easier to use. As a result, there is probably no reason for you
to use anonymous methods in the future unless you find that their syn-
tax makes your code pleasing or easier to read. Here are a lambda and
anonymous method side by side:

:��"���1.���1.����.� 
�����./.��1.��./�.��.Y.��!
:��"���1.���1.����.� 6���+	����./.�	�	���	���� �1.��� ��
(

�	���� �.Y.�!
4!

Both methods take two integers, add them together, and return the
result. Commenting further on anonymous methods at this point
would serve no purpose, because lambdas create the same result with
less work.



ptg

1. As you have seen, the following lambda and method are semanti-
cally equivalent:

��1.��./�.��.Y.��!
%����" ��� 6������ �1.��� ��
(

�	���� �.Y.�!
4

Given that this is the case, what is the lambda equivalent of the fol-
lowing method?

%����" ��� ������"����� �1.��� ��
(

�	���� �.�.�!
4

2. What lambda is semantically equivalent to this method?

%����" ��� +����%� ���� ��
(

�	���� �.O.<!
4

3. What lambda is semantically equivalent to this method?

%����" *���.?��%�� �������.*���	�
(

������	�5���	
��	�*���	�!
4

4. What is the lambda equivalent of this method?

%����" *���.?��%�� 5��������
(

������	�5���	
��	�C5������C�!
4

5. What is the lambda equivalent of this method?

%����" �	"���� ���%�	+�������.�1.���.�1.���."�
(

�	���� ��.Y.��.@."!
4

6. What lambda is equivalent to this method?

%����" �����" ���� 6������ �1.��� ��
(

�	���� �.Y.�������!
4

Generic Methods, Delegates, and Lambdas 93



ptg

Here is the declaration for a lambda and a statement that calls it:

:��"������1.���1.���1.�������.����+	./
��1.�1."�./�.�������:�������1.�1."1.��.Y."��!

������	�5���	
��	�����+	�C(L4.Y.(04./.(24C1.31.<��!

Lambdas provide you with a concise syntax for writing a method. They
are valuable in large part because they are so short. This concision helps
make possible the functional style of programming used in LINQ query
expressions, where each expression is composed into a single, discreet
entity with no external references. If this latter point does not yet make
sense to you, simply focus on the fact that lambdas are useful because they
are concise and short.

Extension Methods

Extension methods allow you to add optional functionality to an existing
class or interface without modifying the class itself. Added in C# 3.0, exten-
sion methods appear to be instance methods of an object, but they are actu-
ally declared as static methods in a separate class.

Suppose you have an easy-to-use class with three methods. Much of the
time, those three methods would provide all the power a developer needs
from your class. But under certain circumstances, you might want the class
to have more functionality. Before extension methods, there were three
ways to solve this problem, each with its own drawbacks:

• Add the new methods to the existing class.

• Use inheritance to add the methods in a derived class.

• Use static methods.

Suppose you are working on a program that needs to test whether
strings are valid abbreviations for a state. In this case, you can’t use option
1 for two reasons:

Chapter 4: C# 3.0 Technical Over view94



ptg

• You don’t have access to the source of class ������.

• Even if you did have access to it, you might not want to add the
weight and overhead of this feature to all strings—only to a subset
of all �������.

Option 2, inheritance, might also be a bad choice:

• It would force developers who wanted your added functionality to
use your type instead of normal �������.

• Even if they were willing to do that, it is not possible, because class
������ is sealed.

Because options 1 and 2 are unavailable, this leaves only option 3, which
I have implemented in Listing 4.8.

Listing 4.8 Using a Static Method to Add the Functionality of the ������ Class

����� � ��	�!

���	�%�"	 ������	6%%��"�����0
(

%����" �����" "���� �%	"���������
(

%����" �����" ���� ������	������� ����"	�
(

������,-.����	���	�./
(C6
C1C6DC1C6ZC1C6�C1C�6C1C�EC1C��C1C?�C1C?�C1
C:
C1C#6C1C7�C1C�?C1C�
C1C�&C1C�6C1CD�C1CDNC1
C
6C1C+�C1C+?C1C+6C1C+�C1C+&C1C+�C1C+EC1C+�C1
C&�C1C&JC1C&7C1C&PC1C&+C1C&NC1C&�C1C&?C1CE7C1
CEDC1CE�C1C)6C1C��C1C��C1C�?C1C�&C1C�IC1CX�C1
CJ�C1CJ6C1C56C1C5JC1C5�C1C5NC4!

�� �����"	.//.�����.�	����.����	!
����"	./.����"	���X%%	���!

���	�"� �*�� ��	�.�� ����	���	��
(

��.�����"	.//.��	��
(

�	���� ���	!
4

Extension Methods 95

continues



ptg

Listing 4.8 Continued

4
�	���� ����	!

4
4

"���� )������
(

%����" �����" *��� �����	��������� ����	�
(

������ ������./.CN��.	��	�	�G.(L4�.��.��.�.����	G.(04C!
������	�5���	
��	�������1.����	1

"#�����"�	���$��"���������	��!
4

�����" *��� +����������,-.�����
(

�����	���C"�C�!
�����	���C56C�!
�����	���C65C�!
�����	���C6
C�!
�����	���C&JC�!
�����	���C&BC�!
�����	���C+�C�!

4
4

4

The class �%	"��������� implements a static method named ������	.
We access that class and our new method in the following line:

������	�5���	
��	�������1.����	1."#�����"�	���$��"����%�������!

This is not such a bad solution, but it could be improved if we could write
the following:

������	�5���	
��	�������1.����	1.�����$��"����%&�!

When placed side by side, it should be obvious that the second solution is
more succinct than the first:

�%	"����������������	�����	�
����	�������	��

Chapter 4: C# 3.0 Technical Over view96



ptg

To enable the second syntax in C# 3.0, you need to make only one small
change to your code. Here is the original declaration for the ������	
method:

%����" �����" ���� ������	������� ����"	�

And here is the same code converted into an extension method:

%����" �����" ���� ������	��'�� ������ ����"	�

Simply add the keyword ���� to the method declaration to make the
������	 method an extension of the ������ class. You can now write
� �������������	��. It’s that simple.

You can use IntelliSense to discover the ������	 method, just as if it
were a real instance method of �%	"���������, as shown in Figure 4.1.

Extension Methods 97

Figure 4.1 The variable state, which is of type ������, appears to the developer to
support an instance method called ������	.

It should come as no surprise to learn that behind the scenes the com-
piler converts the call into a static method call: �%	"����������������	
�� �������. From the developer’s perspective, it appears to be like an
instance method of type ������, but behind the scenes it is a static method
call. This is another place where the compiler takes code that you write and
transforms it behind the scenes.

The �%	"��������� class has several traits that must be true if you want
to use extension methods:



ptg

• The class must be declared to be �����".

• The extension method must also be static.

• The first parameter of an extension method must include the ����
modifier, and it cannot be a pointer type.

• Extension methods cannot appear in generic classes.

Follow these guidelines, and you will find it easy to create extension
methods.

Scoping Issues

You must keep in mind a few scoping rules when using extension methods.
Problems with scoping and extension methods are rare, but when you
encounter them, they are quite vexing.

An instance method is always called before an extension method. The
compiler looks first for an instance method. If it finds an instance method
with the right name and signature, it executes it and never looks for your
extension method. The following code illustrates this problem:

����� � ��	�!
���	�%�"	 ������	6%%��"�����0
(

%����" "���� + �����
(

%����" *��� ?�������
(

������	�5���	
��	�C+ ������?�����C�!
4

4

%����" �����" "���� + �=�	������L0
(

@@.���.�	*	�.�	."���	�.��.��.��.�	�	.��.������"	.�	����
@@.��.+ ������
%����" �����" *��� ?���������� + ����� � ������
(

������	�5���	
��	�C+ �=�	������L0�?�����C�!
4

4

Chapter 4: C# 3.0 Technical Over view98



ptg

"���� )������
(

�����" *��� +����������,-.�����
(

+ ����� � �����./.�	� + �������!
� ������?�������!................@@.�����.+ ������?�����
+ �=�	������L0�?������� ������!..@@.�����

@@.+ �=�	������L0�?�����
4

4
4

+ �=�	������L0�?����� is a valid extension method for + �����.
However, it will never be called, because + ������?����� always takes
precedence over it unless you explicitly call it as a static method of
+ �=�	������L0.

In cases where you have two extension methods with the same name, an
extension method in the current namespace wins out over one in another
namespace. Ambiguity becomes an issue, however, when you try to call
two extension methods with the same name and signature in the same
namespace, or in two different namespaces that are both used by the cur-
rent namespace. Listing 4.9 gives an example of this problem.

Listing 4.9 This Code Does Not Compile Because the Compiler Finds the Call to ?�����
Ambiguous

����� � ��	�!
����� � ��	������	"������#	�	��"!
����� � ��	��
��$!

���	�%�"	 �=�	������"�%	
(

%����" "���� + �����
(

%����" *��� ?�������
(

������	�5���	
��	�C?�.����C�!
4

4
4

���	�%�"	 �=�	������L0
(

����� �=�	������"�%	!

Scoping Issues 99

continues



ptg

Listing 4.9 Continued

%����" �����" "���� + �=�	������L0
(

@@.���.�	*	�.�	."���	�
%����" �����" *��� ?���������� + ����� � ������
(

������	�5���	
��	�C?�.����C�!
4

%����" �����" *��� ?���������� + ����� � ������
(

������	�5���	
��	�C?�.��%C�!
4

4
4

���	�%�"	 �=�	������L2
(

����� �=�	������"�%	!

%����" �����" "���� + �=�	������L2
(

@@.���.�	*	�.�	."���	�
%����" �����" *��� ?���������� + ����� � ������
(

������	�5���	
��	�C?�.����C�!
4

%����" �����" *��� ?���������� + ����� � ������
(

������	�5���	
��	�C?�.����C�!
4

4
4

���	�%�"	 �=�	������"�%	
(

����� �=�	������L0!
����� �=�	������L2!

"���� )������
(

�����" *��� +����������,-.�����
(

+ ����� �./.�	� + �������!
��?�������!

4
4

4

Chapter 4: C# 3.0 Technical Over view100



ptg

This program throws a compile-time error because the compiler does
not know if you want + �=�	������L0�?������� or + �=�	������L2�

?�������. There are three ways to resolve this error:

• You could remove the ����� directive for either �=�	������L0 or
�=�	������L2. In this case, that would be a fine resolution. But if
there were other methods or classes in both �=�	������L0 and
�=�	������L2 that you wanted to use, this could become a painful,
or even unacceptable, choice.

• You could explicitly state which method you want to call using stan-
dard static syntax: + �=�	������L0�?��������.

• You could move either + �=�	������L2 or + �=�	������L0 into the
�=�	������"�%	namespace:

���	�%�"	.�=�	������"�%	
(

%����".�����"."����.+ �=�	������L2
(

%����".�����".*���.?����������.+ �����.� ������
(

������	�5���	
��	�C+ �=�	������L2�?�����C�!
4

4
4

This solution works so long as you have access to the source.
It should be clear that some of the issues discussed here can lead to trou-

ble if you are not careful. In particular, you don’t want to end up in a situ-
ation where forcing someone to remove a namespace results in his losing
access to important functionality. Nor do you want to force him to choose
between functionality he wants and using your extensions.

It can also be a serious nuisance if you muddy a namespace with what
many developers might consider superfluous methods. If you added 50
extension methods to the C# ������ class, developers who just want to
access the base functionality of that object would always have to contend
with your methods, particularly when using IntelliSense.

To avoid or at least mitigate the seriousness of these problems, you
should always place your extension methods in a unique namespace
separate from the rest of your code. That way, you can easily include the

Scoping Issues 101



ptg

extension methods in or exclude them from a program. Listings 4.10 and
4.11 illustrate this technique.

Listing 4.10 Place Your Extensions in a Separate File, and Give Them a Unique
Namespace

���	�%�"	 + ���	
(

���.���	.�����	�.�	�	
4

���	�%�"	 + ���	��=�	������
(

%����" �����" "���� �%	"���������
(

%��*��	 �����" ������,-.����	���	�./
(C6
C1C6DC1C6ZC1C6�C1C�6C1C�EC1C��C1C?�C1C:
C1
C#6C1C7�C1C�?C1C�
C1C�&C1C�6C1CD�C1CDNC1C
6C1
C+�C1C+?C1C+6C1C+�C1C+&C1C+�C1C+EC1C+�C1C&�C1
C&JC1C&7C1C&PC1C&+C1C&NC1C&�C1C&?C1CE7C1CEDC1
CE�C1C)6C1C��C1C��C1C�?C1C�&C1C�IC1CX�C1CJ�C1
CJ6C1C56C1C5JC1C5�C1C5NC4!

%����" �����" ���� ������	L0����� ������ ����"	�
(

�� �����"	.//.�����.�	���� ����	!
����"	./.����"	���X%%	���!
���	�"� �*�� ��	�.�� ����	���	��
(

�� �����"	.//.��	��
(

�	���� ���	!
4

4
�	���� ����	!

4
4

4

Listing 4.11 Accessing Extension Methods in a Namespace

����� � ��	�!
����� + ���	!
����� + ���	��=�	������!

���	�%�"	 ������	6%%��"�����0
(

"���� )������
(

Chapter 4: C# 3.0 Technical Over view102



ptg

�����" *��� +����������,-.�����
(

+ ���	.� ���	./.�	�.+ ���	��!
���.@@.X�	.+ .���	.�	�	�
������ �	��./.C56C!
�� ��	���������	���
(

������	�5���	
��	�C(L4.��.�.����	C1.�	���!
4

4
4

4

In Listing 4.11 your extension method is available, and the code com-
piles. If you were to comment out the third ����� directive, your extension
method would be unavailable, and the code would not compile. The devel-
oper would, however, still have access to the functionality found in the
+ ���	 namespace. You could perhaps improve this technology by putting
your extensions in their own assembly with its own namespace. You could
then be sure that developers could choose to include or exclude the extra
weight of your extension methods when they ship their code.

Listing 4.10 shows you two alternative ways to implement the ������	
extension method. The second, which uses the LINQ �������� operator, is
probably easier to maintain. The �������� operator is discussed in the next
chapter.

The primary reason for the inclusion of extension methods in C# 3.0 is to
enable LINQ. It is unlikely that this feature would have been added to the
language had LINQ not existed. They are, however, now a part of the lan-
guage, and, if used with caution, they can be useful. Placing them in their
own namespace is a best practice that should help you get the most from
this feature. Near the end of this chapter we will revisit extension methods,
and you will see the crucial role they play in LINQ development.

IEnumerable<T>

As mentioned at the beginning of this chapter, each of the collections in the
� ��	������	"������#	�	��" namespace supports the �����	����	��
interface. For instance, here is part of the declaration for 
�����:

%����" "���� 
�����.G.�
�����1.�����	"������1.�����	����	��.���

IEnumerable<T> 103



ptg

As you can see, the 
����� class supports �����	����	��. This fact, and
this fact alone, makes it possible to write a LINQ to Objects query against
this variable, or any variable of this type.

As you learned in the preceding chapter in the section “Composable,”
LINQ to Objects queries always interrogate and usually return an instance
of �����	����	��. Consider the following code fragment:


�������.����./.�	� 
�������.(.01.31.2.4!

*�� $�	� ./.���� ���.�� ����
��	�	 ���..3
�	�	"� ���!

���	�"� �*�� ��	�.�� $�	� �
(

������	�5���	
��	���	��!
4

The type �����	����	�� plays two key roles in this code:

• The query expression has a data source called ���� that implements
�����	����	��. The data source produces a sequence of elements.

• The query expression returns an instance of a type that implements
�����	����	��.

Every LINQ to Objects query expression, including the one just shown,
begins with a line of this type:

*��.�./.���� ( �� �

In each case, the data source represented by the variable  must support the
�����	����	�� interface, and the variable � usually supports it. As you
have already seen, the list of integers shown in this example supports that
interface.

The same query shown here could also be written as follows:

�����	����	����.$�	� ./.���� ���.�� ����
��	�	 ���..3
�	�	"� ���!

This code makes explicit the type of the variable returned by this query.

Chapter 4: C# 3.0 Technical Over view104



ptg

In practice, you will find that most LINQ to Objects queries return
�����	����	��, for some type �. The only exceptions are those that call a
LINQ query operator that returns a simple type, such as �������:

��� ����	�./.����� ���.�� ����
��	�	 ���..3
�	�	"� ������������!

In this case the query returns an integer specifying the number of items
in the list created by this query. LINQ queries that return a simple type like
this are an exception to the rule that LINQ to Objects queries operate on
classes that implement �����	����	�� and return an instance that sup-
ports �����	����	��.

Although it might not be immediately obvious, simple arrays in C# 3.0
implement �����	����	��. As a result, the following code compiles and
runs as expected:

���,-.���� ./.�	� ���,-.(.01.21.3.4!

*�� $�	� ./.���� �.�� ���� 
��	�	 �..3
�	�	"� �!

���	�"� �*�� ��	�.�� $�	� �
(
������	�5���	
��	���	��!

4

IEnumerable<T> 105

Differences Between LINQ to Objects and LINQ to SQL

LINQ to SQL queries both operate on and return types that implement
an interface called �'�	� ���	��. It, in turn, implements the �����
�	����	�� interface. As a result, LINQ to SQL queries still provide the
functionality found in LINQ to Objects, plus they use features of
�'�	� ���	�� to enable the generation of SQL strings and calls to a
SQL server. Exactly how this works is covered in section “Expression
Trees” and is explained in more depth in Chapters 7 through 10.



ptg

Understanding Sequences
The �����	����	�� interface gives developers access to a sequence of
items. For instance, a collection contains a sequence of some instances
of type � arranged in a particular order. Here, for instance, is a sequence of
integers that could be stored in a 
�������:

01.31.2

It is important to understand the differences between a sequence and
a set:

• In a set, order is not important, and there is always a finite number
of items.

• In a sequence, order is important, and there is not always a limit on
the number of items.

• Re-enumeration is not built into sequences. If you ask to enumerate
the values returned by a LINQ query a second time, it is not guaran-
teed that this will yield the same sequence of items in the same
order.

It is important to understand that the data source found in the ����
clause at the beginning of a query expression provides a sequence of ele-
ments. A sequence has no defined limit. For instance, there is no limit on the
number of items in the Fibonacci sequence, and it’s possible to use such a
sequence as the data source for a LINQ query. That sort of sequence may
not be a typical LINQ data source, but it is nonetheless a possible data
source. The next two sections help explain the theory behind that type of
query and provide an example of a data source that produces an infinite
sequence. I should add that set theory also encompasses the idea of infinite
sets. For instance, the set of all integers is infinite. You will see, however,
that implementing an infinite sequence in LINQ is fairly trivial, whereas
implementing an infinite set in computer programming is rare.

Enumeration
All generic collections provide the ability to ask for the first item in the
sequence, and then for the next item, and the next item, until either the

Chapter 4: C# 3.0 Technical Over view106



ptg

sequence or the need for new elements is exhausted. This is called enu-
merating over a sequence of elements, and it is an ability granted to us by
the �����	����	�� interface.

The �����	����	�� interface looks like this:

%����" ���	���"	 �����	����	��.G.�����	����	
(

�����	�������.#	�����	�������!
4

The #	�����	����� method returns an implementation of the �����	��
����� interface, which, in turn, supports the following interface, called
�����	�����:

%����" ���	���"	 �����	�����
(

��>	"� ����	��.(.�	�!.4
���� +�*	&	=���!
*��� �	�	���!

4

You can use this interface to iterate over a collection, as shown in List-
ing 4.12.

Listing 4.12 Enumerating the Items in a List with the �����	������� Interface

����� � ��	�!
����� � ��	������	"������#	�	��"!

���	�%�"	 ������	6%%��"�����0
(

"���� )������
(

�����" *��� +����������,-.�����
(

*�� ����./.�	� 
�������.(.01.21.3.4!

�����	���������.	./.�����#	�����	�������!

����	 �	�+�*	&	=����
(

������	�5���	
��	�	�����	���!
4

4
4

4

IEnumerable<T> 107



ptg

The code in Listing 4.12 uses +�*	&	=��� and ����	�� from �����	�����
to enumerate the values in a list. It is worth pointing out that because we
are working with generic types, 	�����	�� is strongly typed. In this case,
for instance, ����	�� is of type ���. This means that you do not need to
worry about typecasts.

As you know, the same effect can be achieved by writing the following
code:

���	�"� �*�� ��	�.�� �����
(

������	�5���	
��	���	��!
4

The C# ���	�"� syntax is just a shorthand way of writing out the enumer-
ation code shown in Listing 4.12. This syntax exists only because it is eas-
ier and cleaner for you to write. Behind the scenes the compiler actually
executes a ����	 loop on the +�*	&	=��� method.

Iterators
Because a ���	�"� loop is a shorthand way to use the �����	����� inter-
face, it should not be a surprise to learn that there is a shorthand way to
implement it. Rather than forcing you to create a class that explicitly imple-
ments +�*	&	=���, ����	��, and �	�	���, C# 2.0 lets you implement that
interface by using  �	�� �	����. Listing 4.13 shows how this works.

Listing 4.13 Using the Power of  �	��.�	���� to Implement �����	����	��

����� � ��	�!
����� � ��	������	"������#	�	��"!

���	�%�"	 ��	������	���
(

"���� )������
(

%����" �����" �����	����	����.#	�
�����
(

*�� �	����./.3!

��� ���� �./.0!.�./.�	����!.�YY�
(

 �	�� �	���� �!
4

Chapter 4: C# 3.0 Technical Over view108



ptg

4

�����" *��� +����������,-.�����
(

*�� ����./.#	�
�����!

@@.��	���	.�*	�.�.����.����.��.����	�����
�����	���������.	./.�����#	�����	�������!

����	 �	�+�*	&	=����
(

������	�5���	
��	�	�����	���!
4

@@.&��.��.��	.���	.�����.����.���	�"�
���	�"� �*�� ��	�.�� �����
(

������	�5���	
��	���	��!
4

4
4

4

Listing 4.13 is much like Listing 4.12, except that the implementation of
a list is now found in a method that returns �����	����	�� rather than in
a simple 
�����. But as you can see, both sets of code work the same way.

The call to  �	�� �	���� sets in motion quite a bit of hand waving and
compiler magic. Behind the scenes the code we write is changed almost
beyond recognition. Nevertheless, the end result is as follows:

1. The first time you call #	�
�����, it returns the first item produced
by the ��� loop, which it implements.

2. The second time you call #	�
�����, it returns the second item from
the ��� loop, and so on.

3. The process ends when it runs out of items to iterate over.

The compiler actually transforms our simple call to  �	�� �	���� into an
autogenerated class that contains a state machine for keeping track of the
items yielded up to the user. The series of case statements and calls to
���� that populate this autogenerated class are perhaps more utilitarian
than elegant. Nevertheless, something is compelling about these kinds of

IEnumerable<T> 109



ptg

transformations. If you are curious to learn more, I recommend Raymond
Chen’s summation of the subject, because it is relatively succinct:

http://blogs.msdn.com/oldnewthing/archive/2008/08/12/
8849519.aspx

One interesting implication of this system is that you could use a tech-
nique like this to implement an endless loop that never stopped returning
values. Consider the following implementation of �����	����	��:

%����".�����".�����	����	����.#	�
�����
(

��� �./.2!

����	 ����	�
(

�./.�.O.2!

�� ���./.L�.[[.��.�.����+�=J���	��
(

�./.2!
������	�5���	
��	�C���	�.��."������	1.���
��.��.��	�;�C�!
������	��	��
��	��!

4
	��	
(

 �	�� �	���� �!
4

4
4

The preceding code, plugged into the code shown in Listing 4.13, produces
the following sequence in an endless loop:

R
M
0S
32
SR
02M
2<S
<02
01L2R
21LRM
R1LQS
M10Q2
0S13MR

Chapter 4: C# 3.0 Technical Over view110

http://blogs.msdn.com/oldnewthing/archive/2008/08/12/8849519.aspx
http://blogs.msdn.com/oldnewthing/archive/2008/08/12/8849519.aspx


ptg

321TSM
S<1<3S
0301LT2
2S210RR
<2R12MM
01LRM1<TS
21LQT10<2
R10QR13LR
M13MM1SLM
0S1TTT120S
331<<R1R32
ST10LM1MSR
03R120T1T2M
2SM1R3<1R<S
<3S1MTL1Q02
01LT31TR01M2R
R
M
0S
��"���

Deferred Execution

For newcomers to LINQ, deferred execution is a mysterious feature. But
now that you understand iterators and  �	�� �	����, deferred execution
should be easy to understand, even immediately intuitive. Consider the
code shown in Listing 4.14.

Listing 4.14 A Simple LINQ Query with a Sequence Provided by an Iterator

����� � ��	�!
����� � ��	������	"������#	�	��"!
����� � ��	��
��$!

���	�%�"	 ?	�	��	��	���
(

"���� )������
(

%����" �����" �����	����	����.#	��	$�	�"	��
(

*�� �	����./.3!

��� ���� �./.0!.�./.�	����!.�YY�
(

 �	�� �	���� �!

Deferred Execution 111

continues



ptg

Listing 4.14 Continued

4
4

�����" *��� +����������,-.�����
(

*�� ����./.#	��	$�	�"	��!

*�� $�	� ./.���� ���.�� ����
��	�	 ���..3
�	�	"� ���!

���	�"� �*�� ��	�.�� $�	� �
(

������	�5���	
��	���	��!
4

4
4

4

Listing 4.14 is very much like Listing 4.13, only it uses the � ��	��
��$
namespace and includes a simple LINQ query expression.

If you stepped through the code in Listing 4.14 with a debugger, it
would be natural to assume that you would see the LINQ query execute
when the debugger stepped over this statement:

*�� $�	� ./.���� ���.�� ����
��	�	 ���..3
�	�	"� ���!

To the surprise of nearly every newcomer to LINQ, this is not what hap-
pens. The query actually executes when you reach the ���	�"� statement.

Chapter 4: C# 3.0 Technical Over view112

Use the Debugger to Help You Understand LINQ

If you have the tools available, consider running this program in
Visual Studio and stepping through it with the debugger. It will help
drive home this point if you see it for yourself. The C# and Debugger
teams worked very hard to integrate LINQ and the Debugger. I’ve
found it instructive to allow the Debugger to illuminate my LINQ
code. Alternatively, try inserting a 5���	
��	 statement into the ���
loop found in the call to #	��	$�	�"	��, as shown in the sample pro-
gram (available on this book’s web site) called DeferredExecution.



ptg

Execution of a query expression is deferred until the moment when you
ask for the first item in the result sequence. Until that time, the value
returned from a query expression is simply a computation; it is not a result
set. As you learned in the section “Composable” in the preceding chapter,
you can use these computations in additional queries, but even then exe-
cution is deferred until something forces LINQ to ask for the first element
in the result sequence.

I’ll provide two different explanations of what happens when the
���	�"� code executes. My first explanation will be entirely utilitarian; it
will explain the practical, visible results of a call to ���	�"�. I will then
revisit the subject and explain what is happening behind the scenes. The
difference between the explanations is somewhat like the difference
between saying that the sun rises in the east, and explaining what really
happens when you know that the Earth is a spinning ball revolving around
the sun. There is nothing misleading or dangerous about thinking that the
sun rises in the east. In fact, the sun doesn’t rise at all: the Earth spins.
Nevertheless, you can make reliable plans based on the assumption that the
sun rises in the east. From the point of view of an observer out in space, that
is an incorrect explanation of what happens. But practically speaking, from
the point of view of a person on Earth, the sun rises in the east.

So I will explain this business from two points of view—one utilitarian,
and the other more theoretical. The theoretical explanation will be more rig-
orously correct, but when you are writing code, you can easily make do
with the more practical explanation. In fact, you might find it preferable to
use the practical explanation, just as we find it simpler to state that the sun
rises in the east.

When thinking about the solar system, we say that from a practical per-
spective, it appears that the sun rises in the east. When thinking about the
code in Listing 4.14, we can make the practical observation that a method
called #	��	$�	�"	 yields a series of values. When you loop through
���	�"� the first time, it appears that #	��	$�	�"	 is called and yields the
value 1. This is the first number produced by the ��� loop found inside
#	��	$�	�"	. (Step through the code with the debugger, and you will see
what I mean.) After this value is retrieved, then the LINQ query is executed.
The ��	�	 clause in the query expression tests if 1 is smaller than 3, and if
it is, it returns the value, which is printed to the console. Now we are back

Deferred Execution 113



ptg

up at the top of the ���	�"� loop, and #	��	$�	�"	 is “called” a second
time. This time it returns the number 2, which is again passed through the
5�	�	 clause in the query expression and returned for printing to the con-
sole. The ���	�"� loop begins again, and this time the number 3 is
retrieved. The 5�	�	 clause tests if 3 is smaller than 3. It is not, so the query
expression does not return this value, and nothing is printed to the console.
The loop requests the next number from the sequence, and #	��	$�	�"	
returns false, so the loop ends and the program exits. For all practical pur-
poses, that is what happens. You will never go astray by living with this
interpretation of events, just as you will never go astray believing that the
sun rises in the east.

However, in a book of this kind, I need to dig beneath the surface and
explain what is really happening. Behind the scenes, the method called
#	��	$�	�"	 is called only once. It does not really return values one at a
time. Instead, it returns an instance of an autogenerated object with a name
such as #	�
�������	����� that implements a state machine. Again, this is
a case where the compiler radically transforms your code into something
very different from what you originally wrote.

I’ve worked with a developer on the C# team named Eric Lippert to pro-
duce the following code, which approximates the code produced by the
compiler when it sees our call to #	��	$�	�"	:

%����" �����" �����	����	����.#	��	$�	�"	��
(

�	���� �	� #	�
�������	����	��!
4

%��*��	 "���� #	�
�������	����	 G.�����	����	����
(

%����" �����	���������.#	�����	�������
(

�	���� �	� #	�
�������	�������!
4

4

%��*��	 "���� #	�
�������	����� G.�����	���������
(

%����" ��� ����	��.(.�	�!.%��*��	 �	�!.4
%��*��	 ��� �!
%��*��	 ��� �	����!

Chapter 4: C# 3.0 Technical Over view114



ptg

%��*��	 ��� ����	./.L!
%����" ���� +�*	&	=���
(

�� �����	.//.L�.���� ����	L!
�� �����	.//.0�.���� ����	0!
�� �����	.//.2�.���� ����	2!

����	LG
������	����./.3!
��� �������./.0!.������./.������	����!.������YY�
(

���������	./.0!
���������	��./.������!
�	���� ���	!

����	0G
4
����	2G
���������	./.2!
�	���� ����	!

4
4

Ultimately, the call to #	��	$�	�"	 yields a class that we call
#	�
�������	�����, which contains a single method called +�*	&	=�. A
state machine is implemented in the class such that calls to +�*	&	=� mimic
what would happen if we called the simple ��� loop in the original
#	��	$�	�"	 method. The difference is that the results from the ��� loop are
retrieved one at a time, so that the first call to +�*	&	=� returns the first
value from the loop, the next call to +�*	&	=� returns the next value, and
so on, until the items generated by the loop are exhausted.

The actual location of the +�*	&	=� loop can differ, depending on the
type of query you write. In our case, it is actually called from inside the
implementation of 5�	�	, as shown in the next section.

Deferred execution ensures that LINQ never wastes time performing
calculations you don’t actually need. This is made possible by LINQ’s
reliance on sequences of numbers that are retrieved from a class that imple-
ments the �����	����� interface. This is true even if we declare a list like
this:

*�� ����./.�	� 
�������.(.01.21.3.4!

Deferred Execution 115



ptg

Even with a seemingly static list like this, behind the scenes the C# compiler
uses the �����	����� pattern and pulls the numbers from a +�*	&	=���
loop, grabbing each current item one at a time.

Consider the following variation of the code from Listing 4.14:

�����" *��� +����������,-.�����
(

*�� ����./.#	�
�����!

��� �����./.3!

*�� $�	� ./.���� ���.�� ����
��	�	 ���..�����
�	�	"� ���!

�����./.R!

���	�"� �*�� ��	�.�� $�	� �
(

������	�5���	
��	���	��!
4

4

A newcomer to LINQ might suppose that this method prints the numbers
1 and 2, because ����� is equal to 3 when the query expression is “exe-
cuted.” However, the code actually prints the values 1, 2, and 3. The vari-
able ����� is equal to 4 when the code reaches the ���	�"� loop, and that
is when the query expression is executed.

Why is execution of the query deferred? A primary reason is because it
enables composition to work as expected. You can link two, three, four, or
more queries using the compositional style of development, and none of
the queries will execute until you begin to iterate over the results. This
means that each query can be combined into a single “computation” that
is executed only once.

When you are using query expression syntax, execution is always
deferred. Only operators that must be called using query method syntax
might execute immediately. For instance, when you call :������ or
��
�����, execution is immediate:

*�� $�	� ./.����� �.�� � %	�������	����	��#	�+	�������
���	�� �	�����&��	
��	�	 ��?	"������� %	.//.� %	�������	����	�
�	�	"� ���:������!

Chapter 4: C# 3.0 Technical Over view116



ptg

The ���	�� , ��	�	, and �	�	"� methods are all called using query expres-
sion syntax and are all deferred. The :���� operator is called using query
method syntax and is not deferred.

Overriding LINQ Operators

We are now deep inside the implementation of LINQ to Objects and near
the end of our journey. Just one piece is missing: How are LINQ operators,
such as ��	�	, actually implemented?

This chapter has told you several times that code that appears to say one
thing is actually translated by the compiler into something else. The com-
piler translates automatic properties into standard properties with funny
names. Anonymous types are translated into real classes that have funny
names. Behind the scenes ���	�"� loops actually call the �����	����� inter-
face with its +�*	&	=��� method. Most surprising of all, the compiler trans-
lates yield iterators into classes that implement the �����	����� interface.

Given this background, it should come as no surprise that the compiler
translates query expressions into something else. Consider the following
query, which you have seen several times:

*�� $�	� ./.���� ���.�� ����
��	�	 ���..*���	
�	�	"� ���!

Behind the scenes, at compile time, this query is translated into the follow-
ing code:

*�� $�	� ./.����
�5�	�	��������./�.���..*���	�
��	�	"����1.��������./�.����!

Or if you prefer, the compiler is smart enough to work with this shortened
version of the statement:

*�� $�	� ./.�����5�	�	��������./�.���..*���	�!

These three statements are semantically quite similar, even if they differ
syntactically. The second and third statements are valid C# code and can

Overriding LINQ Operators 117



ptg

be used in lieu of the first implementation. They are said to use query
method syntax, whereas the first statement is a query expression.

Chapter 4: C# 3.0 Technical Over view118

Why Query Expressions?

Why are query expressions translated into query methods? Why
didn’t the developers of LINQ ask developers to write query methods?

The original implementation of LINQ had no such thing as a query
expression. You could use only query method syntax. The team ran a
series of usability tests on this syntax and found that many develop-
ers found it confusing, especially as queries grew more complex. This
feedback forced them to return to the whiteboard, where they
scratched their heads for a bit before inventing query expressions. This
proved a more viable solution, because developers picked it up with
relative ease.

Query Expressions and Lambdas

You are now in a position to appreciate the role that lambdas play in
query expressions. Of the three examples just shown, it is obvious that
the second and third contain lambdas. It is less obvious, however, that
the first example, the query expression, also contains a shortened form
of a lambda. The ��	�	 clause contains the body of a lambda. The
designers of LINQ decided that it was not necessary for developers to
include a complete lambda expression, because the type of the variable
��� is inferred in the first line, where it appears as a range variable.

We can now see that the 5�	�	 and �	�	"� operators appear to be nor-
mal methods. In fact, a little experimentation will reveal that they are meth-
ods that can be called on any implementation of �����	����	��. This fact
is actually a bit puzzling when you consider that the implementation for
�����	����	�� looks like this:

%����" ���	���"	 �����	����	��.G.�����	����	
(

�����	�������.#	�����	�������!
4



ptg

This simple interface has no place for an implementation of the 5�	�	 and
�	�	"� methods, nor for any of the approximately 50 other operators sup-
ported by LINQ and their numerous overloads.

By now you have probably guessed that 5�	�	, �	�	"�, and all the other
LINQ operators are really extension methods. It turns out that they are
declared in the � ��	��
��$ namespace, in a class called ����	����	,
which is a variation on the �%	"��������� class shown earlier. In other
words, it is a static class that contains a long list of extension methods, one
for each of the LINQ operators, plus numerous overloads of these methods.

Overriding LINQ Operators 119

�����	����	�� Supports All the LINQ Operators

�����	����	�� is a lightweight interface with one method, which you
can implement with a simple  �	�� iterator. This means that it is easy
for you to support �����	����	�� on any list-like structure you cre-
ate. If you then add a � ��	��
��$ directive, you can query your list
using LINQ and its broad range of operators. Nothing else needs to be
done. The other two options that the C# team could have used to pro-
vide this functionality would have been  to force you to inherit your
list from a class that implemented all the extensions methods that sup-
port the LINQ operators, or to put all 50 operators and their numer-
ous overloads in the �����	����	�� interface and force you to
implement them. Neither option is very appealing. The fact that
�����	����	�� can use extensions methods to support all the LINQ
operators is a very nice trick that makes your life as a developer much
simpler.

Let’s create our own version of the 5�	�	 method. By placing it nearer in
scope to our code than the 5�	�	 method that ships with LINQ, we will be
able to watch it execute and get some insight into how LINQ works. To get
started, take a look at Listing 4.15.

Listing 4.15 Implementing the 5�	�	 Operator to See How It Works

����� � ��	�!
����� � ��	������	"������#	�	��"!
����� � ��	��
��$!

���	�%�"	 5�	�	�	���
(

continues



ptg

Listing 4.15 Continued

%����" �����" "���� + �=�	������
(

%����" �����" �����	����	��.5�	�	������� �����	����	��.����"	1
:��"�1.�����.%�	��"��	�

(
���	�"� �*�� ��	�.�� ����"	�
(

�� �%�	��"��	���	���
(

 �	�� �	���� ��	�!
4

4
4

4

"���� )������
(

%����" �����" �����	����	����.#	�
�����
(

*�� �	����./.S!

��� ���� �./.0!.�./.�	����!.�YY�
(

 �	�� �	���� �!
4

4

�����" *��� +����������,-.�����
(

*�� ����./.#	�
�����!

*�� $�	� ./.�����5�	�	����./�.���..3���	�	"�����./�.����!

���	�"� �*�� ��	�.�� $�	� �
(

������	�5���	
��	���	��!
4

4
4

4

This code differs from our previous implementations of this query only
in the fact that we can explicitly see the implementation of the 5�	�	 oper-
ator. The header for the 5�	�	 method shows that it is an extension method
that works with the �����	����	�� interface. It is also passed a simple del-
egate that takes a value of type � and returns a ����:

Chapter 4: C# 3.0 Technical Over view120



ptg

�����" �����	����	��.5�	�	������� �����	����	��.����"	1
:��"�1.�����.%�	��"��	�

Overriding LINQ Operators 121

Finding the 5�	�	 Metadata Declaration

Our 5�	�	 method has the same declaration as the 5�	�	 method in the
LINQ source code. To see that declaration, type in a query with a 5�	�	
operator. Use query method syntax, as shown in Listing 4.15. Place the
mouse cursor over the word 5�	�	, right-click, and select Go to defi-
nition. You are taken to the declaration for 5�	�	, and you also see the
declaration for all the other LINQ operators.

Looking at our query, we see that the delegate is passed the following
lambda expression:

���./�.���..3

The loop in the 5�	�	 method iterates over our collection of numbers,
pulling them out one at a time, just as we showed in the section “Deferred
Execution.” It pulls the number 1 first and passes it to the predicate:

���	�"� �*�� ��	�.�� ����"	�
(

�� �%�	��"��	���	���
(

 �	�� �	���� ��	�!
4

4

The predicate compares the number 1 to the number 3, sees that it is
smaller, and returns true. The code in the 5�	�	 method then  �	�� �	����s
this value, and it is printed to the ������	 in the ���	�"� loop found in the
+��� method. Then 5�	�	 is called again, and this time the number 2 is
pulled from our #	�
����� method. It is run through the predicate, returns
true, is passed back to the ���	�"� loop and printed to the screen, and so
on. Each item is passed to the predicate, and, if ���	 is returned, the item
is  �	�� �	����ed. Otherwise, the ���	�"� loop simply iterates the next
item until the last item in ����"	 has been tested through %�	��"��	, just as
before. You are now seeing the entire scope of the LINQ query, witnessing
exactly how each portion of it is implemented.



ptg

At this stage, you know almost everything there is to know about LINQ
to Objects. You have seen how extension methods, lambdas, and iterators
come together to form a query language that works with collections. This
background knowledge will act as a foundation on which you can build a
deep understanding of LINQ to Objects.

Expression Trees

After getting a close look at LINQ to Objects, you might think that this tour
through the LINQ architecture would be complete. Yet one more key fea-
ture is left to explore. This feature is not part of LINQ to Objects, but it does
play a key role in other technologies, such as LINQ to SQL.

In LINQ to Objects, the data that is being queried is local and is stored in
objects that support the �����	����	�� interface. That is not the case,
however, in LINQ to SQL. In that scenario, the data is stored in a different
process, which is likely to be running on a different machine. And, of
course, the data structures in a relational database know nothing about
�����	����	��.

The technology for calling a database from a C# program already exists,
so at least that part of the problem is solved. Two issues, however, still need
to be resolved:

• How do we translate a query expression into a SQL statement that
can be sent to a server?

• How do we convert the data we get back from the SQL server into
objects that LINQ can query?

The answer to the second question is covered later in this book, in Chap-
ters 7 through 10. The first question, however, is one that you need to come
to terms with if you want to understand the LINQ architecture.

Expression trees allow you to convert code into data. In particular, they
make it possible to convert a query expression into a data structure. A LINQ
provider can then parse that data structure, determine what data the devel-
oper wants, and then retrieve it. For instance, an expression tree can convert

Chapter 4: C# 3.0 Technical Over view122



ptg

a LINQ to SQL query expression into a data structure, parse that data struc-
ture, and compose a SQL statement based on its contents. It can then use
conventional techniques to execute that SQL statement and return the
results to the developer. In this chapter, I’ll explain the basics of this process,
and then in Chapter 17, “LINQ Everywhere,” you will be introduced to
providers that parse entire expression trees and convert them into useful
code.

Let’s begin by creating a simple expression tree based on a lambda. As
you can see from Listing 4.16, the first step is to use the � ��	��
��$�
�=%�	������ namespace. After you have included the namespace, you can
create an 	=%�	�����.

Listing 4.16 Creating an Expression Tree Based on a Lambda

����� � ��	�!
����� � ��	��
��$��=%�	������!

���	�%�"	 ���%�	�=%�	������
(

"���� )������
(

�����" *��� +����������,-.�����
(

�=%�	�����:��"���1.���1.�����.	=%�	�����./.��1.��./�
��.Y.��!

4
4

4

Each expression is of a particular type. In this case, the type is our old
friend: a delegate that takes two integers and returns an integer. By setting
an instance of this type equal to a lambda expression, we are creating not
code that can be executed, but a data structure that can be parsed. Here is
another way to think about what is happening: The �=%�	����� type is a
generic type parameterized by the type of the delegate that it is supposed
to wrap. Our old friend :��" fits perfectly for this job. In this particular
example, the lambda takes two integers’ parameters and returns an integer.

Listing 4.17 shows how to parse this data structure to discover a few
basic facts about it. Listing 4.18 shows the output.

Expression Trees 123



ptg

Listing 4.17 Code to Perform Basic Parsing Operations on an Expression Tree

�=%�	�����:��"���1.���1.�����.	=%�	�����./.��1.��./�.��.Y.��!

������	�5���	
��	�C�=%�	�����.� %	G.(L4C1.	=%�	������&��	� %	�!

���	�"� �*�� ��	�.�� 	=%�	������)����	�	���
(

������	�5���	
��	�C)����	�	�G.(L4!.� %	G.(04C1.��	�1.��	��� %	�!
4
B���� �=%�	����� ��� ./.�B���� �=%�	������	=%�	������B�� !
)����	�	��=%�	����� �	��./.�)����	�	��=%�	��������� �
	��!
)����	�	��=%�	����� �����./.�)����	�	��=%�	��������� ������!
�=%�	������ %	 ���	� %	./.��� �&��	� %	!

������	�5���	
��	�CB�� G.(L4./.6��� ���.��.��� G.(04.(24.(34C1
��� 1.�	��1.���	� %	1.������!

Listing 4.18 The Output from Listing 4.17

�=%�	�����.� %	G.
�����
)����	�	�G.�!.� %	G.� ��	�����32
)����	�	�G.�!.� %	G.� ��	�����32
B�� G.��.Y.��./.6��� ���.��.��� G.�.6��.�

The code in Listing 4.17 begins by discovering the type of the expres-
sion, which is a lambda:

������	�5���	
��	�C�=%�	�����.� %	G.(L4C1.	=%�	������&��	� %	�!

It then looks at the parameters to the lambda and discovers that they are
called � and � and are of type ���32:

���	�"� �*�� ��	�.�� 	=%�	������)����	�	���
(

������	�5���	
��	�C)����	�	�G.(L4!.� %	G.(04C1.��	�1.��	��� %	�!
4

The next step is to examine the body of the lambda. We look at the expres-
sion on the left and see that it is our friend �, and the expression on the right
and see that it is �. The &��	� %	 of the expression is 6��:

B���� �=%�	�����.��� ./.�B���� �=%�	������	=%�	������B�� !
)����	�	��=%�	����� �	��./.�)����	�	��=%�	��������� �
	��!
)����	�	��=%�	����� �����./.�)����	�	��=%�	��������� ������!
�=%�	������ %	 ���	� %	./.��� �&��	� %	!

Chapter 4: C# 3.0 Technical Over view124



ptg

������	�5���	
��	�CB�� G.(L4./.6��� ���.��.��� G.(04.(24.(34C1
��� 1.�	��1.���	� %	1.������!

Although there is considerably more information in the expression tree, we
have harvested enough information to see that our lambda takes two
parameters of type ���	�	� and adds them together.

There is, of course, a difference between parsing a simple lambda like
this and parsing a complex query expression. Nevertheless, you should
now understand enough to grasp the basic principles involved. To help
drive home the point, let’s use a tool called the Expression Tree Visualizer
that ships with the Visual CSharp samples.

The Expression Tree Visualizer is an add-on that lets Visual Studio dis-
play an expression tree. To use it, first you need to obtain a copy of the sam-
ple. You can do this by choosing Help, Samples from Visual Studio. You are
taken to an HTML page, where you find a set of instructions for down-
loading the CSharp samples. After you have unzipped the samples, open
the ExpressionTreeVisualizer project and build it. Go to following directory,
and locate the file called ExpressionTreeVisualizer.dll:

...\ExpressionTreeVisualizer\ExpressionTreeVisualizer\bin\Debug

Copy the DLL into a directory called Visualizers that is located at the root
of the Visual Studio 2008 folder in your Documents directory. If the Visu-
alizers directory does not already exist, create it. Create a default console
application, and type in and run the program found in Listing 4.17, or open
the SimpleExpression project sample that accompanies this book. Set a
break point after this line:

�=%�	�����:��"���1.���1.�����.	=%�	�����./.��1.��./�.��.Y.��!

Right-click the word 	=%�	�����. A ToolTip pops up with a magnifying
class icon, as shown in Figure 4.2. Click the down arrow next to the mag-
nifying glass, and then click the popup menu to open the Expression Tree
Visualizer. You see a window like the one shown in Figure 4.3.

Expression Trees 125



ptg

Figure 4.2 Opening the Expression Tree Visualizer.

Chapter 4: C# 3.0 Technical Over view126

Figure 4.3 Parsing the expression for a simple lambda with the Expression Tree
Visualizer.

Looking at Figure 4.3, you can see the four main nodes of the expres-
sion tree:

• Body

• Parameters

• &��	� %	

• Type



ptg

The parameters are called � and �, are of type ���32, and are of &��	� %	
%����	�	�. The body also has two parameters and a &��	� %	 of 6��. The
return type of the body is ���32, and so on. All the information you need
to work with this expression is available to you. Studying the code for the
Expression Tree Visualizer would obviously be a good way to learn more
about parsing these objects.

You can also use the Expression Tree Visualizer to parse the code from
the LINQ to SQL program. The tree generated from that query is too long
to show here, but the principles involved are similar to those shown in
parsing the simple lambda just shown.

To get started, open the sample run to a point right after the query
expression:

*�� $�	� ./.���� ".�� ���������	��
��	�	 "���� .//.C
�����C
�	�	"� "!

At runtime, hold the mouse cursor over the variable $�	� to bring up the
Data tip window. Click the plus symbol to open the Data Tip, and explore
the Non-Public members. Look for the field called $�	� �=%�	�����. This
is the variable containing the expression tree that represents your query.
Notice that on the right is a magnifying glass, as shown in Figure 4.4. Click
the down arrow next to it, which brings up the Expression Tree Visualizer.
You see a completely parsed image of the tree for your program.

Expression Trees 127

Figure 4.4 The popup menu item for the Expression Tree Visualizer in an IntelliSense
fly-by window.

In this section you have seen that expressions allow you to convert code
into data. If you parse that data, you can extract the semantic meaning of



ptg

that code, and use that information to call into another process. This is the
only way that LINQ can execute a query expression when it needs to work
with a data source that does not implement �����	����	��. In general,
LINQ must use expression trees if it wants to query a data source that
resides in another process. 

Summary

This chapter has covered all the major features of C# 2.0 and C# 3.0 that
make LINQ possible. The text began by covering general-purpose features
such as collection and object initializers. The middle portions of the chapter
covered type inference, lambdas, and extension methods, all of which play
key roles in the LINQ syntax. Near the end of the chapter you learned about
the type �����	����	��, the central axis around which LINQ to SQL
revolves. Finally, at the end of the chapter you learned about expression
trees, a feature that is very important to developers who want to create
providers.

The interesting thing about the LINQ syntax is that it is built from a set
of fairly simple features. Lambdas, extension methods, and iterators are all
quite simple ideas. When brought together in LINQ, however, they form a
very powerful query syntax that can change how developers write code.
In the next chapter, you will learn more about the power of query expres-
sions, and you’ll finally get a chance to begin exploring the ways to use this
syntax in real programs.

Chapter 4: C# 3.0 Technical Over view128



ptg

5
Writing Query Expressions

T H I S C H A P T E R E X P L O R E S the various rules and syntactical elements
that define the structure of LINQ query expressions. It covers the seven

types of query expression clauses and explains the four ways in which they
introduce range variables. In the next chapter, you will read about the 49
different LINQ operators that can play 12 different roles in a query expres-
sion.

This chapter analyzes the structure of query expressions. It is divided
into five main sections and various subsections:

• Syntactical analysis

Nomenclature

Clauses

Range variables

• Composing queries

#���%�� clauses

The ���� keyword

Let clauses

• Joins

Inner joins

Group joins

129



ptg

Left outer joins

Using the object model to “join” classes

• Projections

The role of projections

Projections and deferred execution

Projections with �	�	"�+�� 

The �	�	"�+�� overloads

• Query expressions and other flavors of LINQ

LINQ to + &���	��	�*	�

Thinking about �'�	� ���	

Several important concepts from the preceding chapter are referenced in
this chapter, including deferred execution and extension methods. If you
feel you don’t fully understand those concepts, you might want to review
them before reading this chapter.

Query expressions are both the topic of this chapter and a central theme
in LINQ. They are the most common, the easiest, and the recommended
way to write LINQ queries. They provide us with an easy way to write
query methods. Behind the scenes they are always translated back into
query method syntax.

Query expressions are simply a machine for creating query methods.
When we write a query expression, the compiler applies simple rules to it
and converts it into code that follows the query method syntax.

Syntactical Analysis

In this section you will learn the names of the parts of a query expression,
how to identify the clauses in a query expression, and the role of range
variables.

Nomenclature
To begin exploring query expressions, we must find a common language
for describing our key terms. As shown in Figure 5.1, even a simple query
expression has several key elements.

Chapter 5: Writing Query Expressions130



ptg

Figure 5.1 The key parts of a query expression.

The following are the key elements shown in Figure 5.1:

• The *�� keyword tells the compiler to infer the type returned by a
query. When a LINQ to Objects query is deferred, the sequence
returned from a query expression is of type �����	����	�� and is
called a computation or result sequence.

• The individual lines in a properly formatted query are called
clauses. Figure 5.1 shows a ���� clause, ��	�	 clause, and �	�	"�
clause.

• The �	�	"� clause at the end of the query helps define the type
returned by the query. A select clause is said to project a result.

Clauses
Each line in a properly formatted query is called a clause. Nothing forces
you to arrange a query with one clause per line, but your code will be eas-
ier to maintain if it is formatted that way.

Here is a simple query expression.

*�� $�	� ./.���� ����.�� ����
��	�	 �����������5����C�C�
�	�	"� ����!

Note that it starts with a ���� clause, ends with a �	�	"� clause, and has a
��	�	 clause in the middle. This is a classic pattern that you will see often
in LINQ.

Seven different types of clauses are used in query expressions: ����, �	�,
��	�	, ���	�� , >���, �	�	"�, and ����%�� . They can be legally arranged
only in the ways shown in Table 5.1.

Syntactical Analysis 131

Computation

Query Clause Projection

Range
Variable

Data
Source



ptg

Table 5.1 The Structure of a Query Expression

First line ���� clause with a range variable and data source

Middle lines ����, ��	�	, ���	�� , >���, �	� clauses

Last line �	�	"� or ����%�� clause

Query expressions begin with a ���� clause and end with a �	�	"� or
����%�� clause. The body of a LINQ query may consist of many different
combinations of zero or more ����, ��	�	, ���	�� , >���, or �	� clauses.

The ��	�	, ���	�� , >���, �	�	"�, and ����%�� clauses can be imme-
diately translated into calls to LINQ operators. This relationship between
the clauses and the operators can be a bit confusing at times. In the exam-
ple found at the beginning of this section, the identifiers ����, ��	�	, and
�	�	"� are all keywords. The identifiers ��	�	 and �	�	"�, however, can be
immediately translated into operators:

*�� $�	� ./.�����5�	�	�����./�.�����������5����C�C��
��	�	"������./�.�����!

In practice, the distinction between a ��	�	 clause and a call to the 5�	�	
operator is somewhat academic. However, you should understand the dis-
tinction sufficiently to be able to make the differentiation when necessary.
The 5�	�	 operator is a method, and a ��	�	 clause is a bit of syntactic
sugar that is transformed at compile time into a call to the 5�	�	 operator.

This section has shown you only the most basic clauses—����, ��	�	,
and �	�	"�. The section “Composing Queries” provides examples showing
how to use all the other clauses. The next chapter provides examples of
using most of the 49LINQ operators. For now, however, I want to stay
focused on the basics so that I can introduce topics one at a time in an
orderly fashion, without passing everything to you in one indigestible
heap. Next up is a discussion of range variables.

Chapter 5: Writing Query Expressions132



ptg

Range Variables
Four elements make up the clauses in a query expression:

• LINQ operators

• Keywords

• Variables from your program that are currently in scope

• Range variables

Consider this simple query expression:

����������.����./.�	� 
����������.(.C
�&'C1.C$�	� C1.C��*	����	C 4!

*�� $�	� ./.���� ����.�� ����
��	�	 �����������5����C�C�
�	�	"� ����!

In this query, ����, ��, ��	�	, and �	�	"� are all LINQ keywords. Both
��	�	 and �	�	"�, however, can be translated immediately into LINQ oper-
ators. The identifier ���� is a local variable. That leaves only one element
unexplained: the identifier ����, which is a range variable.

There is nothing unusual about range variables. They are simply a read-
only subset of ordinary variables. Nevertheless, range variables seem odd
at first because they are introduced inside a query expression and need not
be formally declared:

������ ����!

Instead of being formally declared, ���� is said to be introduced by the ����
clause. The compiler determines its type through type inference. In this case
the compiler knows ���� is a ������ because it is derived from a 
���
�������.

The variable ���� goes out of scope when one of two things happens:

• The query expression ends.

• The ���� keyword is encountered. The contextual keyword ���� is
frequently used to splice two queries. It is discussed later in the
chapter in the sections on the ����%�� and >��� operators.

Syntactical Analysis 133



ptg

There may be cases where you need to explicitly state the type of a range
variable. For instance, the following code will not compile because of a type
mismatch:

��>	"�,-.����./.�	� ��>	"�,-.(.01.21.3.4!

*�� $�	� ./.���� ���.�� ����
��	�	 ���..3
�	�	"� ���!

While processing the ��	�	 clause, the compiler complains that the

�%	�����.HH."�����.�	.�%%��	�.��.�%	�����.��.� %	.H���H.���.H�!)���H�

To resolve this problem, explicitly declare the type of the range variable:

*�� $�	� ./.���� ��� ���.�� ����
��	�	 ���..3
�	�	"� ���!

Here we tell the compiler that ��� should be treated as an ���. Because the
cast will succeed, the code compiles and runs as expected.

Chapter 5: Writing Query Expressions134

Avoid Explicitly Declaring the Type of a Range Variable

It is best not to explicitly declare the type of a range variable unless
absolutely necessary. For instance, the following code compiles
cleanly, but the type could have been inferred by the compiler with-
out a formal declaration:


����������.����./.�	� 
����������.(.C
�&'C1.C$�	� C1
C��*	����	C 4!

*�� $�	� ./.���� ������ ����.�� ����
��	�	 ��������������C�C�
���	�� ����.��"	�����
�	�	"� ����!

Explicitly declaring the type of a range variable forces a behind-the-
scenes call to the LINQ ������ operator. This call may have unin-
tended consequences and may hurt performance. If you encounter
performance problems with a LINQ query, a cast like the one shown
here is one possible place to begin looking for the culprit. (The one
exception to this rule is when you are working with a nongeneric
����	����	, in which case you should use the cast.)



ptg

Like any other variable, a range variable must be a unique identifier
within the current scope. The following code, therefore, is illegal because
the variable ���� is declared twice:

������ *�	� /.C������C!

*�� $�	� ./.���� *�	� �� ����
��	�	 *�	��������5����C�C�
�	�	"� *�	�!

After being exposed to this code, the compiler grows irritable and com-
plains that the

����	.*������	.H����H."�����"��.����.�.%�	*����.�	"��������.��.H����H�

You have seen that the ���� keyword introduces a range variable. The
�	� and ���� keywords also allow developers to introduce a range vari-
able, as does the >��� operator. Again, I don’t want to precipitously expose
you to illustrations of these clauses until I’ve had more time to lay prepara-
tory groundwork. For now I will provide Table 5.2, which neatly encapsu-
lates the settings in which range variables appear. The next section shows
working examples of each of these ways of introducing range variables.

Table 5.2 The Variables ����1 ��	� %	, instrument, and � #���% in the Following Code

Fragments Are All Range Variables

���� *�� $�	� ./.���� ����.�� ����

�	� �	�.��	� %	./.� %	�������	����	�

>��� >��� �������	��.�� �������	���.�� %��������	����
	$���� �������	����������	����

���� ����% �	����.� �	�����&��	.���� � #���%

Composing Queries

In the previous sections I promised that I would give you a chance to see all
seven types of query clauses and the four different ways you can introduce

Composing Queries 135



ptg

a range variable. It is time to make good on that promise. In particular, this
section shows working examples of how to

• Compose ����, �	�, ��	�	, ���	�� , >���, �	�	"�, and ����%�� 
clauses.

• Use ����, �	�, >���, and ���� to introduce range variables.

The text is broken into three subsections:

• ����%�� clauses at the end of a query expression

• ����%�� clauses and the ���� keyword

• �	� clauses

Because Join clauses play such an important role in queries, I have ded-
icated a full section of the chapter to that subject. It begins after the section
on Let clauses.

Group-by Clauses at the End of a Query Expression
Although most queries end with a �	�	"� clause, they can also end with a
����%�� clause. The following query, which uses reflection to iterate over
all the LINQ query methods, shows how it works:

*�� $�	� ./.���� �	����.�� � %	���� ��	��
��$�����	����	��#	�+	�������
��	�	 �	�����?	"������� %	.//.� %	�������	����	�
���	�� �	�����&��	
����% �	����.� �	�����&��	!

���	�"� �*�� ��	�.�� $�	� �
(

������	�5���	
��	���	��D	 �!
4

This code prints all the LINQ operators and three associated utilities. To
save space, I’ll show only the first few results:

6���	���	
6��
6� 
6�����	����	
6*	���	
����
���"��

Chapter 5: Writing Query Expressions136



ptg

The data source for this query is a C# reflection call to #	�+	����� on the
����	����	 type. The ����	����	 type has only one purpose: It is the class
that contains all the extension methods that define the LINQ to Objects
operators. It also contains three simple utilities that support those opera-
tors. The call to #	�+	����� returns an array of the type � ��	���	��	"�
�����+	��������,-, where each +	�������� object defines one LINQ
operator or utility.

The code contains a ��	�	 clause that strips out all the methods not
declared in the ����	����	 class. This simple filter ensures that we don’t
see any of the methods inherited from class ��>	"�, such as �������� or
#	�7������	:

��	�	 �	�����?	"������� %	.//.� %	�������	����	�

The ���	�� clause arranges the names returned from #	�+	����� in
alphabetical order:

���	�� �	�����&��	

Just as a where clause filters data, an orderby clause sorts data.
The only line remaining in this query is the last one: the ����%�� clause.

LINQ uses ����%�� clauses to arrange elements into a set of keys, and a set
of elements that belong to the keys. The type of the object returned by a call
to ����%�� is � ��	��
��$��#���%����D	 1 ���	�	���. This object imple-
ments �����	����	���	�	��� and provides a D	 property of type �D	 .

To understand how this works, let’s begin by examining the problem the
����%�� operator solves in this query. There are 49 different LINQ query
operators. Some of these operators are overloaded many times. For
instance, there are 22 overloads of the +�� and +�= operators. Printing the
same word 22 times can be confusing. To help bring some organization to
our query result, the ����%�� operator allows us to organize these 22
repeated return values into a single group.

Take a second look at the ����%�� clause from our query:

����% �	����.� �	�����&��	!

This line asks LINQ to create one group and one key for each unique
method name returned by the query. Operator names such as 6���	���	,

Composing Queries 137



ptg

6��, 6� , +��, or +�= become the D	 � for our groups. Arranged under each
D	 are the overloads for that particular operator. In the case of +�� or +�=,
22 different overloads are grouped. Here is the explicit declaration for the
type returned by this ����%�� clause:

� ��	��
��$��#���%���������1.� ��	���	��	"�����+	���������

This shows that the D	 in each group, which is the name of the method,
is of type ������ and that the elements associated with it are of type
+	��������. This latter type is declared in the C# �	��	"���� namespace.

This pattern is followed every time you use the ����%�� operator.
There is always a D	 , and under that key are arranged from zero to n ele-
ments that belong to the D	 .

You can print the elements that belong to a D	 by simply writing a
nested ���	�"� loop, as shown in this excerpt from the SimpleReflection
program found with the samples that accompany this book:

���	�"� �*�� ��	��.�� $�	� ���;	�3��
(

��� �./.L!
������	�5���	
��	�C///////////////////////////C�!
������	�5���	
��	�C+	����.&��	G.(L4C1.��	���D	 �!
������	�5���	
��	�C///////////////////////////C�!
���	�"� �*�� ��	�.�� ��	���
(

������	�5���	
��	�C)����	�	��.��.E*	�����.(L4.��.(04C1
YY�1.��	��&��	�!

���	�"� �*�� %����.�� ��	��#	�)����	�	�����
(

������	�5���	
��	�C��(L4C1.%�����&��	�!
4

4
4

This ���	�"� loop pulls out the following data:

///////////////////////////
+	����.&��	G.6���	���	
///////////////////////////
)����	�	��.��.E*	�����.0.��.6���	���	
������"	
�����"

Chapter 5: Writing Query Expressions138



ptg

)����	�	��.��.E*	�����.2.��.6���	���	
������"	
���		�
�����"
)����	�	��.��.E*	�����.3.��.6���	���	
������"	
���		�
�����"
���	�����	�	"���
///////////////////////////
+	����.&��	G.6��
///////////////////////////
)����	�	��.��.E*	�����.0.��.6��
������"	
��%�	��"��	
///////////////////////////
+	����.&��	G.6� 
///////////////////////////
)����	�	��.��.E*	�����.0.��.6� 
������"	
)����	�	��.��.E*	�����.2.��.6� 
������"	
��%�	��"��	

Our code prints the D	 , which in this case is a method name, followed by
the names of the parameters of each overload. These names are retrieved
from the )����	�	����� field of the +	�������� object. For instance, 6���	�
���	 is the name of the first operator. It has three overloads, and the first
overload takes two parameters called ����"	 and ���".

Group-by Clauses and the into Keyword
����%�� clauses can also be used in the middle lines of a properly format-
ted query expression. In this scenario, you always combine ����%�� 
clauses with the ���� keyword. Listing 5.1 shows an example.

Listing 5.1 This Query Is Found in the GroupByOperators Program That Accompanies
This Chapter

*�� $�	� ./.���� �	����.�� � %	���� ��	��
��$�����	����	��#	�+	�������
��	�	 �	�����?	"������� %	.//.� %	�������	����	�
���	�� �	�����&��	
����% �	����.� �	�����&��	.���� �
�	�	"� �	� (.&��	./.��D	 1.E*	������./.���������.4!

Composing Queries 139



ptg

If you ���	�"� over the computation returned by this deferred query, you
will find that the first few items in the result sequence look like this:

(.&��	./.6���	���	1.E*	������./.3.4
(.&��	./.6��1.E*	������./.0.4
(.&��	./.6� 1.E*	������./.2.4
(.&��	./.6�����	����	1.E*	������./.0.4
(.&��	./.6*	���	1.E*	������./.2L.4

This query shows examples of using ����, ��	�	, ���	�� , ����%-� , and
�	�	"� clauses. That’s five of the seven possible types of LINQ clauses.

Here is a line-by-line description of the clauses in this query:

• The ���� clause defines a range variable called �	���� of type
+	�������� and a data source that can enumerate all the methods
in the ����	����	 class.

• The ��	�	 clause filters out all the inherited methods that are not
declared inside class ����	����	. This ensures that we are dealing
with only the 49 LINQ operators including the three utility methods.

• The ���	�� clause sorts the sequence alphabetically on the name
of each method.

• The ����%�� clause folds all the overloads into groups. One group
has a D	 called 6���	���	 and contains a sequence of +	��������s
that describe the overloads for the 6���	���	 operator. The next
group has a key called 6�� and a series of +	�������� objects that
define the overloads for the 6�� operator, and so on.

• The �	�	"� clause defines a projection that consists of an anony-
mous class with two fields. The ������� extension method is used to
get the number of overloads because �#���%���� does not expose
this information.

These are the five most commonly used LINQ clauses, along with the
things they do best:

• ���� clauses introduce a range variable and a data source.

• ��	�	 clauses filter data.

• ���	�� clauses sort data.

Chapter 5: Writing Query Expressions140



ptg

• ����%�� clauses set up a set of keys and an associated list of items.

• �	�	"� clauses project a result based on the range variables that are
still in scope.

You’ve just seen that ����%�� clauses can be used to end a query. Here,
the ����%�� clause does not end the query, but it nevertheless forms a
divide in the middle of this query. In many cases the range variables on one
side of this divide cannot be mixed with the range variables on the other
side.

The ���� keyword that is part of this ����%�� clause is used to link or
splice the two halves of this query. As such, it marks the boundary in the
midst of the query over which range variables typically cannot climb. The
range variables above the ���� keyword go out of scope in the last part of
this query. For instance, the range variable called �	���� cannot be used in
the �	�	"� clause.

As the old range variables go out of scope, a new range variable called
� is introduced. It holds the results of the first half of this query. Neverthe-
less, this query is still deferred, and neither half is enumerated until code
is written to iterate over the elements in the computation. Typically, the
code that performs that task is some type of ���	�"� loop similar to the
ones you have seen in previous chapters.

The ���� contextual keyword feeds the results of the first part of the
query into the second part of the query. This is called a continuation, and it
is a form of composability. The ���� keyword is most commonly used with
the ����%�� operator, but I will also show you how it can be used with the
>��� operator.

Let Clauses
�	� clauses allow you to introduce a range variable into your program.
They play a role in a query expression that is very similar to that played by
variable declarations in a standard C# method. In fact, they are the func-
tional programming equivalent of a type declaration in imperative code.

Listing 5.2 shows a modification of the reflection query we’ve been
working with in the past few sections. A range variable called ��	� %	 is
introduced in a �	� clause and is reused in two subsequent portions of the

Composing Queries 141



ptg

expression. This version of the query ends with a ����%�� clause rather
than a �	�	"� clause.

Listing 5.2 A Query from the GroupByOperators Sample Program

*�� $�	� ./.���� �	����.�� � %	���� ��	��
��$�����	����	��#	�+	�������
�	� ��	� %	./.� %	�������	����	�
��	�	 �	�����?	"������� %	.//.��	� %	
���	�� �	�����&��	
����% �	����.� ��	� %	.Y.C�C Y.�	�����&��	!

Run through a ���	�"� loop that lists the D	 property of each retrieved
�#���%����, the computation returned from this query prints the following:

� ��	��
��$�����	����	�6���	���	
� ��	��
��$�����	����	�6��
� ��	��
��$�����	����	�6� 
� ��	��
��$�����	����	�6�����	����	
� ��	��
��$�����	����	�6*	���	
��"���

I could have written this same query like this:

*�� $�	� ./.���� �	����.�� � %	���� ��	��
��$�����	����	��#	�+	�������
��	�	 �	�����?	"������� %	.//.� %	�������	����	�
���	�� �	�����&��	
����% �	����.� � %	�������	����	�.Y.C�C Y.�	�����&��	!

Although it’s shorter, this query is more difficult to maintain than the pre-
vious version. The problem is that the call to � %	�������	����	� is
repeated. When modifying the code, we could easily think to update one
instance but forget the second instance. This danger is eliminated when we
use the �	� clause just shown.

Here is another case when you might find a �	� clause useful:

*�� ����./.�	� 
�������.(.01.21.31.R1.<1.S1.T1.M1.Q.4!

*��.$�	� ./.����.�.��.����
��	�	.��.�.3�.\.��..M�
�	�.�./.�.O.2
��	�	.�.8.2.//.L
�	�.�	�
���./.�	�.
�������.(.21.3.4
����.�.��.�	�
���
�	�	"� �	� (.�1.�./.�.O.�.4!

Chapter 5: Writing Query Expressions142



ptg

Although egregiously contrived, this example nevertheless illustrates
how you can use �	� clauses to manipulate the items in a query or intro-
duce new items. The output from the program looks like this, where we cre-
ate a sequence where numbers alternately increase by 4 and 6:

/////////////////
6����	����%�	
/////////////////
(.�./.21.�./.0S.4
(.�./.31.�./.2R.4
(.�./.21.�./.2L.4
(.�./.31.�./.3L.4
(.�./.21.�./.2R.4
(.�./.31.�./.3S.4
(.�./.21.�./.2M.4
(.�./.31.�./.R2.4

The sequence of � numbers produced here has a satisfying and very regu-
lar pattern.

Joins

You have learned about ����, �	�, ����%�� , ���	�� , ��	�	, and �	�	"�
clauses. The only clause left unexplored is the >��� clause.

Inner Joins
Listing 5.3 shows a simple join in LINQ. This query from the SimpleJoin
program that accompanies this text uses a >��� clause to wed the +���"���
and �������	�� classes.

Listing 5.3 A Query from the SimpleJoin Program

"���� �������	��
(

%����" ��� �������	����.(.�	�!.�	�!.4
%����" ������ &��	.(.�	�!.�	�!.4

4

"���� +���"���
(

%����" ��� +���"�����.(.�	�!.�	�!.4
%����" ������ &��	.(.�	�!.�	�!.4

4

Joins 143

continues



ptg

Listing 5.3 Continued

"���� E��	�
(

%����" ��� E��	���.(.�	�!.�	�!.4
%����" ��� +���"�����.(.�	�!.�	�!.4
%����" ��� �������	����.(.�	�!.�	�!.4

4

%����" *��� �	����
(


���+���"����.%	�%�	./.�	� 
���+���"����
(

�	� +���"��� (.+���"�����./.01.&��	./.C���� .��������C 41
�	� +���"��� (.+���"�����./.21.&��	./.C+��	�.?�*��C41
�	� +���"��� (.+���"�����./.31.&��	./.CP���.�������	C 41
�	� +���"��� (.+���"�����./.R1.&��	./.C������	.)��;	�C 41
�	� +���"��� (.+���"�����./.<1.&��	./.CB	��.:�	";C 4

4!


����������	���.�������	���./.�	� 
����������	���
(

�	� �������	�� (.�������	����./.01.&��	./.C��%����.��=�%���	C 41
�	� �������	�� (.�������	����./.21.&��	./.C�	���.��=�%���	C 41
�	� �������	�� (.�������	����./.31.&��	./.C����%	�C 41
�	� �������	�� (.�������	����./.R1.&��	./.CD	 ������C 4

4!


���E��	��.���	��./.�	� 
���E��	��
(

�	� E��	� (.E��	���./.01.+���"�����./.01.�������	����./.2.41
�	� E��	� (.E��	���./.21.+���"�����./.21.�������	����./.3.41
�	� E��	� (.E��	���./.31.+���"�����./.31.�������	����./.0.41
�	� E��	� (.E��	���./.R1.+���"�����./.31.�������	����./.2.41
�	� E��	� (.E��	���./.<1.+���"�����./.R1.�������	����./.2.41
�	� E��	� (.E��	���./.S1.+���"�����./.21.�������	����./.R.4

4!

*�� $�	� ./.���� %.�� %	�%�	
>��� �.�� ���	��.�� %�+���"�����.	$���� ��+���"�����
�	�	"� �	� (.+���"���./.%�&��	1.E��	���./.��E��	���.4!

���	�"� �*�� ��	�.�� $�	� �
(

������	�5���	
��	���	��!
4

4

Chapter 5: Writing Query Expressions144



ptg

Most of the code shown in Listing 5.3 is setup code. You see the decla-
rations for the classes, the initializers that create some data for us to work
with, and then finally the query, which asks a question and returns a result
sequence. The tables are linked by a series of ID numbers. The +���"���
and E��	� classes each have an ID field, and the E��	� class uses the
+���"����� field as a “foreign key” that defines which +���"��� is associ-
ated with which E��	�.

In this first query, we work with two of the three classes, +���"��� and
E��	�. For now we will ignore the �������	�� class. Our goal is to join the
+���"��� and E��	� classes to show which musicians are associated with
which orders. When iterated with a ���	�"� loop, the output from our
query looks like this:

(.+���"���./.���� .��������1.E��	���./.0.4
(.+���"���./.+��	�.?�*��1.E��	���./.2.4
(.+���"���./.+��	�.?�*��1.E��	���./.S.4
(.+���"���./.P���.�������	1.E��	���./.3.4
(.+���"���./.P���.�������	1.E��	���./.R.4
(.+���"���./.������	.)��;	�1.E��	���./.<.4

We see that Sonny Rollins made order 1, Miles made orders 2 and 6, Trane
made orders 3 and 4, and Bird made the fifth order.

Here are the first two lines of the query:

*�� $�	� ./.���� %.�� %	�%�	
>��� �.�� ���	��.�� %�+���"�����.	$���� ��+���"�����

This >��� clause creates a range variable called � of type E��	� and then
uses the 	$���� operator to join the tables on the +���"����� field. Note
that this is not the // operator, but the 	$���� operator. All LINQ joins are
equijoins. That is, they use the 	$���� operator and cannot use the “greater
than” or “not equal to” operators. By using the 	$���� operator rather than
the // operator, the developers of LINQ are hoping to remind you that only
equijoins are supported.

Also note that the order in which items are introduced into the >���
statement matters. You must place the class or table to be joined on the left
side of the 	$���� operator and the joining class or table on the right side:

%�+���"�����.	$���� ��+���"�����

Joins 145



ptg

In this case %	�%�	 is the class to be joined, and ���	�� is the joining class.
Thus, %�+���"����� is on the left, and ��+���"����� is on the right.

The development team did some work to ensure that the compiler
catches errors with the ordering of these elements. If you put items on the
wrong side, you get an error. In this particular case, were we to mix up the
order of the parameters in the >��� clause, the error would look like this:

��	.���	.H�H.��.���.��.�"�%	.��.��	.�	��.���	.��.H	$����H�
������	�.���%%���.��	.	=%�	������.��.	���	�.���	.��.H	$����H�

This error makes it impossible for you to accidentally misplace the param-
eters in a >��� clause.

Now that you understand how >��� clauses work, let’s introduce the
�������	�� table into the query:

*�� $�	� 0./.���� %.�� %	�%�	
>��� �.�� ���	��.�� %�+���"�����.	$���� ��+���"�����
>��� �.�� �������	���.�� ���������	����.	$���� ���������	����
�	�	"� �	� (.+���"���./.%�&��	1.E��	���./.��E��	���1

�������	��./.��&��	.4!

The query contains a second join:

>��� �.�� �������	���.�� ���������	����.	$���� ���������	����

This time the range variable called � is of type �������	��, and the join is
made on the �������	���� field. It is now a simple matter to project a result
based on the range variables:

�	�	"� �	� (.+���"���./.%�&��	1.E��	���./.��E��	���1.�������	��./
��&��	.4!

Again, this is just a standard inner join between three tables. It produces the
expected results:

(.+���"���./.���� .��������1.E��	���./.01.�������	��./.�	���.��=�%���	.4
(.+���"���./.+��	�.?�*��1.E��	���./.21.�������	��./.����%	�.4
(.+���"���./.+��	�.?�*��1.E��	���./.S1.�������	��./.D	 �����.4
(.+���"���./.P���.�������	1.E��	���./.31.�������	��./.��%����.��=�%���	.4
(.+���"���./.P���.�������	1.E��	���./.R1.�������	��./.�	���.��=�%���	.4
(.+���"���./.������	.)��;	�1.E��	���./.<1.�������	��./.�	���.��=�%���	.4

Chapter 5: Writing Query Expressions146



ptg

Group Joins
A group join uses the ���� keyword and creates an outer join-like group of
associated records, keyed to the one-to-many values on which the join piv-
ots. This is not entirely dissimilar to the set of D	 and �#���%���� results
returned by a ����%�� clause. Result sequences of this kind have a hierar-
chical or graph-like structure and, hence, are not traditional left outer joins
with a flat, or relational, structure. There is no corresponding SQL query
that produces a similar result, because left outer joins in SQL have flat result
sets with a rectangular structure of rows and columns.

Using the same data shown in Listing 5.3, here is a simple group join:

*�� $�	� ./.���� %.�� %	�%�	
>��� �.�� ���	��.�� %�+���"�����.	$���� ��+���"�����

���� ���	�#���%�
�	�	"� �	� (.+���"���./.%�&��	1.E��	��./.���	�#���%�.4!

You could write this >��� clause on a single line, but I have broken it into
two lines here because of line-width restrictions. It could be argued that
breaking into two lines like this is valuable because it draws attention to the
range variable rather than pushing out to an obscure position at the end of
a long line of code.

The anonymous class returned by this query contains a name and
group. The group contains a D	 and its associated records, so we need
nested ���	�"� loops to iterate over the result set:

���	�"� �*�� ��	��.�� $�	� �
(

������	�5���	
��	���	���+���"����!
���	�"� �*�� ��	�.�� ��	���E��	���
(

������	�5���	
��	�C��E��	���G.(L4C1.��	��E��	����!
4

4

The output from this code looks like this:

���� .��������
��E��	���G.0
+��	�.?�*��
��E��	���G.2
��E��	���G.S
P���.�������	

Joins 147



ptg

��E��	���G.3
��E��	���G.R
������	.)��;	�
��E��	���G.<
B	��.:�	";

Here we see the classic hierarchical view of data that is so often found in a
LINQ computation.

Quite often you will want to nest a second query to run against the
results of a group join:

*�� $�	� 0./.���� %.�� %	�%�	
>��� �.�� ���	��.�� %�+���"�����.	$���� ��+���"�����

���� �	��	+	��#�
�	�	"� �	�
(

+���"���./.%�&��	1
E��	��./.���� �.�� �	��	+	��#�

>��� �.�� �������	���.�� ���������	����
	$���� ���������	����

�	�	"� ��&��	
4!

In this query I needed to wrap both joins because of line-width limitations.
In your code, you could write both >��� statements on a single line, or keep
the syntax I’ve shown here if you find it easier to read.

Take a look at the nested query expression:

E��	��./.���� �.�� ���	�#���%�
>��� �.�� �������	���.�� ���������	����.	$���� ���������	����
�	�	"� ��&��	

This code iterates over the result of our first join. The ���� clause introduces
a range variable called � of type E��	�. The >��� statement associates the
�������	�� class with the E��	� class by linking them on the �������	����
field. This allows us to project the name of the instrument in the �	�	"�
clause, rather than simply printing an order number, as we did in the first
group join example.

Here is the code we can use to display the result sequence from this
query:

Chapter 5: Writing Query Expressions148



ptg

���	�"� �*�� ��	��.�� $�	� 0�
(

������	�5���	
��	���	���+���"����!
���	�"� �*�� ��	�.�� ��	���E��	���
(

������	�5���	
��	�C��(L4C1.��	��!
4

4

The output looks like this:

���� .�������
���	���.��=�%���	
+��	�.?�*��
������%	�
��D	 ������
P���.�������	
����%����.��=�%���	
���	���.��=�%���	
������	.)��;	�
���	���.��=�%���	
B	��.:�	";

Left Outer Joins
In the result sets we have been looking at, the artist Bela Fleck has no instru-
ment associated with him, but he still is listed in the result set. This is very
much what we’d expect when performing a left outer join, though of course
traditional SQL developers would expect to see a flat, relational dataset
returned from the query. There are also times when you want to see the
name and some kind of record associated with even those customers who
do not post any orders. Listing 5.4 shows how to proceed.

Listing 5.4 This Case Is Similar to Listing 5.3, but This Time We Get a Flat Result Set and
Include a Blank Order Associated with the Musician Bela Fleck

%����" *��� �	��	���
(

@@.E�������.��>	"�.��������U	��1.���"�.��	.��	.���	.��.
������.<�3

*�� $�	� L./.���� �.�� ���	��
>��� �.�� �������	���

�� ���������	����.	$���� ���������	����
�	�	"� �	� (.��E��	���1.��+���"�����1.��&��	.4!

Joins 149

continues



ptg

Listing 5.4 Continued

*�� $�	� ./.���� %.�� %	�%�	
>��� �.�� $�	� L

�� %�+���"�����.	$���� ��+���"�����.���� �
���� =.�� ��?	���������%� ��
�	�	"� �	� (.%1.=.4!

���	�"� �*�� ��	��.�� $�	� �
(

������	�5���	
��	�C(L4.(04C1.��	���%�&��	1.��	���=�!
4

4

In this listing I use composition to link two queries. Nevertheless, I want
you to focus on the second query. The first query simply joins the E��	� and
�������	�� classes to create a new anonymous class that includes the name
of each instrument:

0.0.�	���.��=�%���	
2.2.����%	�
3.3.��%����.��=�%���	
R.3.�	���.��=�%���	
<.R.�	���.��=�%���	
S.2.D	 �����

The second query in this series joins the +���"���� in the %	�%�	 collec-
tion with the anonymous class returned by the first query in this series. The
���� operator is used just as in a group join. The key of this join is a musi-
cian, and the associated data is the anonymous class returned by the first
query.

The distinguishing trait of a left outer join in LINQ is the ���� clause
that uses ?	���������%� as a data source. We have an artist, Bela Fleck,
with no associated orders. If we asked for the first order associated with
Bela Fleck, we would get a range error on the empty collection of orders
associated with this artist. ?	���������%� resolves this error by returning
the default value for this anonymous reference type, which is null. (Recall
that the default value for any reference type is null.) In our ���	�"� loop,
when it comes time to print the orders associated with Bela Fleck, C# han-
dles our null value smoothly, and prints nothing to the screen.

Chapter 5: Writing Query Expressions150



ptg

Most importantly, it returns a flat relational table rather than hierarchi-
cal data:

���� .��������.(.E��	���./.01.+���"�����./.01.&��	./.�	���.��=�%���	.4
+��	�.?�*��.(.E��	���./.21.+���"�����./.21.&��	./.����%	�.4
+��	�.?�*��.(.E��	���./.S1.+���"�����./.21.&��	./.D	 �����.4
P���.�������	.(.E��	���./.31.+���"�����./.31.&��	./.��%����.��=�%���	.4
P���.�������	.(.E��	���./.R1.+���"�����./.31.&��	./.�	���.��=�%���	.4
������	.)��;	�.(.E��	���./.<1.+���"�����./.R1.&��	./.�	���.��=�%���	.4
B	��.:�	";

The point here is not that flat datasets are better or worse than the hierar-
chical data seen in the group join from the previous section. The point is
merely that you should use ?	���������%� if you want to return a tradi-
tional, SQL-like flat dataset.

If we wanted to, we could use an override of ?	���������%� to send
back custom data:

*�� $�	� L3./.���� %.�� %	�%�	
>��� �.�� $�	� L

�� %�+���"�����.	$���� ��+���"�����.���� �
���� =.�� ��?	���������%� �

�	� (.E��	���./.L1.+���"�����./.L1.&��	./.C&������C 4�
�	�	"� �	� (.%1.=.4!

This call to ?	���������%� is fairly interesting. The method is expect-
ing an instance of our anonymous type. How can we create an instance of
a type if we don’t know its name? It would seem impossible, but there is a
solution. LINQ knows the fields of our anonymous type, and if we create
another anonymous object with the same fields, in the same order, the com-
piler is smart enough to match it up with our anonymous type and create
the proper instance!

Here is the output “flat” result set returned by running this computation
through a ���	�"� loop:

���� .��������.(.E��	���./.01.+���"�����./.01.&��	./.�	���.��=�%���	.4
+��	�.?�*��.(.E��	���./.21.+���"�����./.21.&��	./.����%	�.4
+��	�.?�*��.(.E��	���./.S1.+���"�����./.21.&��	./.D	 �����.4
P���.�������	.(.E��	���./.31.+���"�����./.31.&��	./.��%����.��=�%���	.4
P���.�������	.(.E��	���./.R1.+���"�����./.31.&��	./.�	���.��=�%���	.4
������	.)��;	�.(.E��	���./.<1.+���"�����./.R1.&��	./.�	���.��=�%���	.4
B	��.:�	";.(.E��	���./.L1.+���"�����./.L1.&��	./.&������.4

Joins 151



ptg

Using the Object Model to “Join” Classes
I’ve spent quite a bit of time showing you how to write >��� clauses. There
is no doubt that >��� clauses play an important role in LINQ, but they do
not take center stage as often as they do in SQL. That is because object-
oriented developers have a better way of showing the relationship between
classes: They simply establish an association. Consider the code shown in
Listing 5.5.

Listing 5.5 Working with the Simple Association Between the Instrument and
Musician Classes

"���� �������	��
(

%����" ��� �������	����.(.�	�!.�	�!.4
%����" ������ &��	.(.�	�!.�	�!.4

4

"���� +���"���
(

%����" ��� +���"�����.(.�	�!.�	�!.4
%����" ������ &��	.(.�	�!.�	�!.4
%����" �������	�� �������	��!

4

%����" *��� ����	��L3��
(


���+���"����.%	�%�	./.�	� 
���+���"����
(

�	� +���"��� (.+���"�����./.01.&��	./.C������	.)��;	�C1
�������	��./.�	� �������	�� (

�������	����./.01.&��	./.C��=�%���	C 4.41
�	� +���"��� (.+���"�����./.01.&��	./.C���� .��������C1

�������	��./.�	� �������	�� (
�������	����./.01.&��	./.C��=�%���	C4.41

�	� +���"��� (.+���"�����./.21.&��	./.C+��	�.?�*��C1
�������	��./.�	� �������	�� (

�������	����./.21.&��	./.C����%	�C 4.4
4!

*�� $�	� ./.���� %.�� %	�%�	
��	�	 %��������	����������	����.//.0
�	�	"� �	� (.+���"���/%�&��	1

������	��/%��������	���&��	.4!

4

Chapter 5: Writing Query Expressions152



ptg

In this example, the +���"��� and �������	�� tables are associated by
a field in the +���"��� table called �������	��. In a real-world program,
this would probably be declared as an array of �������	���, but I have sim-
plified matters here to keep the code short and easy to read.

After declaring the types, this code fragment creates a list of musicians
and the instruments they use. Given these declarations, we can now move
from the +���"��� class to the �������	�� class using dot notation:
%��������	���&��	.

It is obviously much easier to use this syntax than it is to create a >���
clause, as we did in the previous listings. As a result, the syntax I’ve shown
here is the preferred way to handle joins in LINQ.

However, many times there is no direct relationship in the object model
between classes. The kind of association needed to use this dot notation
requires that one object, or a collection of objects, be declared as a field of
a second object. If that relationship does not exist, you must use the >���
clauses shown earlier to link two tables.

Projections 153

Associations in LINQ to SQL

Join syntax plays a big role in SQL queries. As a result, you would
probably expect that LINQ to SQL would make heavy use of >���
clauses. In practice, however, that is usually not the case. In Chapters
7 through 10, you will see that whenever you have a true relationship
between tables based on key, you can use dot notation to perform joins.
As a result, join syntax is something that you use infrequently in LINQ.

That is all I’ll say about creating joins at this time. However, if you keep
reading, you will find sections on the �	�	"�+�� operator that describe
how to use multiple ���� clauses in a single query. Those sections reveal yet
another very important way to perform a join between two classes.

Projections

Although some details have been omitted, by this point in the chapter you
have had a chance to look at all the major features of query expressions



ptg

except for the return sequence, or computation, that they produce. This sec-
tion is designed to give you a close look at that subject. It covers the fol-
lowing topics:

• An overview of projections

• Projections and deferred execution

• Using �	�	"�, �	�	"�+�� , and two ���� clauses to project a result
from a query

Overview of Projections
A �	�	"� or ����%�� clause usually determines the type returned, or pro-
jected, by a deferred query expression. In this sense, it plays much the same
role in a query expression as the keyword �	���� plays in a method. But a
query expression is said to project a type, whereas a function is said to
return a type. Furthermore, a deferred query expression does not execute
until you begin asking for the individual members of the result sequence.

As you’ve seen in previous chapters, a query expression can use anony-
mous types to project a new class in a �	�	"� clause. The code shown in
Listing 5.6 provides a quick review of this subject.

Listing 5.6 This Program Uses a List of Customers as a Data Source and Returns an
�����	����	��, Where � is an Anonymous Class

"����.������	�
(

%����" ������ ������	��?.(.�	�!.�	�!.4
%����" ������ �����"�&��	.(.�	�!.�	�!.4
%����" ������ ��� .(.�	�!.�	�!.4

4

"���� )������
(

%��*��	 �����" 
���������	��.#	�������	����
(

�	���� �	� 
���������	��
(

�	� ������	� (.������	��?./.C6
:D�C1
�����"�&��	./.C+����.6��	��C1.��� ./.CB	����C 41

�	� ������	� (.������	��?./.C6&6��C1
�����"�&��	./.C6��.���>����C1.��� ./.C+	=�"�.?�:�C 41

�	� ������	� (.������	��?/C6&�E&C1

Chapter 5: Writing Query Expressions154



ptg

�����"�&��	/C6������.+��	��C1.��� /C+	=�"�.?�:�C 4
4!

4

�����" *��� +����������,-.�����
(

*�� $�	� ./.���� ".�� #	�������	����
��	�	 "���� .//.C+	=�"�.?�:�C
�	�	"� �	� (.��� ./."���� 1.�����"�&��	./."������"�&��	.4!

4

The data source for this query is a collection of ������	��, but it returns a
collection of some anonymous class defined in the �	�	"� clause of the
query.

Projections 155

Projects in SQL

SQL queries also project a new type. Assume the existence of a table
called ������	� that contains five fields: ��, &��	, 6���	��, Z�%, and
)���	. If you write �	�	"� &��	1 6���	�� ���� ������	�, you are pro-
jecting a new type that contains two fields called &��	 and 6���	��.
LINQ does much the same thing, but it uses an anonymous class to
encapsulate the data that is returned from the query.

The projection found in a �	�	"� clause can also play a role in deter-
mining the transformational properties of a LINQ query. You’ve already
read about transformations, and they will surface frequently in subsequent
chapters. So for now I’ll simply include Listing 5.7, taken from the Linq-
Transform sample that accompanies this book, as a reminder of how a
�	�	"� clause can help transform object-oriented data into XML.

Listing 5.7 Using a LINQ Query to Transform Objects into XML

"����.+�������
(

%����" ������ &��	.(.�	�!.�	�!.4
%����" ��� 7	����.(.�	�!.�	�!.4
%����" ������ ����	.(.�	�!.�	�!.4

4

�����" *��� +����������,-.�����
(

continues



ptg

Listing 5.7 Continued

*�� +��������./.�	� 
���+����������.(
�	� +������� (.&��	./.C�����	�C1.7	����./.R3Q21.����	./.C56C 41
�	� +������� (.&��	./.CB�;	�C1.7	����./.32MS1.����	./.C56C 41
�	� +������� (.&��	./.C6����C1.7	����./.3TR21.����	./.C56C 4

4!

*�� =��./.�	� I��	�	���C+��������C1
���� ��������.�� +��������
���	�� ���������&��	
��	�	 ���������&��	�����5����C�C�
�	�	"� �	� I��	�	���C+�������C1

�	� I6�������	�C&��	C1.���������&��	�1
�	� I6�������	�C7	����C1.���������7	�������!

������	�5���	
��	�=���!
4

The code shown in Listing 5.7 transforms data stored in C# classes into
XML that looks like this:

+���������
+�������.&��	/CB�;	�C.7	����/C32MSC.@�
+�������.&��	/C�����	�C.7	����/CR3Q2C.@�

@+���������

Projections and Deferred Execution
The code placed in a projection usually defines whether a query is deferred.
The general rule to follow is fairly simple: If a LINQ to Objects query returns
a type that supports the �����	����	�� interface, at least some portion of the
query is deferred. Otherwise, it executes immediately.

Consider again the query shown in Listing 5.7. It is not deferred because
it returns an XElement. By contrast, the following query would be deferred
because it returns an IEnumerable<XElement>:

*�� $�	� ./.���� ��������.�� +��������
���	�� ���������&��	
��	�	 ���������&��	�����5����C�C�
�	�	"� �	� I��	�	���C+�������C1

�	� I6�������	�C&��	C1.���������&��	�1
�	� I6�������	�C7	����C1.���������7	������!

Chapter 5: Writing Query Expressions156



ptg

This second query returns the following data:

+�������.&��	/CB�;	�C.7	����/C32MSC.@�
+�������.&��	/C�����	�C.7	����/CR3Q2C.@�

There are two ways to tell whether a LINQ to Objects query returns
�����	����	��, and hence whether it is at least partially deferred. To use
the first technique, you must be inside the Visual Studio IDE. Hover the
mouse cursor over the *�� keyword used to declare the computation
returned by the query. If it displays the type �����	����	��, the query is
deferred; otherwise, it is not deferred.

Figure 5.2 shows our first query, which returns an I��	�	��. This query
is not deferred because I��	�	�� is not �����	����	��. Figure 5.3 shows
our second query, which returns an �����	����	��, where � is an
I��	�	��. This query is deferred. These figures include an image of the cur-
sor, which you can see is placed directly over the keyword *��.

Projections 157

Figure 5.2 You can tell that this query executes immediately because it does not return
�����	����	��.

Figure 5.3 You can tell that this query is deferred because it returns �����	����	��.

A second way to tell if a query is deferred is simply to try to iterate over
its return value with ���	�"�. If you get back an error stating that ���	�"�
cannot iterate over your variable because it does not support #	�����	���
���, you know that the query is not deferred.



ptg

If you see a query expression that contains a bit of query method syntax,
that might be a hint that the query is not deferred. An example of this is
shown in Listing 5.8, where a call is made to the ����� operator.

Listing 5.8 In This Query the ����� Operator Is Explicitly Called Using Method Syntax

%����" *��� 5���'�	� 2��
(


����������.����./.�	� 
����������.(.C
�&'C1.C$�	� C1.C��*	����	C 4!

*�� $�	� ./.����� ����.�� ����
��	�	 ��������������C�C�
���	�� ����.��"	�����
�	�	"� �������������!

������	�5���	
��	�C��	�	.��	.(L4.�	�����.��.����.$�	� C1.$�	� �!
4

This query uses a mixture of the standard query expression syntax and
query method syntax. As you saw in the preceding chapter, it is possible to
compose any LINQ query exclusively using query method syntax. For
instance, the body of this query, absent the call to �����, would look like
this in query method syntax:

�����5�	�	�����./�.��������������C�C���E��	�B �����./�.�����

This code uses query method syntax, but it is still entirely deferred. It is
only when you have to use query method syntax that you should consider
the possibility that your query might not be deferred.

The query shown in Listing 5.8 does not return �����	����	��.
Instead, the ������� operator returns a single integer. Because integers do
not support �����	����	��, you can be sure that this query is not
deferred. Note also that the ����� method requires iteration over the ele-
ments, and that causes the query to be executed immediately. As soon as
the query has been executed, it is, by definition, no longer deferred.

It is important to understand that seeing a call to a query method is just
a hint that a method might be executed immediately. It is not a hard and fast
rule. Consider the following query that you saw in the section “Group-by
Clauses and the into Keyword”:

Chapter 5: Writing Query Expressions158



ptg

*�� $�	� ./.���� �	����.�� � %	���� ��	��
��$�����	����	��#	�+	�������
��	�	 �	�����?	"������� %	.//.� %	�������	����	�
���	�� �	�����&��	
����% �	����.� �	�����&��	.���� �
�	�	"� �	� (.&��	./.��D	 1.E*	������./.���������.4!

Here you see a call to ��������� in the �	�	"� clause. This query, however,
is definitely deferred. You can confirm this by hovering the mouse cursor
over the keyword *��, or by trying to ���	�"� over the computation it
returns. Both tests come back positive for deferred execution.

Projections with SelectMany
When working with projections, LINQ developers occasionally need to
wrestle with the distinction between the �	�	"� and �	�	"�+�� operators.
�	�	"�+�� allows you to eliminate the hierarchical or graph-like structure
of LINQ queries and instead returns the flat data that you would get from
a SQL query.

This section will show you several queries against a single set of data.
Listing 5.9, from the SimpleJoins program available on the book’s web site
(as described in the Appendix), shows the data that we will query over. This
data is very similar to what you saw in the section “Joins,” but this time a
collection of �������	��� is associated with each musician.

Listing 5.9 This Code Defines the Data That Will Be Used by the Queries in This Section

%����" "����.�������	��
(

%����" ��� �������	����.(.�	�!.�	�!.4
%����" ������ &��	.(.�	�!.�	�!.4

%����" �*	����	 ������ ����������
(

�	���� �������:������C(L41.(04C1
�������	����1.&��	�!

4
4

%����" "���� +���"���
(

%����" ��� +���"�����.(.�	�!.�	�!.4
%����" ������ &��	.(.�	�!.�	�!.4
%����" 
����������	���.�������	���!

Projections 159

continues



ptg

Listing 5.9 Continued

%����" �*	����	 ������ ����������
(

�	���� �������:������C(L41.(04C1.+���"�����1.&��	�!
4

4

%��*��	 �����" 
���+���"����.#	�+���"������
(


���+���"����.����"����./.�	� 
���+���"����
(

�	� +���"��� (.+���"�����./.01.&��	./.C������	.)��;	�C1
�������	���./.�	� 
����������	���
(

�	� �������	�� (.�������	����./.01.&��	./
C��=�%���	C 4

4
41

�	� +���"��� (.+���"�����./.21.&��	./.C���� .�������C1
�������	���./.�	� 
����������	���
(

�	� �������	�� (.�������	����./.01.&��	./
C��=�%���	C41

�	� �������	�� (.�������	����./.21
&��	./.C��%����.��=�%���	C4

4
41

�	� +���"��� (.+���"�����./.31.&��	./.C+��	�.?�*��C1
�������	���./.�	� 
����������	���
(

�	� �������	�� (.�������	����./.21.&��	./
C����%	�C 41

�	� �������	�� (.�������	����./.21.&��	./.CE����C 4
4

4
4!

�	���� ����"����!
4

%����" *��� ����	����
(


���+���"����.����"����./.#	�+���"������!

���.E��..$�	��	�.����.�	.���	��	�.�	�	�
4

Chapter 5: Writing Query Expressions160



ptg

Listing 5.9 initializes a collection of +���"���s, each of which contains
a collection of �������	��s. Note that the method calls ����	��. It contains
a call to #	�+���"����. All the queries I’ll show you in this section can be
inserted immediately after this call to #	�+���"����.

Consider the following query:

*�� $�	� ./.���� �.�� ����"����
��	�	 ��+���"�����.//.2
�	�	"� ���������	���!

���	�"� �*�� ��	�.�� $�	� �
(

������	�5���	
��	���	��!
4

This ���	�"� loop prints the following unsatisfying result to the console:

� ��	������	"������#	�	��"�
���]0,������	6%%��"�����0��������	��-

The problem is that the query returns a collection of �������	��s, and we
can’t see them unless we embed a second ���	�"� loop inside our first
���	�"� loop:

���	�"� �*�� ��	�.�� $�	� �
(

���	�"� �*�� �������	��.�� ��	��
(

������	�5���	
��	��������	���!
4

4

This awkward syntax produces the output we want:

01.��=�%���	
21.��%����.��=�%���	

Fortunately, LINQ provides us with an alternative to having to write nested
���	�"� loops:

*�� $�	� ./.���� �.�� ����"����
���� �.�� ���������	���
��	�	 ��+���"�����.//.2
�	�	"� �!

Projections 161



ptg

Here you can see that we make use of two ���� clauses. We can now use a
simple ���	�"� loop to yield the expected results:

���	�"� �*�� ��	�.�� $�	� �
(

������	�5���	
��	���	��!
4

Chapter 5: Writing Query Expressions162

Order Does Not Matter

When using the >��� operator, I pointed out that the order of items
around the 	$���� keyword is important. In contrast to that situation,
the order of the middle clauses in this query is not important. The fol-
lowing code yields the same results and is semantically identical to the
previous query:

*�� $�	� ./.���� �.�� ����"����
��	�	 ��+���"�����.//.2
���� �.�� ���������	���
�	�	"� �!

Let’s pause to consider the implications of the code shown so far in this
section. You have seen that a common LINQ scenario forces you to write
nested ���	�"� loops in order to discover the results of what should be a
simple query. To fix this problem, the developers of C# provided you with
a simple syntax that allows you to place two ���� clauses in your query. If
you grasp this point, you understand the most important message in this
section. Your understanding of LINQ will be increased considerably, how-
ever, if you can follow along with me for a few more paragraphs while I
explore this subject in a bit more depth.

At this stage, you might have two questions:

• What does all this have to do with the �	�	"�+�� operator?

• Why is this explanation of two parallel ���� clauses included in a
section on projections?

To help you understand the answers to these questions, I have to switch to
query syntax. This is necessary because there is no way to directly call



ptg

�	�	"�+�� using the query expression syntax. In other words, there is no
�	�	"���� clause.

Our query with two ���� clauses can be translated into the following
query method syntax:

*�� $�	� ./.����"����
�5�	�	�%./�.%�+���"�����.//.2�
�"�����,��������"���./�.����"�����������	����!

Because this code is semantically identical to the code shown previously, it
should come as no surprise to learn that you can display the results of this
query using a single ���	�"� loop:

���	�"� �*�� ��	�.�� $�	� �
(

������	�5���	
��	���	��!
4

However, if you changed the query to call �	�	"� rather than �	�	"��
+�� , you would have to use the nested ���	�"� loop syntax:

*�� $�	� ./.%	�%�	
�5�	�	�%./�.%�+���"�����.//.2�
�"����������"���./�.����"�����������	����!

This query is semantically equivalent to the first query shown in this
section:

*�� $�	� ./.���� �.�� ����"����
��	�	 ��+���"�����.//.2
�	�	"� ���������	���!

If you look at the source code for LINQ, you will find that �	�	"�+�� 
is overloaded four times. Right now we are using the first of these four
overloads:

%����" �����" �����	����	��	�����
�	�	"�+�� �����"	1.��	���������� �����	����	�����"	�.����"	1

:��"�����"	1.�����	����	��	������.�	�	"����!

Projections 163



ptg

A relatively straightforward extension method takes a source parameter
and a very simple delegate called �	�	"���:

:��"�����"	1.�����	����	��	������.�	�	"���

This delegate takes the source object as its sole parameter and returns an
�����	����	��	�����. In our particular case, the source is a +���"���
object, and the return value is a collection of �������	��s. We can write a
very simple lambda to implement this delegate:

�"�����,��������"���./�.����"�����������	����!

As you can see, this simple lambda accomplishes our goal: It transforms
+���"��� into a collection of the �������	��s. We can iterate over these
instruments with a single ���	�"� loop. It would have taken nested ���	�"�
loops to iterate over the musicians and then extract their instruments.

You should now understand why I chose this section on projections to
show you how to write a pair of ���� clauses. When you look beneath the
surface, you see that a query containing two ���� clauses is translated into
a call to �	�	"�+�� .

The SelectMany Overloads
I mentioned that �	�	"�+�� can help flatten out the results of a query. In
Chapter 2, “Getting Started,” I emphasized that one of the advantages of
LINQ is that it allows you to work with hierarchies and graphs rather than
the flat data arrayed in columns and rows that is returned from a SQL
query. However, sometimes a flat SQL result set makes sense. In the pre-
ceding section, I hinted at how you can use �	�	"�+�� to get a SQL-like
result set. In this section, I will show you how to use �	�	"�+�� or two
���� clauses to create a join between two classes that acts very much like a
traditional SQL join.

Consider the data we worked with in the preceding section. Each +����
"��� can be associated with multiple instruments. As you have seen, in a
purely object-oriented world, we must have nested ���	�"� loops to view
that relationship properly. The first loop iterates over the musicians, and the
nested ���	�"� loop iterates over the instruments associated with that
musician.

Chapter 5: Writing Query Expressions164



ptg

This code illustrates the “problem” we have with nested data:

*�� $�	� ./.���� %.�� ����"����
�	�	"� �	�
(

+���"���./.%�&��	1
�������	���./.���� �.�� %��������	���

�	�	"� ��&��	
4!

���	�"� �*�� ��	�.�� $�	� �
(

������	�5���	
��	���	��+���"����!
���	�"� �*�� �������	��.�� ��	���������	����
(

������	�5���	
��	�C���(L4C1.�������	���!
4

4

This code, which does not use �	�	"�+�� , and which requires nested
���	�"� loops, sends the following output to the console:

������	.)��;	�
�����=�%���	
���� .�������
�����=�%���	
�����%����.��=�%���	
+��	�.?�*��
�������%	�
���E����

If we want to escape from this nested world, we can simply write a
query that has two ���� clauses:

*�� $�	� ./.���� %.�� ����"����
���� �.�� %��������	���
�	�	"� �	� (.+���"���./.%�&��	1.�������	��./.��&��	.4!

���	�"� �*�� ��	�.�� $�	� �
(

������	�5���	
��	���	��!
4

This ���	�"� loop produces flat data like you would see returned from a
SQL query that contains a join:

Projections 165



ptg

(.+���"���./.������	.)��;	�1.�������	��./.��=�%���	.4
(.+���"���./.���� .�������1.�������	��./.��=�%���	.4
(.+���"���./.���� .�������1.�������	��./.��%����.��=�%���	.4
(.+���"���./.+��	�.?�*��1.�������	��./.����%	�.4
(.+���"���./.+��	�.?�*��1.�������	��./.E����.4

Hopefully you will rarely have to use it, but for the sake of complete-
ness, I’ll show you the equivalent query method syntax:

*�� $�	� ./
����"������	�	"�+�� �%	����./�.%	������������	���1

�%	����1.�������	����./�
�	� (.+���"���./.%	�����&��	1.�������	��./.�������	����&��	.4�!

This is an example of the third of the four overloads for �	�	"�+�� . That
overload looks like this:

%����" �����" �����	����	��	�����
�	�	"�+�� �����"	1.�����	"����1.��	���������� �����	����	�����"	�

����"	1
:��"�����"	1.�����	����	�����	"������."���	"�����	�	"���1
:��"�����"	1.�����	"����1.��	�����.�	�����	�	"����!

This version of �	�	"�+�� starts the same way as the previous version. It
takes a lambda, which, in turn, takes a source object and returns a collection:

��	�	"�+�� �%	����./�.%	������������	������

The second parameter of �	�	"�+�� is another lambda that receives the
source for this extension method and the output from the first lambda:

:��"�����"	1.�����	"����1.��	�����.�	�����	�	"���

In this case �����"	 is a +���"��� object, and �����	"���� is the collection
of �������	��s returned from the first lambda. This second lambda exists
simply to give us a chance to massage the data in any way we find useful.
In this case we create an anonymous type that returns the name of the musi-
cian and the instrument he plays:

�%	����1.�������	����./�
�	� (.+���"���./.%	�����&��	1.�������	��./.�������	����&��	.4�!

Another means of accomplishing this same end can be seen if we take
a look at the second overload of �	�	"�+�� :

Chapter 5: Writing Query Expressions166



ptg

%����" �����" �����	����	��	�����
�	�	"�+�� �����"	1.��	���������� �����	����	�����"	�.����"	1

:��"�����"	1.���1.�����	����	��	������.�	�	"����!

This overload is identical to the first overload, but it takes an integer param-
eter that tracks the index of the element within the source collection:

*�� $�	� ./.����"����
��	�	"�+�� ��%	����1.���	=�./�.�%	������������	����
��	�	"��%./�.�	� (.%	����./.����"����,���	=-�&��	1

�������	��./.%�&��	.4��!

You don’t have to initialize or compute the value of the parameter called
���	=. The compiler takes care of that. Simply include the parameter in the
lambda, and it will be available for you to use inside your lambda. In par-
ticular, you can use it to index into the original collection of musicians,
yielding the same result as shown in the previous example:

(.+���"���./.������	.)��;	�1.�������	��./.��=�%���	.4
(.+���"���./.���� .�������1.�������	��./.��=�%���	.4
(.+���"���./.���� .�������1.�������	��./.��%����.��=�%���	.4
(.+���"���./.+��	�.?�*��1.�������	��./.����%	�.4
(.+���"���./.+��	�.?�*��1.�������	��./.E����.4

In the fourth overload, the �	�	"�+�� operator combines the features
found in overloads two and three. You can see how to use it in the Simple-
Joins program found with the source code available on the book’s web site.

The �	�	"�+�� operator is very powerful, and it can help you write
code quickly and easily. Nevertheless, it is usually easiest to use multiple
���� clauses in a query expression rather than making direct calls to
�	�	"�+�� using query method syntax. In any case, you should take the
time to experiment with this operator and see if you can find ways to
master it.

Query Expressions and Other Flavors of LINQ

Over the course of the last two chapters, you have read about the features
of the C# language that make LINQ possible, and you have read about the
structure of LINQ query expressions. Throughout this discussion, we have
been focused on LINQ to Objects.

Query Expressions and Other Flavors of LINQ 167



ptg

As you know, LINQ comes in many different flavors. Two of them,
LINQ to Objects and LINQ to XML, exactly follow the principles laid out in
these chapters. In particular, they support a composable query syntax that
both consumes and returns �����	����	��. Here is the pattern they follow
in a deferred query:

�����	����	��.�	����./.����.=.��.���	�����	����	E��
�	�	"�.=!

However, other flavors of LINQ are not based on �����	����	��. Most
of these are LINQ to SQL, which is based not on �����	����	��, but on
�'�	� ���	��. LINQ to SQL generally follows this pattern in deferred
queries:

�'�	� ���	��.�	����./.����.=.��.���	�'�	� ���	E��
�	�	"�.=!

This query operates on a variable type �'�	� ���	�� and returns a vari-
able of type �'�	� ���	��. It is, therefore, fully composable.

�'�	� ���	�� is a fairly complicated type. As a result, it does not serve
as a good introduction to flavors of LINQ that are not based on �����	��
���	��. Instead, I will create a very simple type and show you a very sim-
ple provider for it. After you understand the principles involved, I’ll come
back and say a few more words about �'�	� ���	��.

LINQ to MyNumberServer
Query expressions are surprisingly obtuse about the data they query. They
are merely syntactic sugar on top of LINQ query methods. They exist only
because they provide developers with a simple, easy-to-use syntax for writ-
ing queries. The translation from a query expression to a query method is
not complex. It is really just a pattern-matching exercise. The compiler
looks at a query expression, applies a few simple rules, and translates it into
query methods. If you create types that follow the few simple patterns that
query expressions expect to see, you can use your types in a query expres-
sion, even if they are not based on �����	����	��. In fact, there is noth-
ing special about �����	����	�� other than the fact that it follows the
simple patterns expected of any type used in a query expression.

Chapter 5: Writing Query Expressions168



ptg

Query expressions follow a pattern based on sequences of data. You
learned in the preceding chapter that sequences of data are generated by
iterators—in particular, by iterators that implement a method called
#	�����	�����. Consider the simple class shown in Listing 5.10, which is
found in the QueryProvider sample available on the book’s web site.

Listing 5.10 This Simple Class Serves up Multiple Copies of the Number You Pass to Its
Constructor

%����"."����.+ &���	��	�*	�
(

��� ����	����	�*	�!
��� �	����!

%����" + &���	��	�*	����� ����1.��� �	�����
(

����	����	�*	�./.����!
������	����./.�	����!

4

%����" �����	����� #	�����	�������
(

��� ���� �./.L!.�..�	����!.�YY�
(

 �	�� �	���� ����	����	�*	�!
4

4
4

This very simple class is designed to serve up a number � times. If you
pass in the numbers 3 and 5 to its constructor, it serves up the number 3 five
times. We want to be able to write queries against this type that ask it to
show us the numbers it generates if we pass in any two arbitrary parame-
ters. For instance, if we pass in the numbers 2 and 7, we want to see what
values the class returns.

Although it does not mention �����	����	�� and does not even
include generics, this simple class nevertheless follows two of the key pat-
terns that a LINQ query expression expects to find:

• It works with sequences of data.

• It exposes the sequence in a method called #	�����	����� that
returns the �����	����� interface.

Query Expressions and Other Flavors of LINQ 169



ptg

It looks like we are off to a good start. The next step is to try to use this type
in a LINQ query:

*�� + &���	��	�*	�./.�	� + &���	��	�*	��3231.2�!

*�� $�	� 2./.���� �.�� + &���	��	�*	�
��	�	 �.^/.3
�	�	"� �!

Despite our efforts, the compiler bristles at this code and complains that it

"����.���.����.��.��%�	�	�������.��.��	.$�	� .%���	��.���.����"	.� %	
H+ &���	��	�*	�H�.H5�	�	H.���.������

The compiler wants us to implement the 5�	�	 operator for + &���
�	��	�*	�.

So far in this book, whenever we have wanted to write a query, we were
working with a type that implemented �����	����	��. As you have seen,
the ����	����	 type that ships with LINQ includes implementations of all
the LINQ operators for �����	����	��. This time, however, we are work-
ing with a new type called + &���	��	�*	�. It is now up to us to implement
the query operators we plan to use.

In the preceding chapter you learned how to write extension methods,
and you even saw an implementation of the 5�	�	 operator. Let’s use that
knowledge to create operators for + &���	��	�*	�:

%����".�����"."����.&���	��	�*�"���	
(

%����" �����" �����	����	 5�	�	����� + &���	��	�*	� ����"	1
:��"���1.�����.%�	��"��	�

(
���	�"� ���� ��	�.�� ����"	�
(

�� �%�	��"��	���	���
(

 �	�� �	���� ��	�!
4

4
4

%����" �����" �����	����	 �	�	"������ + &���	��	�*	� ����"	1
:��"��>	"�1.��>	"��.�	�	"����

(
���	�"� �*�� ��	�.�� ����"	�

Chapter 5: Writing Query Expressions170



ptg

(
 �	�� �	���� �	�	"������	��!

4
4

%����" �����" �����	����	 ��������� + &���	��	�*	� ����"	�
(

���	�"� �*�� ��	�.�� ����"	�
(

 �	�� �	���� ��������	��!
4

4
4

Here you see implementations for the 5�	�	, �	�	"�, and ���� opera-
tors. It is clear why we need to implement 5�	�	 and �	�	"�, because we
use them in our query expression. The ���� operator needs to be imple-
mented only because our code is not using generics. Without generics to
help with type resolution, the compiler gets confused about the lambda that
we pass to the ��	�	 clause:

���� �.�� + &���	��	�*	�
��	�	 ��-.�/
�	�	"�.�!

Our implementation of ���� shows LINQ exactly how to cast one of our
items to type int, which is what is needed in this case.

In the QueryProvider sample that accompanies this book, you will find
a second version of this sample that use generics and that does not imple-
ment the ���� operator. I elected not to show you that sample here simply
because I wanted to emphasize that not even generics are essential if you
want to create simple LINQ providers. My goal is to strip away everything
but the essentials so that you can see the core patterns used in LINQ query
expressions.

After implementing the �	�	"�, 5�	�	, and ���� operators, our code
compiles and runs as expected. If we pass in the numbers 323 and 2, our
query prints the number 323 twice. If we pass in the number 3, the query
does not return anything, because the number 3 does not pass the test in the
��	�	 clause.

This is obviously a very simple server and a very simple example of a
LINQ provider. Nevertheless, it shows that you can use types that do not

Query Expressions and Other Flavors of LINQ 171



ptg

implement �����	����	�� in a LINQ query. All you need to do is create
a type that implements #	�����	����� and then design a few simple exten-
sion methods that implement operators that work with our type.

You might have noticed that our type is not composable. In particular,
our query takes a variable of type + &���	��	�*	� and returns a variable of
type �����	����	:

�����	����	.�	����./.����.=.��.���	&���	��	�*	�
�	�	"�.=!

We obviously won’t be able to pass in the return type to a second query that
expects to work with variables of type + &���	��	�*	�. Chapter 17, “LINQ
Everywhere,” references third-party LINQ providers that ship with source.
For now, however, you have seen enough to at least glimpse how we can use
some other type besides �����	����	�� in a LINQ query. In fact, you have
seen that �����	����	�� is important only because it very neatly, and very
completely, fulfills the requirements for a LINQ provider.

All the principles you have seen so far in this book still apply when you
query types other than �����	����	��. You still have the same seven basic
types of clauses, you still have operators that are implemented as extension
methods, you still have deferred execution, you still need an iterator to gen-
erate a sequence, you still use yield return to create that iterator, you still use
lambdas, you still have range variables, and you still have the ���� key-
word. Everything you have learned about LINQ and query expressions
applies equally well to other domains such as LINQ to SQL.

Thinking About IQueryable
�'�	� ���	�� is the type used in LINQ to SQL queries. �'�	� ���	�� dif-
fers from �����	����	�� in that it includes an expression tree. In particu-
lar, the type takes the following shape:

%����" ���	���"	 �'�	� ���	��.G.�����	����	��1.�'�	� ���	1.�����	����	
(
4

Chapter 5: Writing Query Expressions172



ptg

The important interface in this declaration is �'�	� ���	:

%����" ���	���"	 �'�	� ���	 G.�����	����	
(

� %	 ��	�	��� %	.(.�	�!.4
�=%�	����� �=%�	�����.(.�	�!.4
�'�	� )��*��	� )��*��	�.(.�	�!.4

4

The key property here is the middle one, which is called �=%�	�����. You
learned in the preceding chapter that �=%�	�����s convert code into data.
LINQ then examines this data and uses the information it gleans to trans-
late your query expression into a SQL query, which it then sends across the
wire to a server. LINQ can’t use �����	����	�� for LINQ to SQL because
�����	����	�� does not include a variable of type �=%�	�����.

If you look closely at the declaration for �'�	� ���	��, you will see
that it implements �����	����	��. Because of this shared heritage, and
because all LINQ query expressions work much the same way, you will
find that all the information I have given you in the last two chapters
applies just as much to LINQ to SQL as it does to LINQ to Objects.

Summary

This chapter has been a general overview of query expressions. You have
seen that only seven possible clauses can appear in a LINQ query expres-
sion:

• ����

• �	�

• ��	�	

• >���

• ���	�� 

• �	�	"�

• ����%�� 

Summary 173



ptg

These clauses can be arranged as was shown in Table 5.1. Query expres-
sions always start with a ���� clause and end with a �	�	"� or ����%�� 
clause. In the middle you can find ����, ��	�	, ���	�� , >���, and �	�
clauses.

A considerable portion of this chapter was dedicated to exploring
����%�� and >��� clauses and their relationship to the ���� operator. The
section on joins covered inner joins, group joins, and left outer joins.
Another section described how you can use dot notation to express joins
that are encapsulated in the object model.

The next sections focused on projections. There you read explanations of
how to examine the return type of a query expression to discover whether
it is deferred. The text also discussed an alternative way to create a SQL-like
join using multiple ���� clauses. That section also focused on �	�	"�+�� 
and its various overloads.

The final section drew back from our close study of �����	����	�� and
showed you some of the simple patterns that make LINQ query expres-
sions possible. There you learned that query expressions actually know
very little about the types over which you want to query. Instead, they look
for simple patterns. If you can create types that follow those patterns, you
can use LINQ to run queries against them. This final section of the chapter
also helped lay the foundation for Chapters 7 through 10 by explaining a
few basic facts about �'�	� ���	��. You heard that this type will be
explored in more depth in Chapter 17, which references several LINQ
providers.

Ultimately, there is no end to the study of query expressions. They lie
very much at the heart of the functional extensions to C# that LINQ embod-
ies. This chapter gave you enough information to help you get started using
them in earnest. 

The next chapter covers the LINQ operators. You have already had a
look at some of them in this chapter, particularly in the sections on �	�	"��
+�� . However, there is much more to learn about that subject. No study of
query expressions is complete without an understanding of the power
inherent in the LINQ operators.

Chapter 5: Writing Query Expressions174



ptg

6
Query Operators

T H E P R E C E D I N G C H A P T E R covered the structure of query expressions.
The next step is to begin embellishing queries with operators.

This book is not intended to be a reference; nevertheless, this chapter
and the preceding one cover all the LINQ operators. You can supplement
this material by referring to examples that are available for download on
the book’s Web site (as described in the Appendix), the online help, or the
excellent SampleQueries program that ships with Visual Studio. Like the
samples available for download, the SampleQueries program provides
code showing how to use each of the operators. Written primarily by C#
PM Alex Turner, SampleQueries contains more than 500 sample methods.
Included in the sample program are more than 100 LINQ to SQL queries,
100 LINQ to Objects queries, 100 LINQ to XML queries, and LINQ to
Dataset queries. See Appendix A for more information on how to locate and
install SampleQueries.

Locating and Grouping the LINQ Operators

The C# team broke the LINQ operators into groups. I will use these cate-
gories to give the discussion structure. Some of these operators should
already be familiar to you. For instance, five operators used to create query
expressions were discussed in the preceding chapters—5�	�	, #���%�B ,
P���, �	�	"�, and �	�	"�+�� . Two of the operators, ���"�� and �	*	��	,

175



ptg

stand on their own. I merged them into the Set and Ordering groups,
respectively. All the other operators are sorted into the default groups
established by the C# team.

You have, of course, been working with LINQ operators such as ��	�	,
���	�� , and �	�	"� since Chapter 2, “Getting Started.” You have seen that
they are implemented as extension methods and are in a class called ����
�	����	. You know that you can extend LINQ by creating your own oper-
ators, and you can modify its behavior by overriding the existing operators.
Nevertheless, it is the 49 LINQ operators that ship with the product that
usually define what LINQ can and cannot do. Table 6.1 shows the complete
set of those operators and three accompanying utilities (marked with a +).
In this table and the others in this chapter, the operators that are not
deferred are marked with a *.

Table 6.1 The  LINQ Query Operators and Three Utilities Can Be Assigned to 12 Categories

Operator Type Operator Name Operator Type Operator Name

Partitioning ��;	 Conversion 6�����	����	

�;�% ��6��� *

��;	5���	 ��
���*

�;�%5���	 ��?�"������ *

Join P��� ��
��;�%*

#���%P��� E�� %	

Ordering E��	�B ����

E��	�B ?	�"	����� Element :����*

��	�B :����E�?	�����*

�	*	��	 
���*

Set ?�����"� 
���E�?	�����O

X���� �����	*

���	��	"� �����	E�?	�����*

Chapter 6: Query Operators176



ptg

Operator Type Operator Name Operator Type Operator Name

�="	%� ��	�	��6�*

���"�� ��	�	��6�E�?	�����*

Projection �	�	"� ?	���������%� 

�	�	"�+�� #	�	������ ����	+

Aggregate �����* �	%	��+


��������* ��%� +

���O 6� *, 6��*

+��* ��������*

+�=* Grouping #���%B 

6*	���	* Equality �	$�	�"	�$���*

6���	���	O Restriction 5�	�	

These operators provide support for set operations, joins, ordering,
grouping, and aggregation. Other operators, such as the Element and Par-
titioning types, allow you to easily access individual elements returned by
a query.

Don’t look at the list of operators shown in Table 6.1 as a democratic
brotherhood of equals. As you learned in the previous chapter, you must
master five core operators—5�	�	, E��	�B , #���%�B , P���, and �	�	"�—
if you want to understand LINQ. The clauses based on these operators,
plus those formed with �	� and ����, are the body and limbs of a query
expression. They are the structure on which a query expression is built.

When trying to decide which LINQ operator to use, there is no need to
scan the list of all the operators to find the one that fits your current needs.
Instead, you should first master the big five and then learn to pick and
choose from the others as you find the need. Do you need to perform a cal-
culation? If so, take a look at the Aggregate operators. Do you need to find

Locating and Grouping the LINQ Operators 177



ptg

the union or intersection of two sequences? Take a look at the Set operators.
Do you want to convert an �����	����	�� to a 
�����? Take a look at the
Conversion operators.

The LINQ operators form a rich and varied API. Studying them can help
you reach a level of proficiency sufficient to support writing sophisticated
LINQ queries. If you can create simple queries quickly and efficiently, you
will find that the small gaps in your knowledge will be filled in automati-
cally during the course of your daily work.

Code Reuse
Throughout this chapter I will need to repeat the ���	�"� loop that displays
the data returned from a LINQ to Objects query. Because the lines of code
for this process rarely change, I have created the following simple method,
which I will call instead of showing you the same ���	�"� loop repeatedly:

%����" �����" *��� ����
�����������	����	��.�����
(

���	�"� �*�� ��	�.�� �����
(

������	�5���	
��	���	��!
4

4

I will also frequently use this code to display a title to the console:

%����" �����" *��� ��������	�������.%�
(

������	�5���	
��	�C/////////////////C�!
������	�5���	
��	�%�!
������	�5���	
��	�C/////////////////C�!

4

Furthermore, I will use a list of famous Romans on several occasions:

%����" "���� �����
(

%����" ��� ��.(.�	�!.�	�!.4
%����" ������ &��	.(.�	�!.�	�!.4
%����" "��� #	��	�.(.�	�!.�	�!.4

%����".�*	����	.������.����������
(

Chapter 6: Query Operators178



ptg

�	���� �������:������
C((.��./.(L4!.#	��	�./.(04!.&��	./.(24.44C1
��������������)��
	���21.HLH�1.#	��	�1.&��	�!

4
4

%����" �����" 
���������.������./.�	� 
�����������
(

�	� ����� (.��/LL1.#	��	�/H�H1.&��	./.C6	���.)�	����C 41
�	� ����� (.��/L01.#	��	�/H�H1.&��	./.C6���%%���.��	.N����	�C 41
�	� ����� (.��/L21.#	��	�/H�H1.&��	./.C6�������C 41
�	� ����� (.��/L31.#	��	�/H�H1.&��	./.C��	�����C 41
�	� ����� (.��/LR1.#	��	�/H�H1.&��	./.C��������C 41
�	� ����� (.��/L<1.#	��	�/H�H1.&��	./.C�������.E"��*��C 41
�	� ����� (.��/LS1.#	��	�/H�H1.&��	./.C��������C 41
�	� ����� (.��/LT1.#	��	�/H�H1.&��	./.C������.)��"���C 41
�	� ����� (.��/LM1.#	��	�/H�H1.&��	./.CP����.��	.���	�C 41
�	� ����� (.��/LQ1.#	��	�/H�H1.&��	./.CP����.���������C 41
�	� ����� (.��/0L1.#	��	�/H�H1.&��	./.C
�*��.?�������C 41
�	� ����� (.��/001.#	��	�/H�H1.&��	./.C
�*��.E�	������C 41
�	� ����� (.��/021.#	��	�/H�H1.&��	./.C
�����.)������C 41
�	� ����� (.��/031.#	��	�/H�H1.&��	./.C+	�������C 41
�	� ����� (.��/0R1.#	��	�/H�H1.&��	./.C&	��C 41
�	� ����� (.��/0<1.#	��	�/H�H1.&��	./.C)������.X����������C 41
�	� ����� (.��/0S1.#	��	�/H�H1.&��	./.C)�%%�	�.������C 41
�	� ����� (.��/0T1.#	��	�/H�H1.&��	./.C�"�������C 41
�	� ����� (.��/0M1.#	��	�/H�H1.&��	./.C��������.+	�������C 41
�	� ����� (.��/0Q1.#	��	�/H�H1.&��	./.C���	����C 41
�	� ����� (.��/2L1.#	��	�/H�H1.&��	./.CJ�%�����.6���%%���C 41

4!

Locating the LINQ Operators
The LINQ to Objects operators are implemented in a class called � ��
�	��
��$�����	����	. You have already seen how to use LINQ to Objects
to write a Reflection query that enumerates these methods. You can also
find their declarations, but not their full source code, by using the tools built
into the Visual Studio IDE. To find the declarations, first start a standard
console application. In the main block, type in � ��	��
��$�����	����	,
put the cursor on the word ����	����	, and press F12. Alternatively, you
can right-click and select Go to Definition. You are taken to the metadata for
the ����	����	 class, as shown in Figure 6.1.

Locating and Grouping the LINQ Operators 179



ptg

Figure 6.1 The IDE uses metadata to display the members of the ����	����	 class.

You can learn a lot about these operators simply by looking at these dec-
larations. After a time, you may even find that you can implement some of
the simpler operators yourself just by looking at their declaration and hav-
ing a little knowledge of how they behave.

When looking through these operators, you might notice that all but
three of them are extension methods. The exceptions are a set of three util-
ities. Here are the declarations for ��%� , ����	, and �	%	��, which clearly
are not extension methods:

%����" �����" �����	����	��	�����.��%� ��	�������!
%����" �����" �����	����	����.����	���� �����1.��� "�����!
%����" �����" �����	����	��	�����.�	%	����	��������	����.	�	�	��1

��� "�����!

If you’re curious, the following query finds the three utility methods,
returning the declaration for ��%� , ����	, and �	%	��.

Chapter 6: Query Operators180



ptg

*�� $�	� ./.���� �	����.�� � %	�������	����	��#	�+	�������
��	�	 �	�����?	"������� %	.//.� %	�������	����	�
��	�	 �	�����#	�������6�������	�����	���������.//.L
�	�	"� �	� (.�	����.4!

This query is found in the sample program called LinqReflectionQuery that
accompanies this book.

Generation Operators

The simple Generation operators shown in Table 6.2 allow you to create
enumerations and test the contents of existing sequences that implement
�����	����	��. Some of these operators are designed to act as helper
methods that you might use in test code, or for highly targeted scenarios
in production code. The samples in this section are found in the Genera-
tionOperators program that is available on the book’s web site. None of the
operators in the Generation group is deferred. ����	, �	%	��, and ��%� are
not implemented as extension methods.

Table 6.2 Generation Operators

Operator Name Description

����	 Creates an enumeration with a range of values, such as the
integers 1 to 10

�	%	�� Creates an enumeration with a single repeated value

��%� Creates an empty enumeration

6� O Tests if a sequence is empty, or if any element in it meets a
certain condition

6��O Tests if all elements in a sequence meet a certain condition

��������O Tests if a sequence contains a particular element

The ����	, �	%	��, and ��%� methods are utilities that create lists. The 6� ,
6��, and �������� operators allow you to test the contents of a list against
certain conditions.

Generation Operators 181



ptg

Range
The ����	 operator allows you to quickly generate a sequence of integers.
It is declared like this:

%����" �����" �����	����	����.����	���� �����1.��� "�����!

Notice that it is not an extension method. For this reason, it is not really a
traditional LINQ operator. But it is grouped with them and implemented in
the ����	����	 class because it is used frequently in LINQ programs as a
utility. You can, however, use this utility any place in your code that you
think appropriate. There is no reason to use it only with LINQ. Note that
����	 is deferred, which means that it is implemented with  �	�� �	����,
and hence does not execute until it is enumerated.

Here is how to call ����	:

*�� ����./.����	����	�����	�01.3�!

This call to ����	 returns a sequence containing the values 1, 2, and 3.
Because ����	 returns a sequence, you can use it as a data source in a

query:

*�� $�	� ./.���� =.�� ����	����	�����	�01.0L�
��	�	.�=.8.2�.//.L
�	�	"� =!

This produces a sequence containing the even numbers between 1 and 10.
Here the ����	 operator is used to calculate the area of a range of circles:

*�� $�	� ./.���� ������.�� ����	����	�����	�01.Q�
�	� %�./.3�0R0<Q
�	� ��	�./.�������.O.�������.O.%�
�	�	"� �	� (.������1.%�1.��	�.4!

��������	�C������.[.6�	�C�!

���	�"� �*�� ��	�.�� $�	� �
(

������	�5���	
��	�C(L1S4.[(01.0L4C1.��	��������1.��	����	�.�!
4

Chapter 6: Query Operators182



ptg

This code produces the following results:

������.[.6�	�
/////////////////

0.[...3�0R0<Q
2.[..02�<SS3S
3.[..2M�2TR30
R.[..<L�2S<RR
<.[..TM�<3QT<
S.[.003�LQT2R
T.[.0<3�Q3TQ0
M.[.2L0�LS0TS
Q.[.2<R�RSMTQ

Here is a somewhat more complex query:

*�� $�	� ./.���� =.�� ����	����	�����	�01.2�
����  .�� ����	����	�����	�01.3�
�	�	"� �	� (.=1. .4!

This says, in effect, for each =, show me a range of numbers between 1 and
3. The result sequence looks like this if enumerated with our ����
���
method:

(.=./.01. ./.0.4
(.=./.01. ./.2.4
(.=./.01. ./.3.4
(.=./.21. ./.0.4
(.=./.21. ./.2.4
(.=./.21. ./.3.4

The point here is that by using multiple ���� clauses you can start gener-
ating relatively complex sequences. Here we generate the sequence 1, 1, 1,
2, 2, 2. A simple modification to the code would allow you to extend this
sequence for as long as you want. If this idea intrigues you, spend a little
time playing with this code, passing in different parameters until you begin
to get a feeling for what can be done.

Repeat
The �	%	�� utility is also not implemented as an extension method, so it is
not a standard operator. It returns a sequence containing the same value
repeated multiple times:

*�� ����./.����	����	��	%	���0LM1.02�!

Generation Operators 183



ptg

This call returns an enumeration containing 12 copies of the number 108.
Consider the code shown in Listing 6.1. The �����	%	�� method stores 15
identical copies of an ��	� object with a 
	���� of 5 and a 5���� of 6. Note
also that I’ve implemented the �������� method so that a ���	�"� loop can
easily print the content of each instance of the ��	� class.

Listing 6.1 The �����	%	�� Method Creates an Instance of the ��	� Class and Then
Uses the �	%	�� Operator to Add the Instance to the Enumeration 15 Times

"����.��	�
(

%����" ��� 5����.(.�	�!.�	�!.4
%����" ��� 
	����.(.�	�!.�	�!.4

%����" �*	����	 ������ ����������
(

�	���� �������:������C5����G.(L41.
	����G.(04C1.5����1.
	�����!
4

4

%����" *��� �����	%	����
(

*�� ��	�./.�	� ��	���.(.
	����./.<1.5����./.S.4!
*�� ����./.����	����	��	%	�����	�1.0<�!
������	�5���	
��	�

E�>	"���	�	�	�"	�$������������	�	��6��0�1.�������	�	��6��2���!
����
���������!

4

If you compare any two items from the list created in Listing 6.1, you
will find that they have object identity: only one instance of the object is
stored in the list 15 times. This is demonstrated by the call to E�>	"�.
�	�	�	�"	�$����, which returns ���	.

Here is code that selects 12 random “Celsius temperatures” between 0
and 30 and converts them to Fahrenheit:

������ ������./.�	� ��������!

*�� $�	� ./.���� ".�� ����	����	��	%	���L1.02�
��	�	"���./�.�������&	=��L1.3L��

�	� �./.�0�M.O."�.Y.32
�	�	"� �	� (."./."1.�.4!

Chapter 6: Query Operators184



ptg

��������	�C�	�%.���*	��C�!
���	�"� �*�� �.�� $�	� �
(

������	�5���	
��	�C(L1.34."./.(01.R4.�C1.��"1.�������������C:L2C��!
4

Note that �	%	�� never directly generates any numbers. Instead, the call to
�	�	"� generates this list. It should not be hard to imagine how you could
write this code in a more imperative fashion using a standard class con-
structor and a loop. This code accomplishes the same end with a more con-
cise declarative syntax. The question you have to ask is whether the code
is sufficiently readable to make the space savings worthwhile.

Generation Operators 185

A Note on the Code and a Thank-You

In this text I’ve had to break the ���� clause into two lines because of
line-width limitations. I should also add that I got the idea for using
�	%	�� this way from a blog post written by Igor Ostrovsky, an engi-
neer on Microsoft’s parallel team.

The code produces the following output:

/////////////////
�	�%.���*	��
/////////////////
2M."./.M2�RL.�
S."./.R2�ML.�

0Q."./.SS�2L.�
0Q."./.SS�2L.�
2R."./.T<�2L.�
0R."./.<T�2L.�
2R."./.T<�2L.�
2<."./.TT�LL.�
M."./.RS�RL.�
2."./.3<�SL.�
Q."./.RM�2L.�

0M."./.SR�RL.�

To me this looks like a list of daily temperatures in a computer simulation
of a world where the temperature is not very stable.



ptg

Empty
The ��%� operator is the last of the three declarations in the ����	����	
class that are not extension methods. It returns an �����	����	�� with no
elements in the sequence. Consider this simple call to ��%� , which creates
a sequence of � ��	��?����	,L- that contains zero elements:

*�� ����./.����	����	���%� �����	���!
������	�5���	
��	������!

I am unable to think of any good uses for this operator that you could not
achieve just as easily using a standard constructor. I have a feeling the team
included it for the sake of completeness, or to give you a declarative way
to create a class of some arbitrary type.

Any
The Boolean 6� operator can be used to tell whether a sequence is empty,
or whether it meets the conditions of a particular predicate. The following
code first checks to see if two lists are empty, and then it uses a simple pred-
icate to detect whether a list contains the number 8:

%����" *��� ����6� ��
(

*�� ����6./.����	����	���%� �����	���!
*�� ����B./.����	����	�����	�01.0L�!

������	�5���	
��	�C6�	.��	�	.�� .��	��.��.
���6G.(L41.
���BG.(04C1
����6�6� ��1.����B�6� ���!

������	�5���	
��	�C?�	�.����B."������.��	.����	�.(L4G.(04C1
M1.����B�6� ��./�.�.//.M��!

4

The output for this method looks like this:

6�	.��	�	.�� .��	��.��.
���6G.:���	1.
���BG.���	
?�	�.����B."������.��	.����	�.MG.���	

The first version of 6� called in this code takes no parameters, and you
should be able to easily imagine the declaration for it:

%����" �����" ���� 6� �����"	������ �����	����	�����"	�.����"	�!

Chapter 6: Query Operators186



ptg

Note that it is a simple extension method for �����	����	�� that returns
a ����.

The second version of 6� is declared like this:

%����" �����" ���� 6� �����"	��
���� �����	����	�����"	�.����"	1
:��"�����"	1.�����.%�	��"��	�!

Notice the simple delegate expected as the second parameter. As you recall,
functions like this that return a Boolean value are called predicates by
mathematicians—hence the name of this parameter to the 6� operator. The
lambda we pass in to fulfill the contract inherent in this parameter looks
like this:

�./�.�.//.M

This delegate returns a Boolean value specifying whether any item in the
list is equal to 8.

The preceding example calls 6� with a lambda, but the following code
also compiles and runs correctly:

%����" ���� )�	��"��	���� *���	�
(

�	���� *���	.//.M!
4

%����" *��� ����6� ��
(

*�� ����B./.����	����	�����	�01.0L�!

������	�5���	
��	�C?�	�.����B."������.��	.����	�.(L4G.(04C1
M1.����B�6� �)�	��"��	��!

4

Some developers might prefer to use lambdas in these situations because
they can be guaranteed to be side-effect-free and hence thread-safe.

All
The 6�� operator detects whether the elements of a list meet a certain con-
dition specified in a predicate. In this example, the predicate asks whether
all the items in a list are smaller than the number 11:

Generation Operators 187



ptg

%����" *��� ����6����
(

*�� ����./.����	����	�����	�01.0L�!

�� ������6����./�.�..00��
(

������	�5���	
��	�C���������.�	�C�!
4
	��	
(

������	�5���	
��	�C���������.���.�	�C�!
4

4

Contains
The �������� operator can be used to test for the inclusion of a particular
element in a sequence. This operator is overloaded several times. In its sim-
plest case, you simply pass in an element of the same type as the list, and
the method returns whether it is a member of the sequence. In this code, a
sequence with the numbers 3 through 13 is generated, and the code checks
to see which of the numbers between 0 and 15 are included in that list:

*�� ����./.����	����	�����	�31.0L�!

��� ���� �./.L!.�..0<!.�YY�
(

������	�5���	
��	�C
���."�������.*���	.(L4G.(04C1
�1.�����������������!

4

The second overload of the �������� operator uses the ��'����� �
���%��	� interface:

%����" �����" ���� �������������"	������ �����	����	�����"	�.����"	1
�����"	.*���	1.��$����� ���%��	������"	�."��%��	��!

This gives you latitude to make more complex decisions about whether a
particular value is in a list. Listing 6.2 shows an implementation of the
��$����� ���%��	� interface.

Chapter 6: Query Operators188



ptg

Listing 6.2 This ��$����� ���%��	� Asks You to Implement the �$���� and
#	�7������	 Methods

"���� �$����� ���%��	G.��$����� ���%��	�����
(

_�	���� ��$����� ���%��	�����.+	��	��

%����" ���� �$�������� =1.���  �
(

�� �=.//. �
(

�	����  .8.2.//.L!
4
	��	
(

�	���� ����	!
4

4

%����" ��� #	�7������	���� ��>�
(

�	���� ��>�#	�7������	��!
4

_	���	����
4

Here is a method that uses this implementation of ��$����� ���%��	�:

%����" *��� ��������������
(

��� ���� �./.L!.�..0<!.�YY�
(

������	�5���	
��	�C
���."�������.*���	.(LG?24G.(04C1
�1.���������������1.�	� �$����� ���%��	����!

4
4

The important method in Listing 6.2 is the implementation of �$����. It
tests whether the values passed into it are equal and whether they are even.
If both conditions are met, it returns true; otherwise, it returns false. I will
show other implementations of ��$����� ���%��	� later in this chapter.
Note also that �������� has an overload that takes only a single parame-
ter that uses a default implementation of ��$����� ���%��	�:

����������������

Generation Operators 189



ptg

SequenceEqual
The �	$�	�"	�$��� operator stands on its own and traditionally is not con-
sidered to be part of the Generation operators. I will include it in this sec-
tion, however, because it bears some similarity to the 6� , 6��, and
�������� operators.

Chapter 6: Query Operators190

�������� Can Help You Write Succinct Code

One of the goals of LINQ is to help you write clear, succinct code that
is easy to read. The �������� operator can help you achieve this goal.
You might remember the ������	 extension method from the preced-
ing chapter:

%����".�����".����.������	L0�����.������.����"	�
(

�� �����"	.//.�����.�	���� ����	!
����"	./.����"	���X%%	���!
���	�"� �*�� ��	�.�� ����	���	��
(

�� �����"	.//.��	��
(

�	���� ���	!
4

4
�	���� ����	!

4

This method contains 10 lines of code. Here is a rewrite of the
������	�� extension method from the preceding chapter that contains
one line of code, which I have wrapped here due to line-width con-
siderations:

%����" �����" ���� ������	L2����� ������ ����"	�
(

�	���� �����"	.//.�����.K.����	 G
����	���	���������������"	���X%%	����!

4

With LINQ, the goal is often to allow developers to create the simplest
syntax possible that properly expresses their logic. This is an example
of how that end can be achieved.



ptg

Consider the following code:

*�� ����6./.����	����	�����	�01.3�!
*�� ����B./.����	����	�����	�01.<�!

*�� $�	� 0./.���� �.�� ����B
��	�	 �..R
�	�	"� �!

The �	$�	�"	�$��� operator tests to see if two sequences are equal. Given
the first two lists we see here, the following query returns false:

����6��	$�	�"	�$��������B�!

This returns false because ����6 does not contain the same sequence as
����B. In particular, the sequence 1, 2, 3 is not equivalent to the sequence
1, 2, 3, 4, 5.

We find that $�	� 0 does have the same sequence as 
���6. As a result,
the following query returns true:

����6��	$�	�"	�$����$�	� 0�

This returns true because $�	� 0 returns the numbers from ����B that are
smaller than 4. These are the numbers 1, 2, and 3, which are the same num-
bers, found in the same order, as those found in ����6.

You can also implement ��$����� ���%��	��� and pass that in to
�	$�	�"	�$���. Here is a simple implementation of that interface that
works for our current example:

"���� �$����� ���%��	 G.��$����� ���%��	�����
(

%����" ���� �$�������� =1.���  �
(

�	���� �=.//. �!
4

%����" ��� #	�7������	���� ��>�
(

�	���� ��>�#	�7������	��!
4

4

Generation Operators 191



ptg

Chapter 6: Query Operators192

Given the existence of this class, you can write the following code, which
returns true:

����6��	$�	�"	�$����$�	� 01.�	� �$����� ���%��	���

The EqualOperators sample that comes with this book contains the code
shown in this section, and a few other samples that you might find inter-
esting. For instance, it demonstrates that order matters when using this
operator. For instance, the following code returns false:

*�� �����./.�	� 
�������.(.21.01.3.4!
������	�5���	
��	��������	$�	�"	�$��������6��!

Partitioning Operators

The four Partitioning operators, shown in Table 6.3, allow you to divide a
sequence into two sections where the partition between the sections is
defined by a simple Boolean operation. All these operators are deferred.

Table 6.3 Partitioning Operators

Operator Name Description

��;	 Takes only the first n elements from a sequence

�;�% Skips the first n elements from a sequence

��;	5���	 Takes elements from a sequence while a condition is true

�;�%5���	 Skips elements from a sequence while a condition is true

Throughout this section I’ll run variations on a query run against the list
of famous Romans shown near the beginning of this chapter. Here is an
unadorned version of the query that does not use any Partitioning operators:

*�� $�	� ./.���� �.�� ������
��	�	 ��#	��	�.//.H�H
�	�	"� ��&��	!



ptg

���	�"� �*�� 	.�� $�	� �
(

������	�5���	
��	�	�!
4

The output from this query would look like this:

6�������
��������
��������
&	��
���	����

This gives you a baseline to which you can compare this output with what
is returned from the other queries in this section.

Take
The ��;	 operator retrieves the first n elements from a list, where n is the
number you pass as the operator’s sole argument. Here is a query using the
partitioning operator ��;	. This query returns the first two male emperors
from the list of five shown in the preceding section:

*�� $�	� 0./.����� �.�� ������
��	�	 ��#	��	�.//.H�H
�	�	"� ��&��	����;	�2�!

If you write the results of the query with a ���	�"� loop, you see the fol-
lowing output:

6�������
���	����

Skip
The �;�% operator takes the opposite tack. It skips n elements in a list and
then shows the remainder:

$�	� 0./.����� �.�� ������
��	�	 ��#	��	�.//.H�H
�	�	"� ��&��	���;�%�2�!

This code skips Augustus and Tiberius and returns Caligula, Claudius, and
Nero.

Partitioning Operators 193



ptg

Here is how to take the third 25 items from a list of 100 items:

*��.����./.����	����	�����	�01.0LL�!
������;�%�T<����;	�2<�

TakeWhile
The ��;	5���	 operator is perhaps most useful when you are working with
an infinite list, or a very long list. Consider this somewhat contrived
method:

%����" �����	����	�����.#	��������	
�����
(

��� ������./.TLLL!
���� "����./.������!

����	 ����	�
(

 �	�� �	���� "����!
"����.Y/.T!
�� �"����.�/.2LLLL�."����./.������!

4
4

This code returns, in an infinite loop, the numbers between 7,000 and 20,000
that are divisible by 7. Here is one way to view the first five members of this
list:

���	�"� �*�� ��	�.�� #	��������	
��������;	�<��
(

������	�5���	
��	���	��!
4

The output from this list looks like this:

TLLL
TLLT
TL0R
TL20
TL2M

The following code takes all the items from the list that are divisible by
11 and that are smaller than 10,000:

*�� $�	� R./.����� �.�� #	��������	
�����
��	�	 �.8.00.//.L
�	�	"� �����;	5���	��./�.�..0LLLL�!

Chapter 6: Query Operators194



ptg

The result sequence contains many members, but here are the first few:

TLLT
TLMR
T0S0

Here is a variation on this same code, expressed in query method
syntax:

*�� $�	� ./.����	����	
�����	�01.0LL�
�5�	�	�=./�.=.8.3.//.L�
���;	5���	�=./�.=.8.00.^/.L�!

Here we ask for the numbers between 1 and 100 that are evenly divisible by
3 and 11. Note that the ����	 operator generates all the numbers between
1 and 100, whereas our #	��������	
��� method generates only the num-
bers that are multiples of 7. Furthermore, our method generates only the
exact number of items you request; it stops working when you stop asking
for the next item in the sequence.

Partitioning Operators 195

An Interesting Case

Suppose we begin our series with a number that is not evenly divisible
by 7, such as 8,000:

%����" �����	����	����.#	�5	����	%	�����
�����
(

��� ������./.MLLL!
��� ��%./.0LLLL!
��� "����./.������!

����	 ����	�
(

"����.Y/.T!
�� �"����.�/.2LLLL�."����./.������!
 �	�� �	���� "����!

4
4

Now we ask for all the values in this list that are evenly divisible by
11, using the query just shown. The result is a list of numbers that



ptg

SkipWhile
The �;�%5���	 operator is very much like ��;	5���	, except that it skips
the items from the beginning of a list that don’t meet a particular condition.
We don’t want to use this operator with an infinite list, because it would
never define a closing condition. We can, however, use it with a method
that could potentially generate a fairly long list:

%����" �����	����	�����.#	�
���
�����
(

��� ��%./.0LLL!
���� "����./.�0LL0!

����	 �"����..��%�
(

"����.Y/.T!
 �	�� �	���� "����!

4
4

The sequence generated by this method runs in increments of 7 from –1001
to 1000, but it could easily be extended to range over all integers expressible
on a 64-bit system—that is, the numbers between �����+��J���	 and
�����+�=J���	.

Here is a query run against #	�
���
���:

*�� $�	� 3./.����� �.�� #	�
���
�����
��	�	 �.8.00.//.L
�	�	"� ����;�%5���	��./�.�..L�!

Chapter 6: Query Operators196

begins like this: MLS3, M0RL, M20T, M2QR, M3T0. If you divide any of these
numbers by 7, you end up with a repeating set of decimal values:

MLS3.@.T./.00<0�M<T0R2M<T0R2M<T0R2M<T0R2
M0RL.@.T./.00S2�M<T0R2M<T0R2M<T0R2M<T0R2
M20T.@.T./.00T3�M<T0R2M<T0R2M<T0R2M<T0R2

As I say, it’s an interesting case.



ptg

This code retrieves all the positive numbers from the list that are divisible
by 11. The first viewed elements in the result sequence look like this:

L
TT
0<R
230
3LM
3M<

Something about these operators tempts you to show how they can be
used to manipulate numbers. Nevertheless, it would probably be wise to
finish this section with a query against string data:

$�	� 0./.����� �.�� ���%�	������
��	�	 ��#	��	�.//.H�H
�	�	"� ��&��	�
��;�%5���	��./�.��������5����C6C��!

This query asks for all the female Romans from our list but asks that we
skip those whose name begins with the letter A:

��	�����
�������.E"��*��
������.)��"���
P����.��	.���	�
P����.���������

�*��.?�������
��"���

In reading this section you may have sensed three things:

• Although you have seen only a few LINQ operators so far, it should
be clear that, taken together, these operators form a complete lan-
guage for querying data. One senses the team’s desire to be sure to
include a way to express all the possible ways to query data.

• Some of these operators can be useful for writing mathematical for-
mulas or expressing mathematical ideas.

• LINQ is quite at home working with infinite lists. You might, for
instance, use LINQ to query an infinite stream of data coming in
over the Internet, a stream of bytes from a network, a sequence of
numbers such as primes, and so on.

Partitioning Operators 197



ptg

Element Operators

As shown in Table 6.4, there are nine Element operators. Except for
?	���������%� , which is deferred, their purpose is to force execution of a
query and immediately return a single item from an enumeration. Exam-
ples of using all of these operators are found in the ElementOperators sam-
ple program available on the book’s web site.

Table 6.4 Element Operators

Operator Name Description

:����* Retrieves the first item from an enumeration

:����E�?	�����* Gets the first element or a default value for the list type


���* Retrieves the last item from an enumeration


���E�?	�����* Gets the last item or a default value for the list type

�����	* Returns the only element from a sequence that satisfies
a condition

�����	E�?	�����* Returns a single element or a default value for the list
type

��	�	��6�* Retrieves an element at a specified offset in a list

��	�	��6�E�?	�����* Retrieves an element at a specified offset or a default
value

?	���������%� Retrieves a default value if the list is empty or null

The Element operators allow you to access individual items from a
sequence. With the exception of ?	���������%� , none of these operators
are deferred.

First and FirstOrDefault
The following query uses the :���� operator to return the initial item from
a query:

Chapter 6: Query Operators198



ptg

*�� $�	� ./.����� �.�� ������
��	�	 ��#	��	�.//.H�H
�	�	"� ��&��	��:������!

When enumerated, this query returns Augustus.
Here is another common way to call the :���� operator:

������	�5���	
��	�C:����.��	�G.(L4C1.�������:�������!

Pass a predicate to :���� to specify a filter:

*�� �����
�����./.����� �.�� ������
��	�	 ��#	��	�.//.H�H
�	�	"� ��&��	��:������./�.��
	����.�.R�!

If the sequence you are querying is empty, :���� throws an ��*����E%�
	�������="	%����. If you think this probably will happen, call :����E�
?	�����. This operator returns the default value for the type of element in
your sequence. The default value for Reference types is null; for numeric
Value types, it is 0. For instance, if you are working with a sequence of
string, it returns null.

Because the filter in this query causes it to return a result sequence with
zero elements, this call to the �����	 operator throws an exception when
enumerated:

*�� $�	� ./.����� �.�� ������
��	�	 ��#	��	�.//.HUH
�	�	"� ��&��	��:������!

This query, however, does not throw an exception and returns null:

*�� $�	� ./.����� �.�� ������
��	�	 ��#	��	�.//.HUH
�	�	"� ��&��	��:����E�?	�������!

:����E�?	����� is overloaded to allow you to pass in a lambda, just as you
can when you use the :���� operator.

Element Operators 199



ptg

Last and LastOrDefault
You can use the 
����� operator to retrieve the last item from a sequence.
All the features of the :���� operator also work for 
���. Here is a call to the

��� operator that returns the name ���	���� from the list:

$�	� ./.����� �.�� ������
��	�	 ��#	��	�.//.H�H
�	�	"� ��&��	��
�����!

You can pass in a predicate to filter a list:

*�� "���������������./.����� �.�� ������
��	�	 ��#	��	�.//.H�H
�	�	"� ��&��	��
���E�?	�������./�

��������5����C�C��!

This returns the value Claudius.
If you wrote a query that returned nothing, you would throw an excep-

tion, which you could capture in a �� /"��"� block:

�� 
(

*�� $./.����� �.�� ������
��	�	 ��#	��	�.//.HUH
�	�	"� ���
�����!

4
"��"� �� ��	����*����E%	�������="	%�����
(

������	�5���	
��	�CN��.���	�.��.��*����E%	�������="	%����C�!
4

You can call 
���E�?	����� to sidestep this problem:

*�� ���������./.����� �.�� ������
��	�	 ��#	��	�.//.HUH
�	�	"� ���
���E�?	�������!

5���	
��	�C(L4C1.����������.//.�����.K.C&���C G.����������&��	�!

Because this query returns zero elements, 
���E�?	����� returns the
default value of ���� for a reference type such as �����. In the 5���	
��	
statement, the conditional operator is used to determine whether the query
returned an instance of �����.

Chapter 6: Query Operators200



ptg

Single
The �����	 operator returns one, and only one, element from a sequence.
If your sequence contains only one element, you can use the operator with
zero parameters, as shown here:

������ ���	./.����� �.�� ������
��	�	 ��&��	�
	����.//.R
�	�	"� ��&��	�������	��!

������	�5���	
��	����	�!

The point is that �����	 forces execution of the query. If we did not call
�����	, the return value would be an enumeration with one element. By
calling �����	, we get the result of the query without having to explicitly
enumerate the list with ���	�"�.

It is a runtime error to call �����	 on a sequence that contains more than
one element:

�� 
(

*�� �./.����� �.�� ������
�	�	"� ��&��	�������	��!

4
"��"� �� ��	����*����E%	�������="	%�����
(

������	�5���	
��	�CN��.���	�.��.��*����E%	�������="	%����C�!
4

If you have multiple elements in your sequence, you may write a simple
predicate that acts as a filter to return only the element you want. Your
lambda must return only one element, or you receive an ��*����E%	���
�����="	%���� at runtime.

������ ���	./.����� �.�� ������
��	�	 ��#	��	�.//.H�H
�	�	"� ��&��	�������	��./�.��
	����.//.R�!

������	�5���	
��	�C(L4C1.���	�!

Element Operators 201



ptg

ElementAt
Here is how to pull Claudius’ name from the list:

$�	� ./.����� �.�� ������
��	�	 ��#	��	�.//.H�H
�	�	"� ��&��	����	�	��6��2�!

Element Operators and Composition
I have been showing the Element operators in the context of a query expres-
sion, but you can use them directly on any type that supports �����	��
���	��:

������	�5���	
��	�C(L10L4G.(04C1.C:����C1.�������:�������!
������	�5���	
��	�C(L10L4G.(04C1.C
���C1.�������
������!
������	�5���	
��	�C(L10L4G.(04C1.C��	�	��6�C1.���������	�	��6��2��!
������	�5���	
��	�C(L10L4G.(04C1.C�����	C1

������������	�$./�.$�&��	�
	����.//.R��!

These queries produce the following output:

:����G.(.��./.LL!.#	��	�./.�!.&��	./.6	���.)�	����.4

���G.(.��./.2L!.#	��	�./.�!.&��	./.J�%�����.6���%%���.4

��	�	��6�G.(.��./.L2!.#	��	�./.�!.&��	./.6�������.4
�����	G.(.��./.0R!.#	��	�./.�!.&��	./.&	��.4

Or you can use them on the results of a query:

*�� $�	� ./.���� �.�� ������
��	�	 ��#	��	�.//.H�H
�	�	"� ��&��	!

����
����$�	� ���;	�2��!
������	�5���	
��	�$�	� �:�������!
������	�5���	
��	�$�	� �
������!
������	�5���	
��	�$�	� ���	�	��6��2��!

The query expression found at the beginning of the method retrieves the list
of Julio-Claudian emperors from our collection:

6�������
��������
��������
&	��
���	����

Chapter 6: Query Operators202



ptg

It then uses

• The ��;	 operator to pull the first two items: Augustus and Caligula.

• :���� to pull the name Augustus from the list.

• 
��� to pull the name Tiberius from the list.

• ��	�	��6��2� to pull our friend Claudius’ name from the list.

This ability to reuse the results of a query is a form of composition, as
described in Chapter 3, “The Essence of LINQ.”

DefaultIfEmpty
Use the ?	���������%� operator if you want to be sure that a result
sequence has at least one element. Consider this query:

*�� $�	� ./.���� �.�� ������
��	�	 ��#	��	�.//.HUH
�	�	"� �!

It returns an empty list with zero elements.
This query, on the other hand, returns a list with one element that is set

to null:

*�� $�	� ./.����� �.�� ������
��	�	 ��#	��	�.//.HUH
�	�	"� ���?	���������%� ��!

������	�5���	
��	�C�����G.(L4C1.$�	� ���������!
���	�"� �*�� ��	�.�� $�	� �
(

������	�5���	
��	�C(L4C1.���	�.//.�����.K.C����C G.��	��&��	�!
4

The output from these lines of code looks like this:

�����G.0
����

If a query returns a normal result sequence with one or more elements,
a call to ?	���������%� does nothing. It is as if you never called it. Here
is an example:

Element Operators 203



ptg

*�� $�	� ./.����� �.�� ������
��	�	 ��#	��	�.//.H�H
�	�	"� ���?	���������%� ��!

This query returns the names of our five male emperors.
You can specify a default value so that the single item in the list returned

by ?	���������%� contains a valid class rather than null:

*�� $�	� ./.����� �.�� ������
��	�	 ��#	��	�.//.HUH
�	�	"� ��
�?	���������%� ��	� �����

(
��./.�01
#	��	�./.H&H1
&��	./.C��%� .�����C

4�!

This code uses our �������� implementation in the ����� class to return the
following:

(.��./.�0!.#	��	�./.&!.&��	./.��%� .�����.4

Set Operators

Continuing our tour of the LINQ operators, we can now turn our attention
to the Set operators, which are shown in Table 6.5. They allow you to per-
form set operations on various sequences. You can apply the Set operators
to any two sequences that implement �����	����	��. All the set operators
are deferred. The ���"�� operator is also discussed in this section.

Table 6.5 Set Operators

Operator Name Description

?�����"� Shows the distinct elements in a sequence

X���� Shows the unique items obtained by combining two sets

���	��	"� Shows the elements that two sets have in common

Chapter 6: Query Operators204



ptg

Operator Name Description

�="	%� Shows all the members of one set except those in a second set

���"�� Concatenates two sequences

�	$�	�"	�$���* Tests if two sequences are equal

Union
The X���� operator shows the unique items from two lists, as shown in List-
ing 6.3. Here we have two lists—one containing the numbers 1, 2, and 3,
and the other 3, 4, 5, and 6. The union of these two lists is the numbers 1,
2, 3, 4, 5, and 6.

Listing 6.3 The ����X���� Method Displays the Numbers 1, 2, 3, 4, 5, and 6

%����" *��� ����X������
(

*�� ����6./.����	����	�����	�01.3�!
*�� ����B./.�	� 
�������.(.31.R1.<1.S.4!

*�� �����./.����6�X���������B�!

����
����������!
4

After these two sequences are combined, only the unique members of
each list are retained. The elements of ����6 appear before elements of
����B in the merged sequence.

If you don’t want the union of two lists, consider using the ���"��
operator:

*�� ����6./.����	����	�����	�01.3�!
*�� ����B./.�	� 
�������.(.31.R1.<1.S.4!

*�� �����./.����6����"�������B�!

����
����������!

Set Operators 205



ptg

This operator returns a sequence containing all the items in both enumer-
ations, including duplicates:

0
2
3
3
R
<
S

Intersect
The ���	��	"� operator shows the items that two lists have in common. In
this case we have one list containing the numbers 1, 2, 3, and 4 and a second
list containing the numbers 3, 4, 5, and 6. The intersection of the two lists are
the numbers 3 and 4, as shown in Figure 6.2. Listing 6.4 demonstrates how
to use this operator.

Chapter 6: Query Operators206

Figure 6.2 The intersection of two lists.

Listing 6.4 The �������	��	"� Method Prints the Numbers 3 and 4

%����" *��� �������	��	"���
(

*�� ����6./.����	����	�����	�01.R�!
*�� ����B./.�	� 
�������.(.31.R1.<1.S.4!

*�� �����./.����6����	��	"������B�!

����
����������!
4

Here two collections are joined, and only the unique, shared members of
each list are retained.



ptg

Consider what happens if we make the following change to the order
in which the items are declared:

*�� ����B./.�	� 
�������.(.01.<1./1.S.4!

The result is still ( 31 R 4 because ���	��	"��� is applied on ����6, whose
order it kept.

Distinct
The ?�����"� operator finds all the unique items in a single list, as shown
in Listing 6.5. This method works with a list containing the numbers 1, 2,
3, 3, 2, and 1. The unique, or distinct, numbers in this list are 1, 2, and 3, as
illustrated in Figure 6.3.

Set Operators 207

Figure 6.3 The unique, or distinct, items in the sequence 1, 2, 3, 3, 2, 1 are the numbers
1, 2, and 3.

Listing 6.5 This Code Prints the Numbers 1, 2, and 3

%����" *��� ����?�����"���
(

*�� ����6./.�	� 
�������.(.01.21.31.31.21.0.4!
*�� ����B./.����6�?�����"���!

����
��������B�!
4

Except
The �="	%� operator shows all the items in one list minus the items in a sec-
ond list, as shown in Listing 6.6. Here we have one list containing the num-
bers 1, 2, 3, 4, 5, and 6 and a second list containing the numbers 3 and 4. If we



ptg

use the �="	%� operator to remove the items in the second list from the first
list, we end up with the numbers 1, 2, 5, and 6, as illustrated in Figure 6.4.

Chapter 6: Query Operators208

Figure 6.4 The items of one list minus, or except, the items in a second list. In this case
we take 3 and 4 from the list 1, 2, 3, 4, 5, and 6 to yield the list 1, 2, 5, and 6.

Listing 6.6 The �����="	%� Method Prints the Numbers 1, 2, 5, and 6

%����" *��� �����="	%���
(

*�� ����6./.����	����	�����	�01.S�!
*�� ����B./.�	� 
�������.(.31.R.4!

*�� �����./.����6��="	%������B�!

����
����������!
4

In the Context of LINQ
The type of code just shown is useful, but it might be helpful to see these
same operators used in the context of LINQ query expressions. In that con-
text, you can see how the Set operators can be used to analyze the results
of queries to better understand the data that is returned.

You probably know that two similar collections are used to create lists.
One is the generic 
����� collection, and the other is the old-style col-
lection called 6��� 
���. We can use Set operators to help us better under-
stand the difference between these two classes.

Here are two LINQ to Object providers that use Reflection-based
queries to retrieve the methods from the 
������� class and the 6��� 
���
class:

*�� $�	� 
���./.���� �.�� � %	���
���������#	�+	�������
��	�	 ��?	"������� %	.//.� %	���
��������
����% �.� ��&��	.���� �
�	�	"� ��D	 !



ptg

*�� $�	� 6��� ./.���� �.�� � %	���6��� 
�����#	�+	�������
��	�	 ��?	"������� %	.//.� %	���6��� 
����
����% �.� ��&��	.���� �
�	�	"� ��D	 !

Here is code that shows the intersection of these two lists:

*�� �������	��	"�./.$�	� 
�������	��	"��$�	� 6��� �!
������	�5���	
��	�C�����G.(L4C1.�������	��	"����������!

����
�����������	��	"��!

Alternatively, you could write the query like this:

*�� �������	��	"�./.����� �.�� � %	���
���������#	�+	�������
��	�	 ��?	"������� %	.//.� %	���
��������
����% �.� ��&��	.���� �
�	�	"� ��D	 �����	��	"��

���� �.�� � %	���6��� 
�����#	�+	�������
��	�	 ��?	"������� %	.//.� %	���6��� 
����
����% �.� ��&��	.���� �
�	�	"� ��D	 �!

In either case, the following list would be displayed:

Set Operators 209

�	�A��%�"�� 
�	�A��%�"�� 
�	�A�����
�	�A��	�
�	�A��	�
6��
6������	
B���� �	��"�
��	��
��������
��% ��
#	�����	�����

#	�����	
���	=E�
���	��
���	������	

������	=E�
�	��*	
�	��*	6�
�	��*	����	
�	*	��	
����
��6��� 

Here is how to see the items that the generic list supports that are not part
of the old-style collection:

*�� ����?���	�	�"	./.$�	� 
�����="	%���������	��	"��!



ptg

Here is the result of this query:

Chapter 6: Query Operators210

���*	��6��
6��	��E�� 
�=����
:���
:���6��
:������	=

:���
���
:���
������	=
:����"�
�	��*	6��
�����="	��
���	:��6��

Aggregate Operators

The Aggregate operators allow you to perform simple mathematical oper-
ations over the elements in a sequence. Because they return the results of
that operation, none of them is deferred. All the samples shown in this sec-
tion are found in the AggregateOperators sample that accompanies this
book. Table 6.6 lists the seven 6���	���	 operators.

Table 6.6 Aggregate Operators

Operator Name Description

�����O Counts the elements in a sequence


��������O Counts the elements in a very, very long sequence

���O Adds the elements in a sequence

+��O Finds the smallest element in a sequence

+�=O Finds the largest element in a sequence

6*	���	O Finds the average value in a sequence

6���	���	O Performs binary operations with the elements in a sequence

Except for the 6���	���	 operator, all these operators have a simple,
obvious default use. Several of these operators, however, have overloads
that need a few sentences of explanation. I will show you a simple exam-
ple of using the operators’ default behavior. Then we will look a bit deeper
with a second example that shows how to use at least one of the overloads.



ptg

The Count and LongCount Operators
The ����� and 
�������� operators return the number of elements in a
sequence. Classes such as 
����� that implement the �����	"������
interface already track their count. This means that the ����� operator can
simply ask these objects for the count—an operation that executes very
quickly.

The 
�������� operator provides the same basic functionality but
allows you to work with collections that contain more than the maximum
value that an integer can handle. Calling ����� on a 
�������� returns
quickly, because the list is tracking the total count, but calling ����� on an
�����	����	����� could become a very lengthy operation. In fact, work-
ing with any collection of that size is likely to be very cumbersome.

Listing 6.7 shows a simple example of using the ����� operator. 
����
����� works the same way.

Listing 6.7 A Simple Example of Using the ����� Operator

%����" *��� �����������
(

*�� ����./.����	����	�����	�<1.02�!
������	�5���	
��	��������������!

4

The overloads for ����� and 
�������� allow you to perform calcula-
tions to derive a count for a sequence. For instance, you can write code that
counts the number of even numbers in a collection:

*�� ����./.����	����	�����	�01.2<�!

������	�5���	
��	�C�����.�����G.(L41.�����.��	.	*	�.����	��G.(04C1
������������1
������������./�.�.8.2.//.L��!

Our list consists of the numbers between 1 and 25. We call ����� once with
the first version of the ����� operator and get back the number 25.

The second overload of the ����� operator takes a simple predicate that
you can use for calculations of this type. The declaration looks like this:

%����" �����" ��� ����������"	������ �����	����	�����"	�.����"	1
:��"�����"	1.�����.%�	��"��	�!

Aggregate Operators 211



ptg

The predicate takes an integer and returns a ���� specifying whether a par-
ticular value from the list passes a test. In our case, we simply ask whether
the number is even:

�.8.2.//.L

This computation returns the values 2, 4, 6, and so on up to 24, for a total
of 12 elements.

The Min and Max Operators
The +�� and +�= operators are equally simple, as you can see by glancing
at Listings 6.8 and 6.9. The first shows the behavior of the first overload of
+�� and +�=, and the second shows how to use one of the other overloads to
pose more complex questions.

Listing 6.8 A Simple Example of Using the +�� and +�= Operators to Determine the
Highest and Lowest Values in a Sequence

%����" *��� ����+��+�=��
(

*�� ����./.����	����	�����	�S1.0L�!

����
���������!

������	�5���	
��	�C+��G.(L41.+�=G.(04C1.�����+����1.�����+�=���!
4

Our list consists of the numbers 6 through 15, so the code writes the val-
ues 6 and 15 to the console. If you pass in a null argument, you get an 6����
�	��&����="	%����.

For the more complex examples, I need a few rows of simple data, which
I provide in Listing 6.9.

Listing 6.9 The Following ��	� Class and the #	���	�� Method Are Used by Most
of the Examples in This Section

"���� ��	�
(

%����" ��� 5����.(.�	�!.�	�!.4
%����" ��� 
	����.(.�	�!.�	�!.4

Chapter 6: Query Operators212



ptg

%����" �*	����	 ������ ����������
(

�	���� �������:������C5����G.(L41.
	����G.(04C1.5����1.
	�����!
4

4

%��*��	 
�����	��.#	���	����
(

�	���� �	� 
�����	��
(

�	� ��	� (.
	����./.L1.5����./.<.41
�	� ��	� (.
	����./.01.5����./.S.41
�	� ��	� (.
	����./.21.5����./.T.41
�	� ��	� (.
	����./.31.5����./.M.41
�	� ��	� (.
	����./.R1.5����./.Q.4

4!
4

The ��	� class has two simple properties called 
	���� and 5����. It also
overrides the �������� method so that it can be displayed easily in a
���	�"� loop.

It is easy to understand how to discover a default maximum value for a
list of integers, but how can you find the maximum or minimum values for
a list of ��	��K Do you choose the element with the greatest 
	����, the
greatest 5����, a combination of the two, or some other value? There is no set
answer to this question. The user must make a custom decision based on the
requirements of his or her application. You can define your solution by
implementing a delegate used with an overload of the +�� and +�= operators:

%����" �����" ��� +�=�����"	������ �����	����	�����"	�.����"	1
:��"�����"	1.����.�	�	"����!

This delegate is not a predicate. Instead, it asks you to return your custom
+�= value for an ��	� class. That is, it asks for the integer value that should
be used to represent a given ��	� instance. The +�� and +�= overloads use
this value to compute and return the minimum/maximum of a collection
of ��	� instances. To see how this works, look at Listing 6.10.

Aggregate Operators 213



ptg

Listing 6.10 A Somewhat More Complex Use of +�� and +�=, Demonstrating How to Get
Minimum and Maximum Values for Complex Types with Multiple Fields


�����	��.��	��./.#	���	����!

����
������	���!

������	�5���	
��	�C+����	�G.(L41.+�=��	�G.(04C1
��	���+���=./�.=�
	����.Y.=�5�����1
��	���+�=�=./�.=�
	����.Y.=�5������!

The lambda passed to +�= by our code looks like this: = /� =�
	���� Y

=�5����. This delegate shows our definition of what we mean by max: the
largest value returned by adding together the width and length of the ��	�.

Chapter 6: Query Operators214

Implementing +�=

I mentioned earlier that many of these operators have very simple
implementations. Without peeking at the real source code, it seems
that +�= might look like the code shown in Listing 6.11:

%����" �����" ���
+�=�����"	������ �����	����	�����"	�.����"	1
:��"�����"	1.����.�	�	"����

(
��� ����	��./.����+��J���	!
���	�"� �*�� ��	�.�� ����"	�
(

��� �	=���	�./.�	�	"������	��!
�� ��	=���	�.�.����	���
(

����	��./.�	=���	�!
4

4
�	���� ����	��!

4

The Average Operator
After you discover the pattern shown in our examination of the +�� and +�=

operators, you find that it can be easily applied to most of the other Aggre-
gate operators. Let’s look at the 6*	���	 operator, which returns the aver-
age value from an enumeration.



ptg

Obtaining the average for a range of numbers looks like this:

*�� ����./.����	����	�����	�L1.<�!
������	�5���	
��	�C6*	���	G.(L4C1.�����6*	���	���!

When run, this code tells us that the average of the numbers 0, 1, 2, 3, and
4 is the value 2.

When working with a collection of ��	��, we face the same problem we
had with +�� and +�=: How do we discover the average value for a list of
��	�s that define two properties called 
	���� and 5����? The answer, of
course, is that we proceed just as we did with the +�� and +�= operators:


�����	��.��	��./.#	���	����!

�����	 �*	���	J���	./.��	���6*	���	�*./�.*�
	����.Y.*�5�����!
������	�5���	
��	�C6*	���	J���	G.(L4C1.6*	���	J���	�!

The implementation of 6*	���	 is probably similar to what is shown in
the custom implementation for the +�= operator found in the Note at the
end of the preceding section. The code must iterate over the list, passing in
each item to our lambda, which defines the value we want the 6*	���	
operator to use in its calculations.

The Sum Operator
The ��� operator tallies the values in an enumeration. Consider the fol-
lowing simple example:

*�� ����./.����	����	�����	�<1.3�!
������	�5���	
��	�C
���.���./.(L4C1.�����������!

Our list consists of the numbers 5, 6, and 7. The ��� operator adds them
together, producing the value 18.

When working with a list of ��	��, the ��� operator faces the same prob-
lem we saw with the +��, +�=, and 6*	���	 operators. It should come as no
surprise that the solution is nearly identical:

*�� ��	��./.#	���	����!
������	�5���	
��	�C���.��	.�	�����.��.��	.��	��G.(L4C1
��	�������=./�.=�
	����.Y.=�5������!

Aggregate Operators 215



ptg

This is the same pattern you saw with the 6*	���	, +��, and +�= operators:
We pass in a simple lambda to define what the ��� operator should use in
its calculations. The result printed to the console is the value 10. If only the
rest of our lives were this simple!

The Aggregate Operator
The 6���	���	 operator follows in the footsteps of the ��� operator but is
more flexible. Rather than taking a simple delegate like the other operators
in this series, it asks for one similar to the lambda we worked with in Chap-
ter 3:

%����" �����" �.6���	���	������� �����	����	��.����"	1
:��"�1.�1.��.���"�!

We know what do to with delegates that look like this. We could, for
instance, revisit the lesson on lambdas in Chapter 3 and create a delegate
that adds up a range of numbers:

*�� ����./.����	����	�����	�<1.3�!
������	�5���	
��	�C6���	������G.(L4C1.�����6���	���	���1.��./�.��.Y.����!

The 6���	���	 operator gets passed the numbers 5, 6, and 7. The first time
the lambda is called, it gets passed 5 and 6 and adds them together to pro-
duce 11. The next time it is called, it is passed the accumulated result of
the previous calculation plus the next number in the series: 11 + 7, which
yields 18:

<YS./.00
00.Y.T./.0M

This overload of the 6���	���	 operator is more flexible than the ��� oper-
ator because it allows you to choose the operator. For instance, this code
performs multiplication, yielding the value 210:

�����6���	���	���1.��./�.�� O.���

Chapter 6: Query Operators216



ptg

The second and perhaps most commonly used overload of the 6���	�
���	 operator allows you to seed the calculations it performs with an
accumulator:

%����" �����" �6""������	.6���	���	�����"	1.�6""������	��
���� �����	����	�����"	�.����"	1.�6""������	.�		�1
:��"�6""������	1.�����"	1.�6""������	�.���"�!

This is essentially the same operator as shown in the previous example, but
now you can decide the seed for the value that will be accumulated:

������	�5���	
��	�C6���	������G.(L4C1
�����6���	���	�L1.��1.��./�.��.Y.����!

If we pass in a list with one item—say, the number 5—the first time the
lambda is called, it is passed the seed plus the sole item in the list:

�L1.<�./�.�L.Y.<�

The result, of course, is the number 5. Suppose we pass in an accumulator
of 0 plus the numbers 5, 6, and 7:

*��.����./.����	����	�����	�<1.3�!
������	�5���	
��	�C6���	������G.(L4C1.�����6���	���	�L1.��1.��./�

��.Y.����!

In this case we would step through the following sequence:

L.Y.<./.<
<.Y.S./.00
00.Y.T./.0M

Again, we are doing essentially what we did with the ��� operator.
If you pass in a different seed, you get a different result:

������	�5���	
��	�C6���	������G.(L4C1
�����6���	���	�31.��1.��./�.��.Y.����!

Aggregate Operators 217

The 6���	���	 Corner Cases

Everyone asks two questions about the 6���	���	 operator. I’ll answer
them here. If it is passed a list with one item, it returns that item. If it is
passed a list with zero items, it throws an ��*����E%	�������="	%����.



ptg

With a seed of 3, we get this:

3.Y.<./.M
M.Y.S./.0R

0R.Y.T./.20

If we use the multiplication operation, we should avoid passing in a seed
of 0:

������	�5���	
��	�C6���	������G.(L4C1
�����6���	���	�01.��1.��./�.��.O.����!

In this case the series looks like this:

0.O.<./.<
<.O.S./.3L
3L.O.T./.20L

If we passed in an accumulator of 0, we’d end up with the following series
of operations:

L.O.<./.L
L.O.S./.L
L.O.T./.L

In what I sometimes suspect might have been an excess of good spirits,
the team added one final overload to the 6���	���	 operator:

%����" �����" ��	����.6���	���	�����"	1.�6""������	1.��	������
���� �����	����	�����"	�.����"	1.�6""������	.�		�1
:��"�6""������	1.�����"	1.�6""������	�.���"1
:��"�6""������	1.��	�����.�	�����	�	"����!

This overload is identical to the previous one, but you are given one more
delegate that you can use to transform the result of your aggregation. For
instance, consider this use of the 6���	���	 operator:

������	�5���	
��	�C6���	������G.(L4C1
�����6���	���	�L1.��1.��./�.��.Y.��1
���./�.��������:������C(LG�4C1.�����!

Notice that the first two-thirds of this call mirror what we did earlier; only
the third parameter is new.

Chapter 6: Query Operators218



ptg

Suppose we pass in a sequence with the values 5, 6, and 7. As we’ve
already seen, the process begins by performing the following series of
operations:

L.Y.<./.<
<.Y.S./.00
00.Y.T./.0M

Now the 6���	���	 operator passes this result to our second lambda,
which uses the string’s :����� method to transform it into a string in
currency format:

`0M�LL

Like nearly everything in LINQ, this seems terribly complicated at first,
only to end up being reasonably simple. These kinds of simple operations,
however, provide us with the building blocks from which we can safely cre-
ate complex programs. This is what we mean when we apply the word
“elegant” to a technology.

Ordering Operators

You have already seen several examples of the E��	�B operator. I will,
however, quickly show examples of E��	�B ?	�"	����� and ��	�B . In this
section I also include the related �	*	��	 operator. Table 6.7 lists the Order-
ing operators, all of which are deferred.

Table 6.7 Ordering Operators

Operator Name Description

E��	�B Sorts the elements in a selection

E��	�B ?	�"	����� Sorts the elements in a selection in descending order

��	�B Orders by one criteria and then a second criteria

�	*	��	 Reverses the order of items in a sequence

Ordering Operators 219



ptg

In this section I’ll run queries against one of the result sets from the section
on joins in the preceding chapter. To keep things as simple as possible, I will
embody the result of the query in a new class, as shown in Listing 6.11.

Listing 6.11 This Code, and All the Sample Code from This Section, Is Found in the
OrderingOperators Sample That Accompanies This Book

"���� +���"���
(

%����" ��� E��	���.(.�	�!.�	�!.4
%����" ������ &��	.(.�	�!.�	�!.4
%����" ������ �������	��.(.�	�!.�	�!.4

%����" �*	����	 ������ ����������
(

�	���� �������:������CE��	���./.(L41.&��	./.(041
�������	��./.(24C1

E��	���1.&��	1.�������	���!
4

%����" �����" 
���+���"����.#	�
�����
(

�	���� �	� 
���+���"����
(

�	� +���"��� (.E��	���./.01.&��	./.C���� .��������C1
�������	��./.C�	���.��=�%���	C 41

�	� +���"��� (.E��	���./.21.&��	./.C+��	�.?�*��C1
�������	��./.C����%	�C 41

�	� +���"��� (.E��	���./.S1.&��	./.C+��	�.?�*��C1
�������	��./.CD	 �����C 41

�	� +���"��� (.E��	���./.R1.&��	./.CP���.�������	C1
�������	��./.C�	���.��=�%���	C 41

�	� +���"��� (.E��	���./.31.&��	./.CP���.�������	C1
�������	��./.C��%����.��=�%���	C 41

�	� +���"��� (.E��	���./.<1.&��	./.C������	.)��;	�C1
�������	��./.C�	���.��=�%���	C 4

4!
4

4

OrderBy
Here is the simplest possible query we can run against the sequence of
+���"��� objects shown in Listing 6.11:

*�� $�	� ./.���� �.�� ����
�	�	"� �!

Chapter 6: Query Operators220



ptg

When passed to ����
���, the result of this query simply echoes our
sequence to the console:

&��	./.���� .��������1.�������	��./.�	���.��=�%���	
&��	./.+��	�.?�*��1.�������	��./.����%	�
&��	./.+��	�.?�*��1.�������	��./.D	 �����
&��	./.P���.�������	1.�������	��./.�	���.��=�%���	
&��	./.P���.�������	1.�������	��./.��%����.��=�%���	
&��	./.������	.)��;	�1.�������	��./.�	���.��=�%���	

We can order the sequence alphabetically by writing this code:

*�� $�	� 2./.���� �.�� ����
���	�� ��&��	
�	�	"� �!

If run through the ����
��� method, the output looks like this:

&��	./.������	.)��;	�1.�������	��./.�	���.��=�%���	
&��	./.P���.�������	1.�������	��./.�	���.��=�%���	
&��	./.P���.�������	1.�������	��./.��%����.��=�%���	
&��	./.+��	�.?�*��1.�������	��./.����%	�
&��	./.+��	�.?�*��1.�������	��./.D	 �����
&��	./.���� .��������1.�������	��./.�	���.��=�%���	

OrderByDescending
If we use the �	�"	����� keyword, the query and output are as shown in
Listings 6.12 and 6.13.

Listing 6.12 Using the Keyword �	�"	����� in a Query

*�� $�	� 2./.���� �.�� ����
���	�� ��&��	.�	�"	�����
�	�	"� �!

Listing 6.13 The Output from the Query Shown in Listing 6.12

&��	./.���� .��������1.�������	��./.�	���.��=�%���	
&��	./.+��	�.?�*��1.�������	��./.����%	�
&��	./.+��	�.?�*��1.�������	��./.D	 �����
&��	./.P���.�������	1.�������	��./.�	���.��=�%���	
&��	./.P���.�������	1.�������	��./.��%����.��=�%���	
&��	./.������	.)��;	�1.�������	��./.�	���.��=�%���	

Ordering Operators 221



ptg

When translated into query method syntax, the query shown in Listing
6.12 looks like this:

*�� $�	� 2./.�����E��	�B ?	�"	�������./�.��&��	�!

The output from this query is identical to that shown in Listing 6.13.

ThenBy
In the queries shown in the previous two sections, we sorted on the &��	
field but ignored the �������	�� field. You can, in fact, sort on multiple
fields, or multiple keys, at the same time. Here is how it looks:

*�� $�	� R./.���� �.�� ����
���	�� ��&��	1.���������	��
�	�	"� �!

The output shown after the query is enumerated with a ���	�"� loop
reveals that the artists are listed alphabetically, and the instruments played
by Trane and Miles are also listed alphabetically:

&��	./.������	.)��;	�1.�������	��./.�	���.��=�%���	
&��	./.P���.�������	1.�������	��./.��%����.��=�%���	
&��	./.P���.�������	1.�������	��./.�	���.��=�%���	
&��	./.+��	�.?�*��1.�������	��./.D	 �����
&��	./.+��	�.?�*��1.�������	��./.����%	�
&��	./.���� .�������1.�������	��./.�	���.��=�%���	

You may have noticed that this section of the text is titled ��	�B . The
query I’ve shown, however, makes no mention of that word. The operator
��	�B becomes manifest only when you use method syntax rather than
query expressions. When translated into method syntax, the query looks
like this:

*�� $�	� R�./.�����E��	�B ��./�.��&��	����	�B ��./�.���������	���!

Now you can see the ��	�B operator! The output from this query is iden-
tical to that shown for the first query in this section.
The following syntax is also valid:

*�� $�	� S./.���� �.�� ����
���	�� ���������	��.�	�"	�����1.��&��	.�	�"	�����
�	�	"� �!

Chapter 6: Query Operators222



ptg

You can also write code that looks like this, but it does not produce the same
output as that derived from the previous query:

*�� $�	� <./.���� �.�� ����
���	�� ���������	��.�	�"	�����
���	�� ��&��	.�	�"	�����
�	�	"� �!

I’ll leave it up to you to open the OrderingOperators sample program that
accompanies this book and experiment with these various combinations to
see exactly how they work.

Reverse
Here is a simple example of how to use the Reverse operator:


�������.����./.�	� 
�������.(.01.21.3.4!

������	*	��	��!

���	�"� �*�� ��	�.�� �����
(

������	�5���	
��	���	��!
4

This code prints out the values 3, 2, 1.

Conversion Operators

LINQ provides several Conversion operators that help you transform one
list type into another. In this chapter I have shown that you can perform
many powerful operations using the operators implemented on �����	��
���	��. However, there will be times when you will want to transform the
results of a query into a more familiar collection type, or when you will
want to transform a type that does not support �����	����	�� into a type
that you can use in a LINQ query. These operators are designed to help you
achieve that goal. The Conversion operators are shown in Table 6.8.

Conversion Operators 223



ptg

Table 6.8 Conversion Operators

Operator Name Description

6�����	����	 Converts an �'�	� ���	�� to �����	����	��

��6��� * Converts an �����	����	�� into an 6��� 

��
���* Converts an �����	����	�� into a 
�����

��?�"������ * Converts an �����	����	�� into a ?�"������ 

��
��;�%* Converts an �����	����	�� into an �
��;�%

E�� %	 Converts only those items in a list that are of a particular
type

���� Provides LINQ with a way to cast from one type to another

The ��6��� , ��
���, ��?�"������ , and ��
��;�% operators are not
deferred. Like the element operators, they force immediate execution of a
query.

ToList
By default, a typical LINQ query returns a computation on an �����	��
���	��:

%����" �����	����	������.#	�5�*	���
(

*�� ���	�./.���� �.�� ������
��	�	 ��#	��	�.//.H�H
�	�	"� �!

�	���� ���	�!
4

You may have code that works with the common 
����� type, or you
may want to call methods such as 6��, which are unavailable on �����	��
���	��. To convert the results of your query to a 
�����, just write this
code:

%����" 
���������.��	��	
����"��� �	��	��
(

�	���� ����� �.�� ������

Chapter 6: Query Operators224



ptg

��	�	 ��#	��	�.//.�	��	�
�	�	"� �����
�����!

4

The 
����� type is very commonly used by C# programmers, so there
will obviously be many occasions when developers choose to work with
that type rather than �����	����	��. However, it also forces the execution
of the query. In other words, calling ��
��� puts an end to deferred execu-
tion and all the other benefits that come with functional or declarative code.
In saying this, I do not mean to discourage you from using the very useful
��
��� operator. I only ask that you be aware of the consequences of what
you are doing.

Remember that you can always use Visual Studio’s QuickInfo to retrieve
the type that a query returns. For instance, in Figure 6.5 you can see that this
call to ��
��� creates a 
���������.

Conversion Operators 225

Figure 6.5 Using QuickInfo to see the type returned by a call to the ��
����� operator.

As mentioned earlier, �����	����	��, sans its LINQ operators, is a
very simple type:

%����".���	���"	.�����	����	��.G.�����	����	
(

�����	�������.#	�����	�������!
4

You cannot, for instance, 6�� an item to an item of type �����	����	��:

�����	����	����.����./.���� �.�� ����	����	�����	�01.3�
��	�	 �..3
�	�	"� �!

�����6���3�!.@@.5���.���."��%��	G.�	��	�.��	�.���.	=����



ptg

The following code, however, does compile, and it behaves as expected:


�������.����./.����� �.�� ����	����	�����	�01.3�
��	�	 �..3
�	�	"� �����
�����!

�����6���R�!

����
���������!

ToArray
��6��� �� can convert a sequence into an array, as shown in Listing 6.14.
Thus, you can quickly convert the results of a LINQ query into an array of
������ or an array of ���	�	�.

Listing 6.14 You Can Use the ��6��� �� Method to Convert a Sequence—an
�����	����	��—into a More Traditional Array


�������.����./.�	� 
�������.(.01.21.3.4!

���,-.����./.����� ���.�� ����
��	�	 ���..3
�	�	"� �������6��� ��!

���	�"� �*�� ��	�.�� �����
(

������	�5���	
��	���	��!
4

Here we return not a computation, but an array of integers. Note that this
forces execution of the query, so the query is no longer deferred.

OfType
Here is the E�� %	�� operator, which converts only members of a collec-
tion that are of a specified type:

6��� 
��� ����./.�	� 6��� 
��� (.01.C����C1.21.C����C 4!

�����	����	�������.	����./.�����E�� %	���������!

*�� $�	� ./.���� ���.�� 	����
�	�	"� ���!

Chapter 6: Query Operators226



ptg

The output from this query looks like this:

����
����

Notice that the integers in the 6��� 
��� are both ignored, and that only the
strings are retrieved. This is because we asked explicitly for the members of
the list that are “of type” string:

�����E�� %	���������!

The point here is that an 6��� 
��� is not type-safe, because it is not a
generic collection. As a result, you can never completely trust that you
know what type is in an 6��� 
���. This operator can help relieve your
anxiety by ensuring that you will not end up with a runtime exception
when you stumble across an unexpected type that was infesting an
6��� 
���.

ToDictionary
Here is an example of how to use the ��?�"������ operator:

%����" *��� ��?�"������ ��
(

*�� $�	� ./.���� �.�� ������
�	�	"� �	� (.��&��	1.��#	��	�1.����.4!

*�� �����?�"������ ./.$�	� ���?�"������ ��./�.��&��	�!

������	�5���	
��	������?�"������ ,C6�������C-�!
������	�5���	
��	������?�"������ ,C
�*��.?�������C-�!

4

This code produces the following output:

(.&��	./.6�������1.#	��	�./.�1.��./.L.4
(.&��	./.
�*��.?�������1.#	��	�./.�1.��./.T.4

As you can see, the ��?�"������ �� operator converts the results of a LINQ
query into a generic dictionary. ��?�"������ takes as its sole argument a
lambda expression that defines what field you want to use as the D	 for the
dictionary.

Conversion Operators 227



ptg

Conversion Between IEnumerable and IQueryable
Although it is defined in the '�	� ���	 class, and not in ����	����	, this
discussion would be incomplete without mentioning the 6�'�	� ���	
operator and its companion, the 6�����	����	 operator. 6�����	����	 is
defined with the other LINQ to Object operators in the ����	����	 class.
Here is a simple example, showing how it works:

*�� $�	� ./.���� �.�� ������
��	�	 ��#	��	�.//.H�H
�	�	"� �!

*�� $�	�����	./.$�	� �6�'�	� ���	��!

������	�5���	
��	�$�	�����	��=%�	������&��	� %	�!

*�� $�	� 0./.$�	�����	�6�����	����	��!

����
����$�	� 0�!

The call to 6�'�	� ���	 converts an �����	����	�� into an �'�	� �
���	��. As mentioned earlier, this is most often helpful when you want to
create a LINQ provider. You can read about working examples of third-
party providers that ship with source in Chapter 17, “LINQ Everywhere.”

Chapter 6: Query Operators228

Anonymous Types Usually have a Limited Scope

The dictionary shown here uses the anonymous type returned from
the original LINQ query shown in the first two lines of our method.
This limits your options, because you can’t declare a dictionary of type
?�"������ + 6��� ����� %	�, so you can’t pass it outside the scope
of this method. You could get around this problem by altering the code
to return a ?�"������ ������ or ?�"������ ���	������� %	� and
then creating a �������� method for whichever type you used. An
example of this is shown in the RomanOperators program that comes
with this book. 



ptg

The sample code shown here demonstrates how to convert a variable of
type �'�	� ���	�� into an �����	����	��. Because �'�	� ���	��
implements the �����	����	�� interface, you probably won’t often need
to explicitly call this operator, but I mention it here for the sake of com-
pleteness.

Summary

In this chapter you have learned about the LINQ query operators. You have
had a look at nearly all the operators, and you should now have a secure
foothold in this landscape that will allow you to keep your balance in any
situation.

This is the end of the introductory part of this book. If you understand
the material that has been presented so far, you can consider yourself well
established as an intermediate-level LINQ developer. The next chapter
begins exploring LINQ to SQL, an important subject, and one that many
developers will use every day in their work.

When thinking back on the material that has been covered, it is impor-
tant to begin to understand how this style of programming differs from the
traditional imperative style that has dominated programming for the last
20 or 30 years. The declarative style of programming offers interesting and
exciting challenges for developers willing to explore this fascinating tech-
nology.

For additional information on the material covered in this chapter, see
the page in the online help called “The .NET Standard Query Operators”
at http://msdn.microsoft.com/en-us/library/bb394939.aspx. It is written
by Anders Hejlsberg and Mads Torgersen.

Summary 229

http://msdn.microsoft.com/en-us/library/bb394939.aspx


ptg

This page intentionally left blank 



ptg

7
A Quick Tour of LINQ to SQL

R E L AT I O N A L D ATA B A S E S contain important data that developers want
to query and retrieve in their programs. LINQ to SQL lets developers

access relational data as strongly typed objects by translating LINQ to SQL.
It also provides a simple API to save to the database all the changes made
to an object graph. Both query and changes are implemented by translating
LINQ and API calls to SQL commands. Hence, users get the productivity of
LINQ and the efficiency of the database query processor.

LINQ to SQL was created to bridge the differences between relational
data and CLR objects. SQL is a rich query language, but it is not well inte-
grated with programming languages such as C# and VB.NET. As a result,
database developers have always struggled with the “impedance mis-
match” between the relational data in their databases and the objects used
in their programs running on the .NET framework.

An obvious manifestation of the mismatch is found when developers
use string literals to embed SQL in their C# code. The resulting queries are
opaque to the compiler. As a result, they are not type-checked and cannot
benefit from IntelliSense.

231



ptg

Queries in strings are a serious problem, but it is only one manifestation
of a deeper problem. The perennial difference between SQL and objects
appears in many other forms:

• Relational tuples or records versus strongly typed objects

• Value-based identity versus reference-based identity

• Foreign key values versus object references

• Tabular results versus object graphs

Developers often have to think about the differences and write plumb-
ing code to integrate relational data into their programs.

Before LINQ, several Object Relational Mapping (ORM) APIs helped
transform the rows of data returned from a SQL query into objects and add
them to graphs that could be consumed by C# developers. These tools man-
aged identity when the user edited the data. They were smart enough to
turn the objects back into rows when it was time to save the changes to the
database. Despite their power, these tools continued to rely on string-based
or API-based queries that were not fully integrated with the programming
language. They also relied on awkward APIs that were poorly integrated
with the programming language.

LINQ provides a much simpler way to integrate relational queries with
the rest of the program. LINQ to SQL implements the LINQ standard query
pattern and addresses the differences just mentioned. As a result, develop-
ers get a type-safe, IntelliSense-aware query language and a programming
model for relational data that is fully integrated with their programming
language.

LINQ to SQL is designed to be nonintrusive. Classes mapped to rela-
tional data can be defined just like normal classes. Developers need only
decorate them with simple attributes to specify how properties correspond
to columns. It is not even necessary to do this by hand. A design-time tool
is provided to automate translating preexisting relational database schemas
into object definitions. Together, the runtime infrastructure and design-
time tools significantly reduce the workload for the database application
developer.

Chapter 7: A Quick Tour of LINQ to SQL232



ptg

Although this chapter uses C# to illustrate concepts and usage patterns,
LINQ to SQL is language-agnostic. It can be used in any managed language
that supports LINQ. In .NET Framework 3.5, similar code can be written
in VB.NET. Other languages are also adding LINQ support and will be able
to enable the use of LINQ to SQL.

Let’s look at the key components of a program that uses LINQ to SQL
to access relational data. We will begin by exploring a simple class that
maps to a table.

Mapping Classes to Tables

LINQ to SQL needs to know how your class maps to a database table. Then
you can use the LINQ to SQL API—primarily through a class called ?����
����	=�—to query for objects of a mapped class and save the changes.
We’ll look at a mapped class and the ?�������	=� class next.

Creating Entity Classes
The following code fragment shows a simple class, ������	�, that is
mapped to the Customers table in the Northwind sample database. The
namespaces added with the ����� declarations contain the LINQ to SQL
API used for data access and mapping, respectively.

����� � ��	��?����
��$!
����� � ��	��?����
��$�+�%%���!

,����	�&��	/C������	��C�-
%����"."���� ������	�
(

,���������)����� D	 /���	�-
%����" ������ ������	��?!

,������-
%����".������ ��� !

4

A class is mapped to a table by adding the ����	 attribute. The ����	

attribute has a &��	 property that specifies the name of the database table.
If no &��	 property is supplied, the database table name is assumed to be
the same name as the class. Instances of classes declared with the ����	

Mapping Classes to Tables 233



ptg

attribute are considered persistent and are known as entities; the classes
themselves are called entity classes.

In addition to mapping classes to tables, each field or property must be
mapped to a database column. This can be done by using the ������ attrib-
ute. If you omit this attribute when declaring a field of your class, this class
member is assumed to be unmapped or nonpersistent. This allows you
to choose which members are persistent and augment the data from the
database with additional, nonpersistent members. In the preceding class
declaration, both of the fields of the ������	� class are mapped to the cor-
responding columns in the Customers table.

The ������ attribute has a variety of properties you can use to customize
the exact mapping between fields and the database’s columns. One prop-
erty of note is the ��)����� D	 property. It indicates that the database col-
umn is a member of the table’s primary key.

As with the ����	 attribute, you need to supply information in the
������ attribute only if it differs from what can be deduced from your field
or property declaration. In this example, the �� property on the ������
attribute conveys that the ������	��? field is part of the table’s primary
key. Note that you don’t have to specify the exact name or type if the
defaults work.

The DataContext
The ?�������	=� is the main conduit by which you retrieve objects from the
database and submit changes back to the database. It encapsulates an
ADO.NET ����	"���� property that is initialized with an instance of a con-
nection object or a connection string that you supply in the constructor. You
can use the ?�������	=� to help retrieve customer objects by writing the
following code:

@@.?�������	=�.��;	�.�."���	"����.������
?�������	=� ��./.�	�.?�������	=��C"G99���������99������������C�!

@@.#	�.�.� %	�.����	.��.���.$�	��	�
����	������	��.������	��./.���#	�����	������	����!

@@.'�	� .���."�����	��.����.
�����
�'�	� ���	������	��.������	�'�	� ./.���� ".�� ������	��

��	�	 "���� .//.C
�����C
�	�	"� "!

Chapter 7: A Quick Tour of LINQ to SQL234



ptg

���	�"� �*�� "���.�� ������	�'�	� �
������	�5���	
��	�C��./.(L41.��� ./.(04C1."����������	��?1."������� �!

This code creates an instance of the ?�������	=� and then retrieves a set
of ������	� objects corresponding to rows where the ��� field is equal to

�����. The results bring back information for six customers:

��./.6�EX�1.��� ./.
�����
��./.B�B�J1.��� ./.
�����
��./.�E&�71.��� ./.
�����
��./.�6���1.��� ./.
�����
��./.&E���1.��� ./.
�����
��./.��J��1.��� ./.
�����

Looking more closely at this code, you can see that a database table is
represented as a property of type ����	��1 accessible via the #	�����	��
method using its entity class � to identify it:

����	������	��.������	��./.���#	�����	������	����!

����	�� is a LINQ to SQL class that implements the key LINQ inter-
face—�'�	� ���	��. That is how the LINQ query for customers from Lon-
don is implemented by LINQ to SQL.

Rather than use this code in the midst of your query, it is recommended
that you declare a strongly typed ?�������	=� instead of relying on the
basic ?�������	=� class and the #	�����	�� method. A strongly typed ?���
����	=� declares all ����	 properties as members.

%����" %������."����.&��������?�������	=� G.?�������	=�
(

%����" ����	������	��.������	��!

%����" &��������?�������	=�������� "���	"�����G.���	�"���	"�����.(4
4

The query for customers from London can then be expressed more
simply:

&��������?�������	=� ��./.�	�
&��������?�������	=��C"G99���������99������������C�!

�'�	� ���	������	��.������	�'�	� ./.���� ".�� ���������	��
��	�	 "���� .//.C
�����C
�	�	"� "!

Mapping Classes to Tables 235



ptg

A derived class such as &��������?�������	=� provides a strongly
typed view of your database. Henceforth, we will use the strongly typed
&��������?�������	=� class instead of the base ?�������	=� class. Also,
we will use a more terse way to declare the query variable—*��, where the
return type is obvious from the query expression. See the section “Type
Inference” in Chapter 4, “C# 3.0 Technical Overview,” for more details.

Working with Relationships

Objects are not islands. They are connected to other objects through rela-
tionships. A customer may have orders, an order may have order details, an
order detail may refer to a product that is being ordered, and so on. Rela-
tionships in relational databases typically are modeled as foreign key val-
ues referring to primary keys in other tables. To navigate between them,
you must explicitly bring the two tables together using a relational join
operation. Objects, on the other hand, refer to each other using property ref-
erences or collections of references navigated using “dot” notation. Obvi-
ously, dotting is simpler than joining, because you don’t need to recall the
explicit join condition each time you navigate. Defining relationship prop-
erties allows you to navigate using the dot, so you don’t have to use the
explicit join operator available in LINQ for the common cases.

Defining Relationships
For data relationships that will remain constant, it becomes convenient to
encode them as property references in your entity class. You can apply an
6���"������ attribute to a member used to represent such a relationship.
An association relationship frequently consists of a foreign key and a primary
key. Here is how to declare a class that captures the association between the
Customers table and the Orders table:

,����	�&��	/C������	��C�-
%����"."���� ������	�
(

,���������)����� D	 /���	�-
%����" ������ ������	��?!
���
%��*��	 ����� �	�E��	��.AE��	��!

Chapter 7: A Quick Tour of LINQ to SQL236



ptg

,6���"�������������	/CAE��	��C1.E��	�D	 /C������	��?C�-
%����" ����� �	�E��	��.E��	��.(

�	� (.�	���� �����AE��	��!.4
�	� (.�����AE��	���6������*���	�!.4

4
4

The ������	� class now has a property that declares the relationship
between customers and their orders. The E��	�� property is of type
����� �	� because the relationship is one-to-many—there may be many
orders for a customer. We use the E��	�D	 property in the 6���"������
attribute to describe the property in the related class that needs to be
matched to set up the association—in this case, the ������	��? member in
the E��	� class. We have omitted the ����D	 property, which lists the key
members on this side of the relationship. By default, it is inferred to be the
primary key for the containing type—������	��������	��? in this case.

Notice how this is reversed in the definition for the E��	� class:

,����	�&��	/CE��	��C�-
%����"."���� E��	�
(

,���������)����� D	 /���	�-
%����" ��� E��	��?!
,������-
%����" ������ ������	��?!
%��*��	 ����� �	�������	��.A������	�!
,6���"�������������	/CA������	�C1.����D	 /C������	��?C�-
%����" ������	� ������	�.(

�	� (.�	���� �����A������	������� !.4
�	� (.�����A������	������� ./.*���	!.4

4
4

The E��	� class uses the ����� �	� type to describe the relationship
back to the customer. The 6���"������ attribute for the ������	� property
specifies the ����D	 property to relate E��	� to its ������	�. In the class
mapped to table with the foreign key, ����D	 needs to be specified.

The ������	 property tells which private member is used to hold the
property’s value. This allows LINQ to SQL to bypass your public property
accessors. This is useful if you want LINQ to SQL to avoid any custom busi-
ness logic written into your accessors. If the storage property is not speci-
fied, the public accessors are used instead. You may use the ������	
property with ������ attributes as well.

Working with Relationships 237



ptg

As soon as you start introducing relationships into your entity classes,
the amount of code you need to write grows as you introduce support for
notifications and graph consistency. For instance, you might want to add
event handlers that are fired when properties are accessed. This kind of
work can become quite tedious if you have many fields in your tables. For-
tunately, easy-to-use tools can be used to generate all the necessary defini-
tions as partial classes, allowing you to use a mix of generated code and
custom business logic. In the rest of this chapter, we assume that a tool has
been used to generate a complete Northwind ?�������	=� and all entity
classes. Two commonly used tools called the Object Relational Designer
and SqlMetal are described later in this chapter.

Querying Across Relationships
Now that an association has been defined between the ������	� and E��	�

classes, you can use it when you write queries. To do so, simply refer to the
relationship properties defined in your class. In this case, *�� is not just a
matter of terseness or convenience; the result is an anonymous type. Hence,
no type name can be used in the declaration.

*�� ������	�'�	� ./.���� ".�� ���������	��
���� �.�� "�E��	��
��	�	 "���� .//.C
�����C
�	�	"� �	� (."�������	��?1.��E��	��?.4!

This query uses the E��	�� property to form the cross-product between
customers and their orders, producing a new sequence of ������	� and
E��	� pairs. The first two results are shown here:

������	��?/6�EX�........E��	��?/0L3<<
������	��?/6�EX�........E��	��?/0L3M3
���

It is also possible to do the reverse:

*�� ������	�'�	� ./.���� �.�� ���E��	��
��	�	.��������	����� .//.C
�����C
�	�	"� �	� (.��������	��������	��?1.�..�E��	��?.4!

Chapter 7: A Quick Tour of LINQ to SQL238



ptg

In this example, the orders are queried, and the ������	� relationship is
used to access and filter on the properties of the associated ������	� object.
The results are the same as before.

Modifying and Saving Entities

Querying is only one use of relational data. Applications often need to cre-
ate new relational data, modify existing data, and possibly delete some data
too. LINQ to SQL is designed to offer maximum flexibility in manipulat-
ing and persisting changes made to your in-memory objects. As soon as
entity objects are available, either by retrieving them through a query or
constructing them anew, you may manipulate them as normal objects in
your application, changing their values or adding them to and removing
them from collections as you desire. ?�������	=� tracks all your changes
and is ready to transmit them back to the database as soon as you are done.

The following example uses the ������	� and E��	� classes generated
by a tool from the metadata of the entire Northwind sample database. To
focus on the code for modifying entities, the class definitions are not shown.
In the example, two customers are retrieved—one for update and one for
deletion. A new order is created for insertion. All the operations are per-
formed on the objects and collections in memory. The changes take effect
in the database only when �����������	���is called.

Before running the following code, make a copy of the sample North-
wind database—in this case, the northwnd.mdf file. This will allow you to
play with the code and make changes without altering the original sample
database.

&��������?�������	=� ��./.�	�
&��������?�������	=��C"G99���������99������������C�!

@@.'�	� .���.�.�%	"���"."�����	�
������ ��./.C6
:D�C!
*�� "���./.���������	��������	�"./�."�������	��?.//.���!

@@.�����	.��	.���	.��.��	."����"�
"���������"�&��	./.C&	�.�����"�C!

Modifying and Saving Entities 239



ptg

@@.?	�	�	.��.	=������.������	�
������ ��2./.C:���6C!
*�� "���2./.���������	��������	�"./�."�������	��?.//.��2�!
���������	���?	�	�	E��������"���2�!

@@.��	��	.���.���.�.�	�.E��	�.��.E��	��."���	"����
@@.
�&'.��.�'
.���"�*	��.��	.�	�.��>	"�.���.���	��.��.���	��
E��	� ���./.�	� E��	� (.E��	�?��	./.?��	���	�&��.4!
"����E��	���6�������!

@@.6�;.��	.?�������	=�.��.��*	.���.��	."����	�
��������������	���!

When �����������	��� is called, LINQ to SQL automatically generates
and executes SQL commands in order to transmit the changes back to the
database. It is also possible to override this behavior with custom logic that
can optionally call a stored procedure, as described in Chapter 10.

This completes the lifecycle of objects: creating, reading (querying),
updating, and deleting. Collectively these operations are often known by
the acronym CRUD. Through language integrated queries and simple API,
LINQ to SQL provides CRUD operation support for relational data. This
support uses the mapping between classes and tables to generate the nec-
essary SQL to execute the operations in the database. We’ve looked at how
this mapping can be added to code using attributes. The next section shows
how the mapping can be created using a visual designer in Visual Studio.

Using the Graphical Designer for Mapping

Visual Studio 2008 includes a graphical designer, called the Object Rela-
tional Designer, that helps you map tables to classes. The following steps
and associated figures outline how you can build a mapping that can be
used with the queries in the previous sections:

1. Preparation: Using the View menu in Visual Studio, bring up Server
Explorer, as shown in Figure 7.1, and Solution Explorer. In the Server
Explorer pane, make sure that you can view the tables in your data-
base. Appendix A contains tips for connecting to a database.

Chapter 7: A Quick Tour of LINQ to SQL240



ptg

Figure 7.1 Server Explorer showing the Northwind database.

2. Adding a designer file (dbml): Right-click the project in Solution
Explorer and select Add, New Item, as shown in Figure 7.2. In the
Add New Item window, select Data in the Categories pane. In the
Templates pane, select LINQ to SQL Classes. Type in the appropriate
name (Northwind.dbml, as shown in Figure 7.3) and click Add. A
blank design surface appears for creating classes. The design surface
corresponds to a dbml file in Solution Explorer. The file captures the
subset of databases you have dragged and dropped on the design
surface and your customizations of the classes and mapping.

3. Mapping tables: Drag and drop tables from Server Explorer onto
the design surface. As a table is dropped onto the surface, the
designer creates a class corresponding to it, and the class is visible
on the design surface. You can edit the name and type of the class
members using the property grid. If a newly dropped table is related
to one of the previously dropped tables, the designer automatically
creates a relationship, as shown in Figure 7.4. For example, when the
Customers and Orders tables from the Northwind database are
dragged and dropped, a relationship between the corresponding
generated ������	� and E��	� classes is inferred.

Using the Graphical Designer for Mapping 241



ptg

Figure 7.2 Adding a new item to the project.

Chapter 7: A Quick Tour of LINQ to SQL242

Figure 7.3 Adding a dbml file to create a mapping.



ptg

Figure 7.4 Classes generated from tables.

4. Generating classes: Save the file to trigger generation of C# (or
VB.NET) code. The generated file appears in Solution Explorer with
a designer.cs extension—Northwind.designer.cs in Figure 7.4. Now
the classes are ready for use. We will cover the details of the gener-
ated code in the following chapters.

5. Using the generated code: The generated code can be used in lieu of
the hand-crafted classes &��������?�������	=�, ������	�, and
E��	� to run the queries previously defined.

Using the Command-Line Tool for Mapping

The graphical designer provides an interactive way to customize mapping.
However, sometimes it is more convenient to have a command-line tool for
doing quick generation of classes and mapping. This allows additional
options to be used for customization in an automated build process. It also
provides a quicker way to generate an object model for an entire database.

The Windows SDK Version 6.0 includes a command-line tool, Sql-
Metal.exe, that can be pointed at a database for quick generation of a set of

Using the Command-Line Tool for Mapping 243



ptg

mapped classes. This tool can be found in the directory Program Files\
Microsoft SDKs\Windows\V6.0A\Bin\. The following line shows a sam-
ple usage for generating C# classes from the Northwind database using
SQL Server 2008 Express. The @K switch lists all the options that the tool
supports; we will not cover them in depth here.

�$�+	���.@�	�*	�G�9�$�	=%�	��.@�������	G���������.@"��	G����������"�

The SqlMetal tool can also be used in two stages—extracting the data-
base schema to produce an intermediate dbml file, and generating code
from the dbml file. SqlMetal and the designer share a common code gener-
ator that consumes a dbml file and produces C# or VB.NET classes with
mapping. Hence, the code and mapping produced by the two tools are con-
sistent. So, you can easily use a designer-generated dbml file to produce
code with SqlMetal.

SqlMetal also allows you to create an external XML mapping file instead
of mapping attributes. This capability currently is unavailable in the
designer. The following is an example of how you can create a dbml file for
further manipulation and then create an external mapping file for North-
wind. In this case, the classes in the generated file northwind.cs do not con-
tain mapping attributes; the mapping in northwind.xml can be
manipulated separately.

�$�+	���.@�	�*	�G�9�$�	=%�	��.@�������	G���������.@����G��������������
���.����.���	."��.�	."����	�.����.�����	�.����.��.I+
.	�����.��.�		�	�.���
�$�+	���.@"��	G���������"�.@��%G����������=��.��������������

The details of an external mapping file and its usage are discussed
futher in Chapter 11.

Summary

This chapter has offered a quick tour of basic LINQ to SQL features. In a
nutshell, LINQ to SQL lets you query relational data as objects using the
LINQ query pattern. It provides a simple but expressive API to save the
changed objects. It works with entity classes mapped to tables and rela-
tionships between classes mapped to foreign keys in the database. You can

Chapter 7: A Quick Tour of LINQ to SQL244



ptg

write your own classes and map them or use a convenient graphical
designer or a command-line tool to generate mapped classes from an exist-
ing database. Next we’ll cover the essential LINQ to SQL concepts and fea-
tures in greater depth, starting with the reading of objects.

Summary 245



ptg

This page intentionally left blank 



ptg

8
Reading Objects with LINQ
to SQL

L E T’S E X PA N D O U R quick tour to learn further details of querying and
retrieving objects using LINQ to SQL. LINQ to SQL implements the

standard query operators described in Chapter 5, “Writing Query Expres-
sions,” to retrieve objects from a relational database. It uses the mapping
of classes to tables to translate LINQ queries to SQL commands and then
materializes objects from the rows returned. The objects can be related to
each other in a graph of objects that is managed by LINQ to SQL on your
behalf.

Using LINQ and Databases

Relational databases contain a large amount of valuable data that applica-
tions want to use. An application written in a language such as C# can sig-
nificantly benefit from querying and transforming this data using the
power of LINQ. A straightforward but naive way of utilizing the LINQ
capabilities would be to bring all the rows from one or more tables in mem-
ory as objects and then apply standard query operators to get exactly the
objects you want. This would be very inefficient for two reasons: First, a
large amount of data that is not a part of the query result may have to be

247



ptg

brought from the database, wasting bandwidth, memory, and processing.
Second, it would not utilize the power of the relational database query
processor to optimize queries.

Relational databases such as Microsoft SQL Server provide very power-
ful query processors. The query processor includes a sophisticated opti-
mizer that can find an efficient execution plan for complex queries and
large amounts of data using indexes, statistics, and advanced algorithms.
However, it is designed for processing SQL, which is all about tables and
columns. If we want to get objects by querying this data using LINQ, we
need to find a way to translate LINQ to SQL. As the name suggests, that is
what LINQ to SQL is designed for. It provides the richness of LINQ while
executing queries using the power of relational databases.

Translating LINQ to SQL
The magic of translating LINQ to SQL involves a beautiful dance between
the C# compiler and the LINQ to SQL runtime that is a part of the .NET
framework. The C# compiler translates LINQ queries to expression trees at
compile time. Recall that this is how code is treated as data for easy com-
position and convenient collaboration among components. At runtime,
LINQ to SQL translates the expression tree to SQL, executes the generated
SQL, and converts the records obtained into objects. It uses the relational
ADO.NET APIs to execute SQL and return results as records. Figure 8.1
shows this interaction between the components.

Chapter 8: Reading Objects with LINQ to SQL248

Compiler

LINQ Query (.cs)

Expr tree (.dll/.exe)

LINQ to SQL

Expr tree

SQL Rows

Objects

Database

Figure 8.1 Compile-time and runtime handling of LINQ queries.



ptg

Consider the following simplified ������	� and &��������?�������	=�

classes to understand query translation:

����� � ��	��?����
��$!

,����	�&��	/C������	��C�-
%����"."���� ������	�
(

,���������)����� D	 /���	�-
%����" ������ ������	��?!
,������-
%����".������ ��� !
,������-
%����".������ ������ !

4

%����".%������."���� &��������?�������	=� G.?�������	=�
(

%����" ����	������	��.������	��!

%����" &��������?�������	=�������� "���	"�����G.���	�"���	"�����.(4
4

You can use a very convenient logging feature of the ?�������	=� to
monitor the generated SQL as follows. You need to use the appropriate con-
nection string for the Northwind database on your machine.

&��������?�������	=� ��./.�	� &��������?�������	=��"���	"�����������!
���
��./.������	�E��!

Using this logger, you can see the translation of the following LINQ query
for a ������	� class with ������	��?, ��� , and ������ properties
mapped to respective columns in the Northwind database:

*�� ������	�'�	� ./.���� ".�� ���������	��
��	�	 "������� .//.C�%���C
�	�	"� "!

The following SQL statement shows what is sent to the database for exe-
cution when the previous LINQ query is translated. The literal �%��� is
passed in as a parameter and is shown as a comment in the formatted SQL.

��
���.,�L-�,������	��?-1.,�L-�,��� -1,�L-�,������ -
:�E+.,���-�,������	��-.6�.,�L-
57���.,�L-�,������ -./.F%L
��.F%LG.��%��.&J������.���U	./.<!.)�	"./.L!.�"��	./.L�.,�%���-

Using LINQ and Databases 249



ptg

Interestingly, the C# compiler knows nothing about LINQ to SQL. It
simply determines the right extension method corresponding to the
����	������	�� property in the ?�������	=� and the query operators and
produces an expression tree. LINQ to SQL takes the expression tree and
looks up the mapping to translate from expression tree to SQL. The map-
ping also helps LINQ to SQL materialize objects from the retrieved records.
Thus, LINQ to SQL is one of many possible consumers of expression trees
that uses its own mapping information to bring relational data smoothly
into the world of LINQ.

Understanding the Nuances of Translation
LINQ queries can contain all kinds of expressions, like the rest of the C#
program. In the previous query, the expression involved comparing the
member ������	����� with a constant. You also could have used another
comparison operator or logical operators to form a more complex expres-
sion. Likewise, you could imagine using a method call as well. However,
LINQ to SQL has to be able to translate the expression to its SQL counter-
part. Hence, certain constraints on the expressions are supported. Three key
categories of methods are supported:

• A rich subset of .NET framework methods and C# language
operators

• Additional LINQ to SQL utility methods

• Mapped methods wrapping user-defined functions

The first category covers methods on the types defined in the base class
library, such as ������ and ?��	���	. LINQ to SQL supports most com-
monly used methods that can be reasonably and efficiently translated into
SQL. For example, the following query returns customers based on a text
search for cities starting with the string C+C. It uses the method
�������������5����� to do the text matching.

*�� ������	�'�	� ./.���� ".�� ���������	��
��	�	 "���� �������5����C+C�
�	�	"� "!

Chapter 8: Reading Objects with LINQ to SQL250



ptg

The ������5����� method in this LINQ query is translated into the 
�;	
operator in SQL as follows:

��
���.,�L-�,������	��?-1.,�L-�,��� -1.,�L-�,������ -
:�E+.,���-�,������	��-.6�.,�L-
57���.,�L-�,��� -.
�D�.F%L
��.F%LG.��%��.&J������.���U	./.2!.)�	"./.L!.�"��	./.L�.,+8-

The second category covers a few nifty T-SQL functions that don’t have
direct counterparts in the .NET framework. LINQ to SQL adds a small
number of static methods specific to SQL Server to the namespace
� ��	��?����
��$��$����	�� in the �$�+	����� class. The methods and
their overloads cover the following:

• The 
�D� operator in T-SQL

• The difference between ?��	���	 types in different units

• The raw length of a byte array, its LINQ to SQL counterpart—binary
and string

Here is an example of such a method. It requires an additional �����
statement.

����� � ��	��?����
��$��$����	��!
���
*�� ����'�	� ./.���� ".�� ���������	��

��	�	 �$�+	������
�;	�"���� 1.C8��8C�
�	�	"� "!

The third category covers scalar user-defined functions (UDFs) from the
database mapped to a C# method. The details of this subject are covered in
Chapter 10. Think of a method mapped to a UDF as a method for which a
call can be translated into the corresponding UDF call while generating
SQL. LINQ to SQL takes care of binding the parameters appropriately.

LINQ to SQL cannot translate a method or operator that does not belong
to any of these categories. There is no direct way to take arbitrary C# code
and its execution environment and produce corresponding SQL. As men-
tioned in the preceding section, the C# compiler does not know about LINQ
to SQL or its translation constraints. Hence, the compiler may successfully
translate a LINQ query containing such a call to an expression tree.

Using LINQ and Databases 251



ptg

However, LINQ to SQL throws an exception at runtime when it attempts to
translate the method call from the expression tree to SQL. This is the upshot
of the clean separation between expression tree generation at compile time
and its translation at runtime. Although LINQ queries provide a significant
amount of protection through compile-time checking compared to SQL,
they do not insulate you from runtime exceptions.

Chapter 8: Reading Objects with LINQ to SQL252

The Compiler Creates an Expression Tree; LINQ to SQL
Creates SQL

LINQ to SQL uses mapping to translate the class members to database
column references or SQL functions. It also understands common
framework methods and provides additional utility functions similar
to SQL functions. The compiler catches your mistakes if you don’t use
the right member reference or have a type mismatch. LINQ to SQL
throws an exception if you use an unmapped class, property, or
method. In either case, the error you get is in terms of your object
model, so your life is simpler while debugging.

Retrieving Objects: Entities and Projections
As you saw in the preceding chapter, the ������	� class is mapped to the
Customers table in the Northwind database so that LINQ to SQL can
retrieve ������	� instances from the rows retrieved from the Customers
table. As in the case of the Customers table, a table often has a primary key
or a unique key. When a class is mapped to such a table, it is called an entity
class or entity type, and its instances are called entities. In the example in the
preceding chapter, the Customer class is an entity class, and ������	�
objects are entities because the ������	��? member is mapped to the pri-
mary key column with the same name in the following mapping:

,����	�&��	/C������	��C�-
%����"."���� ������	�
(

,���������1	���	�2��.�	���-
%����" ������ ������	��?!
,������-
%����".������ ��� !
,������-
%����".������ ������ !

4



ptg

This class is mapped to a table in Northwind that has a schema with
a primary key ������	��?. Hence, each entity has a unique value for the
������	��? member. A query to retrieve entities simply selects the results
of the entity type as follows:

*�� ����� '�	� ./.���� ".�� ���������	��
��	�	 "������� .//.C�%���C
�	�	"� "!

E�>	"�?��%	��5���	������ '�	� 1L�!

ObjectDumper is a utility for printing object graphs to the console in a
stylized fashion. It ships as a sample with Visual Studio 2008. You need to
build it into a DLL so that it can be added as a reference in your project. You
can think of E�>	"�?��%	��5���	�� as an object-graph-enabled version of
������	�5���	
��	��. The optional second argument lets you control the
level of navigation in the object graph. So the default value L doesn’t go
beyond top-level ������	� entities, and value 0 lets you see ������	��
E��	�� as well. Many results in this book, such as the following one, are
output by ObjectDumper.

The execution of the preceding query produces the following results:

������	��?/BE
�?........��� /+�����.....������ /�%���
������	��?/:���6........��� /+�����.....������ /�%���
������	��?/#6
�?........��� /B��"	����..������ /�%���
������	��?/#E?E�........��� /�	*����....������ /�%���
������	��?/�E+�N........��� /+�����.....������ /�%���

In this result, each Customer entity represents a unique customer iden-
tified by a CustomerID. Hence, each entity has identity and can be updated.
We will consider more implications of identity in the following sections, but
first let’s look at objects that don’t have identity.

Sometimes we are interested in only a subset of the data. For example,
to find out all the cities and countries where we have customers, the fol-
lowing class and query can be used. The query uses the �	�	"� syntax
available in LINQ to project only the interesting members:

%����"."����.������	���� ����
(

%����".������ ��� !
%����".������ ������ !

4

Using LINQ and Databases 253



ptg

*�� )��>	"����'�	� ./.���� ".�� ���������	��
��	�	 "������� .//.C�%���C
�	�	"� �	� ������	���� ���� (

��� ./."���� 1
������ ./."������� 

4!

This query is translated into the following SQL. Notice that exactly the
projected information is retrieved. ������	��? is not projected, so it is omit-
ted from the SQL ��
��� clause.

��
���.,�L-�,��� -1.,�L-�,������ -
:�E+.,���-�,������	��-.6�.,�L-
57���.,�L-�,������ -./.F%L
��.F%LG.��%��.&J������.���U	./.<!.)�	"./.L!.�"��	./.L�.,�%���-

This code produces the following results:

��� /+�����.....������ /�%���
��� /+�����.....������ /�%���
��� /B��"	����..������ /�%���
��� /�	*����....������ /�%���
��� /+�����.....������ /�%���

The same query could also be performed using an anonymous type as
follows:

*�� )��>	"����'�	� ./.���� ".�� ���������	��
��	�	."������� .//.C�%���C
�	�	"�.�	�.(

��� ./."���� 1
������ ./."������� 

4!

In either case, we get a set of objects of type ������	���� ���� or an
anonymous type—both subsets of the entity type. The objects represent just
a projection and don’t have any identity by themselves. The translated SQL
queries for these objects include appropriate filters and projections to
retrieve a minimal amount of data from the server.

Thus, LINQ to SQL can be used to retrieve entities or projections effi-
ciently. It lets you return entities or shape them to bring a subset as neces-
sary. The next section further explores the difference between the two.

Chapter 8: Reading Objects with LINQ to SQL254



ptg

The Importance of Object Identity

When we retrieve a Customer entity, we may want to update it. If multiple
copies of the entity exist—more than one instance with the same primary
key values—confusion can occur about which instance is the authoritative
one for the purpose of updates. Hence, it is important to ensure that no
duplicates exist.

However, multiple queries can return overlapping results. For example,
a query for customers with IDs that start with the letter B and customers
from Spain overlap, as the previous query results show.

In this case, each of the two queries must return the appropriate results,
and yet we must not have any duplicates for the customer with ID BE
�?.
LINQ to SQL implements object identity to ensure that the entity created for
ID BE
�? when the first query is executed is reused in the result for the sec-
ond query. Object identity is scoped to a ?�������	=� instance. Within a
?�������	=� instance, no more than one object reference is associated with
a primary key value of a given type. Conceptually you can think of each
?�������	=� instance maintaining a hash table of object references indexed
by the primary key values. For each row returned by the database, if the
key value is not found in the hash table, a new entity instance with that key
value is created and inserted into the hash table. Thereafter, if a row with
the same key value is returned, the row is discarded, and the existing entity
with the same key value is returned. In the previous example, conceptually,
the first time a row with ID BE
�? is returned, a Customer entity with that
ID is created and inserted into the logical hash table. Thereafter, the same
������	� instance is returned for a row with ������	��? BE
�?; additional
instances are not created for that ID by that ?�������	=� instance.

Object reference is how identity is expressed in the .NET framework.
Primary or unique key value is how identity is expressed in relational data-
bases. LINQ to SQL bridges the two concepts of reference identity and
value identity across the object-relational divide. The ��)����� D	 prop-
erty of the ������ mapping attribute describes the value identity for the
containing entity class. LINQ to SQL maintains the reference identity
within the scope of a ?�������	=� instance by not creating another entity
instance (such as a different object reference) for a given identity value
defined by the database columns.

The Importance of Object Identity 255



ptg

A primary key may be composed of one or more columns. Each member
mapped to a primary key column must have ��)����� D	 set to ���	. If
the primary key has multiple columns, such a key is often called a com-
posite key. LINQ to SQL uniformly supports single-column and compos-
ite keys to ensure object identity.

Object identity is a property of an entity. It is not applicable to projec-
tions because projections don’t have a well-defined identity. The query
from the previous section for city information returns duplicate results con-
taining multiple objects with the same ��� , ������ value.

Object identity relies on immutability of members mapped to a unique
key in the database. If these members that form the identity are changed,
a loss of identity would occur. If the customer ID is changed from BE
�? to
something else, it is no longer the same customer. Hence, changes to mem-
bers mapped to keys are not permitted. Any attempt to change key values
results in undefined behavior. If you do need to update a primary key
value, you can think of it as a pair of operations—deletion of the entity with
the old key value and creation of a new entity with the new key value.
However, for an entity, the identity must not change over the life of the
entity.

This key concept of object identity allows updates and also enables rela-
tionships to be used effectively.

Chapter 8: Reading Objects with LINQ to SQL256

Consider Entity, Identity, and Updatability

An entity has identity defined by one or more key members. LINQ to
SQL ensures that duplicate entity instances are not created for a given
key value. Hence, entities typically are updatable. Arbitrary projec-
tions produce results of nonentity types and are not updatable.

Using Relationships

Entities are connected to each other through various relationships. An
Order entity is associated with a Customer entity; an Employee entity is
associated with other Employees through a manager-employee relation-
ship. LINQ to SQL provides an easy way to represent such relationships
and to effectively use them in queries and updates.



ptg

The relationship between objects is usually a property that references a
related object, such as E��	��������	�. In the case of a collection of related
objects, the relationship is represented as a collection property containing
references to related objects. For example, ������	��E��	�� usually is a col-
lection of references to E��	� objects.

In relational databases, relationships usually are represented through
keys. The relationships are often maintained using foreign key constraints.
For example, in the Northwind database, the Orders table has a foreign key
������	��? referencing the ������	��? column in the Customers table.

LINQ to SQL bridges the database and object concepts of relationships
using the 6���"������ attribute. A property referencing a related entity or
entities is attributed as follows:

,����	�&��	/C������	��C�-
%����"."���� ������	�
(

,���������)����� D	 /���	�-
%����" ������ ������	��?!
,������-
%����" ������ ������ !
���
,6���"�������E��	�D	 /C������	��?C�-
%����" 
���E��	��.E��	��!

4

,����	�&��	/CE��	��C�-
%����"."���� E��	�
(

,���������)����� D	 /���	�-
%����" ��� E��	��?!
,������-
%����" ������ ������	��?!
���
,6���"�����������D	 /C������	��?C1.��:��	���D	 /���	�-
%����" ������	� ������	�!

4

The 6���"������ attribute provides information about the members in
the containing class and the related class that map to the key values defin-
ing the relationship in the database. In the previous example, ������	��?
names the class members mapped to the primary key of the Customers
table and the foreign key in the Orders table. ����D	 refers to the key in the
containing class, and E��	�D	 refers to the key member in the other,

Using Relationships 257



ptg

related class. The ��:��	���D	 attribute indicates that this relationship is
enforced as a foreign key relationship in the database.

This relationship mapping can be used for querying as follows, with a
few sample results shown:

*�� E��	��'�	� ./.���� �.�� ���E��	��
��	�	 ��������	�������� .//.C�%���C
�	�	"� �	� (.��E��	��?1.��������	��������	��?.4!

E��	��?/0L32S...������	��?/BE
�?
E��	��?/0LML0...������	��?/BE
�?
���

In this query, we can easily “dot through” the relationship in ��	�	 and
�	�	"� expressions. ��������	�������� refers to a property of the related
entity Customer that can be referenced through the range variable � of type
E��	�. Likewise, ��������	��������	��? accomplishes similar navigation.
This is the real power of object relational mapping—an explicit join between
the Customers and Orders tables is no longer needed. The association map-
ping combined with the power of LINQ makes it easy to write queries sim-
ply by using the “power of the dot” in the object model. Any joins that are
required are handled by LINQ to SQL under the covers. The developer can
just keep using dot notation to access the object and its properties. This 
is true whether they are mapped to a column in the same table, such as
Order.OrderID, or whether they are mapped to a different table, such 
as Order.Customer.Country, which is mapped to the Customers table. 
Collection properties can be used similarly as follows, with the output
shown at the end:

*�� ������	�'�	� ./.���� ".�� ���������	��
��	�	 "������� .//.C�%���C \\."�E��	���6� ��
�	�	"� "!

������	��?/BE
�?........������ /�%���...���
������	��?/#6
�?........������ /�%���...���
������	��?/#E?E�........������ /�%���...���
������	��?/�E+�N........������ /�%���...���

The only additional thing to keep in mind is that a collection valued
property must be used with operators that work on collections. For example,

Chapter 8: Reading Objects with LINQ to SQL258



ptg

the previous query uses the 6� �� operator to see if the collection has any
orders. A collection property cannot be used like the property of an entity
type. You cannot directly index an E��	� instance from the collection and
navigate to its property. There is a difference between the members of
�����	����	E��	�� versus E��	�. Fortunately, IntelliSense is very helpful
in this case as well. The completion list shows the available set of members,
as shown in Figure 8.2.

Using Relationships 259

Figure 8.2 The completion list for a collection property.

Collection-valued properties may be used in the result of a query as well.
SQL is designed for the relational domain; hence, the results in SQL are rec-
tangular. If you want Customers and Orders, the result is tabular, with the
customer information repeated for each order belonging to the customer.
LINQ is designed for the object domain. Therefore, hierarchies of objects are
naturally available in the result displayed using the ObjectDumper:

*�� ������	�'�	� ./.���� ".�� ���������	��
��	�	 "������� .//.C�%���C \\."�E��	���6� ��
�	�	"� �	� (."�������	��?1."�E��	��.4!

������	��?/BE
�?........E��	��/���
E��	��?/0L32S...������	��?/BE
�?.���
E��	��?/0LML0...������	��?/BE
�?.���
E��	��?/0LQTL...������	��?/BE
�?.���

������	��?/#6
�?........E��	��/���
E��	��?/0L3SS...������	��?/#6
�?.���
���



ptg

Joining Tables
Navigation based on mapped relationships is intended to cover most of the
common scenarios for queries that relate two tables. The LINQ P��� oper-
ator is available in addition to navigation. Consider querying for Customer
and Suppliers in the same city in Northwind. Although there is no naviga-
tion property to go between Customers and Suppliers, LINQ to SQL allows
the use of the P��� standard query operator as follows:

*�� ������%%'�	� ./.���� �.�� �����%%��	��
)��� ���� �!$�������	�
�� ����� .	$���� "���� 
�	�	"� �	�
(

��%%��	�./.�����%�� &��	1
������	�./."����%�� &��	1
��� ./."���� 

4!

This LINQ query is translated into SQL’s inner join as follows:

��
���.,�L-�,���%�� &��	-.6�.,��%%��	�-1.,�0-�,���%�� &��	-.6�
,������	�-1.,�0-�,��� -

:�E+.,���-�,��%%��	��-.6�.,�L-
�&&��.PE�&.,���-�,������	��-.6�.,�0-.E&.,�L-�,��� -./.,�0-�,��� -

This query eliminates suppliers that are not in the same city as some cus-
tomers. But sometimes you don’t want to eliminate one of the entities in an
ad hoc relationship. The following query lists all suppliers, with groups of
customers for each supplier. If a particular supplier does not have a cus-
tomer in the same city, the result is an empty collection of customers corre-
sponding to that supplier. Note that the results are not flat—each supplier
has an associated collection. Effectively, this provides a group join. It joins
two sequences and groups elements of the second sequence by the ele-
ments of the first sequence. Let’s use an overload of the E�>	"�?��%	��
5���	�� call to drill down into the supplier and the corresponding group of
customers:

*�� ������%%'�	� ./.���� �.�� �����%%��	��
>��� ".�� ���������	��
�� ����� .	$���� "���� .���� �"����
�	�	"� �	� (.�1.�"����.4!

E�>	"�?��%	��5���	�������%%'�	� 1.0�!

Chapter 8: Reading Objects with LINQ to SQL260



ptg

Such a group join is translated into SQL’s left outer join as shown in the
following code. The long projection lists for each table are truncated to
make the generated query easier to read. The SQL aggregate count helps
LINQ to SQL build the collections of ������	�s for the join predicate—in
this case, ��� .

��
���.,�L-�,��%%��	��?-1.,�L-�,���%�� &��	-1.���.1
,�0-�,�����"�&��	-.6�.,�����"�&��	2-1.���.1
�

��
���.�EX&��O�
:�E+.,���-�,������	��-.6�.,�2-
57���.,�L-�,��� -./.,�2-�,��� -

�.6�.,*���	-
:�E+.,���-�,��%%��	��-.6�.,�L-

�:�.EX���.PE�&.,���-�,������	��-.6�.,�0-.E&.,�L-�,��� -./.,�0-�,��� -
E�?��.BN.,�L-�,��%%��	��?-1.,�0-�,������	��?-

Group joins can be extended to multiple collections as well. The follow-
ing query extends the preceding query by listing employees who are in the
same city as the supplier. Here, the result shows a supplier with (possibly
empty) collections of customers and employees:

*�� ��%������%%'�	� ./.���� �.�� �����%%��	��
>��� ".�� ���������	��
�� ����� .	$���� "���� .���� �"����
>��� 	.�� �����%�� 		�
�� ����� .	$���� 	���� .���� �	�%�
�	�	"� �	� (.�1.�"����1.�	�%�.4!

The results of a group join can also be flattened. The results of flatten-
ing the group join between suppliers and customers are multiple entries for
suppliers with multiple customers in their city—one per customer. Empty
collections are replaced with nulls. This is equivalent to a left outer equijoin
in relational databases.

*�� ������%%'�	� ./.���� �.�� �����%%��	��
>��� ".�� ���������	��
�� ����� .	$���� "���� .���� �"
���� =.�� �"�?	���������%� ��
�	�	"� �	�
(

��%%��	�./.�����%�� &��	1
������	�./.=����%�� &��	1
��� ./.=���� 

4!

Using Relationships 261



ptg

The generated SQL query contains a simple left outer join, as expected.

��
���.,�L-�,���%�� &��	-.6�.,��%%��	�-1
,�0-�,���%�� &��	-.6�.,������	�-1
,�0-�,��� -.6�.,��� -

:�E+.,���-�,��%%��	��-.6�.,�L-

�:�.EX���.PE�&.,���-�,������	��-.6�.,�0-
E&.,�L-�,��� -./.,�0-�,��� -

Thus, >��� is an additional tool for more complex relationships that are not
mapped to navigational properties. It complements the more commonplace
use of much simpler navigational properties. It can produce hierarchical or
flattened results.

Chapter 8: Reading Objects with LINQ to SQL262

Use the Power of the Dot

Where a mapped relationship is available, use the dot and navigate to
related entities through relationship properties instead of explicitly
using the join operator in the query. Unlike SQL, LINQ can produce
hierarchies as results, so you can use collection valued properties in the
results of a query, too. Pay special attention to the IntelliSense com-
pletion list shown after you type a period following a relationship
property. This will help you avoid mistakenly using a collection like an
entity.

Mapping Different Types of Relationships
The ������	�-E��	�s example has a one-to-many relationship. There may
be many orders for a given customer, but no more than one customer exists
for a given E��	�. LINQ to SQL also supports the relatively less common
one-to-one relationship, such as a Spouse for an Employee.

In a third kind of relationship called many-to-many, such as E��	�–
)����"�, an order may cover multiple products, and a product is included
in multiple orders. In relational databases, such a relationship typically is
normalized through a “link table” or a table in the middle. The Order
Details table in the Northwind database relates orders and products by
including foreign keys from both the related tables. However, such rela-
tionships often have some important additional data in the link table. For
example, Order Details specifies the quantity, price, and so on. Hence, in the



ptg

interest of simplicity, LINQ to SQL supports the many-to-many relation-
ship as a pair of one-to-many relationships—E��	�–E��	�A?	���� and
)����"�–E��	�A?	����. This allows the properties on the relationship
entity to be naturally modeled, such as E��	�A?	�����)��"	. However,
regardless of the presence of the additional properties, the class mapped to
the link table is required in LINQ to SQL. Even if you do not intend to map
E��	�A?	�����)��"	, E��	�A?	���� class cannot be skipped with just
E��	��)����"�� and )����"��E��	�� collections.

As previously shown, the mapping for relationships can be written by
hand. However, the designer makes relationships even simpler. When a
pair of related tables are dragged and dropped onto the designer surface,
the designer infers the relationship between them based on foreign keys in
the database. It generates the necessary members and mapping automati-
cally. The relationship between the ������	� and E��	� classes is repre-
sented by an arrow between the classes, as shown in Figure 8.3.

Using Relationships 263

Figure 8.3 The relationship between entity classes.

The relationship represented by the arrow can be selected and edited
through an association editor or the property grid. The ���������� prop-
erty in the grid indicates whether the relationship is one-to-many or one-
to-one.



ptg

The direction of the arrow represents the parent-to-child direction. Fol-
lowing the Entity-Relationship model used for database modeling, the
entity containing the foreign key is called the child, and the entity identified
by the foreign key is called the parent. In the ������	�–E��	� relationship
shown in the figure, the arrow is from the parent, ������	�, to the child,
E��	�. By default, the designer creates a relationship property on each end
of a relationship. The property in a child entity referencing the parent entity
is required. The reverse property in the parent entity identifying the chil-
dren or child is optional and can be removed.

Relationships allow you to think about your object model as a connected
graph. LINQ to SQL operates on such a connected graph while generating
SQL to operate on underlying tables joined using keys. Using the dot to
refer to related entities in queries is one direct benefit of the object graph
model. Another benefit is the ability to load the target of a relationship.
Next we’ll look at the options available for loading related entities.

Loading Options

Which objects are needed for processing often depends on some user action
or business logic. Consider an example in which a set of orders is displayed
to a user. The user, based on some criteria, may pick a particular Order entity
to drill into. At that point, the Order_Detail entities related to that specific
Order are needed. When the set of orders was initially retrieved, the specific
Order entity of interest may not have been known. In such a case, it is inter-
esting to be able to load the Order_Details in a deferred or lazy or on-demand
fashion. The same applies even when there is business logic in place of a user
that determines if further drill-down is needed for a subset of entities.

Deferred Loading
LINQ to SQL enables deferred loading through simple navigation. For a
given Order, its E��	�A?	����� collection may be empty when the E��	�
is first loaded. But when the collection is first iterated, LINQ to SQL fires off
a query to load the collection. After it is loaded, the collection is then avail-
able for future use without requiring another query. A small delay involved
in executing the query aside, the E��	�A?	����� collection property
behaves as if it is available. If it is never iterated, the corresponding query

Chapter 8: Reading Objects with LINQ to SQL264



ptg

is never executed, and unnecessary transfer of data is avoided. You can
imagine the savings if a thousand orders, each with dozens of details, are
present in the database, and the user picks just one or a few of the orders for
further drill-down.

In the following example, using the ?�������	=� log, you can see that
a query is fired when the inner ���	�"� loop is hit. Let’s add a few extra
5���	
��	�� statements to see when a query gets executed:

@@.����	"�.��	.���.��."�����	.��.�		.�	�	���	�.�'

���
��./.������	�E��!

*�� E��	��'�	� ./.���� �.�� ���E��	��
��	�	 �����%J��.//.0
�	�	"� �!

������	�5���	
��	�C��	������.�*	�.���	��C�!
���	�"��E��	� �.�� E��	��'�	� �
(

@@.)��"	��.E��	�.�	�	
�� ���:�	����.�.RLL�
(

������	�5���	
��	�C��	������.�*	�.E��	�A?	�����.���.E��	�.(L49�C1
��E��	��?�!

@@.6.$�	� .��.����.��E��	�A?	�����.��.���	�.��.�����.�	�	�	�"	
���	�"� �E��	�A?	���� ��.�� ��E��	�A?	������
(

@@.)��"	��.E��	�A?	�����
4

4
4

As explained before, E��	��'�	� is executed at the beginning of the
outer ���	�"� loop due to deferred execution. The query for the deferred
loaded collection E��	��E��	�A?	����� is executed due to the inner ���	�
�"� loop. Deferred execution of queries is a LINQ feature that is not specific
to LINQ to SQL. Deferred loading is a LINQ to SQL feature. The following is
the query generated for the deferred loading of the E��	�A?	����� prop-
erty for the Order entity with ID 10430 when it is iterated the first time. It
can be seen in the ?�������	=� log.

��	������.�*	�.E��	�A?	�����.���.E��	�.0LR3L

��
���.,�L-�,E��	��?-1.,�L-�,)����"��?-1.,�L-�,X���)��"	-1
,�L-�,'������ -1.,�L-�,?��"����-

Loading Options 265



ptg

:�E+.,���-�,E��	�.?	�����-.6�.,�L-
57���.,�L-�,E��	��?-./.F%L
��.F%LG.��%��.���.���U	./.L!.)�	"./.L!.�"��	./.L�.,0LR3L-

The deferred loading capability requires LINQ to SQL to intercept the
access to a relationship property. The interception provides a way to check
if the target is already loaded so that it can be populated on first access. Two
special types, ����� �	��� and ����� �	���, are used to provide the
interception capability. ����� �	��� is used where the target is a collec-
tion, and ����� �	��� is used where the target is a singleton. For example,
E��	��E��	�A?	����� is of type ����� �	�E��	�A?	�����, and E��	�A
?	�����E��	� is of type ����� �	�E��	��. The designer and the com-
mand-line tool SqlMetal both use the correct types on each end of a rela-
tionship based on the cardinality of the relationship. As a result, the
generated entities are automatically equipped to provide deferred loading
for relationships.

Furthermore, deferred loading is also available for a nonrelationship
property of a class. For example, if the Products table contains a large image
of the product, you can choose to defer-load it by using a property of type

��;B���� �, where B���� is the type used for mapping to the image. In
the designer, you can set the “Delay Loading” property to true for such a
class member to change the type to 
��;.B���� � instead of B���� . The
image would then be defer-loaded much like the Category entity refer-
enced by the ����� �	����	��� � property in the )����"� class. The dif-
ference between the two is that the image is not an entity—it is just a part of
the )����"� entity. ���	��� is a different entity with its own identity.

Eager Loading
Whereas deferred loading is handy when only an occasional relationship
is navigated, in other cases all or most of the related entities are needed.
Consider a variant of the previously shown logic in which the E��	�A
?	����s for all E��	�s are needed, regardless of the freight. In such cases,
deferred loading can be too chatty and inefficient due to the number of
queries and resulting round-trips to the database.

Another option called eager loading (also called immediate loading) is
available for just such a case. You can instruct the ?�������	=� to auto-
matically bring in E��	�A?	����� for all retrieved E��	�s, as shown in the

Chapter 8: Reading Objects with LINQ to SQL266



ptg

following example. The ?���
���E%����� on the ?�������	=� can be used
to specify a relationship that should be eager-loaded—E��	�A?	����� for
E��	� entities in the example. The log shows that, unlike in the previous
example, the inner ���	�"� loop does not result in additional queries. All
the related E��	�A?	����s are preloaded with the Order entities.

@@.����	"�.��	.���.��."�����	.��.�		.�	�	���	�.�'

���
��./.������	�E��!

?���
���E%����� ���%�./.�	� ?���
���E%�������!
���%��
���5���E��	����./�.��E��	�A?	������!
���
���E%�����./.���%�!

*�� E��	��'�	� ./.���� �.�� ���E��	��
��	�	 �����%J��.//.0.\\.��:�	����.�.RLL
�	�	"� �!

���	�"��E��	� �.�� E��	��'�	� �
(

@@.E��	�A?	�����.��	.	��	������	�!.����������.$�	��	�.��	.���.�		�	�
���	�"� �E��	�A?	���� ��.�� ��E��	�A?	������
(

@@.)��"	��.E��	�A?	�����
4

4

The following query for loading all the related E��	�A?	����� and the
queried E��	�s is different from the queries used for multistep deferred
loading. For simplicity, the ��
��� clause with columns from the Orders and
Order Details tables is trimmed and elided. LINQ to SQL takes the results of
the left outer join and constructs the E��	�–E��	�A?	���� hierarchy.

��
���.,�L-�,E��	��?-1.,�L-�,������	��?-1.,�L-�,��%�� 		�?-1.���
�

��
���.�EX&��O�
:�E+.,���-�,E��	�.?	�����-.6�.,�2-
57���.,�2-�,E��	��?-./.,�L-�,E��	��?-

�.6�.,*���	-
:�E+.,���-�,E��	��-.6�.,�L-

�:�.EX���.PE�&.,���-�,E��	�.?	�����-.6�.,�0-.E&.,�0-�,E��	��?-./

,�L-�,E��	��?-
57���.�,�L-�,���%J��-./.F%L�.6&?.�,�L-�,:�	����-.�.F%0�
E�?��.BN.,�L-�,E��	��?-1.,�0-�,)����"��?-
��.F%LG.��%��.���.���U	./.L!.)�	"./.L!.�"��	./.L�.,0-
��.F%0G.��%��.?	"����.���U	./.L!.)�	"./.33!.�"��	./.R�.,RLL-

Loading Options 267



ptg

Multiple relationships may be set up for eager loading using ?���
����
E%�����. The only restriction is that the options cannot form a cycle. For
example, after E��	��E��	�A?	����� is specified for eager loading, E��	�A
?	�����E��	� cannot be specified, because it would form a cycle among
the classes through the relationships—E��	�–E��	�A?	����–E��	�. This
avoids the problem of unending traversal of cycles. One consequence is
that certain relationships cannot be eager-loaded. For example, consider an
Employee entity pointing to a collection of Employee entities in a manager-
reports relationship. Because the target entity type in ��%�� 		��	%���� is
��%�� 		, the relationship cannot be eager-loaded. However, deferred
loading may be used in such cases because the relationship is loaded for a
given instance without any danger of endless cycles.

@@.������.� "��".�	���������%."�����.�	.	��	������	�
���%��
���5�����%�� 		��	./�.	��	%�����!

The ability to load related objects is a crucial way to bridge the gap
between object models and the underlying relational storage. Deferred and
eager-loading options ensure that the bridging is done as efficiently as
needed in the particular scenario. Yet an additional problem with relation-
ships remains. Sometimes the sizes of related collections can be too large
to be loaded in either eager or deferred fashion. Consider a database that
stores orders over many years for customers. If the application is interested
in showing only a small subset of the orders, perhaps for the last three
months, it would be wasteful to load all the orders, whether eagerly or in
a deferred fashion. Hence, LINQ to SQL provides an additional loading
option to filter the collections in a consistent fashion.

���%��6���"���	5���������	���"./�."�E��	���5�	�	�
�./�.��E��	�?��	�J���	�N	��.//.0QQM��!

The load options for eager loading and filtering of relationships must be
specified before any queries are performed. Specifying the options after the
?�������	=� instance has been used for queries creates a risk of inconsis-
tent results across queries. Hence, it results in an exception.

The 6���"���	5��� option may be specified with or without the eager
loading option. It is equally applicable to deferred loading as well. The

Chapter 8: Reading Objects with LINQ to SQL268



ptg

following example shows how the option can be used with the eager load-
ing option:

?���
���E%�����.���%�./.�	� ?���
���E%�������!
���%��
���5���������	���"./�."�E��	���!
���%��6���"���	5���������	���"./�."�E��	���5�	�	�

�./�.��E��	�?��	�J���	�N	��.//.0QQM��!
���
���E%�����./.���%�!

Defining Inheritance 269

Match the Loading Option to the Usage Pattern

When you use the power of the dot by navigating relationships, think
about the most common usage pattern. If a user action in a user inter-
face or a programmatic choice based on data requires an occasional
loading of a related object, use deferred loading. If all related data is
needed, use eager loading. Even where you want to filter related data
in a predetermined fashion, use eager loading and queries associated
with the relationship.

Defining Inheritance

The relationship between entities is one key aspect of an object model.
Inheritance is another. LINQ to SQL supports the mapping of an inheri-
tance hierarchy to a single table or a view. Consider the example of three
classes: base class ������	� and two levels of derived classes, )�	��	�����
���	� and ����	������	�, that map to the Customers table, as shown in
Figure 8.4. Because the Northwind database does not have a table with such
data, let’s first create a suitable table for mapping such a hierarchy. The
Data Definition Language (DDL) statements shown next create a table for
instances of the Customer hierarchy.

Figure 8.4 An inheritance class diagram.



ptg

Before running the following DDL statements, make sure that you are
working with a copy of the Northwind database so that your original copy
will remain unaffected. You can do so by copying the Northwnd.mdf data-
base file to another directory and attaching it with SQL Server Express.
Then you can run the following T-SQL commands in SQL Server Manage-
ment Studio. (The Express version can be downloaded for free for SQL
Express.) We will start by making copies of the Customers and Orders
tables as the Customers2 and Orders2 tables and setting appropriate pri-
mary and foreign key constraints on them:

��.��% .������	��.���.E��	��.����	�
�	�	"� O ���� ������	��2.���� "�����	��

�	�	"� O ���� E��	��2.���� E��	��

��.�	�.�%.%����� .;	 �.���.���	���.;	 
���	� ����	 "�����	��2.��� "��������� "�����	��2A%;
%����� ;	 �"�����	����

���	� ����	 ���	��2.��� "��������� ���	��2A%;
%����� ;	 ����	����

���	� ����	 ���	��2.��� "��������� ���	��2A"�����	��2A�;
���	��� ;	 �"�����	���� �	�	�	�"	� "�����	��2�"�����	����

��.6��.� %	.���"���������.���.� %	��%	"���"."������
���	� ����	 "�����	��2.��� � %	 �������� ��� ���� �	����� L

���	� ����	 "�����	��2.��� ?��"����.�	"����

���	� ����	 "�����	��2.��� 6""�����=	"���*	.�*��"����2<S�

��.�����	.���	.����.��.%�	��	�.���.	���	."�����	�.� %	
�%���	 "�����	��2.�	� � %	 / 01 ?��"����./ <
��	�	 "�����	���.�� �
�	�	"� "�����	���..���� ���	��.����% � "�����	���
��*��� "�����"�����	���� �	��		� 0L.��� 0<�

�%���	 "�����	��2
�	� � %	 / 21 ?��"����./ 0L1 6""�����=	"���*	./ H��%.�	��	�H
��	�	 "�����	���.�� �
�	�	"� "�����	���..���� ���	��.����% � "�����	���
��*��� "�����"�����	���� � 0<�

Chapter 8: Reading Objects with LINQ to SQL270



ptg

Next, we need to make the schema and data suitable for an inheritance
hierarchy. The rows for the three types of customers are differentiated using
the inheritance discriminator column � %	. The mapping uses the discrim-
inator values to indicate how LINQ to SQL should materialize a given row
from the Customers table. Here we will use the type values L, 0, and 2 for
������	�, )�	��	�������	�, and ����	������	�, respectively. Additional,
type-specific data is stored in nullable columns. PremierCustomer gets a
non-null ?��"����, and ����	������	� gets an 6""�����=	"���*	 in addi-
tion to the inherited member ?��"����.

The following handcrafted mapping shows how the hierarchy can be
mapped to the Customers2 and Orders2 tables. The mapped types in the
class hierarchy need to be specified in the mapping of the base class using
the ���	�����"	+�%%��� attribute. This ensures that LINQ to SQL knows
about all derived classes it might encounter while reading data from the
table mapped to multiple types in the hierarchy. The ���	 property of the
���	�����"	+�%%��� attribute indicates the discriminator values used for
deciding the type of the object to be constructed from a given row in the
table. It corresponds to the column that has ��?��"��������� set to ���	. In
the preceding example, if the � %	 column contains the code L, LINQ to
SQL creates a ������	� object. If it contains 0, a )�	��	�������	� is created,
and so on. The default type is marked, setting the property ��?	����� to
���	. It is used when LINQ to SQL encounters a value for the discrimina-
tor that is not specified in the ���	�����"	+�%%��� attributes.

,����	�&��	./.C������	��2C�-
,���	�����"	+�%%�������	./.L1.� %	./.� %	���������	��1.��?	�����./.���	�-
,���	�����"	+�%%�������	./.01.� %	./.� %	���)�	��	�������	���-
,���	�����"	+�%%�������	./.21.� %	./.� %	�������	������	���-
%����" "���� ������	�
(

,���������)����� D	 ./.���	�-
%����" ������ ������	��?!
,���������?��"���������./.���	�-
%����" ����� � %	!

,������-
%����" ������ ������ !

Defining Inheritance 271



ptg

,6���"�������E��	�D	 ./.C������	��?C�-
%����" 
���E��	��.E��	��!

4

%����" "���� )�	��	�������	� G.������	�
(

,������-
%����" �	"���� ?��"����!

4

%����" "���� ����	������	� G.)�	��	�������	�
(

,������-
%����" ������ 6""�����=	"���*	!

4

,����	�&��	/CE��	��2C�-
%����" "���� E��	�
(

,���������)����� D	 /���	�-
%����" ��� E��	��?!
,������-
%����" ������ ������	��?!

,6���"�����������D	 /C������	��?C1.��:��	���D	 /���	�-
%����" ������	� ������	�!

4

"���� &��������?�������	=� G.?�������	=�
(

%����" ����	������	��.������	��2!
%����" ����	E��	��.E��	��2!

%����" &��������?�������	=�������� ��.G.���	���.(.4
4

The mapped classes can be used for queries that return results of mixed
types or of a specific type, as shown in the next code segment. The first
query returns rows for all the types and creates the instances of correct
types based on the discriminator code. The second query returns results of
types )�	��	�������	� and ����	������	� due to the E�� %	 extension
method. The discriminator value is used to filter out results of other types,
and the constructed type is determined by the discriminator code in the
row. The third query returns only ����	������	� instances.

Chapter 8: Reading Objects with LINQ to SQL272



ptg

@@.#	�.	�����	�.��.	�"�.� %	.��"������.�	��*	�.� %	�
*�� 6������'�	� ./.���������	��2!
*�� )�	��	�����'�	� ./.���������	��2�E�� %	)�	��	�������	����!
*�� ����	����'�	� ./.���������	��2�E�� %	����	������	����!

@@.X�	.� %	��	����"�	�.�	$�	�"	.���.�����	�.$�	��	�
*�� XD)�	��	�'�	� ./.���� ".�� ���������	��2�E�� %	)�	��	�������	����

��	�	 "������� .//.CXDC
�	�	"� "!

In each case, the E�� %	 extension method is translated into an appro-
priate 57��� clause in SQL on the discriminator column to reduce the
amount of data fetched. The following SQL is generated for the )�	��	��
����'�	� shown before. It uses the SQL 57��� clause to restrict the rows in
the result to )�	��	�������	� and its derived types. Thus, LINQ to SQL
ensures efficient execution and minimal data transfer for inheritance
mapping.

��
���.,�L-�,� %	-1.,�L-�,6""�����=	"���*	-1.,�L-�,?��"����-1
,�L-�,������	��?-1.,�L-�,������ -
:�E+.,������	��2-.6�.,�L-
57���.�,�L-�,� %	-./.F%L�.E�.�,�L-�,� %	-./.F%0�
��.F%LG.��%��.��������.���U	./.L!.)�	"./.L!.�"��	./.L�.,2-
��.F%0G.��%��.��������.���U	./.L!.)�	"./.L!.�"��	./.L�.,0-

The designer in Visual Studio also supports inheritance mapping. Fig-
ure 8.5 shows the menu options used to define a derived class.

Defining Inheritance 273

Figure 8.5 Defining inheritance in the designer.



ptg

After a derived class has been created using the New Inheritance dia-
log displayed by selecting the Inheritance menu option, the members from
the base class need to be deleted from the derived class. This leaves only the
members specific to the derived class. Then you can click the inheritance
relationship, shown as an arrow from the derived class to the base class, to
add information about the discriminant column and code values. Figure 8.6
shows the resulting class hierarchy for the Customers2 table.

Chapter 8: Reading Objects with LINQ to SQL274

Figure 8.6 A class hierarchy on the designer surface.

An inheritance hierarchy may be a target of a relationship. E��	��
������	� may point to any of the classes in the hierarchy. Likewise, an
����� �	� may also contain instances of any of the types in the hierarchy.
For example, a salesperson managing multiple customers may have an
����� �	�������	�� that contains instances of derived classes as well.
LINQ to SQL ensures that the materialization is done according to the
inheritance mapping.

Performance and Security

LINQ to SQL supports a powerful set of abstractions defined in the C# lan-
guage. In addition to enabling a rich set of query operators, it lets you nav-
igate relationships and handles inheritance hierarchies. LINQ to SQL
accomplishes this by automatically providing efficient translation to SQL.
However, knowledge of a few more details is helpful for ensuring the best



ptg

performance and secure usage. This section looks at some additional
aspects of query translation to help you avoid common traps and pitfalls.

Query Versus Results
LINQ to SQL uses the deferred execution model defined for all LINQ com-
ponents. There is no explicit “�=	"��	” method that you need to call to get
the results of a LINQ to SQL query. A query is executed only when you enu-
merate its results. As explained in Chapter 4, “C# 3.0 Technical Overview,”
this enables composition at almost no cost. The simplest example is the
properties of type ����	�� in the &��������?�������	=� class. ������	��,
E��	��, and so on are all queries corresponding to entire tables in the data-
base; they are not local collections containing all the ������	� or E��	� enti-
ties in your app domain. The same is true of query expressions composed
on top of tables—say, customers from Spain. They represent queries that
can be and need to be executed for results after all the desired composition.
They let you avoid retrieving a large result set for local execution. You don’t
need all ������	� entities in memory first to find customers from Spain.
Such is the essential power of deferred execution. However, deferred exe-
cution also has two key implications for performance: latency for the first
object in the result, and repeated execution if the results are not stored in a
local collection.

First, the cost of query translation and execution is deferred until the
results are enumerated. Hence, when you ���	�"� over the results, the call
to �����	����	�#	�����	������� is where you pay the price. Merely defin-
ing a query does not eliminate the latency for subsequent usage. Generally
this is a beneficial feature, because you can define queries without worry-
ing about their usage on various code paths. If you do not enumerate the
results of a query, you do not pay the cost of translation and execution.

Second, re-enumerating the same query triggers another generation and
execution of the corresponding SQL commands. No implicit caching of
results occurs. Again, this is essential if you need to get the current results
of the query when the second enumeration is done. However, this can
result in significant cost if you treat a query like a list and try to enumerate
it multiple times, as shown in the following code fragment:

Performance and Security 275



ptg

*�� ������	�'�	� ./.���� ".�� ���������	��
��	�	 "������� .//.C�%���C
�	�	"� "!

@@.���	.���	.���;.���
@@.#	�����	�������."���	�.$�	� .�����������1.�'
.$�	� .	=	"�����
@@.���.��>	"�.���	�����U������
���	�"��������	� ".�� ������	�'�	� �.(���4
@@.��	.$�	� .��.	=	"��	�.�����
���	�"��������	� ".�� ������	�'�	� �.(���4

Fortunately, here you can have your cake and eat it, too. If you want to
prepay the price of query translation and execution, or if you want to enu-
merate the results multiple times, you can simply put the results in a list
by calling ��
����� or ��6��� �� on the query at the point of your choice,
as shown in the following code line. Then you can use the list or array or
whatever local collection you want to use as many times as you like with-
out incurring any additional translation, execution, or object materializa-
tion costs.


���������	��.������	�
���./.������	�'�	� ���
�����!

The list or array is a little “cache” of results that you can reuse. Of
course, as in the case of any cache, you have to think about whether it is
worth prepaying the cost, whether all objects in the cache are really needed,
and whether stale data is a problem. But its creation and use are completely
under your control. ��
����� and ��6��� �� are convenience APIs for get-
ting a list and an array of the result types, respectively. However, you could
just as easily add the objects to a collection of your choice and use it like a
cache.

Another example of the difference between a deferred query and a
result is a query expression of a nondeferrable type. The following queries
return results of type ��� and ������	�, respectively. Hence, they do not
require any enumeration and do not provide deferred execution. The
results are produced when the assignment statement is executed.

��� "����./.���������	����������!
������	� "���./.���������	���:������!

Chapter 8: Reading Objects with LINQ to SQL276



ptg

Compiled Queries
Caching by enumerating the results is a fine way to reuse the results. But
quite often you want to use the same query with different parameters. For
example, if a form shows Orders for a customer, you want to be able to exe-
cute a query for orders for a given customer. Many applications provide
results based on a set of parameters obtained from a UI form or another
application. In such cases, cached results may not be useful, because the
parameter values change from one execution to another, so caching the
results for all parameter values may be impractical. Furthermore, if the data
in the database keeps changing, the cached results of a query are likely to
get stale.

Compiled queries provide an interesting capability to handle such cases.
They allow you to compile or pretranslate a LINQ query with slots for spec-
ified parameters. Then, as soon as you know the values for the parameters,
you can execute the “compiled” or pretranslated query by plugging in the
values. If you use the query 10 times, the cost of translating the query is
amortized over 10 executions. The greater the number of executions or the
more complex the query, the more you are likely to save with compiled
queries.

@@.?	���	.�."��%��	�.$�	� 
*�� E��B ������./.���%��	�'�	� ����%��	�

�&��������?�������	=� "���	=�1.������ "������./�
���� �.�� "���	=��E��	��
��	�	 ��������	��?.//."�����
�	�	"� ��!

@@.�=	"��	.��	."��%��	�.$�	� 
������ "���./.2TS6�EX�C!
*�� $./.E��B ���������1."����!

In fact, you can use this in a more stylized fashion by statically defining
a set of compiled queries and then using them in response to a request. For
each new request, you can simply execute the compiled query with the
appropriate parameters. This pattern is particularly handy in case of web
applications where you want to handle a large number of parameterized
requests with minimum response time without holding a lot of state. Thus,
compiled queries provide a mid-tier alternative to a T-SQL stored procedure
or table-valued function and can be used as a complementary technology.

Performance and Security 277



ptg

�����"."����.'�	��	�
(

%����" �����" :��"&��������?�������	=�1.������1.�'�	� ���	E��	���
E��B ������./.���%��	�'�	� ����%��	�

�&��������?�������	=� "���	=�1.������ "������./�
���� �.�� "���	=��E��	��
��	�	 ��������	��?.//."�����
�	�	"� ��!

@@.+��	."��%��	�.$�	��	�.���."�����.$�	� .%���	���
4

Compiled queries are in some ways analogous to the query and stored
procedure cache maintained by a relational database such as SQL Server.
However, the SQL Server cache can be used across multiple executions of
applications. LINQ to SQL constructs, like compiled queries, live only as
long as the containing CLR application domain lives. Hence, SQL Server
uses implicit caching, whereas LINQ to SQL enables explicit caching and
avoids implicit caching. This allows the application developer to decide
which queries should be compiled and cached for use in a CLR application
domain’s lifetime.

The translation of compiled queries is independent of the data. Hence,
the translation can be materially different in certain cases. The most impor-
tant distinction is the use of a ���� value for a parameter. In the case of non-
compiled queries, if the value of a parameter is known to be ���� at the
time of translation, LINQ to SQL generates a special check for ���� required
by SQL—�� &X

 or �� &E� &X

, as appropriate. However, in the case of a
compiled query, the translation is independent of data. Hence, ���� values
should not be passed to a compiled query; they must be handled separately
as constants in a query rather than as parameters.

Security
SQL users do have a certain degree of composability available to them. In
principle, you can concatenate appropriate strings to programmatically
build a SQL query based on various inputs. However, in practice, this is
almost always very problematic because of the threat of SQL injection.
Malicious user input can turn a benign-looking parameter into dangerous
commands for doing something nefarious on the server.

Chapter 8: Reading Objects with LINQ to SQL278



ptg

LINQ to SQL addresses this issue in the generated SQL very effectively
by always parameterizing inputs. A malicious user can try to provide input
laced with commands, but the input will not get blindly concatenated into
the SQL string. It will be left as a parameter, and the database will only treat
it as a nonexecutable parameter.

Although most SQL users know about the threat of SQL injection and
take steps to avoid string concatenation to build a command, LINQ to SQL
does a more effective job of avoiding such concatenation. It provides a
degree of additional security by ensuring that this basic principle is fol-
lowed consistently.

Beyond thwarting SQL injection, restricting access to sensitive data or
operations is another key security objective. If you use stored procedures or
functions in your database, LINQ to SQL can use them to retrieve and save
objects. We will discuss stored procedure support in depth in Chapter 10,
“Using Stored Procedures and Database Functions with LINQ to SQL.” For
this discussion, remember that you can use fine-grained access control in
the database with views, stored procedures, and functions just as effec-
tively with LINQ to SQL as you do with plain SQL.

Finally, LINQ to SQL relies on the connection string for access to data-
bases, just like the underlying ADO.NET relational APIs. If you use inte-
grated security, the amount of sensitive data should be minimal. But if you
do not use integrated security, it is important to protect the user ID and
password used in the connection string. Typically such information is
stored in a configuration file that is carefully secured. All precautions used
for connection string information with ?����	��	� or ?����	� also apply to
LINQ to SQL.

Performance and Security 279

Get the Most from LINQ to SQL

Put the query results in a collection if you plan to enumerate them
multiple times. Use compiled queries wherever possible for queries
that are executed often. Although LINQ to SQL addresses SQL injec-
tion, you need to secure a connection string to protect any secrets, such
as userid and password.



ptg

Summary

This chapter covered the details of reading objects with LINQ to SQL. LINQ
queries are translated into SQL using mapping information for classes and
relationships between classes. Mapped classes can be used to retrieve enti-
ties or projections. Relationships can be expressed as mapped properties
that can be navigated using the dot or through joins. The target of a rela-
tionship can be loaded lazily or eagerly. Like relationships, inheritance is
also supported by LINQ to SQL for a class hierarchy mapped to a table.

The distinction between a query with deferred execution and a cached
result is a key to understanding the performance implications. Query per-
formance can be significantly boosted by using compiled queries, which
can be effectively cached in a web application. Finally, LINQ to SQL exclu-
sively uses parameters to avoid SQL injection attacks. Thus, LINQ to SQL
is a high-performance tool that provides a rich and relatively secure way
to read objects from a database.

Chapter 8: Reading Objects with LINQ to SQL280



ptg

9
Modifying Objects with
LINQ to SQL

Q U E RY I N G I S T H E F O C U S of all LINQ components, as the name Lan-
guage Integrated Query suggests. However, applications that use

relational data as objects need to go beyond querying by making changes to
the retrieved objects and saving them back to the database. LINQ to SQL
complements the LINQ query pattern with a simple API to modify and
save objects.

Relational databases use SQL commands to insert, update, and delete
rows. The LINQ pattern currently does not cover such commands because
they are very specific to the relational domain. Furthermore, for most appli-
cations, it is more natural and efficient to work with objects and in-memory
collections to modify objects until all the changes are done. Then they can
be submitted to the database for insert, update, and delete operations.
Hence, LINQ to SQL follows this approach by letting users modify their
objects as they wish and then executing SQL commands for all the changes
in one batch. This approach preserves the normal way of handling objects
in the program and allows the developer to decide exactly when the
changes are made persistent in the database.

This chapter starts with the foundational concept of creating new entity
instances in the database and modifying or deleting existing instances from

281



ptg

the database. We will then look at related concepts of concurrent changes,
transactions, and support for moving entities between tiers to make
changes. We will also look at how LINQ to SQL integrates with presentation
technologies to display and modify data in Windows and web applications.

Entity Lifecycle

As mentioned in the preceding chapter, objects decorated with mapping
information about the primary key are the only modifiable objects and are
called entities. Typically, entities are retrieved through the use of one or
more queries and then are manipulated until the application is ready to
send back the changes to the server. This process may repeat a number of
times until the application no longer needs the entities. At that point the
entities are reclaimed by the runtime just like normal CLR objects. The data,
however, remains in the database in persistent form. Even after the runtime
representation is gone, the same data can still be retrieved. In this sense an
entity’s true lifetime exists beyond any single runtime manifestation.

The focus of this chapter is the entity lifecycle, in which a cycle refers to
the time span of a single manifestation of an entity object within a particu-
lar runtime context. The cycle starts when the ?�������	=� becomes aware
of a new instance, and it ends when the object or ?�������	=� is no longer
needed. For both the runtime and persistent manifestations, let’s start by
looking at how entities are created for insertion and then are deleted.

Inserting and Deleting Entities
Consider the following code fragment that retrieves a ������	� and adds
a newly created order to its E��	�� collection. When the order is added to
the collection, no change occurs in the database. In fact, the connection to
the database is not even used at that point. Later, when �����������	���
is called, LINQ to SQL discovers the newly added order and generates the
appropriate SQL �&���� command to create an Order in the database. Be
sure to run the code in this chapter only against a copy of the Northwind
database so that you keep the original copy intact. The following examples
assume that the designer in Visual Studio or SqlMetal has been used to gen-
erate entity classes used against a copy of Northwind.

Chapter 9: Modifying Objects with LINQ to SQL282



ptg

&��������?�������	=� ��./.�	� &��������?�������	=��"���	"�����������!
���
��./.������	�E��!

@@.�	���	*	.�����	."�����	�.����.��*	�.�?.�.6�EX�
������	� "���./.����� ".�� ���������	��

��	�	 "�������	��?.//.C6�EX�C
�	�	"� "�������	��!

E��	� ���./.�	� E��	���!
@@.�	�.%��%	���	�.���.��	.�	�.���	�
���
@@.6��.���	�.��.��	."�����	�H�.E��	��."���	"����
"����E��	���6�������!

��������������	���!

@@.?��%�� .��	.�������	.�	�	���	�.��
������	�5���	
��	�����E��	��?�!

A new Order could also be created using a slightly different approach,
as shown in the next code fragment. The key differences in this code frag-
ment are the lack of a query and a ?�������	=�����	��E��������� call.

&��������?�������	=� ��./.�	�.&��������?�������	=��"���	"�����������!

E��	� ���./.�	� E��	���!
����������	��?./.C6�EX�C!
@@.�	�.���	�.%��%	���	�.���.��	.�	�.���	�
���
@@.6��.���	�.��.����	E��	��.���.	*	�����.���	�����
���E��	������	��E������������!

��������������	���!

In the first example, LINQ to SQL discovers a new order because it can
be reached from the ������	� object that was being tracked. The second
example has no query, so there is no tracked object to start looking for new
objects. The ���	��E���������call introduces the new Order to the ?����
����	=� so that it can be inserted when �����������	��� is called. The first
example shows the convenience of an inferred insert. The second example
shows that when a new entity is not reachable from a known entity, it still
can be introduced for insertion.

The example of inserting an Order is also interesting because it shows
another requirement for inserting a new Order—retrieving a database-
generated ID. The E��	��E��	��? column in the Northwind database is an

Entity Lifecycle 283



ptg

autoincremented identity key. The mapping created using the designer or
SqlMetal indicates that the value is database-generated by setting the
��?�#	�	���	� property of the ������ attribute to ���	. You can view this
property in the property grid (called “Auto Generated Value”) by right-
clicking the class member on the designer surface and selecting Properties.
Or you can look at the generated code under the dbml file node in the Solu-
tion Explorer in Visual Studio. In response to the ��?�#	�	���	� setting,
LINQ to SQL automatically retrieves the value after executing a successful
�&���� command. As described in the preceding chapter, the text of the
generated SQL commands sent to the database can be conveniently cap-
tured using ?�������	=�’s log, as shown in the following code snippet:

�&����.�&�E.,���-�,E��	��-�,������	��?-1.,��%�� 		�?-1.,E��	�?��	-1
,�	$���	�?��	-1.,���%%	�?��	-1.,���%J��-1.,:�	����-1.,���%&��	-1
,���%6���	��-1.,���%��� -1.,���%�	����-1.,���%)��������	-1
,���%������ -�
J6
X��.�F%L1.F%01.F%21.F%31.F%R1.F%<1.F%S1.F%T1.F%M1.F%Q1.F%0L1
F%001.F%02�

��
���.�E&J�������1��E)�A�?�&���N���.6�.,*���	-
��.F%LG.��%��.&����.���U	./.<!.)�	"./.L!.�"��	./.L�.,6�EX�-
���

An entity can be deleted by calling ?	�	�	E���������, as shown in the
next example. For simplicity, let’s delete the order that was created in the
previous example by setting the �	���	*	��? variable to the E��	��? value
displayed by the last code fragment in place of the ellipsis (���) in the code.

@@.�	�.��	.*���	.��.�	�� .���	��	�.E��	��?
��� �	���	*	��?./.���!

@@.�	���	*	.�����	.���	�.����.��*	�.�?
E��	� ���./.����� �.�� ���E��	��

��	�	 ��E��	��?.//.�	���	*	��?
�	�	"� ��������	��!

@@.+��;.��	.���	�.���.�	�	����
���E��	���?	�	�	E������������!

��������������	���!

Chapter 9: Modifying Objects with LINQ to SQL284



ptg

If the order was removed from the corresponding ������	�’s E��	�� col-
lection by calling "����E��	����	��*	��, that would have been considered
a case of “severing the association” between the ������	� and the order
entities; it would not be a case of deletion. The result would be an update to
the Order setting the foreign key value to ���� to reflect the severance of
association. Thus, unlike in the case of insertion, LINQ to SQL does not infer
that a ?�
��� command should be generated for removal from a relationship
collection. A ?�
��� command requires a ?	�	�	E���������call to avoid
accidental deletion. This is a safer choice.

Updating Entities
After entities are retrieved from the database, you are free to manipulate
them as you like. They are your objects; use them as you will. As you do
this, LINQ to SQL tracks changes so that it can persist them into the data-
base when �����������	��� is called.

LINQ to SQL starts tracking your entities as soon as they are material-
ized, even before giving them to you as returned results of a query. Indeed,
the identity management service discussed in Chapter 8, “Reading Objects
with LINQ to SQL,” has already kicked in as well. Change tracking costs
very little in additional overhead until you actually start making changes.
It allows LINQ to SQL to generate X)?6�� statements when you call ����
��������	���. Unlike in the case of deletion, which requires ?	�	�	E�����
�����, no additional API needs to be called before �����������	���. The
following code shows a simple example in which the �����"�&��	 property
is changed for a ������	�:

*�� "���./.����� ".�� ���������	��
��	�	 "�������	��?.//.C6�EX�C
�	�	"� "�������	��!

@@.�����	.�.%��%	�� .��.�	���	*	�."�����	�
"���������"�&��	./.C7������.7�������	�C!

@@.)	�����.��	."����	
��������������	���!

Entity Lifecycle 285



ptg

The automatic detection of a change is made possible by LINQ to
SQL’s ability to keep a copy of the original entity for comparison when
�����������	��� is called. A new interface  �&���� )��%	�� �������� was
added to make this efficient by allowing a copy to be made just before an
entity is changed through a property setter. The code generated by the
designer or SqlMetal for entities implements this interface and notifies the
LINQ to SQL runtime about an imminent change. The runtime makes a
copy of the entity before the first property change. Entities that are queried
but not modified do not need to have their original versions copied for
comparison and update statement generation.

The original values also allow LINQ to SQL to generate a minimal update
statement. Only the columns that are modified are set to new values.
Unchanged column values are not set. The SQL generated for the previous
C# code setting ������	�������"�&��	 sets only the corresponding column
with parameter %0L, as follows:

X)?6��.,���-�,������	��-
���.,�����"�&��	-./.F%0L
57���.�,������	��?-./.F%L�
���

As in the case of insertions, some column values may be set in the data-
base. A common example is a timestamp column. The value of the time-
stamp is set for an updated row in the database. Another example is a
trigger-updated column. In such cases, using the ��?�#	�	���	� and 6����

� �" properties of the ������ mapping attribute, you can tell LINQ to SQL
to skip updating the column and instead retrieve the value after successful
update.

Automatically Maintained Relationships
Relationships pose an interesting challenge. They involve two entities.
Hence, a change in the relationship affects two entities. In the database, this
is simplified through normalized data models and foreign keys. In the case
of the database relationship between ������	�� and E��	��, the Orders
table contains a foreign key recording the relationship, and the Customers
table keeps no direct record of the relationship. In the corresponding object
model, both the ������	��E��	�� collection and the E��	��������	�

Chapter 9: Modifying Objects with LINQ to SQL286



ptg

references pointing back to ������	� entities need to be in sync. If the
������	��E��	�� collection contains an E��	�, the corresponding E��	��
������	� better point back to the same Customer entity.

Maintaining such a bidirectional relationship would be quite a chore if
you had to take care of it every time there was any change. Fortunately,
LINQ to SQL automates this process through a combination of the gener-
ated code and the ����� �	�–����� �	� classes. ������	��E��	�� is of
type ����� �	�E��	��, and E��	��������	� is of type ����� �	�

������	��. Consider the following code, which moves an order from one
������	� to another. Here, we use the terser but semantically identical
lambda function syntax to retrieve single customers:

������	� "���0./.���������	��������	�"./�."�������	��?.//.��0�!
������	� "���2./.���������	��������	�"./�."�������	��?.//.��2�!

@@.)�";.��.���	�
E��	� �./."���0�E��	��,L-!

@@.�	��*	.����.�����1.���.��.��	.�	"���
"���0�E��	����	��*	���!
"���2�E��	���6�����!

@@.)�����.H���	H
������	�5���	
��	���������	�.//."���2�!

The same objective can be accomplished just as well through the fol-
lowing assignment instead of the �	��*	��, 6���� sequence used in the pre-
ceding example:

��������	�./."���2!

If you assign a null to a relationship reference, you are severing the rela-
tionship. This is distinct from deleting the target of the relationship. In the
following code, the order is no longer associated with any ������	� entity.
The order’s original target ������	� is not deleted. Likewise, if you remove
an order from the ������	��E��	�� collection, the effect is symmetric: the
relationship is severed, but the order is not deleted. In each case, LINQ to
SQL attempts to set the foreign key column E��	��������	��� to null in the
database when �����������	��� is called. Such an operation may succeed
if the foreign key column is nullable; otherwise, it will fail.

Entity Lifecycle 287



ptg

������	� "���0./.���������	��������	�"./�."�������	��?.//.��0�!

@@.)�";.��.���	�
E��	� �./."���0�E��	��,L-!

@@.�	�.�	�	�	�"	.��.�����.���?	�	�	E���������.���."���	�
��������	�./.����!

@@.)�����.H���	H
������	�5���	
��	�"���0�E��	���������������!

@@.X%���	�.E��	�
��������������	���!

Regardless of which direction you choose for severing a relationship—
a ������	��E��	����	��*	�� call or assignment to E��	��������	�—the
net effect is an update to the entity containing a member mapped to the
relationship’s foreign key—in this case, E��	�. The key member for main-
taining relationship is in the entity containing the foreign key, often called
the child entity. Hence, LINQ to SQL requires the object reference from
child to parent. The reference or collection of references in the other direc-
tion—from the parent entity to the child entity—is optional. In the
������	�–E��	�� relationship, E��	��������	� must be present and
mapped, while the ������	��E��	�� member may be skipped.

References and collections of references are how object models handle
relationships. But the underlying foreign key value (such as E��	��
������	���) is often valuable for showing the relationship in the presenta-
tion tier and for serializing the entities to another tier. Hence, it is available
for use as a mapped member when you use the designer or SqlMetal. How-
ever, the foreign key value needs to remain consistent with the references.
The generated LINQ to SQL code ensures that after it is initialized, an
in-memory foreign key value is not accidentally directly changed. It is kept
in sync with the in-memory references by the generated code.

Submitting Changes
The previous sections covered basic insert, delete, and update operations,
as well as relationship management, as individual operations. However, a
key advantage of accessing relational data as objects is that you can retrieve
a bunch of objects, make changes to the object graph as needed, and then

Chapter 9: Modifying Objects with LINQ to SQL288



ptg

make all the changes persistent in one shot. LINQ to SQL uses this model
by persisting all the pending changes in response to �����������	���. This
one-shot approach allows changes to be done or aborted atomically so that
the database remains in a consistent state. It also provides a logical check-
point for a set of changes and minimizes the overhead.

When you call �����������	���, the set of tracked entities is examined.
All entities with pending changes are ordered into a sequence based on
dependencies between them. Objects whose changes depend on other
objects are sequenced after their dependencies. Foreign key constraints and
uniqueness constraints in the database play a big part in determining the
correct ordering of changes. Then, just before any actual changes are trans-
mitted, a transaction is started to encapsulate the series of individual com-
mands unless one is already in scope. Finally, one by one the changes to the
objects are translated into SQL commands and are sent to the server.

Any errors detected by the database cause the submission process to
abort, and an exception is raised. All changes to the database are rolled back
as if none of the submissions ever took place. The ?�������	=� still has a
full recording of all changes, so it is possible to attempt to rectify the prob-
lem and resubmit the changes by calling �����������	��� again. The fol-
lowing code shows the conceptual handling of exceptions. The following
sections look at the processing of the specific exception that user code
should check for and a richer set of transaction options.

&��������?�������	=� ��./.�	�.&��������?�������	=��"���	"�����������!

@@.��;	."����	�.��.����	��� .��>	"��.�	�	

�� (
��������������	���!

4
"��"� ������	������"��="	%���� 	�.(

@@.��;	.���	.��>����	���
���
@@.�	�� 
��������������	���!

4

When the transaction around the submission completes successfully, the
?�������	=� recognizes all the changes to the objects by simply forgetting

Entity Lifecycle 289



ptg

the change-tracking information. However, failure of the transaction to
complete successfully does not lead to a rollback of the local change track-
ing state. As just shown, you need to make the necessary changes to the
entities based on the exception and then resubmit the changes. For exam-
ple, if an update fails because a value is out of range, specified by a check
constraint in the database, you need to change to value to fit within the
range and then call �����������	��� again. Alternatively, if you decide not
to retry the submission, you can discard the ?�������	=� instance and
restart with a new one. There is no rollback for the in-memory state held
by a ?�������	=� instance.

After successful completion of �����������	���, you may use the
?�������	=� for further queries and updates. Each successful ����
��������	��� call concludes a unit of work and effectively starts the next
unit of work with no pending changes left. The following example shows
a sequence of two units of work. Note that the Customer entity retrieved
during the first unit of work remains available for the second unit of work
and does not automatically get refreshed when a new unit of work begins.

@@.:����.����.��.���;
������	� "���./

���������	���5�	�	�"./�."�������	��?.//.C6�EX�C�������	��!
@@.?	�	�.����.���	��.���.����� .���	.���	��
���
��������������	���!
@@.�	"���.����.��.���;.�	����
@@.+�;	.���	."����	�
���
��������������	���!

Simultaneous Changes

So far we have discussed changes as if only one instance of one application
is manipulating data in a database. But a key purpose of a database is to
allow sharing of data across multiple applications and users. Hence, we
need to look at what happens when multiple applications modify data
simultaneously and how we can ensure that the data remains consistent

Chapter 9: Modifying Objects with LINQ to SQL290



ptg

in such an environment. Ensuring consistency when simultaneous or
concurrent changes are possible is called concurrency control. LINQ to SQL
provides some key tools for implementing concurrency control.

Consider the example of a simplified Order entity with an E��	���,
���%%	�?��	, and ���%6���	�� being modified by an interactive order man-
agement application and a fulfillment application. Further assume that the
two applications retrieve the same order and modify their copies, as shown
in Figure 9.1. The fulfillment application assumes that the ���%6���	�� it
has read at instant t1 is valid. It proceeds with shipping the order and sets
the ���%%	�?��	 at time t4. The order management application in turn reads
the same Order at t2 and makes a change to ���%6���	�� in the database at
time t3 based on the knowledge that the order has not yet been shipped.

Simultaneous Changes 291

Fulfillment
Application

Database

Order
Management
Application

t1 t2 t3 t4 Time

1, null, addr1

1, 1/1/09, addr1

1, 1/1/09, addr1

?1, null, addr1

1, null, addr1 1, null, addr2

Figure 9.1 Concurrent changes to an entity.

Clearly, the data would be inconsistent if both the applications were
allowed to make the changes and assume that their operations are success-
ful. We would have an order that was shipped to an address that was dif-
ferent from the new address set by the user of the order management
system. That is a conflict between two updates. So we need a way to either
prevent such a conflict or detect it and take corrective actions.

A way to prevent such a conflict is to require the applications to acquire
a lock on the order before making any changes. Then, only the application
that can get a lock would have exclusive access to the order for making a
change. This approach is an example of pessimistic concurrency control,
because we are pessimistic about a conflict and always take preventive steps.



ptg

The pessimistic approach is problematic. A lock would always limit
access to an order, regardless of whether other applications were looking to
access the same order. In an interactive application where a user can go to
lunch while keeping an order form open, such a lock could be held for a
long time, and that could be unacceptable for other applications. Further-
more, it could potentially force the database server to manage a large num-
ber of locks for relatively uncommon conflicts. Hence, we need to look for
a better alternative.

Optimistic Concurrency
An alternative is to take an optimistic approach: Proceed with changes as
if there won’t be any conflict, and then detect a conflict and take corrective
actions so that consistency is ensured. In effect, instead of asking for per-
mission to update in the form of a lock, we go ahead and update anyway
and then apologize and make amends if a conflict is detected.

The optimistic concurrency approach is very suitable for data shared
across applications in which the application can potentially spend a signif-
icant amount of time manipulating the data. Both applications involving
user interaction and those involving significant processing without user
input are good candidates for optimistic concurrency. Because such appli-
cations are the norm, LINQ to SQL relies on optimistic concurrency as the
primary approach for concurrency control. Optimistic concurrency has two
aspects: detection of conflicts and resolution of conflicts. LINQ to SQL pro-
vides support for both aspects.

Conflict Detection

Let’s revisit the example shown in Figure 9.1. The order management appli-
cation assumed that the ���%%	�?��	 was null when it was not. To avoid
the conflict, it needed to detect that the value of ���%%	�?��	 had changed
since it was read. In short, it could have used the original value of null and
compared it against the value in the database before applying the current
value for ���%6���	��. In fact, you can imagine doing the comparison with
the original values automatically in the data access layer. This is how the
original values are used by LINQ to SQL on behalf of the application.
Figure 9.2 shows how the order example can be changed to make use of the
original values.

Chapter 9: Modifying Objects with LINQ to SQL292



ptg

Figure 9.2 The original value check for conflict detection.

The following code fragments show the C# code performing the update
and the corresponding generated SQL. In the absence of a conflict, the
57��� clause in the generated SQL simply confirms that there has been no
change to the original values, and the update succeeds. In the case of the
conflict described before, the check for the original value of ���%%	�?��	
fails and, as a result, the update fails.

�������%6���	��./.C023.+���.���1.)������	C!
��������������	���!

X)?6��.,���-�,E��	��-
���.,���%6���	��-./.F%2
57���.�,E��	��?-./.F%L�
6&?.�,���%%	�?��	-.��.&X

�
6&?.�,���%6���	��-./.F%0�

The optimistic concurrency check in the previous SQL statement cov-
ered all the mapped properties of the Order entity. Common variations
include a subset of the properties that acts as a proxy for the entire entity.
For example, you may exclude large values such as images or notes in cer-
tain cases, because they do not affect the business logic like ���%%	�?��	
did in the previous case. One interesting special case is where a special
timestamp column (or similar ?��	���	 column) is updated for every
update to the row. Where available in the database schema, such a column
provides a great conflict-detection proxy for the entire row.

LINQ to SQL designer and SqlMetal automatically detect timestamp
columns and use them for the optimistic concurrency check. In the absence

Simultaneous Changes 293

Fulfillment
Application

Database

Order
Management
Application

t1 t2 t3 t4 Time

1, null, addr1

1, 1/1/09, addr1

1, 1/1/09, addr1

Exception!1, null, addr1

1, null, addr1

!===

1, null, addr2



ptg

of such a column, all mapped columns are used for the optimistic concur-
rency check. This provides a safe default. However, you can override these
defaults by changing the X%���	��	"; property of the ������ attribute for
the properties you want to exclude from the check.

In the previous example, we looked at a single entity update. In many
applications, multiple entities are modified, and the changes are submitted
together with one �����������	��� call. In such a case, it is more efficient
to gather information about all the conflicts that can be detected in one shot
instead of dealing with one conflict at a time and discovering successive
ones with additional calls to �����������	���. The following code illus-
trates how to collect all conflicts for a set of changes submitted together. The
outer loop in the "��"� block iterates over entities in conflict, and the inner
loop iterates over the entity members in conflict.

����� � ��	���	��	"����!

@@.+���� .������	�.	�����	�
�� 
(

��������������	��������"�+��	��������	E�������"��!
4
"��"� ������	������"��="	%���� 	�
(

@@.��;	."���	"��*	.�"�����.���.���.�	�	"�	�."�����"��
���	�"� �E�>	"������	������"� �"".�� ��������	������"���
(

������	� "�����	���������"�./.�������	���""�E�>	"�!

���	�"� �+	��	������	������"� �"".�� �""�+	��	�������"���
(

��>	"� "���J��./.�""�����	��J���	!
��>	"� ����J��./.�""�E�������J���	!
��>	"� �������	J��./.�""�?������	J���	!
+	��	����� ��./.�""�+	��	�!
@@.�����	."�����	���������"�H�.�	��	��.��.�%%��%����	

4
4

4

@@.�	�� 
��������������	��������"�+��	�:���E�:����������"��!

This code example also illustrates the two different failure-handling
options: �������	E�������"� and :���E�:����������"�. The first attempt

Chapter 9: Modifying Objects with LINQ to SQL294



ptg

collects all the conflicts and reports them in a single exception. The second
attempt is failed on the first conflict that is encountered while executing a
sequence of insert, update, and delete commands. In the absence of an
explicit request to continue, the default behavior of �����������	��� is to
fail on first conflict.

Conflict Resolution

When a conflict is detected, the �����������	��� operation fails, and LINQ
to SQL throws a �����	������"��="	%����. The following code shows one
way to deal with such an exception. It generalizes the previously shown
approach of using retries. In most cases, a very small number of retries are
sufficient or appropriate before a user has to intervene or the processing has
to start over again by retrieving the data again.

����	 ��	���	�..��=�	���	��
(

�� 
(

��������������	��������"�+��	��������	E�������"��!
��	�;!

4
"��"� ������	������"��="	%����.	�
(

@@.6�>���.%��%	���	�.��.��>	"��.����."�����"��
�	���	�YY!

4
4

LINQ to SQL provides tools for reporting errors and adjusting objects
with conflicting changes. In some applications, user input may be the best
choice for deciding what adjustments, if any, should be made. In others,
policy-based resolution may be programmatically applied for automatic
handling of conflicts.

Three steps are involved in handling conflicts: catching �����	����
���"��="	%����, resolving each reported conflict using the built-in resolu-
tion mechanism or through additional programmatic work, and calling
�����������	��� again. Three resolution policy options often are referred
to by simplified names: client wins, database wins, and merge. Alterna-
tively and more informally, the first two also are called stomp on the data-
base and stomp on my updates. The �	��	��+��	 enumeration has three

Simultaneous Changes 295



ptg

corresponding values. To illustrate the difference, let’s consider a slightly
modified version of the entity class that contains three nonkey values—
���%%	�?��	, ���%6���	��, and ���%J��. Figure 9.3 shows the effect of each
of the options for an E��	� object that was concurrently updated, causing
a conflict between the original and database values.

Chapter 9: Modifying Objects with LINQ to SQL296

1, null, shipper1, addr2

Current

1, null, null, addr1

Original

1, 1/1/09, shipper2, addr1

Database

1, null, shipper1, addr2

Client Wins

1, 1/1/09, shipper2, addr1

Database Wins

1, 1/1/09, shipper1, addr2

Merge
Resolution

Figure 9.3 Conflict resolution options.

• Client wins, or the D		%����	��J���	� option: The original values
are reset to the database values so that when �����������	��� is
called again, the “new” original values are the same as those that
caused the conflict. Hence, no conflict occurs during the second
�����������	��� call, and the current, in-memory values overwrite
the concurrent update. Hence, this option circumvents optimistic
concurrency by pushing through the updates anyway, despite the
optimistic concurrency check specified in the mapping. So this is
most appropriate after some check about the values or a user over-
ride. This is the default value used by the �	���*	�� method when
the option is not explicitly specified.

• Database wins, or the E*	�����	����	��J���	� option: The current
values in the ?�������	=� are overwritten and effectively lost. This
allows changes to other entities that were not in conflict to succeed
with the next �����������	��� call. The conflicting update is simply
omitted.



ptg

• Merge, or the D		%�����	� option: The concurrent changes are
merged such that the values of properties updated in the current
version in the ?�������	=� are retained. As a result, if conflicting
changes are made to a property, the client values win over the data-
base values. Note that in the particular example in Figure 9.3, this
option does not make much sense based on the semantics of the
three properties.

The �	���*	�� method also supports an additional Boolean parameter
to ignore conflicts in case of delete operations.

Conflict resolution requires two key decisions: selecting the resolution
option, and deciding on the number of retries before abandoning the cur-
rent set of changes and starting over. Each resolution option involves over-
writing someone’s change or potentially merging inconsistent changes.
Hence, it is worth seeking human input from a user if the application has
a user interface. Otherwise, automatic conflict resolution based on prede-
termined choices may be the only option. The number of retries typically
is decided in advance and is defined in the program. Optimistic concur-
rency is intended for cases in which conflicting concurrent changes are rare.
Hence, a small number of retries, often just one, is appropriate and suffi-
cient. In practice, repeated conflicts in succession may indicate that opti-
mistic concurrency is an unsuitable option. Perhaps a more pessimistic
approach using transactions is appropriate.

Refreshing Entities
Simultaneous changes also can affect entities that have been retrieved but
not modified. Modified entities can be refreshed when a conflict is detected
by using the �	���*	�� method. For unmodified entities, an explicit
�	��	���� call is required to retrieve the latest values. Refresh capability is
particularly handy when a unit of work runs for a long time. An example
is when the results are bound to a user interface and the user comes back
after a lunch break. Another example is when certain entities need to be
selectively refreshed for a second unit of work. The following code is a
modified version of a previous code sample with a �	��	���� call added.
Note that �	��	���� changes only the scalar values and does not affect rela-
tionship properties such as E��	��E��	�A?	�����.

Simultaneous Changes 297



ptg

@@.:����.����.��.���;
������	� "���./

���������	���5�	�	�"./�."�������	��?.//.C6�EX�C�������	��!
@@.?	�	�.����.���	��.���.����� .���	.���	��
���
��������������	���!

@@.�	"���.����.��.���;.�	����
@@.�	�	"�.�.�%	"���".���	�.����.�.
�&'.��.E�>	"��.$�	� 
@@.�	��	��.��	.���	�.�	���	.��;���."����	�
E��	� ���./."����E��	���5�	�	�����������	��!
����	��	����	��	��+��	�E*	�����	����	��J���	�1.����!
@@.�����	.��	.���	�
���
��������������	���!

LINQ to SQL computes the set of changes before generating SQL com-
mands to make the changes persistent. You can ask for the set of changes
using the #	������	�	��� method. This gives you a way to inspect the
changes and possibly do some validations before deciding to call
�����������	���. It also provides a handy tool for debugging your appli-
cations without affecting the rows in the database. The changes are
returned as three read-only collections containing entities to be inserted,
updated, and deleted, respectively. �����	�	� also has a convenient
���������� implementation that lists the number of inserts, updates, and
deletes. Alternatively, you can use the E�>	"�?��%	� class from the Visual
Studio sample project mentioned in the preceding chapter to see the results.
The following listing shows a usage pattern:

������	� "���./.�	� ������	���!
"����������	��?./.C6666C!
@@.�	�.���	�.%��%	���	�

E��	� ���./.���E��	���5�	�	��./�.��E��	��?.//.0L3<<�������	��!
E��	�A?	���� ��./.����E��	�A?	�����,L-!

@@.&	�."�����	�.����	���1."����	�.���	�1.�	�	�	�.�	����
����������	�./."���!
���E��	�A?	������?	�	�	E�����������!

@@.#	�."����	.�	�.�������.����������.�� �����.��.�������	
�����	�	� "�./.���#	������	�	���!

@@.��	.���������.%�����.C(���	���G.01.?	�	�	�G.01.X%���	�G.04C
������	�5���	
��	�"��!

Chapter 9: Modifying Objects with LINQ to SQL298



ptg

@@.�		."���	���.��.���	���1.?	�	�	�1.X%���	�."���	"�����
@@.E�>	"�?��%	�.���%�	.����.�	.�����.����.�.?

.���.���	�
E�>	"�?��%	��5���	�"�10�!

@@.������.��.�������	.���	�.����������.%��"	�����
��������������	���!

In summary, LINQ to SQL provides a rich set of tools to handle simul-
taneous changes. You can specify what properties should be used to detect
conflicts, choose to end on first conflict, or get information about all con-
flicts and resolve conflicts with simple built-in options. You can also refresh
the state for unmodified objects. These tools cover concurrent changes
between the time that objects are read and the time that the changes are
submitted. But an equally important issue is to ensure that all the changes
are done atomically as one unit of work or are not done at all. This is accom-
plished using transactions, which are covered next.

Transactions and Connection Management

LINQ to SQL lets you retrieve a graph of objects for modification. All
changes to the graph can then be submitted as a single unit of work with a
�����������	��� call. A unit of work may include multiple updates,
inserts, and deletes. Each operation on an entity is handled as a single data-
base command. So the set of changes requires a set of commands. This
raises some obvious questions:

• What happens when one of the commands fails—say, due to a
change conflict or some other failure?

• What happens if someone else makes changes between two com-
mands in a set of changes?

LINQ to SQL addresses these issues by executing the set of SQL com-
mands as a single transaction. Here is the conceptual multistep process for
a �����������	��� call:

1. Compute the change set for the entities in the ?�������	=�. The
result is a list of entities to be updated, a list of entities to be inserted,
and a list of entities to be deleted.

Transactions and Connection Management 299



ptg

2. Order the changes based on foreign key dependencies. For example,
an E��	� must be inserted before an E��	�?	���� can be inserted,
because the latter requires the key value of the former.

3. Open a connection to the database, and start a transaction or use the
ambient transaction.

4. Execute �&����, X)?6��, and ?�
��� SQL commands, with appropri-
ate checks for conflict detection.

5. Run queries for database-generated values.

6. If all commands execute successfully, commit the transaction to
make the changes persistent in the database. Otherwise, roll back the
transaction and throw exception to inform the caller that ����
��������	��� failed.

The transaction around all the SQL commands addresses these ques-
tions. It ensures that either all the changes are persisted or all of them are
ignored, leaving the database in the same state as before the beginning of
the transaction. Second, depending on the transaction’s isolation level, the
database server prevents conflicting changes between the commands.

LINQ to SQL starts a transaction by default to minimize the chance of an
error. You do not have to remember to start a transaction for every
�����������	��� call. However, you still have control over the transaction
boundary if you so desire. You have two additional options at your dis-
posal for more advanced scenarios. In most common cases, you do not need
the following options; you can just rely on the implicit transaction started
by a �����������	��� call.

Use a ������"�����"�%	 to perform additional operations in the context
of the transaction. LINQ to SQL detects an ambient transaction and uses it
for �����������	���. The transaction is committed or aborted based on the
usual ������"�����"�%	 model. Failures other than �����������	��� also
get to veto the transaction’s completion.

Create a ?�������"���� yourself, and use it to execute other commands
as necessary. Then tell LINQ to SQL to use it by setting the ?�������
�	=��������"���� property. You still get to start and commit or roll back
the transaction as you want.

Chapter 9: Modifying Objects with LINQ to SQL300



ptg

Use of ������"�����"�%	 is convenient when you want to perform
additional operations. A common scenario for such a broader scope is to
include queries and �����������	��� in one transaction, as shown in the
following code. This provides a pessimistic concurrency control option,
where you want to avoid conflicts rather than detecting and resolving
them. Another usage scenario is to enable access to multiple transactional
sources using a promotable or distributed transaction.

����� � ��	��������"�����!.@@.6��.�	�	�	�"	.��.� ��	��������"���������

����� �������"�����"�%	 ��./.�	� ������"�����"�%	���
(

&��������?�������	=� ��./.�	� &��������?�������	=���!

���E��	��.���	��./

���E��	���5�	�	��./�.��������	��������	��?.//.C6
:D�C����
�����!
@@.+���� .���	�.	�����	�.�	�	
��������������	���!
������%�	�	��!

4

Use of ?�������"���� allows interoperability with code using ADO.
NET relational APIs, as shown in the following code. It lets you mix direct
SQL commands and LINQ to SQL operations, and it also allows you to
change the isolation level on the transaction if you want.

����� � ��	��?�����$����	��!

?�������"���� � �=�./.�������	"�����B	���������"������!
@@.�=	"��	.���	.�$���������.����.��	.������"����
���������"����./.� �=�!
�� 
(

��������������	���!
4
"��"�������	������"��="	%���� 	�
(

@@.�����	."�����"��.���.����.��";.������"����
4
@@.?�.����������.���;.����.��	.������"����
� �=����������!

Optimistic concurrency checks and transactions provide complemen-
tary support. The former allows disconnected operation. No resources are
held on the database server while working with entities retrieved in

Transactions and Connection Management 301



ptg

memory, and yet conflicting changes are detected. The latter ensures that
either all changes are persisted successfully, or nothing is persisted in case
of a failure.

The two mechanisms also illustrate how connections are managed by
LINQ to SQL. When a user issues a query, LINQ to SQL issues a command
and creates a ?����	��	�. As soon as the results are consumed, the con-
nection goes back to the connection pool for use by other users of the con-
nection (unless you explicitly change the connection pooling setting on the
connection). This pattern repeats for all LINQ to SQL queries. Meanwhile,
the retrieved objects can be used for potentially long-running computations
involving user input (including coffee breaks) or for complex processing.
When all the changes are done and �����������	��� is called, LINQ to
SQL again opens a connection to the database and uses it to execute �&����,
X)?6��, and ?�
��� SQL commands in a transaction. LINQ to SQL then
returns the connection to the connection pool. This minimizes connection
usage while providing flexibility of operating in disconnected mode and
yet making changes to the retrieved objects. Thus, precious database
resources such as connections are managed carefully to provide a more
scalable solution.

Attaching Multitier Entities

In two-tier applications, a single ?�������	=� instance handles queries and
updates to results of queries. However, for applications that have addi-
tional tiers, it is often necessary to use separate ?�������	=� instances for
query and update. For example, in the case of an ASP.NET application,
query and update are executed as separate requests to the web server
where most of the code is supposed to operate in a stateless fashion. The
requests may even go to different machines in a server farm. Hence, it is not
possible to use the same ?�������	=� instance across multiple requests. In
such cases, a ?�������	=� instance needs to be able to update objects that
it has not retrieved. The 6���"��� method allows the ?�������	=� to deal
with entities coming from another tier. An 6���"��� call tells the ?�������
�	=� to start tracking the entity as if it were retrieved with a query but with-
out actually requiring a database query. Just like the ���	��E���������

Chapter 9: Modifying Objects with LINQ to SQL302



ptg

method, this capability is exposed by ����	�� for each given entity type �.
The following example shows a typical usage:

&��������?�������	=� ��0./.�	� &��������?�������	=���!
������	� "0./.��0�������	��������	�"./�."�������	��?.//.C6�EX�C�!

@@.������	�.	���� ."����	�.��.�����	�.��	�.�.	���.�������.�.�����	�
@@.B�";.��.��	.������	�1.�.�	�."���	=�.�		��.��.�	.��	�
&��������?�������	=� ��2./.�	� &��������?�������	=���!
@@.��	��	.�.�	�.	���� .���.�%%� ���."����	�
������	� "2./.�	� ������	���!
"2�������	��?./.���������?!

@@.�	�.���	�.%��%	���	�.�		�	�.���.�%�������"."��"���	�" ."�	";
"2����%�� &��	./.�����������%�� &��	!
���
@@.�	��.?�������	=�.��.���";.����.��>	"�.���.��.�%���	
��2�������	���6���"��"2�!
@@.&��.�%%� .��	."����	�
"2������"�&��	./.C7������.7�������	�C!
@@.?�������	=�.���.��������@"���	��.*���	�.��.�%���	.��	."�����	�
��2������������	���!

In the absence of 6���"���, during �����������	��� processing, an
entity that was not retrieved in a query is considered to be a new entity for
insertion into the database. 6���"��� tells the ?�������	=� that the entity is
not new but merely serialized from another tier.

6���"��� needs to preserve the optimistic concurrency capability by
ensuring that current and original values are available. As a result, three
different overloads deal with the current and original values:

• Original values used for conflict detection: 6���"��������������
���	�� should be used to attach the original values. The instance can
then be modified by playing back the changes serialized from
another tier before calling �����������	���.

• Original and current copies available: 6���"��"���	��������	�1
��������������	�� does it in one shot. This requires two instances
with original and current values, respectively.

• Timestamp or no optimistic concurrency members: 6���"��"���	���
)����"�1 ���	� lets you attach the current value without requiring
the original values. No playback is needed before �����������	���

Attaching Multitier Entities 303



ptg

is called. The current version of )����"� is attached with updated
members but the original timestamp. The original timestamp takes
care of the optimistic concurrency check. If the mapping is set up to
skip the optimistic concurrency check, the current version is all that
is needed for an update when �����������	��� is called.

In many multitier applications, the entire entity often is not sent across
tiers for simplicity, interoperability, or privacy. For example, a supplier may
define a data contract for a web service that differs from the Order entity
used on the middle tier. Likewise, a web page may show only a subset of
the members of an Employee entity. Hence, the multitier support also
accommodates such cases. Only the members belonging to one or more of
the following categories need to be transported between tiers and set before
calling 6���"���:

• Members that are part of the entity’s identity

• Members that have been changed

• Members that participate in the optimistic concurrency check

LINQ to SQL uses minimal updates. It checks which columns are
changed from the original to the current version and creates a SQL X)?6��

command to set just the corresponding columns. So when you create an
entity instance on the mid-tier for attaching, anything that is not changed
and not required for the optimistic concurrency check can be skipped. The
remaining members can have default values in both the original and cur-
rent versions. For example, if an E��	� uses a timestamp and only the
���%6���	�� has been changed, you need to set only three properties when
you �	� up an Order entity—E��	��?, ���%6���	��, and the timestamp
property.

When attaching objects in original state, the entity graph is recursively
explored for each attached entity until a known entity is reached. By
default, no further action is taken for attached entities. For example, if you
attach an E��	� in original state, all related E��	�A?	���� entities are also
attached. You are free to make changes to E��	�A?	����s to effect an
update, or you can even take action to have them inserted or deleted.

Chapter 9: Modifying Objects with LINQ to SQL304



ptg

However, entities for insertion and deletion do not require the 6���"���
method. The methods used for two-tier applications—����	����	��E��

�������� and ����	�?	�	�	E���������—need to be used for inserting and
deleting multitier entities. As in the case of two-tier usage, a user is respon-
sible for handling the foreign key constraints in the multitier case as well. A
customer with orders cannot just be deleted without handling its orders if
a foreign key constraint in the database is preventing the deletion of a cus-
tomer with orders.

6���"��� is designed for multitier entities obtained through deserial-
ization from another tier or a web service. It is not intended for moving
objects from one live ?�������	=� instance to another. When an entity is
already in the scope of a live ?�������	=�, it may be “tethered” to the
?�������	=� instance to enable deferred loading. If you try to 6���"���
such an entity to another ?�������	=� instance, you get an exception. In
short, you should call 6���"��� only if you have an entity that is detached.
There is no specific API to detach an entity from a ?�������	=�. When you
serialize the entity, it is effectively detached when it is re-created through
deserialization.

Thus, 6���"��� provides a core operation that brings a deserialized
entity into the world of entities retrieved from the database. After it is
attached, the entity then can be used for update, delete, or refresh opera-
tions exactly like the entities retrieved from the database. With the founda-
tion of these operations, let’s now look at how to build a presentation tier
for entities retrieved using LINQ to SQL.

Data Binding

Many applications have a presentation tier that uses the data retrieved by
a Data Access Layer (DAL) technology such as LINQ to SQL. In the pres-
entation tier, the data is bound to user interface (UI) controls—either with
one-way data binding for a read-only display of data or two-way data bind-
ing for updatable data. Two-way data binding ensures that the control and
the object bound to it remain in sync as the values in either of them are
changed. You can use the objects retrieved and saved by LINQ to SQL for
two-way data binding either with smart client technologies such as

Data Binding 305



ptg

Windows Forms and Windows Presentation Foundation (WPF) or with
web technology such as ASP.NET Web Forms.

Smart Client Data Binding
The entities retrieved using LINQ to SQL are normal CLR objects that can be
used for data binding just like any other CLR object. The role of LINQ to
SQL in supporting data binding comes into focus for the results of a query.
In general, the results of a LINQ to SQL query are of type �����	����	��.
Hence, they can be displayed easily, like any other �����	����	��. For two-
way data binding, LINQ to SQL implicitly implements the necessary inter-
face so that you can bind the results of a typical query to a ?���#���. The
following sequence of steps gets a simple form that binds to E��	�� and
E��	�A?	�����:

1. Create a new Windows Forms Application called NorthwindForms,
and add a new item for LINQ to SQL classes named
Northwind.dbml. Use the design surface to build an object model by
dragging and dropping two tables from the Northwind database—
Orders and Order Details. After you have the model, the first step
for data binding is to create a new data source using the Data menu
in Visual Studio, as shown in Figure 9.4.

Chapter 9: Modifying Objects with LINQ to SQL306

Figure 9.4 The Add New Data Source menu option.

2. The Add New Data Source menu option brings up the Data Source
Configuration Wizard, as shown in Figure 9.5. Because LINQ to SQL
returns normal CLR objects, choose Object as the Data Source Type.

3. Click Next to bring up a list of available objects, including E��	� and
E��	�A?	����, as shown in Figure 9.6.



ptg
Figure 9.5 Choosing a data source type.

Data Binding 307

Figure 9.6 Choosing the object you want to bind to.



ptg

4. Select Order and click Finish to put E��	� in the Data Sources win-
dow, as shown in Figure 9.7. You can get to the Data Sources
window by selecting Data, Show Data Source in Visual Studio.

Chapter 9: Modifying Objects with LINQ to SQL308

Figure 9.7 The Data Sources window populated by the wizard.

5. Drag and drop E��	� from the Data Sources window onto the form
to get the grid shown in Figure 9.8.

Figure 9.8 Design view of the order form.

6. Notice that E��	�A?	����� is available as a data source under E��	�.
This is possible because LINQ to SQL recognizes the foreign



ptg

key-based relationship and automatically creates a collection of
E��	�A?	����� that is available as a data source. To see a master-
details view showing E��	�� and their E��	�A?	�����, drag
E��	�A?	����� from the Data Sources window onto the form. The
result is shown in Figure 9.9.

Data Binding 309

Figure 9.9 Design view of the master-details form.

Now it is time to instantiate a ?�������	=� instance and specify the
query whose results we want to bind. In general, it is not a good idea to
bind the entire contents of a database table to a form, because the amount
of data may be too large for a user of the form to consume. Here, we will get
the orders for one customer with ID C6�EX�C. The following listing shows
the result of adding code to instantiate a ?�������	=� and specifying the
query for orders:

%����" %������ "���� :���0 G.:���
(

%��*��	 &��������?�������	=� ��./.�	� &��������?�������	=���!
%����" :���0��
(

��������U	���%��	����!
���	�B����������"	�?�������"	./.���� �.�� ���E��	��

��	�	 ��������	��?.//.C6�EX�C



ptg

�	�	"� �!
4

4

A sample application displaying orders is now ready to run. Figure 9.10
shows the data retrieved when the application is run.

Chapter 9: Modifying Objects with LINQ to SQL310

Figure 9.10 Results in the master-details form.

ASP.NET Data Binding
The experience for basic data binding of query results is very similar in
ASP.NET. Create a new ASP.NET web application and add the existing
model previously created in the Windows Forms applications sample. Use
the Toolbox in Visual Studio to drag and drop a #���J�	� control and add
the title “Order Details” to Default.aspx as follows:

�3�E��	�.?	�����@�3�
��%G#���J�	� �?/C#���J�	�0C �����/C�	�*	�C�
@��%G#���J�	��

Save Default.aspx and add the following code to the )��	A
����� method
in Default.aspx.cs:



ptg

%���	"�	� *��� )��	A
������>	"� �	��	�1.�*	��6��� 	�
(

&��������?�������	=� ��./.�	� &��������?�������	=���!

#���J�	�0�?�������"	./.���� ��.�� ���E��	�A?	�����
��	�	 ���E��	��?.//.0L3<S
�	�	"� ��!

#���J�	�0�?���B�����!
4

With just three lines of code, we have a simple sample application that
is ready to run. Running it produces the output shown in Figure 9.11.

Data Binding 311

Figure 9.11 Order details in a web page.

This sample shows how to display results easily. However, more func-
tionality is needed to edit the results. In the ASP.NET stateless server
model, when a change is posted back, the original ?�������	=� instance
that retrieved the data bound results is no longer around. As discussed in
the section “Attaching Multitier Entities,” a new ?�������	=� instance
serves the second request to make a change. You could programmatically
do the work for update, insert, or delete using the APIs discussed in ear-
lier sections. But 
��$?�������"	 simplifies everything with a declarative
way to handle changes on postback. 
��$?�������"	 implements the ?����
����"	������� pattern defined in ASP.NET 2.0. It knows how to take a
mini-string language for filtering, sorting, and paging and turn it into LINQ
queries. It also knows how to round-trip the original values and 6���"���
to a new ?�������	=� instance to make updates. Let’s look at a quick way



ptg

to enhance the previous sample to use 
��$?�������"	. First, remove the
C# code added in the previous sample. Instead, we will use a wizard to set
up a 
��$?�������"	, as shown in Figure 9.12.

Chapter 9: Modifying Objects with LINQ to SQL312

Figure 9.12 Launching the Data Source Configuration Wizard.

1. Select the <New data source...> option for the Choose Data Source
property. The selection starts the Data Source Configuration Wizard.
Select LINQ as the source, and provide a name for the 
��$?����
����"	–E��	�A?	�����, as shown in Figure 9.13.

Figure 9.13 Launching the 
��$?�������"	 Configuration Wizard.



ptg

2. Click OK to see the LINQ to SQL ?�������	=� types available in the
project and the ����	�� instances in them, as shown in Figure 9.14.

Data Binding 313

Figure 9.14 Selecting data in the 
��$?�������"	 Configuration Wizard.

3. Click the Where button to specify a filter for the LINQ query, as
shown in Figure 9.15. This dialog is suitable for relatively simple
predicates in the LINQ ��	�	 clause. For more complex cases, you
could simply edit the 
��$?�������"	 element in the aspx file.

4. Click OK to go back to the Configure Data Selection dialog (see Fig-
ure 9.14). You can similarly set up sorting by clicking the OrderBy
button. Clicking the Advanced button brings up the key dialog
shown in Figure 9.16. It is essential for ensuring that the query
results are set up for modification.



ptg

Figure 9.15 Specifying a filter for the LINQ query.

Chapter 9: Modifying Objects with LINQ to SQL314

Figure 9.16 Setting up 
��$?�������"	 for insert, update, and delete operations.

5. The final design view step is to configure the #���J�	� to provide
links for editing and deleting, as shown in Figure 9.17.



ptg

Figure 9.17 Setting up #���J�	� for additional operations.

This completes the basic 
��$?�������"	 sample. Run the application to
get results, as shown in Figure 9.18. Now the entities can be edited or
deleted as well.

Data Binding 315

Figure 9.18 Results displayed by the 
��$?�������"	 sample application.

Overall, 
��$?�������"	 takes care of a number of complex tasks
and provides a simple design-time data-binding capability. At runtime, it
takes care of creating a ?�������	=�, forming LINQ queries from string



ptg

properties, and returning the results for consumption by a control such as
#���J�	�. After the user has made a change, it also handles the postback by
creating a new ?�������	=� instance, calling 6���"��� for entities to be
updated, and handling inserts and deletes as well. By taking care of a num-
ber of “plumbing” details, it provides simple building blocks for creating
a presentation tier in a web application.

Thus, LINQ to SQL provides a broad array of options for bridging the
objects retrieved from the database and your desired presentation tier tech-
nology. It supports the presentation tier actions affecting the entity lifecy-
cle, from creation through retrieval, update, and deletion, for both smart
client and web applications.

Creating a Database

LINQ to SQL is designed to allow you to think in terms of your objects. That
is true whether you are retrieving data from the database or binding the
results to a presentation tier control. In fact, the same principle even
extends to creating a database. Because entity classes have attributes
describing the structure of the relational database tables and columns, you
can use this information to create new instances of your database.

You can call the ��	��	?������	�� method on the ?�������	=� to con-
struct a new database instance with a structure defined by your classes. This
allows you to build an application that automatically installs itself on a cus-
tomer system. It also allows you to build a client application that needs a
local database to save its offline state. For these scenarios, ��	��	?������	��
is ideal.

However, the data attributes may not encode everything about an exist-
ing database’s structure. The contents of additional indexes, user-defined
functions, stored procedures, triggers, and check constraints are not repre-
sented by the attributes. The ��	��	?������	�� function creates a replica of
the database using only the information it knows. It is not designed to be
a substitute for full-fledged schema design or DDL creation for a complex
production database with tuning needs. Yet, for a variety of databases, this
is sufficient and very expedient from a productivity standpoint.

Chapter 9: Modifying Objects with LINQ to SQL316



ptg

Here is an example of how you can create a new database named
MyDVDs.mdf:

,����	�&��	/C?J?����	C�-
%����" "���� ?J?
(

,���������)����� D	 ./.���	�-
%����" ������ ����	!
,������-
%����" ������ ������!

4

%����" "���� + ?J?� G.?�������	=�
(

%����" ����	?J?�.?J?�!
%����" + ?J?�������� "���	"�����.G.���	�"���	"�����.(4

4

The object model can be used to create a database using the SQL Server
Express 2005 database as follows:

+ ?J?� ��./.�	�.+ ?J?��C"G99� �*������C�!
�����	��	?������	��!

A complementary API allows you to check an existing database and
drop it before creating a new one. Here is a modified version of the data-
base creation code that first checks for an existing version of the database
using ?������	�=������ and then drops it using ?	�	�	?������	��:

+ ?J?� ��./.�	� + ?J?��C"G99� �*������C�!

�� ����?������	�=�������.(
������	�5���	
��	�C?	�	����.���.�������	���C�!
���?	�	�	?������	��!

4

�����	��	?������	��!

After the call to ��	��	?������	��, the new database exists and can
accept queries and commands such as �����������	��� to add objects to
the MDF file.

It is also possible to use ��	��	?������	�� with normal SQL Server,
using either an MDF file or just a catalog name. You need to use the appro-
priate connection string, which you can find from the connection properties

Creating a Database 317



ptg

in Server Explorer in Visual Studio. The information in the connection string
is used to define the database that will exist, not necessarily one that already
exists. LINQ to SQL finds the relevant bits of information and uses them to
determine what database to create and on what server. Of course, you need
the appropriate rights granted to you on the database server to do so.

Summary

LINQ to SQL implements the LINQ query pattern to retrieve entities from
the database. Applications require additional support for the retrieved enti-
ties beyond the LINQ query pattern. LINQ to SQL supports modification of
entities through create, update, and delete operations. It also provides rich
capabilities for handling concurrent changes through optimistic concur-
rency checks, conflict resolution, and transactions. In addition to the data-
base operation, entities from other tiers can be processed using attach
functionality.

LINQ to SQL also provides rich features for building a presentation tier
quickly. Retrieved entities are ready for data binding in both the Windows
smart client and ASP.NET web forms presentation tiers.

In addition to data access and presentation, LINQ to SQL covers simple
deployment through a runtime capability for creating a database from the
object model. Together these features make it easier to write database appli-
cations in an object model-centric fashion.

Chapter 9: Modifying Objects with LINQ to SQL318



ptg

10
Using Stored Procedures and
Database Functions with
LINQ to SQL

L INQ TO SQL G E N E R AT E S dynamic SQL for queries and inserts,
updates, and deletes. However, in some cases data access must be

made through stored procedures, also called sprocs. Stored procedures may
encapsulate business logic, ensure security restrictions, or provide an opti-
mized and restricted way to query or modify data. Occasionally a database
may be accessible exclusively through stored procedures. Hence, LINQ to
SQL fully supports stored procedures for CRUD operations. This chapter
looks at how to specify the stored procedures and database functions for
mapping and how to use them to perform CRUD operations. 

Stored Procedures and Functions for Querying

Let’s begin by exploring techniques for querying data using stored proce-
dures, user defined functions, and table value functions. Later in the chap-
ter, we will see how to use stored procedures to perform create, update, and
delete operations.

319



ptg

Mapping and Using a Stored Procedure
The sample Northwind database contains a stored procedure titled
���	�B ���	��� . To use it in LINQ to SQL, open the project used for the
code in previous chapters and follow these simple steps:

1. Open the Northwind.dbml file in the project.

2. In the Server Explorer pane, expand the ����	� )��"	���	� node
under the Northwind database, and select the ���	�B ���	��� 
stored procedure.

3. Drag and drop the selected stored procedure on the designer surface
to generate a method with the same name. The left pane shows
classes generated from tables, and the right pane shows methods
generated from stored procedures and database functions. As a
result of the drag-and-drop operation, the LINQ to SQL designer
displays a method with the same name—���	�B ���	��� .

4. Right-click the method and choose Properties to see additional
details, as shown in Figure 10.1.

Chapter 10: Using Stored Procedures and Database Functions 320

Figure 10.1 A stored procedure mapped to a method.

5. Save the dbml file to regenerate code and mapping to include the
displayed method.

6. In Solution Explorer, double-click Northwind.designer.cs to view the
generated method &��������?�������	=�����	�B ���	��� ��.

You could also use SqlMetal with the @�%��"� option to automatically
map stored procedures. However, unlike in the case of the designer, you
cannot selectively map stored procedures or change their return types
easily without editing the intermediate dbml file.



ptg

As shown in Figure 10.1, LINQ to SQL autogenerates a type to match the
shape of the result returned by the stored procedure. The method signature
in step 6 shows that the return type is ������	�	�������	�B ���	��� 
�	�����. ������	�	���� is a generic return type that LINQ to SQL uses for
methods used to call stored procedures returning a single result set. LINQ to
SQL generates the ���	�B ���	��� �	���� type for the ���	�B ���	��� 
stored procedure.

The generated method is ready for use, as shown next. The period after
the ?�������	=� variable �� shows the ���	�B ���	��� method in Intel-
liSense.

����� � ��	��?����
��$!

&��������?�������	=� ��./.�	� &��������?�������	=���!
���
��./.������	�E��!

������	�	�������	�B ���	��� �	�����.���	��	����./
������	�B ���	��� �C)����"	C1.C0QQTC�!

������	��	��
��	��!
E�>	"�?��%	��5���	����	��	�����!

The execution produces translated SQL with stored procedure invoca-
tion; the results are as follows. Notice that unlike the case of a normal
�'�	� ���	�� query expression, the execution of the method ���	�
B ���	��� is not deferred. Even before you press Enter for the ������	�
�	��
��	�� call, the stored procedure has been executed.

�I��.F���X�&AJ6
X�./.,���-�,���	�B ���	��� -.F���	��� &��	./.F%L1
FE��N	��./.F%0

��.F%LG.��%��.&J������.���U	./.T!.)�	"./.L!.�"��	./.L�.,)����"	-
��.F%0G.��%��.&J������.���U	./.R!.)�	"./.L!.�"��	./.L�.,0QQT-
��.F���X�&AJ6
X�G.E��%��.���.���U	./.L!.)�	"./.L!.�"��	./.L�.,&���-
��.����	=�G.�$�)��*��	���$�2LL<�.+��	�G.6�������	�+	��+��	�.B����G
3�<�3LT2Q�0

)����"�&��	/
������	.����.......�����)��"���	/0LL0�LL
)����"�&��	/+��>���%.?��	�.6%%�	�.......�����)��"���	/2R<T0�LL
)����"�&��	/�����	.���	�;����...�����)��"���	/03QRQ�LL
)����"�&��	/����........�����)��"���	/S23R�LL
)����"�&��	/X�"�	.B��a�.E�����".?��	�.)	���.....�����)��"���	/Q0MS�LL

Stored Procedures and Functions for Querying 321



ptg

Thus, using the designer, you can execute a stored procedure by simply
invoking the corresponding generated methods with suitable parameters.
LINQ to SQL does all the plumbing associated with creating parameters,
executing the stored procedure, and materializing objects from the rows in
the stored procedure result.

The preceding example shows how to get results of the shape specified
by the stored procedure. The type ���	�B ���	��� �	���� is not a class
with a key; it is not an entity class that can be used for insert, update, and
delete operations. It is limited to read-only use. But the designer also lets
you specify an existing entity type if you want to retrieve entities using a
stored procedure. Let’s look at a stored procedure that returns rows with
key values that can be used to create entities. Because the sample North-
wind database available for download on the web does not contain a suit-
able entity-shape returning stored procedure, we will add the following
stored procedure to Northwind for use in this example:

���6��.)�E��?X��.E��	��B ������	�...F������	��?.�"����<�
6�
��
���.O
:�E+.E��	��
57���.������	��?./.F������	��?

You can add the E��	��B ������	� stored procedure to a copy of the
Northwind database by running the preceding SQL in Visual Studio 2008
or SQL Server Management Studio or a similar tool. In Visual Studio, right-
click the database in Server Explorer, select New Query, and run the SQL
just shown. As soon as the stored procedure is created in the database, it is
available for use in the Server Explorer. Using the steps outlined a moment
ago, you will map this newly created stored procedure. The resulting
method with the same name, E��	��B ������	�, returns a result type that
the designer autogenerates by default. To use an existing entity type
obtained by dragging and dropping a table, change the return type, and
pick Order instead of the autogenerated type, as shown in Figure 10.2.

Chapter 10: Using Stored Procedures and Database Functions 322



ptg

Figure 10.2 A stored procedure returning an entity type.

The replacement of the autogenerated type brings up the confirmation
dialog shown in Figure 10.3. Click the Yes button, and save the dbml file to
regenerate the code, including the E��	��B ������	� method.

Stored Procedures and Functions for Querying 323

Figure 10.3 Stored procedure returning an entity type.

The E��	��B ������	� method returns ������	�	����E��	��. It can
be used as follows:

&��������?�������	=� ��./.�	� &��������?�������	=���!
���
��./.������	�E��!

������	�	����E��	��.E��	��'�	� ./.���E��	��B ������	��CBE
�?C�!

E�>	"�?��%	��5���	�E��	��'�	� �!



ptg

The result of executing this code is the execution of the corresponding
stored procedure and the materialization of a set of Order entities for the
customer with ID BE
�?. The returned entities can be modified just like enti-
ties retrieved using dynamic SQL. The following listing shows the gener-
ated SQL for stored procedure execution and the first order in the results:

�I��.F���X�&AJ6
X�./.,���-�,E��	��B ������	�-.F������	��?./.F%L
��.F%LG.��%��.&����.���U	./.<!.)�	"./.L!.�"��	./.L�.,BE
�?-
��.F���X�&AJ6
X�G.E��%��.���.���U	./.L!.)�	"./.L!.�"��	./.L�.,&���-
��.����	=�G.�$�)��*��	���$�2LL<�.+��	�G.6�������	�+	��+��	�.B����G
3�<�3LT2Q�0

E��	��?/0L32S...������	��?/BE
�?........��%�� 		�?/R
E��	�?��	/0L@0L@0QQS....�	$���	�?��	/00@T@0QQS
���%%	�?��	/0L@0R@0QQS..���%J��/2.......:�	����/TT�Q2LL
���%&��	/B�����.�������.%�	%������......���%6���	��/�@.6��$���1.ST
���%��� /+�����.........���%�	����/����.........���%)��������	/2ML23
���%������ /�%���.......E��	�A?	�����/���
������	�/(.4
���

Using Stored Procedures That Return Multiple Results

So far we have looked at stored procedures that return single results. How-
ever, stored procedures can also return multiple results. Currently, the
graphical designer doesn’t support mapping of such stored procedures.
However, you can use the command-line tool SqlMetal.exe or map them
manually, as shown next.

You will go through three steps to learn how to use a stored procedure
that returns multiple results. First you will create a stored procedure, and
then you will map it to a method. Finally, you will execute the method to
obtain multiple results.

The sample Northwind database does not have a suitable stored proce-
dure returning multiple entities. So first, add a suitable stored procedure
to the sample Northwind database. The following stored procedure returns
suppliers and customers from a given city as two distinct results. As before,
right-click the Northwind database in Server Explorer, select New Query,
and run the following SQL:

Chapter 10: Using Stored Procedures and Database Functions 324



ptg

���6��.)�E��?X��.��%%��	��6��������	��.F��� .�*��"����0<�
6�

��
���.O
:�E+.��%%��	��
57���.��� ./.F��� 

��
���.O
:�E+.������	��
57���.��� ./.F��� 

Next, add a partial class for the generated &��������?�������	=� class.
Right-click the designer surface and select View Code. The designer creates
a separate file for you to write code, with a stub declaration for the corre-
sponding partial class. Add the following code for mapping the newly cre-
ated stored procedure. The mapping specifies the stored procedure name
and the result types. The method parameter indicates the corresponding
stored procedure parameter. The method body is similar to the one gener-
ated by the designer for executing any stored procedure based on the map-
ping attributes. The return type �+����%�	�	����� exposes multiple results
that you will use next.

%����" %������ "���� &��������?�������	=�
(

,:��"�����&��	./.C������%%��	��6��������	��C�-
,�	����� %	�� %	�����%%��	���-
,�	����� %	�� %	���������	���-
%����" �+����%�	�	����� ��%%��	��6��������	���

,)����	�	��&��	./.C��� C1.?�� %	./.C&J�������0<�C�-.������ "�� �
(

��=	"��	�	���� �	����./.������=	"��	+	�������������1
��+	����������+	���������#	�����	��+	��������1."�� �!
�	���� ���+����%�	�	��������	������	����J���	��!

4
4

Now the method is available for getting suppliers and customers. Add
the following code to Program.cs to use the multiple results returned by the
stored procedure:

�������+����%�	�	����� �	�����./.�����%%��	��6��������	���C
�����C��
(


�����%%��	��.��%%��	��./.�	������#	��	������%%��	�������
�����!

���������	��."�����	��./.�	������#	��	����������	�������
�����!

Stored Procedures and Functions for Querying 325



ptg

E�>	"�?��%	��5���	���%%��	���!
E�>	"�?��%	��5���	�"�����	���!

4

Executing this code brings back suppliers and customers from London
as two separate results. Here, only the first customer is shown; the others
are elided:

�I��.F���X�&AJ6
X�./.,���-�,��%%��	��6��������	��-.F��� ./.F%L
��.F%LG.��%��.&J������.���U	./.S!.)�	"./.L!.�"��	./.L�.,
�����-
��.F���X�&AJ6
X�G.E��%��.���.���U	./.L!.)�	"./.L!.�"��	./.L�.,&���-
��.����	=�G.�$�)��*��	���$�2LL<�.+��	�G.6�������	�+	��+��	�.B����G
3�<�3LT2Q�0

��%%��	��?/0....���%�� &��	/�=���".
�$����....�����"�&��	/��������	
���%	�....�����"�����	/)��"������.+����	�
6���	��/RQ.#���	��.���..��� /
�����....�	����/����..)��������	/��0.R�?
������ /XD......)���	/�0T0�.<<<�2222
:�=/����........7��	)��	/����...)����"��/���

������	��?/6�EX�........���%�� &��	/6�����.��	.7���
�����"�&��	/������.7��� ........�����"�����	/���	�.�	%�	�	�����*	

6���	��/02L.7���*	�.�$�.........��� /
�����.....�	����/����
)��������	/560.0?)......������ /XD......)���	/�0T0�.<<<�TTMM

:�=/�0T0�.<<<�ST<L......E��	��/���
���

Using Table-Valued Functions
Stored procedures return results but do not allow further query composi-
tion on the server. You cannot use a stored procedure in place of a table to
write a SQL query. You can use LINQ to Objects to further query the results
of a stored procedure. However, such a query is executed entirely on the
mid-tier or client machine and cannot benefit from the indexes in the data-
base or the capabilities of the SQL query optimizer.

A table-valued function (TVF) can be used in place of a table in an SQL
query. LINQ to SQL lets you exploit this capability by allowing a method
mapped to a TVF in a LINQ query in a composable fashion. Such a query
expression is translated to SQL, and it is executed entirely by the database
server.

Let’s add the following TVF to the copy of the sample Northwind data-
base. You can use the same steps described earlier to run the following SQL

Chapter 10: Using Stored Procedures and Database Functions 326



ptg

for a TVF in Visual Studio using the Server Explorer. The TVF returns the
orders shipped by a particular shipper identified by the TVF parameter.

���6��.:X&���E&.E��	��B ���%%	��F���%%	�.���	�	��
���X�&�.�6B
�
6�
���X�&.���
���.O

:�E+.E��	��.���
57���.�������%J��./.F���%%	��

The LINQ to SQL designer lets you map a TVF just like a stored proce-
dure. Expand the Functions node in Server Explorer to view the newly cre-
ated TVF. Drag it to the designer surface. In the property grid, change the
return type from autogenerated to Order. Next, save the dbml file to gen-
erate the corresponding method. In Northwind.designer.cs, a new method
appears as follows:

,:��"�����&��	/C����E��	��B ���%%	�C1.�����%�����	/���	�-
%����" �'�	� ���	E��	��.E��	��B ���%%	��,)����	�	��?�� %	/C���C�-

� ��	��&������	����.���%%	��
(

�	���� �������	��	+	��������'�	� E��	�������1
��+	����������+	���������#	�����	��+	��������1.���%%	��!

4

Unlike the case of a stored procedure, the resulting method is marked as
composable using the �����%�����	 property of the :��"���� mapping
attribute. This tells the LINQ to SQL runtime that the method may be used
in place of a table. The following code in Program.cs does just that:

�'�	� ���	E��	��.���	��./.���� �.�� ���E��	��B ���%%	��0�
��	�	 ��������	����� .//.C
�����C
�	�	"� �!

������	��	��
��	��!

E�>	"�?��%	��5���	����	���!

The first statement shows how the mapped method E��	��B ���%%	���
can be used with the appropriate parameter in place of the E��	�� table.
The second statement, ������	��	��
��	��, lets us see the execution
semantics. As in the case of LINQ to SQL queries shown in previous chap-
ters, and unlike the stored procedure executions shown in this chapter so

Stored Procedures and Functions for Querying 327



ptg

far, the TVF-mapped method can be composed inside an expression tree
that is translated into SQL only when the results are consumed. Pressing
the Enter key provides the following results. As in the previous results,
Customer entities beyond the first one are elided in the following listing:

��
���.,�L-�,E��	��?-1.,�L-�,������	��?-1.,�L-�,��%�� 		�?-1
,�L-�,E��	�?��	-1.,�L-�,�	$���	�?��	-1.,�L-�,���%%	�?��	-1
,�L-�,���%J��-1.,�L-�,:�	����-1.,�L-�,���%&��	-1.,�L-�,���%6���	��-1
,�L-�,���%��� -1.,�L-�,���%�	����-1.,�L-�,���%)��������	-1
,�L-�,���%������ -
:�E+.,���-�,E��	��B ���%%	�-�F%L�.6�.,�L-

�:�.EX���.PE�&.,���-�,������	��-.6�.,�0-.E&.,�0-�,������	��?-./

,�L-�,������	��?-
57���.,�0-�,��� -./.F%0
��.F%LG.��%��.���.���U	./.L!.)�	"./.L!.�"��	./.L�.,0-
��.F%0G.��%��.&J������.���U	./.S!.)�	"./.L!.�"��	./.L�.,
�����-
��.����	=�G.�$�)��*��	���$�2LL<�.+��	�G.6�������	�+	��+��	�.B����G
3�<�3LT2Q�0

E��	��?/0L3<<...������	��?/6�EX�.....��%�� 		�?/S....E��	�?��	/00@0<@0QQS
�	$���	�?��	/02@03@0QQS

���%%	�?��	/00@2L@0QQS..���%J��/0.......:�	����/R0�Q<LL
���%&��	/6�����.��	.7���..���%6���	��/B���;.:���.���������.���.+�� 
���%��� /���"�	��	�.....���%�	����/���	=...���%)��������	/�ET.SPI
���%������ /XD..E��	�A?	�����/���
������	�/(.4
���

Using Scalar-Valued Functions
Scalar-valued functions return a single value, such as an integer, string, or
?��	���	. Like their table-valued counterparts, scalar-valued functions are
also free from side effects; hence, they can be composed into a SQL query.
Hence, LINQ to SQL also supports scalar-valued functions in LINQ
queries.

Let’s add the following scalar-valued function to a copy of the sample
Northwind database using the steps described in the previous sections. The
function 6*	���	)����"�X���)��"	B ���	��� returns the average price
for the given product category.

���6��.:X&���E&.6*	���	)����"�X���)��"	B ���	��� 
�F"��	��� �?.����
���X�&�.+��	 

Chapter 10: Using Stored Procedures and Database Functions 328



ptg

6�
B�#�&

?��
6��.F�	����J��.+��	 

��
���.F�	����J��./.���
���.6*��X���)��"	�
:�E+.)����"��
57���.���	��� �?./.F"��	��� �?�

���X�&.F�	����J��
�&?

In the LINQ to SQL designer, drag and drop the newly created function
onto the designer surface. The designer lists a method with the same name
as the database function. The property grid shows that the method returns
� ��	��?	"����—the default mapping for the database type +��	 . Save
the dbml file, and use the generated method in a query as follows:

*�� "��	��� '�	� ./
���� ".�� ������	����	�
��	�	 ���6*	���	)����"�X���)��"	B ���	��� �"����	��� �?�..22
�	�	"� "!

E�>	"�?��%	��5���	�"��	��� '�	� �!

This LINQ to SQL query uses the method mapped to the scalar-valued
function inside a regular LINQ query. It produces the following SQL query
and results. The scalar-valued function is composed inside the generated
SQL query.

��
���.,�L-�,���	��� �?-1.,�L-�,���	��� &��	-1
,�L-�,?	�"��%����-1.,�L-�,)�"���	-

:�E+.,���-�,���	����	�-.6�.,�L-
57���.,���-�,6*	���	)����"�X���)��"	B ���	��� -�,�L-�,���	��� �?-�.
F%L
��.F%LG.��%��.?	"����.���U	./.L!.)�	"./.33!.�"��	./.R�.,22-
��.����	=�G.�$�)��*��	���$�2LL<�.+��	�G.6�������	�+	��+��	�.B����G
3�<�3LT2Q�0

���	��� �?/<....���	��� &��	/#�����@�	�	���
?	�"��%����/B�	���1."��";	��1.%����1.���."	�	��...)�"���	/(.4
)����"��/���
���	��� �?/M....���	��� &��	/�	�����....?	�"��%����/�	��		�.���.����
)�"���	/(.4.....)����"��/���

Stored Procedures and Functions for Querying 329



ptg

Stored Procedures for Inserts, Updates, and Deletes

Stored procedures are often used in databases for create (insert), update,
and delete (CUD) operations. They may ensure access restrictions or
include business logic related to the operations. Hence, in certain cases, a
developer may have no option but to use the stored procedures provided
by a database administrator (DBA) for persisting changes to the database.
LINQ to SQL supports such stored procedures through a combination of
designer and runtime support.

Stored procedures can be used via a more general-purpose mechanism
in LINQ to SQL for overriding CUD operations. The mechanism works as
follows: if the ?�������	=� class contains a method with a canonical name
and signature of a CUD operation, that method is considered to override the
generation of normal dynamic SQL commands for CUD operations. The
CUD override methods use convention rather than configuration as fol-
lows. For the Order entity, the three methods are

*��� ���	��E��	��E��	� ������"	�.(���4
*��� X%���	E��	��E��	� ������"	�.(���4
*��� ?	�	�	E��	��E��	� ������"	�.(���4

The method bodies can contain arbitrary logic, including a call to a
stored procedure for carrying out the corresponding operation. During
�����������	��� processing, for each CUD operation, the LINQ to SQL
runtime checks if there is a corresponding CUD override method for that
entity and invokes the method if one is found.

The code generator used in the designer and SqlMetal provides addi-
tional help by pregenerating the method signatures as partial method dec-
larations in the ?�������	=� class as follows:

%������ *��� ���	��E��	��E��	� ������"	�!
%������ *��� X%���	E��	��E��	� ������"	�!
%������ *��� ?	�	�	E��	��E��	� ������"	�!

The LINQ to SQL designer further simplifies the use of stored proce-
dures in the bodies of such override methods with a dialog for specifying
the operation and the stored procedure parameters. Let’s add the following
stored procedure for updating an E��	� row to the copy of the sample
Northwind database using the steps mentioned in previous sections.

Chapter 10: Using Stored Procedures and Database Functions 330



ptg

���6��.)�E��?X��.X%���	E��	�
FE��	��?.���1
F������	��?.�"����<�1
F��%�� 		�?.���1
FE��	�?��	.���	���	1
F�	$���	�?��	.���	���	1
F���%%	�?��	.���	���	1
F���%J��.���1
F:�	����.���	 1
F���%&��	.�*��"����RL�1
F���%6���	��.�*��"����SL�1
F���%��� .�*��"����0<�1
F���%�	����.�*��"����0<�1
F���%)��������	.�*��"����0L�1
F���%������ .�*��"����0<�

6�
X)?6��.E��	��
���

������	��?./.F������	��?1
��%�� 		�?./.F��%�� 		�?1
E��	�?��	./.FE��	�?��	1
�	$���	�?��	./.F�	$���	�?��	1
���%%	�?��	./.F���%%	�?��	1
���%J��./.F���%J��1
:�	����./.F:�	����1
���%&��	./.F���%&��	1
���%6���	��./.���%6���	��1
���%��� ./.F���%��� 1
���%�	����./.F���%�	����1
���%)��������	./.F���%)��������	1
���%������ ./.F���%������ 

57���
E��	��?./.FE��	��?

���X�&.FF�E5�EX&�

Next, drag and drop the stored procedure onto the designer surface to
obtain the X%���	E��	��� method, as shown in Figure 10.4.

Stored Procedures for Inserts, Updates, and Deletes 331

Figure 10.4 An update stored procedure mapped to a method.



ptg

In the left pane, which contains entity classes, right-click the E��	� class,
and select Configure Behavior, as shown in Figure 10.5.

Chapter 10: Using Stored Procedures and Database Functions 332

Figure 10.5 Configuring CUD operation on an entity.

The Configure Behavior dialog lets you specify a stored procedure for
CUD operations and map its parameters, as shown in Figure 10.6.

Select Order from the Class drop-down, Update from the Behavior
drop-down, and UpdateOrder from the Customize drop-down. The stored
procedure parameters and entity properties are matched by name and pre-
sented. In this case, you don’t need to change any parameter mappings, so
click OK to complete the generation of an update override method. Now all
E��	� update operations will be routed through the override method and,
in turn, through the X%���	E��	� stored procedure listed earlier. Insert and
delete operations can be configured in a similar fashion. Note that the over-
ride methods are not meant to be called in your code; they are defined so
that the LINQ to SQL runtime can call them at the appropriate point when
your code calls �����������	���.



ptg

Figure 10.6 Specifying a stored procedure for CUD operations on an entity.

Stored Procedures for Loading Relationships

Query and CUD operations are the foundation of any object-relational
mapping solution. All these operations can be easily done using stored pro-
cedures. However, as discussed in Chapter 8, “Reading Objects with LINQ
to SQL,” the real attraction of an object-relational mapping solution is the
“power of the dot.” You can navigate from a ������	� to its E��	�� by sim-
ply referencing the ������	��E��	�� property. There is no need to do
explicit queries or joins. Hence, LINQ to SQL also lets you load related enti-
ties using stored procedures. It uses a similar override pattern to load
related objects. For example, the following signatures define override meth-
ods to load ������	��E��	�� and E��	��������	�, respectively:

Stored Procedures for Loading Relationships 333



ptg

%������ "���� &��������?�������	=�
(

%��*��	 �����	����	E��	��.
���E��	���������	� "�����	��.(.���.4
%��*��	 ������	� 
���������	��E��	� ���	��.(.���.4

4

Normally, LINQ to SQL formulates dynamic SQL to load related enti-
ties. However, if it finds an override method following the canonical
method name and signature, as just shown, it uses the override method
instead of executing dynamic SQL. Such overrides may be used for either
deferred or eager loading.

Let’s use the previously defined stored procedure E��	��B ������	� to
load ������	��E��	��. As in the case of stored procedures returning mul-
tiple results, this requires the addition of code to a partial class. Add the fol-
lowing code to the partial class created in the previous section:

%��*��	 �����	����	E��	��.
���E��	���������	� "�����	��
(

�	���� �����E��	��B ������	��"�����	��������	��?�!
4

LINQ to SQL uses this override method to load the corresponding col-
lection, as in the following code:

*�� "���./.���������	���5�	�	�"./�."�������	��?.//.CBE
�?C�������	��!
E�>	"�?��%	��5���	�"����E��	���!

The query and results for this code show that the E��	��B ������	�
stored procedure is called for loading "����E��	�� as follows. The query
for loading the customer with ID BE
�? is done using dynamic SQL, but the
deferred loading of "����E��	�� does not use dynamic SQL; it uses the
mapped stored procedure instead.

��
���.,�L-�,������	��?-1.,�L-�,���%�� &��	-1.,�L-�,�����"�&��	-1
,�L-�,�����"�����	-1.,�L-�,6���	��-1.,�L-�,��� -1.,�L-�,�	����-1
,�L-�,)��������	-1.,�L-�,������ -1.,�L-�,)���	-1.,�L-�,:�=-
:�E+.,���-�,������	��-.6�.,�L-
57���.,�L-�,������	��?-./.F%L
��.F%LG.��%��.&J������.���U	./.<!.)�	"./.L!.�"��	./.L�.,BE
�?-
��.����	=�G.�$�)��*��	���$�2LL<�.+��	�G.6�������	�+	��+��	�.B����G
3�<�3LT2Q�0

Chapter 10: Using Stored Procedures and Database Functions 334



ptg

�I��.F���X�&AJ6
X�./.,���-�,E��	��B ������	�-.F������	��?./.F%L
��.F%LG.��%��.&����.���U	./.<!.)�	"./.L!.�"��	./.L�.,BE
�?-
��.F���X�&AJ6
X�G.E��%��.���.���U	./.L!.)�	"./.L!.�"��	./.L�.,&���-
��.����	=�G.�$�)��*��	���$�2LL<�.+��	�G.6�������	�+	��+��	�.B����G
3�<�3LT2Q�0

E��	��?/0L32S...������	��?/BE
�?.....��%�� 		�?/R....E��	�?��	/0L@0L@0QQS
�	$���	�?��	/00@T@0QQS..���%%	�?��	/0L@0

R@0QQS..���%J��/2.......:�	����/TT�Q2LL.........���%&��	/B�����.�������
%�	%������......���%6���	��/�@.6��$���1.ST

���%��� /+�����.........���%�	����/����.........���%)��������	/2ML23
���%������ /�%���.......E��	�A?	�����/���

������	�/(.4
���

Summary

Stored procedures are not only a key mechanism for data access. In some
cases, they may be the only available mechanism. LINQ to SQL supports
queries using stored procedures returning single or multiple results. It also
supports composable queries using table-valued functions (TVF) or scalar-
valued functions. Stored procedures can also be used in overrides for insert,
update, and delete operations. Finally, the set of operations is significantly
expanded by the ability to use stored procedures or table-valued functions
for relationship loading. These capabilities can be used together or in com-
bination with dynamic SQL to get the best combination of flexibility, secu-
rity, and performance.

Summary 335



ptg

This page intentionally left blank 



ptg

11
Customizing Entity Persistence
and Adding Business Logic

T H E LINQ TO SQL D E S I G N E R , which is also known as the Object
Relational Designer, and SqlMetal help you by generating classes and

mapping from a database. The generated code targets the most common
and standard way to persist objects and is not meant to be modified. How-
ever, it includes mechanisms for customizing how the objects are retrieved,
modified, and persisted. It also provides easy extensibility for the addition
of business logic. Finally, the generated code is only one way to use the
LINQ to SQL runtime libraries. You can also write your own classes and
specify mapping external to the classes if you want to. In this chapter we
will look at the common ways to customize generated classes and write
your own classes to use LINQ to SQL in the most effective fashion for your
applications.

Customizing Generated Code

Let’s revisit the code generated by the LINQ to SQL designer when the Cus-
tomers and Orders tables from the Northwind database are dropped on the
designer surface in a new project. Recall that the command-line tool
SqlMetal uses the same code generator. So a few project configuration items
aside, you will get substantially the same code from SqlMetal as well.

337



ptg

The generated code in Northwind.designer.cs has two main sets of
classes—a ?�������	=� class, &��������?�������	=�, and a set of entity
classes—������	� and E��	� in this case. Both sets of classes allow a rich
set of customizations without any need to modify the generated source
code. This is done through the use of partial classes, partial methods, and
virtual methods. Partial classes and virtual methods have been available in
C# and VB.NET prior to the LINQ-enabled release. Partial methods were
added along with LINQ support and are covered in detail in Chapter 4, “C#
3.0 Technical Overview.”

The LINQ to SQL designer provides an easy way to create a partial class
stub to add your code. For the ?�������	=� class, right-click the designer
surface, and select the View Code option. A corresponding file, North-
wind.cs, is created with a partial class declaration for &��������?�������
�	=�. This is where you can write your own code without worrying about
the designer overwriting it when you make changes in the designer and
regenerate code. Likewise, right-clicking an entity class gives you a partial
class stub in Northwind.cs for the corresponding entity class. The generated
stubs along with manually added code are shown in a following listing.

Customizing the DataContext Class
The generated &��������?�������	=� class contains the following partial
methods tucked away in a code region:

_�	���� �=�	�������� .+	����.?	���������
%������ *��� E���	��	���!
%������ *��� ���	��������	��������	� ������"	�!
%������ *��� X%���	������	��������	� ������"	�!
%������ *��� ?	�	�	������	��������	� ������"	�!
%������ *��� ���	��E��	��E��	� ������"	�!
%������ *��� X%���	E��	��E��	� ������"	�!
%������ *��� ?	�	�	E��	��E��	� ������"	�!
_	���	����

As explained in Chapter 4, the partial methods provide placeholders for
you to write code if you want to. In this case, the implementations of the
partial methods are called either in the generated code, as in the case of
E���	��	���, or by the LINQ to SQL runtime, as in the case of insert,
update, and delete methods for an entity type. If you choose not to cus-
tomize the specific behavior, the compiler simply omits the method calls in

Chapter 11: Customizing Entity Persistence338



ptg

the generated code and optimizes away the method metadata. The method
declaration just acts as a stub. The LINQ to SQL runtime provides its
default insert, update, and delete behavior when it cannot find an overrid-
ing implementation of the method.

The E���	��	��� method is called in the &��������?�������	=� con-
structors and provides you a way to write the code you want in the con-
structor. For example, it lets you initialize any additional properties you
choose to create in your partial class.

We briefly covered the partial methods for insert, update, and delete
customization in Chapter 10, “Using Stored Procedures and Database
Functions with LINQ to SQL,” for using stored procedures. That is by far
the most common use of these methods. However, the implementation of
the methods can do any other operation as well. In fact, it can even add pre-
and post-operation logic and simply use the LINQ to SQL capabilities to
perform the actual operation, as shown in the following code fragment. It
shows how insert, update, and delete operations can be customized for
Customer entities while using LINQ to SQL methods such as ?�������
�	=���=	"��	���	���� that generate dynamic SQL on your behalf. In each
case, you can add the logging code before and/or after the actual operation.
You do not need to take over the entire operation, which involves generat-
ing a command, opening a connection, executing the command, and flow-
ing back the database-generated values.

The code fragment also shows how to obtain the original values for an
entity in case you want to use them for your pre- or post-processing. It also
illustrates that you can change a delete operation into an update—a com-
mon practice in which database records are marked as deleted or are
moved to a “tombstone” table instead of being deleted. Finally, the code
fragment shows how relationship loading can be customized—in this case
by using a stored procedure as described in the preceding chapter. Together
the methods let you customize the CRUD operations per entity type—in
this case shown for the ������	� type.

%������ "���� &��������?�������	=�
(

%������ *��� E���	��	���
(

@@.�	�.�%.��	.���.���.�������.�%	�������
4

Customizing Generated Code 339



ptg

%������ *��� ���	��������	��������	� ������"	�
(

@@.%�	����	��.%��"	�����!.	���.���.���	�%�	�.�%	������
������=	"��	? ����"���	���������"	�!
@@.%�������	��.%��"	�����!.	���.���."��%�	�	�.�%	������

4

%������ *��� X%���	������	��������	� ������"	�
(

@@.#	�.��	.��������.*	�����.���.�������
������	� ��������./

�����������	���#	�E������������ ����	�������"	�!
@@.6��."��	.���.%�	��%���	.%��"	�����
@@.	���.���.��	.��������.���."���	��.����	

@@.X�	.
�&'.��.�'
.�	����.���.��	.�%���	.�%	������
������=	"��	? ����"X%���	�������"	�!

4

%������ *��� ?	�	�	������	��������	� ������"	�
(

@@.%�	�C�	�	�	C.%��"	�����
@@.�	�.���	.������.��	��.��.�	�	�	�.���.����	.��.�%���	.����	��
������=	"��	? ����"X%���	�������"	�!
@@.%����C�	�	�	C.%��"	�����

4

%��*��	 �����	����	E��	��.
���E��	���������	� "�����	��
(

@@.����.�.����	�.%��"	���	.���.�������
�	���� �����E��	��B ������	��"�����	��������	��?�!

4
4

Overriding SubmitChanges

In addition to the per-entity-type customization just described, you can
customize the overall �����������	��� operation by overriding the
method in your partial class. As in the case of ���	��������	��� and other
methods in the previous example, the heavy lifting can be done by the ����
��������	��� method in the base class implemented in LINQ to SQL code.
You can just add the functionality specific to your application—in this case
logging of the set of changed entities.

Chapter 11: Customizing Entity Persistence340



ptg

%����" �*	����	 *��� �����������	��������"�+��	 ������	+��	�
(

�����	�	� "�./.�����#	������	�	���!
@@.6��."��	.��.���.��	.	����	."����	.�	�

@@.X�	.���	."����.�%	������.���.���;.��.��	.���;
���	������������	��������	+��	�!

4

Customizing the Entity Classes
A common need for entity class customization is the ability to specify your
own base class with common functionality. LINQ to SQL does not require
a specific base class. In other words, it does not “hijack” your base class.
Hence, you are free to use your base class. The command-line tool SqlMetal
lets you specify a base class with the @	���� ���	 option. The designer cur-
rently does not expose this capability, but you can work around that limi-
tation by using SqlMetal to generate code with the @	���� ���	 option
from the designer-generated dbml file.

Another common need is to use the entity classes as return values from
a web method. To serialize entities using the Windows Communication
Foundation (WCF), ?���������"� and ?���+	��	� attributes are needed on
entity and entity properties, respectively. LINQ to SQL designer and
SqlMetal provide an easy way to add the ?���������"� serialization attrib-
utes. In the designer, right-click the designer surface, and select Properties.
Figure 11.1 shows the serialization options. Select Unidirectional to get the
?���������"� attributes. Because the serializer in .NET Framework Version
3.5 did not permit cycles,1 the Unidirectional option ensures that the
?���+	��	� attribute is placed in only one direction of a bidirectional
relationship. ������	��E��	�� gets the ?���+	��	� attribute, but E��	��
������	� does not.

Customizing Generated Code 341

1 The WCF ?���������"� serializer enabled the handling of circular object references
in 3.5 SP1 using the ���	�	�	�"	 property on ?���+	��	� after LINQ to SQL shipped
in Version 3.5 (pre-SP1). Earlier releases required serializer configuration (not the
default setting).



ptg

Figure 11.1 Generating ?���������"� attributes in the designer.

When the dbml file is saved, the generated code includes serialization
attributes as follows:

Chapter 11: Customizing Entity Persistence342

,����	�&��	/C����������	��C�-
,?���������"���-
%����" %������ "���� ������	� G.�&���� )��%	�� ��������1.�&���� )��%	�� �����	�
(

���
,�������������	/CA������	��?C1.?�� %	/C&�����<�.&E�.&X

C1
���B	&���/����	1.��)����� D	 /���	�-

,?���+	��	��E��	�/0�-
%����" ������ ������	��?
(
���

This entity class can now be used as a return type in a WCF web serv-
ice. The following is a simple implementation to illustrate how the class can
be used with an appropriate service contract. You need to add a reference to
System.ServiceModel.dll in your project through the Visual Studio Solution
Explorer.

,�	�*�"	������"�-
%����" ���	���"	 �������	��	�*�"	
(

,E%	������������"�-
������	� #	�������	�������� ���!



ptg

4

%����" "���� ������	��	�*�"	 G.�������	��	�*�"	
(

%����" ������	� #	�������	�������� ���
(

&��������?�������	=� ��./.�	� &��������?�������	=���!
�	���� ����������	���5�	�	�"./�."�������	��?.//.���������	���!

4
4

Beyond the use of designer and SqlMetal options, you can extend entity
classes by adding your own partial class, as in the case of the ?�������	=�
class. In the designer, if you right-click an entity class and select the View
Code option, a partial class stub for the corresponding entity is generated.
The stub is generated in the same file mentioned before. For Northwind.
designer.cs, the stub class is created in Northwind.cs. The newly created
partial class provides a place to add methods containing business logic or
additional nonpersistent properties. For example, you could add a method
for discount computation to an Order entity in the partial class, or you
could add a ?��"���� property that does not map to any database column.
The two members are shown in the following code snippet:

%������ "���� E��	�
(

%����" �	"���� ���%��	?��"����������� ���%�����	�
(

@@."���.�.�	�.�	�*�"	.���.������.��	.���"����.%	�"	����	
4

%����" �	"���� ?��"����.(.�	�!.�	�!.4
4

Any field or property you add in your partial class typically is not be
mapped to a column in the database. Hence, it cannot be used in the LINQ
to SQL query. LINQ to SQL cannot find it in the mapping. Hence, you get
a runtime exception when LINQ to SQL attempts to translate the
unmapped property to a column for use in the generated SQL.

Using Entity Lifecycle Events

When a LINQ query is executed against a database, LINQ to SQL
constructs entities and sets the values of its properties. Likewise, when

Customizing Generated Code 343



ptg

�����������	��� is called, LINQ to SQL computes the set of changed enti-
ties and submits the changes as database commands. When you are relying
on generated code for entities, it is useful to be able to add custom behav-
iors at these persistence-related points in an entity’s lifecycle. LINQ to SQL
provides ways to add code during the lifecycle using partial methods.

Generated entity classes contain partial method declarations and calls
for customization similar to those in the ?�������	=� class. The following
methods are declared for the E��	� class. Three partial methods are related
to the entity’s lifecycle, and then one pair of methods per property, such as
E��	$���	�?��	���������� and E��	$���	�?��	�����	���. The method
pairs for one property are shown; the others are omitted.

_�	���� �=�	�������� .+	����.?	���������
%������ *��� E�
���	���!
%������ *��� E�J������	�� ��	��?����
��$������	6"���� �"�����!
%������ *��� E���	��	���!
���
%������ *��� E��	$���	�?��	��������������� *���	�!
%������ *��� E��	$���	�?��	�����	���!
���
_	���	����

The E���	��	��� method is called in the entity class constructor as a
part of the ��������U	�� method. You can see the call to E���	��	��� in the
generated code. The E�
���	��� method is called after the entity’s proper-
ties are set using the values retrieved during the execution of a LINQ query.
It is invoked by the LINQ to SQL runtime if an implementation is provided.
The E�J������	�� method is called on an instance that is a part of the
change during �����������	��� processing. It is invoked before the SQL
commands for insert, update, and delete operations are executed. Hence,
it provides a way to validate an entity that is about to be changed in the
database, as shown in the following code example.

The per-property method pair allows you to hook in your code before
and after the value is set. The following example shows how a change in
E��	���	$���	�?��	 can be checked before setting the value and how the
new value can be used to kick off additional processing:

%������ *��� E���	��	���
(

@@.)��*��	.<8.���"����.� .�	�����

Chapter 11: Customizing Entity Persistence344



ptg

�����?��"����./.��	"�����L�L<!
4

%������ *��� E�
���	���
(

@@.��"�	��	.��	.���"����.��.����.���	�.��.���	
�� ���������%%	�?��	.//.���� \\.������	$���	�?��	�J���	.

?��	���	�&���
�����?��"����./.��	"�����L�0L!

4

%������ *��� E�J������	������	6"���� �"�����
(

@@.��	";.���"����.���	�.���.�����.��."��	.��.*��������
4

%������ *��� E��	$���	�?��	���������?��	���	K.*���	�
(

�� ���������%%	�?��	.^/.�����.����� �	� 6����	��E��E�����	�="	%������!
4

%������ *��� E��	$���	�?��	�����	���
(

@@.�����	.��	����.���.���%%	�.�""������� 
4

Writing Your Own Persistent Classes

The customization entry points are designed to take care of the most com-
mon cases with small, incremental work. However, if you have your own
separate code generator, or you need to heavily customize your entity
classes, you are free to do so while using the LINQ to SQL runtime. ?����
����	=� and entity classes generated by the designer or SqlMetal are meant
to simplify your tasks—they are not essential for using LINQ to SQL run-
time capabilities. In fact, Chapters 7 through 9 gave examples of handwrit-
ten (not designer-generated) classes with mappings in attributes. Let’s
revisit the handwritten classes from Chapter 8, “Reading Objects with
LINQ to SQL,” but this time with the mapping moved from .NET attributes
to an external XML file.

Authors of handwritten classes often prefer to keep the classes free of
attributes and use a different artifact such as an XML file to specify the map-
ping. In part, this is a matter of personal preference. However, in certain

Writing Your Own Persistent Classes 345



ptg

cases, it may be useful to modify the mapping file without changing the
files containing the C# or VB.NET classes that are mapped in the mapping
file. This may be true for trivial database schema changes such as renam-
ing a column. In practice, many mapping changes due to database schema
changes may require some changes in the mapped classes.

%����"."���� ������	�
(

%����" ������ ������	��?!
%����" ������ ������ !
���
%����" 
���E��	��.E��	��!

4

%����"."���� E��	�
(

%����" ��� E��	��?!
%����" ������ ������	��?!
���
%����".������	�.������	�!

4

The external XML mapping provides the same information as the
mapping in attributes. The .NET attributes appear as XML elements, and
properties of .NET attributes appear as XML attributes. The contextual
information about the class or property that the .NET attribute is placed on
is added to the mapping element because it is external to the entity classes.
The following is a fragment of the mapping you can generate using Sql-
Metal. Specifically, most columns in the Customers table are omitted. So
you need to use the longer mapping file generated using SqlMetal to run
the C# code that appears after the mapping listing.

K=�� *	�����/C0�LC 	�"�����/C����MC K�
?������	 &��	/C���������C
=����/C���%G@@�"�	������"�������"��@���$���$�@��%%���@2LLTC�
����	 &��	/C����������	��C +	��	�/C������	��C�

� %	 &��	/C������	��C�
������ &��	/C������	��?C +	��	�/C������	��?C
������	/CA������	��?C ?�� %	/C&�����<�.&E�.&X

C
���B	&���/C����	C ��)����� D	 /C���	C @�
���
6���"������ &��	/C:DAE��	��A������	��C +	��	�/CE��	��C
������	/CAE��	��C ����D	 /C������	��?C E��	�D	 /C������	��?C
?	�	�	���	/C&E.6���E&C @�

@� %	�

Chapter 11: Customizing Entity Persistence346



ptg

@����	�
����	 &��	/C����E��	��C +	��	�/CE��	��C�

� %	 &��	/CE��	��C�
������ &��	/CE��	��?C +	��	�/CE��	��?C ������	/CAE��	��?C
?�� %	/C���.&E�.&X

.�?�&���NC ��)����� D	 /C���	C
��?�#	�	���	�/C���	C 6���� �"/CE����	��C @�

������ &��	/C������	��?C +	��	�/C������	��?C
������	/CA������	��?C ?�� %	/C&�����<�C @�
���
6���"������ &��	/C:DAE��	��A������	��C +	��	�/C������	�C
������	/CA������	�C ����D	 /C������	��?C
E��	�D	 /C������	��?C ��:��	���D	 /C���	C @�

@� %	�
@����	�

@?������	�

The mapping file can be specified using a ?�������	=� constructor over-
load as follows. The code assumes that the mapping is stored in North-
windMapping.xml and that a variable named "���	"���������� contains
the connection string for the Northwind database.

+�%%�������"	 ��./.I��+�%%�������"	�:���I���C&��������+�%%����=��C�!

&��������?�������	=� ��./
�	� &��������?�������	=��"���	"����������1.���!

Just as the entity classes are free from LINQ to SQL concepts, you can
also choose to wrap the ?�������	=� so that all the objects used are your
objects and LINQ to SQL just provides persistence service. This enables per-
sistence ignorance, because your class is not tied to LINQ to SQL classes and
generated code patterns. It can be used as is against different stores, includ-
ing mocks created for testing.

There are some key differences between the preceding classes and the
corresponding designer or SqlMetal-generated classes. Each difference has
its own set of implications:

• There are no mapping attributes on classes and members; hence,
external mapping needs to be supplied.

• It is up to you to decide which interfaces to implement and whether
to use a base class. If you want to data-bind to a UI control, you need
to implement �&���� )��%	�� �����	�. If you want more efficient
change tracking by ensuring that the original values are copied only

Writing Your Own Persistent Classes 347



ptg

in case of a modification, you need to implement �&���� )��%	�� �
��������.

• Relationship members use 
����� and normal object reference
instead of LINQ to SQL classes ����� �	� and ����� �	� that enable
deferred loading. Hence, deferred loading is unavailable. Eager
loading may still be specified.

• The generated code to keep the two ends of the relationships and the
foreign key in sync is unavailable. The author of the class now has to
provide this capability.

• Entity customization methods discussed in this chapter are not
needed, because you are free to add whatever code you want in the
constructors and in the property setters.

There is a trade-off between the convenience and the productivity of
generated code versus the full flexibility of writing your own classes to suit
your needs. However, it is important to remember that you can use your
own entity classes if you want to.

Summary

LINQ to SQL provides a range of customization options for customizing
entity classes and the ?�������	=�. It also provides opportunities for you to
add business logic. For the most common customization patterns, the gen-
erated code contains a set of partial classes, a set of partial methods, and
calls to those partial methods. Partial classes allow you to add your own
business logic in the form of nonpersistent properties and methods. You
can provide partial method implementations for a ?�������	=� class to
control how entities are persisted or even loaded. Partial methods in entity
classes can be implemented to add logic during key persistence-related
points in the entity lifecycle.

LINQ to SQL also supports persistence ignorance if you want to author
your own entity classes and control the persistence mechanism. The run-
time effectively utilizes the patterns in the generated code but works well
without them.

Chapter 11: Customizing Entity Persistence348



ptg

12
LINQ to Entities Overview

T H E EN T I T Y FR A M E W O R K (EF) is another object-relational data access
technology from Microsoft that includes a LINQ implementation.

Commonly called LINQ to Entities, EF shipped in Service Pack 1 of the
.NET Framework 3.5 release. It is expected to evolve significantly in the
coming releases. The first release includes runtime libraries and designer
support in Visual Studio for generating classes and metadata files. It sup-
ports database and model-driven styles of development.

EF emphasizes model-driven development. It has its own set of con-
cepts and vocabulary that go beyond the CLR classes and database objects.
EF can be used with LINQ or Entity SQL. Entity SQL is a query language
based on SQL but designed for Entity Framework. However, in this book
we are focusing on LINQ, and hence, we will cover the subset of EF perti-
nent to the use of LINQ. The next section looks at the core concepts and
then walks through an example using the EF tools and the runtime.

Understanding Entity Framework Concepts and
Components

EF is based on the Entity Data Model (EDM). EDM is an entity relationship
(ER) model, as shown in Figure 12.1. EDM uses its own vocabulary, con-
cepts, and artifacts to define data in a format independent of programming

349



ptg

languages and relational databases. EDM schemas are used to specify the
details of entities and relationships and to implement them in terms of pro-
gramming languages and database constructs.

Chapter 12: LINQ to Entities Over view350

Customer Has

One-to-Many

Order

Order

Order

Figure 12.1 The EDM entity-relationship model.

EF separates the conceptual model from the storage model, as shown in
Figure 12.2. The conceptual model covers types, inheritance, complex
members, and relationships. It is described by a conceptual schema nor-
mally realized as a .csdl section in an .edmx file. To see the XML, right-click
the .edmx file and choose Open With, XML editor. The storage model
describes how the data is stored. For relational databases, it covers tables,
columns, stored procedures, and so on. It is described by a storage schema
typically realized as an .ssdl section in the .edmx file. The conceptual and
storage models are bridged with a mapping that relates the concepts from
the two models. It is typically captured in an .msl section in the .edmx file.
The three spaces—conceptual, storage, and mapping—together bridge the
artifacts commonly used by a developer—entity classes in a .cs or .vb file,
and the database that stores the data.

The Entity Data Model
An entity is an abstract carrier of data in the application domain. Examples
include Customer, Order, and Product. It can be described using a specifi-
cation language based on XML. It is typically realized in the programming
language domain as a C# or VB.NET class that derives from the framework
base class ����� E�>	"� in the � ��	��?����E�>	"���?��������	� name-
space. Its metadata is represented by the ����� � %	 class in the � ��	��
?����+	���������� namespace.



ptg

Figure 12.2 The logical EDM model spaces described by the XML found in an .edmx file. 

A relationship may be between two or more entities. A binary relation-
ship is between two entities such as Customer and Order. They are called
	��� of the relationship. A unary relationship (sometimes called a �	���
�	�	�	�"���.�	���������%) involves a single entity typically in two ���	�,
such as Employee and Manager. A ternary relationship involves more than
two entities, such as an enrollment relationship that involves Student, Pro-
fessor, and Course entities. Association is the basic type of relationship, in
which each end of the relationship can exist independent of the other and
the entities are considered peers. Composition is a more specialized
relationship in which one entity is composed in another. Currently, EDM
supports unary and binary associations. An association also has a ������
%��"�� attribute that specifies the number of instances of each end. EDM
supports the commonly used one-to-many, one-to-one, and many-to-many
associations. An association is bidirectional in EDM. You can logically nav-
igate from Customer to Order and from Order to Customer—at least in the
model.

The main noteworthy point is that an association is a first-class concept
in EDM. It is not merely the navigation properties or the foreign key values.
It is realized as navigation properties in the conceptual space and foreign
keys in the storage space. Collection-valued navigation properties (such as
������	��E��	��) typically use ����� ����	"������, whereas singleton
navigation properties (such as E��	��������	�) use the type of the other

Understanding Entity Framework Concepts and Components 351

Database
Classes
(.cs/.vb)

Conceptual
(.csdl)

Entity1

Entity2

Entity3

Mapping
(.msl)

Storage
(.ssdl)

Table1

Table2

View1

SProc1

Table3



ptg

end. We will look at concrete examples when we review the code generated
by the EF designer. The metadata for an association is represented by the
6���"������� %	 in the � ��	��?����+	���������� namespace.

Entity Framework Components
EF is implemented in two separate layers, as shown in Figure 12.3. The
EntityClient Data Provider layer is the lower layer that translates from
EDM concepts into native SQL concepts. The Object Services layer provides
additional services such as entity classes, a LINQ implementation, and an
E�>	"�����	=� for change tracking.

Chapter 12: LINQ to Entities Over view352

EF Object Services

ObjectContext ObjectQuery<T> EntityObject

EntityClient Data
Provider

Connection
(to EDM Model)

Command
(Entity SQL)

DataReader
(Entities as Data Records)

ADO.NET V2 Data Provider
(Command, Connection, DataReader)

SqlClient OracleClient Other

Database

Figure 12.3 Entity framework layers and components.

LINQ extension methods are implemented for E�>	"�'�	� ��. LINQ
queries against E�>	"�'�	� �� are translated into Entity SQL and, in turn,
into native flavors of SQL supported by an ADO.NET V2 Data Provider.
The concepts in the EntityClient layer closely resemble the ADO.NET V2



ptg

concepts of Connection, Command, and DataReader. However, they are
enhanced by EDM constructs. For example, the connection in the Entity-
Client layer contains not only the database connection information but also
information about the EDM model files.

The EF Object Services layer is very similar to a typical Object Relational
Mapping layer. It knows how to translate queries, materialize objects,
ensure identity, and track changes. It also manages optimistic concurrency
and transactions.

Using the Entity Framework

This section walks you through the steps for using the Entity Framework in
Visual Studio 2008 SP1. We will use the graphical designer to generate a
model from the Northwind sample database. Then we will use the gener-
ated classes for a simple set of operations on objects created from North-
wind data.

As described in Chapter 7, “A Quick Tour of LINQ to SQL,” be sure that
you have set up a connection to the database. In Visual Studio, select View,
Server Explorer, Solution Explorer. In the Server Explorer pane, shown in Fig-
ure 12.4, be sure that you can view the tables in your database. Appendix A
contains tips for connecting to a database. Next we will outline the steps to
generate an entity data model so that it can be used for CRUD operations.

Using the Entity Framework 353

Figure 12.4 Server Explorer showing the Northwind database.



ptg

Entity Model Generation
Create a new project in Visual Studio. Here we will use a C# console appli-
cation named NorthwindEF. In Solution Explorer, right-click the North-
windEF project and choose Add, as shown in Figure 12.5.

Chapter 12: LINQ to Entities Over view354

Figure 12.5 Add New Item for using EF.

In the Add New Item dialog, shown in Figure 12.6, select Data in the left
pane and ADO.NET Entity Data Model in the right pane, and click Add.
Select ADO.NET Entity Data Model, and choose a suitable name, such as
Northwind.edmx.

Click Add to bring up the Entity Data Model Wizard, as shown in Fig-
ure 12.7. This wizard helps you set up the connection and create a model
from a database. Choose Generate from Database and click Next.



ptg

Figure 12.6 The Add Entity data model.

Using the Entity Framework 355

Figure 12.7 Entity Data Model Wizard step 1: Generate from the database.



ptg

Select the .mdf file or connection from the drop-down for the North-
wind database, as shown in Figure 12.8. The Entity connection string shows
the information used by the EntityClient Data Provider. It has information
about the three model files and the connection string for use by the next
layer—the relational data provider.

Chapter 12: LINQ to Entities Over view356

Figure 12.8 Entity Data Model Wizard step 2: Select a connection.

Click Next to go to the next step: selecting database objects that will be
used to generate a model, as shown in Figure 12.9.

Expand the Tables node, and check Customers and Orders, as shown in
Figure 12.10.



ptgFigure 12.9 Entity Data Model Wizard step 3: Expand database objects for the model.

Using the Entity Framework 357

Figure 12.10 Entity Data Model Wizard step 4: Select database objects for the model.



ptg

Click Finish to generate the model. The wizard generates the North-
wind.edmx file, which shows the two entities and the relationship between
them (see Figure 12.11). Each entity also shows the navigation properties
that let you navigate to another entity. For example, the Customers entity
has a property named E��	�� for navigating to Orders entities. The lower
pane shows the mapping information for the entity selected on the designer
surface. Note that unlike LINQ to SQL designer, because EF designer does
not perform smart plural-singular changes, you may want to use the
renaming feature in Visual Studio to create more palatable entity names,
such as Customer and Order.

Chapter 12: LINQ to Entities Over view358

Figure 12.11 Generated model: entities, relationship, and mapping.



ptg

In addition to the designer, EF provides a command-line tool, edmgen.
exe, for generating classes and model files from a database. We will not
cover the details of the tool here because most users typically prefer to use
the designer. Refer to the MSDN documentation if you intend to use the
command-line tool instead of the graphical designer. (For additional infor-
mation, see the topic called EDM Generator [EdmGen.exe] found at
http://msdn.microsoft.com/en-us/library/bb387165.aspx.)

Understanding the Generated Code
From Solution Explorer, open Northwind.designer.cs under Northwind.
edmx. It shows three classes generated by the wizard. The following code
segment shows the key parts of the generated classes and attributes with-
out the extensive details that you can see in the file. The main class is &E��7�
5&?������	�, which is an E�>	"�����	=�. It contains an E�>	"�'�	� ��
for each of the mapped tables. It supports only queries. 6����������	����
and 6����E��	���� have separate methods to add new entities for eventual
insertion. Delete operations are handled through the base class method
?	�	�	E�>	"���.

%����" %������ "���� &E��75&?������	� G
������GG� ��	��?����E�>	"���E�>	"�����	=�

(
%����" ������GG� ��	��?����E�>	"���E�>	"�'�	� ������	���.������	��
(���4
%����" ������GG� ��	��?����E�>	"���E�>	"�'�	� E��	���.E��	��
(���4
%����" *��� 6����������	���������	�� "�����	���
(���4
%����" *��� 6����E��	���E��	�� ���	���
(���4

4

The two entity classes—������	�� and E��	��—inherit from the Entity
Framework base class ����� E�>	"�. Hence, you cannot use your own base
class. They contain attributes that point to model information in the con-
ceptual space, which, in turn, is mapped to the appropriate counterpart in
the storage space via mapping. The storage space connects to the database
table. Thus, the model is at the center of programming in the Entity Frame-
work.

Using the Entity Framework 359

http://msdn.microsoft.com/en-us/library/bb387165.aspx


ptg

The entity classes contain members with EDM attributes. The interest-
ing members are the factory method, the key properties, and the navigation
properties. The static factory method ��	��	������	���� takes the com-
pany name and ID as parameters and stores them through nonnullable
properties and returns a new valid Customers entity instance. The key
property ������	���������	��? is used to ensure object identity. The nav-
igation property ������	���E��	�� is of the framework type ����� ����
�	"������, which encapsulates framework functionality for EDM
association. On the singleton side, such as E��	���������	��, no special
framework type is needed. Unlike in LINQ to SQL, the loading of relation-
ships is explicit using the 
����� method. There is no implicit deferred
loading. Notice that the foreign key member E��	���������	��? is also
absent. That information is abstracted in the EDM association.

,������GG� ��	��?����E�>	"���?��������	���������� � %	6�������	
�&��	�%�"	&��	/C&E��75&?+��	�C1.&��	/C������	��C�-
%����" %������ "���� ������	�� G

������GG� ��	��?����E�>	"���?��������	������� E�>	"�
(

���
%����" �����" ������	�� ��	��	������	��

������� "��%�� &��	1.������ "�����	��?�
(���4

,������GG� ��	��?����E�>	"���?��������	������"����)��%	�� 6�������	
������ D	 )��%	�� /���	1.��&������	/����	�-
%����" ������ ������	��?
(���4

,������GG� ��	��?����E�>	"���?��������	��
����	���������%&�*�������)��%	�� 6�������	
�C&E��75&?+��	�C1.C:DAE��	��A������	��C1.CE��	��C�-
%����" ������GG� ��	��?����E�>	"���?��������	������� ����	"����E��	���

E��	��
(���4

4

%����" %������ "���� E��	�� G
������GG� ��	��?����E�>	"���?��������	������� E�>	"�

(
%����" �����" E��	�� ��	��	E��	������ ���	��?�
(���4

,������GG� ��	��?����E�>	"���?��������	������"����)��%	�� 6�������	
������ D	 )��%	�� /���	1.��&������	/����	�-

Chapter 12: LINQ to Entities Over view360



ptg

%����" ��� E��	��?
(���4

,������GG� ��	��?����E�>	"���?��������	��
����	���������%&�*�������)��%	�� 6�������	
�C&E��75&?+��	�C1.C:DAE��	��A������	��C1.C������	��C�-
%����" ������	�� ������	��
(���4

4

Performing CRUD Operations
In Program.cs, add the following code to perform a simple query. Recall
from Chapter 8, “Reading Objects with LINQ to SQL,” that ObjectDumper
is a handy utility for printing object graphs that ship with Visual Studio
2008 in source form. We will use it to display query results.

�����" *��� +����������,-.�����
(

&E��75&?������	� ��./.�	� &E��75&?������	���!

*�� ��������'�	� ./.���� ".�� ���������	��
��	�	 "������� .//.C�%���C
�	�	"� �	�
(

��./."�������	��?1
�����"�./."������"�&��	1
��� ./."���� 

4!

E�>	"�?��%	��5���	���������'�	� �!
4

Building and running the project provides the following results for cus-
tomers from Spain:

��/BE
�?........�����"�/+�����.����	�...........��� /+�����
��/:���6........�����"�/?�	��.��	�..............��� /+�����
��/#6
�?........�����"�/�������.���*	���........��� /B��"	����
��/#E?E�........�����"�/P��	.)	���.:�	 �	.......��� /�	*����
��/�E+�N........�����"�/6�	>�����.������........��� /+�����

We’ll look at insert, update, and delete operations next. We will run code
very similar to that in Chapter 7. It has small differences:

Using the Entity Framework 361



ptg

• LINQ to Entities does not support the LINQ extension method
�����	��. Hence, :������ must be used.

• The method for deletion is on the context, not on E�>	"�'�	� ��.

As mentioned in Chapter 7, remember to work with a copy of the North-
wnd.mdf file (or the database) so that insert/update/delete operations do
not affect the main copy of Northwind.

Here is code that you can enter into Program.cs to get some experience
with deleting an existing customer and creating a new order:

&E��75&?������	� ��./.�	� &E��75&?������	���!

@@.'�	� .���.�.�%	"���"."�����	�
������ ��./.C6
:D�C!
*�� "���./.���������	���:�����"./�."�������	��?.//.���!

@@.�����	.��	.���	.��.��	."����"�
"���������"�&��	./.C&	�.�����"�C!

@@.?	�	�	.��.	=������.������	�G.��	.�������.�� .E��	��
������ ��2./.C:���6C!
*�� "���2./.���������	���:�����"./�."�������	��?.//.��2�!
���?	�	�	E�>	"��"���2�!

@@.��	��	.�.�	�.E��	�.���.�	�.���.������	��.%��%	�� 
@@.�:.���"�*	��.��	.�	�.��>	"�.���.���	��.��.���	��
E��	�� ���./.�	� E��	�� (.E��	�?��	./.?��	���	�&��.4!
����������	��./."���!

@@.��*	.���.��	."����	�.��.��	.����
�����*	�����	���!

Using Stored Procedures
EF supports stored procedures for CRUD operations. We will use
two stored procedures—E��	��B ������	�, which returns entities, and
X%���	E��	�, which updates an entity. These stored procedures are not a
part of the Northwind sample database, but the code and instructions for
creating them are provided in Chapter 10, “Using Stored Procedures and
Database Functions with LINQ to SQL.”

Unlike in LINQ to SQL designer, EF designer uses the wizard instead of
drag-and-drop from Server Explorer. To access the wizard, switch to the

Chapter 12: LINQ to Entities Over view362



ptg

Northwind.edmx file handled by the designer. Right-click the designer sur-
face to bring up the menu shown in Figure 12.12.

Using the Entity Framework 363

Figure 12.12 Adding to an existing entity data model.

Select Update Model from Database to bring up the Update Wizard.
Using the wizard as described in earlier sections, add the two stored pro-
cedures to the model. Then right-click the designer surface to bring up the
menu shown in Figure 12.12. Select Model Browser, open the Stored Pro-
cedures folder, right-click E��	��B ������	�, and select Create Function
Import, as shown in Figure 12.13.

Figure 12.13 Adding a F procedure.

The Add Function Import dialog appears, as shown in Figure 12.14.
Select a Return Type of Entities, and pick Orders from the drop-down.



ptg

Figure 12.14 Mapping a stored procedure to a method.

Click OK to add a function with the same name. Save Northwind.edmx,
and browse the regenerated Northwind.designer.cs file. It shows a new
method, E��	��B ������	�, in the &E��75&?������	� class. You can use it
by adding the following code to Program.cs:

&E��75&?������	� ��./.�	� &E��75&?������	���!
*�� ����./.���E��	��B ������	��CBE
�?C�!
E�>	"�?��%	��5���	������!

As expected, it brings back the orders for the specified customer. Addi-
tional members of E��	�� entities are omitted in the following result:

��%�� 		�?/R....:�	����/TT�Q2LL....E��	�?��	/0L@0L@0QQS....E��	��?/0L32S
���
��%�� 		�?/R....:�	����/QT�LQLL....E��	�?��	/02@2Q@0QQT....E��	��?/0LML0
���
��%�� 		�?/Q....:�	����/0S�0SLL....E��	�?��	/3@2R@0QQM.....E��	��?/0LQTL
���

For the update procedure, we need to switch back to the designer—the
Northwind.edmx file. In the designer, click the Orders entity, and then click
the second icon on the left side (the ToolTip says Map Entity to Functions).
Click Select Update Function and choose X%���	E��	� from the drop-
down, as shown in Figure 12.15.

Chapter 12: LINQ to Entities Over view364



ptg

Figure 12.15 Mapping insert, update, and delete operations to stored procedures.

The Mapping Details window shows the mapped stored procedure. You
can change the parameter to entity member mapping or pick the original
value instead of the current value for some of the parameters. However,
X%���	E��	� does not use original values. Hence, we will use the defaults
shown in Figure 12.16 based on name matching. One parameter that
the designer cannot map is ������	��?. Map it manually to ������	���
������	��? by clicking the corresponding cell in the Property column and
selecting the navigation property displayed.

Using the Entity Framework 365

Figure 12.16 Mapping stored procedure parameters.

Unfortunately, due to a restriction in the first release of the schema, you
cannot map just an update function; you need to map the insert and delete
functions as well. So create stored procedures for inserting and deleting
orders, and map them using the steps outlined before. For this discussion,



ptg

simple stored procedures that just raise errors are enough to show how an
update stored procedure is mapped. After they are mapped, the stored pro-
cedures are automatically used in lieu of dynamic SQL.

Making Sense of LINQ to Relational Choices

LINQ has proven to be a popular technology. Soon after the release of the
first set of LINQ-enabled components in .NET Framework 3.5, a number
of implementations came out. In this book we look at two implementation
in the .NET Framework—LINQ to SQL and LINQ to Entities. Additional
implementations exist, such as that in LLBLGen. At the time of this writing,
there is also a rudimentary nhibernate LINQ project. Given the very strong
positive response to LINQ, the number and quality of implementations are
likely to go up. This is a very positive sign for the developer community,
because they will have a good range of choices, and competition will ensure
continuing improvements.

Given the choice, a common question is which LINQ to Relational tech-
nology is the most appropriate for current and future needs. A number of
blogs and online papers provide guidance on this matter. Although you
could get some information from these, it is best to experiment with the
candidate technologies and decide which one suits your needs best. The
design approach, complexity, scope, limitations, performance, cost, and
community support levels are quite different across various implementa-
tions of LINQ.

In the .NET Framework, as of the first release, LINQ to SQL is very light-
weight and intentionally keeps the mapping simple. It lets you write your
own classes and map them directly if you want to. It also lets you use a
graphical or command-line tool to generate classes and mapping from a
database. On the other hand, EF has a much richer and more complex con-
cept of a model between classes and tables. It follows a more prescriptive
pattern, with a required base class and an emphasis on separation of the
classes, the model, and the database. LINQ to SQL is designed to help you
build robust applications quickly while helping you keep a simple, easy-to-
maintain architecture. Use it if you can, and move on to LINQ to Entities if

Chapter 12: LINQ to Entities Over view366



ptg

you see that your application has a clear need for model-driven develop-
ment, complex mappings, or supported providers.

Developers interested in strong testability, a wide selection of providers,
and a strong community may find nhibernate attractive as it improves its
LINQ support.

Summary

The Entity Framework (EF) provides an implementation of LINQ for rela-
tional databases. It is based on the Entity Data Model (EDM) and empha-
sizes model-driven development. Entities and associations are first-class
concepts in EDM and are at the heart of the design and runtime experience.
EF is implemented as two layers—object services for a typical C#/VB.NET,
and LINQ user and EntityClient for the implementation of the services in
terms of EDM-aware connections, commands, and DataReaders.

EF designer provides a wizard for generating classes and model files
from the database. The generated classes inherit from ����� E�>	"� and
follow a strong prescribed pattern. The EF designer also enables the use of
stored procedures.

EF is one of several LINQ to Relational solutions. It is likely to receive
additional investments for more providers and a broader set of scenarios.
However, other choices are available for the LINQ user with different char-
acteristics.

Summary 367



ptg

This page intentionally left blank 



ptg

1 3
LINQ to XML: Creation

L INQ TO XML P R O V I D E S support for querying, creating, and trans-
forming XML documents. XML namespaces are included in the API, as

well as support for XML schemas. LINQ to XML stands on its own as a
compelling alternative to technologies such as XPath, XQuery, XSLT, and
the XML DOM.

Although LINQ to XML is not a small subject, the learning curve is
nonetheless gentle. You learned earlier in this book that LINQ has a uni-
fied querying model. The skills you learned reading about LINQ to objects
and LINQ to SQL also apply to LINQ to XML. This can seem like a minor
point at first. It is not. The unified model that allows you to apply a single
set of rules to a wide variety of data sources is one of the most valuable ben-
efits of the LINQ programming model.

A series of practical examples explored in this chapter exemplify the key
themes underlying LINQ to XML development. The focus is on learning
the basics and then slowly introducing more complex subjects over the
course of three chapters:

• This chapter focuses on creating XML.

• Chapter 14, “Querying and Editing XML,” shows you how to
query XML.

369



ptg

• The final chapter (Chapter 15, “XML Namespaces, Transformations,
and Schema Validation”) in the series shows more advanced topics:

• XML namespaces

• XML transforms

• XML schemas

I like XML because it provides a simple, humble solution for use with a
range of advanced technologies. For instance, XML can help you

• Transfer data across the Web.

• Create and call web services (SOAP).

• Create RSS documents that form a simple subscription model for
information of all types.

• Define the object model for WPF (XAML).

• Define a host of other services too numerous to mention.

I’ve tried to make this chapter fit the subject matter by keeping the text
easy to read. Hopefully you will be able to relax while reading, finding that
each subject unfolds in a logical manner. When you are done, you will have
learned about a relatively simple technology that is in wide use throughout
many areas of both desktop and Internet-based computing.

XML Fundamentals

This chapter discusses several important features of XML with which you
may already be conversant. Let’s take a moment, however, to make sure
that you understand the fundamentals. I think I can safely assume that you
probably know the basics of XML, but I want to pin down some nomen-
clature.

Consider the simple XML document shown in Listing 13.1.

Listing 13.1 A Simple XML Document Containing Two Planets and One Moon

K=�� *	�����/C0�LC.	�"�����/C����MC.���������	/C 	�CK�
^����	.%���	��.J	���.���.��������
)���	���

)���	��

Chapter 13: LINQ to XML: Creation370



ptg

&��	�J	���@&��	�
@)���	��
)���	� ��/C3C�
&��	������@&��	�
+�����

+����+���@+����
@+�����

@)���	��
@)���	���

The data captured in this document enumerates the second and third plan-
ets in our solar system. The code easily captures the fact that the Earth has
a satellite that we call the moon. An �� field, set to the number 3, is also
associated with the planet Earth.

This document contains four distinct pieces of XML syntax called a dec-
laration, comment, element, and attribute. The top element, called )���	��, is
called a root node. These bits of syntax are illustrated in Figure 13.1.

XML Fundamentals 371

Figure 13.1 This simple XML file includes a declaration, a comment, multiple elements, an
attribute, and a root node.

At the top you see an XML declaration, containing information about
the version, the encoding, and whether the file depends on any other files.
In this case, it does not; it can stand on its own. After the declaration you see
an XML comment.

The root node, called )���	��, is the beginning of an XML tree. This tree
has various nodes, most of which are elements. These elements include the
nodes called )���	��, )���	�, &��	, +����, and +���.



ptg

The )���	�� element is the parent of the )���	� element. The )���	� ele-
ment is a child of the )���	�� element. The )���	�, &��	, +����, and +���
elements are all descendants of the )���	�� element. The )���	� element is
an ancestor of the &��	, +����, and +��� elements.

Figure 13.2 shows a simple XML element consisting of some text and an
opening and closing tag. The text field is also frequently called content. We
call this an XML element because it has an opening tag delineated by brack-
ets and a closing tag delineated by brackets and a slash. The actual text
inside the brackets is arbitrary.

Chapter 13: LINQ to XML: Creation372

Figure 13.2 Elements typically consist of tags and content. In LINQ to XML, the text or
content field is called 3����.

Some of the XML elements in the sample document are nested:

+�����
+����+���@+����

@+�����

In this case both the +���� and +��� nodes are elements and can be treated
as single entities. In other words, LINQ to XML allows you to address +����
as a single element, even though it contains a nested element.

The document shown in Listing 13.1 has a root node called )���	��. The
root node, or root element, is the outermost node in the portion of an XML
file that contains its data. The declaration and some comments are located
outside the root nodes, but they do not contain the data, which is the pri-
mary payload for an XML document. Locating the root can help you get
your bearings in even the largest and most complex XML file.



ptg

XML Fundamentals 373

Figure 13.3 This entire XML node is an element. It contains an attribute called �� with
a value of 3.

Elements Versus Attributes

XML has no clearly defined rules about when data should be placed
in an attribute and when it should reside in an element. I tend to follow
the common practice of placing data that I want to display to a user in
elements, and placing housekeeping data such as an �� in attributes. In
general, I find elements easier to read than attributes, so I tend to favor
them. However, these are simply my prejudices; opinions on this sub-
ject differ. Where necessary, I will happily suffer minor inconsistencies
in my style.

The )���	� element has an XML attribute, as shown in Figure 13.3.
Attributes are nested inside an element tag, and they have a name, an
equals sign, and a value in quotation marks.

XML declarations are optional in XML 1.0 and mandatory in XML 1.1.
Therefore, any document without a declaration is assumed to be an XML
1.0 document. XML documents support the Unicode standard, and UTF-8
is a common way to implement that standard. A document is stand-alone if
it does not rely on an external DTD file or other entities.

Only the version is required in an XML declaration. Most parsers can
automatically determine if a document is UTF-8 or UTF-16, so specifying
the encoding usually is unnecessary unless you are using some other for-
mat. By default, XML documents are not considered to be stand-alone, but
it is not an error to omit external references from such a document.

My goal in this introductory section has been to provide the minimum
information you need to follow the discussion in the rest of the chapter. As



ptg

mentioned earlier, Chapter 14 describes XML namespaces and schemas.
But this is all I’ll say about the basics. If you want more information, feel
free to read any of the excellent books on XML that currently crowd book-
store shelves.

Understanding the LINQ to XML API

This section introduces the LINQ to XMLAPI, which supplements the stan-
dard LINQ query operators with a set of XML-specific methods. Our explo-
ration of LINQ to XML begins with samples of how to create, save, and read
XML documents using the LINQ to XML API.

These opening sections focus on the objects shown in Figure 13.4. The
I?�"��	��, I��	�	��, and I6�������	 classes play central roles in this
chapter. Other classes, such as I����	�� and I?	"��������, will be
included in the discussion, but they have secondary importance. Most of
your work with LINQ to XML will involve just a handful of classes, each
of which has only a small number of important methods that you will use
repeatedly. Many of the most important of those methods will be intro-
duced during the discussion of querying XML data.

Figure 13.4 does not show the complete LINQ to XML hierarchy of
objects, because I have omitted classes that are not particularly important.
So as not to leave gaps in the hierarchy, I’ve included in Figure 13.4 sup-
porting classes such as IE�>	"�, I&��	, and I�	=�. You will rarely
encounter these classes in your day-to-day programming work, but know-
ing of their existence can help inform your decision-making process.

Chapter 13: LINQ to XML: Creation374

The Role of Nodes

The hierarchy shown in Figure 13.4 correctly suggests that the term
node is a general way of talking about virtually any entity found in an
XML document. Comments and elements are both nodes. Even the
content, or text, inside an element, such as the one shown in Figure
13.2, is considered to be a node in an XML document. As the hierarchy
shown in Figure 13.4 suggests, LINQ does not regard attributes as
nodes, although some developers may disagree.



ptg

Understanding the LINQ to XML API 375

XObject
Abstract Class

IXmlLineInfo

XNode
Abstract Class
    XObject

XComment
Class
    XNode

XContainer
Abstract Class
    XNode

XText
Class
    XNode

XElement
Class
    XContainer

XDocument
Class
    XContainer

XCData
Class
    XTest

XAttribute
Class
    XObject

IXmlSerializable

Figure 13.4 This hierarchy contains most of the important classes found in the LINQ to
XML API.

Creating XML Elements
A “Hello World” program for the LINQ to XML API might look something
like this:

����� � ��	��I���
��$!

*�� =./.�	� I��	�	���C)���	�C1.C�����C�!
������	�5���	
��	�=�!

These few lines of code create the following simple XML element:

)���	�������@)���	��

Note the presence of the � ��	��I���
��$ ����� directive. Unlike
� ��	��
��$, this directive is not automatically added to your new source
files when you are working in Visual Studio. You must add it yourself.



ptg

Chapter 13: LINQ to XML: Creation376

Inserting ����� Directives

When working in Visual Studio, the simplest way to add a ����� direc-
tive to your program is to type in a member of a namespace
not included in your ����� directives. In this case you might type
I��	�	��. Notice the red Smart Tag under the last letter of the word.
This lets you know that Visual Studio thinks it knows a way to help
you. Hold down the Ctrl key and press the period key. A window
appears that allows you to automatically insert the appropriate �����
directive at the top of your current file.

You can access the name of an XML element through the &��	 property
and access its content through the J���	 property. Consider the following
code:

I��	�	��.	�	�	��./.�	� I��	�	���C)���	�C1.C�����C�!
������	�5���	
��	�	�	�	���&��	�!
������	�5���	
��	�	�	�	���J���	�!

This code writes the words Planet and Earth.
The constructor for the I��	�	�� class shown here allows you to pass in

the name and content for a single XML element. Here is the complete list
of overloads for the I��	�	�� constructor:

%����" I��	�	���I��	�	�� ���	��!
%����" I��	�	���I&��	 ���	�!
%����" I��	�	���I���	�������	�	�� ���	��!
%����" I��	�	���I&��	 ���	1.��>	"� "���	���!
%����" I��	�	���I&��	 ���	1.%����� ��>	"�,-."���	���!

We are currently using the fourth overload. This is probably the most
commonly used overload. The fifth overload is also very important, but I
will delay showing it to you until we reach the section “Creating an XML
Declaration.”

Here are examples of using the first and second overloads:

*��  ./.�	� I��	�	���C)���	��C�!
*�� U./.�	� I��	�	��� �!
������	�5���	
��	� �!
������	�5���	
��	�U�!



ptg

The output from this code looks like this:

)���	�� @�
)���	�� @�

This syntax specifies that these elements do not have any value; they are
empty.

Creating XML Attributes
LINQ to XML uses the I6�������	 class to encapsulate the idea of an XML
attribute. Here is how to create an I6�������	:

*�� =��./.�	� I��	�	���C)���	�C1.�	� I6�������	�C��C1.3��!

If written to the console, this I��	�	�� produces the following code:

)���	� ��/C3C @�

I6�������	 has only two constructors:

%����" I6�������	�I6�������	 ���	��!
%����" I6�������	�I&��	 ���	1.��>	"� *���	�!

The second of these constructors is used in the previous example and in the
majority of cases.

If you want to add two or more I6�������	s to an XML element, you
can write the following lines of code:

*�� =��./.�	� I��	�	���C)���	�C1
�	� I6�������	�C��C1.3�1
�	� I6�������	�C+��	������C1.C���	C��!

When this code is written to the console, the output from this simple state-
ment looks like this:

)���	� ��/C3C +��	������/C���	C.@�

Most of the important properties and methods of I��	�	�� and
I6�������	 are used primarily in the context of querying data, so I will
show you how to use them in that section of this chapter. For now, it is
important only that you understand how to use their constructors to create
XML nodes.

Understanding the LINQ to XML API 377



ptg

Creating an XML Document
The I��	�	�� class is remarkably flexible, and it will fit your needs in many
cases. However, a second class called I?�"��	�� is similar to I��	�	��.
There is no reason to create an I?�"��	�� unless you have a use for one.
Typically, those uses would include a desire to explicitly access the ���� ele-
ment in your XML tree, or wanting to include an XML declaration in a doc-
ument you are creating.

Here is code that creates a simple XML document:

*�� =��./.�	� I?�"��	����	� I��	�	���C)���	��C1
�	� I��	�	���C)���	�C1.C�����C���!

You can print the output from this document to the console with the fol-
lowing line of code:

������	�5���	
��	�=���!

The output looks like this:

)���	���
)���	�������@)���	��

@)���	���

Creating an XML Declaration
An XML declaration is found on the first line of this simple XML document:

K=�� *	�����/C0�LC.	�"�����/C����MC.���������	/C 	�CK�
)���	���

)���	�������@)���	��
@)���	���

To add this node to your XML file, you must use an I?�"��	��. I��	�	��
cannot handle declarations. As shown in Listing 13.2, LINQ to XML makes
it easy for you to create and configure the various sections of an XML
declaration. The code shown in Listing 13.2 includes an XML declaration,
an XML comment, and an XML attribute. Listing 13.3 shows the simple
XML file produced by this code.

Chapter 13: LINQ to XML: Creation378



ptg

Listing 13.2 Using a Single Statement to Create an XML Document That Includes a
Declaration, Comment, Elements, and Attributes

*�� =��./.�	� I?�"��	����	� I?	"���������C0�LC1.C����MC1.C 	�C�1
�	� I����	���C��	.%���	��.J	���.���.�����C�1
�	� I��	�	���C)���	��C1

�	� I��	�	���C)���	�C1
�	� I��	�	���C&��	C1.CJ	���C��1

�	� I��	�	���C)���	�C1.�	� I6�������	�C��C1.3�1
�	� I��	�	���C&��	C1.C�����C�1
�	� I��	�	���C+����C1

�	� I��	�	���C+���C1.C+���C�����!

������	�5���	
��	�=���?	"���������!
������	�5���	
��	�=���!

Listing 13.3 The Output from Listing 13.2

K=�� *	�����/C0�LC.	�"�����/C����MC.���������	/C 	�CK�
^��.��	 %���	��.J	���.���.�����.���
)���	���
)���	��
&��	�J	���@&��	�

@)���	��
)���	� ��/C3C�
&��	������@&��	�
+�����

+����+���@+����
@+�����

@)���	��
@)���	���

A single nested statement, written in the declarative style, is used to cre-
ate this XML document. If you indent your code properly, this kind of state-
ment is easy to use, because it mirrors the structure of the document you
want to create. Later in this chapter, I will show you how to create a simi-
lar document from a series of discrete statements. However, the declarative
style shown in this example is preferred and is generally held up as one of
the attractions of the LINQ to XML API.

Note that you need to use two 5���	
��	 statements to display the out-
put from the code in Listing 13.2 in its entirety. The first statement writes

Understanding the LINQ to XML API 379



ptg

out the declaration, and the second writes out the body of the XML, includ-
ing the comment:

������	�5���	
��	�=���?	"���������!
������	�5���	
��	�=���!

Five LINQ to XML classes are used in this example. You have already
seen three of these classes: I?�"��	��, I6�������	, and I��	�	��. Two
more classes are introduced in Listing 13.2:

• An I?	"�������� is used to adorn our XML with some metadata
that includes the version, the file encoding, and whether the docu-
ment is stand-alone.

• I����	�� creates an XML comment.

I can’t think of anything useful to say about the constructors for these sim-
ple classes other than they are easy to use and have obvious utilitarian
value. Simply lift the code directly from Listing 13.2, and insert it into your
own programs.

This excerpt from Listing 13.2 includes examples of how to use the fifth
overload of the I��	�	�� constructor:

�	� I��	�	���C)���	�C1.�	� I6�������	�C��C1.3�1
�	� I��	�	���C&��	C1.C�����C�1
�	� I��	�	���C+����C1
�	� I��	�	���C+���C1.C+���C���

Recall that this fifth overload of the I��	�	�� constructor looks like this:

%����" I��	�	���I&��	 ���	1.%����� ��>	"�,-."���	���!

This is a deceptively powerful line of code. The unusual type called %�����
��>	"�,- allows you to pass an array of from 0 to n classes that derive from
type ��>	"�. This means, in effect, that you can pass an array of any type
of object in this parameter. In particular, you can pass in a lengthy sequence
of I6�������	 and I��	�	�� constructors like those shown in this example.
This is a form of compiler magic that enables LINQ to support the declar-
ative style of programming.

Chapter 13: LINQ to XML: Creation380



ptg

Included with the programs that accompany this book is a sample called
��	��	)���	��. It shows you how to write a single declarative statement
that generates a document listing all the planets and all the moons in our
solar system. That sample includes the following constructor for the planet
Jupiter, the body of which is nested inside a much larger declaration for all
the planets and their moons:

%����" "���� ������ %���	�./.C)���	�C!
%����" "���� ������ ����./.C+���C!
%����" "���� ������ �����./.C+����C!

���.���	.�����	�.�	�	.���

�	� I��	�	���%���	�1
�	� I��	�	������	1.CP�%��	�C�1
�	� I��	�	��������1

�	� I��	�	�������1.C��C�1
�	� I��	�	�������1.C����%�C�1
�	� I��	�	�������1.C#�� �	�	C�1
�	� I��	�	�������1.C��������C�1
�	� I��	�	�������1.C
	��C�1
�	� I��	�	�������1.C7������C�1
�	� I��	�	�������1.C
 ����	�C�1
�	� I��	�	�������1.C�����C�1
�	� I��	�	�������1.C6���;	C�1
�	� I��	�	�������1.C����	C�1
�	� I��	�	�������1.C)���%��	C�1
�	� I��	�	�������1.C����%	C�1
�	� I��	�	�������1.C+	���C�1
�	� I��	�	�������1.C6�����	�C�1
�	� I��	�	�������1.C6�����	�C�1
�	� I��	�	�������1.C��	�	C���1

The fifth overload of the I��	�	�� constructor accepts this code with nary
a blink.

Designing and implementing code like this clearly requires an advanced
degree in compiler magic. Nevertheless, the code itself is easy to use. This
is declarative code at its best, allowing us to write a constructor that closely
mirrors the shape of the complex XML documents that many developers
frequently create.

Understanding the LINQ to XML API 381



ptg

Creating a Document from Raw Text
Here is an alternative means of creating an XML document:

������ ���./.FCK=��.*	�����/CC0�LCC.	�"�����/CC����MCC
���������	/CC 	�CCK�

^����	.�����.���		.%���	�����
)���	���

)���	��+	�"�� @)���	��
)���	��J	���@)���	��
)���	�.+���/CC+���CC������@)���	��

@)���	���C!

I?�"��	�� ��"./.I?�"��	���)���	�����!

As you can see, the )���	 method of the I?�"��	�� class allows you to pass
in raw XML directly as a string literal. Sometimes this is the fastest and eas-
iest way to create an XML document in your code.

Building a Document One Node at a Time
Although it is usually simplest to create an XML document with a single
statement in the declarative style, it is possible to take other approaches.
Listing 13.4 shows how to build a document one node at a time with a series
of 6�� statements. See the program that accompanies this book called
#	����������	�5���
��$��I��.

Listing 13.4 Creating an XML Document One Node at a Time Using 6�� Statements

%����" *��� B����?�"��	����
(

*�� =��./.�	� I?�"��	����!

=���6����	� I����	���C���	.��.��	.�����.� ��	�C��!
=���6����	� I��	�	���C���C��!
I��	�	�� �	�%./.�	� I��	�	���C)���	�C�!
�	�%�6����	� I6�������	�C&��	C1.C�����C��!
=��������6����	�%�!
�	�%./.�	� I��	�	���C)���	�C�!
�	�%�6����	� I6�������	�C&��	C1.C+���C��!
�	�%�6����	� I��	�	���C+���C1.C)�����C��!
�	�%�6����	� I��	�	���C+���C1.C?	����C��!
=��������6����	�%�!

������	�5���	
��	�=���!
4

Chapter 13: LINQ to XML: Creation382



ptg

The 6�� method shown here is found in both the I?�"��	�� and I��	�

�	�� classes. I recommend using this technique primarily when you need
to edit an existing document. An XML document is a single, heavily nested
hierarchy of nodes, but the code shown in Listing 13.4 gives the impression
that the document consists of separable, discreet pieces. As a result, many
developers prefer to use the declarative style shown in Listing 13.2. Note
also that the code shown in Listing 13.4 gives you no sense of the shape of
the document you are creating. The failure of this imperative code to give
you a sense of the shape of the document highlights one of the virtues of
declarative code.

Understanding the LINQ to XML API 383

Declarative Versus Imperative Revisited

It is my belief that declarative code is better than imperative code
when it is used at the right time and place. Both methods of program-
ming have advantages, and it is important to learn how to get the best
from both styles. It just happens that the declarative style lends itself
well to the act of creating XML documents, just as it suits the act of
querying data. This doesn’t mean that it is the best tool to use in all
cases, however.

Reading and Writing XML
Listing 13.5 shows how to create an XML document and then save it to disk.

Listing 13.5 Saving a File to Disk

*�� =��./.�	� I?�"��	����	� I?	"���������C0�LC1.C����MC1.C 	�C�1
�	� I����	���C��	.%���	�.	����C�1
�	� I��	�	���C)���	��C1

�	� I��	�	���C)���	�C1
�	� I��	�	���C&��	C1.CJ	���C��1

�	� I��	�	���C)���	�C1.�	� I6�������	�C��C1.3�1
�	� I��	�	���C&��	C1.C�����C�1
�	� I��	�	���C+����C1
�	� I��	�	���C+���C1.C+���C�����!

=�����*	�C)���	���=��C�!

Figure 13.5 shows the document created by Listing 13.4. It appears as it
would if you typed it from the command prompt. Note the small set of



ptg

unreadable characters at the start of the second line. This is the UTF-8
header. The header becomes visible at the command prompt, but it usually
is not shown in most editors.

Chapter 13: LINQ to XML: Creation384

Figure 13.5 The UTF-8 document created by the code shown in Listing 13.4.

This is not a reference book, so I won’t discuss each part in depth, but
here are the overloads for the I��	�	�� and I?�"��	�� ��*	 method:

%����" *��� ��*	������� ���	&��	�!
%����" *��� ��*	��	=�5���	� �	=�5���	��!
%����" *��� ��*	�I��5���	� ����	��!
%����" *��� ��*	������� ���	&��	1.��*	E%����� �%������!
%����" *��� ��*	��	=�5���	� �	=�5���	�1.��*	E%����� �%������!

I?�"��	�����*	 saves declarations and similar information that appear
before the root node, but I��	�	�� does not. The ��*	E%����� enumeration
allows you to decide how to treat white space.

Both I?�"��	�� and I��	�	�� provide a 
��� method:

*�� =��./.I?�"��	���
�������	&��	�!
*�� =��./.I��	�	���
�������	&��	�!

I��	�	�� does not load information such as a declaration that appears
before the root node. I?�"��	�� reads in that kind of information.

As mentioned, if you load the document this way and then try to write
it to the console, you will discover that the default ���������� method for



ptg

the I?�"��	�� class does not write out the XML declaration. If you want to
see the entire XML document, you need to write two lines of code:

������	�5���	
��	�=���?	"���������!
������	�5���	
��	�=���!

Alternatively, you can use the :��	 object to read the text back in so that you
can see how it appears on disk:

������ ����./.:��	��	��6���	=���	�%=���!
������	�5���	
��	������!

The 
��� method has six overloads. 
���E%����� allows you to preserve
white space and capture line number information:

%����" �����" I?�"��	�� 
����������.����!
%����" �����" I?�"��	�� 
�����	=��	��	� �	=��	��	��!
%����" �����" I?�"��	�� 
����I���	��	� �	��	��!
%����" �����" I?�"��	�� 
���������� ���1.
���E%����� �%������!
%����" �����" I?�"��	�� 
�����	=��	��	� �	=��	��	�1.
���E%����� �%������!
%����" �����" I?�"��	�� 
����I���	��	� �	��	�1.
���E%����� �%������!

For example, here is how to load an RSS feed from the Internet into an
I?�"��	��:

I?�"��	��.=��./.I?�"��	���
����FC���%G@@�����������"��@"�����	@����=��C�!
������	�5���	
��	�=���?	"���������!
������	�5���	
��	�=���:����&��	�!
������	�5���	
��	�=���!

If this were a call to I��	�	�� instead of I?�"��	��, the attempt to write
out the ?	"�������� would be a compile-time error, and the call to write
out the :����&��	 would dump the entire document, minus the declaration
and other header information. As it is, the first two 5���	
��	 statements
print the following:

K=��.*	�����/C0�LC.	�"�����/CX�:�MCK�
K=����� �	��		�.� %	/C�	=�@=��C

��	�/���%G@@�����������"��@������ @:		��� �	��		��@����=��
�	���/C�"�		�CK�

Understanding the LINQ to XML API 385



ptg

You must use I?�"��	�� if you want the declaration, the doctype, and
related information. If you have no need for that information, call
I��	�	���
���.

Summary

This chapter began with a brief overview of key features of the XML stan-
dard. With the preliminaries out the way, the text moved on to explain how
LINQ to XML provides the tools you need to create, read, and write XML
documents.

All the code shown in this chapter is also found on the book’s web site.
If you haven’t done so already, download these programs and run them.
There is nothing like working with live code to increase your understand-
ing of a subject.

In the next chapter, you will learn how to query an XML document and
how to edit an existing XML document. The final chapter on LINQ to XML
covers XML namespaces, transformations, and schemas.

Chapter 13: LINQ to XML: Creation386



ptg

14
Querying and Editing XML

T H E P R E V I O U S C H A P T E R covered creating, reading, and saving XML
documents. The next steps are to learn how to query and edit them.

This chapter deals with XML documents similar to the ones shown in
the previous chapter. You will learn how to navigate through these docu-
ments to find individual nodes or series of nodes. You can start your query
at any point in a document. You can begin at the top node and drill down
into the hierarchy, or you can start on a leaf node and climb back up toward
the root node. Wherever you are in a document, you can start your search
there and either look at the sibling nodes nearest you, or navigate up to a
root node or down to a leaf node. Detailing the range of options open to you
is one of the primary goals of this chapter.

You will also learn how to edit, append, and delete XML nodes. These
skills usually depend on your ability to search through a document, so I
cover them only after completing a survey of common techniques of query-
ing and navigating a document. After all, you usually need to find a par-
ticular node before you can edit it, delete it, or insert data next to it.

More on XDocument, XElement, and XAttribute

Before we begin, I want to step back for a moment and discuss the structure
of the hierarchy of classes in which the I?�"��	��, I��	�	��, and
I6�������	 classes reside. This may seem an academic exercise, but you

387



ptg

will see that there is a practical reason for understanding the shape of these
objects.

Figure 14.1 shows the hierarchy for both the I?�"��	�� and I��	�	��

classes. Notice in particular that both classes descend from a class called
I�������	�, which in turn descends from a class called I&��	. Other
descendents of the I&��	 class include I����	�� and I�?���.

Chapter 14: Querying and Editing XML388

Figure 14.1 Both I?�"��	�� and I��	�	�� descend from I�������	�, which in turn
descends from I&��	.

Figures 14.2 and 14.3 reveal that the abstract classes I&��	 and
I�������	� contain the declarations for many of the most important
methods accessed by consumers of the I��	�	�� and I?�"��	�� classes.
Having at least a passing familiarity with what these classes offer will stand
you in good stead when you are working with LINQ to XML.



ptg

Figure 14.2 Besides I��	�	�� and I?�"��	��, other important classes that descend from
I&��	 include I����	��, I�	=�, and I�?���.

More on XDocument, XElement, and XAttribute 389

Figure 14.3 The I�������	� class defines some of the most important methods shared
by I?�"��	�� and I��	�	��.



ptg

As shown in Figure 14.4, although I?�"��	�� is clearly smaller than
I��	�	��, both classes inherit quite a bit of power from I�������	� and
I&��	. Therefore, they are more equal in capability than a simple glance at
their declarations might suggest.

Chapter 14: Querying and Editing XML390

Figure 14.4 I?�"��	�� compared to I��	�	��.

Figures 14.2, 14.3, and 14.4 show the methods and properties found in
I&��	, I�������	�, I��	�	��, and I?�"��	��. I’m showing you these
classes not because I want you to memorize which methods are in which
classes, or because you need to overly concern yourself with the actual class
in which a method is declared. Instead, I want to be sure you understand
that I?�"��	�� and I��	�	�� derive much of their power from I&��	 and
I�������	�.



ptg

Here are the methods in I�������	� that you will use most often when
querying data:

%����" �����	����	I&��	�.?	�"	�����&��	���!
%����" �����	����	I��	�	���.?	�"	��������!
%����" �����	����	I��	�	���.?	�"	�������I&��	 ���	�!
%����" I��	�	�� ��	�	���I&��	 ���	�!
%����" �����	����	I��	�	���.��	�	�����!
%����" �����	����	I��	�	���.��	�	����I&��	 ���	�!
%����" �����	����	I&��	�.&��	���!

Notice that all of them, except ��	�	��, return an �����	����	��. As a
result, they are all fully LINQ-enabled.

The I&��	 class has a similar set of methods:

%����" �����	����	I��	�	���.6�"	�������!
%����" �����	����	I��	�	���.6�"	������I&��	 ���	�!
%����" �����	����	I��	�	���.��	�	���6��	��	����!
%����" �����	����	I��	�	���.��	�	���6��	��	���I&��	 ���	�!
%����" �����	����	I��	�	���.��	�	���B	���	�	����!
%����" �����	����	I��	�	���.��	�	���B	���	�	���I&��	 ���	�!
%����" ���� ��6��	��I&��	 ���	�!
%����" ���� ��B	���	�I&��	 ���	�!
%����" �����	����	I&��	�.&��	�6��	��	����!
%����" �����	����	I&��	�.&��	�B	���	�	����!

When you query data, the only member declared in I?�"��	�� that you
will use frequently is ����. The I��	�	�� class is a bit richer, because it con-
tains the 6�������	 and 6�������	� properties, as well as ?	�"	�����
&��	�6���	��, ?	�"	������6���	��, and 6�"	�����6���	��:

%����" �����	����	I��	�	���.6�"	�����6���	����!
%����" �����	����	I��	�	���.6�"	�����6���	���I&��	 ���	�!
%����" I6�������	 6�������	�I&��	 ���	�!
%����" �����	����	I6�������	�.6�������	���!
%����" �����	����	I6�������	�.6�������	��I&��	 ���	�!
%����" �����	����	I&��	�.?	�"	�����&��	�6���	����!
%����" �����	����	I��	�	���.?	�"	������6���	����!
%����" �����	����	I��	�	���.?	�"	������6���	���I&��	 ���	�!

Finally, a class called �=�	������ is declared in the � ��	��I���
��$
namespace. A set of extensions methods are declared in that class, all but
one of which return �����	����	��:

More on XDocument, XElement, and XAttribute 391



ptg

�����	����	I��	�	���.6�"	������������!
�����	����	I��	�	���.6�"	�����6���	�������!
�����	����	I6�������	�.6�������	������!
�����	����	I&��	�.?	�"	�����&��	��������!
�����	����	I&��	�.?	�"	�����&��	�6���	�������!
�����	����	I��	�	���.?	�"	�������������!
�����	����	I��	�	���.?	�"	������6���	�������!
�����	����	I��	�	���.��	�	����������!
�����	����	��.��?�"��	��E��	��������!
�����	����	I&��	�.&��	��������
%����" �����" *��� �	��*	����� �����	����	I6�������	�.����"	�!

I should perhaps add that IE�>	"�, the base class for these other classes,
contains two methods that LINQ to XML developers will find frequent rea-
son to use:

%����" I��	�	�� )��	��.(.�	�!.4
%����" ������"� I��&��	� %	 &��	� %	.(.�	�!.4

Also included in the IE�>	"� class is the ability to annotate a node. I dis-
cuss this relatively minor feature near the end of the next chapter.

Now that you understand a little of how I��	�	�� and I?�"��	�� get
their power, it is time to begin writing LINQ to XML queries. I’ll begin that
process in the next subsection and continue until near the end of the chap-
ter. At that point I’ll switch gears and talk about editing XML files with
LINQ to XML.

Querying with Element and Elements

The ��	�	�� and ��	�	��� properties are two of the workhorses of LINQ
to XML. They are the simplest means of gaining access to the nodes of an
XML tree.

To write LINQ to XML queries, you need an XML document that is com-
plex enough to offer a moderate challenge. To get us started, I’ve created a
document called FirstFourPlanets.xml, which is shown in Listing 14.1 and
which you can find on disk. Take a moment to familiarize yourself with this
document. This file and files similar to it are referenced often throughout
this chapter and the next. You might even want to consider using a book-
mark to help you return to this listing while you are reading.

Chapter 14: Querying and Editing XML392



ptg

Listing 14.1 FirstFourPlanets.xml

)���	���
)���	��
&��	�+	�"�� @&��	�

@)���	��
)���	��
&��	�J	���@&��	�

@)���	��
)���	��
&��	������@&��	�
+�����

+����
&��	�+���@&��	�
E������)	���� X����E�+	����	/C�� �C�2T�320<M2@E������)	�����

@+����
@+�����

@)���	��
)���	��
&��	�+���@&��	�
+�����

+����
&��	�)�����@&��	�
E������)	���� X����E�+	����	/C�� �C�L�30M@E������)	�����

@+����
+����

&��	�?	����@&��	�
E������)	���� X����E�+	����	/C�� �C�0�2S2RR@E������)	�����

@+����
@+�����

@)���	��
@)���	���

The root element of this listing is called )���	��. It contains four ele-
ments called )���	�. In turn, these elements have two nested elements
called &��	 and E������)	���� and an optional element called +����,
which has nested elements called +���. Each +��� has two nested elements
called &��	 and E������)	����. Each E������)	���� has an attribute called
X����E�+	����	. This document is just complex enough to provide an
interesting challenge for those who want to query it.

Listing 14.2 (from the sample program called CreatePlanets) shows you
how to write a simple two-line query that retrieves the names of the
planets, creating the output shown in Listing 14.3.

Querying with Element and Elements 393



ptg

Listing 14.2 Code That Writes out the Names of the Planets Found in FirstFourPlanets.xml

*�� =��./.I?�"��	���
����C:����:���)���	���=��C�!

*�� $�	� ./.���� %.�� =����������	�	����C)���	�C�
�	�	"� %���	�	���C&��	C��J���	!

���	�"�.�*��.=.��.$�	� �
(

������	�5���	
��	�=�!
4

Listing 14.3 The Output When You Run the Code Shown in Listing 14.2 Against the XML
Shown in Listing 14.1

+	�"�� 
J	���
�����
+���

The first line of code in Listing 14.2 loads the XML we want to query.
We then start a simple LINQ query that begins like this:

���� %.�� =����������	�	����C)���	�C�

The reference to the ���� node allows us to address the top-level element in
the XML file. Because the rest of the file is nested inside the )���	��

Chapter 14: Querying and Editing XML394

Ensuring That Your Program Can Find an XML File

In this section of the book, you will frequently need to access XML files
from your project. Visual Studio makes this easy. Simply copy the XML
file to the directory where your project file is located. Add the XML file
to your project. In the Properties window, set the property Copy to
Output Directory to the value Copy if Newer. This ensures that the
XML file is in the same directory as the project executable and, hence,
can be loaded directly into the project without your having to consider
the path to the file. For a more in-depth explanation of how this works,
see the section in Appendix A titled “Including Data Files in Your
Project.”



ptg

element, the ���� node addresses the entire file minus the declaration. The
following code is semantically identical:

���� %.��.=�����	�	���C)���	��C����	�	����C)���	�C�

Now add a �	�	"� statement:

���� %.�� =����������	�	����C)���	�C�
�	�	"� %!

This code returns the entire XML file except the outer )���	�� node. You
need to ���	�"� over the results to see them:

���	�"� �*�� =.�� $�	� �
(

������	�5���	
��	�=�!
4

This displays the following output:

)���	��
&��	�+	�"�� @&��	�
+���� @�

@)���	��
)���	��
&��	�J	���@&��	�
+���� @�

@)���	��
)���	��

&��	������@&��	�
+�����

+����
&��	�+���@&��	�
E������)	���� X����E�+	����	/C�� �C�2T�320<M2@E������)	�����

@+����
@+�����

@)���	��
)���	��
&��	�+���@&��	�
+�����

+����
&��	�)�����@&��	�
E������)	���� X����E�+	����	/C�� �C�L�30M@E������)	�����

@+����
+����

Querying with Element and Elements 395



ptg

&��	�?	����@&��	�
E������)	���� X����E�+	����	/C�� �C�0�2S2RR@E������)	�����

@+����
@+�����

@)���	��

It is important to understand that this code does not simply dump one
large chunk of XML to the screen. Instead, our query returns four elements,
one for each )���	� element in the document. This differs from the
=�����	�	���C)���	��C� query, which returns only one very large item,
because the file has only one )���	�� node.

To see exactly how this works, let’s modify that ���	�"� loop just
slightly by asking it to “take” the first two results from the query:

���	�"� �*�� =.�� $�	� ���;	�2��
(

������	�5���	
��	�=�!
4

This produces the following output:

)���	��
&��	�+	�"�� @&��	�
+���� @�

@)���	��
)���	��
&��	�J	���@&��	�
+���� @�

@)���	��

This is one way of demonstrating that we are returning four elements, and
not just one big element.

Now take a look at the �	�	"� clause in Listing 14.2. It projects a return
set that contains the J���	 of the &��	 element:

�	�	"� %���	�	���C&��	C��J���	!

Our ���� clause returns a set of four planets. Each planet in our file contains
two elements called &��	 and +����. Our new projection simply asks for the
J���	 of the &��	 node. In the case of the second planet, that value would
be the string CJ	���C.

Chapter 14: Querying and Editing XML396



ptg

Consider what would happen if we wrote the following code:

*�� $�	� ./.���� %.�� =����������	�	����C)���	�C�
�	�	"� %���	�	���C&��	C�!

Our output would look like this:

&��	�+	�"�� @&��	�
&��	�J	���@&��	�
&��	������@&��	�
&��	�+���@&��	�

The point is that the code returns the entire element.

XML Descendants 397

Casting an Element

If you cast an element as a string using an explicit conversion operator,
you get its value:

*�� $�	� ./.���� %.�� =����������	�	����C)���	�C�
�	�	"� ��������%���	�	���C&��	C�!

This query projects the element’s J���	, producing output like that
shown in Listing 14.3. We’ll return to this subject in the section “Work-
ing with Missing Nodes.”

XML Descendants

If you have to dig more than two levels deep into your XML file, using ��	�
�	��� to compose a query can become cumbersome. For instance, this code
is perhaps a bit too verbose:

=�����	�	���C)���	��C����	�	����C)���	�C����	�	����C+����C����	�	����C+���C�

Fortunately, there are many cases when you will not need to use this kind
of syntax. LINQ to XML provides a shortcut that allows you to dig down
directly to the node you want:

*�� $�	� ./.���� =.�� =���?	�"	�������C+���C�
�	�	"� =���	�	���C&��	C�!



ptg

Let’s step back for a moment and see if we can understand how ?	�"	��
����� works. One version of the ?	�"	������ method takes no parameters.
I found it useful to take a moment to study this overload. Consider the
following code:

*�� $�	� ./.���� ".�� =���?	�"	��������
�	�	"� "!

������	�5���	
��	�C?	�"	�����.�����G.C Y.$�	� ���������!

��� "����./.0!
���	�"� �*�� ��	�.�� $�	� �
(

������	�5���	
��	�C(L4.?	�"	�����.(04.(24C1.C��C1
"����YY�����������1.CC�!

������	�5���	
��	���	��!
4

In the sample program that accompanies this book called ?	�"	������,
I ran this query against the following short XML file:

K=�� *	�����/C0�LC.	�"�����/C����MC.K�
)���	��

&��	�+���@&��	�
+�����
+����)�����@+����
+����?	����@+����

@+�����
@)���	��

The program produces the output shown in Listing 14.4. Note that the
code “annotates” the results with some simple descriptive statements des-
ignating the descendant count.

Listing 14.4 An Annotated Look at the Results of a Simple Query That Uses a Call
to ?	�"	������

?	�"	�����.�����G.<

?	�"	�����.0G
)���	��
&��	�+���@&��	�
+�����
+����)�����@+����
+����?	����@+����

@+�����
@)���	��

Chapter 14: Querying and Editing XML398



ptg

?	�"	�����.2G
&��	�+���@&��	�

?	�"	�����.3G
+�����

+����)�����@+����
+����?	����@+����

@+�����

?	�"	�����.RG
+����)�����@+����

?	�"	�����.<G
+����?	����@+����

As you can see, the first descendant is the entire document. The next one
is the &��	 element with the value +���, and then the element +����, and
finally each individual +���. This is a very logical descent through the
nodes of the document. Whenever you become confused about how LINQ
to XML views the structure of your document, it may be worth writing code
like this to see exactly how LINQ thinks about the descendants in your
document.

If you pass in a parameter to ?	�"	������, you can single out one of the
nodes shown in Listing 14.4. Consider this code:

*�� $�	� ./.���� ".�� =���?	�"	�������C&��	C�
�	�	"� "!

It retrieves the following data:

?	�"	�����.�����G.0

��.?	�"	��	��.0.
&��	�+���@&��	�

As you can see, this code skips directly to the &��	 node and ignores the
)���	� node that precedes it.

You will find LINQ to XML much more fun to use if you if you take the
time now to fully understand the difference between calling ?	�"	��������
and calling ?	�"	�������C&��	C�. The first call retrieves all the elements
that descend from the caller. The second node picks out the descendant ele-
ments that have the specified name.

XML Descendants 399



ptg

Consider what would happen if you ran the following code against the
same document:

*�� $�	� ./.���� ".�� =���?	�"	�������C+���C�
�	�	"� "!

It would produce the following output:

?	�"	�����.�����G.2

��.?	�"	�����.0.
+����)�����@+����

��.?	�"	�����.2.
+����?	����@+����

As you can see, the output from this query consists of the two nodes named
+���. The call to ?	�"	������ simply skips all the previous nodes and
focuses only on the name we passed in as a parameter. If you pass in a
parameter to ?	�"	������, it does not drill down into the hierarchy as the
parameterless version does. Instead, it grabs only the siblings of the node
you specify.

Composition and XML Queries

It probably has occurred to you that calls to ?	�"	������ might not work as
hoped in documents that contain nodes that have the same name but at dif-
ferent levels. For instance, consider what happens when we run the fol-
lowing query against the FirstFourPlanets.xml file:

*�� ���	'�	� ./.���� =.�� =���?	�"	�������C&��	C�
�	�	"� =!

���	�"� �*�� =.�� ���	'�	� �
(

������	�5���	
��	�=�!
4

This code grabs &��	 nodes from multiple levels. In other words, it finds
both the names of planets and the names of moons.

Chapter 14: Querying and Editing XML400



ptg

&��	�+	�"�� @&��	�
&��	�J	���@&��	�
&��	������@&��	�
&��	�+���@&��	�
&��	�+���@&��	�
&��	�)�����@&��	�
&��	�?	����@&��	�

This is fine if you want to find all the &��	 nodes in the document. But if you
are looking for only the names of moons, it would be the wrong answer. As
you will see in the next chapter, you can solve this problem by using XML
namespaces. Alternatively, you could revert to the type of code you saw
earlier in this chapter, which is slightly more verbose than a call to ?	�"	��
�������, but also more precise:

*�� ����&��	./.���� =.�� =���?	�"	�������C+���C�
�	�	"� =���	�	���C&��	C�!

This query locates the unique node that is nearest to the &��	 element you
seek and then uses it as a point of reference.

Solutions like this work fine with relatively simple documents, but with
complex documents it could become painful to try to isolate a particular
node. If you are working with a complex document, you might want to use
LINQ composability to help simplify your query. As you recall, compos-
ability allows you to break queries into composable parts, thereby limiting
the complexity of any one query. Because LINQ queries are deferred, this
does not result in a significant performance penalty.

The code shown in Listing 14.5 is run against the FirstFourPlanets.xml
file. It separates the +��� node from the rest of the XML in our file.

Listing 14.5 A Short Query Showing How to Access a Single Node in an XML Tree

*�� $�	� ./.���� =.�� =���?	�"	�������C)���	�C�
��	�	 =���	�	���C&��	C��J���	.//.C+���C
�	�	"� =!

���	�"� �*�� =.�� $�	� �
(

������	�5���	
��	�=�!
4

Composition and XML Queries 401



ptg

The output from this query expression looks like this:

)���	� &��	/C+���C�
&��	�+���@&��	�
+�����
+����

&��	�)�����@&��	�
E������)	���� X����E�+	����	/C�� �C�L�30M@E������)	�����

@+����
+����

&��	�?	����@&��	�
E������)	���� X����E�+	����	/C�� �C�0�2S2RR@E������)	�����

@+����
@+�����

@)���	��

We can now write a second query based on the results of the query
shown in Listing 14.5:

*�� $�	� 0./.���� =.�� $�	� �?	�"	�������C+���C�
�	�	"� =!

The output from this query is as follows:

+����
&��	�)�����@&��	�
E������)	���� X����E�+	����	/C�� �C�L�30M@E������)	�����

@+����
+����

&��	�?	����@&��	�
E������)	���� X����E�+	����	/C�� �C�0�2S2RR@E������)	�����

@+����

This particular example is perhaps a bit contrived. Nevertheless, many
developers may find it easier to break a query into two parts like this rather
than writing one long query. Feel free to use this kind of composition when-
ever possible if you think it will help you write code that is simpler to write,
simpler to test, and simpler to understand. The compositional aspect of
LINQ is one of its great features. Use it when you think it will be helpful.

DescendantNodes, XText, and CData

The ?	�"	�����&��	� method returns a collection of not just the elements,
but of all the nodes descending from the source collection. Contrast it with
the ?	�"	������ method, which retrieves only the ��	�	���.

Chapter 14: Querying and Editing XML402



ptg

Here is an example from the ��	��	)���	�� sample program of embed-
ding a query in a ���	�"� statement:

���	�"� �*�� =.�� $�	� �?	�"	�������C+���C��?	�"	�����&��	����
(

������	�5���	
��	�=�!
4

This query uses both the ?	�"	������ methods and the ?	�"	�����&��	�
method to produce the output shown in Listing 14.6.

Listing 14.6 The Output from a Call to ?	�"	�����&��	� Includes Not Only Elements,
but Also Text Nodes

&��	�+���@&��	�
+���
E������)	����.X����E�+	����	/C�� �C�2T�320<M2@E������)	�����
2T�320<M2
&��	�)�����@&��	�
)�����
E������)	����.X����E�+	����	/C�� �C�L�30M@E������)	�����
L�30M
&��	�?	����@&��	�
?	����
E������)	����.X����E�+	����	/C�� �C�0�2S2RR@E������)	�����
0�2S2RR

If this query asked only for the ?	�"	�������C+���C�, it would return three
nested nodes, one for each of the moons in the FirstFourPlanets.xml file:

+����
&��	�+���@&��	�
E������)	����.X����E�+	����	/C�� �C�2T�320<M2@E������)	�����

@+����
+����

&��	�)�����@&��	�
E������)	����.X����E�+	����	/C�� �C�L�30M@E������)	�����

@+����
+����

&��	�?	����@&��	�
E������)	����.X����E�+	����	/C�� �C�0�2S2RR@E������)	�����

@+����

?	�"	�����&��	� breaks the descendants of the top-level nodes in this
query into their constituent parts. Look, for instance, at this descendant:

DescendantNodes, XText, and CData 403



ptg

+����
&��	�+���@&��	�
E������)	����.X����E�+	����	/C�� �C�2T�320<M2@E������)	�����

@+����

It is broken down by ?	�"	�����&��	� into these three constituent parts:

&��	�+���@&��	�
+���
E������)	����.X����E�+	����	/C�� �C�2T�320<M2@E������)	�����
2T�320<M2

As mentioned earlier, attributes such as X����E�+	����	 are not regarded
as nodes.

DescendantNodesAndSelf
If you called ?	�"	�����&��	�6���	��, as shown in Listing 14.7, you would
find one extra node in the results of your query. Compare the code in List-
ing 14.8 with that in Listing 14.6. Notice that ?	�"	�����&��	�6���	��
returns not only the descendants of the +��� node, but also the +��� node
itself. In Listing 14.8, I have put in bold the code that is retrieved by ?	�"	��
����&��	�6���	�� but not by ?	�"	�����&��	�.

Listing 14.7 A Call to ?	�"	�����&��	�6���	��

*�� �����	�./.���� =.��
%���	���?	�"	�������C+���C��?	�"	�����&��	�6���	����
�	�	"� =!

���	�"� �*�� =.�� �����	��
(

������	�5���	
��	�=�!
4

Listing 14.8 The Results of the Simple Query Shown in Listing 14.7


,���

����,���
4����

5	!����1�	����6����57,����	�.8����8�9$/��:;�
45	!����1�	���


4,���
&��	�+���@&��	�
+���
E������)	����.X����E�+	����	/C�� �C�2T�320<M2@E������)	�����
2T�320<M2

,���

Chapter 14: Querying and Editing XML404



ptg


����1'�!��
4����

5	!����1�	����6����57,����	�.8����8<$/�;
45	!����1�	���


4,���
&��	�)�����@&��	�
)�����
E������)	����.X����E�+	����	/C�� �C�L�30M@E������)	�����
L�30M

,���


����������
4����

5	!����1�	����6����57,����	�.8����8�$�=�00
45	!����1�	���


4,���
&��	�?	����@&��	�
?	����
E������)	����.X����E�+	����	/C�� �C�0�2S2RR@E������)	�����
0�2S2RR

Searching for Text Nodes
One quick way to find a unique J���	 in an XML tree is to combine ?	�"	��
����&��	� with a call to the standard LINQ operator E�� %	:

*�� %�����./.���� I�	=� =.�� =���?	�"	�����&��	����E�� %	I�	=����
��	�	 =�J���	.//.C)�����C
�	�	"� =!

������	�5���	
��	�%������:�������!

This simple query writes the word )�����. The call to E�� %	 ensures that
the query retrieves only nodes of type I�	=�—that is, content nodes that
contain a simple text value. Consider this element:

&��	�J	���@&��	�

The content for this XML element is the text node J	���. LINQ to XML
regards text like the word J	��� as being of type I�	=�.

Write code like this to ensure that your query retrieves a single value:

*�� %�����./.����� I�	=� =.�� %���	���?	�"	�����&��	����E�� %	I�	=����
��	�	 =�J���	.//.C)�����C
�	�	"� =�������	���J���	!

As you learned in Chapter 6, “Query Operators,” the LINQ query opera-
tor �����	 raises an exception if your query returns more than one result.
Thus, a developer is alerted if the document contains two instances of a
string that he assumed appeared only once.

DescendantNodes, XText, and CData 405



ptg

CData
We have been working with very “well-behaved” text nodes. However,
sometimes you need to work with text fields that do not conform so nicely
to the expected syntax for an XML file. Consider, for instance, what would
happen if you inserted a text node that itself contained markup as text in an
XML element:

6���X�	.C)���	�&��	������@)���	�&��	�CK@6���

Code like this would upset any XML parser and cause it to return unex-
pected results. To fix the problem, you could write something like this:

6���X�	.\$���!\��!)���	�&��	\��!�����\��!@)���	�&��	\��!\$���!K@6���

Here standard XML character entity references such as \��! and \��! are used
in place of characters such as  and �. Few people would consider this an
optimal solution.

The �?��� section, where �?��� stands for “character data,” is designed
to help alleviate the pain. Consider the code shown in Listings 14.9 and
14.10. (See the CDataQuery sample program that accompanies this book for
the complete Listing 14.9.)

Listing 14.9 An Example of How to Parse XML That Contains �?���

I?�"��	��.=��./.I?�"��	���
����C5����?����=��C�!

*�� $�	� ./.���� %.�� =���?	�"	�������C6��C�
�	�	"� %!

���	�"� �*�� ��	�.�� $�	� �
(

������	�5���	
��	�C��	.	����	.���	C�!
������	�5���	
��	���	��!

4

*�� ���./.���� %.�� =���?	�"	�������C6��C�
�	�	"� %�J���	!

���	�"� �*�� ��	�.�� ����
(

��������	�CP���.��	.����	C�!
������	�5���	
��	���	��!

4

Chapter 14: Querying and Editing XML406



ptg

Listing 14.10 A Simple XML File Containing �?���

K=�� *	�����/C0�LC.	�"�����/C����MC.K�
)���	���
)���	��
&��	������@&��	�
6���^,�?6�6,X�	.C)���	�&��	������@)���	�&��	�CK--�@6���

@)���	��
@)���	���

The 6�� element shown in Listing 14.10 uses a �?��� section to embed
text that contains XML markup. Although admittedly it’s a bit awkward to
read, this is nonetheless much simpler than directly inserting character
entity references into XML.

Consider the query shown in Listing 14.9. This code loads the XML file
from Listing 14.10 and produces the following output:

/////////////////
��	.	����	.���	
/////////////////
6���^,�?6�6,X�	.C)���	�&��	������@)���	�&��	�CK--�@6���
/////////////////
P���.��	.*���	
/////////////////
X�	.C)���	�&��	������@)���	�&��	�CK

As you can see, LINQ to XML interprets the J���	 of the 6�� node as if it
were the plain text without the machinery of the �?6�6 syntax.

Here is one way to search for a node that contains �?���:

*�� $�	� 0./.���� %.�� =���?	�"	�����&��	����E�� %	I�?������
��	�	 %���������������������C�����C�
�	�	"� %!

This query would retrieve our �?��� node from the document in Listing
14.10. As always in LINQ, there are many different ways to achieve the
same end, but this is a reasonable approach.

Parents and Ancestors

After you have found a node, you can navigate backward from it to a
)��	�� node. In this code fragment, the program navigates to a text node
and then finds the parent of its parent:

Parents and Ancestors 407



ptg

*�� %��	��./.���� I�	=� =.�� %���	���?	�"	�����&��	����E�� %	I�	=����
��	�	 =�J���	.//.C)�����C
�	�	"� =�)��	���)��	��!

������	�5���	
��	�%��	���:�������!

This code writes the following:

+����
&��	�)�����@&��	�
E������)	���� X����E�+	����	/C�� �C�L�30M@E������)	�����

@+����

Even though we specified a node of type I�	=� in our search, this query
returns an I��	�	�� because the projection returns the )��	�� of )��	��,
and )��	��s return I��	�	��s:

%����" I��	�	�� )��	��.(.�	�!.4

The 6�"	����� method is the mirror image of the ?	�"	������ method.
Instead of walking down the graph of the XML file, it walks backward
through it toward the root:

*�� ��"	�����./.���� I�	=� =.�� %���	���?	�"	�����&��	����E�� %	I�	=����
��	�	 =�J���	.//.C)�����C
�	�	"� =�6�"	�������!

"����./.0!
���	�"� �*�� ��	�.�� ��"	������
(

���	�"� �*�� �.�� ��	��
(

������	�5���	
��	�C.6�"	����G.(L4.��C1."����YY�!
������	�5���	
��	���!

4
4

This code walks backward through the FirstFourPlanets.xml document:

.6�"	����G.L.��
&��	�)�����@&��	�

.6�"	����G.0.��
+����

&��	�)�����@&��	�
E������)	����.X����E�+	����	/C�� �C�L�30M@E������)	�����

@+����

Chapter 14: Querying and Editing XML408



ptg

.6�"	����G.2.��
+�����

+����
&��	�)�����@&��	�
E������)	����.X����E�+	����	/C�� �C�L�30M@E������)	�����

@+����
+����

&��	�?	����@&��	�
E������)	����.X����E�+	����	/C�� �C�0�2S2RR@E������)	�����

@+����
@+�����
��"1.�%.��.��	.�������

To save space, I cut off this listing about halfway through. The next node
in the series would be )���	�. The final element in the series would be the
entire document, starting at the ���� node. Like the ?	�"	������ method,
you can pass in a string with an element name as a parameter to the
6�"	����� method. You then are taken directly to the particular set of ele-
ments associated with that name.

It’s hard to overemphasize the importance of understanding how
?	�"	������ and 6�"	����� work. The more readily you can visualize
what nodes would be returned by a call to these methods, the more quickly
you will become comfortable with navigating through a document with
LINQ to XML.

Elements After or Before Self

It can be confusing to call ��	�	���B	���	�	�� or ��	�	���6��	��	�� right
after calling 6�"	����� or ?	�"	������. You can tend to think that these
methods drill up or down into the XML hierarchy like ?	�"	������ and
6�"	�����, when in fact they reference the next item after the caller at the
current level in the XML graph. They return sibling nodes, not parent or
child nodes.

Consider the following XML node:

)���	��
&��	������@&��	�
+�����

+����
&��	�+���@&��	�
E������)	�����2T�320<M2�@E������)	�����

Elements After or Before Self 409



ptg

@+����
@+�����

@)���	��

The 6�"	���� of the +���� node is )���	�, and its ?	�"	������ are +���,
&��	, and E������)	����. The ��	�	���B	���	�	�� in this file is &��	.
There are no ��	�	���6��	��	��.

To illustrate how these methods work, open the ReadXml sample that
accompanies this book. Here is the ��	�	���B	���	�	�� method from that
program:

*�� $�	� ./.���� %.�� =���?	�"	�������C+����C�
�	�	"� �	�
(

	��./.%���	�	���6��	��	����1
	��./.%���	�	���B	���	�	����

4!

���	�"� �*�� ��	�.�� $�	� �
(

@@.6��	�.�	��
���	�"� �*�� �.�� ��	��	���
(

������	�5���	
��	�CB	���	���(L4���(04C1.��&��	1.��J���	�!
4
@@.B	���	.�	��
���	�"� �*�� �.�� ��	��	���
(

������	�5���	
��	�CB	���	���(L4���(04C1.��&��	1.��J���	�!
4

4

When run against the FirstFourPlanets.xml file, this code yields these
results:

B	���	���&��	��������
B	���	���&��	���+���

As you can see, the code finds the &��	 node that appears before itself on
the same level in the XML hierarchy, but it finds nothing after itself. In
either case, it is searching for sibling nodes, not parents or children.

Chapter 14: Querying and Editing XML410



ptg

Here are similar lines of code run against the same file:

*�� $�	� ./.���� %.�� =���?	�"	�������C)���	�C�
�	�	"� �	� (.*��./.%���	�	���C&��	C��J���	1

	��./.%���	�	���C&��	C����	�	���6��	��	����.4!

���	�"� �*�� ��	�.�� $�	� �
(

������	�5���	
��	���	��*���!
���	�"� �*�� �.�� ��	��	���
(

������	�5���	
��	�C���(L4C1.��&��	�!
4

4

It produces this code:

+	�"�� 
J	���
�����
���+����
+���
���+����

This code searches for and finds the two planets in the file that have moons
and then gets the elements after the &��	 element. Each planet has only one
such element, and it is called +����. In other words, this sample does the
opposite of what we saw in the previous sample.

Working with Missing Nodes

LINQ to XML developers frequently encounter the “problem of the missing
node.” Consider this simple XML document from the MissingElements
sample that accompanies this book:

K=�� *	�����/C0�LC.	�"�����/C����MC.K�
)���	���
)���	� ��/C0C�
&��	�+	�"�� @&��	�

@)���	��
)���	� ��/C2C�

&��	�J	���@&��	�
@)���	��

Working with Missing Nodes 411



ptg

)���	��
&��	������@&��	�

@)���	��
)���	� ��/CRC�
&��	�+���@&��	�

@)���	��
@)���	���

All but one of the )���	� elements in this document has an 6�������	
called ��. Following the lead of its dominant species, the planet Earth is the
one that breaks with precedent.

If you run the following code against this document and then try to
���	�"� over the results, you get a &����	�	�	�"	�="	%����:

*�� *	���+����./.���� =.�� =���?	�"	�������C)���	�C�
��	�	 =�6�������	�C��C��J���	.//.C2C
�	�	"� =!

The problem, of course, is that there is no 6�������	 called �� for the planet
Earth, and when LINQ tries to find the J���	 of the �� attribute for Earth,
a null reference exception is thrown.

To avoid this problem, you can write the following code, or some vari-
ation of it:

*�� *	���+����./.���� =.�� %���	���?	�"	�������C)���	�C�
�	� ��./.=�6�������	�C��C�.KK.�	� I6�������	�C��C1.C�0C�
��	�	 ���J���	.//.C2C
�	�	"� =!

Here the KK (null coalescing) operator is used to test if an 6�������	 called
�� exists:

�	� ��./.=�6�������	�C��C�.KK.�	� I6�������	�C��C1.C�0C�

If it does not, a new 6�������	 called �� with a value of �0 is created. This
new attribute ensures that we don’t get a &����	�	�	�"	�="	%����. I’ve
passed in �0 as the J���	 of this attribute to ensure that this node does not
accidentally pass our filter.

In some cases the null coalescing operator won’t meet a developer’s
needs. In those situations, you may use a regular ternary operator (��
statement):

Chapter 14: Querying and Editing XML412



ptg

*�� *	���+����./.���� =.�� %���	���?	�"	�������C)���	�C�
�	� ��./.�=�6�������	�C��C�.//.�����.K

C�0C G.=�6�������	�C��C��J���	
��	�	 ��.//.C2C
�	�	"� =!

This is less elegant, but it works in certain circumstances where the null
coalescing operator will not work.

Another very useful technique is to use explicit conversion operators to
access the value of an attribute:

*�� *	���+����./.���� =.�� %���	���?	�"	�������C)���	�C�
�	� ��./.��������=�6�������	�C��C�
��	�	 ��.//.C2C
�	�	"� =!

Code like this is quite terse and very easy to read. It relies on the existence
of a series of more than 20 very esoteric conversion operators that happen
to exist in the I6�������	 and I��	�	�� classes. If you cast the I6�������	
class to a string, it returns the J���	 of the attribute if it is available; other-
wise, it returns the empty string. This means you don’t get a null reference
exception.

Working with Missing Nodes 413

Explicit Conversion

This is absolutely not the right place to explore 	=%��"�� and ��%��"��
conversion operators. However, you might want to open one of your
LINQ to XML source files and hover the cursor over a valid instance
of the word I��	�	��. Press F12 to go to the metadata definition of the
I��	�	�� class. You will see the declarations for the explicit conversion
operators at the top of the listing. Here are two of them:

%����" �����" 	=%��"�� �%	����� ���K�I6�������	 ��������	�!
%����" �����" 	=%��"�� �%	����� ����I6�������	 ��������	�!

For more information, search the online C# help for the topic “Using
Conversion Operators.”



ptg

If none of these solutions fits your tastes, you can simply use an external
method to resolve any potential null reference exceptions in your code:

%��*��	 �����" *��� X�	�=�	����+	������
(

I?�"��	�� %���	��./.I?�"��	���
����C:����:���+�����	��=��C�!

*�� *	���+����./.���� =.�� %���	���?	�"	�������C)���	�C�
�	� ��./.�=�	�����	���������=�
��	�	 ��.//.C2C
�	�	"� =!

���	�"� �*�� ��	�.�� *	���+�����
(

������	�5���	
��	���	��!
4

4

%��*��	 �����" ������ �=�	�����	���������I��	�	�� =�
(

�� �=�6�������	�C��C� //.�����
(

�	���� C�������C!
4
	��	
(

�	���� ��������=�6�������	�C��C�!
4

4

Here we create a method that checks if the node we want to examine is null.
If it is, the code returns �������; otherwise, it returns the �� of the attribute.
This is not particularly terse, and perhaps not really in the spirit of LINQ,
but it is easy to read.

The examples I’ve shown you here are fairly easy to understand. In the
next chapter, I will revisit the subject of missing nodes and show how you
can solve more complex problems with this same technology.

Working with Line Numbers

Sometimes it is helpful to know the line number of a node in a file. Report-
ing the line number of a node you have found can be a very useful feature,
particularly if you want to report an error. It can also be convenient to

Chapter 14: Querying and Editing XML414



ptg

search for a node by line number. However, that can, of course, be a very
risky endeavor, because documents can be modified accidentally, and their
line numbers changed without notice.

If you look at either the first or last figure in this chapter, you will see
that a class called IE�>	"� sits at the top of the LINQ to XML class hierar-
chy. This class supports an interface called �I��
��	����:

%����" ���	���"	 �I��
��	����
(

��� 
��	&���	�.(.�	�!.4
��� 
��	)�������.(.�	�!.4
���� 7��
��	������!

4

An instance of this interface is used to store the line number information
when you call I?�"��	���
��� with 
���E%�������	�
��	����:

I?�"��	�� =��./.I?�"��	���
�������	&��	1.
���E%�������	�
��	�����!

If you load an XML file into memory using this technique, line numbers are
associated with the nodes in your document.

Here is code that uses the �I��
��	���� interface to report the line num-
ber of a node you have found through a standard LINQ to XML search:

I�	=� %�����./.����� =.�� =���?	�"	�����&��	����E�� %	I�	=����
��	�	 =�J���	.//.C)�����C
�	�	"� =�������	��!

*�� ���	����./.��I��
��	�����%�����!
������	�5���	
��	�C(L4.�%%	���.��.���	.(04C1

%�����1.���	�����
��	&���	��!

This code is taken from the XmlLineNumber program that accompanies
this book.

The query shown here searches through our document for the word
“Phobos.” It uses the query operator �����	 to ensure that the query
returns only a single node, which in this case is of type I�	=�. The program
then casts the result as �I��
��	���� and reports the line number to
the user:

)�����.�%%	���.��.���	.20

Working with Line Numbers 415



ptg

Let’s now turn things around and see how to search through an XML
and look for a node by line number. If you look at the FirstFourPlanets.xml
file, you will see that line 18 looks like this:

&��	�+���@&��	�

Here is code from the XmlLineNumber sample showing how to search for
that node by line number:

I?�"��	�� =��./.I?�"��	���
�������	&��	1.
���E%�������	�
��	�����!

*�� ���	./.���� =.�� =���?	�"	��������
�	� ���	����./.��I��
��	�����=
��	�	 ���	�����
��	&���	�.//.20
�	�	"� =!

���	�"� �*�� ��	�.�� ���	�
(

������	�5���	
��	���	��!
4

Note that the first line uses 
���E%�������	�
��	���� to ensure that line
information is recorded when the document is loaded into memory.

The LINQ query shown here uses ?	�"	������ to iterate over the ele-
ments in the FirstFourPlanets.xml file. The ��	�	 filter in the query checks
to see if any of those elements has its line number set to 21. It happens that
the 15th element returned by the call to ?	�"	������ fits that search crite-
ria, so that node, and that node alone, is found when we ���	�"� over the
results.

Notice the cast to convert the I��	�	�� nodes returned by the call to
?	�"	������:

�	� ���	����./.��I��
��	�����=

This cast is necessary because the actual fields of the �I��
��	���� interface
are not exposed as )����" by I��	�	��. As soon as we know the line num-
ber of an element, we can use a ��	�	 clause to filter the result set, return-
ing only the node that appears on line 21.

Chapter 14: Querying and Editing XML416



ptg

Again, I want to stress that reporting the line number of a node seems
like a reasonable thing to do, but searching for an element by line number
usually is not a good idea. In any case, you now know enough to begin
working with line numbers in a LINQ to XML program.

Modifying XML

To modify the nodes of an XML tree, you need to work with only a small set
of easy-to-use calls. The program called ModifyNodes that accompanies
this book illustrates how to proceed.

The ModifyNodes program uses the document called FirstFour-
Planets.xml, which lists the first four planets and their moons, as shown in
Listing 14.11. Alternatively, you can use the file called NewPlanets.xml,
which lists 8 planets and their 66 moons, plus the dwarf planet Pluto and its
moons Charon, Nix, and Hydra.

In this section of the chapter, I will modify the same document multiple
times. The results of each query are cumulative. For instance, in the section
on removing nodes, the code lops off all the moons in the document. The
next section, on editing, assumes that the moons have been removed from
the document, and it shows the results of editing the modified document.

Removing Nodes
The code shown in Listing 14.11 strips all the planetary moons by calling
�	��*	. The ��	�	�� and ��	�	��� methods navigate to the relevant nodes.
As soon as we have arrived at our destination, a call to �	��*	 excises the
moons. We then navigate to the next set of satellites and again excise them
with a call to �	��*	. You can see the results of this operation in Listing 14.12.

Listing 14.11 Using �	��*	 to Delete Nodes from an XML Document

I?�"��	�� =��./.I?�"��	���
����C:����:���)���	���=��C�!
%���	�����	�	���C)���	��C�

���	�	����C)���	�C�
���	�	����C+����C�
��	��*	��!

Modifying XML 417



ptg

Listing 14.12 The Results of the Method Shown in Listing 14.11

)���	���
)���	��

&��	�+	�"�� @&��	�
@)���	��
)���	��
&��	�J	���@&��	�

@)���	��
)���	��

&��	������@&��	�
@)���	��
)���	��
&��	�+���@&��	�

@)���	��
@)���	���

The code shown in Listing 14.11 uses LINQ method syntax. Alterna-
tively, you could write this code:

I?�"��	�� %���	��./.I?�"��	���
����C:����:���)���	���=��C�!
*�� ���	�./.���� �.�� %���	��

���	�	���C)���	��C�
���	�	����C)���	�C�
���	�	����C+����C�

�	�	"� �!

���	���	��*	��!

Here the effect is exactly the same, but the code uses a traditional LINQ
query expression, and the program calls �	��*	 on the results returned
from the query. Remember that query expressions are converted into
method syntax at compile time, so the runtime performance of both tech-
niques is close to identical. In most cases, you should use the syntax that
you find easiest to read.

Editing Nodes
Here is how to edit the value of the first planet node:

%���	�����	�	���C)���	��C�
���	�	���C)���	�C�
���	�	���C&��	C�
�J���	./.C+	�"�� .��.�	��.��	.���C!

Chapter 14: Querying and Editing XML418



ptg

Note that this code picks out the first planet in the document by using
��	�	���C&��	C� rather than ��	�	����C&��	C�. The latter technique
would return a list of all the names of the planets, which is not what we
want in this case. If we make this edit after removing the moons, the doc-
ument looks like this:

)���	���
)���	��
&��	�+	�"�� .��.�	��.��	.���@&��	�

@)���	��
)���	��
&��	�J	���@&��	�

@)���	��
)���	��
&��	������@&��	�

@)���	��
)���	��
&��	�+���@&��	�

@)���	��
@)���	���

This code uses a ��	�	 clause to pick out one node by name and edit it:

������	�5���	
��	�C+���� .)���	�.� .&��	C�!

*�� $./.����� %.�� %���	�����	�	���C)���	��C����	�	����C)���	�C�
��	�	 %���	�	���C&��	C��J���	.//.CJ	���C
�	�	"� %�������	��!

$���	�	���C&��	C���	�J���	�CJ	���.��.��*	^C�!
������	�5���	
��	�%���	���!

The code uses �����	�� to specify that we want to get the only item from the
XML file that meets our criteria. If more than one element is returned,
the call to �����	 ensures that an ��*����E%	������ exception is raised. The
exception would state that the “Sequence contains more than one element.”

After this action, the document would look like this:

)���	���
)���	��
&��	�+	�"�� .��.�	��.��	.���@&��	�

@)���	��

Modifying XML 419



ptg

)���	��
&��	�J	���.��.��*	@&��	�

@)���	��
)���	��

&��	������@&��	�
@)���	��
)���	��

&��	�+���@&��	�
@)���	��

@)���	���

Inserting Nodes
There are simple methods for inserting nodes in or adding nodes to an
existing XML file. You read about these methods in the section “Building a
Document One Node at a Time” in the preceding chapter, but they take on
a different flavor in this context.

In the samples shown in this section, the code first searches for a location
in the document where you want to add the node. When it is safely at its
destination, the code proceeds to insert the new node.

Adding Attributes

Here is how you add an attribute to a node:

I��	�	�� ���./.%���	�����	�	���C)���	��C�!
����6����	� I6�������	�C+���E����C1.C3321QRS.������C��!

After this edit, the XML for the )���	�� element looks like this:

)���	��.+���E����/C3321QRS.������C�

Here is how you add an attribute to the +��� node:

*�� $�	� ./.����� =.�� %���	�����	�	����C)���	��C����	�	����C)���	�C�
��	�	 =���	�	���C&��	C��J���	.//.C+���C
�	�	"� =�������	��!

$�	� �6����	� I6�������	�C+���C1.CL�0LT.������C��!

After you execute this code, the +��� node looks like this:

)���	� +���/CL�0LT.������C�
&��	�+���@&��	�

@)���	��

Chapter 14: Querying and Editing XML420



ptg

Here is how you edit that attribute:

*�� ����./.����� =.�� %���	�����	�	����C)���	��C����	�	����C)���	�C�
��	�	 =���	�	���C&��	C��J���	.//.C+���C
�	�	"� =�6�������	�C+���C��������	��!

�����J���	./.CS�R0M<K0L23.;�C!

After you execute this code, the +��� node looks like this:

)���	� +���/CS�R0M<=0L23.;�C�
&��	�+���@&��	�

@)���	��

Adding Elements

Here is a how to add an element to our existing list of planets:

%���	��������6����	� I��	�	���C?����)���	�C1
�	� I��	�	���C&��	C1.C����C���!

Note that we are adding a nested set of I��	�	�� nodes, one called ?�����
)���	� and the other called &��	. Here is what the XML looks like when
we are done:

)���	�� +���E����/C3321QRS.������C�
)���	��
&��	�+	�"�� .��.�	��.��	.���@&��	�

@)���	��
)���	��
&��	�J	���.��.��*	@&��	�

@)���	��
)���	��
&��	������@&��	�

@)���	��
)���	�.+���/CS�R0M<=0L23.;�C�
&��	�+���@&��	�

@)���	��
?����)���	��
&��	�����@&��	�

@?����)���	��
@)���	���

In this section, you have learned about the three basic operations you
can perform when modifying a document: delete, modify, and insert. You
have seen that the code for performing these actions is usually very simple.

Modifying XML 421



ptg

Using these methods, however, does require that you first know how to
search for the node upon which you want to operate.

Summary

In this chapter, you have learned how to query an XML document. The text
focused on several key methods and properties, including ��	�	��,
��	�	���, ?	�"	������, )��	���, and 6�"	�����. You also read about
removing, editing, and inserting nodes in an XML document.

Figure 14.5 shows the complete hierarchy of the classes that make up the
core of LINQ to XML. A few other classes in this namespace are not part of
this hierarchy, such as I&��	�%�"	 and I?	"��������. But most of the key
LINQ to XML classes are shown in this diagram. Take a moment to study
it as a means of reviewing the subjects covered in this and the previous
chapter, and also to see some of the topics to be covered in the next chapter.

Chapter 14: Querying and Editing XML422

XObject
Abstract Class

IXmlLineInfo

XNode
Abstract Class
    XObject

XComment
Class
    XNode

XContainer
Abstract Class
    XNode

XProcessingInst…
Class
    XNode

XDocumentType
Class
    XNode

XText
Class
    XNode

XElement
Class
    XContainer

XDocument
Class
    XContainer

XCData
Class
    XTest

XAttribute
Class
    XObject

IXmlSerializable

Figure 14.5 This object hierarchy provides an overview of many of the key classes
explored in this chapter and the preceding one.

By this stage you know many of the most important features of LINQ
to XML. The next chapter covers slightly more advanced material on XML
namespaces, transforms, and schemas. You will see examples of how to
move XML data into and out of a relational database.



ptg

1 5
XML Namespaces,
Transformations, and
Schema Validation

I N T H I S C H A P T E R , you will learn about XML namespaces, transforma-
tions (also called transforms), and schemas. LINQ to XML has modern

techniques for working with each of these technologies. Understanding
how these technologies work is an important step toward mastering both
XML and LINQ.

In this chapter, you will learn the following:

• Namespaces provide a scoping mechanism for XML data. LINQ to
XML can both create namespaces and navigate through them.

• There are several types of XML transformations. For instance, you
will see how to transform relational data into XML and vice versa.
You will also see how to transform an XML document from one for-
mat to another. For instance, you will see how to transform a stan-
dard XML document into an XHTML document.

• XML schemas can ensure not only that a document is well formed,
but also that it follows a set of rules that govern the types and loca-
tions of nodes in a document.

423



ptg

XML and Namespaces

XML namespaces are much like namespaces in C#. Their primary purpose
is to scope the range of a tag in an XML file. The FirstFourPlanets.xml file
introduced in Listing 13.1 in the preceding chapter has two elements called
&��	. One is the name of a planet, and the other is the name of a moon. XML
namespaces allow you to put one element in namespace 6 and the second
in namespace B. These namespaces can then be used to distinguish the
name of a moon from the name of a planet. This is analogous to placing two
classes with the same name in two different namespaces and thus distin-
guishing between them.

You can also use namespaces to distinguish data in two different files.
For instance, suppose we had one XML file with planets listed in it and a
second XML file with moons listed in it. If both documents had a &��	 tag
similar to the one in our FirstFourPlanets.xml file, we could distinguish the
&��	 tag from the planet file from the &��	 tag in the moon file by the name-
space that encapsulated it.

URIs are used as unique identifiers for XML namespaces. In Windows
programming we frequently use GUIDs for the same purpose. The goal is
to find an identifier that is unlikely to be duplicated so that each namespace
can be uniquely identified. The URIs are used simply as identifiers. Typi-
cally they are not used to connect to a server over HTTP. Don’t think of
them as web sites; think of them simply as unique names, just as a GUID
is a unique identifier.

Consider these two simple XML documents:

+���� =����/C���%G@@����	�*	����	�"��@�����C�
+����
&��	�)�����@&��	�

@+����
@+�����

)���	�� =����/C���%G@@����	�*	����	�"��@%���	��C�
)���	��

&��	�+���@&��	�
@)���	��

@)���	���

Chapter 15: XML Namespaces, Transformations, and Schema424



ptg

Each of these documents has its own namespace designated by the
attribute =����, which stands for “XML namespace.” The first document is
uniquely identified by a URL ending with the word �����, and the second
by a URL ending with the word %���	��.

If each document were in a separate file, we could ignore the individ-
ual filenames and distinguish the two documents by their namespaces.
Furthermore, we could use the namespace to distinguish between the &��	
node in the moons file and the &��	 node in the planets file.

You could, at least in theory, use this type of namespace to gain more
fine-grained control by placing one namespace in each node of your file:

)���	�� =����/C���%G@@����	�*	����	�"��@%���	��C�
)���	� =����/C���%G@@����	�*	����	�"��@%���	��C�
&��	 =����/C���%G@@����	�*	����	�"��@%���	��C�+���@&��	�
+���� =����/C���%G@@����	�*	����	�"��@�����C�
+��� =����/C���%G@@����	�*	����	�"��@�����C�

&��	 =����/C���%G@@����	�*	����	�"��@�����C�)�����@&��	�
@+����

@+�����
@)���	��

@)���	���

We can distinguish between the two different &��	 nodes in this file by
looking at the default namespaces in which they reside. Furthermore, we
can tell that the +���� and +��� nodes belong to one namespace, and the
)���	�� and )���	� nodes to another. This system works, but it is very
verbose.

To help write more concise code that is easier to read, the developers of
XML created a second kind of namespace that uses prefixes to designate
whether a particular node belongs to a particular namespace. The kind of
namespace I have shown you so far is called a default namespace. Here is
a document that uses prefixes rather than default namespaces:

%���	��G)���	��
=����G%���	��/C���%G@@����	�*	����	�"��@%���	��C
=����G�����/C���%G@@����	�*	����	�"��@�����C�
%���	��G)���	��

%���	��G&��	�+���@%���	��G&��	�
%���	��G+�����
�����G+����

XML and Namespaces 425



ptg

�����G&��	�)�����@�����G&��	�
@�����G+����

@%���	��G+�����
@%���	��G)���	��

@%���	��G)���	���

Notice that we declare two different namespaces in the root node of this
document. The URLs for these namespaces are designated with a slightly
different syntax than that used in a default namespace. The markup =����
is followed by a colon, and then the name of the namespace:

=����G%���	��/C���%G@@����	�*	����	�"��@%���	��C

We can now use this new namespace as a prefix to distinguish the other
nodes in our document. For instance, we can see at a glance which &��	
node belongs to the %���	�� namespace, and which to the ����� name-
space:

%���	��G&��	�+���@%���	��G&��	�
�����G&��	�)�����@�����G&��	�

Now that you understand the basics of XML namespaces, I’ll show you
how to work with these namespaces in a LINQ to XML program.

Default Namespaces
This code contains a default namespace called ���%G@@����"�����	"��*	���
"��@%���	�� that wraps the )���	�� node and all its subnodes:

K=�� *	�����/C0�LC.	�"�����/C����MC.K�
)���	�� =����/C���%G@@����"�����	"��*	���"��@%���	��C�
)���	��

&��	�+	�"�� @&��	�
E������)	�����X�;����@E������)	�����
+���� @�

@)���	��
)���	��
&��	�J	���@&��	�
E������)	�����X�;����@E������)	�����
+���� @�

@)���	��
)���	��
&��	������@&��	�
E������)	�����0�LLLL0T< @E������)	�����
+�����

Chapter 15: XML Namespaces, Transformations, and Schema426



ptg

+����
&��	�+���@&��	�
E������)	�����2T�320<M2�@E������)	�����

@+����
@+�����

@)���	��
@)���	���

This document uses a default namespace, so all the tags enveloped by the
node called )���	�� belong to that namespace. For instance, the nodes
)���	�, &��	, E������)	����, and +���� are all considered to be inside the
)���	�� namespace. In fact, all the nodes in this document are part of that
namespace.

If you ran the following query against this document, it would fail to
retrieve any data, but it would have succeeded had there been no name-
space:

*�� $�	� ./.���� =.�� =���?	�"	�������C&��	C�
�	�	"� =!

���	�"� �*�� ��	�.�� $�	� �
(

������	�5���	
��	���	��J���	�!
4

This query fails because there is no ��	�	�� in the document called &��	.
Instead, there is an ��	�	�� that looks like this:

&��	 =����/���%G@@����"�����	"��*	���"��@%���	���

Alternatively, you could designate the same thing with this syntax:

(���%G@@����"�����	"��*	���"��@%���	��4&��	�

You can take a node’s namespace into account by using a LINQ to XML
class called I&��	�%�"	. After incorporating that class, your code would
look like this:

I&��	�%�"	 %���	��./.C���%G@@����"�����	"��*	���"��@%���	��C!

*�� $�	� ./.���� =.�� =���?	�"	�������#������ Y.C&��	C�
�	�	"� =!

XML and Namespaces 427



ptg

���	�"� �*�� ��	�.�� $�	� �
(

������	�5���	
��	���	��J���	�!
4

The points of interest here are the declaration for the namespace, and also
the use of that namespace in the call to ?	�"	������:

I&��	�%�"	 #������ /.C���%G@@����"�����	"��*	���"��@%���	��C!
=���?	�"	�������#������ Y.C&��	C�

With these two items in place, the call succeeds.
Here is another, very different XML document called XmlPresCom-

plex.xml:

K=�� *	�����/C0�LC.	�"�����/C����MC.K�
%�	� =����G%�	�/C���%G@@����"�����	"��*	���"��@%�	�C�

*% =����G*%/C���%G@@����"�����	"��*	���"��@*%C�
)�	���	����
)�	���	�� �	$�	�"	/C0C�
%�	�G&��	�#	���	.5���������@%�	�G&��	�
�	��������0TMQ@�	��������
�	������0TQT@�	������
%��� ����	@%��� �
�����0T32@�����
��	��0TQQ@��	��
J�"	)�	���	����
J�"	)�	���	���
*%G&��	�P���.6����@*%G&��	�
�	��������0TMQ@�	��������
�	������0TQT@�	������
�����0T3<@�����
��	��0M2S@��	��
%��� �@%��� �

@J�"	)�	���	���
@J�"	)�	���	����

@)�	���	���
@)�	���	����

@*%�
@%�	��

This document has two XML elements called &��	. One designates the
name of a president, and the other the name of a vice president. To distin-
guish between them, the code includes two prefix namespaces—one for the
president, and one for the vice president. Notice that the namespaces are

Chapter 15: XML Namespaces, Transformations, and Schema428



ptg

used only to single out the two &��	 fields. They are not used to address the
other fields in the document.

When looking at the XML document, notice that we explicitly use the
namespace followed by a colon for the nodes we want to call out:

%�	�G&��	�#	���	.5���������@%�	�G&��	�
*%G&��	�P���.6����@*%G&��	�

In this excerpt from the XmlNamespaces sample available for download
from the book’s web site, you can see how to query the president and vice
president document:

I?�"��	�� %�	�?�"./.I?�"��	���
����CI��)�	����%�	=�=��C�!

I&��	�%�"	 %�	���	��./.C���%G@@����"�����	"��*	���"��@%�	�C!
I&��	�%�"	 *%./.C���%G@@����"�����	"��*	���"��@*%C!

*�� $�	� 2./.���� ".�� %�	�?�"�?	�"	�������#	������� Y.C&��	C�
�	�	"� "!

This code returns the name of the president. The following code, however,
which uses the *% namespace, returns the name of the vice president:

*�� $�	� 3./.���� ".�� %�	�?�"�?	�"	�������># Y.C&��	C�
�	�	"� "!

Notice how both calls use the I&��	�%�"	 class to set up a namespace that
can be used as a prefix in the calls to ?	�"	������.

To get one of the elements from the file that is not explicitly designated
as belonging to either namespace, just query without the namespace:

*�� $�	� R./.���� ".�� %�	�?�"�?	�"	�������C�	�������C�
�	�	"� "!

That’s all I want to say about querying XML documents that contain
namespaces. In the next section, on XML transformations, you will see how
to create XML documents that contain namespaces.

XML Transformations

Transformations are an important part of all the flavors of LINQ, but they
play a particularly large role when you’re working with XML. Rather than

XML Transformations 429



ptg

run through all the possible permutations, I’ll focus on three important
ways to transform XML data:

• Transform XML from one format to another

• Transform relational data into XML

• Transform XML into relational data

The focus will stay primarily on these tasks. Additional examples of work-
ing with text and XML are found in the sample programs that accompany
this book.

Transforming XML from One Format to Another
Transforming XML from one format to another is one area where LINQ to
XML is particularly strong. Complex documents can make the task more
challenging, but the basic skills involved are not difficult to master. I should
perhaps add that many of the queries you looked at in the preceding chap-
ter are really transformations: They queried one document and trans-
formed it into a second document.

Let’s begin by transforming the FirstFourPlanets XML file from the pre-
ceding chapter into the following XML:

)���	���
)���	��+	�"�� @)���	��
)���	��J	���@)���	��
)���	�������@)���	��
)���	��+���@)���	��

@)���	���

The following code from the TransformPlanets program that accompa-
nies this book performs this task:

*�� =��./.�	� I��	�	���C)���	��C1
���� =.�� ��"��������	�	����C)���	�C�
�	�	"� �	� I��	�	���C)���	�C1.=���	�	���C&��	C��J���	��!

������	�5���	
��	�=���!

This code first creates a ���� node for the new document:

*�� =��./.�	� I��	�	���C)���	��C1

Chapter 15: XML Namespaces, Transformations, and Schema430



ptg

A simple LINQ query then retrieves the data to insert into the other ele-
ments of the new document:

���� =.�� ��"��������	�	����C)���	�C�
�	�	"� �	� I��	�	���C)���	�C1.=���	�	���C&��	C��J���	�!

The projection in the �	�	"� statement begins with a call to the I��	�	��
constructor, which creates an XML node called )���	�. The content, or
J���	 field for this element, is filled in by a call to =���	�	���C&��	C��
J���	. This code returns the name of the planet. If you then write the out-
put from this query to the console or to disk, you will have completed the
transformation.

In this example a few bits of information from the original XML file were
added to our new file, and much data was stripped away. In the end, how-
ever, the data from one document was transformed into data for another
document.

Creating XHTML Through a Transformation
XHTML is a specification for writing HTML documents that conform to the
XML standard. Both types of documents conform to the XML standard, but
an XHTML document is a form of HTML and, hence, can be easily dis-
played in a browser. XML parsers, such as LINQ to XML, can be used to
query an XHTML document. This means that you can, at least in some
cases, reliably automate the processing of XHTML documents.

XHTML documents contain familiar HTML tags such %�, %�	�, and
�0�. Each tag must be used in conformance with the XML standard. For
instance, every %� tag must have a matching @%� tag, and every ��� tag
must have a matching @��� tag. We even have to close a break tag using
�� @�.

Converting an XML document into XHTML is a common task. It is also
a transformation in that we are transforming an XML document from one
format into another.

XHTML is not a complicated format, but enough subtleties are involved
that you need a way to confirm that a document is valid. Later in this chap-
ter, I will show you how to use the LINQ APIs to confirm that a document

XML Transformations 431



ptg

is valid XML. Here we need to go beyond that and confirm that the docu-
ment conforms to the XHTML standard. For that task we can use a service
found at this URL:

���%G@@*����������3����

On that web page, you can submit your XHTML as raw text and have its
syntax validated, as shown in Figure 15.1.

Chapter 15: XML Namespaces, Transformations, and Schema432

Figure 15.1 The w3.org Web site provides a validation service that can confirm that
XHTML conforms to the official standards.

The code shown in Listing 15.1 illustrates how to create a simple
XHTML document. It is an excerpt from the TransformPlanets sample proj-
ect that accompanies this book. The output from the code shown in Listing
15.1 is displayed in Listing 15.2.



ptg

Listing 15.1 The LINQ to XML Code for Creating a Simple XHTML Document

����� � ��	������	"������#	�	��"!
����� � ��	��I���
��$!

���	�%�"	 ���������)���	��
(

"���� �����������I����G.X������	�
(

������ %����"��./.FC�@@53�@@?�?.I7�+
.0�L.����"�@@�&C!
������ � ���./
FC���%G@@�����3����@��@=����0@?�?@=����0�����"�����C!
I&��	�%�"	 =����./.FC���%G@@�����3����@0QQQ@=����C!

%����" I?�"��	�� )��"	��
�����
(

I?	"�������� �	"��������./
�	� I?	"���������C0�LC1.C����MC1.C��C�!

I?�"��	��� %	 ��"� %	./
�	� I?�"��	��� %	�C����C1.%����"��1.� ���1.�����!

@@.��	��	.����.��� .��.7�+

I?�"��	�� ��"./.�	� I?�"��	����	"��������1.��"� %	1
�	� I��	�	���=����.Y.C����C1

�	� I6�������	�I&��	�%�"	�I��.Y.C����C1.C	�C�1
�	� I6�������	�C����C1.C	�C�1
�	� I��	�	���=����.Y.C�	��C1

�	� I��	�	���=����.Y.C����	C1.CI7�+
.?�"��	��C��1
�	� I��	�	���=����.Y.C��� C1

�	� I��	�	���=����.Y.C�0C1.C
�&'	�.
���C�1
�	� I��	�	���=����.Y.C��C1

�	� I��	�	���=����.Y.C��C1.C
�&'	�.?���C�����!

�	���� ��"!
4

4
4

Listing 15.2 The XHTML Produced by the Code Shown in Listing 15.1

K=�� *	�����/C0�LC.	�"�����/C����MC.���������	/C��CK�
^?E��N)�.����.)XB
��.C�@@53�@@?�?.I7�+
.0�L.����"�@@�&C

C���%G@@�����3����@��@=����0@?�?@=����0�����"�����C�
���� =��G����/C	�C ����/C	�C =����/C���%G@@�����3����@0QQQ@=����C�

�	���
����	�I7�+
.?�"��	��@����	�

@�	���

XML Transformations 433

continues



ptg

Listing 15.2 Continued

��� �
�0�
�&'	�.
���@�0�
���
���
�&'	�.?���@���

@���
@��� �

@�����

The code in the )��"	��
��� method begins with a standard I?	"�����
���� and includes an I?�"��	��� %	. This latter class creates the ?E��N)�
declaration found in Listing 15.2.

A document type, or ?E��N)�, should be included in all XHTML docu-
ments. It appears after the XML declaration and before the root node. The
?E��N)� declaration can help ensure that a browser renders your document
correctly.

Chapter 15: XML Namespaces, Transformations, and Schema434

Don’t Focus on the Content of a ?E��N)�

If you search on the Web, you can easily find places that show you how
to declare a valid ?E��N)�. You should simply duplicate these decla-
rations verbatim without trying to parse or tweak their content. Most
browsers simply check the ?E��N)� and render a document accord-
ingly. Much of the syntax inside the ?E��N)� is ignored. For instance,
near the end of the ?E��N)�, you can see the URL for a Document Type
Definition (DTD) file called xhtml1-strict.dtd. This DTD contains rules
that can, at least in theory, be used to confirm that this XML file con-
forms to the XHTML standard. In practice, however, a browser rarely
uses this DTD to validate a document. You will read more about DTDs
and schemas near the end of this chapter.

After creating the document type declaration, the code sets up the
namespace for the ����� element at the root of the document. This default
namespace is like the ones described earlier in this chapter, but it was cre-
ated by a standards body.

The ����� element where this namespace is declared should look like
this:

���� =��G����/C	�C ����/C	�C =����/C���%G@@�����3����@0QQQ@=����C�



ptg

Here you see the official XHTML namespace, circa 1999, and attributes
declaring that the document is written in English.

Here is how to create this ����� element:

I&��	�%�"	.=����./.FC���%G@@�����3����@0QQQ@=����C!
�	� I��	�	���=����.Y.C����C1

�	� I6�������	�I&��	�%�"	�I��.Y.C����C1.C	�C�1
�	� I6�������	�C����C1.C	�C�1

The first line declares the XHTML namespace. The second line includes the
namespace in the root node of our document:

�	� I��	�	���=����.Y.C����C

The next two lines of code add in the attributes that specify the natural
language we are using.

�	� I6�������	�I&��	�%�"	�I��.Y.C����C1.C	�C�1
�	� I6�������	�C����C1.C	�C�1

Taken together, this is a valid way to introduce an XHTML 1.0 docu-
ment, with all the proper headings, namespaces, and related information in
place. You need only ensure that the rest of the XHTML you generate is
valid. As explained earlier, it should contain the familiar set of HTML tags,
such as %�, %�	�, and �0�.

You can see that most of the code for generating the beginnings of an
XHTML document is just boilerplate. As a result, I have created a simple file
that you can add into your program and use whenever you need to create
an XHTML document. It is shown in the )��"	��
��� method from Listing
15.3. The )���	��I���� method from the same listing shows how to use it.

Listing 15.3 This Code from the TransformPlanets Sample Combines Code from the
Planets XML File with Code from the Boilerplate for Opening an XHTML Document

����� � ��	��
��$!
����� � ��	��I���
��$!

���	�%�"	 ���������)���	��
(

"���� �����������I����G.X������	�
(

@@.���	.�����	�.�	�	.���.��	*�� �.�		.
������.0<�2�

XML Transformations 435

continues



ptg

Listing 15.3 Continued

%����" I?�"��	�� )���	��I������
(

I?�"��	�� ��"./.I?�"��	���
����C:����:���)���	���=��C�!

I?�"��	�� =��"./.)��"	��
�����!

*�� =��./.�	� I��	�	���=����.Y.C��C1
���� =.�� ��"��������	�	����C)���	�C�
�	�	"� �	� I��	�	���=����.Y.C��C1

=���	�	���C&��	C��J���	��!

=��"�?	�"	�������=����.Y.C��� C�������	���6���=���!

�	���� =��"!
4

4
4

Chapter 15: XML Namespaces, Transformations, and Schema436

The Price of Accidentally Omitting a Namespace

You can learn a lot about namespaces by failing to include some of the
tags for this document. Suppose the =���� namespace were not
included in our �� element, as shown in the first line of this code:

*�� =��./.�	� I��	�	���C��C1
���� =.�� ��"��������	�	����C)���	�C�
�	�	"� �	� I��	�	���=����.Y.C��C1
=���	�	���C&��	C��J���	��!

With this omission, the line items (���) will have huge namespace
declarations in them:

����.=��G����/C	�C.����/C	�C
=����/C���%G@@�����3����@0QQQ@=����C�

�	���
����	�I7�+
.?�"��	��@����	�

@�	���
��� �

��.=����/CC�
��.=����/C���%G@@�����3����@0QQQ@=����C�+	�"�� @���
��.=����/C���%G@@�����3����@0QQQ@=����C�J	���@���



ptg

Transforming Relational Data into XML
Converting the results of an SQL query into XML is another common task
in the lives of many programmers. Code for performing this task can be
seen in the sample program that accompanies this book called Transform-
Customers.

To build the program from scratch, first create a console application, and
then add an Object Relational designer to your project. (Choose Project,
Add New Item from Visual Studio, and then select LINQ to SQL Classes.)
Locate a copy of the Northwind database, as explained in Appendix A.
Select the Northwind database and drag the ������	��, E��	��, E��	�A
?	�����, )����"��, and ��%�� 		� tables from Server Explorer to the
designer. Now open the program’s main file, and add the code shown in
Listing 15.4 into the +��� method. Listings 15.5 and 15.6 show the output.

XML Transformations 437

��.=����/C���%G@@�����3����@0QQQ@=����C������@���
��.=����/C���%G@@�����3����@0QQQ@=����C�+���@���

@���
@��� �

@�����

Clearly it is best to include the namespace in the nodes you declare.

Server Explorer = Database Explorer

In the Express products, Server Explorer is called Database Explorer.

Listing 15.4 Two Different Ways to Transform Relational Data into XML

?��������	�0?�������	=�.��./.�	� ?��������	�0?�������	=���!

*�� =��./.�	� I��	�	���C������	��C1
���� ".�� ���������	��
��	�	 "���� .//.C)����C
�	�	"� �	� I��	�	���C���%�� C1

�	� I��	�	���C&��	C1."����%�� &��	�1
�	� I��	�	���C6���	��C1."�6���	���1

continues



ptg

Listing 15.4 Continued

�	� I��	�	���C��� C1."���� �1
�	� I��	�	���C)��������	C1."�)��������	�1
�	� I��	�	���C����� C1."������� �1
�	� I��	�	���C)���	C1."�)���	���!

������	�5���	
��	�=���!

=��./.�	� I��	�	���C������	��C1
���� ".�� ���������	��
��	�	 "���� .//.C
�����C
�	�	"� �	� I��	�	���C���%�� C1

�	� I��	�	���C&��	C1."����%�� &��	�1
�	� I��	�	���CE��	��C1
���� �.�� "�E��	��
��	�	 �����%J��.//.2
�	�	"� �	� I��	�	���CE��	�C1

�	� I��	�	���C��%�� 		&��	C1.����%�� 		�
���&��	�1
�	� I��	�	���C��C1.��E��	��?�1
�	� I��	�	���C?��	C1.��E��	�?��	�����!

������	�5���	
��	�=���!

Listing 15.5 The Output from the First Query Shown in Listing 15.4

�������	���
���%�� �
&��	�)����.�%	"�����	�@&��	�
6���	���2S<1.����	*���.�������	@6���	���
��� �)����@��� �
)��������	�T<L02@)��������	�
����� �:���"	@����� �
)���	��0�.R2�3R�22�SS@)���	�

@���%�� �
���%�� �

&��	��%	"�����	�.��.����	@&��	�
6���	���2<1.��	.
��������@6���	���
��� �)����@��� �
)��������	�T<L0S@)��������	�
����� �:���"	@����� �
)���	��0�.RT�<<�SL�0L@)���	�

@���%�� �
@������	���

Chapter 15: XML Namespaces, Transformations, and Schema438



ptg

Listing 15.6 A Heavily Elided Version of the Output from the Second Query Shown
in Listing 15.4

K=�� *	�����/C0�LC.	�"�����/C����MC.K�
������	���

���%�� �
&��	�����������	�.7�������@&��	�
E��	���

E��	��
��%�� 		&��	���������@��%�� 		&��	�
���0LR3<@���
?��	�0QQT�L2�LR�LLGLLGLL@?��	�

@E��	��
E��	��

��%�� 		&��	�D���@��%�� 		&��	�
���0LMRM@���
?��	�0QQM�L0�23�LLGLLGLL@?��	�

@E��	��
@E��	���

@���%�� �
���%�� �
&��	�����	��.����	"����@&��	�
E��	���
E��	��

��%�� 		&��	���������@��%�� 		&��	�
���00L<S@���
?��	�0QQM�LR�2M�LLGLLGLL@?��	�

@E��	��
@E��	���

@���%�� �
���%�� �
&��	�&����@�����@&��	�
E��	�� @�

@���%�� �
@������	���

Listing 15.4 shows two different queries. The first converts two com-
pany records from the ������	�� table into XML. The second joins data
from three tables and converts it into XML.

Both queries begin by creating a root element:

*�� =��./.�	� I��	�	���C������	��C1

XML Transformations 439



ptg

The next step is to begin the query that retrieves the data from the database:

���� ".�� ���������	��
��	�	 "���� .//.C)����C

Nested I��	�	��s are used to put the company name into the XML file:

�	�	"� �	�.I��	�	���C���%�� C1
�	� I��	�	���C&��	C1."����%�� &��	�1

The XML written so far produces this output:

������	���
���%�� �

&��	�)����.�%	"�����	�@&��	�

Up to this point, both queries follow almost exactly the same pattern. It
is here, however, that their paths diverge. The first query simply adds
I��	�	��s to fill out the remaining fields of the Customer table:

�	� I��	�	���C&��	C1."����%�� &��	�1
�	� I��	�	���C6���	��C1."�6���	���1
�	� I��	�	���C��� C1."���� �1
�	� I��	�	���C)��������	C1."�)��������	�1
�	� I��	�	���C����� C1."������� �1
�	� I��	�	���C)���	C1."�)���	���!

The second query, however, follows a very different course. It begins a
second query, diving into the E��	�� table, which is bound to the ������	��
table in a one-to-many relationship:

�	�	"� �	� I��	�	���C���%�� C1
�	� I��	�	���C&��	C1."����%�� &��	�1
�	� I��	�	���CE��	��C1

���� �.�� "�E��	��
��	�	 �����%J��.//.2
�	�	"� �	� I��	�	���CE��	�C1

�	� I��	�	���C��%�� 		&��	C1.����%�� 		�
���&��	�1
@@.���	.�����	�.�	�	.���.��	*�� 

You have seen this kind of code before in this book, so I won’t explain
it again. In this case, however, it is being used to transform relational data
into XML elements and not just into text.

Chapter 15: XML Namespaces, Transformations, and Schema440



ptg

Digging Deeper

The code you see in the second example from Listing 15.4 typifies the
virtues and complexities of the declarative style of programming. The
whole operation is a bit like a set of Russian nesting dolls, with one pattern
nested inside another of the same type. As soon as you get the rhythm, it
is a relatively simple matter to extend the whole process one layer deeper,
thereby retrieving information from the )����"�� table:

=��./.�	� I��	�	���C������	��C1
���� ".�� ���������	��
��	�	 "���� .//.C
�����C
�	�	"� �	� I��	�	���C���%�� C1

�	� I��	�	���C&��	C1."����%�� &��	�1
�	� I��	�	���CE��	��C1
���� �.�� "�E��	��
��	�	 �����%J��.//.2

�	�	"� �	� I��	�	���CE��	�C1
�	� I��	�	���C��C1.��E��	��?�1
�	� I��	�	���C��%�� 		&��	C1.����%�� 		�
���&��	�1
�	� I��	�	���C?��	C1.��E��	�?��	�1
���� �.�� ��E��	�A?	�����
�	�	"� �	� I��	�	���C)����"�C1

�	� I��	�	���C&��	C1.��)����"��)����"�&��	�1
�	� I��	�	���C'������ C1

��)����"��'������ )	�X���������!

Here you see yet another ���� clause, thereby nesting our Russian nest-
ing dolls one layer deeper. Here is an excerpt from the XML produced by
this query, complete with new information about the products associated
with each order:

������	���
���%�� �
&��	�����	��.����	"����@&��	�
E��	���
E��	��

���00L<S@���
��%�� 		&��	���������@��%�� 		&��	�
?��	�0QQM�LR�2M�LLGLLGLL@?��	�
)����"��
&��	�X�"�	.B��a�.E�����".?��	�.)	���@&��	�
'������ �02.�.0.��.%;���@'������ �

@)����"��

XML Transformations 441



ptg

)����"��
&��	�)��	."������@&��	�
'������ �2R.��=	�.=.2.%�	�@'������ �

@)����"��
)����"��
&��	����	��	��.)�	����@&��	�
'������ �0<.�.3LL.�.������@'������ �

@)����"��
@E��	��

@E��	���
@���%�� �
���%�� �
&��	�&����@�����@&��	�
E��	�� @�

@���%�� �
@������	���

In this section you have moved from a relatively simple example, to a
moderately complex example, to a final example that is more heavily
nested than the first two. This gives you a chance to assess the virtues of the
declarative style of programming. With imperative code, it is relatively easy
for experienced programmers to break each problem into discrete sections.
In the imperative mode, bugs come singly, with large sections of the pro-
gram running correctly, and isolated problem areas. With declarative pro-
gramming, you often wrestle with a nested statement that will be
completely out of whack one second and then quite suddenly snap into
place after you make that last tweak.

With imperative code I often use logic to solve problems; with declara-
tive code, I simply apply rules. In this last example, for instance, there are
three occasions when I apply a single rule for creating joins with ���� state-
ments. The result is nested code, like three Russian dolls nested one within
the other.

Programmatically Creating the Database
In this section, the direction of flow is the opposite of what you encountered
in the previous section. In the previous section, you moved data from a
database into an XML file. Now the process is reversed, and data flows
from an XML file into a database.

When using LINQ to XML, moving data from an XML file to a database
is a three-step process:

Chapter 15: XML Namespaces, Transformations, and Schema442



ptg

1. Find the data in your XML file.

2. Create objects shaped like the data you found in the XML file.

3. Write LINQ to SQL code that automatically creates tables based on
the objects in your program.

Chapter 9, “Modifying Objects with LINQ to SQL,” introduced the tech-
niques for creating a database with LINQ to SQL. In this chapter you will
dig a bit more deeply into that same technology.

Database Generation

To create a database and its tables with LINQ to SQL, first you need to man-
ually create a set of classes that define the structure of your data. You can
then give a simple command to create tables based on those classes. In
effect, this reverses the task performed by the Object Relational Mapper.
That tool creates classes based on the tables in a database. The part of LINQ
I’m about to show you creates tables based on the classes in your program.
In either case, the same syntax is used to define the classes that mirror the
objects in a database.

Before creating a class, you need to study the data in your XML file to
discern its shape. Take a moment to study this excerpt from our FirstFour-
Planets XML file:

)���	���
)���	��
&��	�+���@&��	�
+�����

+����
&��	�)�����@&��	�
E������)	���� ���/C�� �C�L�30M@E������)	�����

@+����
+����

&��	�?	����@&��	�
E������)	���� ���/C�� �C�0�2S2RR@E������)	�����

@+����
@+�����

@)���	��
@)���	���

You can see that this XML can be encapsulated in two classes called )���	�
and +���:

XML Transformations 443



ptg

%����" "���� )���	�
(

%����" ��� ��.(.�	�!.�	�!.4
%����" ������ )���	�&��	.(.�	�!.�	�!.4
%����" ������ E������)	����.(.�	�!.�	�!.4
%����" 
���+����.+����!

4

%����" "���� +���
(

%����" ��� ��.(.�	�!.�	�!.4
%����" ��� )���	���.(.�	�!.�	�!.4
%����" ������ +���&��	.(.�	�!.�	�!.4
%����" ������ E������)	����.(.�	�!.�	�!.4

4

Each class has an �� field, a &��	 field, and an E������)	����. The &��	
and E������)	���� are taken directly from the XML file. The �� field is
added to form the basis of a primary key in the database. Also included is
a list of +���� associated with a particular )���	�, as well as a )���	���.
This latter field forms the basis of a one-to-many relationship between a
)���	� and a +���.

Listing 15.7 shows the simplest possible take on how to decorate these
classes with the mapping attributes needed to create tables in a database.
As explained in Chapters 7 through 10, the two key pieces of syntax here
are the ����	 attribute, used to map the class to a table in the database, and
the ������ attribute, used to map a field in a class to a column in a database.

Listing 15.7 Classes That Can Be Used to Create the Tables in a Database

,����	�&��	./.C����)���	�C�-
%����" "���� )���	�
(

,���������)����� D	 ./.���	�-
%����" ��� )���	���.(.�	�!.�	�!.4
,������-
%����" ������ )���	�&��	.(.�	�!.�	�!.4
,������-
%����" ������ E������)	����.(.�	�!.�	�!.4
,6���"�������&��	./.C)���	�A+���C1.E��	�D	 ./.C)���	���C�-
%����" 
���+����.+����!

%����" �*	����	 ������ ����������

Chapter 15: XML Namespaces, Transformations, and Schema444



ptg

(
�	���� �������:������C(L4.(04.(24C1

)���	���1.)���	�&��	1.E������)	�����!
4

4

,����	�&��	./.C����+���C�-
%����" "���� +���
(

%����" +�����
(

%���	�./.����!
4

,���������)����� D	 ./.���	�-
%����" ��� +�����.(.�	�!.�	�!.4
,����������B	&���./.���	�-
%����" ��� )���	���.(.�	�!.�	�!.4
,������-
%����" ������ +���&��	.(.�	�!.�	�!.4
,������-
%����" ������ E������)	����.(.�	�!.�	�!.4
,6���"�������&��	./.C)���	�A+���C1.����D	 ./.C)���	���C1

��:��	���D	 ./.���	�-
)���	� %���	�!

4

%����" "���� )���	��?�������	=� G.?�������	=�
(

%����" ����	)���	��.%���	��!
%����" ����	+����.�����!

%����" )���	��������� "���	"�����
G.���	�"���	"�����

(
4

4

When looking at this code, you might be particularly interested in the
6���"������ attribute. It is used to create a foreign key linking the )���	�
and +��� tables on the )���	��� field.

The third class in this series is perhaps the most important. Derived
from the ?�������	=� class, it contains two collections called %���	�� and
�����. The ����	 class, you may recall, is part of LINQ to SQL, and it is
designed to hold a collection of classes mapped to tables in a database.

XML Transformations 445



ptg

The next step is to actually create the database and insert some data into
it. You can do that with this code:

%����" "���� ������ "���	"����������./.FC"G9����9%���	������C!

%����" *��� ��	��	?������	��
(

����� �)���	�� ��./.�	� )���	��?�������	=��"���	"������������
(

�����	��	?������	��!

)���	� %./.�	� )���	� (.)���	�&��	./.C6�%��C1.E������)	����./
C0C 4!

���%���	������	��E��������%�!
��������������	���!
�������	"���������	��!

4
4

After declaring the connection string, the next step is to initialize an
instance of the ?�������	=�. After instantiating the class, you can use it to
create the database:

�����	��	?������	��!

This simple call

• Creates the database in the C:\Data directory.

• Creates the +��� and )���	� tables.

• Adds the columns with the names and types we specified in our
class declaration.

• Sets up our primary and foreign keys.

In short, our +��� and )���	� classes are converted into tables. The attrib-
utes and types we use in our classes are the basis of the types and relation-
ships created in the database.

The next step is to initialize a row of data and insert it into the database.
You can do that with this code:

)���	� %./.�	� )���	� (.)���	�&��	./.C6�%��C1.������./.CB	��C 4!

Chapter 15: XML Namespaces, Transformations, and Schema446



ptg

After an instance of our )���	� class is instantiated, an object initializer
assigns data to its two properties. Now we have a fully initialized object
with data we would like to insert into the database. To actually insert the
data, call ���	��E������� and �����������	�:

���%���	������	��E��������%�!
��������������	���!

While still focused on the basics, take a moment to consider this code,
which demonstrates how to delete a database:

%����" *��� ?	�	�	?������	��
(

����� �)���	�� ��./.�	� )���	���"���	"������������
(

�� ����?������	�=�������
(

������	�5���	
��	�C?	�	����.���.�������	���C�!
���?	�	�	?������	��!

4
4

4

This method first creates an instance of the ?�������	=� and then uses it to
test if the database exists. If it does, the method deletes it.

There is no built-in command for dropping a table, but you can use the
?�������	=�’s �=	"��	������� method to construct one. This command
allows us to execute a T-SQL query directly. In this case, we pass in the sim-
ple T-SQL command “drop table )���	�.” The result is that the table )���	�
is deleted from the database:

%����" *��� ?	�	�	����	��
(

����� �)���	�� ��./.�	� )���	���"���	"������������
(

����=	"��	��������C���%.����	.)���	�C�!
4

4

Transferring Data from an XML File to a Database
Now you know how to create a simple database using LINQ to SQL. The
final step is to transfer all the data in the planet’s XML file into the C#

XML Transformations 447



ptg

classes called )���	� and +���, and then insert the data stored in those
classes into the database. Here is code that performs that very task:

*�� $�	� ./
���� �.�� ��"���	�	����C)���	��C����	�	����C)���	�C�
�	�	"� �	� )���	�
(

)���	�&��	./.������������	�	���C&��	C�1
E������)	����./.������������	�	���CE������)	����C�1
+����./

����� �.�� ����	�	����C+����C����	�	����C+���C�
�	�	"� �	� +���
(

+���&��	./.������������	�	���C&��	C�1
E������)	����./.������������	�	���CE������)	����C�

4����
�����
4!

This query iterates over the planets in the XML file and returns the data it
finds in them. The first �	�	"� clause initializes the fields of the )���	� class
with the data retrieved from the XML file:

)���	�&��	./.������������	�	���C&��	C�1
E������)	����./.������������	�	���CE������)	����C�1

The code then instantiates instances of the +��� class and uses the second
�	�	"� statement and explicit conversion operators to initialize its fields:

+���&��	./.������������	�	���C&��	C�1
E������)	����./.������������	�	���CE������)	����C�

The final step is to use the LINQ operator called ��
����� to insert each
newly created +��� object into the +���� collection of the )���	� class. The
effect of the entire query is to query the data from the XML file and insert
it into instances of the )���	� and +��� classes.

We can now take the computation returned from this query and use it to
insert our data into the database:

��� %���	������./.L!
��� ���������./.L!
���	�"� �*�� ��	�.�� $�	� �
(

��	��)���	���./.%���	������YY!
���%���	������	��E����������	��!
���	�"� �*�� ����.�� ��	��+�����

Chapter 15: XML Namespaces, Transformations, and Schema448



ptg

(
�����)���	���./.���������YY!
�����)���	���./.%���	������.�.0!
������������	��E�������������!

4
4

��������������	���!

This code is complicated slightly by the fact that a list of moons is asso-
ciated with each planet. In other words, we have a list of lists. By this point
in the book, however, that arrangement should be as comfortable as a warm
bath in the evening. Hopefully you will have little trouble following how
the nested ���	�"� loops use calls to ���	��E������� to move our data into
the database.

XML Transformations 449

Learning How to Create Database Entities

It should be clear that you can learn the details of how to create a par-
ticular kind of table, or other database entity, by first creating one in
your database and then using the Object Relational Designer to create
a class based on it. You can then study the class you created and mimic
its syntax in your own classes. Alternatively, you can use code like
what I’ve shown here to create an approximation of the data structure
you want in your tables. Then use the SQL tools to refine your data
model, and use the Object Relational Designer to convert your tables
back into C# classes. These may not be the most elegant of solutions,
but they have a certain practical efficacy.

Viewing the Data Schemas
When creating a database programmatically, it is sometimes convenient to
find a way to check if the tables conform to our plans. SQL server provides
the information we need in the form of the �&:E�+6��E&A��7�+6 tables. We
need only find an easy way to access this information.

One simple approach would be to create a view in the database. As
shown in Figure 15.2, you can do this by opening Database (or Server)
Explorer, expanding the nodes for your database, right-clicking the J�	��
nodes, and selecting Add New View.



ptg

Figure 15.2 Creating a new view in Database Explorer.

Dismiss the Add Table dialog that pops up, and insert an SQL statement
like this in the query designer:

�	�	"� O.����.�����������A�"�	�������	�!

Click the red Execute Query button, or press Ctrl-R to confirm that you
have written the correct SQL. If you are satisfied, save the view by choosing
File, Save All. Drag the newly created view from the Explorer onto the
Object Relational Designer. Now you can access these classes using LINQ
to SQL just as you would any other database entity.

Alternatively, you can simply create your own declarations for these
classes and place them in a file or assembly that you can include in any proj-
ect you create. Because the tables have the same definition in all databases,
you need to declare them only once and then reuse them as often as you
want. Declarations for these tables are shown in Listing 15.8, and examples
of how to use them are provided in the CreateDatabase sample program
that accompanies this book.

Listing 15.8 A Complete Declaration for �����������A�"�	�������	� and a Partial
Declaration for �����������A�"�	���"������

,����	�&��	./.C�&:E�+6��E&A��7�+6�����	�C�-
%����"."����.����	�"�	��0
(

,�������&��	./.C�6B
�A�6�6
E#C1.?�� %	./.C&J�������02M�C�-
%����".������.����	�������.(.�	�!.�	�!.4

Chapter 15: XML Namespaces, Transformations, and Schema450



ptg

,�������&��	./.C�6B
�A��7�+6C1.?�� %	./.C&J�������02M�C�-
%����".������.����	�"�	��.(.�	�!.�	�!.4
,�������&��	./.C�6B
�A&6+�C1.?�� %	./

C&J�������02M�.&E�.&X

C1.���B	&���./.����	�-
%����".������.����	&��	.(.�	�!.�	�!.4
,�������&��	./.C�6B
�A�N)�C1.?�� %	./.CJ�������0L�C�-
%����".������.����	� %	.(.�	�!.�	�!.4

4

,����	�&��	./.C�&:E�+6��E&A��7�+6�"������C�-
%����"."����.�������"�	��
(

,�������&��	./.C�6B
�A�6�6
E#C1.?�� %	./.C&J�������02M�C�-
%����".������.����	�������.(.�	�!.�	�!.4
,�������&��	./.C�6B
�A��7�+6C1.?�� %	./.C&J�������02M�C�-
%����".������.����	�"�	��.(.�	�!.�	�!.4
,�������&��	./.C�6B
�A&6+�C1.?�� %	./

C&J�������02M�.&E�.&X

C1.���B	&���./.����	�-
%����".������.����	&��	.(.�	�!.�	�!.4
,�������&��	./.C�E
X+&A&6+�C1.?�� %	./.C&J�������02M�C�-
%����".������.������&��	.(.�	�!.�	�!.4

4

XML Schema Validation

LINQ to XML makes it easy for you to validate an XML document by test-
ing it against a schema. I’ll walk you through the process, taking a few
moments to explain the basics of XSD and schema validation.

When used properly, XML can be easy to read and easy to understand.
This clarity derives in part from the sparseness of the XML specification.
Although people manage to create hard-to-read XML documents, the syn-
tax nevertheless can be simple if developers want it to be.

The sparseness of XML comes at a price. Unlike C#, XML has no built-
in type checking. The absence of this feature helps keep XML simple and
easy to understand but leaves it exposed to misinterpretation.

You can have two different problems with an XML document:

• It might have a syntactic flaw, in which case we say that it is not well
formed.

• It might have a semantic problem, in which case we might consider
it invalid.

XML Schema Validation 451



ptg

To help illustrate this point, I’ll show you two examples. The first is of an
XML document that is not well formed, and the second is a document that
is invalid. Consider this simple XML document:

)���	���
)��I�	��
&��	�+	�"�� @&��	�
E������)	�����X�;����@E������)	�����
+���� @�

@)���	��
@)���	���

This code is not well formed because the tag )��I�	�� does not match the
closing tag @)���	��.

The following document is well formed, but we might not consider it
valid, because it does not conform to our idea of how the document should
look:

)���	���
E������B�� �
&��	�+	�"�� @&��	�
E������)	�����X�;����@E������)	�����
+���� @�

@E������B�� �
)���	��

&��	�J	���@&��	�
E������)	�����X�;����@E������)	�����
+���� @�

@)���	��
@)���	���

Syntactically nothing is wrong with this document, but we still might find
it dissatisfactory because it refers to Venus as a )���	� and Mercury as an
E������B�� . This offends our sense of symmetry. Furthermore, it might
cause serious problems in a program that expects both Venus and Mercury
to be called )���	��.

We do not need to add anything to an XML document to determine if it
is well formed. A good parser can detect with relative ease syntactic errors
such as the )��I�	� node shown previously. LINQ exposes such a parser.
If you called I?�"��	���
��� on the )��I�	� file, LINQ would throw an
exception and complain that the document is not well formed. Visual
Studio is also quite helpful when we are working with a document that is

Chapter 15: XML Namespaces, Transformations, and Schema452



ptg

not well formed. If we open such a document in the Visual Studio editor,
the offending syntax is highlighted in red, and an error message is dis-
played if you hover the mouse over it, as shown in Figure 15.3.

XML Schema Validation 453

Figure 15.3 Problems with documents that are not well formed are clearly visible in
Visual Studio.

Visual Studio Has a Built-in XML Editor

To invoke the Visual Studio XML editor, you need do nothing more
than open a file that has an XML extension or a proper XML declara-
tion. If you want to start a document from scratch and then open or
create a project, choose Project, Add New Item from Visual Studio, and
select the XML File template.

As you can see, it is not difficult to find out if a document is well formed.
Assuring that it is semantically valid, on the other hand, is more complex.

Unfortunately, there have been a number of different attempts to create
a way to validate XML documents. The first attempt was to associate a
Document Type Definition (DTD) with an XML file. The DTD could be
inserted directly in an XML document, or saved to a file with a DTD exten-
sion. Tools were written that made it possible to use the contents of this file
to determine whether a document contained the right XML tags in the right
places.

The DTD specification, however, was not particularly rigorous. As a
result, documents could be validated successfully against a DTD and still
be incorrect. In particular, DTDs were not at all rigorous about type check-
ing. The situation was perhaps a bit analogous to what might happen if a



ptg

C# developer had to work with a compiler that did not understand the dif-
ference between a string and an integer. DTD also knew nothing about
namespaces and had other, more esoteric shortcomings. It is true that DTDs
are relatively easy to use and have a few other important virtues, but their
lack of rigor made them less than appealing in some situations.

To resolve this problem, several new standards were developed. The
one most generally accepted as the best solution for schema validation is
called XSD. An XSD file is written in XML format. It contains syntax rich
enough to define the types of data in an XML file and to define the structure
of data in a particular namespace. In short, it can be used to confirm the
validity of an XML file.

This is not the place to discuss the details of the XSD standard. Fully
understanding it is a chore, but most developers can find their way around
such a document with relative ease. Here, for instance, is the syntax for
defining the &��	 node in our FirstFourPlanets.xml file:

=�G	�	�	�� ���	/C&��	C.� %	/C=�G������C.@�

This code says that a &��	 node is an element and that its content is of
type ������. Here is code that states that the +��� element can appear from
0 to n times in a document:

=�G�	$�	�"	 ���E""���/CLC�
=�G	�	�	�� ��=E""���/C�������	�C.���	/C+���C�

Visual Studio can automatically generate an XSD file based on an exist-
ing XML file. Suppose you have an XML file that looks like this:

K=��.*	�����/C0�LC.	�"�����/C����MC.K�
)���	���

)���	��@)���	��
@)���	���

Add this document to your project and open it in the Visual Studio editor.
Choose Xml, Create Schema from Visual Studio. The following XSD schema
is automatically generated:

K=��.*	�����/C0�LC.	�"�����/C����MCK�
=�G�"�	��.��������	:���?	�����/C��$������	�C.	�	�	��:���?	�����/
C$������	�C.=����G=�/C���%G@@�����3����@2LL0@I+
�"�	��C�

=�G	�	�	��.���	/C)���	��C�

Chapter 15: XML Namespaces, Transformations, and Schema454



ptg

=�G"��%�	=� %	�
=�G�	$�	�"	�
=�G	�	�	��.���	/C)���	�C.@�

@=�G�	$�	�"	�
@=�G"��%�	=� %	�

@=�G	�	�	���
@=�G�"�	���

In general, if you have a valid XML document, you can create an XSD
schema using the technique I describe here. This schema file can be used to
validate the structure of your XML files.

Validation
LINQ to XML makes it fairly simple to validate a document. The code
shown in Listing 15.9 illustrates how to proceed. These simple lines of code
from the ValidateXmlWithSchema program that accompanies this book
demonstrate how to validate an XML document against an XML schema.

Listing 15.9 Validating an XML Document Against an XML Schema

���� ��"��	����J����./.���	!
� ��	������	"�������
���������� ����./.����!

%����" *��� J����������*	��7����	����>	"� �	��	�1.J����������*	��6��� 	�
(

�����6����������:������C�����G.(L4C1.	�+	����	��!
��"��	����J����./.����	!

4

%����" ���� �	��I��J����������� ��	������	"�������
��� �����
(

���������./.����!

I?�"��	�� %���	�I��?�"��	��./.I?�"��	���
����C&	�)���	���=��C�!
I���"�	���	� �"�	���./.�	� I���"�	���	���!
�"�	����6���CC1.C&	�)���	���=��C�!

@@.�	��.0
�����6���C�����.�	��.0C�!
%���	�I��?�"��	���J������	��"�	���1.J����������*	��7����	��!
�����6����������:������C?�"��	��.(L4.*����C1

��"��	����J����.K.C��C G.C��.���C��!

@@.�	��.2
�����6���C�����.�	��.2C�!

XML Schema Validation 455

continues



ptg

Listing 15.9 Continued

��"��	����J����./.���	!
:��"	?�"��:���J����������%���	�I��?�"��	���!
%���	�I��?�"��	���J������	��"�	���1.J����������*	��7����	��!
�����6����������:������C��	.��"��	��.(L4.*����C1

��"��	����J����.K.C��C G.C��.���C��!

�	���� ��"��	����J����!
4

%��*��	 �����" *��� :��"	?�"��:���J����������I?�"��	�� %���	�I��?�"��	���
(

*�� %���	�./.�	� I��	�	���C)���	�	�C1
�	� I��	�	���C&��	C1.C+	�"�� C��!

%���	�I��?�"��	��������6���%���	��!
4

The first step is to load your XML document, and then you instantiate an
instance of the I���"�	���	� class. You can then load a schema into the
I���"�	���	� class. For now, you can leave the namespace name as an
empty string:

I���"�	���	� �"�	���./.�	� I���"�	���	���!
�"�	����6���CC1.C&	�)���	���=��C�!

Near the end of this section, I will show you how to use the first parame-
ter of the 6�� method to pass in a namespace.

To validate the document, call the J������	 method of your I?�"��	��
object. Pass in the I���"�	���	� class and a callback method designed to
handle the results of the validation process:

%����" *��� J����������*	��7����	����>	"� �	��	�1.J����������*	��6��� 	�
(

�����6����������:������C�����G.(L4C1.	�+	����	��!
��"��	����J����./.����	!

4

%����" ���� �	��I��J����������� ��	������	"�������
��� �����
(

@@.���.���	.�����	�.�	�	

%���	�I��?�"��	���3���������"�	���1.J����������*	��7����	��!

@@.���.���	.�����	�.�	�	
4

Chapter 15: XML Namespaces, Transformations, and Schema456



ptg

The J����������*	��7����	� callback is a fairly simple method that
takes two parameters. The first is of type ��>	"�, and the second is a simple
class called J����������*	��6���. This class contains three properties, the
most important of which is a message describing the results of events that
occur during validation:

%����" "���� J����������*	��6��� G.�*	��6���
(

%����" I���"�	���="	%���� �="	%����.(.�	�!.4
%����" ������ +	����	.(.�	�!.4
%����" I���	*	��� � %	 �	*	��� .(.�	�!.4

4

If you look carefully at the code in Listing 15.9, you will see that it calls
the J������	 method twice. The first time it validates a syntactically and
semantically correct version of our Planets XML file. The program then
inserts an invalid node into the document and attempts to revalidate it. The
invalid node looks like this:

)���	�	��
&��	�+	�"�� @&��	�

@)���	�	��

Note that this is valid XML, but an element called )���	�	� was not
expected in this document. As you have seen, the documents in this chap-
ter have elements called )���	�� and elements called )���	�, but not ele-
ments called )���	�	�. As a result, this second attempt to validate the
document fails, because it violates the rules defined in our XSD schema.
The schema looks for )���	�� elements and )���	� elements, but it objects
if we try to use a )���	�	� element and passes the following error strings to
the callback:

�����G.��	.	�	�	��.H)���	��H.���.��*����."����.	�	�	��.H)���	�	��H

���.��.%������	.	�	�	���.	=%	"�	�G.H)���	��H

��	.��"��	��.��.���.*�����

This error signifies that an element called )���	� was expected, but instead
an element called )���	�	� was found. The code in the document was well
formed, but it was semantically incorrect, so the error occurred. Note also
that the schema understands that at this location in the document elements

XML Schema Validation 457



ptg

of type )���	� are valid, but elements of type )���	�	� are invalid. It
knows what nodes can be used at any particular level in the document.

Namespaces and Validation
You saw a moment ago that the I���"�	���	� class supports namespaces.
Consider the following simple XML document:

K=�� *	�����/C0�LC.	�"�����/C����MC.K�
)���	�� =����/C���%G@@����"�����	"��*	���"��@%���	��C�
)���	��

&��	�+	�"�� @&��	�
E������)	�����X�;����@E������)	�����
+���� @�

@)���	��
@)���	���

This document contains a namespace called )���	��. If you create an XSD
file based on this document, it will have a header that explicitly mentions
this namespace:

K=�� *	�����/C0�LC.	�"�����/C����MCK�
=�G�"�	�� ��������	:���?	�����/C��$������	�C.	�	�	��:���?	�����/

C$������	�C
����	�&��	�%�"	/C���%G@@����"�����	"��*	���"��@%���	��C

=����G=�/C���%G@@�����3����@2LL0@I+
�"�	��C�
=�G	�	�	�� ���	/C)���	��C�
=�G"��%�	=� %	�

=�G�	$�	�"	�
=�G	�	�	�� ���	/C)���	�C�
=�G"��%�	=� %	�

=�G�	$�	�"	�
=�G	�	�	�� ���	/C&��	C.� %	/C=�G������C.@�
=�G	�	�	�� ���	/CE������)	����C.� %	/C=�G������C.@�
=�G	�	�	�� ���	/C+����C.@�

@=�G�	$�	�"	�
@=�G"��%�	=� %	�

@=�G	�	�	���
@=�G�	$�	�"	�

@=�G"��%�	=� %	�
@=�G	�	�	���

@=�G�"�	���

This call to the schema 6�� method uses the first parameter, called ����	��
&��	�%�"	. This field was not used in the schema code shown in the

Chapter 15: XML Namespaces, Transformations, and Schema458



ptg

previous section. You can use the contents of this field to initialize the
I���"�	���	� class:

I���"�	���	�.�"�	���./.�	� I���"�	���	���!
�"�	����6���C���%G@@����"�����	"��*	���"��@%���	��C1.C)���	�&��=��C�!

In this call to the 6�� method, I use the first parameter to pass in namespace.
Otherwise, the code you write is identical to the code in the previous
example.

Annotations

Annotations are one of the minor features of LINQ to SQL. They let you add
an object to a particular node by decorating it with the class of your choice.
This class is usually a custom class that lets you associate data or actions
with the node. Listing 15.10 is an example of how to use annotations.

Listing 15.10 A Simple Example of How to Annotate the Nodes of an XML File

%����" "���� ?	�����
(

%����" ��� )�������.(.�	�!.�	�!.4

%����" ?	��������� ��"��
(

�����)�������./.��"�!
4

%����" ������ #	�:����
	��	��I��	�	�� 	�	�	���
(

�	���� C:����.�	��	�.��G.C Y.	�	�	���J���	,L-!
4

4

"���� )������
(

�����" *��� +����������,-.�����
(

I��	�	�� %���	��./.�	� I��	�	���C)���	��C1
�	� I��	�	���C)���	�C1.C+	�"�� C�1
�	� I��	�	���C)���	�C1.CJ	���C�1
�	� I��	�	���C)���	�C1.C�����C�1
�	� I��	�	���C)���	�C1.C+���C��!

Annotations 459

continues



ptg

Listing 15.10 Continued

��� "����./.0!
���	�"� �*�� ��	�.�� %���	���?	�"	�������C)���	�C��
(

��	��6��6�����������	� ?	������"����YY��!
4

���	�"� �*�� ��	�.�� %���	���?	�"	�������C)���	�C��
(

?	����� �	����./.��	��6���������?	��������!
������	�5���	
��	��	�����)��������!
������	�5���	
��	��	�����#	�:����
	��	����	���!

4
4

4

The code shown in Listing 15.10 begins by creating a simple XML file
that looks like this:

)���	���
)���	��+	�"�� @)���	��
)���	��J	���@)���	��
)���	�������@)���	��
)���	��+���@)���	��

@)���	���

It then annotates each )���	� element in the file:

���."����./.L!
���	�"� �*�� ��	�.�� %���	���?	�"	�������C)���	�C��
(

��	��6��6�����������	� ?	������"����YY��!
4

The ?	����� class is used to track the position of the planet relative to the
sun and to associate a simple action with each )���	� node. This data is not
stored in the XML file and is accessible only at runtime. For instance, here
is a simple way to access the annotations created by this code:

���	�"� �*�� ��	�.�� %���	���?	�"	�������C)���	�C��
(

?	����� �	����./.��	��6���������?	��������!
������	�5���	
��	��	�����)��������!
������	�5���	
��	��	�����#	�:����
	��	����	���!

4

Chapter 15: XML Namespaces, Transformations, and Schema460



ptg

The code uses the 6��������� method to retrieve the annotation associated
with a particular I��	�	��. Because the method is generic, you don’t need
to cast the value it returns.

You probably will have your own reasons to use this feature, or to ignore
it if that is your want. It is the kind of feature that suits itself to solving cus-
tom problems that none of the developers at Microsoft anticipated.

Should You Use C# or VB?

Before closing this chapter, I should take a moment to discuss a technology
you may have heard about called XML literals. This technology ships with
Visual Basic, but it is not part of the C# language.

The developers of VB decided that LINQ to XML would be simpler if the
XML syntax were adopted as part of the Visual Basic language. As a result,
VB developers can insert an XML document directly into their code.

Consider this short, but complete, VB console application:

+����	 +����	0
��� +�����

?�� =��./.)���	��
&��	�+���@&��	�
+�����

+����)�����@+����
+����?	����@+����

@+�����
@)���	��

������	�5���	
��	�=���
��� ���

��� +����	

Here you can see a fragment of valid XML embedded directly in a program.
This code compiles and runs smoothly, and you can see that it is even prop-
erly syntax-highlighted.

The equivalent C# code would look like this:

"����.)������
(

�����" *��� +����������,-.�����
(

*�� =��./.�	� I��	�	���C)���	�C1

Should You Use C# or VB? 461



ptg

�	� I��	�	���C&��	C1.C+���C�1
�	� I��	�	���C+����C1

�	� I��	�	���C+���C1.C)�����C�1
�	� I��	�	���C+���C1.C?	����C���!

4
4

Although the C# code is shorter and more descriptive, there is no ques-
tion that VB makes working with XML inside your program remarkably
intuitive. The Visual Basic team went on to define XML literal syntax for
querying XML, for writing transforms, and for all the features you’ve read
about in the last three chapters.

The VB technology is built on top of LINQ to XML. All the VB XML code
that you write as XML literals is eventually translated into LINQ to XML
code that is essentially indistinguishable from the code you’ve seen in this
chapter. All the same classes and types are used. For instance, the VB code
shown in this section is translated at compile time into code similar to the
C# code shown in this section. As a result, there is little you can do with
LINQ to XML in VB that you can’t do in C#, and vice versa.

The future is always open, and it is always possible that the C# team will
reverse course and add XML literals into their language. So far, however,
that has not been done. Here are some unofficial reasons why the C# team
is hesitant to include XML literals in the C# language:

• The C# team feels that mixing C# and XML would be both confusing
and risky. In recent years, for instance, a faction has preferred JSON
to XML. If XML were to be replaced by JSON, or by some other tech-
nology, an XML syntax that was part of C# would become an anom-
aly, an odd vestigial appendage to the language that no longer
served a purpose.

• It is always possible that a standards body will either add new fea-
tures to XML or make changes to the existing language. If these
changes are adopted, should the C# language adopt those changes
as well? What if it breaks old code? What if one of the changes is in
some way incompatible with C# and cannot easily be adopted into
the language?

Chapter 15: XML Namespaces, Transformations, and Schema462



ptg

• Or consider the opposite scenario. What if C# wanted to add an
exciting new feature whose syntax conflicted with XML syntax? If
XML were part of C#, that feature could not be added, because it
might cause an irreconcilable conflict.

The issues involved in incorporating XML into C# are not insignificant. For
now, it seems unlikely that the team will change their position, but noth-
ing is written in stone, and change is always possible.

Few people would argue that the C# syntax for LINQ to XML is simpler
than the XML literals syntax found in VB. However, the C# syntax is both
elegant and powerful. Many consider it a significant improvement over
other tools that perform similar tasks. If you find XML literals appealing,
remember that you can always add your own custom VB assemblies that
contain XML literals into your C# projects.

Summary

In this chapter, you have seen that LINQ to XML provides the tools you
need to

• Transform XML documents.

• Move XML data into databases.

• Move relational data into XML documents.

• Work with XML namespaces.

• Work with XML schemas.

• Annotate the nodes of your documents.

LINQ to XML is a very powerful tool that is remarkably easy to use. It is
based on modern programming techniques, and it makes quick work of
jobs that have traditionally challenged XML developers. By tapping into
the elegance of LINQ query expressions and the power of the LINQ query
operators, LINQ to XML has quickly established itself as a significant tool
in the marketplace.

Summary 463



ptg

That’s all I’ll say about LINQ to XML. It is a big subject, but the funda-
mentals are not hard to understand. If you use this technology in your own
programs, you should find it both easy and enjoyable to work with XML
files and to transform them into data that your program can easily
consume.

Chapter 15: XML Namespaces, Transformations, and Schema464



ptg

1 6
Introduction to LINQ Patterns
and Practices

W E H AV E C O V E R E D using components of LINQ to access data from
databases, XML sources, and collections of objects. These compo-

nents are great tools to use while building applications. This chapter con-
siders some common usage patterns and effective practices for making the
best use of these tools. The patterns provide a blueprint for key parts of
applications, and the practices describe how to best address certain sce-
narios and ensure specific capabilities such as productivity, performance,
and security. Not surprisingly, relational data is often a key source or even
the key source of data in applications. Hence, the discussion in this chapter
focuses heavily on LINQ to relational databases.

Before we discuss patterns and practices, it is important to remember
this adage (or perhaps cliché): The answer to every question about whether
a particular pattern is appropriate is “It depends.” Perhaps more important
than a pattern is the context in which it is applicable and the trade-offs it
entails. In that spirit, this chapter gives you a general framework to start
thinking about the key issues with and reasons for the patterns rather than
cataloging a large set of patterns. The cataloging is being done more effi-
ciently and comprehensively by the LINQ community on blogs, forums,
and web sites. The testing of patterns is best done with real analysis and
measurements with your own applications and use cases.

465



ptg

The recommendations in this chapter are to some degree a matter of
design philosophy and taste, which can be subjective and personal. Hence,
the reasoning behind a recommendation should be more interesting than
the recommendation itself.

Using Language Features Judiciously

C# 3.0 (and VB.NET 9.0 as well) provides a set of LINQ-related features to
improve programmer productivity. This can be viewed in two ways: the
time to get the application built correctly the first time and, more impor-
tantly, expressing the intent clearly to reduce maintenance costs over time.
The former is often a dominant factor in adoption, and the latter is the real
source of productivity. Let’s look at the productivity implications of the key
language features first.

Declarative queries and query syntax provide a clear and concise way to
express your intent. They do not provide anything that you couldn’t do
yourself with ���	�"� loops and other imperative constructs. But they can
make your program more readable during development and much easier
for others to understand and maintain. You do cede some control and the
ability to tweak the exact implementation, but in most cases, the long-term
benefits of readable and maintainable code are well worth it. For example,
the following query is certainly very doable with pre-LINQ C# code, but
the intent is much more concise and clear in the new form. The query uses
� %	�#	�+	������� and organizes the methods alphabetically with over-
load counts:

@@.�����	. ���.��*����	.� %	.�	�	
� %	 � %	./.� %	����������!

*�� �*	�����'�	� ./.���� �.�� � %	�#	�+	�������
����% �.� ��&��	.���� �
���	�� ��D	 
�	�	"� �	� (

+	����&��	/��D	 1
E*	������/���������4!

Extension methods add almost another dimension beyond inheritance
and virtual methods. They allow you to create the appearance of having

Chapter 16: Introduction to LINQ Patterns and Practices466



ptg

additional methods on classes that you cannot change. You cannot change
them either because you do not control the source code, or because the
extension is not appropriate in every situation and should be explicitly
selected by including the extension namespace with a ����� statement.
However, you should use this feature with extreme care. It is very easy to
abuse it by extending classes that cannot accommodate the extension
method’s contract. In particular, resist the temptation to extend .NET
framework types such as E�>	"� and ������. Liberal use of extension
methods can also make your code quite difficult to understand.

The introduction of *�� has been a source of significant controversy—
mostly unwarranted. First, it is wrongly thought of as a nonstatic typing
feature. It is not. As explained in Chapter 4, “C# 3.0 Technical Overview,”
it does not compromise static typing. It merely provides the convenience
of inferred type based on the initializer. Second, it is considered a sign of
laziness and bad for readability of code. It should not be. Explicitly stating
complex, nested generic types is not necessary for readability. In Visual Stu-
dio, a ToolTip shows the inferred type anyway. It is true that *�� is not
really necessary for declaring variables of simple types such as ��� and
������. But *�� is convenient for fairly complex generic types and is essen-
tial for anonymous types, because no type name can be specified. However,
there are legitimate concerns about readability where tools other than
Visual Studio are used, because without the ToolTip, declaration with *��
can be harder to read.

Anonymous types can be very handy while developing your program.
However, they are limited, because they cannot be used as return types of
a method. Hence, in most cases, you need to create a nominal (named) type.

In a nutshell:

• Do use queries and query syntax to declare your intent.

• Define extension methods sparingly, if at all, and do not extend basic
system classes.

• It is OK to use *�� for complex types, especially for complex types
generated on your behalf.

• Anonymous types in the current form are limited to a method scope.

Using Language Features Judiciously 467



ptg

As in the case of language features, it is worth understanding the strengths
and limitations of libraries that implement LINQ. Next we will discuss
some of the issues developers encounter when using LINQ to query and
update relational data.

Going Beyond Stored Procedures: The Dynamic
SQL Debate

One of the most tiring debates in the Object Relational space is about using
dynamic SQL and stored procedures. Many versions ago, stored proce-
dures provided a performance edge in addition to better access control.
Several database versions ago, the edge for specific query execution largely
disappeared with better query optimizers. Greater control over who can
execute what (or even what queries can be executed) is offset by the corre-
sponding loss of flexibility. So dynamic SQL, views, and table-valued func-
tions (TVFs) provide interesting alternatives to stored procedures.

In most common cases, the queries generated by a component such as
LINQ to SQL are as good as handwritten SQL. Occasionally they are even
a bit better if the query writer is not a SQL expert. Hence, in those cases,
the use of dynamic SQL is not a performance disadvantage compared to
handwritten SQL or a stored procedure. However, TVF and stored proce-
dures have a place when you want additional influence over the execution
plan, when you want better access control, or when you need to use some
procedural logic beyond the capabilities of SQL. But more important, many
developers may have no choice but to use stored procedures, because that
is all they are allowed to use. Indeed, LINQ to SQL or LINQ to Entities can-
not solve this organizational rather than technical problem. Instead, they
accommodate it by supporting stored procedures. LINQ to SQL stored pro-
cedure support is discussed in Chapter 10, “Using Stored Procedures and
Database Functions with LINQ to SQL.”

Where stored procedures are not mandated by organizational authori-
ties, it is worth considering the following options in decreasing order of
flexibility and increasing order of additional work:

• Dynamic SQL for CRUD operations: This option provides maximum
flexibility with minimal additional code that needs to be maintained.

Chapter 16: Introduction to LINQ Patterns and Practices468



ptg

• Views and/or TVFs for queries and stored procedures for CUD
operations: This option provides much of what a pure stored-
procedure solution provides but adds composability to further filter
the results with efficient execution on the server. See Chapter 10 for
some examples of the use of TVFs.

• Stored procedure-only access: This is the final fallback when neither
dynamic SQL nor TVF can be used. With this option, composability
and deferred execution are not available.

Often a combination of the three provides the best trade-off between
flexibility and control. In addition to stored procedure support through
mapped methods, you can execute arbitrary SQL using the �=	"��	�
'�	� ��, ��������	��, and �=	"��	��������� methods in the ?�������	=�
class. These are not the mainline features but are available for interoper-
ability in very specialized cases where generated SQL or stored procedures
cannot be used. For example, suppose you cannot add a stored procedure
due to access restrictions, and you have special knowledge of the data’s
statistics. You could use a highly customized and optimized dynamic
SQL statement directly for specific queries by using �=	"��	'�	� �� or
��������	�� as an excape hatch.

Designing Mid-tier with Persistent Entities and
Business Logic

Data entities are CLR objects mapped to rows in the database. Hence, they
are very close to the shape of the data in the database. Mapping does pro-
vide varying degrees of flexibility in changing the correspondence between
columns and properties and altering the types of properties. But by and
large, the entities are still structurally and semantically close to the entities
in the database. This closeness has two key implications. First, entities are
often normalized like the data in the database. Second, they are carriers of
data rather than guardians of business logic or business processes. Let’s
look at what these implications mean for shaping data and separating con-
cerns related to persistence, transferring data, and encapsulating business
logic.

Designing Mid-tier with Persistent Entities and Business Logic 469



ptg

Data Shaping
The first implication can actually be positive where data needs to be
updated. Normalization eliminates or minimizes duplication of data and
thereby avoids inconsistency between multiple copies of the data. Infor-
mation about a customer is not duplicated in each of the customer’s orders.
Only the customer’s key is used for referential integrity. There are limited
cases of denormalization that are useful:

• For data-binding purposes, showing a human-readable field instead
of a database ID is advisable, especially where it is not modified. For
example, when displaying E��	�A?	����, showing )����"��&��	 is
more meaningful than showing E��	�A?	�����)����"��? mapped
to a foreign key.

• A collection E��	��E��	�A?	����s is a denormalized way of show-
ing the relationship between E��	�s and E��	�A?	����s. It is a
natural way to write object models and is, in fact, appropriate for
read-write scenarios as well.

• In a few cases, many-to-many relationship may be manageable as
collections in two entities. For example, if a product is supplied by
multiple suppliers, and each supplier can provide multiple prod-
ucts, thinking about ��%%��	��)����"�� and )����"����%%��	��

can be a good starting point. However, often the “hidden” entity in
the middle—)����"���%%��	�—has its own relationship data. For
example, a )����"���%%��	� may have its own lead-time require-
ments or costs. This requires an explicit class—)����"���%%��	�—
that contains more than the keys for )����"� and ��%%��	�. Hence, it
is important to carefully think about the domain objects—)����"�s
and ��%%��	�s—and to not rush into denormalization of many-to-
many relationships.

In general, regardless of the mapping capabilities, it is better to avoid
radically altering the correspondence in the mapping layer. There are
already two powerful and well-understood technologies for changing the
shape on either end of the Relational-Object divide. You can write excellent
views or TVFs in the database to change the shape (including denormal-
ization). Likewise, on the object side, LINQ �	�	"� clauses as well as the

Chapter 16: Introduction to LINQ Patterns and Practices470



ptg

full power of C# or VB.NET imperative constructs are available to trans-
form one object into another. Cramming more shape changes into mapping
can be detrimental, because it introduces a third place to manage shape
with considerably inferior power of expression and poorly understood con-
straints and limitations. It also creates yet another artifact to maintain, with
its own skill set needs and its own evolutionary trajectory. That is likely a
risk factor for an application’s initial productivity and lifecycle.

When the desired shape of a business object with its own encapsulated
functionality is significantly different from that of the database entity, two
separate classes may be appropriate—one for the business object and
another for the data in the database. The latter is then called a Data Trans-
fer Object (DTO). In addition to shaping, aggregating data from multiple
sources can also be done better with DTOs. Each DTO can be retrieved and
saved by its own ?�������	=� or equivalent persistence service provider.
Where such a reshaping or aggregation is necessary, you can use LINQ to
SQL or LINQ to Entities entity classes as DTOs. However, in most other
places, an additional layer of entities is unnecessary and can be expensive
in development time, performance, and application lifecycle costs. The
entity classes generated by LINQ to SQL or LINQ to Entities often provide
a reasonable core for building business objects.

Data shaping may also be necessary in service scenarios where you take
the business objects and expose the underlying data for use by clients on
another tier through a web service. You may choose to not expose sensitive
information or information that is not relevant in the context of a service. For
example, you may not expose an employee’s date of birth because it is sen-
sitive. You also may choose not to show an employee’s hiring date, because
it may not be relevant in a service that is used for an organization’s address
book. You may also choose to denormalize data so that it is more self-con-
tained for clients of your service. For example, a product published through
a service may use category name instead of category ID even if )����"� and
���	��� are distinct business objects. Thus, you may again need to choose
whether to selectively add attributes (such as ?���������"�) to reuse the
business object or create a separate class. You have to make the choice based
on your application and scenarios. But LINQ offers plenty of capabilities.

It is very easy to filter a collection and project into an appropriate type
with a simple LINQ query. In the following code segment, a collection of

Designing Mid-tier with Persistent Entities and Business Logic 471



ptg

Product entities is populated using LINQ to SQL. Then a projection of the
Product entity is created. It is augmented with additional information from
the Category entity to form a shape that makes sense as a ?���������"�.
LINQ is particularly suitable for creating such “object views” in a clear and
succinct fashion. Together with database views, such object views provide
a powerful and flexible mechanism that can be used in various tiers. In
most cases, they are superior to clever but limited tricks in the mapping.

@@.���%���.���.����	����.����.�������	.��.������	�
@@.�	�.�%.?�������	=�.��.	��	������.���	����	�.���.��%%��	��

���)����"��.)����"��./.����� %.�� ���)����"��

��	�	 %�?��"������	�.//.����	
�	�	"� %����
�����!

@@.���	��	�	.��.��	.�%%��"�����.���
@@.���%���.���.����	����.����.������	�.��.�	�*�"	.������� 
@@.�����.)����"�����.����.�	.�	"���	�.�	���	����.����.?���������"�
�����	����	)����"������.)����"�����
���./

���� %.�� )����"��
��	�	 %���%%��	�������� .//.CX�6C
�	�	"� �	� )����"�����
(

��./.%�)����"��?1
&��	./.%�)����"�&��	1
���	��� &��	./.%����	��� ����	��� &��	1
X���)��"	./.%�X���)��"	�J���	

4!

Alternatively, you can add attributes to the entity classes. Both LINQ to
SQL and Entity Framework designers add the ?���������"� attributes to
the entity classes for you—the former through opt-in for all the classes
(none by default) and the latter by default. Although the capability exists
in the tools, it is important to be cautious about it for two reasons. First, it
leads to strong coupling between the shape of the data in the database and
the data published in the service. This is undesirable, because the two typ-
ically are intended to serve different purposes and should have a business
logic layer in between. Second, the all-or-nothing approach is rarely prac-
tical; some entity shapes may be substantially similar across tiers, and oth-
ers may need to be significantly transformed. For example, you may publish
category information publicly, whereas product information may be pub-
lished without inventory details. Except for demo scenarios that show how
to publish the database through services and a few simple applications,

Chapter 16: Introduction to LINQ Patterns and Practices472



ptg

turning every entity in its entirety into a ?���������"� is more often an
antipattern.

Separation of Concerns
The previous chapters looked at the ?�������	=� on the one hand and the
entities or mapped classes on the other. The distinction is more than a mat-
ter of implementation convenience. It represents a separation of concerns
that is worth understanding. The ?�������	=� provides persistence serv-
ices; it handles connection, query translation, persistence operations, units
of work, and transactions. The entities (and other mapped classes) hold the
data related to the concepts in the application domain—������	�, E��	�,
)����"�, ��%%��	�, and so on.

Persistence and Entities

Entities do not themselves have methods for query or persistence and can
be serialized to another tier if necessary, because they are not tethered to a
database connection or a transaction. This separation is different from the
Active Record pattern used for persistence. In the Active Record pattern,
you could write the following:

)����"� %����"�./.�	� )����"���
%����"��)����"�&��	./.C#�	��.)����"�C!
%����"��X���)��"	./.023!
%����"����*	��!.@@%�	���"��	.�������.6"��*	.�	"���.%���	��

In LINQ to SQL, as we have seen in previous chapters, a more natural pat-
tern would be as follows:

)����"� %����"�./.�	� )����"���
%����"��)����"�&��	./.C#�	��.)����"�C!
%����"��X���)��"	./.023!
���)����"������	��E��������%����"��!
��������������	���!

Although it is possible to build an Active Record pattern out of LINQ
to SQL primitives, it is neither natural nor consistent with the design of
LINQ to SQL. A �����������	��� operation does not save a single entity
mapped to a single row or even just an entity hierarchy. It provides a unit
of work that encompasses all changed objects in the ?�������	=� instance.
An operation such as ��*	�� should not be mixed with business logic; it is

Designing Mid-tier with Persistent Entities and Business Logic 473



ptg

an operation supported by a persistence service provider—?�������	=� in
the case of LINQ to SQL or E�>	"�����	=� in the case of LINQ to Entities.

The persistence-related services provided by the ?�������	=� include

• Queries—specifically, language-integrated

• Object identity—ensuring that you don’t have to deal with copies of
an entity

• Change tracking and computation of all changes for submitting to
the database

• Batching of changes as a unit of work and transactional semantics

These are valuable services that should not be confused with the entities
in your application domain. These are concerns for the persistence layer,
not for the entities or business logic layer.

An object-relational mapper such as LINQ to SQL is great for working
with relational data. That is often the key repository of data for an applica-
tion. But for testing your application, you may want to consider the ability
to hide the repository’s relational implementation and substitute a “mock”
implementation in its place. This is useful for testing your business logic
independent of the database semantics, and it also helps with more efficient
execution of tests. The details of mocking a ?�������	=� can be quite intri-
cate and hence are out of scope for this introductory discussion. However,
that pattern has been covered in various forms on blogs and forums related
to LINQ. See Appendix A for a useful post that covers this topic in detail.

Data Entities and Business Logic

The separation of concerns for business logic is more subtle. In some cases,
business logic can be easily added to an entity; in others, it may be best han-
dled in a distinct object serving as a “business object.” To tease apart these
cases and the rationale behind each one, let’s consider the example of dis-
count computation as the business logic and how it could relate to entities
such as E��	�, ������	�, and ��%%��	�.

Let’s start with a basic example of the first case just described—it is a com-
putation that can be nicely encapsulated in the E��	� class as follows. For our
discussion, we will assume a richer data entity than what Northwind’s E��	�

Chapter 16: Introduction to LINQ Patterns and Practices474



ptg

table can support. We will assume additional members in the E��	� class—
?��"���� and ��������. The following code checks E��	�.�������� against
a threshold amount and returns 10% of the �������� as the discount or
nothing:

%������ "���� E��	�
(

%����" �	"���� ���%��	?��"������
(

@@.���%��	.���	�.��.����	.��.��	.E��	�.���.�����	��.���	�
�	���� �

�������������.�.���"����A���	�����.K.���������.O.L�0+�.G.L�!
4

4

The generated entity classes are partial classes to enable such extensions.
As described in Chapter 11, “Customizing Entity Persistence and Adding
Business Logic,” you can extend the generated data entities in multiple
ways. You can add methods and computed properties; you can add imple-
mentations of partial methods to validate individual properties and the
entire entity. See Chapter 11 for an example of the E��	� class with added
logic.

This addition of business logic to a data entity is quite simple and pow-
erful. It is applicable where the business logic really belongs to the specific
data entity. The rudimentary business logic shown in the preceding exam-
ple uses only the information in the instance and ���"����A���	����� tied
to the business rule. However, a richer discount computation may involve
more entities and rules that go well beyond the Order data entity. For exam-
ple, the discount may be based on a customer’s orders in the last three
months, or the products ordered, or the shipper used, or the current sale, or
some combination of all these factors. As the logic gets richer, the concep-
tual “business object” E��	� starts looking a lot different from the Order

data entity. Perhaps encapsulating it with the Order entity data may not
work as well if the discount computation requires data from multiple enti-
ties and possibly multiple sources of data, not just one database. In such a
case, you should consider using the Order entity mapped to Northwind’s
E��	�� table as a DTO while having a separate business object to handle
complex business logic that spans many DTOs—������	�, E��	�,

Designing Mid-tier with Persistent Entities and Business Logic 475



ptg

E��	�A?	����, )����"�, ��%%��	�, and so on. Such a decision should not be
taken lightly, because an additional class—or more likely, a whole set of
classes—imposes a significant burden. It adds initial complexity but, worse
still, it increases the concepts and code for movement of data and synchro-
nization between layers—the DTO layer and the business object layer. That
adds to lifecycle costs for the application as it evolves.

DTO and business objects are points on a continuum. Picking the right
points on the continuum requires analyzing the data that the business logic
touches and whether the functionality directly maps to the persistent entity.
A business object is about the logic and the business process it covers. A data
entity provides a reasonable initial point for crafting a business object, but it
should not artificially restrict the scope of a business object. It is almost
always better to consider the business logic and processes before making a
decision one way or the other. For some business objects, the data entities
may be just fine as the core. For others, a more detailed design and parti-
tioning may be warranted before the data entities start playing a role. For
example, in an order-processing application, you may find that order pro-
cessing is best handled with a composite business object that uses many
data entities. Shipper or Supplier data entities may be adequate for business
functions and may not need more complex business object counterparts.

LINQ to SQL makes it quite easy to write a business object and then map
the persistent members of that object to database tables and columns. Sev-
eral previous chapters—in particular, Chapter 11—contain examples of
how you can write your own class and map it. This is distinct from the data-
base-first approach that the designer supports, in which you can drag and
drop tables, stored procedures, and so on. Unfortunately, because tools can
generate data entities very efficiently, they may end up becoming the
default “business objects.” Tools should be a productivity aid rather than
the primary driver of the design.

Managing Concurrency

Concurrency management often does not get the priority it deserves dur-
ing the early development cycle. It is like an insurance policy. There is no
immediate payoff in terms of features for the effort you put in, but they are
essential when concurrent changes cause trouble. Data access components

Chapter 16: Introduction to LINQ Patterns and Practices476



ptg

such as LINQ to SQL give you several tools, but only you know the char-
acteristics of the data in your application and the cost-versus-risk trade-off
in assuming that certain operations are safe.

Concurrent changes affect queries, not just inserts, updates, and deletes.
When you retrieve a Customer entity and then the Order entities in its
E��	�� collection, you may be using two separate queries that may see data
from different epochs. In other words, the data may have changed between
the two queries due to some intervening concurrent update. As a trivial
example, consider retrieving all “premier” customers based on some crite-
rion and then retrieving their orders in a separate query for granting credit
approval for the orders. In between the two queries, a premier customer
could have lost its premier status due to a concurrent change. In this case,
the ������	� data for the Order entities is not current, and the user of the
application may see inconsistent information. This is particularly common
when you use deferred loading based on user input. The “think time” and
coffee breaks of the end user of your application can easily create opportu-
nities for a change between the two queries.

In this case, ������	� and E��	�s could have been retrieved in a single
transaction with the appropriate isolation level and its attendant cost of
reduced throughput in the database. But fortunately, many applications are
tolerant of such changes over some period of time. A gap of a few seconds
or minutes may be acceptable in your application if the data changes infre-
quently and if safeguards detect and compensate for the inconsistencies.
For example, consider an online bookseller that lets you order the last copy
of a book in stock based on somewhat stale inventory information. The last
copy may have been sold between the time that the inventory information
is queried and when the order is submitted. In this case, it may be cheaper
and more efficient for the bookseller to detect the inconsistency and apol-
ogize with a discount offer than to lock the database to ensure that the
information is always current.

Hence, it is important to understand the business context of your appli-
cation and the implications of features such as multiple queries or deferred
loading. There is no single “right choice” for all data or all applications. It is
a business decision informed by the constraints and capabilities of the
technology.

Managing Concurrency 477



ptg

Limitations of Optimistic Concurrency Checks
It is important to understand the capabilities and limitations of optimistic
concurrency checks in a data access component such as LINQ to SQL or
LINQ to Entities. The checks are performed only at an entity’s granularity.
If your update logic relies on information within the entity, the optimistic
concurrency check gives you good protection. However, if your update
logic relies on values from multiple entities, there is no built-in support to
perform optimistic concurrency checks across multiple entities.

The traditional database concept of optimistic concurrency check relies
on checking the entire “read set”—all the rows that are read for a given
update. The mid-tier realization of optimistic concurrency check used in
LINQ to SQL and prior components such as ?����	� is a pragmatic and effi-
cient simplification of the database concept. So it is important to under-
stand what it does not cover. For example, if the discount applied to an
order depends on having E��	�?	����s that refer to products on sale, a
check for just the order’s properties may not suffice. A change in a prod-
uct’s “on sale” status could go undetected. As the application developer,
you need to think about the semantics of the entity and the application that
uses the entity to decide whether optimistic concurrency checks are neces-
sary and sufficient for your purpose. If necessary, you can retrieve and
update data in one transaction where stronger guarantees are needed.
However, more often than not, the business semantics are quite tolerant of
changes. For example, a sale often lasts several days or at least hours,
whereas most orders get processed in minutes or even seconds. Plus, for
better customer relationships (that is, a business reason rather than a tech-
nology reason), a site may want to honor a sale price even if the user inter-
action straddles the sale’s expiration time.

Unit of Work and Reusing a DataContext Instance
A ?�������	=� instance is ideally suited for a unit of work in a two-tier
application. You can retrieve an object graph through one or more queries
and make changes to the graph by changing or deleting retrieved objects
and by adding new objects. When all the changes are done, you can sub-
mit them all in one shot. This is the basic pattern discussed throughout the
last several chapters. It works best when conflicting concurrent updates are

Chapter 16: Introduction to LINQ Patterns and Practices478



ptg

not likely for the duration of the unit of work. That is dependent on the
application and the data it consumes. In some cases, users’ think time run-
ning into minutes or even hours may not be a problem. In others, the dura-
tion of a unit of work may be best limited to faster computations that can
happen in seconds, if not quicker.

The same logic can be extended to the reuse of a ?�������	=� instance
after the completion of a �����������	��� call. The instance continues to
hold on to the entities retrieved before the �����������	��� call, and it can
be used for additional queries as well. However, the same considerations
about the time elapsed and the likelihood of concurrent changes apply.
Remember that after an entity is retrieved using a ?�������	=� instance, it is
insulated from concurrent changes in the database until �����������	���
is called. A retrieved entity is not overwritten by subsequent query results in
the same ?�������	=� instance unless you explicitly �	��	���� the entity.
Hence, it is important to consider the maximum duration for which you
want to use a ?�������	=� instance and if your application can tolerate
potentially stale data.

The pattern for using a ?�������	=� instance in a stateless mid-tier of an
application is quite different from both the patterns just discussed. It is cov-
ered in the following section.

Understanding Performance

For higher-level abstractions, a key concern of users is performance. LINQ
is no exception. We will discuss the costs and rules of thumb for optimiza-
tion. But first you need to understand the context.

Defining Context
A common question is whether a specific LINQ component provides the
right performance. The only way to get a relevant answer is to measure the
performance in the application scenarios that matter. Micro-benchmarks can
give you insight into the general costs of a technology. But their relevance
cannot be decided out of the context of your entire system. For example, if
you are using the number of queries per second as a proxy for performance
of a data access layer, these could be some sample questions:

Understanding Performance 479



ptg

• Which queries are performance-critical, and which ones are not?

• How does desired/required user experience translate into specific
hot spots in the application?

• How well does a micro-benchmark that assumes no other loads on
the system predict the performance of a fully loaded system? How
does a choice for a better micro-benchmark result affect other appli-
cations using the same database server?

• How often do you load large amounts of data versus small amounts
of data?

• Is your system database performance constrained, or do you have
scalability issues on the mid-tier?

Such questions let you avoid the biggest trap—premature optimization
that can complicate your application without helping with its performance-
critical parts. In short, for performance planning, measurement, and tun-
ing, defining the context is the key. Now, in that context, let’s look at the
benefits and costs of using some LINQ components and solutions to obtain
better performance. The following discussion largely focuses on the costs in
the mid-tier and in the LINQ components in particular. For an in-depth
discussion of the impact that LINQ components have on database per-
formance, refer to Bob Beauchemin’s chaper in the book, The SQL Server
2008 MVP Project, and his blog posts. Additional resources are listed in
Appendix A.

Costs and Optimizations
As discussed in earlier chapters, LINQ is designed for composability and
performance. The two are closely related. Deferred execution allows queries
to be composed without the overhead of executing intermediate queries. A
method can return an �'�	� ���	��, which allows further queries to be
composed against it. Execution occurs only when the results are consumed.
On the other hand, a method that uses a string query (such as a SQL com-
mand) and that returns a collection cannot provide comparable compos-
ability.

LINQ provides a higher level of abstraction whose implementations
entail some costs. As in the case of using higher-level languages or managed

Chapter 16: Introduction to LINQ Patterns and Practices480



ptg

code, you have to decide if the productivity benefits of the abstraction are
worth the costs. The costs vary depending on the operation and the sizes of
collections. The following are some aspects of the cost of using LINQ in gen-
eral and some of the key LINQ components in particular.

First, it is critical to understand the difference between a LINQ query
and its results. A LINQ query is the definition of a computation. You can
execute it as many times as you like, or you can execute it once and cache
the results. The low-hanging fruit for better performance is often avoiding
unnecessary re-execution of a query. You can execute the query once and
cache the results over a certain period of time if you do not expect the
results to change (or if your application can tolerate stale data). This opti-
mization matters most when the basic cost of running a query is high (you
have to execute a database query, for example) or when the queried collec-
tion is large (for instance, you are going through a large collection to find
a few objects in the result) or when the computation itself is very expensive
(such as when an expensive predicate is run in the 5�	�	 method or clause).
Beyond this general opportunity exist component-specific challenges and
opportunities.

LINQ to Objects implementation relies on extension methods for
�����	����	��. C# or the VB.NET compiler translates a LINQ query from
expression syntax into a set of method calls. The translation to method calls
and the execution of the method calls typically performs only basic opti-
mizations based on the structure of the code. Unlike in the case of a data-
base, it does not have statistics about the data (such as the size of a
collection, indexes, or distribution of values) for doing additional opti-
mizations such as picking hash joins or nested loop joins based on sizes of
collections. Hence, there may be more optimal ways to deal with very large
sets of data than bringing them all into memory and using LINQ to Objects
queries against them. This is exactly why LINQ uses expression trees that
are translated more efficiently into query data. LINQ to SQL is one such
component that translates expression trees into SQL statements that the
database query processor can optimize.

LINQ to SQL provides object abstraction over relational data. This
involves the following costs over the use of a ?����	��	� (which is not sur-
prising, because LINQ to SQL uses ?����	��	� in its implementation). The

Understanding Performance 481



ptg

costs are incurred because services are provided over and above what you
get from a ?����	��	�:

• Query translation: As shown in Figure 8.1 in Chapter 8, “Reading
Objects with LINQ to SQL,” a compiler generates an expression tree
that is translated into SQL at runtime. This does involve some cost
that can be amortized using compiled queries.

• Object materialization: Objects need to be constructed and filled
with values from rows returned by the database.

• Identity caching: Updates require object identity, and object identity
is obtained by maintaining a cache to look up an object reference
given a key value. Some overhead is associated with hashing the key
values. This overhead applies only to queries returning entities. It is
not applicable to those returning nonentity objects (projections).

• Copy of original values: This overhead is incurred only if you don’t
use designer/SqlMetal-generated classes and don’t implement
�&���� )��%	�� ��������.

If you find that a particular query is on a critical path, you can use the fol-
lowing optimizations:

• Compiled query: As discussed in Chapter 8, a LINQ to SQL query
can be parameterized and compiled. This does not eliminate the
translation cost, but it amortizes it over multiple executions. Use of a
compiled query provides the maximum performance gain in query
scenarios. Alternatively, you could also use a stored procedure or a
TVF for the performance-sensitive queries. These two options are at
very different levels. Compiled query is a choice of an application
developer and can be considered specific to an application. Stored
procedure or TVF may be controlled by a database administrator
(DBA) and should be appropriate for the database.

• Object materialization speed is automatically significantly improved
by LINQ to SQL implementation through the use of cached material-
izers. You don’t need to write any code to take advantage of it. In

Chapter 16: Introduction to LINQ Patterns and Practices482



ptg

fact, this is one area where hand-rolled code for filling objects using
?����	��	� is likely to do worse, not better.

• If you do not plan to modify the entities retrieved from a given
?�������	=� instance, you can set ?�������	=��E�>	"����";����
�����	� to ����	 and eliminate the overhead of hashing material-
ized objects. This setting is not appropriate for changing entities.

• The overhead of maintaining original values for retrieved entities
that are not modified is automatically eliminated by the generated
code, as described in Chapter 9, “Modifying Objects with LINQ to
SQL.” If you are writing your own persistent classes, you can get the
same benefit by implementing �&���� )��%	�� ��������, which
triggers the “copy before write” optimization in the LINQ to SQL
runtime.

Unit of Work and DataContext Lifetime

Simple performance optimizations exist for insert, update, and delete oper-
ations as well. ?�������	=� provides �����������	��� for a unit of work.
The size of a unit of work can be as small as a single insert, update, or delete
operation to thousands of such operations and everything in between. By
default, �����������	��� commands are executed in a single transaction.
Hence, both safety and fixed overhead are involved in a �����������	���
call. If you are performing a number of changes, and if your application
does not need to commit them one at a time, avoid making a ����
��������	��� call for each operation, and consider using a single unit of
work for multiple operations. At the other extreme, if you are inserting
hundreds of thousands of objects, more optimal alternatives exist, such as
using the relational bulk insert API. ?�������	=�’s unit of work is a pow-
erful tool when you have a small to moderate number of changes that can
be submitted together.

In the case of stateless mid-tier applications such as ASP.NET web appli-
cations, the unit of work takes a very different form. Consider a web appli-
cation for changing the details of an order. A given session has a request for
one or more orders and possibly a request to update some of the retrieved
orders. Typically, you do not want to hold state related to the query request

Understanding Performance 483



ptg

on the server until the update request is received. This helps improve scal-
ability. Many query requests can be served without growing the state on the
server and also because an update request may never be submitted for a
given query request if the application’s user decides not to change any-
thing. As discussed in Chapter 9, LINQ to SQL lets you use different
?�������	=� instances for a query and the corresponding update that is
sent some time later. ?�������	=� instantiation has been optimized by
caching mapping, so you can use a new ?�������	=� instance for each
request. ?�������	=� also implements �?��%�����	 to provide easy
cleanup. If you compile a set of commonly used queries and cache them for
use across multiple ?�������	=� instances, you can further optimize your
web application. Additionally, the use of the 6���"��� method, described
in Chapter 9, cuts down on unnecessary queries to the database for serv-
ing an update request.

In a nutshell, there are two common, optimized patterns for ?���
����	=� usage—a unit of work pattern in which a single instance can be
used to retrieve an object graph, and making a set of changes in a single
transaction. The second pattern is the lightweight, per-request instance
with a set of compiled queries for the stateless web server scenario.

Improving Security

LINQ to SQL and LINQ to Entities make the task of building secure appli-
cations easier. They enable safer composition by virtually eliminating SQL
injection attacks and encouraging secure practices.

Some applications using relational data relied on string concatenation to
build SQL query statements. This enabled UI-driven query composition but
also made the application vulnerable to SQL injection. For example, imag-
ine a user interface that lets you see your login name based on your e-mail
address, which you can enter. If this is done through a simple (badly
designed) mechanism that concatenates the user input from a text box with
the following query stub, it is easy to inject SQL for information disclosure,
or worse:

��
���.
����&��	
:�E+.6""�����
57���.	����./.��%��.�	=��

Chapter 16: Introduction to LINQ Patterns and Practices484



ptg

This query is prone to injection text input such as ���	X�	�F��*	�"��H E�

���	 ��;	 H���	��8. Notice the clever use of a closing quotation mark
inside the input text. It lets a malicious user complete the literal and con-
tinue with additional probing to discover more information. In this case, I
may be able to see the login names of all users whose names start with
Robert:

��
���.
����&��	
:�E+.6""�����
57���.	����./.H���	X�	�F��*	�"��H.E�.���	.��;	.H���	��8H

Although databases and relational data access libraries took a number
of steps to mitigate the threat, applications still had to grapple with the
trade-off between quick and simple query composition on the one hand
and injection-proofing on the other. LINQ to SQL queries are not strings.
Even when they are translated to SQL, all the user input is treated as SQL
parameters. The translated queries shown throughout this book show that
parameterization is strictly enforced—even when literals are used in the
LINQ query. For example, the following LINQ query and its SQL transla-
tion from Chapter 8 show the parameterization of Spain:

*�� ������	�'�	� ./.���� ".�� ���������	��
��	�	 "������� .//.C�%���C
�	�	"� "!

��
���.,�L-�,������	��?-1.,�L-�,��� -1,�L-�,������ -
:�E+.,���-�,������	��-.6�.,�L-
57���.,�L-�,������ -./.F%L
��.F%LG.��%��.&J������.���U	./.<!.)�	"./.L!.�"��	./.L�.,�%���-

This injection elimination is very doable in plain SQL through disci-
plined use of parameters and appropriate ways to execute SQL. But LINQ
to SQL makes it easier and automatic. You don’t have to think about it every
time.

You still have to make sure that you handle connection strings with care
in a configuration file or equivalent storage. If you do not use integrated
security, the connection string likely contains sensitive information such as
a database login ID and password. Hence, it needs to be secured. This need
to secure secrets such as passwords is not specific to LINQ but is still rele-
vant to applications built using LINQ.

Improving Security 485



ptg

Finally, LINQ components are libraries that are loaded and unloaded as
part of the CLR application domain. Unlike a server operating system or
database server, they are not owners or guardians of persistent data. LINQ
components by themselves do not have any notion of authentication or
access control. Hence, data must be secured at the source. For example, rela-
tional data must be secured through login and least permissive grants for
dynamic SQL and stored procedures and functions.

Summary

This chapter introduced a few key patterns and practices for effectively
using LINQ components in an application. The patterns span a broad range
of LINQ features, from language extensions to libraries, with special
emphasis on LINQ’s database access components. We covered concerns
from multiple tiers—advantages of dynamic SQL and stored procedures,
ensuring correct separation of concerns for the mid-tier of an application,
and end-to-end performance and security. The abstractions provided by
LINQ components are designed to incorporate some of the common pat-
terns and best practices. Yet, it is important to understand the considera-
tions for their judicious use. The discussion in this chapter was
introductory and foundational and meant to be a starting point for more
detailed explorations.

Chapter 16: Introduction to LINQ Patterns and Practices486



ptg

17
LINQ Everywhere

T H I S C H A P T E R P O I N T S to the future, to the ways in which LINQ will be
used in the coming years. The primary goal is to give you an overview

of several alternative LINQ providers not covered in the previous chapters.
You’ve read about LINQ to Objects, LINQ to SQL, and LINQ to XML. These
technologies shipped with Visual Studio 2008 and C# 3.0, but they are only
a portion of the larger, still-emerging LINQ story.

The providers covered in this chapter are examples of what LINQ will
become in future years. LINQ is not just about the existing providers we
have studied in this book. It is about the potential to create providers for
many other data sources.

Many of the most important tasks performed on computers involve
manipulating data. In fact, it could be argued that computers are really for
working with a disparate set of data sources. LINQ is important because it
provides a concise, unified, integrated way to work with a wide variety of
data sources.

Other Flavors of LINQ

This chapter introduces several variants of the LINQ technology so that
you can get a feel for how LINQ is used throughout the industry. LINQ is
an extendable technology, and over the years, it will be used in many dif-
ferent ways, for many different purposes. The main goal of this chapter is

487



ptg

to give you a sense of the variety of possible LINQ services, in part so that
you can be aware of their existence, and in part so that you can begin to
imagine the uses to which LINQ can and will be put.

This book has covered LINQ to Objects, LINQ to SQL, and LINQ to
XML in considerable depth. The topics covered in this chapter, however, are
introduced only briefly. Nearly all of them are currently still under devel-
opment, and several of them are potentially very large subjects. Neverthe-
less, I hope that this brief introduction to these technologies will give you
a sense of their potential.

Finally, I should point out that I will mention an open-source product
called LINQExtender. This tool is designed to help you build your own
LINQ extensions. One of the technologies discussed in this chapter, LINQ
to Flickr, is built on top of LINQExtender. Even though I will not discuss
LINQExtender, that project is a place to start if you want to explore that
technology.

Parallel LINQ

The code shown in this section uses a prerelease version of PLINQ called
the Microsoft Parallel Extensions to .NET Framework 3.5. When PLINQ
finally ships, it will run only on .NET 4.0 or later. The version I’m using that
runs on top of 3.5 is for evaluation purposes only. There will never be a
shipping version that runs on .NET 3.5.

This LINQ provider is being created at Microsoft by the Parallel Com-
puting team; it is not the work of the C# team that created LINQ to Objects
and LINQ to SQL. Here is the web site for the Parallel Computing team:

http://msdn.microsoft.com/en-us/concurrency/

Currently, these extensions are available only in prerelease form. You
could download them either as Visual Studio 2008 compatible extensions to
.NET 3.5, or as part of the prerelease version of Visual Studio 2010. Because
the download sites might change over the coming months, I suggest that
you find these resources by going to the Parallel Computing site or the
Visual Studio site:

http://msdn.microsoft.com/en-us/vs2008

Chapter 17: LINQ Everywhere488

http://msdn.microsoft.com/en-us/concurrency/
http://msdn.microsoft.com/en-us/vs2008


ptg

Parallel LINQ, or PLINQ, is only a small part of the Parallel Extensions
to the .NET Framework. It is, however, an important part. Because it is a
simple and natural extension of the material covered in this book, I think
you will find it easy to use.

Consider this code fragment:

*�� ����./.����	����	�����	�01.0LLLL�!

*��.$./.���� =.�� �����6�)�����	���
��	�	 =..33LL
�	�	"� =!

���	�"� �*�� =.�� $�
(

������	�5���	
��	�=�!
4

These lines look nearly identical to the code you have seen so often in this
book. The only significant difference is the call to 6�)�����	� at the end of
the second line. Although we have often used type inference to hide the
return type of a LINQ query, I’ll pause and take a second look at this
instance. Rather than returning �����	����	��, this version of PLINQ
returns �)�����	�����	����	����:

�)�����	�����	����	����.$./.����.=.��.�����6�)�����	���.	�"���

In the near future, PLINQ queries of this type will probably return )�����
�	�'�	� ����. Because this product is still evolving, it might be simplest
to use *��, at least during the prerelease phase, and let the compiler choose
the type. That way, you can save typing and avoid problems with anony-
mous types, and you need not concern yourself with changes in the API as
the product develops. As was made clear earlier in the book, it is almost
always appropriate to use *�� to designate the return type of a LINQ query,
and there are generally only special circumstances when you would do
otherwise.

Here are the results of this first PLINQ query:

2
0
3
R

Parallel LINQ 489



ptg

S
<02
<
T
<03
M
02
<0R
Q
03
<0<
0L
0R
<0S
00
0<
<0T
0S
T2
<0M
0T

The numbers shown here are in a relatively random order because they
are being returned from different threads. It is important to remember that
the sequence of values returned by LINQ is not always guaranteed to be
presented in a particular order. If order is important in your code, you can
add a call to 6�E��	�	� to the query after the call to 6�)�����	�. Alterna-
tively, you could insert a #���%B clause to establish the desired ordering.
Otherwise, developers should assume that the ordering from a PLINQ
query will be random.

Query Data with Parallel LINQ
Now that you understand the basics of Parallel LINQ, let’s move on to look
at a more interesting example. Improved performance is the main reason to
write code that can run in parallel. The program shown in this section uses
a timer to demonstrate how PLINQ can improve performance in a
program.

Performance improvements become more evident when our code
has access to more processors. The code I show here runs faster on a
two-processor machine, but it really starts to come into its own on a four-
processor machine. Moving up to even more processors yields more pow-
erful results. For instance, the following results show an improvement of

Chapter 17: LINQ Everywhere490



ptg

1.44 times when using two processors and almost two times when using
four processors:

��1	������	��.��$00�(���#	�>�����?

��	��G.LLGLLG03�0<
)�����	��G.LLGLLGLQ�0L

0�1	������	��.��$@=�(���#	�>�����?

��	��G.LLGLLG0<�LL
)�����	�G.LLGLLGLT�SM

These tests were run against prerelease software, so these numbers are
almost certain to change before release, and, of course, different machines
yield different results. Furthermore, the degree of improvement you will
see is likely to change depending on the type of algorithm you run, the
number of cores on your machine, the machine’s architecture, how many
caches there are, how they’re laid out, and so on. Although it is rare, some
queries show superlinear performance enhancements. In other words,
there is a greater than four-fold speedup on a four-core box. An improve-
ment of two times, such as the one shown, or even a three-time improve-
ment, is common.

The following sample program is called FakeWeatherData, and it is
available with the other programs that accompany this book. It features a
simple LINQ to XML query run against a file with 10,000 records in it. The
data I’m querying is not real. It consists of random dates and temperatures
generated by a simple algorithm included in the FakeWeatherData pro-
gram.

The XML file is structured like this:

K=�� *	�����/C0�LC.	�"�����/C����MC.K�
���%�	��
���%�	�
N	���0QT3@N	���
+�����+� @+�����
?� �0<@?� �
�	�%	�����	�0L@�	�%	�����	�

@���%�	�
���%�	�
N	���0QTL@N	���
+�����:	�@+�����
?� �0L@?� �
�	�%	�����	�0R@�	�%	�����	�

Parallel LINQ 491



ptg

@���%�	�
���.Q1QQM.�	"����.�����	�.�	�	

@���%�	��

The program also uses a simple C# class to encapsulate the data from the
XML file:

"����.5	���	�?���
(

%����" ������ N	��.(.�	�!.�	�!.4
%����" ������ +����.(.�	�!.�	�!.4
%����" ������ ?� .(.�	�!.�	�!.4
%����" ������ �	�%	�����	.(.�	�!.�	�!.4

4

The parallel version of the query in the program looks like this:

*�� ����./.����� =.�� ��"��������	�	����C���%�	C��6�)�����	���
��	�	 =���	�	���CN	��C��J���	.//.C0QT3C \\

=���	�	���C+����C��J���	.//.C6%�C \\
=���	�	���C?� C��J���	.//.C0<C

�	�	"� �	� 5	���	�?���
(

?� ./.=���	�	���C?� C��J���	1
+����./.=���	�	���C+����C��J���	1
�	�%	�����	./.=���	�	���C�	�%	�����	C��J���	1
N	��./.=���	�	���CN	��C��J���	

4����
�����!

Accompanying this code is a similar LINQ query that does not use PLINQ:

*�� ����./.����� =.�� ��"��������	�	����C���%�	C�
��	�	 =���	�	���CN	��C��J���	.//.C0QT3C \\

=���	�	���C+����C��J���	.//.C6%�C \\
=���	�	���C?� C��J���	.//.C0<C

�	�	"� �	� 5	���	�?���
(

?� ./.=���	�	���C?� C��J���	1
+����./.=���	�	���C+����C��J���	1
�	�%	�����	./.=���	�	���C�	�%	�����	C��J���	1
N	��./.=���	�	���CN	��C��J���	

4����
�����!

The program queries the data in the XML file first using the parallel code
and then using standard LINQ. By comparing the time it takes each block
of code to execute, you can get a sense of the relative improvement avail-
able through PLINQ. I’ll show you how to make such comparisons in a

Chapter 17: LINQ Everywhere492



ptg

moment. I will also discuss some tools that will become available to help
profile code of this type.

You can see that the PLINQ query contains a call to 6�)�����	�, but the
other query does not. Other than that, the two queries are identical. The fact
that the two queries look so much alike points to a primary strength of
PLINQ: Very little specialized knowledge is necessary to begin using it.
This does not mean that the subject is utterly trivial—only that the barrier
to entry is low. This is not the case with most concurrent programming
models.

LINQ queries are designed to be read-only, working with immutable
data. This is a good model for parallelism, because it makes it unlikely that
data will mutate, thereby setting up the potential for a race condition. You
should note, however, that PLINQ does nothing to prevent this from hap-
pening; it is simply that LINQ is designed to make it unlikely.

Note also that the declarative LINQ programming style ensures that
developers specify what they want done, rather than how it should be
done. This leaves PLINQ free to ensure that concurrent LINQ queries run
in the safest manner possible. If LINQ had been defined more strictly, such
that it had to process each element in a certain order, the PLINQ team
would have had a much more difficult task.

The code in both these queries pulls out only the records from the XML
file that have their date set to April 15, 1973. Because of deferred execution,
the query would not do anything if I did not call ��
�����. As a result, I
added that call and converted the result into a 
���5	���	�?����.
Although hardly earthshaking in importance, these calls ensure that the
code actually does something, and thus give PLINQ scope to take advan-
tage of the multiple processors on your system.

Simple timers are created to measure the difference between the stan-
dard LINQ query and the PLINQ query:

%��*��	.�����".*���.����	����
(

I?�"��	�� ��"./.I?�"��	���
����CI+
:��	0�=��C�!

���%���"� ��./.�	� ���%���"���!

����������!

��$E�������	���"�!.@@.���.��	.�	�����.
�&'.$�	� 

Parallel LINQ 493



ptg

������%��!
�������%�	����	�C
��	��C1.������%�	��!

����	�	���!

����������!
)�����	�
��$���"�!.@@.���.��	.)
�&'.$�	� 
������%��!
�������%�	����	�C)�����	��C1.������%�	��!

4

@@.:�����.���.���%�� .��	.���	�%��.*���	�
%��*��	 �����" ���	�%�� �������%�	����	������� "�%����1.���	�%�� ���
(

������ 	��%�	����	./.�������:������C(L4G.(0GLL4G(2GLL4G(3GLL4�(RGLL4C1
"�%����1.���7����1.���+����	�1.����	"����1
���+�����	"����.@.0L�!

������	�5���	
��	�	��%�	����	1.C������	C�!
�	���� ��!

4

At least with the prerelease version of PLINQ that I’ve played with, I’ve
found it very useful to set up timers to confirm that PLINQ actually can
speed up an operation. My record at guessing which code will benefit from
running in parallel is not good, so I find that confirming the code’s effec-
tiveness by explicitly measuring it is worthwhile. You can either use the
simple ���%5��"� class from the � ��	��?��������"� namespace, as
shown here, or you can use a profiler. Note that a thread-aware profiler
might ship with some versions of Visual Studio 2010.

I’ve found that the advantages of concurrent LINQ become more obvi-
ous the longer the operation I’m timing lasts. As a result, I’ve placed the
query inside a loop and added a variable to the program called NUM_
REPS. By setting NUM_REPS to a large number, such as 500, you can
clearly see the benefits that can be accrued when you run LINQ queries in
parallel on multiple processors. Note that the first time PLINQ is used, its
assembly needs to be loaded, the relevant types need to be JIT compiled,
new threads need to be spun up, and so on. As a result, many developers
see improved performance after they get past the initial warm-up time.

Although it is very easy to get started with PLINQ, you still need to con-
sider complexities that are inherent in the subject. For instance, PLINQ
sometimes develops a different partitioning scheme for your data, depend-
ing on whether you are working with an enumerable or an array. To learn

Chapter 17: LINQ Everywhere494



ptg

more about this subject, see the following post from the Parallel Program-
ming team:

http://blogs.msdn.com/pfxteam/archive/2007/12/02/6558579.aspx

The simple PLINQ examples shown in this section should help you get
started with this powerful and interesting technology. Parallel LINQ is still
in its infancy, but already it provides a way to greatly simplify tasks that
normally are not easy to perform.

LINQ to Flicker

LINQ to Flickr allows developers to write queries against the Flickr repos-
itory of images hosted by Yahoo!. It also allows you to upload and delete
photos from your stream and to create and remove comments. I’ve elected
to show LINQ to Flickr in this chapter because it is reasonably well writ-
ten and runs against a data resource, Flickr, that nearly all developers can
access.

Flickr is a repository for photographs. It is a public site that you can use
without charge. It is located at http://www.flickr.com/.

You can create your own free Flickr account and upload pictures to it
that can be shared with the public. If you have an existing Yahoo! account,
you are already automatically a member of the Flickr community.

Flickr supports an API that allows you to write queries against photos
that are hosted on the site. This API forms the foundation on which LINQ
to Flickr is built. The documentation for the API is found here:

http://www.flickr.com/services/api/

You can apply for a free API key that allows you to log into Flickr and call
the API:

http://www.flickr.com/services/api/keys/

LINQ to Flickr is a LINQ provider that wraps the API and allows you
to write traditional LINQ queries against the data in the Flickr repository.
From a developer’s point of view, LINQ to Flickr is simply another flavor
of LINQ, such as LINQ to SQL, LINQ to Objects, or LINQ to XML. Behind
the scenes it uses the Flickr API, but that fact is not at all obvious. Nor do

LINQ to Flicker 495

http://www.flickr.com/
http://www.flickr.com/services/api/
http://www.flickr.com/services/api/keys/
http://blogs.msdn.com/pfxteam/archive/2007/12/02/6558579.aspx


ptg

you need to understand the API to use LINQ to Flickr. You only need to
know LINQ.

Here is the URL for the web site from which you can download LINQ
to Flickr:

http://www.codeplex.com/LINQFlickr

LINQ to Flickr (also known as Athena) is built on top of a tool called LINQ-
Extender. The DLL that encapsulates LINQExtender comes with LINQ to
Flickr, but if you want your own copy of the source for LINQExtender, you
can download it here:

http://www.codeplex.com/LinqExtender

Chapter 17: LINQ Everywhere496

Other Provider Toolkits

LINQExtender is not the only tool of its kind. See, for instance, the
LINQ IQueryable Toolkit (http://www.codeplex.com/IQToolkit). All
this technology is quite new. In this chapter I’m simply providing links
to these resources; I’m not yet ready to make a judgment as to which
tool is best.

The author of LINQ to Flickr, Mehfuz Hossain, has also written an appli-
cation that demonstrates what can be done with his code. This reference
application is called FlickrXplorer, and it can be downloaded here:

http://www.codeplex.com/FlickrXplorer

FlickrXplorer is a web application. You can compile and run it yourself, or
you can access a copy of it here:

http://www.flickrmvc.net/

To compile FlickrXplorer, you need a copy of a Microsoft library called
MVC installed on your system. You can download MVC here:

http://www.asp.net/mvc/

MVC is an interesting and powerful tool in its own right, but I will not dis-
cuss it here. You can use LINQ and MVC in the same application, but there
is no direct connection between the two technologies.

http://www.codeplex.com/LINQFlickr
http://www.codeplex.com/LinqExtender
http://www.codeplex.com/IQToolkit
http://www.codeplex.com/FlickrXplorer
http://www.flickrmvc.net/
http://www.asp.net/mvc/


ptg

To create a LINQ to Flickr application, first create a simple console appli-
cation. Add an application configuration file to the project by selecting Pro-
ject, Add New Item in Visual Studio. Select Application Configuration File,
and click the Add button. Insert the following contents into the configura-
tion file, and insert your personal Flickr API keys where indicated:

K=�� *	�����/C0�LC.	�"�����/C����MC.K�
"�������������
"������	"������

�	"���� ���	/C���";�C
� %	/C
��$�:��";����������������:��";��	������1.
��$�:��";�C@�

@"������	"������

���";� �%�D	 /C��"A ��B56 �C1��2ABC
�	"�	�D	 /C��"A ��B56 �"A� A��2ABC
"�"�	?��	"��� /C"�"�	C @�

@"�������������

In the References section of Visual Studio Solution Explorer, add these two
DLLs, which are part of the LINQ to Flicker download from CodePlex:

Linq.Flickr.dll

LinqExtender.dll

Note that LinqExtender depends on the � ��	�����	 namespace.
When you are done, Solution Explorer should show that you have added

the libraries to the References section, as shown in Figure 17.1. In the Solu-
tion Explorer, you can also locate the App.config file with your API keys.

LINQ to Flicker 497

Figure 17.1 Linq.Flickr.dll and LinqExtender.dll are visible in the References section of
Solution Explorer, along with the application configuration file.



ptg

Listing 17.1 shows the code for your program.

Listing 17.1 The Code for a Simple LINQ to Flickr Application

����� � ��	�!
����� � ��	��
��$!
����� 
��$�:��";�!

���	�%�"	 
��$��:��";��	��
(

"���� )������
(

�����" *��� +����������,-.�����
(

:��";�����	=� "���	=�./.�	� :��";�����	=���!

*�� $�	� ./.���� %����.�� "���	=��)�����
��	�	 %������	��"��	=�.//.C�+#C \\

%�����J�	�+��	.//.J�	�+��	�E��	�
�	�	"� %����!

������	�5���	
��	�C)�"���	�.�����.(L4C1.$�	� ���������!

���	�"� �*�� ��	�.�� $�	� �
(

������	�5���	
��	�C(L4.(04C1.C:��	&��	C1.��	��:��	&��	�!
������	�5���	
��	�C(L4.(04C1.C����	C1.��	������	�!
������	�5���	
��	�C(L4.(04C1.C5	�X��C1.��	��5	�X���!
������	�5���	
��	�C(L4.(04C1.CX��C1.��	��X���!

4

4
4

4

Note that the search term I’ve chosen may not work for the pictures in
your Flickr repository. I’ve used the string C�+#C here, but you might want
to choose some other string used in the title or description of your pictures.

Although it is not absolutely necessary, you will find that things go more
smoothly if you are logged into Flickr before running the program. Even
though this is a console application, your browser opens the first time you
run this application, and you are taken to the Flickr site. It reports that you
have “successfully authorized the application.” If you are not currently

Chapter 17: LINQ Everywhere498



ptg

logged in, you are asked to log in before you see this message. Here is the
exact text of the message I received from the Flickr site:

N��.��*	.��""	������ .�������U	�.��	.�%%��"������
N��."��.��.��	��.���."���	.����.������.����
��. ��.	*	�.����.��.�	*�;	.�������U�����1. ��."��.��.����.��. ���
�""�����

At this stage you should be all set to retrieve results from the site. For
instance, the code just shown returns the following data in my case,
although it is likely that you will retrieve different information:

)�"���	�.�����.2

��������? 3�"M�R0���Q20�R��Q��0TL�0<�<RR	M	R0�
�����? �+#A0M<2
D�!6	�? ���%G@@�������";��"��@%�����@<30T3TRTF&LL@3LM<30TRQS@
6	�? ���%G@@����R������"����";��"��@320L@3LM<30TRQSA<3S��RQ�MLA��>%�K*/L

��������? LT��TR<0�T3Q<�R<MR�M�MT�<	"�SLS2L<M	
�����? �+#A0TSR
D�!6	�? ���%G@@�������";��"��@%�����@<30T3TRTF&LL@3LMR2R20LS@
6	�? ���%G@@����R������"����";��"��@30MQ@3LMR2R20LSAQ3M"0T"S0SA��>%�K*/L

That is all I’ll say about LINQ to Flickr. Like nearly all the code shown in
this chapter, LINQ to Flickr is still under development and is likely to
change before it is finished. Hopefully I’ve given you enough information
that you can get up and running using this relatively sophisticated, pow-
erful, easy-to-use tool. Mehfuz has done us all a favor by working so hard
to create this well-designed program. I hope you have fun working with it.

LINQ to SharePoint

LINQ to SharePoint is a powerful tool created primarily by Bart De Smet,
a talented Microsoft employee who works on the WPF team. It is designed
to allow you to run LINQ queries against the data stored in the lists found
on a SharePoint site.

Like LINQ to Flickr, LINQ to SharePoint is hosted on CodePlex:

http://www.codeplex.com/LINQtoSharePoint

LINQ to SharePoint 499

http://www.codeplex.com/LINQtoSharePoint


ptg

Go to the Releases tab on CodePlex, and download the MSI. There is also
a zip file containing the source for the project, but you need the source only
if you want to see how the project is constructed. You don’t need the source
just to use LINQ to SharePoint.

Microsoft does not support the LINQ to SharePoint download from the
CodePlex site, but Bart has done a great job with this technology. Even the
early version I worked with for this chapter is quite sophisticated and easy
to use.

Users of LINQ to SharePoint need access to a SharePoint site they can
query. The official name and current version of SharePoint is Windows
SharePoint Services 3.0, SP1. Don’t be confused. If you saw a product called
Visual Studio Services, you would rightfully think it was not Visual Studio
itself. And if you saw a product called Windows Vista Services, again, you
would be right to think it was not Vista itself. But in this case, Windows
SharePoint Services is SharePoint. (Providing a rational explanation for this
naming scheme is beyond the scope of this book!)

There are at least three ways to get access to a SharePoint site:

• You might have access to a SharePoint site through your workplace.
If you can sign into a SharePoint site, you will probably have the
rights to query it with LINQ to SharePoint.

• You can download and install a free version of SharePoint Services 3.0
if you have control of a machine that runs Windows Server 2003 or
Windows Server 2008.

• There is also a one-month trial version of SharePoint called
Microsoft Office SharePoint Server 2007 VHD. This and many other
useful Virtual PC files are available at http://www.microsoft.
com/vhd.

No real setup is involved with the first and third options. Instead, I will
focus on option 2, which I believe is the best way to get to know and under-
stand SharePoint, and the best way to experiment with the possibilities
inherent in LINQ to SharePoint.

As you have read, SharePoint is a free download, but you must have
Windows Server 2003 or 2008 to run it. While writing this book, I used a

Chapter 17: LINQ Everywhere500

http://www.microsoft.com/vhd
http://www.microsoft.com/vhd


ptg

copy of Windows Server 2008, the 64-bit version. To install SharePoint on
that OS, I first used W2K8 Server Manager to add the Web Server (IIS) Role.
Then I downloaded the 64-bit version of Windows SharePoint Services 3.0,
SP1. I ran the install and chose the Basic setup. This is pretty much a fore-
head install, which means that it requires very little effort. When I was
done, I had a copy of SharePoint up and running on my system, as shown
in Figure 17.2.

LINQ to SharePoint 501

Figure 17.2 A nearly pristine new SharePoint site with the default configuration.

After installing SharePoint, I clicked the Add new announcement but-
ton, shown in Figure 17.2. I typed in a new announcement, as shown in Fig-
ure 17.3, and then clicked OK.

Now that you have a copy of SharePoint set up, you can go to the Code-
Plex link listed earlier in this section and download LINQ to SharePoint.
The install for this product is very simple and requires no explanation.



ptg

Figure 17.3 Adding a new announcement to a SharePoint site.

Chapter 17: LINQ Everywhere502

Registering the Assemblies

After I installed LINQ to SharePoint and tried to use the LINQ to
SharePoint Wizard inside the IDE, I received an error stating �����
��� ���� ���	 �� ���	��� B�����������	%���������������� #	�	��
��������. This error occurs on the 0.2.4 release of LINQ to SharePoint.
It is the result of a failed install into the GAC of the assemblies that are
needed to run LINQ to SharePoint. If you encounter this problem, you
can fix it as follows:

1. Open a command prompt with Administrator privileges.

2. Locate the BdsSoft assemblies, which are probably in a directory
like this one:

%ProgramFiles%\BdsSoft LINQ to SharePoint



ptg

After completing the install of LINQ to SharePoint, you are ready to run
a sample program. Create a standard console application by selecting File,
New Project, Console Application from Visual Studio. Choose Project, Add
New Item. Select LINQ to SharePoint File, as shown in Figure 17.4.

After you select the SharePoint template, Visual Studio takes you to the
LINQ to SharePoint Entity Wizard, as shown in Figure 17.5. Currently, an
options dialog available from the first screen of the wizard allows you to
decide how to handle the plural forms of names from a SharePoint data-
base. There is no need to use that dialog when creating this sample.

The second page of the LINQ to SharePoint Wizard lets you enter the
name of the SharePoint site to which you want to connect. Enter your URL,
as shown in Figure 17.6, and click the Test connection button. If the con-
nection succeeds, the Next button becomes active, allowing you to move
to the next page of the wizard.

LINQ to SharePoint 503

3. Create a text file called GacFiles.txt containing a list of all the
DLLs in the BdsSoft directory:

BdsSoft.SharePoint.Linq.dll

BdsSoft.SharePoint.Linq.ObjectModelProvider.dll

BdsSoft.SharePoint.Linq.Tools.DebuggerVisualizer.dll

BdsSoft.SharePoint.Linq.Tools.EntityGenerator.dll

BdsSoft.SharePoint.Linq.Tools.Installer.dll

BdsSoft.SharePoint.Linq.Tools.Spml.dll

4. Make sure that the GacUtil.exe file is in your path. It is prob-
ably located here:

C:\Program Files\Microsoft SDKs\Windows\v6.0A\Bin

Alternatively, open the Visual Studio command prompt from
the Windows Start menu.

5. Issue this command:

#�"�����	=	.@��.#�":��	���=�



ptg

Figure 17.4 Selecting the LINQ to SharePoint template from the Add New Item dialog.

Chapter 17: LINQ Everywhere504

Figure 17.5 The first screen of the LINQ to SharePoint Entity Wizard.



ptg

Figure 17.6 Connecting to a SharePoint site using the SharePoint Entity Wizard.

The URL shown in Figure 17.6 is the URL of the name of the server on
which I developed the applications for this section. The URL will likely
differ on your machine; it may take a more standard form, such as
http://www.mysite.com.

There are two ways to select the credentials for your site. You can sign in
with your default network credentials or sign in with custom credentials.
The choice you make depends on how your network and SharePoint
instance are configured. If you have questions, find the people who run
your SharePoint site, and ask them for details.

The next page in the wizard allows you to choose the lists from the
SharePoint site that you want to query in your program, as shown in Figure
17.7. This is roughly the equivalent of choosing the tables from the database
that you want to query when using the Object Relational Mapper in a LINQ
to SQL application. The default is not to have the Object Model option
turned on, because that works only for querying a local machine.

LINQ to SharePoint 505

http://www.mysite.com


ptg

Figure 17.7 Choosing the lists from the SharePoint site that you want to query from
your program.

The final screen in the wizard allows you to review the choices you
made while stepping through the wizard, as shown in Figure 17.8. You can
see that we have chosen to create an entity for the list of Announcements on
the SharePoint site found on the machine called Charlie007. Our ?�������
�	=� that we can use to gain access to the lists on the site is called ?����
�����	�0����	)����?�������	=�.

If everything looks in order, go ahead and click Finish in the wizard. At
this point, code similar to what is produced by the LINQ to SQL Object
Relational Designer is added to your project. A new node with a name like
MySharePointSite.spml is added to Solution Explorer, and inside that node
is a file with a name like MySharePointSite.designer.cs. This file contains a
����	)����?�������	=� that is roughly equivalent to the ?�������	=�
found in a LINQ to SQL project. It contains one class for each entity you
opted to import from the SharePoint site. Again, it is easy to draw parallels
between the code in this file and the code generated by the Object Rela-
tional Designer or SqlMetal in a LINQ to SQL project. Note that LINQ to
SharePoint ships with a program called SpMetal, which is roughly equiv-
alent to SqlMetal.

Chapter 17: LINQ Everywhere506



ptg

Figure 17.8 We are connected to machine charlie007 using the default network
credentials, and we have generated an entity for the list of announcements.

When you are done, Solution Explorer looks something like Figure 17.9.
Note the presence of the BdsSoft assemblies in the References section.  An
ObjectModelProvider entry will  be present if you  selected that option.

LINQ to SharePoint 507

Figure 17.9 Solution Explorer after you have imported several SharePoint lists into your
project with the LINQ to SharePoint wizard.



ptg

After you finish running the wizard, you can begin writing queries
against the SharePoint data found on your site. Here, for instance, is a sim-
ple query against the common Announcements section that is part of many
SharePoint sites:

+ ����	%�������	����	)����?�������	=�.��./
�	� + ����	%�������	����	)����?�������	=���!

*�� $�	� ./.���� ".�� ���6�����"	�	���
�	�	"� "!

���	�"� �*�� ��	�.�� $�	� �
(

������	�5���	
��	���	������	�!
4

Note that we begin by creating a ����	)����?�������	=�, just as we begin
by creating a ?�������	=� when building a LINQ to SQL application. You
can then issue a query using the same syntax you would use in a standard
LINQ to SQL or LINQ to Objects application.

The simple C# team community site that I’m querying returns the fol-
lowing data, which of course will differ from the data on your site:

����.��.� .�����.������"	�	��.��.� .����	)����.���	
#	�.�����	�.����.5������.����	)����.�	�*�"	�^

After you get started, it is easy to see the next steps. You can begin
adding a ��	�	 clause, for instance:

*�� $�	� ./.���� ".�� ���6�����"	�	���
��	�	 "�����	�������5����C�C�
�	�	"� "!

This query would retrieve the first, but not the second, of the two
announcements returned by the first version of this query. You can experi-
ment with the other LINQ operators, finding which ones work and which
ones might not have been implemented yet. It is unlikely that LINQ to
SharePoint will ever implement all 49 operators covered in Chapter 6,
“Query Operators.” Nevertheless, this tool is still under development, and
it will grow in depth over time.

Chapter 17: LINQ Everywhere508



ptg

That is really all you need to know to get started using LINQ to Share-
Point. As you can perhaps tell, this is quite a sophisticated tool that is well
designed and easy to use. Currently LINQ to SharePoint does not support
all the query operators available in LINQ to SQL. I should add that the
author of LINQ to SharePoint has no plans to implement all the operators,
but he is busy adding new ones, such as the >��� operator.

Overall, LINQ to SharePoint is an excellent example of what can be done
to extend LINQ. It is also a very useful tool that should be valuable to many
developers. If you use SharePoint regularly, you will find this tool an excel-
lent resource.

Working with Processes

I want to close this chapter with a simple example that I hope will serve as
a cautionary note for LINQ developers. When I first started working with
LINQ, I was not fully aware of the power of LINQ to Objects. Unfortu-
nately, I have seen developers do a great deal of work to create a LINQ
provider for a technology that LINQ to Objects already fully supports.
Remember that any data source that produces an �����	����	�� or
�����	����	 can be queried by LINQ to Objects without any extra work on
your part. If you want to use LINQ with a particular technology, check to
see if it already supports LINQ to Objects or if it would be possible to
quickly convert your data source into an array of some kind that fully sup-
ports LINQ queries. If you can do so without paying too great a price in
terms of performance, don’t worry about the need to create your own
provider.

To illustrate the point, I ask you to recall material covered in earlier
chapters on using LINQ with the C# Reflection API. The code shown in
those samples is commonly called LINQ to Reflection, but it’s really just
LINQ to Objects run against the collections produced by the Reflection API.
The code may appear to magically pull data from the Reflection API, but, in
fact, it just uses LINQ’s capability to work with methods that return
�����	����	 or �����	����	��.

Listing 17.2 shows an example of a query that you might be tempted to
think is part of something called LINQ to Diagnostics. In fact, this is just

Working with Processes 509



ptg

another example of the power inherent in LINQ to Objects. Listing 17.3
shows the output.

Listing 17.2 contains a query that retrieves and filters the processes run-
ning on your machine. To write such code, you need do no special work.
Instead, you can write a LINQ to Objects query directly against a class
found in the � ��	��?��������"� namespace.

Listing 17.2 By Using the � ��	��?��������"� Namespace, You Can Write Queries
Against the Processes Currently Running on Your System

�����" *��� +����������,-.�����
(

*�� $�	� ./.���� %.�� )��"	���#	�)��"	��	���
���	�� %�J������+	��� ��U	SR.�	�"	�����
�	�	"� %!

���	�"� �*�� ��	�.�� $�	� ���;	�<��
(

����)��"	�����	��!
4

4

%����" �����" *��� 5���	������� "�%����1.������ �����
(

������	�5���	
��	�C(L4G.(04C1."�%����1.�����!
4

%����" �����" *��� 5���	������� "�%����1.���� �����
(

5���	�"�%����1.�������:������C(LG&L4C1.������!
4

%����" �����" *��� ����)��"	���)��"	�� %��"	���
(

��������	�%��"	���)��"	��&��	�!
5���	�C+���5���������	C1.%��"	���+���5���������	�!
5���	�CJ������+	��� ��U	SRC1.%��"	���J������+	��� ��U	SR�!

4

Listing 17.3 The Output from the Code Shown in Listing 17.2

/////////////////
�$��	�*�
/////////////////
+���5���������	G
J������+	��� ��U	SRG.01S3L1T<S1MSR
/////////////////

Chapter 17: LINQ Everywhere510



ptg

5�&5E�?
/////////////////
+���5���������	G.���%�	�0S.6�*��"	�.
�&'L���"=.�.+�"������.5���
J������+	��� ��U	SRG.RT31QSL1RRM
/////////////////
J���=%�	��
/////////////////
+���5���������	G.)��"	���"��.�.+�"������.J�����.�_.2LLM.�=%�	��.�������
J������+	��� ��U	SRG.R3M12301LRL
/////////////////
	=%���	�
/////////////////
+���5���������	G
J������+	��� ��U	SRG.R2L100R1R32
/////////////////
Z��	
/////////////////
+���5���������	G.Z��	
J������+	��� ��U	SRG.R0210<01MLM

The query shown in this example is very simple:

*�� $�	� ./.���� %.�� )��"	���#	�)��"	��	���
���	�� %�J������+	��� ��U	SR.�	�"	�����
�	�	"� %!

The )��"	�� class supports a method called #	�)��"	��	� that retrieves all
the programs running on your system. You can see the same list of pro-
grams in the Windows Task Manager.

In our query, the LINQ E��	�B operator is used to sort the items
retrieved in descending order by the amount of memory they take up. The
resulting list is quite interesting, because it gives you a sense of which pro-
grams are using the most memory on your system.

Here is the declaration for � ��	��?��������"��)��"	���#	�)��"	��	�:

%����" �����" )��"	��,-.#	�)��"	��	���!

This method returns an array of )��"	��	�. As mentioned in Chapter 4,
“C# 3.0 Technical Overview,” the developers of C# and .NET ensured that
arrays are fully queryable by LINQ. The Base Class Library (BCL) has no
array type called )��"	��,- or ���,-. Instead, the CLR improvises, so to
speak, and spins up a new type for you at runtime. These types appear to
implement the following set of interfaces:

Working with Processes 511



ptg

� ��	�������	���	
� ��	������	"�������
���
� ��	������	"�����������	"����
� ��	������	"�����������	����	
� ��	������	"������#	�	��"��
�����
� ��	������	"������#	�	��"������	"������
� ��	������	"������#	�	��"������	����	��

These types also inherit from � ��	��6��� . As you can see, �����	����	
and �����	����	�� are supported. As a result, you can query such an
array with LINQ.

There really isn’t much else to say about this example. I’ve included it
here just as a reminder that sometimes we don’t need to create a fancy
LINQ provider just to access a particular data source. Please don’t spend
hours trying to create your own LINQ provider when a few simple calls to
LINQ to Objects will solve your problem. On the other hand, if you see a
real need for a new LINQ provider, and you think you have the time and
ability to create it, please get to work as soon as possible, and share your
efforts with the community. When you are done, visit the “Links to LINQ”
section of my blog, and let me know about your creation so that I can help
tell the community about your contribution:

http://blogs.msdn.com/charlie/archive/2006/10/05/Links-to-
LINQ.aspx

Summary

In this chapter you have had a look at several different flavors of LINQ. If
you look in Appendix A, or follow the URL to my “Links to LINQ” blog
post, you will find that there are many other flavors of LINQ that I did not
cover in this chapter. Some of them are at least potentially quite important
and sophisticated, and others are small projects that have never received
much attention put together by a single person. Nevertheless, the exten-
sions to LINQ are a vitally important part of the LINQ story. Hopefully you
have found the few examples shown here sufficiently illustrative to encour-
age you to explore the matter in more depth and perhaps also write your
own provider.

Chapter 17: LINQ Everywhere512

http://blogs.msdn.com/charlie/archive/2006/10/05/Links-to-LINQ.aspx
http://blogs.msdn.com/charlie/archive/2006/10/05/Links-to-LINQ.aspx


ptg

Let me wrap up this chapter by taking a moment to stress the impor-
tance of this topic. The LINQ providers I’ve described in this chapter are
still in prerelease form. Even when they are released, it will probably take
several iterations to bring them to maturity. Nevertheless, even as they are
now, they are remarkably easy to use, and they show the promise of great
power.

The providers described in this chapter extend LINQ so that it can
become

• An ideal way to perform concurrent programming by removing
many of the impediments that have prevented developers from
working with multithreaded applications.

• An easy means of querying a site such as Flickr.

• An easy to use tool for working with the lists found on a SharePoint
site.

• An excellent way to perform concurrent programming without hav-
ing to encounter many of the impediments that have prevented
developers from working with multithreaded applications.

We are still at the dawn of the LINQ era. When object-oriented pro-
gramming first emerged, it was not obvious how important it would
become. The same was true of the Web, of multimedia technology, and of
many other tools. LINQ came into the world remarkably fully formed, but
this chapter only hints at the many ways LINQ can be extended to solve
myriad problems. The future of LINQ is bound up with the future of LINQ
providers such as the ones described in this chapter. As we witness the
development of increasingly powerful and sophisticated LINQ providers
for an increasingly large range of data sources, we will see the emergence
of an important new technology that will have a significant capability to
simplify and improve how we write and maintain our code.

Summary 513



ptg

This page intentionally left blank 



ptg

18
Conclusion

T H E LINQ P R O J E C T started with the observation that bringing queries
into a modern programming language would simplify the task of pro-

gramming. A deeper examination of the problem of integration revealed a
few key differences between the world of queries and the pre-LINQ main-
stream programming languages:

• Queries in strings are begging to be integrated into the host lan-
guage. A developer is deprived of programming language benefits
such as compile-time type checking, IDE support for autocomple-
tion, unified syntax, and common object model if queries remain in
strings.

• Queries are declarative, whereas much of the code in a language
such as C# is imperative. A SQL query defines the set without speci-
fying the minute details of implementation.

• Multiple, domain-specific query languages exist—SQL for relational
data and XQuery for XML, to cite a couple. Other domains have
their own variants. Queries are also interesting in the domain of col-
lections and objects.

• SQL deals with rectangular results, whereas the natural fit for objects
is object hierarchies and graphs.

515



ptg

• Efficient execution of queries often requires specialized processors
and execution at the source of data. Bringing all the data into a pro-
gram’s CLR application domain is not an effective strategy. As a
corollary, the following point is also true:

• Efficient integration of query into programming language requires
an efficient composition mechanism.

• Transformations are closely related to queries. Projection using the
��
��� clause in SQL and the ���X�& clause in XQuery are two
examples.

LINQ in the present form was born after many iterations and experi-
ments with the building blocks, syntax, components, and tools. As built, it
has the essential qualities described in Chapter 3, “The Essence of LINQ.”
Now that we have looked at some key LINQ components in detail, it is
worth revisiting the foundational qualities and tying them back to the dif-
ferences just mentioned:

• Integrated: Queries are first-class citizens of C#, VB.NET, and other
LINQ-enabled languages. Developers can now use all the standard
programming language facilities and tools for queries.

• Declarative: Query expressions declare the intent, and LINQ
libraries provide the implementations.

• Unitive: LINQ provides a unified mechanism across domains—
relational, XML, and object, to name a few. Data can flow between
these domains in a LINQ query without the developer having to do
plumbing work.

• Hierarchical: Results of a LINQ query are not limited to tabular
structure. Object hierarchies and graphs are just as easy to get. This
capability takes LINQ beyond SQL in power of expression.

• Extensible: LINQ allows efficient providers such as LINQ to SQL to
be plugged in using expression trees to represent code as data.

Chapter 18 Conclusion516



ptg

• Composable: LINQ operators speak the common language of
�����	����	 and �'�	� ���	, and deferred execution allows query
expressions to be composed with very little cost.

• Transformative: LINQ provides a powerful set of capabilities to
transform data within and across domains. This nicely complements
the core query capabilities.

These qualities provide a strong foundation for LINQ to grow in a num-
ber of domains beyond the traditional object, relational, and XML domains.
Chapter 17, “LINQ Everywhere,” covered some of the interesting domains
where LINQ has already started blossoming. It is particularly important to
look at LINQ from the point of view of the current and potential breadth
of implementations. Traditionally, many developers equate query with
SQL. Hence, it is easy to focus on relational LINQ implementations such as
LINQ to SQL or LINQ to Entities and to see them as the main LINQ story.
But doing so misses the point that LINQ provides a common language for
a number of domains and a common language for flowing data across
domains.

LINQ technologies are built on the foundation of simple but powerful
building blocks. These building blocks not only help integrate queries into
the language but also enrich the programming experience in C# and
VB.NET beyond queries. Lambda functions enable and encourage a func-
tional and declarative style of programming. Expression trees open a whole
gamut of possibilities by representing code as data. Object initializers pro-
vide a much more concise notation. Partial methods make generated code
even more customizable. Such are the additional benefits of the building
blocks over and above their role in the core LINQ story.

This book has described the first release of LINQ. Like object-oriented
programming and .NET, the first release is only a beginning. We expect
LINQ to evolve and mature in future releases to become a key tool for
developers in the years to come. The current richness described in this book
and the even bigger future it enables is the essence of LINQ.

Conclusion 517



ptg

This page intentionally left blank 



ptg

A
Tips for Developers

Accessing the Source Code

Most of the source code shown in this book is drawn from sample pro-
grams that are available for download. The sample programs are stored in
a zip file that you can download and decompress to a directory where you
have rights to compile and run programs. If you are uncertain where to
place the files you download, we recommend putting them in your Docu-
ments directory.

Most of the chapters in this book have source code associated with them.
The code is divided by chapter. For example, all the programs associated
with Chapter 2, “Getting Started,” are in a directory called Chapter02.
Many of the individual programs containing the source are mentioned by
name in the text. You might also find it helpful to run each of the sample
programs to become familiar with the contents, or to use the Windows
built-in search facilities to find sample programs that cover a particular fea-
ture. For instance, after downloading the source, you might type a few
words from the book’s source code into Windows Search. The search facil-
ity could then take you directly to the program that contains that code.

You can access the source code from the following URL:
www.informit.com/register

519

www.informit.com/register


ptg

Go to this URL, sign in, and enter the ISBN. After you register the prod-
uct, a link to the source content will be listed on your Account page, under
Registered Products.

Northwind and the Visual Studio Samples

The sample programs just mentioned are the primary reference code for
this book. However, you might find other samples useful.

The C# team created a series of LINQ samples that ship with Visual Stu-
dio 2008. To access these samples, choose Help, Samples from Visual
Studio. From the samples link, you will find instructions to access a local
copy of the samples and to download a copy from the Web. The samples
come in a zip file. You should decompress the contents of this file to a direc-
tory over which you have complete control. For instance, you might place
it in your Documents or My Documents directory. The projects included
with the samples contain Visual Studio solution files that can be opened
and run by selecting the F5 key, or by choosing Start Debugging from the
Visual Studio Debug menu.

Dinesh helped oversee the creation and development of the samples,
and Charlie drove the actual release of the samples. As a result, you should
find that many of the samples that ship with Visual Studio make an excel-
lent companion to the material found in this book. In particular, you should
explore the excellent SampleQueries project, which contains more than 500
examples of how to write LINQ queries. The SampleQueries project was
originally developed by C# Compiler PM Alex Turner, and the code in that
sample has been reviewed by many developers on the C# development and
documentation team. Other important projects, such as the ObjectDumper
sample, are included in this group of samples.

The C# Visual Studio samples ship with all copies of Visual Studio 2008
except for the Express version. Updated copies of the samples are also
available online. Because the online versions have been updated, they are
the preferred versions of the samples. However, most of the changes in the
online version are minor, and you will find the versions that ship with
Visual Studio to be very useful.

Appendix A Tips for Developers520



ptg

Included with the samples is a custom version of the Northwind data-
base. This database is used by both the C# team’s samples and the LINQ to
SQL samples used in this book.

You can download the C# team’s samples from Code Gallery at
http://code.msdn.microsoft.com/csharpsamples.

The copy of the Northwind database that is included with the C# sam-
ples has extra data and metadata designed to illustrate some of the features
of LINQ. Because there are some 50 LINQ operators, it was not possible to
illustrate them all using the standard release of Northwind. Therefore, the
database was modified slightly to allow Alex and other team members to
write queries that illustrated how to use all the LINQ operators.

You should be able to download the original, unmodified version of
Northwind from either of these URLs:

http://www.microsoft.com/downloads/details.aspx?FamilyID=
06616212-0356-46A0-8DA2-EEBC53A68034&displaylang=en

http://tinyurl.com/yzx6lz

Version Numbers

The version numbers of the releases of the .NET Framework and C# that
have appeared in recent years are somewhat confusing. The following list
can help you disambiguate these version numbers:

• Visual Studio 2005 includes C# 2.0 and the .NET Framework 2.0.

• The release of Windows Vista was accompanied by .NET
Framework 3.0.

• Visual Studio 2008 includes C# 3.0 and .NET Framework 3.5.

Essential Downloads

Everyone who reads this book should have several essential programs
installed on this system. Without these programs you will not be able to run
some or all of the sample programs described in this text.

Essential Downloads 521

http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-46A0-8DA2-EEBC53A68034&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-46A0-8DA2-EEBC53A68034&displaylang=en
http://code.msdn.microsoft.com/csharpsamples
http://tinyurl.com/yzx6lz


ptg

Installing Visual Studio Express
If you do not already have a copy of Visual Studio installed, you can down-
load a free copy of the Express version from Microsoft’s web site. All the
programs in this text can be compiled with Visual Studio Express. Most of
the sample programs used in the book were developed with Visual Studio
Express for C#. You can download this product here:

http://www.microsoft.com/express/

Installing the .NET Framework
If you have Visual Studio on your system, the .NET Framework will have
been installed automatically. The .NET Framework includes all the tools
and libraries needed to compile the programs found in this book.

The Framework is free. The current version of the Framework is 3.5,
Service Pack 1. Most of the code in this book was developed against the
.NET Framework Version 3.5 and tested with Service Pack 1. Thus, you
should be able to run the samples against 3.5 or 3.5 Service Pack 1. The
.NET Framework Version 4.0 will ship at the same time as the next version
of Visual Studio, and it and other, future versions of the Framework can
also be used to compile all the programs in this book. Early versions of the
Framework are not LINQ-aware and cannot be used to compile most of the
programs shown in this text.

Here is the home page for the .NET Framework:

http://msdn.microsoft.com/en-us/netframework/default.aspx

On this page you can find links to the current and previous versions of the
.NET Framework..

By default, the .NET Framework is installed into your Windows
directory:

C:\Windows\Microsoft.NET\Framework\v3.5

At the command prompt, you can type the following to move to your Win-
dows directory:

"�.8������8

Appendix A Tips for Developers522

http://www.microsoft.com/express/
http://msdn.microsoft.com/en-us/netframework/default.aspx


ptg

You should then be able to change into the .NET Framework directory by
typing this:

"�.+�"�������&��9:���	���;

From there, you can type ?�� to see the list of installed frameworks, or type
"� *3�< to enter the .NET Framework 3.5 directory.

Although I don’t recommend it, you can compile the samples discussed
in this book from the command line. The compiler is called CSC.exe and it
is found in that directory. MSBuild.exe, and the other tools you need to
develop LINQ applications, are also available in the v3.5 directory. As a
result, if you want to compile from the command line, you need to either
work from inside that directory or ensure that the directory is on your path.

Visual Studio makes it much easier for you to develop the programs
found in this book, and I strongly recommend that you use it unless you
have some specific reason for avoiding it. However, all the code and sam-
ple programs shown in this book can be developed and run from the com-
mand line using the .NET Framework. The steps for compiling a LINQ
program from the command line will be outlined later in the section “Com-
piling from the Command Line” of this appendix. Please note that you can
use the tool called SqlMetal.exe instead of the Object Relational Designer.

Installing SQL Server Express
Database technology plays a key role in this book, primarily in Chapters 7
through 10. Microsoft ships a free database called SQL Server Express.
Although it isn’t designed for deployment as part of an enterprise database
application, SQL Server Express nevertheless supports the APIs and func-
tionality found in the full version of Microsoft SQL Server. It provides a
good test platform for you to run LINQ queries against while you are learn-
ing about LINQ or other database APIs. All the queries you write should
work unchanged in the regular version of Microsoft SQL Server if you
decide to upgrade to that product. You can find links to download the free
SQL Server Express from the Express home page:

http://www.microsoft.com/express/

Essential Downloads 523

http://www.microsoft.com/express/


ptg

Compiling C# Programs

The simplest way to compile and run a C# program is from inside Visual
Studio. All the programs in this book will compile with the free version of
Visual Studio called Visual Studio Express. I developed almost all the sam-
ple programs for this book using Express. As mentioned previously, you
can download this small, light version of Visual Studio from this URL:

http://www.microsoft.com/Express/

You can build two primary types of programs in Visual Studio. The first
is a console application that displays output at the command line, and the
second is a Windows Forms application that runs inside the Windows GUI.
Most of the programs in this book are command-line applications, but I’ve
rewritten some as Windows Forms applications because that format offers
a simpler way to help you sort out a large number of small samples.

To create a console application in Visual Studio, follow these steps:

1. Choose File, New Project. The dialog shown in Figure A.1 appears.

Appendix A Tips for Developers524

Figure A.1 The New Project dialog in Visual Studio Express.

2. Click OK to select the default name and location for the project.

http://www.microsoft.com/Express/


ptg

After you complete these two steps, the Visual Studio editor should
open with the following code visible and ready to edit:

����� � ��	�!
����� � ��	������	"������#	�	��"!
����� � ��	��
��$!
����� � ��	���	=�!

���	�%�"	 ������	6%%��"�����0
(

"���� )������
(

�����" *��� +����������,-.�����
(
4

4
4

You can start typing code directly into the +��� method:

�����" *��� +����������,-.�����
(

*�� ����./.�	� 
�������.(.01.21.3.4!

*�� $�	� ./.���� �.�� ����
�	�	"� �!

���	�"� �*�� ��	�.�� $�	� �
(

������	�5���	
��	���	��!
4

4

To run the program, select Debug, Start Without Debugging. The default
key binding for this command is Ctrl-F5. You can also run a program by
choosing Debug, Start Debugging. The key binding for this command is F5.
When working with console applications, I prefer the first of these two
options because it leaves the console window open so that you can view the
results of your work.

You can create a Windows Forms application in Visual Studio by choos-
ing File, New Project and selecting Windows Forms Application. Choose
View, Toolbox from Visual Studio. From the Common Controls section of
the Toolbox, drag a B����� and �	=�B�= onto the main form for your proj-
ect, as shown in Figure A.2.

Compiling C# Programs 525



ptg

Figure A.2 Creating a simple Windows Forms application.

Double-click the B����� to create an event handler where you can write
your code:

%��*��	 *��� ������0A���";���>	"� �	��	�1.�*	��6��� 	�
(

*�� ����./.�	� 
�������.(.01.21.34!

*�� $�	� ./.���� �.�� ����
��	�	 �.8.2.//.L
�	�	"� �!

�	=�B�=0��	=�./.$�	� ������	�������������!
4

If you want to display multiple items in the form, drop down a 
���B�=
rather than a �	=�B�=. Click the B����� to create a method, just as you did
before, but this time write code that looks like this:

%��*��	 *��� ������0A���";���>	"� �	��	�1.�*	��6��� 	�
(

*�� ����./.�	� 
�������.(.01.21.34!

Appendix A Tips for Developers526



ptg

*�� $�	� ./.���� �.�� ����
�	�	"� �!

���	�"� �*�� ��	�.�� $�	� �
(

����B�=0���	���6�����	�������������!
4

4

Compiling from the Command Line

If you use Visual Studio as your development environment, you will rarely
encounter difficulties compiling and running simple programs of the type
covered in this book. Because the Express version of Visual Studio is both
free and an excellent, high-quality development tool, most people can use
it or other versions of Visual Studio to work with the programs in this book.
However, sometimes you might need to compile from the command line.
The next few paragraphs outline some examples demonstrating how to
proceed.

To compile LINQ programs from the command line, you need a copy of
the .NET Framework 3.5 or greater installed on your system. The Frame-
work is installed automatically if you install Visual Studio. You can also
download it separately, as explained earlier.

Here is a simple batch file for compiling and running a console applica-
tion called SimpleNumericQuery that consists of a single source file called
Program.cs:

)6�7/8)6�78!8������89+�"�������&��9:���	���;9*3�<9
"�"�	=	.@���G���%�	&��	��"'�	� �	=	.@����	�G	=	.)�������"�
���%�	&��	��"'�	� �	=	

This code is designed to be run from the command prompt. You can launch
the Windows command prompt by clicking the Vista Start button and typ-
ing �+?. This launches a command window where you can enter the code
for compiling your program.

The first line of this batch file sets up the path. The second line compiles
the program, and the third runs the program.

Compiling from the Command Line 527



ptg

Here is how to compile a Windows Forms application:

)6�7/8)6�78!8������89+�"�������&��9:���	���;9*3�<9
"�"�	=	.@���G+ )����	=	.@����	�G	=	.)�������"�.:���0�"�.:���0�?	����	��"�
+ )����	=	

You can learn more about the command-line compiler by opening a
command prompt, setting the path as shown in the sample batch files in
this section of the text, and typing the following:

"�".@K

There are advanced tools for compiling C# applications from the com-
mand line. These include the MSBuild.exe program that ships with the
.NET Framework and the open-source NANT project available from
http://nant.sourceforge.net/. MSBuild can be very easy to use. For
instance, if you create a project in Visual Studio, in many cases you can
compile that project from the command line by simply setting up the path
and typing +�B�����	=	 from the directory where the source for your proj-
ect is stored.

Connecting to a Database

To learn how to connect to a database, read this post from Charlie’s blog:

http://blogs.msdn.com/charlie/archive/2007/11/19/connect-to-a-
sql-database-and-use-the-sql-designer.aspx

I will maintain this post on my blog, but the following is the text in case you
don’t have access to online materials.

To begin working with LINQ to SQL in Visual Studio 2008, you need a
database that you can query and a copy of Microsoft SQL Server or SQL
Express. In this post, I’ll focus on SQL Express because it is free and because
it gets installed by default when you install all versions of Visual Studio
except for some forms of Visual Studio Express.

Follow these steps to install and access the copy of the Northwind data-
base that accompanies the samples that ship with Visual Studio 2008:

Appendix A Tips for Developers528

http://nant.sourceforge.net/
http://blogs.msdn.com/charlie/archive/2007/11/19/connect-to-asql-database-and-use-the-sql-designer.aspx
http://blogs.msdn.com/charlie/archive/2007/11/19/connect-to-asql-database-and-use-the-sql-designer.aspx


ptg

1. From Visual Studio, choose Help, Samples.

2. Follow the directions to install the Visual Studio 2008 C# Samples to
a subfolder of your Documents directory. Note that the latest copies
of the samples are always available online at http://go.microsoft.
com/fwlink/?LinkID=85559.

3. After installation, the Northwnd.mdf database file is found in a
directory called CSharpSamples\LinqSamples\Data, where
CSharpSamples is a subdirectory created when you installed the
samples.

Choose File, New Project (or press Ctrl-Shift-N) and create a new con-
sole application:

1. In Project types, select Windows, as shown in Figure A.3.

Connecting to a Database 529

Figure A.3 Creating a new console application.

2. In Templates, select Console Application, as shown in Figure A.3.

http://go.microsoft.com/fwlink/?LinkID=85559
http://go.microsoft.com/fwlink/?LinkID=85559


ptg

Create a connection to the Northwind database:

1. Choose View, Server Explorer (or press Ctrl-W, L). In Express edi-
tions of Visual Studio, this tool is called Database Explorer.

2. Right-click the Data Connections node, and choose Add Connection.
This brings up the Add Connection dialog, shown in Figure A.4.

Appendix A Tips for Developers530

Figure A.4 Click the Browse button in the Add Connection dialog and locate your copy
of Northwnd.mdf.

3. In the Add Connection dialog, click the Browse button and navigate
to and select your copy of Northwnd.mdf.

4. Click the OK button.

At this stage Northwnd.mdf should appear in your server or Database
Explorer, as shown in Figure A.5.



ptg

Figure A.5 The Server Explorer provides a view of the Northwind database.

Using the Object Relational Designer
The Object Relational Designer, (LINQ to SQL Designer) is explained in
some depth in Chapter 8, “Reading Objects with LINQ to SQL,” and it is
occasionally referenced in the other chapters on LINQ to SQL. We have also
included a short getting started guide in this appendix.

The Object Relational Designer allows you to configure and view the
metadata of the database tables you want to query. There is a command-
line version of this tool called SqlMetal that is not covered in this document.
By default, SqlMetal is part of the Visual Studio and .NET Framework 3.5
install and is stored in %ProgramFiles%\Microsoft SDKs\Windows\
v6.0A\bin.

Select Project, Add New Item (or press Ctrl-Shift-A). This command
brings up the Add New Item dialog. Select LINQ to SQL Classes from the
list of Visual Studio Installed Templates, as shown in Figure A.6.

Drag the ������	� table from the Server Explorer onto the Designer, as
shown in Figure A.7.

In Figure A.7 the ������	� table has been dragged from the Server
Explorer onto the SQL Designer. Stored procedures can be dragged onto the
area where you see the text that begins “Create methods by dragging
items....”

Connecting to a Database 531



ptg

Figure A.6 Choose the LINQ to SQL Designer from the list of available templates available
in the Add New Item dialog.

Appendix A Tips for Developers532

Figure A.7 The LINQ to SQL Designer with the Server Explorer on the left and the Solution
Explorer on the right.

Several things happened as you completed the preceding steps:

1. When you added the SQL Designer to your project, a new node in
the Solution Explorer called DataClasses1.dbml was added to your
project. As shown in Figure A.7, it contains two files, DataClasses1.
dbml.layout and DataClasses1.designer.cs.



ptg

2. When you dragged the ������	� table onto the designer, an Object
Relational Mapping (ORM) was created between the ������	� table
in the database and a ������	� class generated by the SQL Designer.
The result of this mapping was the production of a class called
Customer that was placed in DataClasses1.designer.cs. This class is
called an entity class, and it allows you to access the data and fields
of the ������	� table.

3. A second class, called a ?�������	=�, was also created in Data-
Classes1.designer.cs. You can use this class to automatically connect
to your database and easily access the data and fields in the
������	� table.

4. A file called app.config was added to your project. It contains an
automatically generated connection string for your database.

This is not the place to fully explore the O/R Designer and the code it
generates. However, the preceding steps give you two key benefits:

• They ensure that you can automatically connect to the database.

• They let you access the ������	� table in the database via an object
in your program.

After you drag items from the Server Explorer onto the SQL Designer,
you can modify the view that your program will have of the data. For
instance, you can delete some of the fields from the ������	� table, as
shown in Figure A.8. This operation modifies the classes generated, not the
actual table on the server.

Connecting to a Database 533

Figure A.8 A modified view of the �������	 table with only three fields visible and
other fields deleted.



ptg

You can now test your work by opening Program.cs in the Visual Studio
editor and typing in the following code:

����� � ��	�!
����� � ��	��
��$!

���	�%�"	 ������	6%%��"�����R0
(

"���� )������
(

�����" *��� +����������,-.�����
(

?��������	�0?�������	=� ��./.�	� ?��������	�0?�������	=���!

*�� $�	� ./.���� ".�� ���������	��
��	�	 "���� .//.C
�����W
�	�	"� "���� !

���	�"� �*�� $.�� $�	� �
(

������	�5���	
��	�$�!
4

4
4

4

Summary
In this brief introduction to the Object Relational Designer, you have seen
how to

• Download and install the Northwind database from the samples
that ship with Visual Studio.

• Access the database through the SQL Designer.

You can learn more about LINQ by running the SampleQueries project that
ships with Visual Studio samples referenced in this article.

Important Resources

Here are a few of the most valuable blog posts that have been written about
LINQ:

Appendix A Tips for Developers534



ptg

Mocking DataContext for testability

• http://andrewtokeley.net/archive/2008/07/06/mocking-linq-to-
sql-datacontext.aspx

• http://blogs.msdn.com/mattwar/archive/2008/05/04/mocks-nix-
an-extensible-linq-to-sql-datacontext.aspx

Performance related blog posts:

• http://blogs.msdn.com/ricom/archive/2007/06/22/dlinq-linq-to-
sql-performance-part-1.aspx

• http://blogs.msdn.com/ricom/archive/2008/01/14/performance-
quiz-13-linq-to-sql-compiled-query-cost-solution.aspx

• http://www.sqlskills.com/BLOGS/BOBB/post/MHO-LINQ-to-
SQL-and-Entity-Framework-Panacea-or-evil-incarnate-Part-6.aspx

Entity Framework Mapping Scenarios:

• http://weblogs.asp.net/zeeshanhirani/archive/2008/12/08/my-
christmas-present-to-the-entity-framework-community.aspx

Reference Materials: Getting Help

This book is not primarily a reference. Instead, it is meant to explain how
LINQ works, the structure of its architecture, and best practices for its use.
However, a good reference can help supplement the materials found in this
book and can help answer many common questions about LINQ.

The LINQ documentation created by Microsoft is primarily a reference
document. It is available both inside Visual Studio and for free via the
MSDN library found on the web. Here are some important pages that can
help you navigate through the online LINQ documentation:

• The Root MSDN Library Page: http://msdn.microsoft.com/en-us/
library/default.aspx

• .NET Development: http://msdn.microsoft.com/en-us/library/
aa139615.aspx

Reference Materials: Getting Help 535

http://www.sqlskills.com/BLOGS/BOBB/post/MHO-LINQ-to-SQL-and-Entity-Framework-Panacea-or-evil-incarnate-Part-6.aspx
http://www.sqlskills.com/BLOGS/BOBB/post/MHO-LINQ-to-SQL-and-Entity-Framework-Panacea-or-evil-incarnate-Part-6.aspx
http://andrewtokeley.net/archive/2008/07/06/mocking-linq-to-sql-datacontext.aspx
http://andrewtokeley.net/archive/2008/07/06/mocking-linq-to-sql-datacontext.aspx
http://blogs.msdn.com/mattwar/archive/2008/05/04/mocks-nix-an-extensible-linq-to-sql-datacontext.aspx
http://blogs.msdn.com/mattwar/archive/2008/05/04/mocks-nix-an-extensible-linq-to-sql-datacontext.aspx
http://blogs.msdn.com/ricom/archive/2007/06/22/dlinq-linq-to-sql-performance-part-1.aspx
http://blogs.msdn.com/ricom/archive/2007/06/22/dlinq-linq-to-sql-performance-part-1.aspx
http://blogs.msdn.com/ricom/archive/2008/01/14/performance-quiz-13-linq-to-sql-compiled-query-cost-solution.aspx
http://blogs.msdn.com/ricom/archive/2008/01/14/performance-quiz-13-linq-to-sql-compiled-query-cost-solution.aspx
http://weblogs.asp.net/zeeshanhirani/archive/2008/12/08/my-christmas-present-to-the-entity-framework-community.aspx
http://weblogs.asp.net/zeeshanhirani/archive/2008/12/08/my-christmas-present-to-the-entity-framework-community.aspx
http://msdn.microsoft.com/en-us/library/default.aspx
http://msdn.microsoft.com/en-us/library/default.aspx
http://msdn.microsoft.com/en-us/library/aa139615.aspx
http://msdn.microsoft.com/en-us/library/aa139615.aspx


ptg

• .NET Framework 3.5: http://msdn.microsoft.com/en-us/library/
w0x726c2.aspx

• System.Linq: http://msdn.microsoft.com/en-us/library/system.
linq.aspx

• System.Data.Linq: http://msdn.microsoft.com/en-us/library/
system.data.linq.aspx

• System.Xml.Linq: http://msdn.microsoft.com/en-us/library/
system.xml.linq.aspx

• Code generation: http://msdn.microsoft.com/en-us/library/
bb399400.aspx

• More on joins: http://msdn.microsoft.com/en-us/library/
bb311040.aspx

• For more information on the operators, see the section of the online
help called “The .NET Standard Query Operators.” It was written by
Anders Hejlsberg and Mads Torgersen. The URL is http://msdn.
microsoft.com/en-us/library/bb394939.aspx.

I do not suggest using these references materials as a primary means of
learning LINQ. However, these pages can be a useful addendum to this
text. If you understand in a general way how LINQ works, but you need
answers to detailed questions, the links provided here may sometimes help
you find answers.

Finding LINQ Providers

I maintain a list of links to LINQ providers on my blog. Here is the address
of the relevant article:

http://blogs.msdn.com/charlie/archive/2006/10/05/Links-to-
LINQ.aspx

Including Data Files in Your Project

When you’re working in Visual Studio, defining the path to a document can
be a chore. You face two primary problems:

Appendix A Tips for Developers536

http://msdn.microsoft.com/en-us/library/w0x726c2.aspx
http://msdn.microsoft.com/en-us/library/w0x726c2.aspx
http://msdn.microsoft.com/en-us/library/system.linq.aspx
http://msdn.microsoft.com/en-us/library/system.linq.aspx
http://msdn.microsoft.com/en-us/library/system.data.linq.aspx
http://msdn.microsoft.com/en-us/library/system.data.linq.aspx
http://msdn.microsoft.com/en-us/library/system.xml.linq.aspx
http://msdn.microsoft.com/en-us/library/system.xml.linq.aspx
http://msdn.microsoft.com/en-us/library/bb399400.aspx
http://msdn.microsoft.com/en-us/library/bb399400.aspx
http://msdn.microsoft.com/en-us/library/bb311040.aspx
http://msdn.microsoft.com/en-us/library/bb311040.aspx
http://msdn.microsoft.com/en-us/library/bb394939.aspx
http://msdn.microsoft.com/en-us/library/bb394939.aspx
http://blogs.msdn.com/charlie/archive/2006/10/05/Links-to-LINQ.aspx
http://blogs.msdn.com/charlie/archive/2006/10/05/Links-to-LINQ.aspx


ptg

• The path to your project may be long and complex.

• Projects can easily be moved from one location to another, which
causes the path to change.

Both of these problems can be solved easily when you are working inside
the IDE. If you are working with an XML file that you want your program
to load, do these three things:

1. Place the file in the directory where your main project file resides.

2. Add the file to your project.

3. Set the Copy to Output Directory property of your XML file to Copy
if Newer.

This ensures that the XML file is in the same directory as the project exe-
cutable. Hence, it can be loaded directly into the project without your hav-
ing to consider the path to the file: doc.Load(“MyFile.xml”);

C# Keywords and Contextual Keywords

C# has a wide variety of keywords and contextual keywords. Keywords are
reserved words and may not be used by developers as variable names.
Contextual keywords are reserved words in certain circumstances but may
be used as variable names.

Consider the contextual keyword *��. If it’s used to designate that type
inference should be used as part of a type definition, it is a keyword:

*�� � ���	�	�./.3!

It is the context in which this word is used that makes *�� a reserved word
in this case. If it’s used in a different context, it is not a keyword. For
instance, here *�� is simply a variable name:

��� *��./.3!

The C# team developed this policy because they did not want to break
existing code. They knew that some developers might have used *�� as a
variable name, and they did not want to force them to modify their code.

C# Keywords and Contextual Keywords 537



ptg

Instead, they developed contextual keywords so that they could add new
features to the language without breaking existing code.

Most LINQ keywords are contextual, because they were added to the
language in version 3.0, after C# had been out for several years. The fol-
lowing are the existing C# keywords and contextual keywords as of C# 3.0.

C# Keywords

������"� 	*	�� �	� ����"�

�� 	=%��"�� ���� ����"�

���	 	=�	�� ��>	"� ����

���� :6
�� �%	����� �����

��	�; ������ ��� ��X�

� �	 ��=	� �*	����	 �� 

"��	 ����� %����� � %	��

"��"� ��� %��*��	 ����

"��� ���	�"� %���	"�	� �����

"�	";	� ���� %����" ��"�	";	�

"���� �� �	����� �����	

"���� ��%��"�� �	� ������

"������	 �� �	���� �����

�	"���� ��� �� �	 *������

�	����� ���	���"	 �	��	� *���

�	�	���	 ���	���� ����� *������	

�� �� ��U	�� ����	

�����	 ��"; ���";����"

	��	 ���� �����"

	��� ���	�%�"	 ������

Appendix A Tips for Developers538



ptg

Contextual Keywords

���� >��� %������ (method) *��

�	� �	� �	�	"� ��	�	 (generic type
constraint)

����% ���	�� �	� ��	�	 (query clause)

���� %������ (type) *���	  �	��

Visual C# 2008 Key Bindings

The developers of Visual Studio put a considerable amount of effort into
defining a set of key bindings that can make it easy to navigate through the
component parts of a C# project. Table A.1 is an overview of the default key
bindings for C# developers.

The C# Express edition of Visual Studio has only one possible set of key
bindings; it corresponds to the settings shown in Table A.1. Other versions
of Visual Studio, however, have multiple key bindings available, including
those for C# developers, VB developers, general developers, Team Test
developers, and web developers. Here is how to change the settings so that
the key bindings are set to the default values for C# developers:

1. Select Tools, Import and Export Settings.

2. Choose Reset All Settings, and click Next.

3. You can optionally save your current settings or select to overwrite
your existing settings. Click Next.

4. Select the Visual C# Development Settings, and click Finish.

The items shown in Table A.1 are broken into different categories. For
instance, the first items are part of the Edit category, the File category is sec-
ond, and so on.

Visual C# 2008 Key Bindings 539



ptg

Table A.1 The Visual C# Key Bindings

Command Key Binding

Edit

Edit.CollapseTo-Definitions Ctrl-M, O

Edit.ToggleAllOutlining Ctrl-M, L

Edit.ToggleOutliningExpansion Ctrl-M, M

Edit.StopOutlining Ctrl-M, P

Edit.CommentSelection Ctrl-K, C or Ctrl-E, C

Edit.UncommentSelection Ctrl-K, U or Ctrl-E, U

Edit.FormatDocument Ctrl-K, D or Ctrl-E, D

Edit.FormatSelection Ctrl-K, F, or Ctrl-E, F

Edit.InsertSnippet Ctrl-K, X

Edit.SurroundWith Ctrl-K, S

Edit.InvokeSnippetFromShortcut Tab

Edit.CycleClipboardRing Ctrl-Shift-V

Edit.Replace Ctrl-H

Edit.ReplaceInFiles Ctrl-Shift-H

View.ShowSmartTag Ctrl-. or Shift-Alt-F10

File

File.NewProject Ctrl-Shift-N

File.OpenProject Ctrl-Shift-O

Project.AddClass Shift-Alt-C

Project.AddExistingItem Shift-Alt-A

Project.AddNewItem Ctrl-Shift-A

Window.ShowEzMDIFileList Ctrl-Alt-down arrow

Appendix A Tips for Developers540



ptg

Command Key Binding

Edit.OpenFile Ctrl-O

IntelliSense

Edit.CompleteWord Ctrl-Space

Ctrl-K, W

Edit.ListMembers Ctrl-J

Ctrl-K, L

Edit.QuickInfo Ctrl-K, I

Edit.ParameterInfo Ctrl-Shift-Space or Ctrl K, P

Make Completion List Transparent Ctrl

Navigation

Edit.FindAllReferences Shift-F12 or Ctrl-K, R

Edit.GoToBrace Ctrl-]

Edit.GoToDefinition F12

Edit.GoToNextLocation F8

Edit.IncrementalSearch Ctrl-I

View.ClassViewGo-ToSearch, Combo Ctrl-K or Ctrl-V

View.ForwardBrowseContext Ctrl-Shift-7

View.PopBrowseContext Ctrl-Shift-8

View.NavigateBackward Ctrl-minus sign (-)

View.NavigateForward Ctrl-Shift-minus sign (-)

Edit.FindInFiles Ctrl-Shift-F

Edit.FindSymbol Alt-F12

View.ViewCode F7

Visual C# 2008 Key Bindings 541

continues



ptg

Table A.1 Continued

Command Key Binding

View.ViewDesigner Shift-F7

View.ViewMarkup Shift-F7

Window.MoveToNavigationBar Ctrl-F2

Edit.Find Ctrl-F

Edit.GoTo Ctrl-G

Edit.GoToFindCombo Ctrl-/

Window

View.ClassView Ctrl-W, C

View.CodeDefinitionWindow Ctrl-W, D

View.Command-Window Ctrl-W, A

View.ErrorList Ctrl-W, E

View.ObjectBrowser Ctrl-W, J

View.Output Ctrl-W, O

View.PropertiesWindow Ctrl-W, P

View.SolutionExplorer Ctrl-W, S

View.TaskList Ctrl-W, T

View.Toolbox Ctrl-W, X

View.ServerExplorer Ctrl-W, L

Window.CloseToolWindow Shift-Esc

Data.ShowDataSources Shift-Alt-D

Window.CloseDocument, Window Ctrl-F4

Window.NextDocument, WindowNav Ctrl-Tab

Appendix A Tips for Developers542



ptg

Command Key Binding

Refactor

Refactor.EncapsulateField Ctrl-R, E

Refactor.ExtractInterface Ctrl-R, I

Refactor.ExtractMethod Ctrl-R, M

Refactor.PromoteLocalVariabletoParameter Ctrl-R, P

Refactor.RemoveParameters Ctrl-R, V

Refactor.Rename Ctrl-R, R or F2

Refactor.ReorderParameters Ctrl-R, O

Debugging

Debug.Autos Ctrl-D, A

Debug.CallStack Ctrl-D, C

Debug.Immediate Ctrl-D, I

Debug.Locals Ctrl-D, L

Debug.QuickWatch Ctrl-D, Q

Debug.Start F5

Debug.StartWithoutDebugging Ctrl-F5

Debug.StepInto F11

Debug.StepOut Shift-F11

Debug.StepOver F10

Debug.StopDebugging Shift-F5

Debug.ToggleBreakpoint F9

Debug.Watch Ctrl-D, W

Debug.EnableBreakpoint Ctrl-F9

Visual C# 2008 Key Bindings 543

continues



ptg

Table A.1 Continued

Command Key Binding

Make Datatip Transparent Ctrl

Build

Build.BuildSolution F6 or Ctrl-Shift-B

Build.BuildSelection Shift-F6

Answers to Chapter 4 Exercises

Here are the answers to the exercises found in Chapter 4, “C# 3.0 Technical
Overview.” The exercises are found in the section “Generic Methods, Del-
egates, and Lambdas”—more specifically, in the subsection “Lambdas.”

1. 6"�����������.���%�� ./.���./�.������	�5���	
��	���!

2. :��"���1.����.�����%� ./.���./�.��.O.<�!

3. 6"���� ���%�� 5������./.��./�.������	�5���	
��	�C5������C�!

4. :��"���1.���1.���1.�	"�����."��"����	./.��1.�1."�./�

��.Y.��.@."

5. :��"���1.���1.�����.���./.��1.��./�.��������.Y.��!

6. :��"���1.���1.�����.���./.��1.��./�.��������.Y.��!

����� � ��	�!
����� � ��	������	"������#	�	��"!
����� � ��	��
��$!
����� � ��	���	=�!

���	�%�"	 ������	6%%��"�����0
(

"���� )������
(

%����" �����" *��� ?��%�� ������� *���	�
(

������	�5���	
��	�*���	�!
4

Appendix A Tips for Developers544



ptg

%����" �����" ��� +����%� ���� ��
(

�	���� �.O.<!
4

%����" �����" *��� ?��%�� 5��������
(

������	�5���	
��	�C5������C�!
4

%����" �����" �	"���� ���"����	���� �1.��� �1.��� "�
(

�	���� ��.Y.��.@."!
4

%����" �����" ���� 6������ �1.��� ��
(

�	���� �.Y.�������!
4

%����" �����" ������ ����+	������� �1.��� �1.��� "�
(

�	���� �������:�������1.�1."1.��.Y."��!
4

�����" *��� +����������,-.�����
(

6"�����������.���%�� ./.���./�.������	�5���	
��	���!

?��%�� �C���	.�	=�C�!
���%�� �C���	.�	=�C�!

:��"���1.����.�����%� ./.���./�.��.O.<�!

������	�5���	
��	�+����%� �3��!
������	�5���	
��	������%� �3��!

6"���� ���%�� 5������./.��./�.������	�5���	
��	�C5������C�!

?��%�� 5��������!
���%�� 5��������!

:��"���1.���1.���1.�	"�����."��"����	./
��1.�1."�./�.��.Y.��.@."!

������	�5���	
��	����"����	�<1.R1.3��!
������	�5���	
��	�"��"����	�<1.R1.3��!

:��"���1.���1.�����.���./.��1.��./�.��������.Y.��!

Answers to Chapter 4 Exercises 545



ptg

������	�5���	
��	�6������32�+�=J���	1.���32�+�=J���	��!
������	�5���	
��	��������32�+�=J���	1.���32�+�=J���	��!

:��"������1.���1.���1.�������.����+	./
��1.�1."�./�.�������:�������1.�1."1.��.Y."��!

������	�5���	
��	�����+	�C(L4.Y.(04./.(24C1.31.<��!
������	�5���	
��	�����+	�C(L4.Y.(04./.(24C1.31.<��!

4
4

4

Appendix A Tips for Developers546



ptg

Index

547

Symbols
=> (goes to) operator, 91

A
accessing

backing fields of properties, 22
SharePoint sites, 500

Add Connection dialog box, 530
Add Function Import dialog box, 363
Add New Item dialog box, 354, 503
Add statements, 382
adding

announcements to SharePoint, 501
attributes to nodes, 36
stored procedures, 363

Aggregate operator, 210, 216-219
Aggregate operators, 177, 210

Aggregate, 210, 216-219
Average, 210, 214-215
Count, 210-212
LongCount, 210-212
Max, 210-214
Min, 210-214
Sum, 210, 215-216

All operator, 181, 187
Ancestors( ) method, 408-409
Annotation( ) method, 461
annotations (XML), 459-461
anonymous types, 19, 79-82

class example, 81
passing out of methods, 81
query example, 82
querying collections of objects, 24-25

Any operator, 181, 186-187
APIs

Flickr, 495
LINQ to XML, 374

classes, 374
nodes, 374
XML attributes, creating, 377
XML declarations, creating, 378-381
XML documents, 378, 382-386
XML elements, creating, 375-377

AsEnumerable operator, 224
ASP.NET data binding, orders form

example, 310-316
Data Source Configuration Wizard, 312-313
filters, 313
grid view, 314
order details in web page, 311
query results, configuring, 313
results, 315

AsParallel( ) method, 489
assigning delegates, 85
Association attribute (object relationships), 257
associations

EDM, 351
relationships, 236

Athena. See LINQ to Flickr
Attach( ) method (multitier entities), 302-305
attaching multitier entities, 302-305
attributes

adding to nodes, 36
Association (object relationships), 257
Column, 234
InheritanceMapping, 271
Table (entity classes, creating), 233



ptg

XML, creating, 377
XML nodes, 420
xmlns, 425

automatic properties, 69-73
C# 2.0 syntax, 70
example listing, 69
OperatorId, 70-71
OperatorName, 70
private setter, 73
prop snippet, 70
querying collections of objects, 21-22
Reflector generated code, 71-72
warnings, 72

Average operator, 210, 214-215

B
backing fields (properties), 22
binding orders form example

ASP.NET data binding, 311-315
smart client data binding, 306-309

Build C# key bindings, 544
business logic

entities, 474-476
separation of concerns, 474-476

C
C#

automatic properties, 69-73
deferred execution, 111-117
delegates, 83-89
Development Center web site, 11
expression trees, 122-128
extension methods, 94-103
IEnumerable<T> interface, 103-110
initializers, 74-77
iterators blog, 110
key bindings, 539-544
keywords/contextual keywords, 537-539
lambdas, 89-94
operator overrides, 117-121
partial methods, 66-69
programs, compiling, 524-526
sample programs, 520-521
types, 77-82
version numbers, 521
XML literals, 461-463

Calvert, Charlie blog, 10
Cast operator, 224
casting XML elements, 397

categories of operators, 175-177
ChangeConflictException, 295
character data (XML), 406-407
Chen, Raymond, 110
classes

Customer, 237, 263
DataContext, 234-236
entity

creating, 233-234
customizing, 341-344

Enumerable, 179
Extensions, 391
GetListEnumerator, 115
Item, 213
LINQ to XML

API, 374
hierarchy, 422

Musician, 145
MyNumberServer, 169-172
MyPartialClass, 67
NorthwindDataContext, 338-340
Order, 237, 263
partial, adding to entity classes, 343
persistent, 345-348
Process, 511
SpecialString, 97
tables to classes, mapping, 240-243
tables, mapping, 233-236
ValidationEventArgs, 457
XAttribute, 377
XContainer, 388-391
XDocument, 378, 390
XElement, 376, 390-391
XML, 387-388
XmlSchemaSet, 456
XNamespace, 427
XNode, 389-391
XObject, 415

clauses
from, 17, 132
group-by

projections, 154
query expressions, 132-141

let, 141-143
order, 162
query expressions, 131-132
select

projections, 154-155
query expressions, 17, 132

where, 17, 132
code generation web site, 536

Index548



ptg

collections
initializers, 16, 74-75
integers, querying, 14-20

collection intializers, 16
IEnumerable<T>, 19-20
query expressions, 16-18
type inferences, 18

objects, querying, 20
anonymous types, 24-25
automatic properties, 21-22
object initializers, 22-24

properties, 259
Column attribute, 234
command-line tools

edmgen.exe, 359
programs, compiling, 527-528
SqlMetal, 243

commands. See methods
compiling

C# programs, 524-526
programs from command line, 527-528
queries, LINQ to SQL, 277-278

composability, 7, 58-59, 517
composing

Element operators, 202-203
query expressions, 136

group-by clauses at the end, 136-139
group-by clauses in the middle, 139-141
into keyword, 141
let clauses, 141-143

Concat operator, 205
concurrency, managing, 290-292, 476-477

optimistic, 292
conflict detection, 292-295
conflict resolution, 295-297
limitations, 478

refreshing entities, 297-299
set of changes, 298
units of work, 478

Configure Behavior dialog box, 332
configuring CUD operations, 332
conflicts

detection, 292-295
resolution, 295-297

connections
databases, 528-530

Object Relational Designer, 531-533
Visual Studio 2008, 528-530

managing, 302
SharePoint, 503

Contains operator, 181, 188-190
content (XML), 372
context, defining, 479-480

contextual keywords
C#, 537-539
defined, 17
var, 18

continuations (query expressions), 141
Conversion AsEnumerable, 228
Conversion operators, 176, 223

AsEnumerable, 224
Cast, 224
OfType, 224-227
ToArray, 224-226
ToDictionary, 224, 227
ToList, 224-226
ToLookup, 224

core operators, 177
costs (performance), 480-481
Count operator, 210-212
CreateDatabase( ) method, 316-317
CreateDatabase sample program, 450
CreatePlanets sample program, 381
create, update, delete. See CUD operations
creating

database connections, 528-533
Object Relational Designer, 531-533
Visual Studio 2008, 528-530

databases with LINQ to SQL, 316-318
databases programmatically, 442-443

data schemas, viewing, 449
table declarations, 450
tables, creating, 444-447
XML data, transferring, 447-449

EDMs, 354
connections, 356
database generation, 354
expanding database objects, 356
generated model, 358
models, adding, 354
new items, adding, 354
selecting database objects, 356

entity classes, 233-234
Flickr application, 497-499
persistent classes, 345-348
XHTML, 431-437
XML

attributes, 377
declarations, 378-381
documents, 378, 382-383
elements, 375-377

CRUD (creating, reading, updating, and
deleting) operations, 240, 361-362

CUD (create, update, delete) operations, 
330-332

Index 549



ptg

Customer class
Orders property, 237
OtherKey property, 237
relationship with Order class, 263

Customer object
LINQ to SQL Designer generated example,

55-56
query listing, 23

customers, moving orders between, 287
customizing

entity classes, 341-343
lifecycle events, 344
partial classes, adding, 343
service contract compatibility, 342
WCF DataContract attribute, 341-342

generated code, 337-338
entity classes, 341-344
NorthwindDataContext class, 338-340

D
data binding (LINQ to SQL), 305

ASP.NET, 310, 313, 316
smart client, 306, 309-310

Data Definition Language (DDL), 269
data shaping, 470-472
Data Source Configuration Wizard, 306

data selection, 313
launching, 312

data sources
adding new, 306
choosing, 306
Data Sources window, populating, 308
enabled by third-party LINQ providers, 44

Data Transfer Objects (DTOs), 471
Database Explorer, 437
databases

connections, 528-530
Object Relational Designer, 531-533
Visual Studio 2008, 528-530

creating with LINQ to SQL, 316-318
creating programmatically, 442-443

data schemas, viewing, 449
table declarations, 450
tables, creating, 444-447
XML data, transferring, 447-449

Northwind
DataContext class, customizing, 338-340
sample programs, 521
scalar-valued functions, adding, 328
stored procedures multiple results, 324

stored procedures single results, 322
TVFs, adding, 326

queries, 26-30
relational, 247

DataContext class
concurrency management, 478
mapping classes to tables, 234-236
performance optimization, 483
persistence-related services, 474

DDL (Data Definition Language), 269
Debugger integration with LINQ, 112
Debugging C# key bindings, 543
declarations

operators, 180
XML, 371-373

creating, 378-381
DOCTYPE, 434

declarative programming, 2, 7, 48-52, 383, 516
default namespaces (XML), 426-429
DefaultIfEmpty operator, 198, 203-204
deferred execution, 111-117

compiler code produced upon calling
GetSequence( ) method, 114

foreach code execution, 113-114
iterator sequence example, 111-112
overview, 59
projections, 156-159
queries, 265
reasons for, 116

deferred loading (LINQ to SQL), 264-266
delegates, 83-86

assigning, 85
data sorting pattern, 85
generic, 86-89
MyDelegate example, 83-84

DeleteOnSubmit( ) method, 284
deleting

entities, 284-285
XML nodes, 417-418

DescendantNodes( ) method, 402-404
DescendantNodesAndSelf( ) method, 404
Descendants( ) method, 397-400
descendants (XML), 397-400
dialog boxes

Add Connection, 530
Add Function Import, 363
Add New Item, 354, 503
Configure Behavior, 332
New Project, 524

discreet computations, 60
Distinct operator, 204, 207

Index550



ptg

DOCTYPE declarations, 434
documents (XML)

creating, 378, 382-383
RSS feeds, loading, 385
saving to disks, 383, 386

dotting through relationships, 258
DTDs (Document Type Definitions), 453
DTOs (Data Transfer Objects), 471
dynamic SQL, 468-469

E
eager loading (LINQ to SQL), 266-268
Edit C# key bindings, 540
editing XML nodes, 418-419
EDM (Entity Data Model), 349-352

associations, 351
creating, 354

connections, 356
database generation, 354
expanding database objects, 356
generated model, 358
models, adding, 354
new items, adding, 354
selecting database objects, 356

CRUD operations, 361-362
generated code, 359-360
Generator, 359
relationships, 351
stored procedures, 362

adding, 363
mapping to methods, 363
parameters, mapping, 365
update procedure, 364

edmgen.exe command-line tool, 359
EF (Entity Framework), 349

associations, 351
CRUD operations, 361-362
EDM, 350-352
entity models, creating, 354

connections, 356
database generation, 354
expanding database objects, 356
generated model, 358
models, adding, 354
new items, adding, 354
selecting database objects, 356

generated code, 359-360
layers, 352-353
relationships, 351
stored procedures, 362

adding, 363
mapping to methods, 363

parameters, mapping, 365
update procedure, 364

Element operators, 176, 198
composing, 202-203
DefaultIfEmpty, 198, 203-204
ElementAt, 198, 202
ElementAtOrDefault, 198
First, 198
FirstOrDefault, 198-199
Last, 198, 200
LastOrDefault, 198-200
Single, 198, 201
SingleOrDefault, 198

ElementAt operator, 198, 202
ElementAtOrDefault operator, 198
elements (XML), 373

casting, 397
creating, 375-377
nodes, adding, 421

ElementsAfterSelf( ) method, 409
ElementsBeforeSelf( ) method, 409
Empty operator, 181, 186
enabling data sources, 44
ends (entity relationships), 351
entities. See also objects

business logic, 474-476
classes

creating, 233-234
customizing, 341-343

concurrent changes, 290-292
optimistic. See optimistic concurrency
refreshing entities, 297-299
set of changes, 298

connections, managing, 302
CUD operations, configuring, 332
data binding, 305

ASP.NET, 310, 313, 316
smart client, 306, 309-310

data shaping, 470-472
deleting, 284-285
inheritance, 269-274

class diagram, 269
class hierarchy on designer surface, 274
designers, 273
InheritanceMapping attribute, 271

inserting, 282-283
lifecycle, 282, 344
loading, 264

deferred, 264-266
eager, 266-268

modifying, 239-240
multitier, attaching, 302-305
object identity, 255-256

Index 551



ptg

persistence, 473-474
refreshing, 297-299
relationships, 256-351

Association attribute, 257
collection properties, 259
dotting through, 258
joining tables, 260-262
managing, 286-288
mapping, 264

retrieving, 252-254
security, improving, 484-486
submitting changes, 288-290
transactions, 299-302
updating entities, 285-286

Entity Data Model. See EDM
Entity Data Model Wizard, 354

connections, 356
database generation, 354
expanding database objects, 356
generated model, 358
selecting database objects, 356

Entity Framework. See EF
EntityClient Data Provider layer, 352
EntityRef type (Order class), 237
Enumerable class, 179
Equality operators, 177
equijoins, 145
Except operator, 205-207
explicit conversion operators, 413
Express Tree Visualizer, 125

lambda expression, parsing, 126
LINQ to SQL code, parsing, 127
opening, 125
popup menu item example, 127

Expression property, 173
expression trees, 122-125, 128

Expression Tree Visualizer, 125-127
lambda based example, 123
parsing operations, 123-124

expressions (query)
clauses, 131-132
composing, 136-143
continuations, 141
IEnumerable<T> interface, 168
IQueryable<T> interface, 168, 172-173
joins, 143-153
MyNumberServer class, 169-172
nomenclature, 130
projections, 153

deferred execution, 156-159
new class in a select clause example, 154
overview, 154-156

SelectMany operator overloads, 164-167
SelectMany operators, 159-164
transforming objects into XML, 155

range variables, 133-135
Set operators, 208-210

extensibility, 7, 516
extensible provider model, 43-46

data sources enabled by third-party LINQ
providers, 44

LinqToTerraServer example, 45
query operators, 46-48

extension methods, 2, 94-98
scoping, 98-103
static method string class example, 95-96

Extensions class, 391

F
FakeWeatherData program, 491-492
famous Romans code reuse example, 178
File C# key bindings, 540
files (XML)

creating, 34-36
loading, 536
parsing, 31-34

filters, choosing, 313
finding providers, 536
First operator, 198
FirstFourPlanets.xml, 392-393

names of planets code, 393
output, 394

FirstOrDefault operator, 198-199
flattening group joins, 261
Flickr, 495-499
FlickrXplorer application, 496
foreach loops

deferred execution, 113-114
operator code reuse, 178
querying collections of integers, 19

foundational qualities of LINQ, 516-517
foundations

composability, 58-59
declarative programming, 48-52
extensibility, 43-46

data sources enabled by third-party LINQ
providers, 44

LinqToTerraServer example, 45
query operators, 46-48

hierarchies, 53-58
integration, 40-41
transformational powers, 60-61
unified method for querying, 42-43

Index552



ptg

from clauses (query expressions), 17, 132
from keyword (range variables), 135
fundamentals (XML), 370-371, 374
future

LINQ to Flickr, 495
API, 495
applications, creating, 497-499
download, 496
FlickrXplorer application, 496
web site, 495

LINQ to SharePoint
announcements, adding, 501
assemblies, registering, 502
connections, 503
example site, 501
LINQ to SharePoint Entity Wizard, 503
queries, 508
requirements, 500
site access, 500
site lists, choosing, 505
Solution Explorer example, 507
template, choosing, 503
web site, 499
wizard choices, reviewing, 50

PLINQ, 488-490
complexities, 494
FakeWeatherData program, 491-492
IParallelEnumerble interface, 489
LINQ query time differences, measuring,

493-494
Parallel Computing team web site, 488
ParallelQuery<int>, 489
performance improvements, 490

G
generated code

automatic properties, 71-72
customizing, 337-338

entity classes, 341-344
NorthwindDataContext class, 338-340

EF, 359-360
Generation operators, 177, 181

All, 181, 187
Any, 181, 186-187
Contains, 181, 188-190
Empty, 181, 186
Range, 181-183
Repeat, 181-185

generic delegates, 86-89
generics

overview, 9
syntax, 10

GetChangeSet( ) method, 298
GetListEnumerator class, 115
GetProcesses( ) method, 511
GetSequence( ) method, 113
GettingStartedWithLinqToXML sample

program, 382
goes to (=>) operator, 91
graphical designer for mapping. See Object

Relational Designer
group joins, 147-149, 261
group-by clauses

projections, 154
query expressions, 132

at the end, 136-139
in the middle, 139-141

GroupByOperators sample program
group-by clauses, 139
let clause, 142

Grouping operators, 177

H
handling conflicts, 295-297
hierarchies, 53-58

Customer object generated by LINQ to SQL
Designer example, 55-56

two object relationship, 54
hierarchy, 7, 516

LINQ to XML classes, 422
XML, 372, 387-388

Hossain, Mehfuz, 496

I
identifiers (XML namespaces), 424
identity (objects), 255-256
IEnumerable<T> interface, 103-105

Element operators, composing, 202-203
enumeration, 106-108
implementing with yield return, 108
iterators, 108-110
operator support, 119
query expressions, 168
querying collections of integers, 19-20
sequences, 106

IEnumerator<T> interface, 107
IEqualityComparer interface, 188
IL (Intermediate Language), 22
immediate loading, 266-268
imperative programming, 48, 383
inferred types, 78-79
Informit web site, 11

Index 553



ptg

inheritance (LINQ to SQL), 269-274
class diagram, 269
class hierarchy on designer surface, 274
designers, 273
InheritanceMapping attribute, 271

InheritanceMapping attribute, 271
initializers, 74

collection, 16, 74-75
object, 76-77
objects, 22-24

inner joins, 143-146
inserting

entities, 282-283
XML nodes, 420-421

InsertOnSubmit( ) method, 283
installing

.NET Framework, 522
SQL Server Express, 523
Visual Studio Express, 522

integration, 7, 40-41, 516
IntelliSense C# key bindings, 541
interfaces

IEnumerable<T>, 103-105
Element operators, composing, 202-203
enumeration, 106-108
implementing with yield return, 108
iterators, 108-110
operator support, 119
query expressions, 168
querying collections of integers, 19-20
sequences, 106

IEnumerator<T> interface, 107
IEqualityComparer, 188
IParallelEnumerable<int>, 489
IQueryable<T>, 172-173
IXmlLineInfo, 415

Intermediate Language (IL), 22
Intersect operator, 204-207
into keyword (query expressions), 141
into operators, 150
IParallelEnumerable interface, 489
IQueryable<T> interface, 172-173
IQueryable Toolkit, 496
IsPrimaryKey property (Column attribute), 234
IsState( ) method, 96
Item class, 213
IXmlLineInfo interface, 415

J–K
Join operators, 176, 260-262
joining tables, 260-262

joins, 143
equijoins, 145
group, 147-149, 261
inner, 143-146
left outer, 149-151
LINQ to SQL, 153
object-oriented model, 152-153
web site, 536

key bindings (C#), 539-544
keywords

C#, 537-539
contextual, 17-18
from, 135
into, 141
var, 78-79

Kulkarni, Dinesh blog, 11

L
lambdas, 2, 89-92

=> (goes to) operator, 91
C# 2.0 anonymous methods, compared, 92
exercises, 92-94
expression trees based on lambdas

example, 123
local variables, 91
methods, compared, 90
query expressions role, 118
syntax, 89

Language Integrated Query. See LINQ
Last operator, 198-200
LastOrDefault operator, 198-200
layers (EF), 352-353
left outer joins, 149-151
let clauses (query expressions), 141-143
lifecycle (entities), 240, 282

deleting entities, 284-285
entity class customizations, 344
inserting entities, 282-283
managing relationships, 286-288
submitting changes, 288-290
updating entities, 285-286

line numbers (XML nodes), 414-417
LINQ (Language Integrated Query), 1

building blocks, 517
foundational qualities, 516-517
overview, 3

LINQ to Entities. See EF
LINQ to Flickr, 495

API, 495
applications, creating, 497-499

Index554



ptg

download, 496
FlickrXplorer application, 496
web site, 495

LINQ to Objects
LINQ to SQL, compared, 8-9, 105
providers for existing technologies, 509
system processes, querying, 510-511

LINQ to Relational technology, 366
LINQ to SharePoint, 499

announcements, adding, 501
assemblies, registering, 502
connections, 503
example site, 501
LINQ to SharePoint Entity Wizard, 503
queries, 508
requirements, 500
SharePoint site access, 500
site access, 500
site lists, choosing, 505
Solution Explorer example, 507
template, choosing, 503
web site, 499
wizard choices, reviewing, 506

LINQ to SharePoint Entity Wizard
choices, reviewing, 506
connections, 503
first page, 503
site lists, choosing, 505

LINQ to SQL
concurrent changes, 290-292

optimistic. See optimistic concurrency
refreshing entities, 297-299
set of changes, 298

connections, managing, 302
CRUD, 240
data binding, 305

ASP.NET, 310, 313, 316
smart client, 306, 309-310

databases, creating, 316-318
entities

deleting, 284-285
inserting, 282-283
modifying, 239-240
submitting changes, 288-290
relationships. See entities, relationships
retrieving, 252-254
updating entities, 285-286

expression tree, parsing, 127
inheritance, 269-274
Join operator, 260-261
joins, 153

LINQ to Objects, compared, 8-9, 105
LinqToSqlWithoutDesigner example, 26-30
loading options, 264-268
mapping classes to tables, 233-236
mapping tools

command-line, 243
graphical designer. See Object Relational

Designer
multitier entities, attaching, 302-305
object identity, 255-256
overview, 231-233
performance

compiled queries, 277-278
queries versus results, 275-276

relationships, 236-239
security, 278-279, 484-486
stored procedures, 319

CUD operations, 330-332
executing, 322
mapping, 320
relationships, loading, 333-334
returning entity type example, 322-323
returning multiple results, 324-326
returning rows with key values 

example, 322
scalar-valued functions, 328-329
TVFs, 326-328

transactions, 299-302
transformation into XML, 60
translating, 248-250

base class library methods, 250
scalar UDFs, 251
T-SQL methods, 251

LINQ to SQL Designer
Customer object example, 55-56
generated code, customizing, 337-338

entity classes, 341-344
NorthwindDataContext class, 338-340

LINQ to XML
Ancestors( ) method, 408-409
annotations, 459-461
character data, 406-407
classes, 374, 422
databases, creating programmatically, 442-443

data schemas, viewing, 449
table declarations, 450
tables, creating, 444-447
XML data, transferring, 447-449

declarations, 434
DescendantNodes( ) method, 402-404
DescendantNodesAndSelf( ) method, 404

Index 555



ptg

descendants, 397-400
ElementsBeforeSelf( )/ElementsAfterSelf( )

methods, 409
explicit conversion operators, 413
namespaces, 424-426

accidentally omitting, 436
default, 426-429
identifiers, 424
prefixes, 425
schema validation, 458-459
XHTML, creating, 435

nodes, 374
adding, 420-421
attributes, 420
deleting, 417-418
editing, 418-419
elements, 421
line numbers, 414, 417
missing, 411-414

parent nodes, 407-409
queries, 392

composition, 400-402
FirstFourPlanets.xml, 392-394

schema validation, 451-459
text node searches, 405
transformations, 429

relational data into XML, 437-442
XHTML, creating, 431-437
XML between formats, 430-431
XML data into databases, 447-449

XML
attributes, creating, 377
declarations, creating, 378-381
documents, creating, 378, 382-383
documents, saving to disks, 383, 386
elements, creating, 375-377
literals, 461-463

XML files
creating, 34-36
parsing, 31-34

XNamespace class, 427
LinqDataSource application example

Data Source Configuration Wizard, 312-313
filters, 313
grid view, 314
query results, configuring, 313
results, 315

LINQExtender, 496
LinqToSqlWithoutDesigner example, 26-30
LinqToTerraServer provider, 45
List<T>, declaring, 104

listings
anonymous class example, 81
automatic properties

C# 2.0 syntax, 70
example, 69
Reflector generated code, 71-72

Contains operator, 188
Count operator, 211
Customer objects

generated by LINQ to SQL Designer, 55-56
query, 23

databases, creating programmatically
table declarations, 450
tables, creating, 444-445

deferred execution, iterator sequence
example, 111-112

DescendantNodes( ) method, 403
DescendantNodesSelf( ) method, 404
Descendants program, 398-399
Distinct operator, 207
enumerating with IEnumerator<T>

interface, 107
Except method, 208
expression trees

lambda based, 123
parsing operations, 123-124

extension methods
scoping, 99-103
static method string class example, 95-96

FirstFourPlanets.xml, 392-393
names of planets code, 393
output, 394

Flickr application, 498
generic delegates example, 88
IEnumerable<T> interface, implementing

with yield return, 108
inner joins, 143-145
Intersect operator, 206
left outer joins, 149
LINQ to SQL, LinqToSqlWithoutDesigner

example, 26-30
LINQ to XML

customers who live in Mexico D.F., 31
data stored in Customers.xml file, 32

Min/Max operators
highest/lowest values in a sequence, 212
Item class/GetItems( ) method, 212
min/max values for complex types with

multiple fields, 213
MyDelegate example, 83-84
MyNumberServer class, 169

Index556



ptg

object-oriented join model, 152
operator overrides, Where operator, 119-120
OrderByDescending operator, 221
Ordering operators, 220
partial method example, 67-68
projections

deferred execution, 158
new class in a select clause example, 154
SelectMany operators, 159
transforming objects into XML, 155

query expressions
group-by clauses, 139
let clause, 142

querying collections of integers, 14
relational data transformation into XML,

437-439
Repeat operator, 184
system processes, querying, 510-511
ToArray operator, 226
transformations, LINQ to SQL query into

XML, 60
Union operator, 205
XHTML documents

creating, 432-434
example, 435

XML
annotations, 459
character data, 406-407
declarations, creating, 378-379
documents, creating one node at a time, 382
documents, example, 370
documents, saving to disks, 383
files, creating, 34
nodes, deleting, 417
schema validation example, 455-456
single node access, 401

Load( ) method, 385
loading

entities, 264
LINQ to SQL

deferred, 264-266
eager, 266-268

relationships, 333-334
XML files, 536

local variables, 91
locating operators, 179-181
LongCount operators, 210-212

M
managing

concurrency, 476-478
connections, 302
entity relationships, 286-288
transactions, 299-302

many-to-many relationships, 262
mapping

classes to tables, 233-236
relationships, 264
stored procedures, 320-322

methods, 363
parameters, 365

tables to classes, 240-243
TVFs, 327

Max operators, 210-214
metadata declarations, 121
methods

Ancestors ( ), 408-409
Annotation( ), 461
anonymous types, passing, 81
AsParallel( ), 489
Attach( ), 302-305
CreateDatabase( ), 316-317
DeleteOnSubmit( ), 284
DescendantNodes( ), 402-404
DescendantNodesAndSelf( ), 404
Descendants( ), 397-400
ElementsAfterSelf( ), 409
ElementsBeforeSelf( ), 409
extension, 2, 94-103
GetChangeSet( ), 298
GetProcesses( ), 511
GetSequence( ), 113
InsertOnSubmit( ), 283
IsState( ), 96
lambdas, compared, 90
LINQ to SQL translation, 250-251
Load( ), 385
MoveNext( ), 115
MyPartialMethod( ), 67
OnCreated( ), 339
OnRequiredDateChanged( ), 344
OnRequiredDateChanging( ), 344
partial, 66-69
ProcessList( ), 434
Refresh( ), 297
Resolve( ), 297
scalar UDFs, 251
ShowExcept( ), 208

Index 557



ptg

ShowIntersect( ), 206
ShowRepeat( ), 184
ShowUnion( ), 205
StartsWith( ), 250
stored procedures, mapping, 363
SubmitChanges( ), 288-290

overriding, 340
performance optimization, 483

T-SQL, 251
ToString( ), 384
Validate( ), 456
ValidationEventHandler( ), 457
WriteFile( ), 68
XContainer class, 391
XElement class, 391
XNode class, 391

Microsoft
MVC download, 496
Office SharePoint Server 2007 VHD, 500

Min operator, 210-214
minimal update statements, 286
missing nodes (XML), 411-414
modifying entities, 239-240
ModifyNodes program, 417
MoveNext( ) method, 115
multitier entities, attaching, 302-305
Musician class, 145
MVC download, 496
MyDelegate example, 83-84
MyNumberServer class, 168-172
MyPartialClass class, 67
MyPartialMethod( ) method, 67

N
namespaces

System.Diagnostics, 510-511
System.Xml.Linq, 32
XML, 424-426

accidentally omitting, 436
default, 426-429
identifiers, 424
prefixes, 425
schema validation, 458-459
XHTML, creating, 435

Navigation C# key bindings, 541
.NET

Development web site, 535
Framework

installing, 522
version numbers, 521
web site, 536

New Project dialog box, 524
nodes (XML), 374

adding, 420-421
attributes, 36, 420
deleting, 417-418
editing, 418-419
elements, 421
line numbers, 414, 417
missing, 411-414
parents, 407-409

nomenclature (query expressions), 130
Northwind database

connections
Object Relational Designer, 531-533
Visual Studio 2008, 528-530

customizing, 338-340
DataContext class, customizing, 338-340
download, 521
sample programs, 521
scalar-valued functions, adding, 328
stored procedures, 322-324
TVFs, adding, 326

O
object initializers, 22-24, 76-77
object-oriented join model, 152-153
Object Relational Designer

database connections, creating, 531-533
mapping tables to classes, 240-243

Object Services layer, 352
objects. See also entities

collections, querying, 20
anonymous types, 24-25
automatic properties, 21-22
object initializers, 22-24

Customer, 23, 55-56
hierarchy example, 54
identity, 255-256
lifecycle, 240
references, 255
relationships, 236, 256-259

Association attribute, 257
collection properties, 259
defining, 236-238
dotting through, 258
joining tables, 260-262
mapping, 264
querying across, 238-239

OfType operator, 224-227
OnCreated( ) method, 339
OnRequiredDateChanged( ) method, 344

Index558



ptg

OnRequiredDateChanging( ) method, 344
operations

CRUD, 240, 361-362
CUD, 330-332
parsing, 123-124

OperatorId automatic property, 70-71
OperatorName automatic property, 70
operators

Aggregate, 177, 210
Aggregate, 210, 216-219
Average, 210, 214-215
Count, 210-212
LongCount, 210-212
Max, 210-214
Min, 210-214
Sum, 210, 215-216

categories, 175-177
choosing, 177
Conversion, 223

AsEnumerable, 224, 228
Cast, 224
OfType, 224-227
ToArray, 224-226
ToDictionary, 224, 227
ToList, 224-226
ToLookup, 224

core, 177
declarations, 180
Element, 176, 198

composing, 202-203
DefaultIfEmpty, 198, 203-204
ElementAt, 198, 202
ElementAtOrDefault, 198
First, 198
FirstOrDefault, 198-199
Last, 198-200
LastOrDefault, 198-200
Single, 198, 201
SingleOrDefault, 198

Equality, 177
explicit conversion, 413
famous Romans code reuse example, 178
foreach loop code reuse example, 178
Generation, 177, 181

All, 181, 187
Any, 181, 186-187
Contains, 181, 188-190
Empty, 181, 186
Range, 181-183
Repeat, 181-185

Grouping, 177
IEnumerable<T> interface support, 119

into, 150
Join, 176, 260-262
locating, 179-181
Ordering, 176, 219

OrderBy, 219-221
OrderByDescending, 219-222
Reverse, 219
Revise, 223
ThenBy, 219, 222-223

overriding, 117-121
Partitioning, 176, 192-193

Skip, 192-193
SkipWhile, 192, 196-197
Take, 192-193
TakeWhile, 192-195

Projection, 177
query, 46-48
Restriction, 177
SelectMany, projections, 159-167
SequenceEqual, 190-192
Set, 176, 204

Concat, 205
Distinct, 204, 207
Except, 205-207
Intersect, 204-207
query expressions, 208-210
SequenceEqual, 205
Union, 204-206

web site, 536
Where

filtering nodes, 34
implementing, 119-120

optimistic concurrency, 292
conflict detection, 292-295
conflict resolution, 295-297
limitations, 478

optimizing performance, 482-484
Order class

EntityRef type, 237
relationship with Customer class, 263
Storage property, 237

OrderByDescending operator, 219-222
OrderBy operator, 219-221
Ordering operators, 176, 219

OrderBy, 219-221
OrderByDescending, 219-222
Reverse, 219
Revise, 223
ThenBy, 219, 222-223

OrdersByCustomer stored procedure
loading Customer.Orders, 334
returning entity types, 322-323

Index 559



ptg

orders form example, smart client data
binding, 306

orders, moving between customers, 287
Orders property (Customer class), 237
OtherKey property (Customer class), 237
overriding

operators, 117-121
SubmitChanges( ) method, 340

P
Paldino, Nick, 81
Parallel Computing team web site, 488
Parallel LINQ. See PLINQ
ParallelQuery<int>, 489
parent nodes (XML), 407-409
parsing

operations, 123-124
XML files, 31-34

partial classes, adding to entity class, 343
partial methods, 66

example listing, 67-68
rules, 68-69

Partitioning operators, 176, 192-193
Skip, 192-193
SkipWhile, 192, 196-197
Take, 192-193
TakeWhile, 192-195

passing anonymous types out of methods, 81
performance

context, defining, 479-480
costs, 480-481
improving, 490
LINQ to SQL

compiled queries, 277-278
queries versus results, 275-276

optimizing, 482-484
persistent classes, creating, 345-348
persistence

DataContext services, 474
entities, 473-474
ignorance, 347
separation of concerns, 473-474

PLINQ (Parallel LINQ), 60, 488-490
complexities, 494
FakeWeatherData program, 491-492
IParallelEnumerable, 489
LINQ query time differences, measuring,

493-494
Parallel Computing team web site, 488
ParallelQuery<int>, 489
performance improvements, 490

prefixes (XML namespaces), 425
pre-LINQ mainstream programming

languages versus queries, 515-516
private setter (automatic properties), 73
Process class, 511
ProcessList( ) method, 434
Projection operators, 177
projections, 153

deferred execution, 156-159
new class in a select clause example, 154
overview, 154-156
retrieving, 252-254
SelectMany operator overloads, 164-167
SelectMany operators, 159-164
SQL, 155
transforming objects into XML, 155

prop snippet, 70
properties

automatic, 69-73
querying collections of objects, 21-22

backing fields, 22
collection, 259
Expression, 173
IsPrimaryKey (Column attribute), 234
Orders (Customer class), 237
OtherKey (Customer class), 237
Storage (Orders class), 237

providers
finding, 536
LinqToTerraServer, 45
third-party, 44

Q
queries

collections of integers, 14-20
collections of objects, 20-25
databases, 26-30
deferred execution, 265
LINQ to XML, 392-394
LINQ to SQL, 275-278
PLINQ, 490
SharePoint, 508
system processes, 510-511
unified method, 42-43
versus pre-LINQ mainstream

programming languages, 515-516
XML composition, 400-402

query expressions
beginning/ending, 16
clauses, 131-132
composing, 136-143

Index560



ptg

continuations, 141
IEnumerable<T>, 168
IQueryable<T>, 168, 172-173
joins, 143-153
lambdas, 118
MyNumberServer class, 169-172
nomenclature, 130
projections, 153

deferred execution, 156-159
new class in a select clause example, 154
overview, 154-156
SelectMany operator overloads, 164-167
SelectMany operators, 159-164
transforming objects into XML, 155

querying collections of integers, 16-18
range variables, 133-135
Set operators, 208-210
translating into query methods, 118

query methods, translating from query
expressions, 118

query operators, 46-48

R
Range operator, 181-183
range variables (query expressions), 133-135

identifiers, introducing, 133
introducing, 135
types, explicitly stating, 134

Refactor C# key bindings, 543
reference sources, 10, 535
references (objects), 255
Reflector automatic property generated

code, 71-72
Refresh( ) method, 297
refreshing entities, 297-299
relational data, transforming into XML, 437-442
relational databases, 247
relationships

association, 236
dotting through, 258
ends, 351
entities, 256-351

Association attribute, 257
collection properties, 259
dotting through, 258
joining tables, 260-262
managing, 286-288
mapping, 264

loading, 333-334
many-to-many, 262

objects, 236-239
unary, 351

Repeat operator, 181-185
Resolve( ) method, 297
resources, 10, 535
Restriction operators, 177
retrieving entities, 252-254
Reverse operator, 219
Revise operator, 223
Root MSDN Library web site, 535
root nodes (XML), 371
RSS feeds, loading to XML documents, 385
rules, partial method example, 68-69

S
sample sources, 10
saving XML documents, 383, 386
scalar UDFs, LINQ to SQL translation, 251
scalar-valued functions, 328-329
schema validation (XML), 451

documents, 452-453
DTD specification, 453
namespaces, 458-459
validating example, 455-457
XSD files, 454

scoping extension methods, 98-103
security

improving, 484-486
LINQ to SQL, 278-279

select clauses
projections, 154-155
query expressions, 17, 132

SelectMany operators, 159-167
self-referencing relationships, 351
separation of concerns

business logic, 474-476
persistence, 473-474

SequenceEqual operator, 190-192, 205
Server Explorer, 437
Set operators, 176, 204

Concat, 205
Distinct, 204, 207
Except, 205-207
Intersect, 204-207
query expressions, 208-210
SequenceEqual, 205
Union, 204-206

SharePoint. See LINQ to SharePoint
ShowExcept( ) method, 208
ShowIntersect( ) method, 206

Index 561



ptg

ShowRepeat( ) method, 184
ShowUnion( ) method, 205
SimpleJoin program

group joins, 147
inner joins, 143-145
left outer joins, 149

simultaneous changes (entities), 290-292
optimistic, 292

conflict detection, 292-295
conflict resolution, 295-297
limitations, 478

refreshing entities, 297-299
set of changes, 298

single node access listing, 401
Single operator, 198-201
SingleOrDefault operator, 198
Skip operator, 192-193
SkipWhile operator, 192, 196-197
smart client data binding, orders form

example, 306-310
binding object, choosing, 306
data source type, choosing, 306
Data Sources window, populating, 308
master-details form design view, 309
new data source, adding, 306
order form design view, 308

Smet, Bart De, 499
snippets, 70
Solution Explorer (SharePoint example), 507
source code web site, 519
SpecialString class, 97
SQL. See also LINQ to SQL

dynamic, 468-469
joins, 153
projections, 155-156
security, improving, 484-486
Server Express, installing, 523

SqlMetal, 243
StartsWith( ) method, 250
Storage property (Order class), 237
stored procedures, 319

CUD operations, 330-332
configuring on entities, 332
override methods, 330
update mapped to a method example, 331

EF, 362
adding, 363
mapping to methods, 363
parameters, mapping, 365
update procedure, 364

executing, 322
mapping, 320

relationships, loading, 333-334
returning

entity type example, 322-323
multiple results, 324-326
rows with key values example, 322

scalar-valued functions, 328-329
TVFs, 326-328

SubmitChanges( ) method, 288-290
overriding, 340
performance optimization, 483

Sum operator, 210, 215-216
syntax, 2, 10
system processes, querying, 510-511
System.Data.Linq web site, 536
System.Diagnostics namespace, 510-511
System.Linq web site, 536
System.Xml.Linq namespace, 32
System.Xml.Linq web site, 536

T
T-SQL methods, 251
Table attribute (entity classes, creating), 233
tables

classes to tables, mapping, 233
DataContext class, 234-236
entity classes, creating, 233-234
Object Relational Designer, 240-243
SqlMetal, 243

databases
creating, 444-447
declarations, 450

joining, 260-262
table-valued functions (TVFs), 326-328
Take operator, 192-193
TakeWhile operator, 192-195
TerraServer web site, 45
text node searches (XML), 405
ThenBy operator, 219, 222-223
third-party LINQ providers, 44
ToArray operator, 224-226
ToDictionary operator, 224, 227-228
ToList operator, 224-226
ToLookup operator, 224
ToString( ) method, 384
transactions, managing, 299-302
transformations, 60-61

LINQ to SQL query into XML, 60
select clause projections, 155
XML, 429

relational data into XML, 437-442
XHTML, creating, 431-437

Index562



ptg

XML between formats, 430-431
XML data into databases, 447-449

transformativity, 8, 517
translating LINQ to SQL, 248-250

base class library methods, 250
scalar UDFs, 251
T-SQL methods, 251

troubleshooting resources, 10
TVFs (table-valued functions), 326-328
types

anonymous, 24-25
C# 3.0, 77-82
EntityRef, 237
IEnumerable<T>, 19-20
inferences, querying collections of 

integers, 18
range variables, 134
XElement, 33

U–V
UDFs (user-defined functions), 251
unary relationships, 351
unified method for querying, 42-43
Union operator, 204-206
unitive LINQ, 7, 516
units of work

concurrency management, 478
performance optimization, 483-484

Update Wizard (EF designer), 363
updating entities, 285-286
using directives, 376

Validate( ) method, 456
ValidationEventArgs class, 457
ValidationEventHandler( ) method, 457
var contextual keyword, 18
var keyword (type inferences), 78-79
variables

local, 91
range, 133-135

Visual Basic, XML literals, 461-463
Visual Studio, database connections,

creating, 528-530
Visual Studio Express, 522

W
WCF (Windows Communication

Foundation), 341
WCF DataContract attribute (entity class

customizations), 341-342

web sites
C#

Development Center, 11
iterators blog, 110
sample programs, 521

Calvert, Charlie blog, 10
code generation, 536
database connection blog, 528
EDM Generator, 359
Flickr, 495

download, 496
FlickrXplorer application, 496

Informit, 11
joins, 536
Kulkarni, Dinesh, 11
LINQExtender, 496
LINQ IQueryable Toolkit, 496
Microsoft Office SharePoint Server 2007

VHD, 500
MVC download, 496
.NET

Development, 535
Framework, 522, 536

Northwind database, 521
operators, 536
Parallel Computing team, 488
PLINQ complexities, 494
providers, finding, 536
references, 535
Root MSDN Library, 535
SharePoint, 499
source code, 519
SQL Server Express, 523
System.Data.Linq, 536
System.Linq, 536
System.Xml.Linq, 536
TerraServer, 45
Visual Studio Express, 522

where clauses (query expressions), 17, 132
Where operator

filtering nodes, 34
implementing, 119-120

Windows C# key bindings, 542
Windows Communication Foundation

(WCF), 341
wizards

Data Source Configuration, 306, 312-313
Entity Data Model, 354-358
LINQ to SharePoint Entity, 503-506
Update (EF designer), 363

WriteFile( ) method, 68

Index 563



ptg

X–Z
XAttribute class, 377
XContainer class, 388-391
XDocument class, 378, 390
XElement class, 33, 376

methods, 391
XDocument class, compared, 390

XHTML, creating, 431-437
XML. See also LINQ to XML

Ancestors( ) method, 408-409
annotations, 459-461
attributes, creating, 377
character data, 406-407
class hierarchy, 387-388, 422
content, 372
databases, creating programmatically, 442-443

data schemas, viewing, 449
table declarations, 450
tables, creating, 444-447
XML data, transferring, 447-449

declarations, 371-373
creating, 378-381
DOCTYPE, 434

DescendantNodes( ) method, 402-404
DescendantNodesAndSelf( ) method, 404
descendants, 397-400
documents

creating, 378, 382-383
example, 370
RSS feeds, loading, 385
saving to disks, 383, 386

elements, 373
casting, 397
creating, 375-377

ElementsBeforeSelf( )/ElementsAfterSelf( )
methods, 409

Extensions class, 391
files

creating, 34-36
loading, 536
parsing, 31-34

FirstFourPlanets.xml, 392-394
fundamentals, 370-371, 374
hierarchy, 372
IXmlLineInfo interface, 415
literals, 461-463
namespaces, 424-426

accidentally omitting, 436
default, 426-429

identifiers, 424
prefixes, 425
schema Validation, 458-459
XHTML, creating, 435

nodes
adding, 420-421
attributes, 420
deleting, 417-418
editing, 418-419
elements, 421
line numbers, 414, 417
missing, 411-414
parent, 407-409
root, 371

queries, 392-394, 400-402
schema validation, 451

document not well formed example, 452-453
document validity, 453
DTD specification, 453
namespaces, 458-459
validating example, 455-457
XSD files, 454

single node access, 401
text node searches, 405
transformations, 429

relational data into XML, 437-442
XHTML, creating, 431-437
XML between formats, 430-431
XML data into databases, 447-449

using directives, 376
ValidationEventArgs class, 457
XContainer class, 389-391
XDocument class compared to XElement

class, 390
XElement class, 391
XmlSchemaSet class, 456
XNamespace class, 427
XNode class, 389-391
XObject class, 392, 415

xmlns attribute, 425
XmlSchemaSet class, 456
XNamespace class, 427
XNode class, 389-391
XObject class, 392, 415
XSD files, 454

yield returns, 172

Index564



ptg

Register the Addison-Wesley, Exam

Cram, Prentice Hall, Que, and

Sams products you own to unlock

great benefits.

To begin the registration process,

simply go to informit.com/register
to sign in or create an account.

You will then be prompted to enter

the 10- or 13-digit ISBN that appears

on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS

Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock

the following benefits:

•  Access to supplemental content,

including bonus chapters,

source code, or project files.

•  A coupon to be used on your

next purchase.

Registration benefits vary by product. 

Benefits will be listed on your Account 

page under Registered Products.

informit.com/register

THIS PRODUCT



ptg

Microsoft .NET Development Series

978-0-321-15489-7 978-0-321-19445-9 978-0-321-37447-9 978-0-321-38218-4

978-0-321-33488-6 978-0-321-41175-4978-0-321-51444-8

978-0-321-56299-9 978-0-321-41834-0

978-0-321-19769-6 978-0-321-23770-5

978-0-321-39820-8

978-0-321-41850-0978-0-321-34138-9

978-0-321-27872-2 978-0-321-35017-6

978-0-321-44006-8



ptg

For more information go to informit.com/msdotnetseries/ 

978-0-321-22835-2

978-0-321-26892-1

978-0-321-16951-8

978-0-201-73411-9

978-0-321-54561-9 978-0-321-33421-3

978-0-321-53392-0 978-0-321-15493-4 978-0-321-24673-8

978-0-321-30363-9978-0-321-41059-7 978-0-321-26796-2 978-0-321-39983-0

978-0-321-43482-1

978-0-321-17403-1 978-0-321-17404-8



ptg

www.informIT.com/learn


ptg

Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top 
technology publishers, including Addison-Wesley Professional, Cisco Press,
O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books,
Safari’s extensive collection of video tutorials lets you learn from the leading 
video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the fi rst
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content 
created to get you up-to-speed quickly on new and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY! 

www.informit.com/safaritrial

www.informit.com/safaritrial


ptg

Your purchase of Essential LINQ includes access to a free online edition for 45 days
through the Safari Books Online subscription service. Nearly every Addison-Wesley
Professional book is available online through Safari Books Online, along with more than 
5,000 other technical books and videos from publishers such as Cisco Press,
Exam Cram, IBM Press, O’Reilly, Prentice Hall, Que, and Sams. 

SAFARI BOOKS ONLINE allows you to search for a specific answer, cut and paste 
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at 
www.informit.com/safarifree

STEP 1: Enter the coupon code: BVFIGCB.

STEP 2: New Safari users, complete the brief registration form. 
Safari subscribers, just log in.

If you have difficulty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

FREE Online 
Edition

www.informit.com/safarifree

	Home Page
	Contents
	Foreword
	Acknowledgments
	About the Author
	1 Introduction
	The Varied Uses of the LINQ Syntax
	LINQ Is a Practical Technology
	Audience and Subject Matter
	The Essence of LINQ
	Comparing LINQ to SQL and LINQ to Objects
	A Few Words About Generics
	Source for the Samples and Troubleshooting Resources
	Summary

	2 Getting Started
	Querying a Collection of Integers
	Collection Initializers
	Query Expressions
	Type Inference
	Introduction to IEnumerable<T>

	Querying a Collection of Objects
	Introducing Automatic Properties
	Introducing Object Initializers
	Introducing Anonymous Types

	A Simple LINQ to SQL Example
	LINQ to XML
	Parsing XML
	Creating XML

	Summary

	3 The Essence of LINQ
	Integrated
	Unitive
	Extensible Provider Model
	Query Operators

	Declarative: Not How, But What
	Hierarchical
	Composable
	Transformative
	Summary

	4 C# 3.0 Technical Overview
	C# 2.0 and 3.0 Features Related to LINQ
	Partial Methods
	Automatically Implemented Properties
	Initializers
	Collection Initializers
	Object Initializers

	Types in C# 3.0
	Type Inference
	Anonymous Types

	Generic Methods, Delegates, and Lambdas
	Delegates
	Generic Delegates
	Lambdas

	Extension Methods
	Scoping Issues
	IEnumerable<T>
	Understanding Sequences
	Enumeration
	Iterators

	Deferred Execution
	Overriding LINQ Operators
	Expression Trees
	Summary

	5 Writing Query Expressions
	Syntactical Analysis
	Nomenclature
	Clauses
	Range Variables

	Composing Queries
	Group-by Clauses at the End of a Query Expression
	Group-by Clauses and the into Keyword
	Let Clauses

	Joins
	Inner Joins
	Group Joins
	Left Outer Joins
	Using the Object Model to “Join” Classes

	Projections
	Overview of Projections
	Projections and Deferred Execution
	Projections with SelectMany
	The SelectMany Overloads

	Query Expressions and Other Flavors of LINQ
	LINQ to MyNumberServer
	Thinking About IQueryable

	Summary

	6 Query Operators
	Locating and Grouping the LINQ Operators
	Code Reuse
	Locating the LINQ Operators

	Generation Operators
	Range
	Repeat
	Empty
	Any
	All
	Contains
	SequenceEqual

	Partitioning Operators
	Take
	Skip
	TakeWhile
	SkipWhile

	Element Operators
	First and FirstOrDefault
	Last and LastOrDefault
	Single
	ElementAt
	Element Operators and Composition
	DefaultIfEmpty

	Set Operators
	Union
	Intersect
	Distinct
	Except
	In the Context of LINQ

	Aggregate Operators
	The Count and LongCount Operators
	The Min and Max Operators
	The Average Operator
	The Sum Operator
	The Aggregate Operator

	Ordering Operators
	OrderBy
	OrderByDescending
	ThenBy
	Reverse

	Conversion Operators
	ToList
	ToArray
	OfType
	ToDictionary
	Conversion Between IEnumerable and IQueryable

	Summary

	7 A Quick Tour of LINQ to SQL
	Mapping Classes to Tables
	Creating Entity Classes
	The DataContext

	Working with Relationships
	Defining Relationships
	Querying Across Relationships

	Modifying and Saving Entities
	Using the Graphical Designer for Mapping
	Using the Command-Line Tool for Mapping
	Summary

	8 Reading Objects with LINQ to SQL
	Using LINQ and Databases
	Translating LINQ to SQL
	Understanding the Nuances of Translation
	Retrieving Objects: Entities and Projections

	The Importance of Object Identity
	Using Relationships
	Joining Tables
	Mapping Different Types of Relationships

	Loading Options
	Deferred Loading
	Eager Loading

	Defining Inheritance
	Performance and Security
	Query Versus Results
	Compiled Queries
	Security

	Summary

	9 Modifying Objects withLINQ to SQL
	Entity Lifecycle
	Inserting and Deleting Entities
	Updating Entities
	Automatically Maintained Relationships
	Submitting Changes

	Simultaneous Changes
	Optimistic Concurrency
	Refreshing Entities

	Transactions and Connection Management
	Attaching Multitier Entities
	Data Binding
	Smart Client Data Binding
	ASP.NET Data Binding

	Creating a Database
	Summary

	10 Using Stored Procedures and Database Functions with LINQ to SQL
	Stored Procedures and Functions for Querying
	Mapping and Using a Stored Procedure
	Using Table-Valued Functions
	Using Scalar-Valued Functions

	Stored Procedures for Inserts, Updates, and Deletes
	Stored Procedures for Loading Relationships
	Summary

	11 Customizing Entity Persistence and Adding Business Logic
	Customizing Generated Code
	Customizing the DataContext Class
	Customizing the Entity Classes

	Writing Your Own Persistent Classes
	Summary

	12 LINQ to Entities Overview
	Understanding Entity Framework Concepts and Components
	The Entity Data Model
	Entity Framework Components

	Using the Entity Framework
	Entity Model Generation
	Understanding the Generated Code
	Performing CRUD Operations
	Using Stored Procedures

	Making Sense of LINQ to Relational Choices
	Summary

	13 LINQ to XML: Creation
	XML Fundamentals
	Understanding the LINQ to XML API
	Creating XML Elements
	Creating XML Attributes
	Creating an XML Document
	Creating an XML Declaration
	Creating a Document from Raw Text
	Building a Document One Node at a Time
	Reading and Writing XML

	Summary

	14 Querying and Editing XML
	More on XDocument, XElement, and XAttribute
	Querying with Element and Elements
	XML Descendants
	Composition and XML Queries
	DescendantNodes, XText, and CData
	DescendantNodesAndSelf
	Searching for Text Nodes
	CData

	Parents and Ancestors
	Elements After or Before Self
	Working with Missing Nodes
	Working with Line Numbers
	Modifying XML
	Removing Nodes
	Editing Nodes
	Inserting Nodes

	Summary

	15 XML Namespaces, Transformations, and Schema Validation
	XML and Namespaces
	Default Namespaces

	XML Transformations
	Transforming XML from One Format to Another
	Creating XHTML Through a Transformation
	Transforming Relational Data into XML
	Programmatically Creating the Database
	Transferring Data from an XML File to a Database
	Viewing the Data Schemas

	XML Schema Validation
	Validation
	Namespaces and Validation

	Annotations
	Should You Use C# or VB?
	Summary

	16 Introduction to LINQ Patterns and Practices
	Using Language Features Judiciously
	Going Beyond Stored Procedures: The Dynamic SQL Debate
	Designing Mid-tier with Persistent Entities and Business Logic
	Data Shaping
	Separation of Concerns

	Managing Concurrency
	Limitations of Optimistic Concurrency Checks
	Unit of Work and Reusing a DataContext Instance

	Understanding Performance
	Defining Context
	Costs and Optimizations

	Improving Security
	Summary

	17 LINQ Everywhere
	Other Flavors of LINQ
	Parallel LINQ
	Query Data with Parallel LINQ

	LINQ to Flicker
	LINQ to SharePoint
	Working with Processes
	Summary

	18 Conclusion
	A: Tips for Developers
	Accessing the Source Code
	Northwind and the Visual Studio Samples
	Version Numbers
	Essential Downloads
	Installing Visual Studio Express
	Installing the .NET Framework
	Installing SQL Server Express

	Compiling C# Programs
	Compiling from the Command Line
	Connecting to a Database
	Using the Object Relational Designer
	Summary

	Important Resources
	Reference Materials: Getting Help
	Finding LINQ Providers
	Including Data Files in Your Project
	C# Keywords and Contextual Keywords
	Visual C# 2008 Key Bindings
	Answers to Chapter 4 Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J–K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U–V
	W
	X–Z




