
ptg

ptg

Essential
Facebook®

Development

ptg

This page intentionally left blank

ptg

Essential
Facebook®

Development

Build Successful Applications
for the Facebook Platform

John Maver
Cappy Popp

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

ptg

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publish-
er was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Maver, John, 1972-
Essential Facebook development : build successful applications for the Facebook

platform / John Maver, Cappy Popp.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-321-63798-7 (pbk. : alk. paper) 1. Facebook (Electronic resource) 2. Online

social networks. 3. Social networks—Computer network resources. 4. Web sites—Design.
I. Popp, Cappy, 1970- II. Title.

HM742.M38 2010
006.7'54—dc22

009035432

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For information regarding permis-
sions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

Facebook®is a registered trademark of Facebook, Inc.

ISBN-13: 978-0-321-63798-7
ISBN-10: 0-321-63798-4
Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville,
Indiana.
First printing December 2009

Editor-in-Chief
Mark Taub

Acquisitions Editor
Trina MacDonald

Development Editor
Michael Thurston

Managing Editor
Kristy Hart

Project Editor
Jovana San
Nicolas-Shirley

Copy Editor
Sheri Cain

Indexer
Publishing Works Inc.

Proofreader
Apostrophe Editing
Services

Technical Reviewers
Jerry Ablan
Joseph Annuzzi, Jr.
Benjamin Schupak

Publishing Coordinator
Olivia Basegio

Cover Designer
Gary Adair

Compositor
ATTiCA

ptg

❖

This book is dedicated to those who aren’t afraid to
dive in and figure out how things really work.

❖

ptg

Contents at Glance
Preface xvi

Part I: Introduction to Facebook Applications

1 Facebook Applications: The Basics 3

2 Making Great Applications 21

3 Platform Architecture Overview 31

4 Platform Developer Tools 49

5 Facebook Terms of Service and Application
Programs 69

Part II: Developing Applications

6 The Basics of Creating Applications 83

7 Building the Canvas 107

8 Updating the Profile 133

9 Feed Stories, Feed Forms, and Templates 155

10 Publisher, Notifications, and Requests 193

11 FBJS, Mock AJAX, and Flash 243

Part III: Integrating Facebook into an External Website

12 Facebook JavaScript Client Library 315

13 Facebook Connect 343

Part IV: Post Launch

14 Measuring Application Success 369

15 Spreading and Monetizing Applications 385

16 Improving Application Performance and Workflow 399

Part V: Appendices

A Resources 421

B Beta Features 423

ptg

Table of Contents
Preface xvi

Part I: Introduction to Facebook Applications

1 Facebook Applications: The Basics 3
Environment and Integration Points 4

Profiles 5

Feed 10

Sharing 13

Photos 14

Notes 14

Messages, Notifications, and Requests 14

Extending Facebook 16

Platform Applications 16

Desktop Applications 16

Public Profiles 16

Facebook Connect 17

Facebook Platform Core Components 18

FBML 18

FBJS 18

FQL 18

XFBML and the Facebook JavaScript Client Library 19

Summary 19

2 Making Great Applications 21
Begin with a Plan 21

Objectives 21

Target Audience 22

Value Proposition 22

Competitive Advantage 22

Involving the User 22

Iterating 23

Planning for Growth 23

Facebook’s Guiding Principles 23

Make Them Meaningful 23

ptg

viii Contents

Make Them Trustworthy 24

Make Them Well Designed 25

Examples of Great Applications 26

LivingSocial 26

Causes 27

Graffiti 27

Summary 29

3 Platform Architecture Overview 31
Facebook’s Internal Servers 31

Servers 31

Technologies 32

Facebook’s External REST Interface 33

Using REST on the Web 33

Implementing REST in Facebook 34

Overview of the Facebook API 35

Permissions API 35

Authorization API 35

Batching API 36

Comments API (Beta) 36

Data Store API (Beta) 36

Events API 36

FBML API 36

Feed API 37

FQL API 37

Links API 37

User Management API 37

Notes API (Beta) 38

Messaging API 38

Pages API 38

Photo and Video API 38

Profile API 38

Open Stream API (Beta) 38

Facebook JavaScript Client Library 39

Facebook Mobile Support 40

Library Support 42

ptg

ixContents

Official Libraries 42

Unofficial or Third-Party Supported Libraries 43

Application Architecture 43

Secret Keys 44

Canvas Page URL 44

Canvas Callback URL 44

Canvas Page Workflow 44

Profile Box Workflow 46

Summary 46

4 Platform Developer Tools 49
Facebook Provided Tools 49

API Test Console 49

FBML Test Console 52

Feed Template Console 56

Registered Templates Console 57

Facebook Debugging Support 57

Developer Test Accounts 59

Browser Debugging Tools 60

Firebug Add-On for Firefox 60

Web Developer Add-On for Firefox 64

YSlow Add-On for Firefox 64

Firebug Lite Extension for Internet
Explorer 6 and 7 65

IE Developer Toolbar for Internet Explorer 6 and 7 65

Debugger Tools for Internet Explorer 8 66

Summary 66

5 Facebook Terms of Service and Application
Programs 69
Facebook Terms of Service 69

User Guidelines 70

Developer Guidelines 72

Facebook Application Programs 77

Application Verification Program 77

fbFund 78

Summary 80

ptg

x Contents

Part II: Developing Applications

6 The Basics of Creating Applications 83
Setting Up the Environment 83

Using the Developer Application 84

Basic Settings Tab 86

Authentication Settings Tab 88

Profiles Settings Tab 90

Canvas Settings Tab 90

Connect Settings Tab 93

Widgets Settings Tab 93

Advanced Settings Tab 93

Creating the Application Skeleton 95

Application Authorization 98

Parameters Sent to Applications 99

Generating Signatures 102

Before an Application Is Authorized 103

After an Application Is Authorized 104

How an Application Is Authorized 104

Summary 106

7 Building the Canvas 107
Choosing Between an FBML and IFrame Canvas 107

Learning Curve 107

Migration of Existing Applications 108

Cross-Platform Portability 108

Look and Feel 108

Performance 108

Testing 109

Preparing the Compliments Canvas Pages 109

Database Setup 109

Adding the Utility Functions 111

Using External CSS Files 113

Defining the Types of Compliments 114

Creating the Compliments FBML Canvas Page 114

Dumping the FBML Canvas REQUEST
Parameters 115

ptg

xiContents

Adding the Send Compliment Form 116

Creating the Compliments IFrame Canvas Page 121

Loading the IFrame Canvas Page 121

Adding the Send Compliment Form 122

Using Tabs for Multiple Pages 129

Summary 131

8 Updating the Profile 133
Profile Boxes 133

Creating the Compliments Profile Boxes 135

Adding the Profile Boxes 140

Application Tabs 144

Application Info Sections 145

Getting the Compliments Data 147

Creating the Info Section 148

Adding Info Section Buttons 149

Allowing Users to Update Info Sections 150

Working with Facebook’s Caching 151

Refreshing the Image Cache 151

Managing the FBML Cache 152

Summary 154

9 Feed Stories, Feed Forms, and Templates 155
Using Feed Forms and Templates 155

Introducing Feed Forms 155

Feed Templates 158

Using Feed Forms to Publish to the Stream 168

Using the Facebook API 177

Using the API to Publish to the Stream 178

Sandbox Mode and Testing Feed Stories 190

Summary 191

10 Publisher, Notifications, and Requests 193
Getting to the Heart of Feed: The Publisher 193

Introduction to the Publisher 194

Integrating with the Publisher 196

ptg

xii Contents

Notifications 207

Notification Types 208

Sending Notifications with the Facebook API 210

Application Email 213

Extended Permissions 213

Sending Application Email 214

Requests 221

Overview of Requests and Invitations 221

Sending Requests and Invitations 222

Application Messaging and Allocations 230

Viewing Application Allocation Limits 230

How Facebook Determines Allocations 231

Tracking Allocations 235

Facebook Sharing 236

Publishing Content Via Sharing 237

Sharing Preview 238

Summary 241

11 FBJS, Mock AJAX, and Flash 243
Allowing External JavaScript in Facebook 243

Sandboxing 244

How Facebook Restricts JavaScript 245

Sandbox Creation and Initialization 245

Basic FBJS 248

Browser Detection 249

FBJS and the DOM 249

FBJS Dialogs 259

Mock AJAX 262

Advanced FBJS 269

Using Ajax.FBML 271

Using Firefox and Firebug to Monitor AJAX 275

Using Ajax.JSON 279

Publishing Feed Stories with FBJS 281

FBJS and CSS 284

FBJS Animation 286

FBJS Events 289

ptg

xiiiContents

Using Flash 294

Hosting Flash Content in Facebook Applications 294

Creating a SWF That Can Communicate with
FBJS 296

Hosting and Communicating with Flash from
FBJS 303

Summary 311

Part III: Integrating Facebook into an External Website

12 Facebook JavaScript Client Library 315
Cross-Domain Communication 316

Using the Library 317

FeatureLoader 318

Including Features 318

Authentication 320

Calling Facebook JavaScript Client Library
Functions 322

Key Library Classes 323

FB.apiClient 323

FB.Bootstrap 323

FB.Connect 324

FB.FBDebug 327

FB.UI 330

FB.XFBML 331

Updating Compliments’ IFrame Page 338

Summary 342

13 Facebook Connect 343
Facebook Connect Features 343

Trusted Authentication 344

Real Identity 344

Dynamic Privacy 346

Friends Access 346

Social Distribution 347

Commenting and the Live Stream 348

Setting Up Facebook Connect 348

User Authentication 351

ptg

xiv Contents

Detecting Login Status 351

Logging the User In 354

Logging Out the User 356

Disconnecting Users from Facebook 357

Reclaiming Accounts 358

Friend Linking 358

Widgets 361

Comments Box 361

Live Stream Box 365

Summary 365

Part IV: Post Launch

14 Measuring Application Success 369
Metrics: Why They Matter 369

Viral Loop 369

Collecting Metrics 371

A/B Testing 372

Metrics Dashboards 375

Facebook Insights and the Metrics API 375

Kontagent 382

Summary 384

15 Spreading and Monetizing Applications 385
Spreading Your Application 385

Facebook Ads 386

Ad Networks 391

Developer Link Exchanges 391

Monetizing Your Application 392

Displaying Ads 392

Sponsors 394

Affiliate Links 394

Subscriptions 394

Virtual Goods, Currencies, and Economies 395

Summary 396

ptg

xvContents

16 Improving Application Performance
and Workflow 399
Batching API Calls 399

FQL 401

FQL Overview 401

fql.multiquery 407

Preloading FQL 408

Working with Multiple Developers 410

Setting Up Port Forwarding for Each Developer 411

Creating Additional Applications for Each
Developer 411

Creating a Smart Local Configuration File 411

Summary 416

Part V: Appendices

A Resources 421
Links 421

Facebook 421

Developer Tools 422

Facebook News 422

B Beta Features 423
Add Page Referrer 423

Stream 423

Custom Tags 424

Data Store API 424

FBJS Local Proxy 424

Cookies 424

FBML Tags 425

<fb:board> 425

<fb:chat-invite> 425

<fb:feed> 425

<fb:typeahead-input> 425

IFrame URL 425

Links, Notes, and Status 426

LiveMessage 426

Quick Transitions 426

Video Upload 426

Index 427

ptg

Preface

Currently, Facebook has more than 250 million active users and more than 350,000
active applications; both are growing rapidly. Facebook continues to roll out massive
changes to its development platform, rendering previous best practices obsolete.To date,
few definitive developer resources explain how to effectively use the new platform
features.

However, just knowing the technical aspects of how to build a Facebook application
does not guarantee that it will succeed. It is important to understand what makes appli-
cations work on Facebook, how to measure their progress, and how to make the changes
that maximize their potential for success.This book is not only an up-to-date reference
that discusses the latest features of the Facebook Platform, but it also addresses the entire
process of creating applications from inception to deployment and beyond.

Who This Book Is For
This book is for intermediate developers who are comfortable with PHP, MySQL, and
the major technologies of the web: HTML, JavaScript, and Cascading Style Sheets (CSS).
Readers should also be knowledgeable about setting up and configuring a web server,
such as Apache or Internet Information Services (IIS).

No prior experience with Facebook development is required, although some famil-
iarity with the Facebook website as a user is assumed.To be a good developer for a plat-
form, it helps to understand it from a user’s perspective.

This book helps readers understand what makes a good Facebook application, how to
use the core technologies of the Facebook Platform to create it, and the best practices to
deploy, monitor, and tune it.

How This Book Is Structured
This book is divided into five main parts:

n Part I,“Introduction to Facebook Applications,” overviews the architecture, inte-
gration points, and technologies of the Facebook Platform. It explains what makes
a successful Facebook application, using examples of proven applications. Debugg-
ing tools and techniques are reviewed as they apply to Facebook development. It

ptg

also provides a quick reference to the key points of the Facebook Terms of Use as
they apply to developers.

n Part II,“Developing Applications,” goes through creating an application from
beginning to end, using a sample application called Compliments. Each chapter in
this part builds upon the prior chapter, starting with creating the application infra-
structure and adding support for profiles, canvas pages, messaging, and Facebook
JavaScript (FBJS).

n Part III,“Integrating Facebook into an External Website,” introduces the Facebook
JavaScript Client Library and Facebook Connect, which are two technologies for
integrating Facebook functionality into external websites and IFrames within the
Facebook Platform.

n Part IV,“Post Launch,” details some best practices for spreading, measuring applica-
tion success, and increasing performance.

n Part V,“Appendices,” lists commonly referenced URLs in Appendix A and discusses
upcoming beta features in Appendix B.

Contacting the Authors
If you have any questions or comments about this book, send us an email at
essentialfacebook@thoughtlabs.com.You can also visit this book’s website,
www.essentialfacebook.com, for updates, downloadable code examples, and news on the
ever-changing Facebook Platform.

xvii Preface

ptg

Acknowledgments

Writing a book requires a lot of hard work, but not just from the authors.To create this
masterpiece, we had an amazing team assisting us:

Trina MacDonald, our acquisitions editor, made sure that everything happened suc-
cessfully, dealing with all the hiccups along the way. She was essential as a guide for two
first-time authors in navigating all the challenges of completing this work.

Joseph Annuzzi, Jr., Jerry Ablan, and Ben Schupak, our technical editors, went through
our text, code, and screenshots with a fine-tooth comb, testing everything and adding
their own knowledge and experience to make the book even better.

Michael Thurston, our development editor, slogged through many revisions of all of
our chapters, refining the text and creating consistency. He helped make our book easy
to read and a pleasure to behold.

Olivia Basegio, our assistant editor, worked behind the scenes to keep all of our docu-
ments and revisions flowing smoothly between us and our editors.

We thank the entire team for all of their hard work, patience, and abilities.This book
could have never been written without them.

—John Maver and Cappy Popp

ptg

About the Authors

John Maver has been involved with the Facebook, Bebo, and MySpace platforms from
the time they were released, and he has written several successful applications. He has
been a speaker at conferences and webinars about Facebook development and was the
Featured Developer for the Bebo platform in the spring of 2008.As cofounder and
Principal of Thought Labs, John has worked with small businesses and Fortune 100
companies to find the right goals, strategies, and implementations for their social media
campaigns. Prior to specializing in social media, John spent ten years leading software-
development teams and building award-winning software-debugging products.You can
connect with John on Facebook at www.facebook.com/jmaver or Twitter at @jmaver.

Cappy Popp frequently speaks about Facebook and other topics at conferences such as
GSP East, MITX, Social Media Business School, and others. He has been developing
popular applications for Facebook and other social networking platforms since they
launched. Cappy also cofounded Thought Labs, where he’s implemented many thriving
social media solutions for clients of all sizes, from small businesses to some of the world’s
largest companies.

In addition to “budding author,” Cappy has enjoyed many careers, including executive
chef, principal software engineer of award-winning debugging tools, and flourishing
entrepreneur.Alright, he’s still working on that last one…. In his comically fleeting spare
time, he is a die-hard foodie with a passion for ethnic cuisine.You can find Cappy on
Facebook at www.facebook.com/cappypopp or Twitter at @cappypopp.

ptg

This page intentionally left blank

ptg

I
Introduction to Facebook

Applications

1 Facebook Applications: The Basics

2 Making Great Applications

3 Platform Architecture Overview

4 Platform Developer Tools

5 Facebook Terms of Service and Application Programs

ptg

This page intentionally left blank

ptg

1
Facebook Applications:

The Basics

Facebook currently has more than 250 million active users.
Think about that for a minute. If Facebook were a country, its population would make

it the world’s fourth largest. It would be larger than Russia, Brazil, Japan, Mexico, or any
European nation. It ranks in the top ten most visited websites by the entire world’s top
Internet research firms. It handles billions of page views per month. Facebook provides
some extremely compelling statistics.

General Growth

n More than 250 million active users.
n More than two-thirds of Facebook users are outside of college.
n The fastest growing demographic is people 35 years and older.

User Engagement

n An average user has 120 friends on the site.
n More than 5 billion minutes are spent on Facebook each day.
n More than 30 million users update their statuses at least once a day.
n More than 8 million users become Fans of Facebook pages each day.

Applications

n More than 900 million photos are uploaded to the site each month.
n More than 10 million videos are uploaded each month.
n More than 1 billion pieces of content (web links, news stories, blog posts, notes,

photos, and so on) are shared each week.
n More than 2.5 million events are created each month.
n More than 45 million active user groups exist on the site.

ptg

4 Chapter 1 Facebook Applications: The Basics

International Growth

n More than 50 translations are available on the site, with more than 50 in development.
n More than 70 percent of Facebook users are located outside the United States.

Platform

n More than 1,000,000 developers and entrepreneurs from more than 180 countries.
n More than 350,000 applications are currently available from the Facebook Applica-

tion Directory.
n More than 5,000 applications have more than 10,000 or more monthly active users.
n Every month, more than 70 percent of Facebook users engage with Platform appli-

cations.

The Facebook ecosystem is frequently referred to in terms of a social graph. In this
graph, each Facebook user represents a node, and that user’s friend relationships represent
the edges between these nodes.All these nodes and edges together comprise the social
graph. Scientists have studied social graphs for decades, and there is a wealth of available
information about them.

One of the most important hypotheses of social networks, especially as they relate to
Facebook, is the “small world phenomenon”—the basis for the well-known phrase “six
degrees of separation”—which states that there are generally only a few social relation-
ships separating any two arbitrary people in the world.The power of this idea can be
clearly seen when you look at this in terms of Facebook’s social graph of 250 million
nodes.The potential for a single Facebook user to interact with any other in Facebook’s
closed system is much greater than it would be in an open environment, like the web.

Facebook’s Platform gives you direct access to its social graph and the data contained
within it, so it’s no surprise that the interest in creating Facebook applications has exploded.
This book takes you through the necessary steps to get your application built in the best
way possible to maximize your chances of getting your application to spread successfully.

Environment and Integration Points
So, you use Facebook.You understand how it works. Perhaps you post photos, comment
on your friends’Walls, update your status, and install applications. But, where can an appli-
cation actually integrate into Facebook’s interface? This section provides those answers.
Some of these integration points are actually hosted on Facebook’s servers, and some are
hosted on the application’s servers, such as an application’s profile presence.The parts of
an application that are hosted on your own servers are known as canvas pages. It’s impor-
tant to realize that there are important restrictions placed on the Facebook-hosted por-
tions of an application.We overview the integration points in this chapter and give more
detailed descriptions in Part II,“Developing Applications.”

ptg

5Environment and Integration Points

Profiles
The Facebook profile is the main entry point for Facebook users.To be statistically valid,
social graphs require that their nodes (or users) are unique, and Facebook ensures this—or
at least mitigates it—in its Statement of Rights and Responsibilities by requiring that
each account be backed by a single physical person. Each account is supposed to represent
a user’s real-world identity.The Profile is where that identity is displayed for a given user.

Applications can integrate with Facebook in multiple locations within its user inter-
face, including the profile.As far as the Facebook Profile goes, there are several places ap-
plications can integrate, which are discussed in the following sections.

Profile Boxes
A user’s profile is comprised of many sections:

n The Wall and Info tabs share a common left column of application profile boxes.
n The Boxes tab hosts two columns of application profile boxes.
n The Application tabs are full-screen-width application profile boxes.
n The Feed Wall lists activities carried out on Facebook by a user and his friends.

In Facebook, you can reach the profile by clicking the Profile link at the top of any
page while you’re logged in.The user can allow an application to display a box on the left
side of his profile when the Wall or Info tab is selected, or he can allow a box to be placed
on his Boxes tab.At least one application must be installed to have the Boxes tab appear
on the profile.The size of these boxes is limited by both height and width, if they are
placed on the Wall or Info tabs and by width on the Boxes tab. Note that an application
cannot place anything on a user’s profile without his express permission. (This is covered
in Chapter 8,“Updating the Profile.”)

Wall, Info, and Boxes Tabs
The Wall and Info tabs share a common left navigation area, which is shown in Figure 1.1.
A user can place up to five application profile boxes in this region, and they all must be
placed below the Friends section.These boxes are limited in both width and height, so
the content they display is crucial: It needs to get users’ attention, encourage interaction,
and provide a call to action (to get new users to install the application, for example) all
within a small space.

Boxes can be placed on the left side of a user’s profile by using a special tag that Face-
book provides.This tag displays an Add to Profile button to encourage users to install a
profile box for an application.This is the only direct means for an application to install a
profile box directly to the Wall and Info tabs. Profile boxes can also be relocated here from
the Boxes tab.

The Boxes tab is made up of two columns: a wide one on the left and a narrow one
on the right.There is no limit to their height, but there are width limits for each column.
Users can drag profile boxes from one side to the other, so applications need to handle
being rendered well in each or provide a message stating that they cannot be shown in a

ptg

6 Chapter 1 Facebook Applications: The Basics

When Facebook first launched the F8 Platform in May 2007, applications had nearly
free reign to display whatever they liked, including showing different content to non-
application users on behalf of and without a user’s consent.Application developers tried
every trick in the book to get people to spread and install their applications using any and
all loopholes in the Facebook Terms of Service.

Since then, Facebook made many changes to close those loopholes, the largest of which
was the new profile redesign (launched in July 2008), which relegated all existing application
profile boxes to the Boxes tab.Application developers were less than enthusiastic at first; how-
ever, the change certainly cleaned up the profile and, with the creation of the Feed, made it
more focused on what users were doing rather than what applications they had installed.

It’s more difficult to make successful applications today than it was when Facebook
first launched.To be popular and successful—and especially have a profile presence—
applications must now be engaging, have powerful messaging in place, and have a high
potential for reuse.

Applications Menu
The Applications menu is one of the main places where a user can go to launch an appli-
cation after she has installed it.This menu is located on the lower-left side of the Facebook
interface.Any Windows or Linux user will find the menu idiom easy to understand. It

Figure 1.1 The Information and Friends profile boxes go along the left side
of this user’s profile.

given column.The dragging behavior cannot be disabled.All content found on the tabs in
the Facebook profile is cached and accessed from Facebook’s web servers.

ptg

7Environment and Integration Points

allows a user to access her recently used applications, see applications she has book-
marked, edit global application settings, and search for new applications from the Face-
book Application Directory.

As shown in Figure 1.2, the first six bookmarked applications are shown in the Book-
marks section.All other bookmarked applications are shown below this line. Recently
used applications are the four most recently used nonbookmarked applications. Interest-
ingly, there does not appear to be a limit to the size of this menu: If you bookmark
dozens of applications, your menu will become so long that it will scroll past the top of
the browser window. Notice the link for an application named Compliments.This appli-
cation will be developed throughout this book.

Bookmarks
Bookmarks are simply saved links to applications you’ve visited on Facebook.They show
up in three places in the Facebook profile.You can choose six that are visible both along
the lower status area of the interface as nice little icons and on your Home page on the
right side of your profile.All other bookmarks are visible both on the Applications menu
and by clicking More below your top six bookmarks on your Home page.

There are a couple of ways to add a new bookmark for an application.You can click
the Bookmark <Application Name> button to the right of the bookmarked application
icons in the status area when you’re on that application’s canvas page (see Figure 1.3).

You can also check the appropriate checkbox in the Bookmarks tab of the applica-
tion’s settings dialog from the Application Settings page (see Figure 1.4).

Figure 1.2 Facebook Applications menu

ptg

Figure 1.3 You can bookmark an application while us-
ing it by clicking the Bookmark link that Facebook adds to

the bottom of the page.

Figure 1.4 Bookmarking an application using
Application Settings

Bookmarks are critical in Facebook.Why? If a user installs an application but does not
bookmark it, use it within a month, or install it on her profile, that application is only ac-
cessible to her via the Application Settings page. Few users ever visit this page or even
know it exists. Recently, Facebook added the Edit Applications link to the Applications
menu shown in Figure 1.2 to make finding it somewhat easier, but the important thing to
realize is that getting users to bookmark your application really affects how often they
will use it.You can get application users to bookmark your application simply by asking
them to do so within the application itself. Unfortunately, there is currently no way to
automatically bookmark an application.

Application Tabs
Application tabs give your application more room on the profile.A user can add up to
18 additional application tabs (the Wall and Info tabs are required and cannot be moved,)
four of which can be visible at once, and 14 more as links stored in the drop-down
menu to the right of the tab strip. Basically, it gives your application nearly the entire
width of the Facebook user interface to show content, but it has some limitations on
what information it receives and what you can display, as Chapter 8 discusses.Also, as
with profile boxes, your users must specifically take steps to add an application tab. But,
if you have a lot of content to display and it’s engaging enough, this is a great place to
show it off. Plus, you get the added bonus of the application name showing across the
tab bar in your users’ profile. Figure 1.5 shows a great example of a well-designed
application tab from the popular Flixster Movies application. Note how the application’s

8 Chapter 1 Facebook Applications: The Basics

ptg

9Environment and Integration Points

name,“Movies,” shows up in the profile and how the content spans nearly the entire
page width.

Application Info Sections
Applications can add discrete sections of content to the Info tab of your users’ profiles.
The Info tab contains personal information about a user: his contact information, activi-
ties, favorite books, movies, and the like, as well as his education and work information.
Application data added here needs to follow the structured format of the data Facebook
adds here.These sections are interesting because users can edit them themselves.Applica-
tions are sent the data after an application user saves it and are then responsible for for-
matting it appropriately for display.Application users must explicitly choose to place
application content in an info section.As with the application profile boxes found on the
Wall and Info tabs, Facebook provides a special Add to Info button that applications can
use to allow users to do so. It looks nearly identical to the Add to Profile button (dis-
cussed previously).There is no other way for an application to add an info section.

Two types of info sections can be created by applications. First, text-only sections are
just that.The data is all unformatted text, of which approximately five lines are shown be-
fore Facebook adds a See More link to display the remainder. Object info sections can

Figure 1.5 The Flixster Movies application tab wisely
uses the space it’s given.

ptg

10 Chapter 1 Facebook Applications: The Basics

Figure 1.6 Application info section added by
Facebook’s Smiley sample application

display more structured information.They consist of a single title field and an array of
other data, such as links, images, and descriptions. Figure 1.6 shows an example of an
application-provided info section.This one is from Facebook’s Smiley sample application.

Publisher
Found at the top of both the Home page and the profile, the Publisher has become a
principal means for applications to allow users to directly post and share content to their
own and their friends’ Feeds.Applications can provide custom Publisher integration that
allows them to push rich media content to these Feeds.Application users must choose to
use an application’s Publisher, but after they do, it shows up more prominently in their or
their friends’ profiles, making it all the more likely that they will use it again. Users can
also use the Publisher on their friends’ profiles.

When a user clicks the Publisher box, it expands inline to show all the options that
user has for publishing content. Facebook always shows the Publisher options from Face-
book’s own default applications (Link, Photos, and Videos), followed by those provided by
applications.Application Publisher options are sorted by the time of their last use.

The more engaging the content an application Publisher creates, the more it involves
the application users’ friends, which increases the chances that they will interact with it
and install your application. Ensure that your content sparks a response from them, inter-
ests them, or calls them to take some action. Publishers can be intricate. Figure 1.7 shows
the Facebook Photo Publisher. Note how it offers several different options for getting
content into Facebook.

Feed
Besides the profile, the Feed is the other major way applications can integrate into
Facebook.The Feed is the beating heart of Facebook’s social graph, and it’s what binds
users together. It contains all the activity you and your friends are involved in on Face-
book.These activities are collectively known as stories. Stories can be posted from within

ptg

11Environment and Integration Points

Figure 1.7 Facebook Photo Publisher allows users to upload or create
new photos to share on Facebook.

Two major pieces to the Feed exist: the Feed Wall and the stream. Facebook recently
renamed the Home Page News Feed to the stream after it made its update in real time;
these terms are interchangeable, and you will come across both while developing applica-
tions.The Feed Wall appears on your profile and is populated by information about ac-
tions you take on Facebook.The stream is comprised of stories published by your friends
on Facebook. It’s found on every Facebook user’s Home page. Making sure your applica-
tion uses them to their maximum potential is critical to making your application succeed.

Feed Wall
The Feed Wall is the first tab on your profile. It is a combination of what used to be the
Facebook Wall and Mini-Feed. It contains all the recent stories added by a user via a Pub-
lisher, a Feed form, or imported through some other means. It also contains stories in which
a user participated, even if she did not add the story herself, such as being tagged in a photo.

In the old version of Facebook, the Wall contained stories published by a user’s friends,
and the Mini-Feed contained stories published by the user.To get that same functionality
today, you simply have to filter the Feed Wall using the links provided at the top of the
Feed Wall page. For example, in Figure 1.8, the user could make the Feed Wall behave like
the old Facebook Wall by clicking Just Friends to filter the Feed to show only content
created by his friends. Clicking Just John makes it behave like the old Mini-Feed in that it
would only show content directly created by that user.

Stream
The second part of the Feed is known as the stream. It’s found on the Home page and is
one of the major sources for spreading an application virally, because every piece of content
a user publishes via the Publisher—through an application or manually—automatically

Facebook, imported from external websites and applications, or created by applications
within Facebook.

ptg

12 Chapter 1 Facebook Applications: The Basics

Figure 1.8 My Feed Wall

As previously discussed, applications can provide a custom Publisher, which directly
publishes content to the Feed. However, application users must manually post stories to
the Feed using a Publisher.Applications can also automatically post stories to the Feed via
the Facebook application programming interface (API) or through the use of Feed forms,
which Chapter 9,“Feed Stories, Feed Forms, and Templates,” covers. In this case, applica-
tion users do not have to manually publish any content. Stories come in two sizes—one
line and short—and each size has specific benefits and shortcomings.

One Line Stories
One line stories are just that: a single line of text.They cannot contain anything else, such as
images, videos, audio, or other media.These stories are only visible on a user’s Wall on her
profile and never in the stream. One line stories are important, however, because the user does
not have to allow any special privileges for an application to publish them on her behalf.

The changes Facebook made to the Home page in March 2009 seriously affected the
power of these stories. First, one line stories can no longer be published to the stream.This
means that, to see them, a user must visit a friend’s profile.Also, Facebook no longer aggre-
gates similar one line stories from an application. If five application users generate the same
one line story within a short time period, Facebook used to combine them and include all
five of these users in a single story, which generally increased that story’s potential for en-
gagement and, therefore, its reach in the social graph. For example, instead of,“Cappy took
the brainless quiz and got a new high score,” published multiple times for different users,
you’d see,“Cappy, Peter, Paul, and Mary took the brainless quiz and got a new high score.”

Facebook used private algorithms to determine which stories were important enough
to be included in the stream. Not all of them made the cut, and aggregation greatly

appears on all that user’s friends’ streams.The stream also contains all posts made by a user’s
friends. In the past, Facebook used secret algorithms to determine what content made it
into the stream from the stories published on a user’s Feed Wall; however, now, all content
published by a user via a Publisher or application, and all that user’s friends’ content, is auto-
matically sent to the stream.

ptg

13Environment and Integration Points

increased a story’s chances of inclusion. Facebook still uses this technique to combine au-
tomatically published stories in the Highlights section of the Home page.With these
changes in place, one line stories have lost some of their punch.They are unique in that
they do not require a user’s permission to be sent, so they are still worth understanding.

Short Stories
Short stories have no limitations on where they are published.They are always published
to the user’s Wall Feed and the stream of a user and his friends, depending on their origin.
They can contain photos, videos, Flash, or other rich media.They cannot, however, be
published without express user consent.Applications must prompt a user to allow an ap-
plication to publish these types of stories or provide a Publisher to allow users to directly
create them. Short stories are more interesting from a content perspective and are, there-
fore, more effective in helping applications to spread throughout the social graph. But, ap-
plications have to convince users of their worth in order for them to invest in allowing
these types of stories to be published on their behalf.

You might wonder why you would ever provide a Publisher or Feed form when you
can use the API to post all the Feed stories you want. Obviously, for an application to
spread quickly, getting stories into the stream is extremely important. Remember, one
line stories are the only ones that don’t require anything more than authorizing an appli-
cation to be created; however, their reach is limited to the profile and the Highlights sec-
tion of the Home page, and applications can send only a limited amount of them per
user, per day.Also, all stories published automatically by the Facebook API—no matter
their size—are only visible on the user’s Wall, never the stream. It’s critical that applica-
tions master the capability to convince users to create short-form stories so that they
reach the wider audience exposed by the stream.

User engagement increases story value—period. Story value is directly related to how
useful, interesting, and relevant its content is for those that read it. Getting more detailed
and useful content from your application into the stream requires that you learn about
and capitalize on all the features Facebook offers to get your messaging published.At the
moment, short stories are the only way to get content in the stream. Plus, giving users
multiple options for publishing application content greatly increases the chances of it
spreading.

Sharing
Social media is based on the concept of sharing content, and Facebook has a built-in
sharing system that applications can use. Shared content can either be posted to a user’s
profile or directly sent to users via a Facebook email message. Users can provide com-
ments on all content they share to further personalize the process. Links to resources are
the most easily shared, but sharing embeddable rich content is critical. Facebook users do
not have to leave Facebook to view or use it, which ensures a greater potential for its
consumption.Applications integrate with the sharing system through a special “sharing”
control that Facebook provides. Figure 1.9 shows the Share dialog in action.

ptg

14 Chapter 1 Facebook Applications: The Basics

Figure 1.9 Facebook users can share content on
Facebook either by directly publishing it to their profiles

or by sending it to other users via a Facebook email
message.

Photos
Facebook has quickly become one of the biggest photo sharing and storage archives on
the web. Several terabytes of photos are uploaded to Facebook every day, and hundreds of
thousands of images are served per second.Applications can integrate with this system by
allowing users to upload photos, create photo albums, and tag photos.There are also Face-
book Markup Language (FBML) controls to allow the rendering of Facebook photos
within an application.

Notes
Notes are basically rich text documents that can be created or imported into Facebook.
Notes can be created, edited, and deleted by applications via the Facebook API. Users can
tag their friends in Notes, which is an operation that results in a Feed story being gener-
ated.The most frequent use of the Notes application is as a Really Simple Syndication
(RSS) aggregator for a single RSS feed. If an application generates a lot of content, Notes
are a great way to get that content into the stream.

Messages, Notifications, and Requests
Facebook provides applications with the capability to send both private messages and notifi-
cations. Private messages are just that, and they are equivalent to email.To reduce spamming
and abuse, Facebook requires applications to request users to grant special permissions to
allow them to send private messages, and these are never sent to their Facebook message

ptg

15Environment and Integration Points

Inbox. Instead, they are sent to the email address the recipient of the message used when she
set up her Facebook account.

Notifications are public and are most often used by applications to notify a user and
her friends of some action taken within that application. Notifications are stored on the
Notifications tab on the Facebook Inbox page, which can be accessed from the Inbox
link at the top of the Facebook user interface, as shown in Figure 1.10.An application can
send two types of notifications. User-to-user notifications are sent on behalf of one user
directly to another. User-to-user notifications can be sent from an application user to the
friends of the user, whether they use the application. Using notifications to alert non-
application users is, of course, a critical way to get an application to spread. Notifications
can also be sent to other application users, even if the sending user is not their friend.
Application-to-user notifications are sent from the application to users and generally
announce something related to the application in general, such as a new feature, a critical
bug fix, or a milestone.To limit abuse of notifications, Facebook strictly enforces the
number of notifications that an application can send per user, per day.

Requests and invitations are basically identical—the only difference is their names.
These allow applications to send messaging to users that requires them to perform some
action, whether it be to use an application, respond to an application-generated event, or
take some specific step using an application. Requests have been abused by applications,
causing Facebook to corral them in a special page only visible by clicking links from a
user’s Home page, as shown in Figure 1.11.This move cuts the vast quantities of these

Figure 1.10 Facebook routes notifications to a Notifications tab in the
Inbox.

ptg

16 Chapter 1 Facebook Applications: The Basics

Figure 1.11 All of a user’s requests and invita-
tions are listed on the Requests page, which is ac-

cessible from a user’s Home page.

types of messages being sent to users. Even so, requests are still an important part of any
developer’s toolkit for making a successful application.

Extending Facebook
Now that you know some of the basics of where you can integrate with Facebook, this
section covers the different ways to accomplish it. Facebook provides several options, and
more options become available all the time.

Platform Applications
Facebook Platform applications can be just about anything.The common features they
share are that they are web applications hosted outside of Facebook. Users don’t need to
do anything specific to install applications—they just need to authorize them to give an
application access to their personal information.This is, by far, the most popular method
of integrating with Facebook, and it’s the main focus of this book.

Desktop Applications
You can also create applications that integrate with Facebook externally. For example, the
Firefox Facebook extension provides a lot of functionality of Facebook from within the
Firefox browser, while not requiring the user to be on the Facebook site. External appli-
cations require special privileges to allow users to remain logged into Facebook indefi-
nitely on their behalf.A popular Twitter desktop client has recently added functionality to
set Facebook status messages using this feature.

Public Profiles
Public Profiles—formerly known as Facebook Pages or Facebook Fan Pages—create
Facebook presences for companies, celebrities, or brands, and were introduced to add to
the functionality offered by Facebook Groups. In March 2009, Facebook significantly
changed Public Profiles to make them more like normal user profiles.They differ from

ptg

17Extending Facebook

user profiles in that there usually is not a single user that backs them, but a set of adminis-
trators. Because Public Profiles don’t directly map to single users, they don’t have friends;
they have Fans.When a user becomes a Fan of a Public Profile, he signs up for updates
from that Public Profile that get published to his stream. Public Profiles can also host cus-
tom applications. Public Profiles provide one of the most important horizons for applica-
tion growth as businesses and brands enter the Facebook ecosystem more rapidly.

Facebook Connect
Facebook has dubbed Facebook Connect as the “next evolution of the Facebook Plat-
form.” It allows developers to integrate Facebook into their own external sites.This tech-
nology allows a Facebook user to take his social graph with him across the web. Sites that
implement Facebook Connect allow a user to log into them with his Facebook creden-
tials (see Figure 1.12). Once logged in, that site has access to the Facebook details for that
user and gives that site access to the Facebook API.This is incredibly powerful because it
allows external sites access to the Facebook social graph without having to live within the
Facebook user interface or have any of their content hosted on Facebook servers. It’s
even making its way onto mobile devices. Facebook released Facebook Connect for Ap-
ple’s iPhone and iPod Touch, which gives the enormously popular iPhone applications a
direct way to access Facebook. Facebook Connect is discussed in Chapter 13,“Facebook
Connect.”

Figure 1.12 Logging into an external site with
Facebook Connect

ptg

18 Chapter 1 Facebook Applications: The Basics

Facebook Platform Core Components
Along with its rich API, Facebook provides several components that allow application de-
velopers to easily replicate the look and feel of Facebook within their application and get
access to all the data in the social graph.These components are based on existing well-
known web development languages like HTML, JavaScript, and SQL to make it easier for
developers to be productive quickly.

FBML
As previously mentioned, FBML is an acronym for Facebook Markup Language. FBML
is a tag-based language based on HTML. It provides many of the tags supported by that
language and provides a large set of Facebook user interface and programmatic primitives.
FBML is automatically parsed and translated into HTML, Cascading Style Sheets (CSS),
and JavaScript code by Facebook servers when a request for an application page that con-
tains it is detected. FBML gives developers access to controls that allow applications to
look like they were developed as part of Facebook.

When an application is created, the developer must choose whether that application
will support FBML. It is always suggested that developers new to Facebook applications
use FBML unless they have a specific need for a technology that does not allow it. For
example, if your application uses third-party JavaScript libraries that are over 64K in size,
you cannot use FBML; you must use an IFrame-based application instead.

FBJS
FBJS is Facebook’s version of JavaScript. It supports most of the DOM-based manipula-
tion methods that developers are comfortable with and the familiar events, functions,
anonymous closures, and properties. It differs from JavaScript in several important ways.
First, its syntax is slightly different, primarily to protect Facebook itself from malicious
JavaScript code. Next, many DOM properties used in normal JavaScript are replaced by
get/set property methods. Finally, some widely-used event handlers are not available that
are widely used in normal client-side JavaScript.

For example, Facebook does not allow use of the ubiquitous onload() event handler
to execute code when a web page loads. In all but a few locations, a user must take a
physical action on the page (set focus to a control, click a mouse button, hit a key) before
FBJS can execute.To further protect itself, Facebook wraps all FBJS in what’s called the
sandbox.To accomplish this, Facebook prepends all FBJS variables, function names, and
function parameters with a special string that ensures that no FBJS code conflicts with or
can override any existing JavaScript code that might be on the page.

FQL
FQL stands for Facebook Query Language, and it should be familiar to anyone with basic
SQL experience. It offers a host of SQL-like features and language elements that allow
applications to directly query Facebook’s internal data tables. Not all SQL’s syntax is

ptg

19Summary

supported, but primitives, such as SELECT, WHERE, ORDER BY, and LIMIT, clauses are. FQL is
powerful in that it accesses and returns the same data provided by many of the Facebook
API calls; however, it allows applications to have Facebook filter that data before it’s re-
turned to the client, which potentially speeds up page loading and response times.

Many times, applications need to call API methods whose input depends on the result
of a previous API call.A great example is demonstrated with getting the names of a user’s
friends. Using the Facebook API, an application must first call the friends.get()
method and then pass the result directly back into another API call, users.getInfo().To
get the same result in FQL requires one API call, which results in one less round trip to
the Facebook servers. FQL can also be “preloaded” for all the pages in an application.This
is incredibly useful if an application needs similar Facebook data on every page.

XFBML and the Facebook JavaScript Client Library
Applications based on IFrames and external sites that use Facebook Connect do not have
access to FBML and, therefore, don’t get access to a lot of the precanned Facebook con-
trols and widgets it provides. Facebook provided XFBML to address this problem, as well
as the Facebook JavaScript Client Library to give developers access to more of the fea-
tures provided by FBML. Not all the FBML tags are supported, but many of the most
popular ones are and, in most cases, behave exactly like their FBML counterparts.Appli-
cations that use XFBML must render their pages using strict XHTML and must load the
Facebook JavaScript Client Library to get access to its features.

Summary
This chapter provided an overview of some of the ways in which Facebook Platform ap-
plications can integrate with Facebook, as well as some of the technologies available to
make the process easier. Here are the key points to remember:

n Facebook provides several points within its interface for applications to integrate.
Facebook profiles and Feed are the most important.

n Developers can interact with the Facebook Platform internally via Facebook appli-
cations and pages, and externally via desktop applications and Facebook Connect.

n Facebook provides several technologies that not only allow applications easy access
to the data within the social graph, but also give applications the capability to easily
match the “look and feel” of the Facebook user interface.

ptg

This page intentionally left blank

ptg

2
Making Great Applications

There are more than 350,000 applications in the Facebook Application Directory, and
more than 70 percent of Facebook users engage with them each month. However, only
around 5,000 of those applications have 10,000 or more monthly active users.The success
of an application can be short lived, so making it near the top doesn’t mean that an appli-
cation will stay there.

What separates the top applications from the rest? In some cases, it is just luck, com-
bined with effective use of the various integration points. However, the applications with
staying power tend to exhibit the same quality; they deliver actual value to users.That
value can be quick fun, better interaction with friends, or a new way for users to express
themselves. Great applications focus on providing value and continuously improving
themselves in response to user feedback and Facebook changes.

Although there have been many good applications, there have been a lot of bad
ones—applications that try to trick users, are difficult to use, or that create huge amounts
of spam.This has caused some user backlash and, as a result, Facebook encourages devel-
opers to start creating high-quality applications. It created a set of Guiding Principles
(described in the section,“Facebook’s Guiding Principles”) and several programs to verify
and reward great applications, which are covered in Chapter 5,“Facebook Terms of
Service and Application Programs.”

Begin with a Plan
Before you create an application, it is important to understand what your goals are and
how you plan to implement them.This section provides the key areas on which to focus.

Objectives
Why are you building this application? Is it to make money, promote or integrate an ex-
ternal brand, show off a new technology or service, or are you building it for yourself?
Knowing the objectives will help you understand what metrics to employ to track your
success, what areas to focus on in development and in responding to user feedback, and

ptg

22 Chapter 2 Making Great Applications

what areas of Facebook communication to focus on. Just like in life, if you don’t have any
goals, it is difficult to score.

Target Audience
Who do you want to use this application? Facebook has many different demographics,
and choosing to focus on one or more of these affects how you develop your application.
For example, an application that requires a long attention span is unlikely to succeed if it
targets high-school and college students. Instead, focus on providing quick value and
communication to fit their usage patterns.

It might also make sense to create applications that are location-specific.An application
that centers on Turkish culture might be wildly successful in Turkey and achieve your ob-
jectives, even if it isn’t popular in the United States.

Of course, after launching the application, an unexpected demographic might domi-
nate the user base.This is a great opportunity to reevaluate both objectives and focus to
continue to grow and improve the application.

Value Proposition
Why will users want this application? So many choose to ignore this question and pro-
duce applications that gather dust, regardless of how good they look or how much time
was spent developing them. Users aren’t looking to help you spread your application; they
just want something out of it, especially if you ask them to authorize the application in-
stead of just visit it.

Spend the time to really think about what users will get out of your application.The
Facebook Guiding Principles and the application profiles shown later in this chapter can
help with this process. Remember, one of the best values you can offer your users is a
simple-to-use interface.

Competitive Advantage
Why is your application better than your competition’s? Make sure to look through the
Facebook Application Directory to find applications that offer similar functionality. Read
through the forums and Wall posts on each competitor’s application About page to find
out what users like and don’t like about them.You don’t have to provide everything for
everyone or even match your competitors’ features, but you need to provide them with a
good reason to use your application.

Involving the User
How will users interact with your application? Facebook applications were once all about
having a great profile presence and sending invitations. Now, they focus on creating Feed
stories, and profile boxes are not as important. Make sure that your application is designed
from the start to use the integration points to your advantage. Use Feed forms to create
short stories from inside your application and the Publisher to let users interact from their

ptg

23Facebook’s Guiding Principles

Home page or profile.Applications can also integrate with Facebook Chat for real-time
communication.

You also need to plan the workflows for how users will engage with the application.Try
to refine long sequences of actions—some users will give up at each step.Also, plan to build
in A/B testing and metrics for a solid understanding of what is working and what isn’t.

Iterating
How will your application respond to feedback? Most applications do best when they
create something good enough quickly and then release updates as they gather usage
data. It’s a good idea to have a set of plans for future releases, but recognize that respond-
ing to user feedback can result in the application taking a completely different track than
what it started with.

Having clearly defined goals up front helps you decide when to make a set of changes
and when to stay the course. It is possible that the users you first acquire are not the ones
you were expecting, and the feedback they give might lead you down a path that’s incon-
sistent with your objectives.

Planning for Growth
Do you have a scalability plan? As discussed in the introduction to this chapter, most ap-
plications are not successful, so chances are likely that you won’t need to allocate dozens
of servers at the start. However, doing some planning can prevent you from repeating
the experience of the iLike application’s founders after their user count dramatically
increased—driving around in a truck trying to find more servers for the data center.

Chapter 16,“Improving Application Performance and Workflow,” goes over some scal-
ability tips, but you need to design the system up front to use multiple servers.Think
about how you can use Facebook’s own servers to help take on some of the burden.Also,
choose a host that supports autoscaling and pricing based on actual usage, rather than
paying by the month.

Facebook’s Guiding Principles
Facebook has laid out a set of Guiding Principles to help developers understand how to
make successful applications. Most of these seem like common sense, but you can easily
find applications that don’t follow any of these guidelines and suffer the consequences of
low user count, bad reviews, and short lifetimes. Not every application has to offer all
these things, but the better an application is at incorporating them, the better its chances
are of getting and keeping users.

Make Them Meaningful
As previously discussed, applications need to provide users with some value.That value
must be apparent to get users to authorize it, and they must continue to see value to keep
it on their profile, allow it into their stream, invite their friends, or simply keep using it.

ptg

24 Chapter 2 Making Great Applications

The following sections discuss the types of value recommended by Facebook’s Guiding
Principles.

Enable Social Activities
The most powerful feature of Facebook is the social graph. Harnessing the information
from a user’s friends allows applications to help them connect in new ways or more easily,
or just learn more about each other. Some good examples of applications that use Social
Activities are iLike, which helps music Fans create and share playlists, and Movies, which
uses quizzes to identify similar movie tastes with friends.

Be Useful
Applications must strive to do more than allow users to “throw sheep” at each other.They
need to help users easily organize things on a scale that just isn’t possible outside of Face-
book.Applications like We’re Related enable users to quickly build their family trees,
whereas users of Cities I’ve Visited can mark their travels and create reviews to share with
everyone.

Allow Users to Express Themselves
Users can fill out their profile info, update their statuses, and upload photos and videos us-
ing Facebook’s built-in applications. However, many more possibilities exist to allow users
to share more about themselves and create content. Sports applications, like Boston Red
Sox Fans, allow users to show off their sports affiliations by starting Waves. (Lil) Green
Patch lets users demonstrate their support for the environment by building a Green Patch
with their friends.

Engage Users’ Attention
Applications need to be interesting enough that users will want to use them more than
once, even for short periods of time. Social games, like Texas HoldEm and Scrabble, en-
able users to play against each other. SuperPoke, with its large variety of pokes, has people
constantly sending things back and forth.

Make Them Trustworthy
Reading stories about people losing out on jobs because of pictures they shared on Face-
book might make you think that privacy isn’t that important to Facebook users. Based on
the reaction to the last changes Facebook made to its Terms of Use, users really care
about it. (Chapter 5 covers this.) They also want applications to work as they expect, both
in the interface and in the messages it sends on their behalf.

Secure User Privacy
Facebook users put a lot of trust in applications to treat their data carefully; applications
have access to information that some of their friends can’t see! Users expect that the same
privacy settings they have set in Facebook will be mirrored in the applications they use.

ptg

25Facebook’s Guiding Principles

Therefore, Facebook requires users to take specific actions to allow applications to get de-
tailed user information, send emails, and access their data when the user isn’t online.
However, applications must keep user data secure and private without Facebook forcing
them to do so.

Be Respectful of Users
Most applications want their user base to grow, and Facebook provides many methods to
let users tell their friends about an application.This creates a temptation to use all the
available methods at all opportunities. However, users don’t want to be spammers—they
want to pass on only information that they think their friends will find interesting.Appli-
cations end up being proxies for these users, so the applications must use these communi-
cation channels carefully and with content that users would find acceptable.

Have Transparent Functionality
When a user clicks a button or accesses an application, he expects a certain behavior.Ap-
plications must not trick users with something else, such as an OK button that secretly
sends messages to all of their friends without their permission or creates News stories
about actions they never took.Applications that abuse a user’s trust will be uninstalled, re-
viled, and can be suspended by Facebook, as Chapter 5 outlines.

Make Them Well Designed
Well-designed applications are a pleasure to use.Their easy-to-use interfaces consistently
deliver the results that users expect.

Build Clean Interfaces
The best looking application in the world will fail if it is too difficult to use. Sometimes,
even one difficult step in a workflow is enough to doom an application to failure.When
an application is intuitive, users can quickly navigate it, use all the available functionality,
and are likely to come back. Design workflows up front and test them after launching to
make sure that they function as both you and users expect. Look at top applications for
interface patterns that work well and have gone through many iterations in response to
user feedback.

Respond Quickly
When applications take a long time to respond to user actions, one of two things will
happen:The user will get tired of waiting and give up, or Facebook will display a timeout
page saying that something is wrong with the application. In either case, the user didn’t
get what she expected and, if it continues to happen, she will stop using the application.
Use the Insights tool for your application to look at the response times and timeouts, and
work to fix these as soon as possible. It is important to identify performance issues early in
the cycle, before scalability becomes a real crisis.

ptg

26 Chapter 2 Making Great Applications

Figure 2.1 The LivingSocial application displays book
reviews from friends.

Work Reliably
Great applications have great quality. Functionality should be tested before and after de-
ployment to make sure that everything works.When things do go wrong, the developer
needs to work to resolve the problems quickly and communicate the results or status with
affected users. Users appreciate applications that respect their time and trust.

Examples of Great Applications
This section covers some of the many applications that exhibit the principles discussed in
this chapter.The Causes application is one of the official Facebook Great Apps program
winners. Graffiti is a great way to express and communicate with friends and LivingSocial
has been one of the best users of the new stream functionality.

LivingSocial
LivingSocial (http://apps.facebook.com/facebookshelf/) lets users keep track of what they are
using, how they feel about it, and get recommendations by looking at what their friends
are doing. It supports several common categories, such as movies, books, games, and beer.
The majority of the application’s value is based on a user’s friends using it—the more
friends that create reviews or say which books they are reading, the more useful content is
available to a user. Figure 2.1 shows how LivingSocial helps users find new books to read.

ptg

27Examples of Great Applications

LivingSocial also makes effective use of the stream, letting users pick their Top 5 fa-
vorites in a given category and publishing a news story about it.These stories provide
value, because friends can learn about new items, give their opinion, or create their own
Top 5. Figure 2.2 shows an example of a news story from LivingSocial.

As a result of these News stories, LivingSocial has rocketed to the top, becoming the
largest Facebook application ever, based on monthly active users.This demonstrates the
importance of keeping up with changes in the Facebook Platform, such as the one from
profile boxes to the stream.

Causes
Causes (http://apps.facebook.com/causes/) allows users to create communities around issues
and nonprofits that matter to them, and easily recruit members and donations to join
them in support.This application is a great example of providing value: It significantly
lowers the costs of acquiring new supporters compared to traditional marketing methods.
It also allows anyone to participate, with over one million registered nonprofits from
which to choose. Figure 2.3 shows the impact one user has had on her favorite causes.

Users not only get to help the causes they care about, but they also get social recogni-
tion for doing it.This is a great example of how applications can let users demonstrate
their associations to their friends.

Graffiti
Graffiti (http://apps.facebook.com/graffitiwall/) enables an entirely new way of expression by
letting users hand draw pictures and send them to their friends.This might seem insignifi-
cant at first, but after you marvel at the absolutely stunning entries in the drawing con-
tents or see how users create birthday messages for each other, you will understand how
important self-expression can be. Figure 2.4 shows a few of the top creations for the cur-
rent week.

Graffiti has been around since the Facebook Platform launch, and it has stood the test
of time. However, it has not yet embraced the new importance of using the News Feed as
the primary application communication channel. It will be interesting to see how the ap-
plication decides to take advantage of it.

Figure 2.2 The LivingSocial application creates news
stories displaying users’ Top 5 picks for a category.

ptg

28 Chapter 2 Making Great Applications

Figure 2.3 The Causes application displays
each user’s total impact.

Figure 2.4 Users create amazingly detailed images us-
ing the Graffiti application

ptg

29Summary

Summary
You now know what makes a great application, and you have a basis for creating your
own. Here are some key points:

n Make sure you understand what you are building and why before you start your
application. Have clear objectives and know who your users are.

n Early on, focus on providing value for users and make sure that the user workflows
are well designed and simple to perform.

n Plan for success by designing for scalability at the beginning.
n Iterate rapidly in response to user feedback, but make sure that the user demo-

graphic giving the feedback aligns with your objectives.
n Build applications that connect users, provide real value, and allow them to connect

in new or more in depth ways.
n Respect user privacy and trust by keeping users’ data safe and only sending com-

munications they expect.
n Test application functionality before deploying, respond quickly to issues, and pro-

vide a fast and reliable experience.
n Make your applications simple to use and intuitive.
n Use other successful applications to understand what works well on Facebook.

ptg

This page intentionally left blank

ptg

3
Platform Architecture Overview

With such a large number of active users, Facebook has enormous demands on its in-
frastructure. Facebook also has a vibrant application community and needs to provide a
fast and reliable interface for developers to use.To accomplish this, Facebook has em-
braced many open source technologies and contributed many improvements back into
the community.

This chapter describes how the Facebook Platform works: the servers and software it
runs on and the mechanisms that developers can use to interact with it.

Facebook’s Internal Servers
According to Facebook, it is the second most-trafficked PHP-based website in the world,
one of the largest users of the MySQL database, and the largest user of memcached,
which is a high-performance caching system. Facebook has also invented many of its own
technologies and released some of them as open source projects.This section discusses the
Facebook infrastructure and the details of its technologies.

Servers
Facebook uses multicore Fedora and Red Hat Enterprise Linux servers. Facebook last re-
ported that it has 10,000 web servers, 1,800 MySQL servers, and 805 memcached servers.
Currently, it does not use a storage area network (SAN); instead, it relies on a large num-
ber of hard drives in RAID 10 configuration. (RAID 10 is a hard-drive storage technol-
ogy that allows both increased performance and data loss protection.)

The servers supply over 28 terabytes (TB) of memory and process 200,000 User Data-
gram Protocol (UDP) requests per second.This is based on Facebook’s customization of
its server software, improving significantly on the 50,000 requests per second offered by
the stock versions.

ptg

32 Chapter 3 Platform Architecture Overview

Technologies
Facebook uses a customized Linux,Apache, MySQL, PHP (LAMP) stack. For many of
these technologies, Facebook has released enhancements back to the community. Facebook
has also opened up some of its own internal technologies. Here are brief descriptions of the
major technologies:

n Apache HTTP server (http://httpd.apache.org/) is the #1 web server used on the
Internet.The Apache Software Foundation manages it, and users from around the
world constantly update it.

n PHP (www.php.net/) is an extremely popular, C-like scripting language that is pri-
marily used for dynamic web development. (Currently, it’s installed on more than
20 million websites and runs on more than one million web servers.) PHP code is
executed on the server and can be embedded within existing HTML or be used to
generate dynamic HTML that is sent to a client’s browser. It currently provides the
user interface code for not only Facebook, but also Wikipedia,Yahoo!,YouTube, and
others. Primarily an interpreted language, it benefits from third-party optimizers,
which can dramatically increase its performance.

Facebook has contributed to an optimizer extension for PHP, called the Alternative
PHP Cache (APC) (http://pecl.php.net/package/APC/).APC caches the base exe-
cutable constructs parsed from raw PHP, called opcodes, so that that PHP doesn’t
have to reinterpret them each time the page executes.This extension, and others
like it, can really affect the performance of PHP sites.

n MySQL (www.mysql.com/) is the world’s most popular open source database. It is
fast, reliable, and easy to operate. Many of the most popular websites on the Inter-
net use it.

n Memcached (http://danga.com/memcached/) is a high-performance, distributed
memory object caching system for databases. Originally created for
LiveJournal.com, Facebook uses it to improve the performance of its many MySQL
databases.

Facebook has significantly contributed to the memcached project, boosting its per-
formance and adding functionality.

n Facebook Open Platform (http://developers.facebook.com/fbopen/) is a snapshot of
the infrastructure that makes up the Facebook Platform. It includes an implementa-
tion of the Facebook application programming interface (API), Facebook Markup
Language (FBML) parser, Facebook Query Language (FQL) parser, Facebook
JavaScript (FBJS), and a test harness and several common API utility methods and
FBML tags.

n Thrift (http://developers.facebook.com/thrift/) is a Facebook-created framework for
creating scalable cross-language services.Thrift lets developers create definition files
with datatypes and interfaces, and it generates client and server code from those

ptg

33Facebook’s External REST Interface

definitions in C++, Java, Python, PHP, and Ruby. Facebook uses Thrift in its
Search, Mobile, Posts, Notes, Feed, and the Developer Platform.

n Scribe (http://developers.facebook.com/scribe/), also developed by Facebook, is a scala-
ble and robust server used to parse and collect server logs from a large number of
servers in real time. Scribe was built using Thrift. Scribe is based on a multi-instance
architecture:There can be many concurrent Scribe servers and clients active at once
in a system. If a Scribe server goes down, clients write logs locally until the server
comes back up. Facebook runs Scribe on thousands of its servers to deliver billions
of messages a day.

Facebook’s External REST Interface
Facebook exposes an interface to application developers based on Representational State
Transfer (REST). REST is an architectural style that uses Hypertext Transfer Protocol
(HTTP).This section discusses how REST works and then describes how Facebook ex-
pects developers to use it.

Using REST on the Web
The majority of the web uses HTTP and, therefore, REST implementations can take ad-
vantage of the many features that the web offers, such as interoperability, scalability, secu-
rity, and standard URLs. REST deals with everything as resources, addressed using
standard URIs.

The basic tenets of REST are as follows:
n URIs are resources. (Example: http://server.com/person/john/) REST is stateless on

the server:The state is contained on the client and is passed to the server as part of
the URI. For example, a user might get a list of restaurants in Massachusetts by
going to http://server.com/restaurants/ma/. She might then click one of the resulting
restaurant names (Mangia, for example) to get more information, resulting in the
URL http://server.com/restaurants/ma/mangia/.This process continues as the user
narrows her search, and it might eventually include additional information as query
parameters, such as http://server.com/restaurants/ma/mangia/?search=pizza, to find
what types of pizza Mangia serves.

n HTTP verbs are the methods. (Example: GET, POST, PUT, and DELETE) In general,
GET should be a read-only, repeatable operation to return resource information.This
allows servers to easily cache and scale. POST, PUT, and DELETE change the resource.

n Content-type describes how the data is exchanged. (Example: Content-
type=application/xml sent in the HTTP header) Responses from the server
should be XHTML, XML, or JavaScript Object Notation (JSON). Clients of the
service should know which to expect and handle it accordingly.

ptg

34 Chapter 3 Platform Architecture Overview

Table 3.1 Common Status Codes

Code Meaning

2xx Success

200 OK.

201 Created.

3xx Redirection

301 Moved permanently to another address.

302 Moved temporarily to another address.

304 Not modified, use the local cache.

4xx Client Error

400 Bad request, the syntax was bad.

401 Unauthorized, authentication must be used.

403 Forbidden, the user doesn’t have rights.

404 Not Found, the URL doesn’t exist.

405 Method not allowed, the wrong verb was used.

5xx Server Errors

500 Internal Server Error, something bad on the server.

n Status codes are the result. (Example: 200 is OK; 400 is a bad request.) Having
a defined set of returned status codes is important.Table 3.1 lists the standard ones,
which are recognized as part of HTTP/1.1.

Implementing REST in Facebook
Facebook provides a REST-like implementation for its API. It’s not pure REST, because
individual resources (methods, objects) are not given unique URIs. For example, to get a
list of friends of the current user using a REST API, you might expect to use a GET re-
quest to retrieve it from a collection URI (perhaps http://api.facebook.com/users/).Then, the
client code could use one of these user identifiers returned from this query to access
specific data of a single user, again using a dedicated URI (for example, http://api.facebook.com/
users/uid100).

Instead, Facebook implements the interface for its API by using a single endpoint, to
which you must supply all the data needed for the request in POST (default) or GET pa-
rameters. It’s effectively a remote procedure call (RPC) over HTTP-style interface. Each

ptg

35Overview of the Facebook API

API call has its own set of parameters, and Facebook requires that the application also pass
identifying information and a security hash to ensure that the calls are legitimate.

For example, to manually call the Facebook API function friends.getAppUsers(),
which returns a list of friends of the current user who are also users of your application,
you can use a URL like this one:

http://api.facebook.com/restserver.php?method=facebook.friends.getAppUsers&session_

➥key=XXXXXXXXXXXXXXXX&api_key=XXXXXXXXXXXXXXXXX&call_id=1234557716.362&v=1.0
➥&sig=XXXXXXXXXXXXXXXXXXX

Fortunately, Facebook and the developer community provide wrappers for many lan-
guages that make calling the Facebook API as simple as a function call, allowing you to
use this instead:

$facebook = new Facebook($app_apikey, $app_secretkey);

$result = $facebook->api_client->friends_getAppUsers();

Later, this chapter describes the available client libraries that wrap the API. However,
because Facebook uses a standard REST interface, almost any language with web capabil-
ities can use the API.

Overview of the Facebook API
The Facebook API is grouped into numerous functional areas, each of which focuses on a
different aspect of the Platform. Facebook consistently modifies them as new features are
added, security issues are addressed, or behaviors become deprecated or obsolete.This sec-
tion broadly covers these areas, because many API methods are discussed in detail
throughout this book.APIs that are in beta—meaning that they are still in development,
not supported by Facebook, possibly unstable, and subject to change at any time—are also
called out.

Permissions API
The permissions API contains methods that control overall application management.
There are methods to manage applications’ developer settings, retrieve application Face-
book metrics, ban specific users, and get application public information.These methods
also help automate application configuration and setup on different servers.

Authorization API
Used for desktop or external Facebook applications, the authorization API handles ses-
sion management and login information. For internal Facebook web applications—on
which this book primarily focuses—these methods are not often used, except for those
that handle oversight of application extended permissions, which Chapter 6,“The Basics
of Creating Applications,” covers.

ptg

Batching API
Communicating with a remote server via HTTP or any protocol is expensive in terms of
an application’s response time and latency. Usually, this is the slowest part of a web appli-
cation: waiting for the data requested from some remote source to be returned. Facebook
applications are no exception. Because applications must always make API calls to a re-
mote Facebook server, the batching API was created to allow them to bundle up to
20 calls and make a single call to Facebook instead of several individual ones.This saves
significant amounts of an application’s time. Facebook also allows these calls to be made
sequentially or in parallel, depending on the application’s needs.

Comments API (Beta)
Comments are a relatively new addition to the API.When Facebook rolled out the new
stream-based model, it added the ability for users to comment on individual Feed sto-
ries.This part of the API allows applications to get, create, and remove these comments
programmatically.

Data Store API (Beta)
Nearly every non-trivial Facebook application requires some sort of database or scalable
application-specific storage to manage application state and offline caching of data.When
Facebook Platform first launched, using an external database, like MySQL, for this pur-
pose was a developer’s only real option. Facebook then provided its own solution that al-
lowed data to be stored on its servers.The data store API allows for the creation and use
of tables, objects, and associations between them.According to Facebook, it can handle
tens of millions of records with little performance degradation.

Although interesting in concept, the data store API is somewhat difficult and esoteric
to use and debug. Currently, it is unsupported, and parts of it work sporadically. It’s also
been in beta for almost two years. Facebook is aware of this issue, but is not giving an es-
timate as to when it will be fully functional. So, if you decide to use this API, be careful;
these methods are in beta and subject to change at any time at Facebook’s discretion! It’s
recommended that you use your own database instead.

Events API
One of the powerful features of Facebook is its rich event system, which allows users to
create events with built-in RSVP features, event-specific media, and export capabilities.
The events API allows applications to manage events on its users’ behalf, although this re-
quires extra permissions for an application to do so.

FBML API
The FBML API is a varied mix of methods that allow developers to create custom FBML
tags, refresh cached images, upload localized strings for internationalization purposes, and
do high-performance updates of cached profile box FBML. Custom FBML tags can be

36 Chapter 3 Platform Architecture Overview

ptg

37Overview of the Facebook API

registered with Facebook and be made public so that other developers can use them in
their own applications.

Feed API
As mentioned in Chapter 1,“Facebook Applications:The Basics,” the heart of Facebook is
the Feed and the stream that arises from it. Chapters 9 and 10 cover the feed API com-
prehensively, so this section doesn’t cover it in depth.The Feed API basically allows appli-
cations to register templates for the stories they publish to the stream and to directly
publish these stories programmatically.

FQL API
FQL allows developers to access the same information provided by API methods, but by
using a SQL-like query language. Note that many of Facebook’s API methods use FQL
internally to access the data they return or need.Therefore, it’s in a programmer’s best in-
terest to understand FQL, because, in many cases, it’s more efficient to use a FQL query
than an equivalent API call.The API has just two methods: one to allow a single query
and one to do multiple dependent queries in sequence.The latter capability was recently
added. Unfortunately, you cannot use it to preload FQL, which is something that’s dis-
cussed in Chapter 16,“Improving Application Performance and Workflow.”

Links API
The links API allows applications to give its users the ability to post links to their Walls
directly from the application. Users must opt in to allow applications to perform this be-
havior.These API calls work in a similar fashion as the ubiquitous Facebook Share button
(found throughout the site).

User Management API
Probably the most frequently used set of APIs in the Facebook Platform, the user man-
agement APIs provide applications direct access to the users in the social graph. (We
grouped these together under the heading user management; Facebook has no such term
for them.) These APIs contain all the methods for getting users’ friends, individual user’s
information, verifying if specific users have authorized an application, and organizing lists
of friends. Most of these methods are used throughout this book.

When looking at the Facebook API documentation on its Wiki, the methods that start
with “users” or “friends” fall in this category.This is a mature API, and most of the meth-
ods within it have been part of the Platform API since its launch.

ptg

Notes API (Beta)
Facebook Notes are rich text documents that can be created within Facebook. Recently,
Facebook added support to allow users to create, edit, and delete them from within an
application. Like many other powerful features offered by Facebook, this requires a user to
grant the application special permissions to allow its use.

Messaging API
Messaging is another category we created to group API methods with similar behaviors.
This grouping contains API methods to allow applications to send Facebook notifica-
tions and email (via the notification APIs), update users’ Facebook status (via the status
APIs), and send LiveMessages. LiveMessages are new to Facebook.You use them to send
messages to a particular user’s browser via FBJS.They are extremely useful in applica-
tions that have sequential or turn-based semantics, such as games.

Pages API
Pages API methods allow developers to get specific information about Facebook Public
Profiles. Facebook Public Profiles were once known as Facebook Pages or Facebook Fan
Pages, but with their recent redesign, they behave and look like normal user profiles.
These APIs, however, still use the term “pages” when referring to them.They return in-
formation about whether a logged-in user is an administrator of the Public Profile, if he is
a Fan (remember, Fans are like friends, but are specific to Public Profiles), and whether a
specific application has been added to the profile.

Photo and Video API
Being one of the largest photo- and video-sharing sites on the web, Facebook provides a
set of APIs for developers to manage these assets from within their applications. Photo
and video API methods allow users to upload, create albums, and retrieve tagged user in-
formation, among other things. Many of these methods also require extended permissions
for applications to use them.

Profile API
The profile API methods manage users’ application profile boxes, application tabs, or info
sections (custom content found on the Info tab of a user’s profile.) Chapter 8,“Updating
the Profile,” uses all of them, so they are discussed there.

Open Stream API (Beta)
The newest addition to the Facebook API is the Open Stream API.As Chapter 9,“Feed
Stories, Feed Forms, and Templates,” shows, publishing content to the stream is currently a

38 Chapter 3 Platform Architecture Overview

ptg

39Overview of the Facebook API

somewhat complex and detailed process.With Facebook’s switch to the real-time stream-
ing update model, it realized that it needed to provide developers a new way to access the
Feed than what’s provided today. Not only that, Facebook wanted to provide developers
access to the stream from outside Facebook, whether it be on an external website, a mo-
bile application, or a desktop application.This is the future of developer access to the
heart of Facebook’s information flow. Because this is such a new feature and subject to
constant changes (sometimes several changes per week), this book doesn’t cover it in de-
tail; by the time this book publishes, that information would probably be outdated. Check
this book’s website for more information; it will have updated content when this feature
is more concrete.

The new API allows applications to read content from the stream, publish their own
content, and manage comments and ratings for individual Feed stories.

Facebook JavaScript Client Library
The Facebook JavaScript Client Library was created to let applications use the Facebook
API on the client rather than the server.This means that a Facebook application can run
anywhere JavaScript can, not just inside Facebook. Facebook Connect builds on this li-
brary to offer additional functionality for external websites, such as logging in with Face-
book credentials and publishing news stories.

Websites that use this library have access to most of the Facebook API and a subset of
FBML, called XFBML.After the page loads and initializes the Facebook JavaScript Client
Library, it’s allowed to call API functions and use XFBML. XFBML can either be dis-
played inline on the page or dynamically created via the library.

Listing 3.1 shows an example script block that displays the picture of the viewing
Facebook user.

Listing 3.1 Displaying the User with XFBML

<script

src="http://static.ak.connect.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php"

type="text/javascript">

</script>

<div id='container'></div>

<script type="text/javascript">

// Load XFBML support

FB_RequireFeatures(['XFBML'], function(){

FB.Facebook.init(api_key, location_of_receiver_file);

var api = FB.Facebook.apiClient;

// require user to login

api.requireLogin(function(exception){

ptg

40 Chapter 3 Platform Architecture Overview

Listing 3.1 Continued

// Get the user's id from the API

var uid = api.get_session().uid;

// Create an XFBML profile picture for this user and update the DOM

var container = document.getElementById('container');

container.innerHTML = '<fb:profile-pic uid="'+uid+'"/>';

FB.XFBML.Host.parseDomTree();

});

});

</script>

Chapter 12,“Facebook JavaScript Client Library,” discusses this library in detail.

Facebook Mobile Support
Facebook provides basic mobile integration for most mobile phones and a richer experi-
ence for the iPhone (by using the Facebook Connect for iPhone library). For non-iPhones,
the integration points are a presence on http://m.facebook.com—Facebook’s mobile
website—and the use of Facebook’s Short Message Service (SMS, or text messaging)
service.

Applications on the mobile Facebook website use a subset of FBML to create mobile
profile and canvas pages.When Facebook detects a mobile browser, a special
fb_sig_mobile parameter is passed to the application as a POST variable.The application
can then return FBML enclosed in special <fb:mobile> tags for display. Mock AJAX and
FBJS are not available in the mobile version of FBML.

After a user adds the application, she has to go to the Settings page on http://m.face-
book.com and enable the application to show up on her mobile profile.After it’s enabled,
the application shows up on the mobile profile under Boxes.

Note
At the present time, mobile Facebook site integration is not stable. Facebook has stated in
the forums that it is working on enhancing its mobile integration.

Facebook’s SMS lets applications send and receive SMS notifications. Users must first
allow this feature by enabling the SMS extended permission in the application.Then, the
application can send them an SMS.An application can check whether a user has set per-
missions by calling the sms.canSend() API function.

Applications can send a single user an SMS notification or start an SMS conversation,
depending on the parameters to the API call.An application might use the conversational
style for handling information requests that get more specific.The user can reply to the
SMS or follow a link inside of it to the application’s mobile Facebook Page.

Users can also send an SMS to the application via the Facebook shortcode 32665 by
using the format ”app_canvas_name <query>”.The Facebook application is passed some
extra POST parameters with the ID of the user and the message.

The handler code might look similar to Listing 3.2.

ptg

41Facebook Mobile Support

Listing 3.2 Handling an SMS Response

if (isset($_POST['fb_sig_sms'])) {

// Get the received SMS information

$user = $_POST['fb_sig_user'];

$message = $_POST['fb_sig_message'];

$sessionID = $_POST['fb_sig_sms_sid'];

// Process the message

// Send back a response

$response = "Thanks for your message - $message";

$sessionID = $facebook->api_client->sms_send($userID, $response, $sessionID, 0);

}

Strangely, the API wrapper code for handling SMS calls is not part of the PHP client
library.Add the functions in Listing 3.3 to your application to extend the wrapper to in-
clude SMS functionality.

Listing 3.3 sms_canSend() and sms_send() Functions

/**

* Checks to see if the user has enabled SMS for the application

* @param int $uid Optional: The user id to check

* A null parameter will default to the session user.

* @return 0 for success or an error code

*/

public function sms_canSend($uid) {

return $this->call_method('facebook.sms.canSend', array('uid' => $uid));

}

/**

* Sends a text message to the user

* @param int $uid Optional: The user id to send the message to

* A null parameter will default to the session user.

* @param string $message: The content of the message to send

* @param int $session_id: The session id for the current conversation

* A null parameter signifies a new conversation. This value is returned

* from this function or as a REQUEST variable when an SMS is received

* by the application

* @param bool $req_session: Whether the message is part of a conversation

* A false value signifies a a single text message. Any replies to it will be

* received with no information about the outgoing message

* @return 0 for success if req_session is false or the session id if req_session

* is true. Returns an error code otherwise

*/

ptg

42 Chapter 3 Platform Architecture Overview

Listing 3.3 Continued

public function sms_send($uid, $message, $session_id = null, $req_session =
➥ false) {

return $this->call_method('facebook.sms.send', array('uid' => $uid,

'message' => $message, 'session_id' => $session_id,

'req_session' => $req_session));

}

Facebook Connect for the iPhone allows iPhone developers to include an Xcode proj-
ect into their applications. Information about Xcode and developing for the iPhone can be
found in The iPhone Developer’s Cookbook by Erica Sadun. General concepts for this library
are the same as the overall Facebook Connect Library, which is detailed in Chapter 13,
“Facebook Connect.” iPhone applications will be able to access the Facebook Platform
API to get user information, set a status, create a news story, and get friend information.
This is a great opportunity to bring a rich social experience to a great mobile platform.

Library Support
As previously discussed, manually calling the Facebook REST API is possible but takes
work. Facebook provides and officially supports two wrapper libraries to help with this,
and the developer community has created wrappers for many other languages.

Official Libraries
Facebook updates its libraries somewhat frequently, and these changes are preannounced
on the developer blog. Often,API methods can be deprecated but still function correctly
until a cutoff date.This means that older applications do not necessarily have to be up-
dated to always use the latest version of the library, but developers still must be aware of
cutoff dates.The officially supported libraries are as follows:

n PHP 5.The most widely used by developers. Most examples and Developer forum
posts reference the use of this library.

n JavaScript Client Library. Although it’s not as complete as the PHP library, this
library forms the basis of Facebook Connect and will be expanded as time goes on.

n Facebook Connect for iPhone. Written in Objective-C, which is the iPhone’s
primary development language, this library provides services and primitives to make
it easier for iPhone developers to allow their applications to connect to Facebook
from the handset.

n ActionScript 3.0. Supported by Adobe, this library allows Adobe Flash, Flex, and
Air applications to directly call the Facebook API.

n Force.com for Facebook. Supported by Salesforce.com, this library allows devel-
opers on the Salesforce.com platform to integrate Facebook into their custom
Salesforce platform applications.

ptg

43Application Architecture

Unofficial or Third-Party Supported Libraries
The Facebook Platform developer community maintains the following client libraries.
Facebook does not officially support them. Many of them are active, whereas others are
more of a proof of concept.The current unofficial libraries are as follows:

n .NET Facebook API Client (supported by SocialCash.com)
n Android
n ASP.NET
n ASP (VBScript)
n Cocoa
n ColdFusion
n C++
n C#
n D
n Emacs Lisp
n Erlang
n Google Web Toolkit
n Java
n Lisp
n Perl
n Python
n Ruby on Rails
n Smalltalk
n Tcl
n VB.NET
n Windows Mobile

Application Architecture
Every Facebook application must have the same basic architecture to interoperate with
the Platform. Facebook provides a Facebook Developer application to allow developers
to make new applications and fill in the details where they are hosted. Each application is
issued some identifying keys, and developers are required to enter URLs for how users
and Facebook access the application.

Facebook does not actually host developer’s applications. It acts as a proxy instead so
that when the user visits the Canvas Page URL, Facebook creates an outer frame and
then calls the application’s Canvas Callback URL to get information to display.The
workflows later in this chapter detail how this information gets rendered.

ptg

44 Chapter 3 Platform Architecture Overview

Chapter 6 details how to build the application architecture.This section overviews
how an application interacts with the Facebook Platform.

Secret Keys
When an application is created using the Facebook Developer application, it is given a
public and private key pair.The public key is called the API key, and the private key is
called the Secret key.This key pair verifies that all calls made to the Facebook API are from
that application. It is important that developers protect their Secret keys and report their
loss if they are ever compromised. Otherwise, anyone can start making calls masquerading
as that application, modifying or even deleting user data.

Canvas Page URL
The Canvas Page URL is the location on Facebook that users visit to get to the applica-
tion. It is in the format http://apps.facebook.com/yourcanvasurl. It has to be unique, unlike
the Application Name. For example, two applications might be called SuperQuiz, but
only one can have http://apps.facebook.com/superquiz.The other application has to use
something else, like http://apps.facebook.com/superquiz-2.

In general, it isn’t a great idea to have the same name as another application.At the
launch of the Facebook Platform, squatters quickly registered applications with many
common names, attempting a land grab similar to what happened in the early days of the
web. Since then, the level of squatting seems to have died down, and the ability to have
duplicate application names reduced the value of having a specific URL.

Canvas Callback URL
The Canvas Callback URL is the location on your server where your application resides.
Facebook calls this URL when it needs to display an application page, when a user adds
or removes the application, and when it needs to update its cache.

The server hosting the Canvas Callback URL can handle the callbacks using whatever
web server or language the developer deems appropriate. Facebook passes a set of data as
POST variables to the Canvas Callback URL, containing information about the viewing
user, the session, and the application.The server can manually process these or use one of
the API wrapper libraries to do it.

Canvas Page Workflow
Every time a user goes to an application canvas page, Facebook calls the application’s
Canvas Callback URL.Applications have to decide if they will have FBML or IFrame-
based canvas pages. (Chapter 7,“Building the Canvas,” discusses the benefits of each.) The
biggest difference between FBML and IFrame canvas pages is that applications that pro-
duce FBML must have Facebook render their content before displaying it.This is so that
Facebook can turn each FBML control into its HTML and JavaScript equivalents.
IFrame-based canvas pages just show their content directly but cannot use FBML.They
can show XFBML using the Facebook JavaScript Client Library, however (discussed in
Chapter 12).

ptg

45Application Architecture

Figure 3.1 and Figure 3.2 show the workflows for how Facebook interacts with an ap-
plication’s canvas page.They also show how an application can send content for Facebook
to display in the user’s profile box. Chapter 7 discusses canvas pages.

1. Browser loads Canvas URL. 5. Facebook renders FBML to HTML
and updates the page.

4. Application returns HTML or FBML.2. Facebook calls Callback URL.

3. Application calls FB REST server
for more data about user,

or to create the user’s Profile Box.

Browser

Application
Canvas Page

Developer
Server

Facebook
REST Server

Facebook
Web Server

Figure 3.1 Workflow for displaying an FBML application canvas page

1. Browser loads Canvas URL.

4. Application outputs
HTML directly to IFRAME.

2. Facebook calls Callback URL.

3. Application calls FB REST server
for more data about user,

or to create the user’s Profile Box.

Browser

Application
Canvas Page

IFRAME

Developer
Server

Facebook
REST Server

Facebook
Web Server

Figure 3.2 Workflow for displaying an IFrame application canvas page

ptg

46 Chapter 3 Platform Architecture Overview

Profile Box Workflow
To speed up profile load times, Facebook caches application profile box content.This
content is set by the application ahead of time and can be updated either by sending new
content using the profile.setFBML() API method or by asking Facebook to update
portions of its cache <fb:ref> functionality. Chapter 8 covers profile boxes in depth.

Figure 3.3 shows the workflow for how Facebook interacts with an application profile
box page.

1. Browser loads user Profile.

3. Some later time, the Application tells
Facebook to update some or all of its cache.

Browser

Application
Profile Box

Developer
Server

Facebook
Web Server

2. Facebook renders cached FBML
for Application’s Profile Box.

Figure 3.3 Workflow for displaying the application profile box

Summary
This chapter described how the Facebook Platform works, from its underlying technolo-
gies to how it communicates with applications. Here are some key points:

n Facebook uses open source technologies to allow the Facebook Platform to handle
the large user base. Developers can use the same technologies for their own applica-
tions and benefit from the contributions that Facebook has given to the community.

n Using REST allows services to benefit from the strengths of the web, and this is
what the Facebook API uses.Although you can manually create a call to the
REST server, it is much easier to use one of the many available Facebook API
client libraries.

n The Facebook JavaScript Client Library is the way that external websites can use
the API to integrate Facebook functionality into their sites. Facebook Connect
builds on this, adding capabilities, such as allowing users to log into external sites
using their Facebook credentials.

ptg

47Application Architecture

n Facebook provides mobile integration via SMS processing, mobile Facebook web-
site integration, and a special Facebook Connect for the iPhone library.These allow
application developers to embrace the gigantic mobile user base.

n Applications have two unique URLs: the Canvas Page URL that users go to and
the Canvas Callback URL with which the Facebook Platform communicates.Ap-
plications and Facebook use key pairs to verify that the communication is valid.

ptg

This page intentionally left blank

ptg

4
Platform Developer Tools

A variety of developer tools are useful for Facebook development and application de-
bugging.This chapter shows you how to use some of the most common ones. Some of
these tools are provided by Facebook, whereas others are freely available browser add-ons
or external tools.

Facebook Provided Tools
Facebook provides some free online developer tools (at http://developers.facebook.com/tools.
php) for testing calls and responses from the Facebook REST application programming
interface (API), rendering sample Facebook Markup Language (FBML) in different con-
texts (for example, on the profile or the Boxes tab), and managing Feed templates for spe-
cific applications. Facebook also provides a setting in its PHP client library, which can
help diagnose common problems. Finally, Facebook allows developers to create special
test accounts to exercise multiuser functionality of applications.

API Test Console
The API Test Console is an indispensable tool that allows developers to test calls to and
responses from many of the most used Facebook API methods in the context of any of
their applications.You can pass in various parameters, change the response format to dif-
ferent types, validate callbacks if the method supports them, and see what the API will
produce without having to write code for all the testing infrastructure.

Figure 4.1 shows a sample API test for the friends.areFriends() API method.
As you can see in Figure 4.1, the API Test Console offers a number of fields that devel-

opers can use to modify the data sent to Facebook for each call. Each of these fields and
their use is described in the following section. Many fields are added dynamically, de-
pending on the API method selected in the Method field. For example, the default API
method that’s selected when you open the tool is friends.get(). Facebook provides a
field for its single parameter flid below the method drop-down field. If you switch the
API to friends.areFriends(), you notice that two completely different fields appear
for entering the two parameters that this API expects.

ptg

50 Chapter 4 Platform Developer Tools

User ID
To use the API Test Console, you must be logged into Facebook, and the User ID field
holds your Facebook user ID.The API calls are done on your behalf, which means that all
of your normal privacy constraints are still in effect. Unfortunately, this field can only be
changed by logging into Facebook as another user.

Application
Application is from where the calls will be coming.You can use the generic Test Console
value (if you don’t have a preference) or choose any of your other applications.This im-
portant feature allows you to test APIs that are application-specific. For example, to verify
that Facebook is correctly caching the contents of an application’s profile box, you can
call the profile.setFBML() and profile.getFBML() methods.This first sets the con-
tents of the profile box, which, as discussed in Chapter 1,“Facebook Applications:The
Basics,” are cached on Facebook’s servers.The second returns you the FBML contents of
the profile box currently cached by Facebook.This is more efficient than doing this man-
ually by using your application.

Figure 4.1 The Facebook API Test Console allows develop-
ers to call many Facebook API methods in the context of a spe-

cific application.

ptg

51Facebook Provided Tools

Response Format
You can change the type of result that is displayed to XML, JSON, or PHP.The API actu-
ally only returns XML or JSON, but the PHP format is what the PHP Client Library
would convert the response to. Here are the response variations for the API function
friends.areFriends():

XML

<?xml version="1.0" encoding="UTF-8"?>

<friends_areFriends_response xmlns="http://api.facebook.com/1.0/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://api.facebook.com/1.0/

http://api.facebook.com/1.0/facebook.xsd" list="true">

<friend_info>

<uid1>698700806</uid1>

<uid2>714497440</uid2>

<are_friends>1</are_friends>

</friend_info>

</friends_areFriends_response>

JSON

[{"uid1":698700806,"uid2":714497440,"are_friends":true}]

Facebook PHP Client

Array

(

[0] => Array

(

[uid1] => 698700806

[uid2] => 714497440

[are_friends] => 1

)

)

Callback
The Callback field is the name of a function to call with the response as an argument. It
works only when the response format is set to JSON or XML. In the test console, it sim-
ply displays the response as the sole argument to the function name you supply. (See the
sidebar for more information about JSONP.) Here is the JSON result of the
friends.areFriends() call when a callback is specified:

mycallback();

ptg

52 Chapter 4 Platform Developer Tools

JSONP
JSON with padding (JSONP) is a technique that allows developers to use code from differ-
ent domains to create engaging web applications without duplicating tons of code. Clients
dynamically create a <script> tag with its src attribute set to a JSONP-enabled web serv-
ice they want to call, appending a query parameter, such as a callback function name. For
example:

// dynamically created script tag pointing to JSONP enabled web service

<script src='http://example.com/getdata?callback=handleData' />

The web service returns the data as a parameter to the callback function, which gets exe-
cuted back on the client:

handleData({"data" : "value" });

This simple technique allows developers to build engaging web-based applications using
code from multiple domains. Many well-known JavaScript libraries and websites now handle
JSONP requests. There are downsides to it, of course. Take security, for example: Because
the data is sent in plain URL-encoded text, never use JSONP to send sensitive data.

Unfortunately, FBJS does not allow the creation of dynamic <script> blocks, so you cannot
use this technique on FBML-based canvas pages, profiles, or application tabs. You must use
the FBJS AJAX methods instead. The previous technique would work on an IFrame-based
canvas page or on an external site.

Method
Method is the Facebook API function that you want to test. Below it are fields for any
parameters the method might require.A documentation link brings up the wiki page for
that method.After you click the Call Method button, the code for that call using the
Facebook PHP client library is generated for you in the box at the top right, so you can
paste it into your code. For example, if you tried the friends.areFriends() API
method with appropriate parameters, the following code line appears:

$facebook->api_client->friends_areFriends(698700806,714497440);

You can also test FQL queries here by selecting the fql.query() method and enter-
ing your FQL into the query field. FQL was introduced in Chapter 1 and is discussed in
detail in Chapter 16,“Improving Application Performance and Workflow.”

FBML Test Console
FBML can be used in many contexts, such as the canvas, profile boxes, Feeds, Notifica-
tions, Email, and application tabs. FBML must be rendered into HTML by Facebook be-
fore being displayed, so developers can not test it locally.This console lets developers enter
FBML and see how it would be rendered in any of the allowed display locations. It can be
especially useful for the profile box, where the same code can be rendered completely dif-
ferently, depending on the display context.Additionally, it gives great insight into what
FBML tags can be used in which locations in the Facebook user interface.The console

ptg

53Facebook Provided Tools

notifies users if certain tags are not supported on the profile, for example. Figure 4.2
shows some FBML being rendered for the profile.

In Figure 4.2, the FBML code on the left contains a section for the narrow profile marked
<fb:narrow> and a section for the wide profile marked <fb:wide>.The Position field is cur-
rently set to narrow,and that is what the Preview box displays.By changing the drop-down
field for Position from narrow to wide, the <fb:wide> section is rendered instead.More in-
formation about the profile types is given in Chapter 8,“Updating the Profile.”

Like the API Test Console, the FBML Test Console provides numerous fields that a de-
veloper can use to customize the behavior and output of the code rendered by it.The fol-
lowing section covers these fields.

User
The User field behaves exactly like the User ID field from the API Test Console. It is the
Facebook user ID of the currently logged in Facebook user. FBML rendering is done on
his behalf, which means that all the normal privacy constraints for what that user can see
are still in effect.This field can only be changed by logging into Facebook as another
user. However, unlike the API Test Console, the FBML Test Console still works if no user
is currently logged in to Facebook, but the viewing user is treated as a non-friend of the
profile owner.

Figure 4.2 FBML Test Console

ptg

54 Chapter 4 Platform Developer Tools

Profile
Profile is the Facebook user ID of the profile owner.The FBML is rendered as if it were
on that user’s profile.That makes a difference if the FBML contained something like this:

hello <fb:name uid='profileowner'/>

The name of the user with the ID placed in the profile field will be displayed.

Position
Facebook has many different parts to its user interface, and messaging and applications
can integrate in different ways with many of them.The Position drop-down field lists a
great number of integration points that developers can use to test how FBML would be
rendered by Facebook in a specific location.This is critical for testing because, in many
cases, Facebook only allows a specific subset of FBML and HTML tags for some of the
locations.This list describes each one:

n Profile main. Represents an application profile box on the Wall or Info tab of a
user’s profile.

n Narrow. Represents an application profile box on the narrow column of the
Boxes tab.

n Wide. Tests an application profile box on the wide column of the Boxes tab.
n Wide canvas. Facebook recently increased the width of the page area that appli-

cations can use for their content.This option allows testing of FBML on the new
wider canvas pages.

n Canvas. Tests application canvas pages that have not been converted to the new,
wider format.

n Email. Tests application-generated email. Chapter 10,“Publisher, Notifications,
and Requests,” covers this in detail.

n Notification. Helpful for testing application notifications (of both types: user-to-
user and application-to-user).

n Request.Tests invitations and requests, which have restricted sets of the FBML
they can use. Chapter 10 covers these in detail.

n Feed title. Tests titles of Feed stories.
n Feed body. Tests the bodies of Feed short stories. (One line stories do not have

bodies.)
n Feed full. Deprecated; do not use. Facebook removed the full Feed story type a

while ago and, as of this writing, this artifact has not been removed.
n Mobile. Useful for testing rendering of mobile profile content.
n Tab. Tests application content as it would appear on an application tab.

ptg

55Facebook Provided Tools

API Key
This is the API key of the application to use for the rendering call.There is no reason to
change the default value. If you use an invalid API key, the test console uses its default
value instead.

FBML Textbox
The FBML textbox is where a user can enter the actual raw FBML he wants to see ren-
dered.Any valid HTML, inline CSS styles, and FBJS are accepted.

Preview
The top Preview box shows the rendered FBML in the context of the viewing user, the
profile owner, and the display context. Firefox users can inspect and tweak the results with
the Firebug extension and then modify the original FBML with the changes.

HTML Source
The HTML Source area shows the HTML code that Facebook created from the FBML
supplied by the user.This is a great place to learn how the Facebook FBML controls
work. Notice that, in many cases, HTML is not the only code rendered for a specific
FBML tag. Depending on the tag, a lot of JavaScript for handling Facebook internal
tracking, dynamic control behavior, and more, can also be rendered. For example, if a user
typed the FBML <fb:name uid='714497440' /> in the FBML box and chose Canvas
from the Position drop-down field, Facebook outputs the code shown in Listing 4.1 in
the HTML Source field.The details of how it works and the types it mentions are inter-
nal to Facebook and are beyond the scope of this discussion; however, viewing it gives
you a sense of how a seemingly simple tag can be turned into a good deal of code after
Facebook processes it.

Listing 4.1 Facebook Generated Code for <fb:name>

<a

href="http://www.facebook.com/profile.php?id=714497440"

onclick="(new Image()).src =

'/ajax/ct.php?app_id=2353941073&action_type=3&post_form_id=cf23e5

3a9d27bdb66fbd180d634b754f&position=3&' + Math.random();

return true;">

Cappy Popp

<script type="text/javascript">

onloadRegister(function() {

if (window.Env) {

Env["nctrlid"]="932a2f05b698419c1033d2dca78201dc";

}

});

onloadRegister(function() {

if (window.Env) {

ptg

56 Chapter 4 Platform Developer Tools

Listing 4.1 Continued

Env["nctrlnid"]="";

}

});

onloadRegister(function() {

if (window.NectarPhotosLog) {

Arbiter.subscribe(NectarPhotosLog.NECTAR_LOG, NectarPhotosLog.arbiterHandler);

onbeforeunloadRegister(function() {

Arbiter.inform(NectarPhotosLog.NECTAR_LOG, {"flush" : true});

}, false);

}

});

</script>

Feed Template Console
Feed Templates are discussed in Chapter 9,“Feed Stories, Feed Forms, and Templates.”
They are the basis for creating Feed stories that appear on a user’s Home page and Wall.
They can be registered in code, but this Test Console allows developers to use a wizard
interface to not only allow them to register their templates, but also to see how the stories
will look when Facebook renders them to the Stream.

Figure 4.3 shows the last page of the Feed Template wizard.The key points to under-
stand about this wizard are

n The actor is the user who takes the action that produces the story.You can’t change
the actor. Feed stories are always about the actions taken by a specific user. In the
wizard, the actor is represented by {*actor*} (called a token), and the value is the
user ID of the logged-in developer using the console.When the real story is actu-
ally generated using this template, the actor is replaced with the application user.

n The wizard generates a random set of friends to put in the stories as the {*target*}
token.You can’t change this until the last screen of the wizard.When the real story is
actually generated using this template, the application can specify the story targets.

n The Sample Template Data contains JSON-encoded data used to replace custom
tokens in the template. For example, a one line template might be {*actor*}
{*action*} a friend today.The corresponding Sample Template Data entry
would be {"action":"smiled at"}.All tokens in the template, except for the
{*actor*} and {*target*} tokens, which are reserved by Facebook, must have
corresponding valid JSON values in the template data.

n You can skip any step; nothing is saved until the Register template bundle is clicked
on the last page of the wizard.Anything that is saved can always be removed on the
Registered Templates Console tab or through the API.

ptg

57Facebook Provided Tools

Figure 4.3 Feed Template Console

Registered Templates Console
The Registered Templates Console simply allows developers to see which Feed template
bundles have been registered for an application and delete them.

In Figure 4.4, two bundles have been registered for the My Smiley application, each
with a one line, short, and full story template. Clicking Deactivate beside one of the bun-
dles permanently deletes that template bundle. Developers can also see the unique IDs
each bundle has, and they use this in their application code to submit a Feed story or pro-
grammatically delete the bundle.

Facebook Debugging Support
Facebook’s PHP API client library helpfully shows the input and output of all API calls, if
you set the following before creating the Facebook object in your code:

$GLOBALS['facebook_config']['debug'] = true;

$fb = new Facebook($_appApiKey, $_appSecret);

$fb->api_client->friends_areFriends(698700806,714497440);

This creates a section at the top of the canvas page, which shows the parameters passed
to the API function:

1: Called facebook.friends.areFriends, show Params | XML | SXML | PHP

Array

(

[uids1] => 698700806

[uids2] => 714497440

ptg

58 Chapter 4 Platform Developer Tools

Figure 4.4 Registered Templates Console

Enabling Facebook debug output is great for tracing and debugging Facebook API
calls. It can not be used in some cases. For example, Feed forms, which Chapter 9 covers,
fail if Facebook debugging output is turned on. In general, however, it a useful tool for
developers. Remember to set $GLOBALS['facebook_config']['debug'] to false be-
fore releasing any code that uses it.

Another useful feature that Facebook provides developers is the output of the unfil-
tered FBML for an application’s canvas page before Facebook parses it.This is extremely
helpful in diagnosing user-interface problems in an application caused by a missing
closing tag or misplaced quote. Only developers of the application have access to this
feature, and it will never be shown to nondevelopers of an application. Listing 4.2 shows
the first few lines of output for a sample application that’s introduced later—called
Compliments—when a developer views the source of its canvas page rendered in a
browser.

)

It also shows the results returned by the PHP library:

1: Called facebook.friends.areFriends, show Params | XML | SXML | PHP

Array

(

[0] => Array

(

[uid1] => 698700806

[uid2] => 714497440

[are_friends] => 1

)

)

ptg

59Facebook Provided Tools

Listing 4.2 Facebook Provides Developers with the Unparsed FBML It Gets Before It
Parses It

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en" id="facebook">

<!—Rendering the page using the following FBML retrieved from
http://example.com/compliments/

You are seeing this because you are a developer of the application and this
information may be useful to you in debugging. The FBML will not be shown to
other users visiting this page. (dashes were replaced with underscores):

<link rel='stylesheet' type='text/css'

href='http://example.com/compliments/css/reset.css?v=1243795325' />

<link rel='stylesheet' type='text/css'

href='http://example.com/compliments/css/main.css?v=1245995552' />

<script

src='http://example.com/compliments/js/fbjs.js?v=1246592479'>

</script>

<fb:title>Send a Compliment</fb:title> <!— rest of document elided — >

Developer Test Accounts
Often, developers need multiple accounts to test their application’s functionality; however,
Facebook’s Terms of Service require all accounts to represent real people.Therefore, Face-
book has provided a way for developers to create multiple accounts for testing purposes,
but unfortunately, these accounts have significant limitations.

To create a Test account, developers need to create a new Facebook account and visit
www.facebook.com/developers/become_test_account.php.This page lets you convert an account
into a test account.You can reverse this change later by removing the account from the
Facebook Platform Developer Test Accounts Network.

Test accounts have the following limitations:

n They cannot access the Facebook Developer application.This means that you can-
not use test accounts to administer applications that are set to developer access only
(Sandbox mode). Unfortunately, testing before releasing an application is important.
The end of this section covers a simple workaround for this.

n They cannot interact with “real” users, only other test users.They can’t be friends
with, send messages to, or even see real users, even if they both are using the same
application.You end up creating a bunch of test accounts so that they can interact
in your application. If you require testing with hundreds of friends, you have to cre-
ate hundreds of test accounts. If you know other Facebook developers, your test ac-
counts can interact with their test accounts, so you can access a larger pool.

Facebook has said that, in the future, it might enhance test accounts by automatically
creating a large number of friends for them.That would certainly make it easier than hav-
ing to create them all yourself.

ptg

60 Chapter 4 Platform Developer Tools

As previously mentioned, test accounts cannot access the Facebook Developer applica-
tion, so you cannot give test accounts access to sandboxed applications. However, you can
list them as developers of an application before you visit the test account conversion page.
After they are developers of the application, you can convert them, and they have full ac-
cess to it, even in Sandbox mode.

Browser Debugging Tools
Many of the modern browsers have extensions that allow client-side debugging of
JavaScript, HTML and CSS, as well as monitoring and modifying network traffic. Sadly,
Internet Explorer 6 is still very common and has the fewest and least developed set of
tools. Firefox, Safari, and Internet Explorer 8 all have much better debugging support.
This section discusses Firebug in detail and gives some brief descriptions of the other
common ones.

Firebug Add-On for Firefox
Firebug (http://getfirebug.com) is an add-on to Firefox that revolutionized the browser-
development experience. For Facebook development, the key features are JavaScript de-
bugging, inspection, and modification of HTML and CSS, network monitoring, and the
console.

JavaScript Debugging
The JavaScript debugger supports breakpoints, stepping in and out of code, a watch win-
dow, logging, and profiling. For general usage, Firebug provides a set of tutorial videos and
advanced documentation on its website.This section provides some tips for debugging
JavaScript on Facebook. Figure 4.5 shows the Firebug Script Debugger.

When trying to debug JavaScript on a Facebook FBML canvas page, it is important to
understand what Facebook does to that JavaScript during rendering. First, all variables
and functions are renamed with a prefix of aXXX, where XXX is the application ID as-
signed when creating the application. So, as Figure 4.5 shows,

function foo(bar) {

bar = bar + 1;

Figure 4.5 Firebug Script Debugger

ptg

61Browser Debugging Tools

return bar;

}

is rendered as follows:

function a18547747026_foo(a18547747026_bar) {

a18547747026_bar = a18547747026_bar + 1;

return a18547747026_bar;

}

Facebook does this to all JavaScript that it encounters outside of IFrames.The process
is called sandboxing, and it’s a security measure. First, it’s used for namespacing: It ensures
that none of the JavaScript provided by a third party running on a page in the Facebook
user interface will have name conflicts with any of the JavaScript that Facebook uses. Sec-
ond, sandboxing allows Facebook to restrict third-party JavaScript to a well-defined sub-
set of what is available to “real” JavaScript. It removes many common functions (such as
eval(), alert(), many DOM manipulation functions, and more).The resulting subset of
JavaScript that developers can use is called Facebook JavaScript (FBJS).

Facebook puts a copy of the original page source at the top of the page in a com-
ment and the modified source at the bottom.When trying to set breakpoints in your
JavaScript functions, always make sure that you use the lower, modified source. Firebug
nicely marks the line numbers that can have breakpoints in green.

In a profile box or application tab, Facebook takes all of your functions, renames them,
and sticks them inside JavaScript eval() calls passed to onLoadRegister():

onloadRegister(function() {eval_global("app_9209742358.pending_bootstraps.push

(\"\\n function a9209742358_foo(a9209742358_bar) { \\n a9209742358_

bar = a9209742358_bar + 1;

\\n return a9209742358_bar;\\n }\\n \");");});

You can’t set breakpoints on these lines. Instead, Firebug has a great feature that turns
executed eval() code into its own entire virtual script file. So, execute your function once,
and then you can select it from the script list, set breakpoints, and execute it again. Notice
the virtual script created by Firebug in Figure 4.6; it’s the name above the Script tab.

HTML and CSS Inspection and Modification
When building your application, getting it to look just right can be difficult, especially
because parts of it are first being rendered by Facebook. Firebug lets you view every
DOM element and all the styles that have been applied to it.You can even modify the

Figure 4.6 Debugging JavaScript on the profile

ptg

62 Chapter 4 Platform Developer Tools

styles on the fly or edit the HTML for the page.This is a great way to fine-tune your ap-
plication user interface quickly, and when satisfied, copy the changes back into your code.

Figure 4.7 shows the margin style for an HTML <div>.To modify this, simply click
and change the number on the Style section or use the up and down arrow keys to
change the value.You can even right-click and add new properties.The web page auto-
matically updates with each change so that you can see the results.

You can also click the HTML or CSS tabs and directly edit the HTML and style
sheets.This lets you add new elements or CSS selectors or modify existing ones.

Network Monitoring
Firebug lets you see all the network traffic that occurs in the process of displaying your
page.You can see what images, CSS files, and JavaScript files get loaded and how long the
load time is for each file.You won’t see any of the API calls done when the page loads,
but any AJAX calls or Form posts your client-side code does shows up. For each of these,
you can examine the HTTP headers, variables, and response.This can be invaluable in de-
bugging asynchronous code, like AJAX calls, when they aren’t working as expected.

Figure 4.8 shows an AJAX call from a Facebook canvas page. In this case, a link was
clicked that used the FBJS AJAX capability to pass a set of POST data back to the applica-
tion.When this happens, an item appears in the Net tab called POST
fbjs_ajax_proxy.php. Clicking the POST tab shows the variables passed to the call, and
the response shows the return payload.

Figure 4.7 Modifying CSS styles directly

Figure 4.8 Firebug Network Monitoring tab

ptg

63Browser Debugging Tools

Console
Firebug has a Console view that displays error messages, logging output, and supports a
variety of typed commands to dump data. It even has a built-in JavaScript profiler to
work out the slow parts of your client-side code. Figure 4.9 shows a manual HTML
dump of an element on the page using the following command line:

dirxml($('app9729051194_ringersTable'))

Firebug provides a rich set of APIs that can be used in its Console or directly in your
JavaScript code. For example, the Console logger can be accessed from inside your page’s
JavaScript by inserting a call to the console.log() function provided by Firebug; how-
ever, this code fails if the page is loaded in a browser without Firebug installed. If you use
Firebug logging often, it makes sense to create a logging wrapper function that checks if
the Console object and log functions are available and do nothing if it isn’t Firefox.A
rudimentary example in FBJS is shown in Listing 4.3.

Listing 4.3 Simple Browser-Agnostic JavaScript log() Function to Wrap Firebug’s
console.log() Function

var log = function(content) {

if(console &&

console instanceof Object &&

console.log &&

typeof console.log === 'function') {

console.log(content);

}

}

You can now use the console.log() function in your Facebook code; if Firebug is
not installed or you are running on a browser that does not support it, the function has
no effect, save some miniscule processing hits for calling it.A more complete implementa-
tion checks for other features offered by the Firebug API and handles them similarly.To
find out more about the different functionality and APIs available in Firebug, visit http:/
/getfirebug.com/docs.html.

Figure 4.9 Firebug Console

ptg

64 Chapter 4 Platform Developer Tools

Web Developer Add-On for Firefox
The Web Developer add-on (http://chrispederick.com/work/web-developer/)places a lot of
useful functionality right on the toolbar, such as validation, inspection, and manipulation.
Figure 4.10 shows the many options available in the toolbar.

Here are some of the most helpful features when developing Facebook applications:
n Disable Cache. Turning off the cache can help you find loading issues with exter-

nal resources and let you test new versions of images, JavaScript, and CSS files.This
is extremely helpful when you debug caching issues with Facebook for images or
Profile content.

n Convert Form Methods. This lets you change POSTs to GETs for any form on the
page, which allows you to find problems with the data being sent easily in the
address bar.

n Outline. Use this to put borders around all page HTML elements or just those of a
certain type.This helps you quickly find the cause of layout issues.

n Resize. You can easily test your browser in a variety of common sizes without
having to reset your desktop resolution.This can help you solve difficult CSS
positioning problems.

YSlow Add-On for Firefox
The Yahoo Developer Network has some amazing articles and videos on best practices; in
fact it has an entire Exceptional Performance team that focuses solely on researching how
to improve web performance.The YSlow add-on for Firefox (http://developer.yahoo.com/
yslow/) adds another tab into Firebug and uses those best practices to analyze your Face-
book application’s performance.

Figure 4.11 shows the Performance view forYSlow.The overall grade for the page
being analyzed is shown, along with a grade for each rule.You can expand any rule to
find out what is behind the grade or click the rule to go to a web page with more infor-
mation about how to improve that particular rule.

The YSlow Stats view analyzes the page content loaded, showing the total download
size and calls when the browser cache is empty and again after the cache is enabled.You
can drill in further to see the cost of each file loaded on the Components view.This helps
make sure that your web server is properly set up to do cache management for the differ-
ent file types.

This tool is most useful for canvas pages, because Facebook already caches profile boxes
and application tabs.When looking at an analysis of your canvas page, you have to ignore the
Facebook-specific files—there really isn’t anything you can do to improve their load times.

Figure 4.10 Web Developer Toolbar

ptg

65Browser Debugging Tools

Figure 4.11 YSlow Performance tab

Firebug Lite Extension for Internet Explorer 6 and 7
Although Internet Explorer 6 and 7 don’t have an integrated tool like Firebug, Firebug
Lite (http://getfirebug.com/lite.html) provides a limited feature set—basically, the Console
and read-only views of HTML, CSS, JavaScript, and the Network Monitor. By including
a JavaScript file on the page or by dragging the Firebug Lite bookmarklet onto it, you get
a window that looks similar to the full Firebug window. Figure 4.12 shows the Firebug
Lite HTML view.

Although you can’t change anything, you still have access to the Console logging and
dumping commands and have the ability to inspect elements on the page.

IE Developer Toolbar for Internet Explorer 6 and 7
Microsoft provides the Internet Explorer Developer Toolbar as a download for Internet
Explorer 6 and 7.You can find it at www.microsoft.com/downloadS/
details.aspx?familyid=E59C3964-672D-4511-BB3E-2D5E1DB91038&displaylang=en. It
combines a lot of the utilities in the Web Developer add-on for Firefox with the in-
spection capabilities of Firebug. It allows you to inspect elements, see their styles, and
override them with new values. It does not have an integrated script debugger; for that,

Figure 4.12 Firebug Lite HTML view

ptg

66 Chapter 4 Platform Developer Tools

you must use a separate tool, such as the Microsoft Script Debugger or Visual Studio.
Figure 4.13 demonstrates changing the margin style for an element using the
Developer Toolbar.

Debugger Tools for Internet Explorer 8
With the release of Internet Explorer 8, Microsoft included a full developer toolset on par
with Firebug. In fact, aside from a few name changes, it looks very much like Firebug.You
can inspect and modify HTML and CSS on the fly, and debug and profile JavaScript right
inside the browser. Finally, developing websites that work across browsers is much simpler.
The only thing missing is built-in network-monitoring support.The Internet Explorer
team said that it had to make trade-offs in order to ship, and that feature didn’t quite
make it. However, other free tools give you this information, such as Fiddler (www.fiddler2.
com) on Windows or Paros and (www.parosproxy.org) on Linux and OS X.

Figure 4.14 shows using the DeveloperTools to inspect the styles of an HTML element.

Summary
This chapter reviewed the tools that Facebook provides to test features of the platform and
various extensions for browsers that make debugging easier. Here are some key points:

n The API Test Console allows you to try API calls from the context of your applica-
tion without having to actually run your application.

Figure 4.13 Internet Explorer Developer Toolbar for IE 6 and 7

Figure 4.14 Developer Tools for Internet Explorer 8

ptg

67Summary

n The FBML Test Console can be the quickest way to test, render, and tweak FBML
for profile boxes or application tabs without having your application do all the
round trips.

n The Feed Template Console provides a wizard to generate Feed template bundles
and the Registered Templates Console lets you remove template bundles that have
been previously registered.

n Firebug is a browser extension for Firefox that is invaluable for diagnosing problems
with HTML, CSS, or JavaScript. It allows quick editing of just about everything on
the page. Firebug Lite provides some of this functionality for Internet Explorer.

n Internet Explorer’s developer toolset has been lagging behind Firebug until the re-
lease of the Developer Tools, which was integrated into Internet Explorer 8.These
new tools include JavaScript debugging, but sadly, they do not help fix problems in
Internet Explorer 6.

ptg

This page intentionally left blank

ptg

5
Facebook Terms of Service and

Application Programs

Facebook has to be careful with what it allows users and developers to do to make the
service usable and enjoyable by all. It also wants applications to be as well developed and
beneficial as possible.To meet these goals, Facebook created a number of documents that
describe the rules and three programs that help encourage better applications.

Facebook Terms of Service
Every website has rules for what it deems acceptable behavior. On Facebook, these rules
are detailed in a set of documents that each user and developer must agree to interact
with the website and the Platform. Over time, as users and developers have tested these
limits, the rules have changed and expanded. For developers, some of the biggest changes
came as a result of some applications spamming users or tricking them into actions that
they didn’t intend. Users became upset, and that affected how they viewed all applica-
tions.The updated guidelines helped to soothe the backlash. In some ways, the new rules
have also limited the extremely rapid growth that applications experienced at the launch
of the platform. However, it is still possible for good applications that follow the rules to
succeed.

It is important that every developer read through all these documents at least once and
then verify each of their application’s features to ensure compliance.These documents are
updated several times a year, so check them every once in a while and follow the Face-
book developer blog for notices about updates. Note that Facebook can change its terms
and its services at any time without giving notice.

Each document is listed in this section, along with the most important points.

ptg

70 Chapter 5 Facebook Terms of Service and Application Programs

User Guidelines
All Facebook users must comply with Facebook’s Statement of Rights and Responsibili-
ties, which are derived from the Facebook Principles. Developers must ensure that their
applications do not cause users to violate these terms.

Facebook Principles
The Facebook Principles document describes the overall goals that Facebook has for its
website and development platform.The Statement of Rights and Responsibilities derives
from these principles:

n Freedom to Share and Connect. People should be able to share anything and
connect with anyone as long as both agree.

n Ownership and Control of Information. People own their information and
can share it on Facebook.They can control who can see it via privacy controls and
can remove it from Facebook.

n Free Flow of Information. People should be able to see everything that others
have shared with them quickly and easily.

n Fundamental Equality. Individuals, advertisers, developers, and organizations
should all have a single set of principles, rights, and responsibilities that apply to them.

n Social Value. People should be able to build reputations, and their accounts will
only be removed if they violate the Statement of Rights and Responsibilities.

n Open Platforms and Standards. Programming interfaces and specifications for
sharing and accessing information should be made available to everyone.

n Fundamental Service. People should be able to use Facebook for free to connect
and share, regardless of how active they are.

n Common Welfare. The Statement of Rights and Responsibilities document
should be based on these Principles.

n Transparent Process. Facebook should make information about its plans and
policies available and use a town-hall process to amend the Principles and the State-
ment of Rights and Responsibilities.

n One World. Everyone in the world should be able to use Facebook.

Statement of Rights and Responsibilities
The Statement of Rights and Responsibilities (www.facebook.com/terms.php) are the rules
that all users must agree to when they sign up for Facebook.The latest update is as of
May 1, 2009.

Here are the key points for users:
n Privacy. User privacy is very important to Facebook. It is documented in the Face-

book Privacy Policy, which is described in more detail in the section,“Privacy Policy.”

ptg

71Facebook Terms of Service

n Content. Users own the content and information they post on Facebook and can
control how this information is shared via privacy and application settings. Face-
book can use this content until it is deleted by the user.Any information collected
from users must be by their consent and have an accompanying privacy policy.

n Prohibited Content. Facebook will not verify all content, but can ask users to re-
move it if it violates these terms.This content cannot include the following:

n Other people’s contact and financial information, intellectual property with-
out permission, or information that is fraudulent.

n Alcohol-related or other mature content on pages that have not set appropri-
ate age restrictions.

n Pornography, graphic violence, or anything that Facebook might consider
offensive.

n Safety. Users must interact appropriately and lawfully. Users are not allowed to
scrape the Facebook site or harvest information without consent.They cannot in-
timidate, harass, or spam other users.They cannot use their profiles to show ads, run
contests, or sell products.

n Accounts. All user accounts must be accurate and current and be created only for
and by that user.All users must be over the age of 13, live in a country not embar-
goed by the U.S, and not be convicted sex offenders or on the U.S.Treasury De-
partments list of Specially Designated Nationals.

n Rights. Facebook tries to protect user and property rights. If Facebook removes
suspect content, it can be appealed. Users can also claim their own intellectual
property. No one can use Facebook’s trademarks (Facebook, Facebook and F lo-
gos, FB, Face, Poke,Wall and the shortcode 32665) without permission.

n Termination. Facebook can terminate or suspend access to an account or delete a
profile at any time without notice.

Evolving Terms of Service
In February 2009, Facebook updated its Terms of Use to state that it has the legal right to
display archives of user’s uploaded photos, messages, and other content after they termi-
nate their Facebook account. The rationale was that services in general work like that; when
someone sends someone else an email and then deletes their account, the email doesn’t
disappear from the recipient’s inbox.

A big media frenzy developed, and Facebook founder Mark Zuckerberg wrote two blog posts
in response. In the first, he described how Facebook tries to walk the fine line between al-
lowing maximum sharing of content and maximum control. He stated that this area would
continue to be a big focus for Facebook, but that sometimes, it would make mistakes. In the
second post, he said that Facebook was going to revert the Terms back to the previous ver-
sion and, to help develop the next version, he would ask for user input in creating the docu-
ments for the Facebook Bill of Rights and Responsibilities.

ptg

72 Chapter 5 Facebook Terms of Service and Application Programs

Users’ comments were reviewed and the two documents, Facebook Principles and the State-
ments of Rights and Responsibilities, were released.

Privacy Policy
Facebook’s Privacy Policy (www.facebook.com/policy.php) governs all activity on its website
and, by default, all the activity of third-party applications that run within it. Developers
are responsible for complying with this privacy policy or replacing it with a privacy pol-
icy of their own that is at least as stringent.The latest update is as of November 26, 2008.

The Facebook Privacy Policy is based around two major principles:

n Users need to control their personal information: what they put in their profile,
posts, pictures, and what other users can see via privacy settings.

n Users should have access to information that others want to share and this should
be as easy as possible.

To enable this, Facebook is a licensee of TRUSTe (www.truste.org), which is an organi-
zation that reviews privacy policies and practices. For international users, Facebook also
participates in the EU Safe Harbor Framework (www.export.gov/safeharbor/), which creates
a standard set of rules for the EU member countries.

Facebook collects any information that users enter on their profile or post as content.
It also collects the browser and IP address of its users, along with information about how
a user interacts with the website.

Facebook can display this information to other users based on the owning user’s pri-
vacy settings, display it in search results inside and outside of Facebook, and use it as an
aggregate for statistics and personalizing ads and promotions. Service providers for Face-
book might have access to the information, but they are governed by strict contracts on
how they can use it. Facebook also limits search-engine access to a small portion of user
information.

Changes to a user’s profile information are effective immediately, replacing existing
representations of that information; however, information that they have shared with oth-
ers, such as email or comments, can still be displayed.

Developer Guidelines
Developers are specifically governed by the Statement of Rights and Responsibilities and
the Platform Guidelines, which is part of the Facebook Platform Documentation wiki.

Statement of Rights and Responsibilities
Facebook wants developers to create great applications; it also wants to protect its users.
The Statement of Rights and Responsibilities contains a section related to applications on
the Platform or using Facebook Connect.The latest update is as of May 1, 2009.

Here are the key points of this document for developers:
n Responsibility. Developers are responsible for their applications and must ensure

that it meets the requirements of the Platform Guidelines.

ptg

73Facebook Terms of Service

n Customer Service. Your application must provide an email address for customers
to use for application support. Users should be able to easily remove or disconnect
from your application.

n Data. Users must know how you will use their data.Any data usage must comply
with their privacy settings unless they give consent for other uses. If the user re-
moves the application or disconnects, you must delete their Facebook data.

n API. Developers can use the API, code, and tools provided by Facebook, but only
for their applications. Developers cannot resell these items.

n Copyright Policy. Applications must comply with the Digital Millennium Copy-
right Act and have a policy for removing content and repeat offenders.Applications
must also comply with the Video Privacy Protection Act and must obtain explicit
consent from users before allowing them to share videos.

n Ownership. Facebook can display application content in streams, profiles, and
other locations. Facebook can also display ads or other content around any part of
your application that appears inside the Facebook website frame. Facebook can ana-
lyze your application’s content and data for its own purposes. Facebook can create
applications that are similar to or compete with yours.

n Publicity. Developers can use Facebook logos and issue press releases as outlined
in the Platform Guidelines.You cannot misrepresent your relationship with Face-
book. Facebook might issue press releases about its relationship with you.

Platform Guidelines
Platform Guidelines (http://wiki.developers.facebook.com/index.php/Platform_Guidelines)
cover the details of how applications should interact with users and the Facebook Plat-
form. Most are common sense:Your application should be a good citizen of Facebook.
The latest update is as of May 19, 2009:

n Content. Applications cannot have content or ads with nudity, sexual terms or con-
tent, obscene or libelous content, anti-religious or hate speech, or terrorism that in-
fringes on the rights of others.They cannot promote or enable the sale of tobacco,
ammunition, firearms, or content from uncertified pharmacies. It cannot display
alcoholic beverages unless the application follows the exception procedures detailed
in the Platform Policy.The application cannot enable or promote gambling.

n Functionality. Applications cannot collect Facebook usernames or passwords, au-
tomatically log into Facebook, or impersonate another Facebook user.They cannot
distribute unauthorized or copyrighted content or trick users to download viruses
or Trojans.They cannot circumvent a user’s Facebook privacy settings.

n Advertising and Marketing. Applications cannot show advertising or web search
on anything on Facebook except their canvas pages. Marketing must follow spam
laws and user preferences for opt-in or opt-out.

ptg

74 Chapter 5 Facebook Terms of Service and Application Programs

n Prohibited Application Actions. Applications cannot do any of the following:
n Force users to invite friends in order to use the application or create a forced

loop of invitation dialogs if the user presses the skip or cancel button.
n Have profile boxes or canvas pages that go outside of their physical size

constraints.
n Trade reviews or try to “game” the posting of reviews.
n Try to confuse or mislead users.
n Pool notifications or news stories between applications to work around noti-

fication limits or to trick users into installing another application.
n Use another user’s session key instead of the active user.

n Application Response to User Actions.When a user takes an action, applications
must respond in a way that complies with the following:

n Users must not be surprised by the outcome of actions they take.
n Applications must not let users trigger actions that apply to multiple people

with one click. Users must manually select recipients, rather than have them
be autoselected by the application.

n Notifications, news stories, and other output of the application must corre-
spond to actions that the user has actually taken, and they must be done
within 12 hours of the action.

n Feed Policy. When an application creates a feed story, it should be an interesting
action or something that the user wants to share. It needs to also meet the follow-
ing guidelines:

n It should be triggered by a significant action the user took.
n It should be accurate, and user_message should only be filled out with con-

tent generated by the user.
n It should not contain information that a user would expect to be private.
n It should be published immediately, unless explicitly delayed by the user.
n All calls to action should be done as action links instead of as part of the story.
n Information cannot be presented for the first time to the user with a Feed form.
n Publishing a story cannot be incentivized.

n Info Tabs. Updated content can be placed on the Info tab in response to user ac-
tions. It cannot be autogenerated without the user’s consent each time.

n Application Integration Points Policy. Applications cannot incent users to add
or use an integration point, or prompt users to add integration points that don’t re-
late to the user’s current context.

n Application Tab Policy. Application tabs can only contain content for that appli-
cation and cannot include advertising or promote other applications.They cannot

ptg

75Facebook Terms of Service

display different content to different viewers except based on demographic restric-
tions or to the profile owner.

n Publisher Policy. The Publisher cannot show any advertising or promote other
applications.Applications cannot incent the user to use the Publisher.The Pub-
lisher’s output should be what the user expects.

n Notifications Policy. Notifications sent by the application must meet these
conditions:

n User-to-user notifications must be sent within one hour of the first action
that triggered it and should be expected to be sent.

n Application-to-user notifications should be from the application and not the
user.They must also be about either more than one user or more than one
action.They must be sent a maximum of one week after the earliest trigger
and must contain the date of that trigger.

n Storable Data Policy. Applications are only allowed to store a small set of IDs.
Everything else, such as usernames or interests, can only be cached for 24 hours.
Facebook wants applications to get user’s data directly from Facebook’s API. Here is
the storable Facebook data:

n User ID
n Primary Network ID
n Event ID
n Group ID
n Photo ID
n Photo Album ID
n Friend List ID
n Marketplace Listing ID
n Facebook Page ID
n Proxied Email Address ID
n Number of Notes written by a user
n Last update time of a user’s profile

n UI Elements Policy. Applications cannot use graphics that look like pieces of web
functionality, such as ads with pictures of HTML drop downs, with the intent to
mislead users into clicking them.They cannot display pop-ups or pop-unders.
Profiles cannot automatically play audio, video, or interactive content unless that
content is first clicked to activate it.

n Escalation Policy. Facebook has escalation procedures for non-compliance with
these Guidelines.The procedures do not have to be done in sequence.The proce-
dures are as follows:

ptg

76 Chapter 5 Facebook Terms of Service and Application Programs

n Notice of Concern. Your application is under review for some content or func-
tionality.You can voluntarily modify it to comply and prevent escalation.

n Request for Action. Facebook requests that specific changes to the application be
made. Developers can voluntarily make these changes.

n Notice of Violation. Facebook has determined that the application is violating
some of the terms.A time limit for mandatory compliance will be given, along
with the possibility of Facebook suspending or restricting your application.

n Notice of Restriction or Moratorium.Your application has been restricted or
suspended for some period of time because of violations.

n Notice of Suspension. Facebook has temporarily removed your application from
Facebook.

n Notice of Termination. Facebook has permanently removed your application
from Facebook.

n File Sharing. If your application allows users to post, view, listen, or download
content, your application must also

n Host a page with the copyright policy similar to http://developers.facebook.com/
samplecopyright.php and have a link to this on each page that allows users to
view or upload content.

n Register a designated agent for copyright-infringement claims with the U.S.
Copyright Office.This costs $80. (More information is at www.copyright.gov/
onlinesp/agent.pdf.)

n Add this statement to each page on which users can view the content:“By
making any content available through this application, you represent and war-
rant that you own all rights necessary to properly do so.”

n Facebook Connect Policy. These policies govern websites that use Facebook
Connection functionality:

n Connecting.The site must use the official Facebook Connect button, and it must
have as much prominence as any other login mechanism. Users must be able to log
out.When logged in, the user’s profile picture overlaid with the Facebook favicon
and their name must be shown. Only the Connected website can use the user’s data.

n Friends. When showing lists of friends where some of those friends are from Face-
book, the website must show this by using the word Facebook or the Facebook
favicon. If the website uses Friend Linking, it must also allow searching by email
address or contact importer.

n PR Policy.You can publicize your application by talking to the press, but you can-
not do a press release without prior written consent from Facebook.The PR web-
site at http://wiki.developers.facebook.com/index.php/Developer_PR_Policy provides
examples of specific language you can use in discussing the Facebook Platform.

ptg

77Facebook Application Programs

n Verified App Badge. If your application has been verified by Facebook, you can
display the official badge online or in print, but you cannot alter it. It must be clear
that your brand is responsible for the application and not Facebook.

Facebook Application Programs
After an avalanche of applications that were banal, tricked users, or were of overall low qual-
ity, Facebook launched two programs to spur development of better caliber applications.

Application Verification Program
This optional program vets applications against a set of criteria to let users know that
they can trust these applications to be well behaved and provide a good user experience.
The cost for this program is $375/year for businesses and $175/year for students and
nonprofits.

Benefits
Applications that pass verification get the following benefits:

n Higher limits on user communication from inside the application
n Better visibility in the News Feed
n Badges on the application’s About page and in the Application Directory
n Special offers, such as a $100 advertising credit and discounts on Facebook

events, like F8
n Early access to new Platform features
n Feedback and data from Facebook to help improve their applications even further

Criteria
All application criteria use the Terms of Service and other documents as a baseline.
They must also follow the Guiding Principles for trustworthiness (laid out in Chapter 2,
“Making Great Applications”).The rest of the criteria are:

n Communication. Do any emails, requests, notifications, and News Feed stories
result from expected and non-forced user actions? Is the content of the communi-
cation well written and useful to the recipient? If message attachments are provided
by the application, do they work as the user expects?

n Display. Do the profile boxes, application info sections, and application tabs show
information and share compelling and user-focused information?

n Content. Does the application provide a mechanism to report inappropriate user-
generated content and respond to it effectively?

Application Process
To apply, developers register their intent, and then wait for an email that they have been
accepted to submit their application.Then, they fill out a form with information about

ptg

78 Chapter 5 Facebook Terms of Service and Application Programs

their business, what data they collect from users, screenshots of the application, and the
method of payment for the application fee.

If the application does not pass verification for minor violations, the developers are
notified and given a chance to fix the problems. If more serious issues exist, the applica-
tion must fix them and wait for a period of three months before re-applying.

Applications that pass verification are eligible for the Great Apps program, but they
must continue to follow policy guidelines. If violations occur, the verified status is revoked.

fbFund
To encourage the development of higher quality and utility applications and to jump start
the new development team, Facebook developed the fbFund.The fbFund has $10 million
dollars in capital and is administered by Accel Partners and The Founders Fund.

Each funding round is different.The first focused on the best applications in general,
the second on best utilization of the new profile integration points, and the current one is
about the best use of Facebook Connect.

During the second round, 25 finalists were picked, and each received $25,000 in fund-
ing.The Top 5 applications were picked by popular vote and given $225,000.

The current round will select up to 50 winners for the first round, after which several
of them will become finalists and be awarded $100,000 and spend the summer in an In-
cubator program run by Dave McClure.

Benefits
Winners of the fbFund receive numerous benefits:

n Funding of between $25,000 to $100,000
n Mentorship from Facebook executives and other entrepreneurs and attendance at

the Incubator program
n Marketing in the form of promotion at Facebook events and on the Developer

Events

Criteria
The fbFund winners are chosen based on a number of criteria, but overall, Facebook is
more interested in smart people with great ideas who can execute rather than formal busi-
ness plans. Some previous winners state that single-person startups are less likely to win.

The formal criteria are as follows:

n Originality of Concept. Is the application a new concept?
n Market. Does the application meet market needs in general or of a specific target?
n Social/Useful. Does the application allow people to interact with each other, and

does it have real value to users?
n Expressive. Can users share more information through the application?
n Intuitive. Is the application easy to use?

ptg

79Facebook Application Programs

n Potential. Can the application grow and be monetized?
n Team. Is the team behind the application driven and can it execute?

To receive funding and participate in the Incubator program, companies must move to
Silicon Valley and be incorporated in the U.S., preferably as a Delaware C Corporation.

Application and Voting Process
Applicants fill out a form on the Facebook Developer website that describes their com-
pany, team, and application.There is careful attention to the credentials of each team mem-
ber, because the fbFund isn’t funding just the application, but the developers behind it.

At the end of the application, developers must provide an executive summary, a pres-
entation deck, and an elevator pitch. Round 1 winner LuckyCal recommends the follow-
ing practices:

n Do the elevator pitch as a video, preferably with both a view of the head of the
person talking and usage of the key parts of the application.

n In the presentation deck, break down plans for how the money from funding will
be used and how the application will make money.

n Make sure that your presentation shows why the application is worth funding; don’t
make the investors guess.

After submitting the form, applications must wait until the finalists are announced. If
an application is not funded, developers receive an email stating this, but without specific
details about why the application was not chosen.Applications are invited to apply again
during the next round.

When the finalists are announced, the winners are decided by popular vote.The top
winners receive larger funding amounts and access to the Incubator program.

Funded Company Examples
Here is a sampling of the winners of the first two rounds of funding:

Round 1

n Goalcamp:Challenge. Users create and join challenges, such as running 50 miles
and compete against their friends.

n ConnectedWedding. Users can plan their wedding and create a wedding web page.
n CourseFeed. Notifies students when new homework assignments are posted and

lets them share notes and plan study groups with other users.
n Hotberry. A framework for users to create their own games on Facebook.
n J2Play. Enables applications to add cross-network social features, including mobile

support.
n LuckyCal. A calendar that integrates Facebook events with external events auto-

matically found based on the user’s interests.
n MyListo. Users share product reviews with their friends and can search for reviews

by how close their friendship is with the reviewer.

ptg

80 Chapter 5 Facebook Terms of Service and Application Programs

n Podclass. A way to enable companies to offer their course materials and students
to access them inside Facebook.

n Trazzler. Helps users decide where to go by determining their Travel Personality
and lets them view trips that their friends took.

n Zimride Carpool. Users can enter their location and destination, and the applica-
tion will notify them with available carpool candidates.

Round 2

n GroupCard. Friends sign a group ecard for an occasion, including messages, pho-
tos, audio, and gifts.

n Kontagent. A metrics platform for Facebook applications that provides detailed
insights into application usage and virality.

n Mousehunt. An incredibly popular game where users work as teams to hunt mice
in an infested kingdom.

n Weddingbook. Couples share their wedding plans with friends, and users can talk
with other engaged couples in the application community.

n Wildfire. Companies use a simple framework to create branded promotions and
contests that use Facebook’s viral features.

Summary
This chapter reviewed the important points of the many Facebook Terms of Service doc-
uments. It also described the application programs that Facebook offers to developers.
Here are some key points:

n Most of Facebook’s policies are common sense and easy to follow.They keep the
application environment from harming users and prevent “bad” applications from
bringing down the good ones.

n Review Facebook’s policies while designing your application and, every so often,
make sure that your application is still in compliance with any changes.

n Although it’s optional, the Application Verification Program provides a solid check-
list by which all applications should abide.The benefit of increased exposure and
communication limits might be valuable enough to developers to compensate for
its fee.

n The fbFund offers developers a great chance to earn recognition and cash, but it re-
quires a good idea, a solid team, and the ability to execute. Developers need to be
mindful of the need to move to Silicon Valley if they win.

ptg

II
Developing Applications

6 The Basics of Creating Applications

7 Building the Canvas

8 Updating the Profile

9 Feed Stories, Feed Forms, and Templates

10 Publisher, Notifications, and Requests

11 FBJS, Mock AJAX, and Flash

ptg

This page intentionally left blank

ptg

6
The Basics of Creating

Applications

This chapter covers the basics of creating and configuring a new Facebook application.
First, we cover the many configuration settings provided by the Facebook Developer ap-
plication and how they should be set for a new application. Next, we create the basic
PHP skeleton of a Facebook application and introduce some of the functionality pro-
vided by Facebook Markup Language (FBML) and the official Facebook PHP client li-
brary.Then, we discuss how applications are authorized by users and how Facebook
authenticates applications. Finally, Facebook sessions, signatures, and the data Facebook
sends to an application’s canvas page are covered.

In this chapter, you set up and create a sample application, Compliments.This applica-
tion, which you will develop over the next several chapters, allows Facebook users to send
compliments to their Facebook friends using all the integration points that Facebook
provides.

Setting Up the Environment
The first thing you need to do is download the Facebook PHP client library from Face-
book from its public source control repository: http://svn.facebook.com/svnroot/platform/
clients/packages/facebook-platform.tar.gz.You’ll need to extract the files from the downloaded
archive using your favorite archiving tool.

The PHP client library is comprised of three files.The first, facebook_api_restlib.php,
contains the implementation of the FacebookRestClient class that encapsulates the raw,
low-level HTTP access of the Facebook REST-API.The second file, facebook.php, pro-
vides an implementation of the Facebook class, which encapsulates Facebook web appli-
cation behavior.The third file, facebook_desktop.php, provides the FacebookDesktop
class to do the same for Facebook desktop applications. Both facebook.php and
facebook_desktop.php include facebookapi_php5_restlib.php internally, so you
never have to include it directly in your application code to access the Facebook API
from PHP.

ptg

84 Chapter 6 The Basics of Creating Applications

Next, you need to set up a web server to host your application. For the rest of this
book, we refer to your web server in URLs, such as http://example.com. For the purposes
of creating this application, it might be simplest to run on a local server.There are also
many hosting companies that specialize in Facebook application hosting. Here are the
steps to set up everything:

1. First, create a new directory on your web server for your application. Create a new
directory called Compliments to hold your application files.This directory will be
known as the application’s root directory. Next, create a new virtual directory,
which maps to this physical directory. Restart your web server.

2. Now, install the Facebook PHP client library on your web server by extracting it to
a location that the application can reference. If you plan on writing multiple Face-
book applications, you can either extract one copy of the PHP client library for
each new application or use one global copy that will be referenced by all of your
applications.We suggest the former because it limits compatibility errors that can
arise if you update the library, and it breaks a feature in use by one of your older
applications.To do this, extract the files to a new directory inside the compliments
directory called fblib.The path to the facebook.php file should now be
/compliments/fblib/facebook.php.

3. Next, create the first file of your new Facebook application. In the compliments
directory create a new file called index.php. Put the following line in this file:

<?php phpinfo(); ?>

4. To verify that your web server and new application are correctly set up, make sure
that you can access the index.php file from your web server. Browse to the loca-
tion of this new file using your favorite browser by typing http://example.com/
compliments/index.php in the browser’s address bar.You should now see the screen
fill with information about the currently installed version of PHP. Check your
server’s error logs for information if you cannot see the page or if your browser
gives you an error.

5. Finally, create a new MySQL database for the application called compliments. For
security purposes, it’s good practice to create a new application-specific user for this
database. Ensure the user you choose for the Compliments application is granted
the SELECT, ALTER, UPDATE, INSERT, and DELETE privileges for the new database.
Note this new user’s username and password.You won’t be using the database in
this chapter, but you need it for Chapter 7,“Building the Canvas.”

Using the Developer Application
The Facebook Developer application allows you to create new Facebook applications and
manage existing applications.To start the process of creating the Compliments applica-
tion, you need to add the Facebook Developer application to your Facebook account.

ptg

85Using the Developer Application

Figure 6.1 Authorizing the Facebook Developer application

Log in to Facebook and go to www.facebook.com/developers. Click Allow to authorize the
Facebook Developer application (see Figure 6.1).

After you install the Developer application, you are taken to its canvas page. Click the
Set Up New Application button in the top right of the page. Figure 6.2 shows its location.

Figure 6.2 Creating a new application with the Developer application

ptg

86 Chapter 6 The Basics of Creating Applications

Figure 6.3 Naming the Compliments application

The next screen, shown in Figure 6.3, prompts you to name your new application.
Facebook does not allow application names to be longer than 50 characters, and it also
requires that the names do not contain the following words: face, poke, or wall.The name
also must not be too much like any of the names of the default applications that Face-
book provides, such as Photos,Videos, and Notes.As discussed in Chapter 2,“Making
Great Applications,” Facebook does not require unique application names, but it does re-
quire that the Canvas Page URL for each application be unique. (More on that later.) For
now, enter the name Compliments in the Application Name field, and check the radio
button that states that you agree with the Facebook Terms of Service.Then, click Save
Changes.

Notice the tabs along the left side of Figure 6.4.These correspond to the different
groups of settings for the Compliments application.The following sections cover each of
these tabs and the relevant settings for Compliments. Be aware that at the bottom of each
of these tab pages is a Save Changes button.You can either save the changes you made to
each page before clicking another tab or click it after you edit all the tabs.

Warning
If you browse away from this page without clicking the Save Changes button, your changes
are not saved.

Basic Settings Tab
Using Figure 6.4 as a reference, this section goes through each setting on the Basic Set-
tings tab.

Essential Information
The first and most important things to note on the Compliments application settings
page are the Facebook-provided Application ID,API Key, and Secret key. Chapter 3,“Plat-
form Architecture Overview,” discusses their importance. Make sure that you keep these
values safe.

ptg

87Using the Developer Application

Figure 6.4 Compliments application’s Basic Settings tab

Application Description
The Application Description field is displayed in the Facebook Application Directory
(which Chapter 14,“Measuring Application Success,” covers) and is shown to new users
before they add or authorize the application. It’s limited to 250 characters and must be
plain text.You don’t need to worry about setting this field at the moment.The application
is not going to be added to the Application Directory until it is complete. For now, it’s
only going to be installable by people you specify.

Application Icon and Logo
Application icons are used in the following areas: the Applications menu,Application Set-
tings pages, and in the Allow Access authorization dialog. Icons are limited to 16×16 pixels
in size. Many times, the application icon will not be rendered on a white background, so
Facebook recommends that developers use transparent GIF images for all application
icons. PNG images also allow transparency, but they are not supported by all browsers
(notably Internet Explorer 6).

The application logo is shown, obviously, in the Application Directory. It has a maxi-
mum size of 75×75 pixels and can be in GIF, JPG, or PNG format. If either of these im-
ages is larger than their allowed dimensions, they are automatically resized to fit and
converted to GIF format. Image files you upload to Facebook for either the icon or the

ptg

88 Chapter 6 The Basics of Creating Applications

logo must be under 5MB in size. For the Compliments application, we chose a gold star
image, but you can upload whatever you like.

Language
The Language setting allows you to set a native language for your application. For Com-
pliments, leave it set to English.

Developers
Developers are other Facebook users that are allowed to modify the application settings.
You must be friends with them on Facebook in order to add or remove them.To add a
new developer, type her Facebook name in the field provided, and she is added to the De-
veloper list.This list is critical because, along with Sandbox mode, which is covered later, it
restricts who can install your application until you release it.

Tip
Always try to add more than one account as a developer for your applications. Otherwise, if you
lose access to your Facebook account, you also lose access to your Facebook applications.

Application Contact Information
The Developer Contact Email is only visible to Facebook employees and is used to con-
tact the application developer, if needed. Facebook contacts developers using this address,
usually if an application has complaints against it or violates the Facebook Terms of Ser-
vice.The User Support Email is available to your application’s users when they want to
contact you from your application’s Help or About pages. Both of these addresses are re-
quired and default to the email address the application creator used when signing up for
Facebook. Both can be changed if desired, but leave them as their default values for
Compliments.

User-Facing URLs
The Help, Privacy, and Terms of Service URLs can give custom URLs for application-
specific help, privacy, and Terms of Service, if desired. For Compliments, leave these fields
blank. If you set the Terms of Service URL, users will be prompted to accept your custom
Terms of Service before they authorize the application.This is important in cases where
legal liability might be involved. If you don’t provide URLs for these, the Facebook Help,
Privacy, and Terms of Service pages are used.

Authentication Settings Tab
The Authentication Settings tab, shown in Figure 6.5, controls what kind of profile an ap-
plication can be installed on and whether the application will be notified when users in-
stall or uninstall.

Users and Facebook Pages
The first setting in this tab allows the developer to set whether the application is instal-
lable to user profiles, Public Profiles, or both. User profiles are normal Facebook user

ptg

89Using the Developer Application

Figure 6.5 Compliments application’s Authentication Settings tab

Authentication Callback URLs
The URLs provided in the Authentication Callback fields notify you when a user author-
izes or uninstalls your application.They must be URLs that do not point to Facebook
servers. Facebook sends a number of parameters to these URLs when it is called to allow
the application to handle application authorization and removal appropriately. Note that
these URLs are simply pinged, which means that an HTTP request is made to these
URLs—the browser is not redirected to them.You cannot execute code that outputs any
content for users in response to these notifications, because they will never see it.

The Post-Authorize Callback URL is pinged by Facebook when a user first authorizes
an application.After authentication, the user’s browser is redirected to the application’s de-
fault canvas page.The URL is useful if an application creates records of its users in a data-
base or needs to do special processing when a new user authorizes an application.
Developers can add GET parameters to this URL, if desired, for even more customization;
however, the full URL must be less than 100 characters long. Facebook sends a special
POST variable named fb_sig_authorized set to a value of 1 when this URL is notified.

The Post-Remove Callback URL is called after a user removes an application. Face-
book sends a special POST variable named fb_sig_uninstall, also set to a value of 1,
when this URL is pinged.As with the previous URL, GET parameters can be added, if
desired, but the 100-character limit also applies here.

For Compliments, set both to the URL of your application root on your web server.
Figure 6.5 sets them to dummy URLs as examples. Instead of adding custom GET parame-
ters to these URLs, we’ll look at the Facebook POST variables to handle the notifications
appropriately in Compliments.

accounts. Public Profiles are the new name for what were once called Facebook Pages
and are used by brands, celebrities, or companies that don’t map directly to a single user
account.To allow an application to be installed on user profiles, check the Users check-
box; to allow an application to be installed on Public Profiles, check the Facebook Pages
checkbox. For the Compliments application, leave this set to having just the Users check-
box checked, which means that the application will not be added to Public Profiles.

ptg

90 Chapter 6 The Basics of Creating Applications

Profiles Settings Tab
The Profiles Settings tab contains settings for application profile tabs and profile boxes.
The options on this tab are not discussed until Chapter 8,“Updating the Profile.” For
Compliments, leave all the settings at their defaults.

Canvas Settings Tab
The Canvas Settings tab focuses on the settings for the application’s canvas page, including
the callback location and whether it will use an IFrame or FBML to display its contents.

Required URLs
The two most important settings we’ll encounter are the Canvas Page URL and Canvas
Callback URL.They are at the very heart of the Facebook web application architecture.
Through them, Facebook can provide a seamless application user experience even though
multiple servers are involved.

The Canvas Page URL was discussed in Chapter 3. It must also be at least 7, but not
more than 20, characters long and can only contain letters, underscores, or dashes.As
Figure 6.6 shows, Facebook lets you know if an application URL is unavailable.Also, at
the time of this writing, there is an outstanding bug within Facebook that requires all
Canvas Page URLs to be lowercase. For Compliments, choose an available Canvas Page
URL that’s meaningful to you.We recommend that you use a URL that at least describes
your application; however, this is not always possible. Obviously,“compliments” is unavail-
able, so try a few times to get a URL that works.

The Canvas Callback URL points to the application’s physical location on your web
server where the code for the application exists.This URL cannot be more than 100
characters. For the Compliments application, use the same URL you entered for the Post-
Authorize Callback above (the URL of application root on your web server).

Caution
Make sure that you add the trailing slash to your Canvas Callback URL! If you forget it and
try to hit a page in the application’s root (for example,
http://example.com/compliments/index.php), you won’t find the file, because Facebook ap-
pends the file resource to the Canvas Callback URL, resulting in
http://example.com/complimentsindex.php.

Figure 6.6 Error shown when the Canvas Page URL is already taken.

ptg

91Using the Developer Application

Figure 6.7 shows a completed required URLs example.

Optional URLs
The Bookmark URL is used in several locations. Figure 6.8 displays the Application menu
that appears at the bottom of each Facebook Page. Here, the Bookmark URL is where
the user goes when he clicks either the Compliments link in the Bookmark section or the
Compliments icon on the toolbar.These locations only appear after a user bookmarks
your application. Figure 6.9 displays the Compliments About page for a user who hasn’t
authorized Compliments. Clicking the Go to Application button takes the user to the lo-
cation he specified in the Bookmark URL. Figure 6.10 shows the About page for an au-
thorized user, and the Go to This Application link also uses the Bookmark URL location.
If the Bookmark URL is not set, all these locations go to the application’s Canvas Page
URL. Leave the Bookmark URL blank for Compliments to use the default.

Figure 6.7 Required URLs section of Canvas Settings tab

Figure 6.8 Bookmark URL usage in the
Facebook Applications menu

ptg

92 Chapter 6 The Basics of Creating Applications

The Post-Authorize Redirect URL redirects users who have just authorized your ap-
plication to a custom landing page.This can be useful if your application needs some ini-
tial configuration or data input from the user. Note that Facebook only redirects to this
URL in certain circumstances, depending on how the user authorizes the application.
(This is discussed in the section,“Application Authorization.”) For Compliments, leave it
blank because it also defaults to the Canvas Page URL.

Note
Facebook does not provide a Post-Remove Redirect URL. It doesn’t on purpose, just to keep
an application from trying to engage a user in any way after he has decided to remove it. It’s
a nice feature for users, but you need to be aware of this when developing an application.

Canvas Settings
The first option in the Canvas Settings section is the Render Method. It lets you choose
whether your canvas page will render in FBML or in a custom IFrame. Chapter 7 covers
this in detail; for now, just leave it set to FBML.

IFrame Size lets you decide the initial size of your canvas page IFrame, if you chose
IFrame as your Render Method.The first option, Smart Size, causes the IFrame rendered
on the canvas page to fill all the space it can on the canvas page; however, after it’s ren-
dered, it cannot be resized if the content of the IFrame changes.This can be a severe limi-
tation for an application developer if the content of the IFrame changes, as scroll bars will

Figure 6.9 Bookmark URL use on the application’s About
page, shown to non-app users

Figure 6.10 Bookmark URL use on the application’s About
page, shown to app users

ptg

93Using the Developer Application

be added to the IFrame if the content overflows the initial space provided.The second op-
tion, Resizable, allows you to resize the IFrame as needed. It also requires a static HTML
page to allow communication between the canvas page hosted on Facebook and the
IFrame along with some JavaScript to implement the resizing logic. For now, leave the op-
tion set to Smart Size.

The Canvas Width option is irrelevant. It is used for canvas pages that were designed to
work with Facebook’s old profile design. Because we’re creating a new application, it does
not apply. Leave it set to the default, Full Width (760px).

The Quick Transitions option is a feature intended to make canvas pages load much
faster than usual.When enabled, Facebook uses AJAX to quickly load your application
canvas pages without having to reload the entire Facebook frame that surrounds them,
which might take a significant amount of time, especially for FBML applications.To keep
things simple at this point, leave it set to Off for now. Feel free to explore its behavior and
its impact on your application canvas page load times.

Connect Settings Tab
The Connect Settings tab contains options focused on Facebook Connect. Because
Chapter 13,“Facebook Connect,” covers this topic, just leave all the settings on this page
to the defaults. One section to note is the Template Bundles section, which allows you to
quickly add template data for use in Feed forms, calls to the feed.publishUserAction()
API method, and Feed dialogs. However, the Feed Template Console tool, described in
Chapter 4,“Platform Developer Tools,” is much easier to use and allows previews of the
templates as they would render in the live stream. If you are a pro at writing Facebook
Feed templates, feel free to use this section to do so!

Widgets Settings Tab
The Widget Settings tab configures a Facebook widget called the Comments Box. It can
be placed on any website or IFrame application and allows people to comment on con-
tent outside of Facebook and have these comments published to the stream.These com-
ments can be programmatically accessed, and the box itself can be styled with custom
cascading styles sheets (CSS). It is not relevant to this discussion, so leave all the options at
their defaults.

Advanced Settings Tab
The Advanced Settings tab allows developers to handle security, enable Developer-only
Sandbox mode, and a variety of other settings.

Advanced Settings
In the Advanced Settings section, check the option to enable Sandbox mode.This ensures
that only the developers chosen on the Basic Settings tab can see and install the applica-
tion.This option is disabled when the application is launched, but keeping it restricted to

ptg

94 Chapter 6 The Basics of Creating Applications

the developers working on it is a wise choice at the outset. Leave the Application Type set
to Web, because we are developing a Facebook web application that will run in a browser.

Mobile Integration
The Mobile Integration options enable applications to support sending and receiving
SMS messages, as discussed in Chapter 3.You can also link your iPhone application ID
with your application, if you are using the Facebook Connect for iPhone library.

Attachments
The Attachments section settings are used if an application wants the capability to attach
items to private Facebook messages. For example, the Compliments application could
provide some way of allowing a user that had authorized the application to attach a com-
pliment to any message she sends. If we entered the text Attach a Compliment in the At-
tachment Text field, it would show up in the Compose Message page along the bottom of
the Message body field, as shown in Figure 6.11.

To get the actual page that provides the user interface for uploading the attachment,
Facebook uses the value of the Attachment Callback URL field. If a user clicked the At-
tachment Text link, shown in Figure 6.11, he is redirected to this URL where it’s assumed
the application presents a page that let him upload some attachment. For example, if the
Compliments application wanted to allow users to attach complimentary photos, it could
provide a URL to a photo upload page. For Compliments, just leave these fields blank.

Security
The Security section provides two options.The first, the Server Whitelist, allows a devel-
oper to specify the specific IP addresses that Facebook can use to communicate with the
application.This setting is obviously only valid for Facebook web applications. Requests
for the application from any IP addresses not listed here will be automatically blocked.

Figure 6.11 Compose Message page showing the application’s attach-
ment text

ptg

95Creating the Application Skeleton

This is a quick way to protect an application from impersonation attacks in the event its
secret key is stolen; however, it also means that it’s not possible to test the application using
localhost.

The second option, the Session Secret Whitelist Exception setting, is only relevant if
you use the Server Whitelist and your application is either an IFrame-based or an exter-
nal application using Facebook Connect.This setting allows the application to sidestep
the whitelist restriction so it can call the JavaScript Client Library. Leave this disabled for
the moment.

Legal
The Legal section is only relevant if an application sells or rents videos. If so, it must com-
ply with Federal regulations provided by the Video Privacy Protection Act. Leave it set to
the default.

Creating the Application Skeleton
We’ll now begin coding the Compliments application.We’ll start with a simple PHP
skeleton that will implement just the basics of integrating with Facebook by handling ap-
plication authorization and removal.We’ll go over each part of it in detail.

From the Developer application, we’ll need the API key, Secret key, and Canvas Call-
back URL.We’ll create a file that sets these to constant values that we can include in all
the files of the application. Create a new file named globals.inc and save it in a subdi-
rectory of your application root directory, named inc. In this file, enter the code shown in
Listing 6.1, replacing the name, key, and callback URL values with the ones you previ-
ously copied.

Listing 6.1 globals.inc: PHP to Set Global Constants

<?php

require_once dirname(__FILE__).'/../fblib/facebook.php';

// Facebook API Key

define('FB_API_KEY', '<fill in your app api key>');

// Facebook Secret Key

define('FB_APP_SECRET', '<fill in your app secret key>');

// Application name

define('FB_APP_NAME', '<fill in your canvas page url application name>');

// root URL of application on Facebook

define('FB_APP_URL', Facebook::get_facebook_url('apps').'/'.FB_APP_NAME);

// local application root URL

define('LOCAL_APP_URL', '<fill in your application web root>/'.FB_APP_NAME);

?>

ptg

96 Chapter 6 The Basics of Creating Applications

This file houses all the constant and global values we will need throughout the Com-
pliments application as it’s developed.The first thing we do is reference the Facebook li-
brary by including the Facebook PHP Library’s web application code, found in
facebook.php.This allows us to access all the types needed to communicate with Face-
book from any page in our application that includes globals.inc. Next, we define a set
of constants that will be frequently used in the application code. Note that we use the
Facebook::get_facebook_url() method from the Facebook PHP client library to en-
sure that we get the Facebook URL defined by the PHP client library rather than hard-
coding it.

Note
For ease of explanation and code organization, we place globals.inc in a subdirectory of
the web server’s document root. For security reasons, you would most likely not do this on a
production web server. Be sure you secure this and all other files that you do not want to be
accessible via a browser using any and all means your web-server software supports!

Next, open the index.php file you created in your application’s root directory and in-
clude the code in Listing 6.2.

Listing 6.2 index.php: Basic Skeleton Application

<?php

require_once 'inc/globals.inc';

$facebook = new Facebook(FB_API_KEY, FB_APP_SECRET);

if(isset($facebook->fb_params['authorized'])) {

// do new user initialization

} else if (isset($facebook->fb_params['uninstall'])) {

// do user cleanup

} else {

if(! $facebook->api_client->added) {

// handle non-app users by giving them a link to add the application

echo "<p>Hello, non-app user!</p>

get_add_url()."'>

Click here to add this application.";

} else {

echo "<p>Hello, app user

<fb:name uid='{$facebook->user}' useyou='false' />!</p>";

}

}

?>

index.php is our first application canvas page.Although it’s simple, this code accom-
plishes several complex tasks, including creating an instance of the Facebook object,

ptg

97Creating the Application Skeleton

handling application authorization and removal, and rendering content to both users and
non-users of the application.

First, we include the globals.inc file created in Listing 6.1.This gives us access to the
API key and Secret key.These are important because they are required parameters of the
Facebook class constructor. Creating an instance of this class grants our application
the capability to call the API through the PHP client library.Thankfully, the library
handles all the necessary application authentication code that grants this access.

The next block handles the ping that Facebook sends to the Post-Authorize Callback
URL we set in the Authentication Settings tab of the Developer application. Currently,
this block does nothing, but as the comment in the code suggests, this is where we can do
any initialization or setup of a new user that did not require rendering anything to the
browser (remember, it’s a ping, not a redirection.) For example, we could create a new
user account in a database, store the time the application was installed for this user, or do
any user-specific application setup that did not require visible output.We use the Face-
book class’ fb_params collection to check if the fb_sig_authorize POST variable was
sent to the page.This variable is sent when Facebook pings your Post-Authorize Callback
URL.We discuss this in the section,“Application Authorization.”

We then check for application removal requests.As mentioned previously, Facebook
pings the application’s Post-Remove Callback URL when a user removes an application.
This time, we check for the fb_sig_uninstall POST variable. In this block, we would
perform any user-specific application cleanup required, like removing a user account from
a database, recording the application removal time, or determining how long this user had
the application installed.As with the post-authorization code, this code should not try to
render anything to the browser, because it will never be seen by the user.

Finally, we handle the actual rendering of the canvas page to both users who have au-
thorized the application and those who have not.This is a critical point to understand:
Users do not have to install an application to view canvas page content, and an applica-
tion needs to provide at least some level of content to all Facebook users, whether or not
they have authorized it. In fact, as a best practice, Facebook suggests that you only require
a user to authorize your application when it provides enough value to the user to warrant
it, as discussed in Chapter 2.

We check the $facebook->api_client->added property to determine if the current
Facebook user viewing the canvas page has authorized the application. Note that we use
the api_client property of the Facebook instance to get access to added.The
api_client property wraps an instance of the FacebookRestClient class that we men-
tioned at the beginning of this chapter. If they have not authorized the application, we
render a welcome message and a link to the application’s authorization page (provided by
the Facebook::get_add_url() method). Figure 6.12 shows what a user who has not au-
thorized the application sees when he first visits the rudimentary Compliments canvas
page.When that user clicks the Click Here to Add This Application link, he is automati-
cally directed to the Compliments application authorization page, shown in Figure 6.13.

ptg

98 Chapter 6 The Basics of Creating Applications

Figure 6.12 Compliments canvas page for non-
authorized users

Figure 6.13 Compliments authorization page

If the user clicks the Allow button in the Compliments application authorization page,
Facebook first pings the Post-Authorization Callback URL and then redirects the user to
the Canvas Callback URL, which causes the last block of code in the index.php file to
execute.At this point, he has become an authorized application user.

Next, we introduce the first of many FBML tags, <fb:name/>.This renders the name
of the viewing user, linked to his Facebook profile page.The useyou='false' attribute
forces Facebook to always render this link with the full name of the viewing user. Other-
wise, it renders the pronoun “you” instead of the user’s full name. Figure 6.14 shows what
our new app user sees.

Application Authorization
Application authorization is somewhat analogous to the concept of installation, but the
user does not have to copy any code or software to their machine.Applications do not
have to be authorized for a user to interact with them, but by authorizing an application,

Figure 6.14 Compliments canvas page for au-
thorized users

ptg

99Application Authorization

a user gives it access to more of her personal Facebook data and allows it to perform sev-
eral actions on her behalf, as the following sections discuss.

Parameters Sent to Applications
Facebook sends numerous parameters to your application’s canvas page whenever it’s re-
quested.What variables are sent depends on several factors, such as whether the user has
authorized the application, whether she is logged into Facebook, or if the canvas page
she views is FBML or IFrame-based. Generally, Facebook sends these parameters as
HTTP POST variables to FBML pages and GET variables to IFrame pages, but some ex-
ceptions exist.

These parameters are critically important because they not only contain important in-
formation, but they also generate a signature used to authenticate the communication be-
tween your application and Facebook, as discussed later.The most important parameters
Facebook sends to an application canvas page and when are discussed in the following ta-
bles. Note that Facebook sends other parameters to application tabs and profiles; these are
covered as need be throughout this book.All values are strings.Tables 6.1–6.7 show the
parameters sent to pages for each user state.

Table 6.1 Parameters Always Sent by Facebook

Parameter Sample Value Description

fb_sig_added 0 or 1 If 0, the user has not authorized
the application.

fb_sig_locale en_US The user’s locale.

fb_sig_time 1241624901.
1105

The time the request was made as
a UNIX timestamp.

fb_sig_api_key 12...ef (32 hex
characters)

The application’s API key.

fb_sig_app_id 63560904158 The application’s ID.

fb_sig 12...ef (32 hex
characters)

Authentication signature.

Table 6.2 Parameters Sent When User Not Logged In and Has Not Authorized
Application

Parameter Sample
Value

Description

fb_sig_in_canvas 1 The request was made for an
application canvas page.

ptg

100 Chapter 6 The Basics of Creating Applications

Parameter Sample Value Description

fb_sig_added 0 The user has not authorized
the application.

fb_sig_logged_out_facebook 1 The user is not logged into
Facebook.

Table 6.3 Parameters Sent When User Has Not Authorized Application and Visits
Canvas From Outside Link

Parameter Sample
Value

Description

fb_sig_in_canvas 1 The request was made for an appli-
cation canvas page.

fb_sig_added 0 The user has not authorized the ap-
plication.

Table 6.4 Parameters Sent When User Has Not Authorized Application and Visits
Canvas From Inside of Facebook

Parameter Sample Value Description

fb_sig_in_canvas 1 The request was made for an ap-
plication canvas page.

fb_sig_added 0 The user has not authorized the
application.

fb_sig_canvas_user 123456789 The user’s ID.

fb_sig_friends 12345,123456, ... The user’s friends’ IDs.

Table 6.5 Parameters Sent to the Post-Authorize Callback URL

Parameter Sample Value Description

fb_sig_authorize 1 User has just authorized
the application.

fb_sig_profile_update_t

ime

1241386582 UNIX timestamp of the
last time this user’s pro-
file was updated.

fb_sig_added 1 The user has authorized
the application.

Table 6.2 Continued

ptg

101Application Authorization

Parameter Sample Value Description

fb_sig_user 123456 The user’s ID.

fb_sig_session_key 2.jKBV2l4Xd6JvIUvKxwFM
RQ__.86400.124154640
0-1699891100

The valid session key for
this user.

fb_sig_expires 1241546400 Expiration time of ses-
sion key as UNIX time-
stamp.

fb_sig_ext_perms auto_publish_recent_

activity

Extended permissions
granted to the applica-
tion.

Table 6.6 Parameters Sent When User Has Authorized Application

Parameter Sample Value Description

fb_sig_in_canvas 1 The request was made for an ap-
plication canvas page.

fb_sig_added 1 The user has authorized the ap-
plication.

fb_sig_user 123456789 The user’s ID.

fb_sig_friends 12345,123456, ... The user’s friends’ IDs.

fb_sig_profile_updat

e_time

1241386582 UNIX timestamp of the last time
this user’s profile was updated.

fb_sig_ext_perms auto_publish_recen

t_activity

Extended permissions granted to
the application.

fb_sig_session_key 2.jKBV2l4Xd6JvIUvKxw
FMRQ__.86400.12415
46400-1699891100

The valid session key for this
user.

fb_sig_expires 1241546400 Expiration time of session key as
UNIX timestamp.

auth_token 12...ef (32 hex charac-
ters)

Sent via GET; only sent the first
time the user visits the canvas
page after authorizing an
application.

Table 6.5 Continued

ptg

102 Chapter 6 The Basics of Creating Applications

The fb_params property of the Facebook PHP client library’s Facebook class is auto-
matically populated with all the parameters from the current request when you create an
instance of the Facebook class.This property is actually an associative array keyed by the
parameter name without the 'fb_sig_' prefix. For example, to get the value of the
fb_sig_time parameter from your canvas page, you might use the following PHP:

$facebook = new Facebook('[your API Key]', '[your Secret Key]');

$time = $facebook->fb_params['time'];

Generating Signatures
The signature sent to your application in the fb_sig parameter verifies that all the calls
you make to Facebook actually come from your application, and the calls Facebook
makes in return actually come from Facebook. Luckily, Facebook’s PHP client library
creates the signature for you; however, it’s important to understand that the Secret key is
used to how they are created to reinforce the importance of keeping your Secret key safe.
The easiest way to create the signature is to call the Facebook class’s generate_sig()
method, passing it an array of argument=value pairs and your Secret key. The code for
this method is shown in Listing 6.3.

Listing 6.3 Facebook::generate_sig Method

/*

* Generate a signature using the application secret key.

Parameter Sample Value Description

Installed 1 Sent via GET; only sent the first
time the user visits the canvas
page after authorizing an
application.

Table 6.7 Parameters Sent to the Post-Remove Callback URL

Parameter Sample
Value

Description

fb_sig_uninstall 1 The user has removed the appli-
cation.

fb_sig_added 0 The user has not authorized the
application.

fb_sig_user 123456 The user’s ID.

Table 6.6 Continued

ptg

103Application Authorization

Listing 6.3 Continued

*

* The only two entities that know your secret key are you and Facebook,

* according to the Terms of Service. Since nobody else can generate

* the signature, you can rely on it to verify that the information

* came from Facebook.

*

* @param $params_array an array of all Facebook-sent parameters,

* NOT INCLUDING the signature itself

* @param $secret your app's secret key

*

* @return a hash to be checked against the signature provided by Facebook

*/

public static function generate_sig($params_array, $secret) {

$str = '';

// sort the $params array alphabetically by key

ksort($params_array);

// Note: make sure that the signature parameter is not already included in

// $params_array.

foreach ($params_array as $k => $v) {

// build up the signature string

$str .= "$k=$v";

}

// append the app's secret key

$str .= $secret;

// CREATE THE SIGNATURE

return md5($str);

}

You can see that your application’s Secret key is appended to the string of
argument=value pairs and the entire string is encoded using the PHP md5() function.
The result of this encoding is the signature passed in fb_sig both to and from Facebook.
So, it is vitally important to keep this value safe, or anyone with access to it can imperson-
ate your application (or worse).This signature-verification process is revisited when we
cover communicating with Flash in Chapter 11,“FBJS, Mock AJAX, and Flash.”

Before an Application Is Authorized
If a user visits the canvas page of an application that he has not authorized, the page is
passed only his Facebook user ID and the user IDs of his Facebook friends.The code on
that canvas page is also allowed to call Facebook API methods that do not require a Face-
book session key (discussed next.) The list of these methods changes frequently, so you
need to consult an individual API method’s documentation to see if it requires one.Ap-
plications can also use FBML to render links to unauthorized users’ profiles and their pro-
file pictures. In turn, unauthorized users can publish data to the stream for an application

ptg

104 Chapter 6 The Basics of Creating Applications

using a Feed form, and applications can send requests on their behalf using a request
form.These are discussed in Chapter 9,“Feed Stories, Feed Forms, and Templates.”

After an Application Is Authorized
After a user authorizes an application Facebook creates a new session and passes that ap-
plication a temporary session key that application can use to access the full Facebook API.
Session keys expire in one hour; however, infinite sessions are possible which we’ll cover
in Chapter 9.The application also gets access to more personal data about the authorized
user, it can publish one line Feed stories to the stream without the user’s consent, and can
send notifications to the user’s friends (even if they have not authorized the application)
and other application users (even if they are not friends of the user.) The user can also
publish stories directly to the stream using the application’s Publisher interface, if one is
implemented by the application.

How an Application Is Authorized
There are a couple of ways to authorize applications. First, applications that use the Face-
book PHP client library can call require_login().This method causes an automatic
redirection to Facebook’s login.php, which causes the application’s authorization page to
appear.The full URL of the redirection is

http://www.facebook.com/login.php?api_key=[your API

Key]&v=1.0&next=http%3A%2F%2F[your web

server]%3A81%2F[appname]%2F%3F_fb_fromhash%[some

hash]&canvas=1

After the authorization page appears, Facebook redirects to the Terms of Service URL
you provided in the Developer application. Clicking Allow on this page authorizes the
application.

Second, HTML link tags, form tags, and the FBML forms can include a special attrib-
ute, requirelogin='1'. If we modify the code from Listing 6.2 as follows, we can see
this process at work:

if(! $facebook->api_client->added) {

// handle non-app users by showing

// them the minimalist AJAX authorization dialog

echo "<p>Hello, non-app user!</p>

Click here to authorize the
application";

}

This causes a different behavior:When Facebook parses the <a/> entity, it sees the
requirelogin='1' attribute and pops up a dialog using AJAX, shown in Figure 6.15, to
allow the user to quickly authorize the application while not redirecting him away from
the page that he’s currently viewing.

ptg

105Application Authorization

This is a much less intrusive and more streamlined way to allow new users to author-
ize an application, but it has one important drawback. Facebook ignores the Post-
Authorize Redirect URL that you specify. So, if you require your newly authorized users
to perform some setup tasks immediately that depend on them being redirected to this
URL, this authorization method might not work for you.

Finally, applications that do not use Facebook’s PHP client library can use FBML to
provide the same behavior provided by require_login(). If you replace all the code in
index.php with the following, you can see how this works (you need to replace the values
in brackets with your own):

<fb:if-is-app-user>

<p>Hi, app-user!</p>

<fb:else>

<fb:redirect url='http://www.facebook.com/login.php?v=1.0&api_key=[your API

Key]&next=<?php echo(urlencode('http://example.com/<appname>')) ?>&canvas='/>

</fb:else>

</fb:if-is-app-user>

Here, we introduce a few new FBML controls. First, <fb:if-is-app-user/> allows
only the display of the content it encloses if the viewing user has authorized the applica-
tion. It is essentially the FBML equivalent of the FacebookRestClient::added property
(discussed earlier). Next, <fb:else/> simply acts like the else statement in PHP. In this
example, it renders its enclosed content if the viewing user has not authorized the appli-
cation. Finally, we have <fb:redirect/>.When Facebook parses this FBML tag, it simply
redirects the viewing user’s browser to the URL specified by the url attribute. So, when
Facebook parses this code, it automatically redirects all unauthorized users to Facebook’s
login page, just like require_login() did in the first example.

Figure 6.15 AJAX Authorization dialog

ptg

106 Chapter 6 The Basics of Creating Applications

Summary
This chapter covered the basics of creating and configuring a new Facebook application,
how users authorize applications, and how Facebook authenticates them. It also covered
Facebook sessions and some of the data Facebook sends to an application’s canvas page.
Here are some key points:

n The Facebook Developer application is the tool developers can use to create new
applications on Facebook. It provides literally dozens of settings, including the
URL of your application’s root canvas page on both Facebook and your local web
server. It is also the place to find an application’s ID,API key, and Secret key, which
every application needs to communicate with Facebook.

n Applications can present different content to users that have authorized them and
to those that have not. Developers must not force users to authorize an application
unless it provides them engaging content that requires them to do so. However, au-
thorized users provide the application with access to more information and the
ability to perform actions on that user’s behalf.

n Applications can be notified when a user authorizes and removes them. Depending
on how they were authorized, applications can redirect users that have just author-
ized them to a specific canvas page. But, applications cannot redirect users after they
remove an application, nor can they show them any content after the application
has been removed.

n Facebook uses a special signature—built using the parameters passed to the applica-
tion along with that application’s Secret key—to verify that all requests made by an
application to Facebook actually come from that application and the calls Facebook
makes in return actually come from Facebook.

ptg

7
Building the Canvas

This chapter details the differences between using an IFrame and Facebook Markup
Language (FBML) for the application canvas page, and then shows you how to create a
page of each type connected with tabs by updating the Compliments application.

Choosing Between an FBML and IFrame Canvas
In Chapter 6,“The Basics of Creating Applications,” we chose FBML as the canvas page
type.This is the easiest way to get started with Facebook application development, be-
cause it provides a simple way to display content with the Facebook “look and feel” and
full use of the Facebook controls. However, the type of canvas that is right for your appli-
cation depends on numerous factors.

Learning Curve
FBML pages require learning three things: FBML tags, Facebook JavaScript (FBJS) syn-
tax, and the Facebook application programming interface (API). Facebook provides docu-
mentation for the FBML tags, but you have to learn the nuances of each tag. FBJS is a
limited form of JavaScript that changes the common DOM manipulation methods to use
get and set functions. It can be painful to figure out which subset works and how to get
the access that your application needs.The Facebook API is used for both canvas types, al-
though FBML can reduce the number of calls needed.

Until recently, IFrame pages couldn’t use the FBML tags.Therefore, their learning
curve was limited to standard web technologies of cascading style sheets (CSS), HTML,
JavaScript, and the Facebook API.With the release of the Facebook JavaScript Client Li-
brary and XFBML, IFrame applications can now use FBML tags on their pages.We go
over how to use XFBML in Chapter 12,“Facebook JavaScript Client Library.” Overall,
the learning curve for an IFrame page is lower than for FBML pages.

One caveat is that profile boxes and applications tabs cannot use IFrames. So, it might
end up that you have to learn FBML to produce the functionality you want in those
contexts.

ptg

108 Chapter 7 Building the Canvas

Migration of Existing Applications
If you already have an application that you are porting to Facebook, IFrames make this
simple.You can reuse your existing HTML and JavaScript rendering, and use the Face-
book API to get the data you need.To convert applications to FBML requires rewriting
JavaScript as FBJS and removing dependence on any external JavaScript libraries, such as
YUI, jQuery, and so on.

Cross-Platform Portability
If you are planning to support multiple platforms, such as an external website or
OpenSocial, IFrames provide a common display model.You just change how you get the
data for each platform. Other platforms, such as Bebo, have licensed the Facebook Plat-
form and natively support FBML. However, Bebo’s implementation isn’t always current
with Facebook’s latest changes, so you probably have to have different display code for
each platform.

Look and Feel
Applications that have the Facebook look and feel fit in well with the Platform.That isn’t
to say that applications shouldn’t try to be distinctive, but Facebook users expect applica-
tions to work like Facebook. FBML provides the easiest method to do this, giving appli-
cations access to the same controls and styles that Facebook itself uses.

IFrame applications can emulate this look and feel by copying the Facebook styles and
creating or finding their own Facebook-like controls.We do this later for the
<fb:friend-selector> control.This can be time-consuming, because most of the Face-
book tags don’t have publicly downloadable equivalents. XFBML provides some help
with this, but not all the tags are natively available.After you build a library of these con-
trols, you can reuse them in other applications.

Performance
FBML pages can be faster than IFrame applications because they can eliminate or reduce
the number of API calls needed by using FBML tags, such as <fb:profile-pic>. Re-
cently, Facebook added the Chat bar, which has to be created on each full page load.
IFrame applications can avoid this on subsequent page loads, because they only have to
change the inner IFrame source instead of the entire page.

When an FBML page does an AJAX call, it must pass through a Facebook proxy to
parse any returned FBML. IFrame AJAX calls go directly to the callback URL.

With XFBML, IFrame applications can reduce their API calls by using these tags.They
can return <fb:profile-pic> in their HTML, and the Facebook JavaScript Client Li-
brary can convert these tags to the appropriate HTML.Any API calls that the library uses
for conversion are batched, and the results are cached. However, this update happens after
the page loads and can make the page appear to flash while the DOM is updated with the
new HTML.

ptg

109Preparing the Compliments Canvas Pages

IFrames that use the Facebook JavaScript Client Library can receive results of preloaded
FQL queries and get cached access to the user’s friend list that is not passed to the canvas
page by default.This helps IFrames catch up with some of FBML’s speed advantages.

Testing
Because all FBML must be rendered by Facebook before it is displayed, it can be more
difficult to test. Either you copy what you expect the FBML to be to the FBML Test
Console or you have to access your page through Facebook. IFrame testing can be much
simpler:You can access your page directly on your local server. Of course, in those cases,
you might have to emulate the GET variables that Facebook passes to IFrame pages to al-
low your application to function normally.

Preparing the Compliments Canvas Pages
The Compliments application’s canvas page allows the user to send a compliment to one
of his friends.We create it first in FBML and then as an IFrame; this way, we can go
through how each type works.At the end, we add a tab control that lets users navigate
between the pages. For ease of reading, we use Compliments as the application name in
the Canvas Callback URL, but you should substitute your own application name.

Before we create the canvas pages, we need to do a little preparation: set up the data-
base, add some utility functions, create an external CSS file, and handle versioning for ex-
ternal files.

Database Setup
We created the Compliments database in Chapter 6. For this chapter, we just need one
table to store information about the compliments that users send.We need to keep the
Facebook user ID for the person sending the compliment, the Facebook user ID for the
person he is sending it to, and the type, text, and time of the compliment. Use the create
statement in Listing 7.1 to build the table.

Listing 7.1 Database Table Create Statement

CREATE TABLE 'compliments'.'compliments' (

'appUserID' int(10) unsigned NOT NULL,

'targetID' int(10) unsigned NOT NULL,

'category' varchar(45) COLLATE utf8_unicode_ci NOT NULL,

'compliment' varchar(300) COLLATE utf8_unicode_ci NOT NULL,

'complimentTime' datetime NOT NULL,

PRIMARY KEY ('appUserID','targetID','complimentTime')

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;

We need to update globals.inc with information about the database server, database,
and the user login and password that we created in Chapter 6.Add the contents of Listing
7.2 to the end of globals.inc before the closing ?>.

ptg

110 Chapter 7 Building the Canvas

Listing 7.2 globals.inc: Database Constants

// IP or URL of the MySQL database server

define('FB_DB_SERVER', '<your db server>');

// the database schema used for the application

define('FB_DB_SCHEMA', 'compliments');

// database user

define('FB_DB_USER', '<db user>');

// database password

define('FB_DB_PASS', '<db_password>');

We use a simple database wrapper class that will handle connections, data translation,
and diagnostics.Add the source in Listing 7.3 into a new file called db.inc in the inc di-
rectory.The key things to notice about the DB class is that it automatically creates and
destroys database connections with the scope of each instance.All queries go through
execQuery() that will put any failures into the error log. Finally, addCompliment() is the
function we use to store the compliment values in the database as they are sent.

Listing 7.3 db.inc: Database Access Class

<?php

class DB extends mysqli {

/** Construct - create connection to db */

public function __construct() {

parent::__construct(FB_DB_SERVER, FB_DB_USER, FB_DB_PASS, FB_DB_SCHEMA);

if ($this->connect_error) {

die('Connect Error (' . $this->connect_errno . ') '.

$this->connect_error);

}

}

/** Destructor - closes connection to db **/

function __destruct() {

parent::close();

}

/** Executes a query and logs errors **/

private function _execQuery($query) {

$result = $this->query($query);

if (!$result) {

die("
INVALID query: '" . $this->error . "' => $query
");

}

return $result;

}

ptg

111Preparing the Compliments Canvas Pages

Listing 7.3 Continued

/** Adds a compliment into the database **/

function addCompliment($appUserID, $targetID, $category, $compliment) {

$appUserID = $this->real_escape_string($appUserID);

$category = $this->real_escape_string($category);

$targetID = $this->real_escape_string($targetID);

$compliment = $this->real_escape_string(htmlspecialchars($compliment));

$query = "INSERT INTO compliments (appUserID, targetID, category,

compliment, complimentTime) VALUES ($appUserID, $targetID,

'$category', '$compliment', NOW())";

$result = $this->_execQuery($query);

}

}

?>

Adding the Utility Functions
We also add a utility function to write information to a custom application log and an-
other that dumps GET and POST variables received into that log. First, add the two con-
stants in Listing 7.4 to globals.inc.They define a log file called
yourapplication_log.txt in the application root directory. Make sure that this file is
writable by your web server.

Listing 7.4 globals.inc: Logging Constants

// Application root directory

define('LOCAL_APP_DIR', getcwd().'/');

// Application diagnostic log

define('DBG_OUT_FILE', LOCAL_APP_DIR.FB_APP_NAME . '_log.txt');

Now, create a new file called utils.inc in the inc directory, and add the source from
Listing 7.5 into it.The first function, wr(), writes any string passed in to the log.This is
useful for dumping out diagnostic information or trace info. Remember to comment out
the wr() calls after you are done using them, or your log can quickly become huge.The
second function, dumpRequestVars(), dumps the REQUEST variables that your pages
receive from Facebook, your application’s AJAX calls, and form POSTs.This is an easy way
to find out what Facebook is passing to your application pages.You can supply this func-
tion with a context argument that will be written out at the top of the dump as a label.
An easy context would be to pass it _FILE_ to show the name of the calling file.You can
also pass another parameter to disable the display of Facebook specific REQUEST variables.

ptg

112 Chapter 7 Building the Canvas

Listing 7.5 utils.inc: Logging Functions

<?php

/** write test to the diagnostic log **/

function wr($str) {

$dt = date('j-m-y, h:i:s');

if (defined('DBG_OUT_FILE')) {

if (!$file_handle = fopen(DBG_OUT_FILE, "a")) {

echo "Cannot open file";

}

if (!fwrite($file_handle, "($dt): $str\n")) {

echo "Cannot write to file";

}

fclose($file_handle);

}

}

/** dump out the REQUEST variables to the log along with optional FB vars**/

function dumpRequestVars($showFacebookVars = true, $context = NULL) {

if (isset($context)) {

wr("***Dumping vars for $context");

}

$requestVars = array('GET' => $_GET,

'POST' => $_POST,

'COOKIE' => $_COOKIE);

define('INDENT_HEAD', str_pad('', 4));

define('INDENT_DATA', str_pad('', 6));

define('FB_PREFIX', 'fb_sig_');

$msg = '';

$argCount = func_num_args();

if($argCount > 1) {

$msg .= ' [';

for($i = 1, $args = func_get_args(); $i < $argCount - 1; ++$i) {

$msg .= strval($args[$i]).':';

}

$msg .= strval($args[$i]).'] '. PHP_EOL;

}

foreach(@$requestVars as $key => $value) {

$msg .= INDENT_HEAD . "$key length: ". count($value). PHP_EOL;

foreach($value as $k => $v) {

if(!$showFacebookVars && 0 === strpos($k, FB_PREFIX)){

continue;

}

$v = isset($v) ? $v : '[null]';

ptg

113Preparing the Compliments Canvas Pages

Listing 7.5 Continued

$msg .= INDENT_DATA . "$k ==> '$v'". PHP_EOL;

}

}

wr($msg);

}

?>

Using External CSS Files
Both FBML and IFrames support inline CSS styles, but we will take advantage of browser
caching and use an external file instead. Create two new empty files called main.css and
ie.css and put them in a new css directory in the application root.The main.css will
contain the styles for the canvas page as a whole, and ie.css will contain overrides spe-
cific to Internet Explorer.We will add the styles for each file later in this chapter as we
build the canvas functionality.

External CSS files are included the same way in both FBML and IFrame-based can-
vas pages:

<link rel='stylesheet' type='text/css'

href='http://server.com/compliments/css/main.css' />

For FBML pages, Facebook rewrites the URL to be cached on its own servers as well,
like this:

http://apps.facebook.com/fbml_static_get.php?src=http%3A%2F%2Fserver.com%3A85%2F

compliments%2Fcss%2Fmain.css%3Fv%3D1242598113&appid=195482325614&pv=1&sig=

5a4f20affb0ebb39cac795212d57135f&filetype=css

When using any external file, it is important to handle versioning so that the file that is
loaded by the browser is the most current one, instead of the old cached version.The
simplest way to do this is to append a version identifier to the file, such as main.css?v=1.
Increasing this number to main.css?v=2 causes the browser to pull the v2 file instead of
using the cached v1 file. It can be difficult to remember to increment this version number
each time you change a file.To have this happen automatically use PHP’s filemtime()
function to get the last modified time for a file.You can then append this value to the file-
name, like this: main.css?v=1232323251.

Add the utility function in Listing 7.6 to utils.inc.This function takes a path to a
file from the application root as an argument, gets the last modified time, and returns a
string with the version attached.We use this function in the new canvas page code in the
next section.

Listing 7.6 utils.inc: File Version Function

/** return the passed in file with a version appended **/

function getFileVer($filePathFromRoot) {

$modTime = filemtime(LOCAL_APP_DIR . $filePathFromRoot);

ptg

114 Chapter 7 Building the Canvas

Listing 7.6 Continued

return "$filePathFromRoot?v=$modTime";

}

Defining the Types of Compliments
We are going to allow the users to pick from a predefined set of compliments. Each com-
pliment will consist of a type, a title, and small and large images. For example, the “friend”
type of compliment has the title “A Great Friend” and small and large images of a cuddly
cat.We define a list of these categories in an array in globals.inc.Add the contents of
Listing 7.7 to your globals.inc file.

Listing 7.7 globals.inc: Compliments Array

$g_categories = array(

'friend' => array("title" => "A Great Friend",

"bigimg" => "cat_48.png",

"smallimg" =>"cat_24.png"),

'life' => array("title" => "Full of Life",

"bigimg" => "parachute_48.png",

"smallimg" =>"parachute_24.png"),

'relaxing' => array("title" => "Relaxing",

"bigimg" => "beach_sit_48.png",

"smallimg" =>"beach_sit_24.png"),

'cook' => array("title" => "A Great Cook",

"bigimg" => "pan_48.png",

"smallimg" =>"pan_24.png"),

'magic' => array("title" => "Magic",

"bigimg" => "rabbit_48.png",

"smallimg" =>"rabbit_24.png"),

'driven' => array("title" => "Driven",

"bigimg" => "single_seater_48.png",

"smallimg" =>"single_seater_24.png")

);

Creating the Compliments FBML Canvas Page
Now that all that preparation is done, it is time to create the FBML canvas page.This page
will contain a form that allows the user to create a compliment to send to one of their
friends.

ptg

115Creating the Compliments FBML Canvas Page

Dumping the FBML Canvas REQUEST Parameters
We need to include our newly created files and our dumpRequestVars() call to
index.php.The top of that file should now look like Listing 7.8.

Listing 7.8 index.php: Including Support Files

<?php

require_once 'inc/globals.inc';

require_once 'inc/utils.inc';

require_once 'inc/db.inc';

dumpRequestVars(true, basename(__FILE__));

Go to your application’s Canvas Page URL to allow dumpRequestVars() to capture
the REQUEST variables that Facebook passes your application, and then go to your applica-
tion’s root directory on your web server to verify that the compliments_log.txt file was
created. It should now contain something like what is shown in Listing 7.9.

Listing 7.9 Dump of FBML Canvas REQUEST Variables

(11-07-09, 10:00:55): [index.php]

GET length: 0

POST length: 16

fb_sig_in_canvas ==> '1'

fb_sig_request_method ==> 'GET'

fb_sig_friends ==> '714497440'

fb_sig_position_fix ==> '1'

fb_sig_locale ==> 'en_US'

fb_sig_in_new_facebook ==> '1'

fb_sig_time ==> '1247364062.2857'

fb_sig_added ==> '1'

fb_sig_profile_update_time ==> '1241522567'

fb_sig_expires ==> '1247454000'

fb_sig_user ==> '698700806'

fb_sig_session_key ==> '2.b_R2hCwU8fJ5ZgrG5R1K_g__.86400.1247454000-698700806'

fb_sig_ext_perms ==> 'auto_publish_recent_activity'

fb_sig_api_key ==> '52bcc10ac263e1d0d2645182e01e0c99'

fb_sig_app_id ==> '195482325614'

fb_sig ==> '51d7c909fddca1a9bd244d58c88a1207'

COOKIE length: 0

Table 7.1 lists the key variables to note for FBML pages.

ptg

116 Chapter 7 Building the Canvas

Table 7.1 Key POST Variables Passed to FBML Canvases

Variable Sample
Value

Description

fb_sig_in_canvas 1 If this is present, the page is running in an
FBML canvas.

fb_sig_friends 714497440,
698700806

A comma-separated list of the user’s friends—
the equivalent of calling the friends_get()
API function.

fb_sig_added 0 or 1 Set to 1 if the user has authorized the applica-
tion.

fb_sig_user 698700806 The Facebook ID of the viewing user.

Adding the Send Compliment Form
To display the Send Compliment form, we need to update the code that handles authorized
users. Change the bottom of index.php to use a new renderPage() function, like this:

if (!$facebook->api_client->added) {

// handle non-app users by giving them a link to add the application

echo "<p>Hello, non-app user!</p>

get_add_url() . "'>

Click here to add this application.";

} else {

renderPage();

}

Listing 7.10 shows the renderPage()function.Add it to the bottom of index.php.We
go over it detail next.

Listing 7.10 index.php: renderPage() Function

/** outputs the page content **/

function renderPage() {

global $facebook;

global $g_categories;

// include the external stylesheet and create the header

$pageOutput = "

<link rel='stylesheet' type='text/css'

href='".LOCAL_APP_URL.getFileVer("/css/main.css")."' />

<!—[if IE]>

<link rel='stylesheet' type='text/css'

href='".LOCAL_APP_URL.getFileVer("/css/ie.css")."' />

<![endif]—>

<fb:title>Send a Compliment</fb:title>

ptg

117Creating the Compliments FBML Canvas Page

Listing 7.10 Continued

<div class='banner'

style='background: url(".LOCAL_APP_URL."/img/banner.png) no-repeat;' />";

// Handle the form submit

if (isset($_POST['submitCompliment'])) {

$target = isset($_POST['target']) ? $_POST['target'] : "";

$compliment = isset($_POST['compliment']) ? $_POST['compliment'] : "";

$category = isset($_POST['category']) ? $_POST['category'] : "";

if (strlen($target) == 0 || strlen($compliment) == 0 ||

strlen($category) == 0) {

// Output the error

$pageOutput.= "

<fb:error>

<fb:message>Sending the Compliment failed!</fb:message>

Please check that the form is filled out correctly

</fb:error>";

} else {

// Add the compliment to the database

$db = new DB();

$db->addCompliment($facebook->user, $target, $category, $compliment);

// Output the results

$pageOutput.= "

<fb:success>

<fb:message>

Your Compliment to <fb:name uid='$target' linked='false'/> was sent.

</fb:message>

<fb:profile-pic size='square' uid='$target' />

<img class='categoryImg'

src='".LOCAL_APP_URL."/img/".$g_categories[$category]['bigimg']."'/>

<fb:name uid='$target' linked='false'/>

is {$g_categories[$category]['title']} because \"$compliment\"

</fb:success>";

}

}

// Show the compliment form

$pageOutput .= "

<div id='panel' class='panel'>

<form method='POST' id='complimentform' >

<h1>Select one of your friends and enter your compliment.</h1>

<table id='complimentTable'>

<tr>

<td class='label'>Your Friend:</td>

<td class='content'>

<fb:friend-selector id='fsel' name='uid' idname='target'/>

</td>

</tr>

ptg

118 Chapter 7 Building the Canvas

Listing 7.10 Continued

<tr>

<td class='label'>is:</td>

<td class='content'>";

foreach($g_categories as $name => $info){

$pageOutput .= "

<div class='category'>

<img class='categoryImg'

src='".LOCAL_APP_URL."/img/{$info['bigimg']}'/>

{$info['title']}

<input type='radio' name='category' value='$name' />

</div>";

}

$pageOutput .= "

</td>

</tr>

<tr>

<td class='label'>because:</td>

<td class='content'>

<input class='textInput' name='compliment' />

</td>

</tr>

</table>

<input class='inputbutton' type='submit' name='submitCompliment'

value='Send Compliment' />

</form>

</div>";

echo $pageOutput;

}

All output from this function is stored in a local variable, $pageOutput, which is
echoed out at the end of the function.The first thing this function does is include the
main.css and ie.css external CSS files using our versioning function.We build the
URL for the file using the LOCAL_APP_URL constant defined in globals.inc. Notice that
this is the Canvas Callback URL on your web server, and not the Canvas Page URL.
Make sure that you always use full paths for all URLs on your server, or Facebook ignores
them when it parses the page content.

Next, the page title is set to “Send a Compliment” using the <fb:title> FBML tag.
You have to use this for FBML pages, because they have no access to the <head> tags.
Facebook automatically prefaces the page title with “<application name> on Facebook
|”.A nice banner image with the application name is set for the top of the page.

The form submit handler is next, but before looking at it, skip forward to the “Show
the compliment form” comment.The code below that creates the form.The form uses
the <fb:friend-selector> FBML tag to display an autocomplete control with all the
user’s friends.This simple tag does a lot of work under the hood, as we see when we try

ptg

119Creating the Compliments FBML Canvas Page

to replicate its functionality in an IFrame.Table 7.2 shows the attributes used for this tag
and their descriptions.The compliment types are output as radio buttons, containing the
compliment title and picture, and the user can enter a reason for the compliment in a
text input.

The form POSTs back to itself, and the handler looks for the target and compliment
variables. If any are empty, an error appears with the <fb:error> FBML tag, which is one
of the three status message tags Facebook provides to match its styles.The <fb:error> tag
renders its content inside a pink box, <fb:explanation> renders a white box, and
<fb:success> renders a yellow box.All three tags support a <fb:message> subtag, which
renders a bold header.

If no error occurs, the picture and name of the recipient is shown using the
<fb:profile-pic> and <fb:name> tags. Notice how both tags save our page from having
to make the API call to user_getInfo() to get the data needed for display.We simply
pass the user ID, and Facebook does all the work.Table 7.3 shows the attributes for
<fb:profile-pic>.The callback handler also creates an instance of the DB class and calls
addCompliment() to put the compliment information in the database for use in later
chapters.

Table 7.2 <fb:friend-selector> Attributes

Attribute Name Type Details

uid int The user whose friends you can select from, defaulting
to the logged-in user’s ID.

name string The name of this element on the form, defaulting to
friend_selector_name.

idname string The name of a hidden element that is created on the
form containing the ID of the selected friend. The name
of this element defaults to friend_selector_id.

include_me bool Toggle to include the logged-in user in the list of selec-
table friends, defaulting to false.

exclude_ids array A comma-separated list of user IDs to exclude from the
list of selectable friends.

include_lists bool Toggle to include a user’s friend lists in the selection op-
tions, defaulting to false.

Table 7.3 <fb:profile-pic> Attributes

Attribute Name Type Details

uid int Required. The ID of the user or Public Profile whose
picture is to be displayed. You can also pass
loggedinuser on a canvas page to use the ID of
the currently logged-in user.

ptg

Attribute Name Type Details

size string The size of the image, defaulting to thumb. This
can be
n thumb (50px wide)
n small (100px wide)
n normal (200px wide)
n square (50px by 50px)

This size is overridden if the width or height

attributes are set.

- string The width to set the image to.

height string The height to set the image to.

linked bool Toggle to link the image to the user’s profile, de-
faulting to true.

facebook-logo bool For Facebook Connect, toggle to overlay the
Facebook favicon over the image, defaulting to
false.

The form uses a few CSS styles, so add the contents of Listing 7.11 to the main.css

and Listing 7.12 to ie.css.There is a clearfix class added to both files that allows ele-
ments to clear their own floats. For more detail on this technique, see www.darowski.com/
tracesofinspiration/2008/11/14/my-favorite-css-techniques/.

Listing 7.11 main.css: Common Styles

/*General Page styles*/

.banner { height:90px; width:100%; margin: 0 0 10px; }

.panel { text-align:center; background-color:#F7F7F7;

border-top:1px solid #CCCCCC; padding:10px 0;

width:100%; }

#complimentTable { width:500px; margin: 5px auto; }

#complimentTable .label{ width: 100px; vertical-align:middle; }

#complimentTable .textInput { width: 400px; }

#complimentTable .inputtext { width:400px; }

.categories { padding-bottom: 5px; }

.category { float:left; width:100px; height:75px; text-align:center;

margin:8px 15px; }

.category .categoryImg { width:48px; height:48px; }

.category .categoryTitle { height:20px; font-weight:bold; }

.clearfix:after { content: "."; display: block; height: 0; clear: both;

visibility: hidden; }

120 Chapter 7 Building the Canvas

Table 7.3 Continued

ptg

121Creating the Compliments IFrame Canvas Page

Listing 7.12 ie.css: Internet Explorer–Specific Styles

.clearfix { height: 1%; }

Give this new FBML canvas page a try in your browser. Make sure that the friend se-
lector works and that submitting the form updates the database and displays the results.
The page should look similar to what’s shown in Figure 7.1.

Creating the Compliments IFrame Canvas Page
The FBML page was relatively easy: Facebook did most of the work for us using the
FBML tags.The IFrame page has to use the Facebook API and some JavaScript to accom-
plish the same thing.

Loading the IFrame Canvas Page
There are two ways to get an IFrame page loaded in an application whose type is set to
FBML.The best way is to append fb_force_mode=iframe to the end of the URL.This
causes Facebook to load its outer chrome and create an IFrame with the src set to
your URL.

The second way is to create an FBML canvas page and use the <fb:iframe> tag to
create your own IFrame to hold your page.This method is slower, because Facebook
must load both your FBML and IFrame canvas pages.

We use the fb_force_mode way for the Compliments application.

Figure 7.1 Compliments application FBML canvas page

ptg

122 Chapter 7 Building the Canvas

Adding the Send Compliment Form
Let’s create a second page called index_iframe.php and put it in your application root.
Add the code from Listing 7.13 into this file. It is the same as index.php, except for the
renderPage() function.

Listing 7.13 index_iframe.php: IFrame Canvas Page

<?php

require_once 'inc/globals.inc';

require_once 'inc/utils.inc';

require_once 'inc/db.inc';

// Comment out before deploying

//dumpRequestVars(true, basename(__FILE__));

$facebook = new Facebook(FB_API_KEY, FB_APP_SECRET);

if (isset($facebook->fb_params['authorized'])) {

// do new user initialization

} else if (isset($facebook->fb_params['uninstall'])) {

// do user cleanup

} else {

if (!$facebook->api_client->added) {

// handle non-app users by giving them a link to add the application

echo "<p>Hello, non-app user!</p>

get_add_url() . "'>

Click here to add this application.";

} else {

renderPage();

}

}

/** outputs the page content **/

function renderPage() {

global $facebook;

global $g_categories;

// include the external stylesheet and create the header

$pageOutput = "

<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.0 Strict//EN'

'http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd'>

<html xmlns='http://www.w3.org/1999/xhtml' xml:lang='en'>

<head>

<title>Send a Compliment</title>

<link rel='stylesheet' type='text/css'

href='".LOCAL_APP_URL.getFileVer("/css/main.css")."' />

<link rel='stylesheet' type='text/css'

ptg

123Creating the Compliments IFrame Canvas Page

Listing 7.13 Continued

href='".LOCAL_APP_URL.getFileVer("/css/iframe.css")."' />

<!—[if IE]>

<link rel='stylesheet' type='text/css'

href='".LOCAL_APP_URL.getFileVer("/css/ie.css")."' />

<![endif]—>

<!— YUI files —>

<link rel='stylesheet' type='text/css'

href='http://yui.yahooapis.com/combo?2.7.0/build/autocomplete/assets/skins/sam/aut
ocomplete.css'>

<script type='text/javascript'

src='http://yui.yahooapis.com/combo?2.7.0/build/yahoo-dom-event/yahoo-dom-

event.js&2.7.0/build/datasource/datasource-min.js&2.7.0/build/autocomplete/auto-
complete-

min.js'></script>

</head>

<body>

<div class='banner'

style='background: url(".LOCAL_APP_URL."/img/banner.png) no-repeat;' >

</div>

<div class='tabs clearfix'>

<ul class='tabList'>

Send(FBML)

<li class='selected'>

<a href='".LOCAL_APP_URL."/index_iframe.php?fb_force_mode=iframe&".

getFBQueryString($_GET) ."' target='iframe_canvas'>Send(IFrame)

</div>";

// Handle the form submit

if (isset($_POST['submitCompliment'])) {

$target = isset($_POST['target']) ? $_POST['target'] : "";

$compliment = isset($_POST['compliment']) ? $_POST['compliment'] : "";

$category = isset($_POST['category']) ? $_POST['category'] : "";

if (strlen($target) == 0 || strlen($compliment) == 0 ||

strlen($category) == 0) {

// Output the error

$pageOutput.= "

<div class='error'>

<h1>Sending the Compliment failed!</h1>

<p> Please check that the form is filled out correctly</p>

</div>";

} else {

// Add the compliment to the database

$db = new DB();

$db->addCompliment($facebook->user, $target, $category, $compliment);

ptg

124 Chapter 7 Building the Canvas

Listing 7.13 Continued

// Output the results

$userInfo = $facebook->api_client->users_getInfo($target,

array('name', 'pic_square'));

$pageOutput.= "

<div class='success'>

<h1>Your Compliment to {$userInfo[0]['name']} was sent.</h1>

<img class='categoryImg'

src='".LOCAL_APP_URL."/img/{$g_categories[$category]['bigimg']}'/>

{$userInfo[0]['name']}

is {$g_categories[$category]['title']} because \"$compliment\"

</div>";

}

}

// Show the compliment form

$pageOutput .= "

<div class='panel'>

<form method='POST' id='complimentform' >

<h1>Select one of your friends and enter your compliment.</h1>

<table id='complimentTable'>

<tr>

<td class='label'>Your Friend:</td>

<td class='content yui-skin-sam'>

<div id='autocomplete'>

<input id='name' />

<div id='result'></div>

</div>

</td>

</tr>

<tr>

<td class='label'>is:</td>

<td class='content'>

<div class='categories clearfix'>";

foreach($g_categories as $name => $info){

$pageOutput .= "

<div class='category'>

<img class='categoryImg'

src='".LOCAL_APP_URL."/img/".$info['bigimg']."'/>

<div class='categoryTitle'>{$info['title']}</div>

<input type='radio' name='category' value='$name' />

</div>";

}

$pageOutput .= "

</div>

ptg

125Creating the Compliments IFrame Canvas Page

Listing 7.13 Continued

</tr>

<tr>

<td class='label'>because:</td>

<td class='content'>

<input class='textInput' name='compliment'/></td>

</tr>

</table>

<input id='target' name='target' type='hidden'>

<input id='submitbtn' class='inputbutton' type='submit'

name='submitCompliment' value='Send Compliment' />

</form>

</div>";

$pageOutput .= getTypeAheadControl();

$pageOutput .= "

</body>

</html>

";

echo $pageOutput;

}

/** returns HTML for the typeahead control**/

function getTypeAheadControl() {

global $facebook;

// Create the JavaScript array of friend info

$friendInfo = $facebook->api_client->users_getInfo(

$facebook->api_client->friends_get(), array('name', 'uid', 'affiliations'));

$typeAheadData = array();

foreach($friendInfo as $friend) {

$data = array();

$data[] = $friend['name'];

$data[] = $friend['uid'];

$data[] = isset($friend['affiliations'][0]) ?

"({$friend['affiliations'][0]['name']})" : "";

$typeAheadData[] = $data;

unset($data);

}

$typeAheadData = json_encode($typeAheadData);

$output = "

<script>

YAHOO.util.Event.onDOMReady(init);

ptg

126 Chapter 7 Building the Canvas

Listing 7.13 Continued

function init() {

var dsLocalArray = new YAHOO.util.LocalDataSource($typeAheadData);

dsLocalArray.responseSchema = {fields:['name', 'uid', 'network']};

var targetTypeAhead = new YAHOO.widget.AutoComplete('name','result',

dsLocalArray);

targetTypeAhead.useShadow = true;

targetTypeAhead.forceSelection = true

targetTypeAhead.resultTypeList = false;

var target = YAHOO.util.Dom.get('target');

var onSelect = function(sType, aArgs) {

target.value = aArgs[2].uid;

};

targetTypeAhead.itemSelectEvent.subscribe(onSelect);

targetTypeAhead.formatResult =

function(oResultData, sQuery, sResultMatch) {

var aMarkup = ' \

<div>' + oResultData.name + '</div> \

<div class=\'network\'> \

<small>' + oResultData.network + '</small> \

</div>';

return (aMarkup);

}

}

</script>

";

return $output;

}

?>

Before we go into the details of the function, let’s look at what is passed to the page
now that it is an IFrame. Clear the contents of your log and load the new page in your
browser.Your log should now contain something like what is shown in Listing 7.14.

Listing 7.14 Dump of IFrame Canvas POST and GET Variables

(12-07-09, 12:45:47): [index_iframe.php]

GET length: 15

fb_force_mode ==> 'iframe'

fb_sig_in_iframe ==> '1'

fb_sig_locale ==> 'en_US'

fb_sig_in_new_facebook ==> '1'

fb_sig_time ==> '1247373951.9121'

fb_sig_added ==> '1'

fb_sig_profile_update_time ==> '1241522567'

fb_sig_expires ==> '1247461200'

ptg

127Creating the Compliments IFrame Canvas Page

Listing 7.14 Continued

fb_sig_user ==> '698700806'

fb_sig_session_key ==> '2.9sPGpoCtcYN7gRRENVmQ_g__.86400.1247461200-698700806'

fb_sig_ss ==> 'DLbQloNc714MyBVKce8n1g__'

fb_sig_ext_perms ==> 'auto_publish_recent_activity'

fb_sig_api_key ==> '52bcc10ac263e1d0d2645182e01e0c99'

fb_sig_app_id ==> '195482325614'

fb_sig ==> 'e256a4605755282ae7637df819fb43a1'

POST length: 0

COOKIE length: 4

52bcc10ac263e1d0d2645182e01e0c99_user ==> '698700806'

52bcc10ac263e1d0d2645182e01e0c99_session_key ==>
'2.9sPGpoCtcYN7gRRENVmQ_g__.86400.1247461200-698700806'

52bcc10ac263e1d0d2645182e01e0c99_expires ==> '1247461200'

52bcc10ac263e1d0d2645182e01e0c99 ==> '7161f5158008087d02c9a6d8161050e6'

Notice that these are now GET variables instead of POST variables.The Facebook PHP
client library class handles this for you, putting them all into its $fb_params member.The
fb_sig_in_canvas variable has changed to fb_sig_in_iframe. fb_sig_friends is no
longer passed, so we have to use the API to get this information. Finally, note that Face-
book now saves session information as cookies for use by the Facebook JavaScript Client
Library and Facebook Connect.

Let’s go through the renderPage() function.This version includes an additional CSS
file with styles for IFrame-specific overrides. Create iframe.css in the css directory and
add the styles from Listing 7.15 into it.

Listing 7.15 iframe.css: Style Overrides for the IFrame Canvas Page

/*Styles to emulate Facebook*/

body { font-size:11px; font-family:'lucida grande',tahoma,verdana,arial,sans-
serif;}

h1 {font-size:14px; color:#333333; margin:0; padding:0;font-weight:bold;}

td { font-size:11px; text-align:left;}

.inputbutton { background-color:#3B5998;

border-color:#D9DFEA #0E1F5B #0E1F5B #D9DFEA; border-style:solid;

border-width:1px; color:#FFFFFF; padding:2px 15px 3px;

text-align:center; font-size:11px;

}

.error { background-color:#FFEBE8; border:1px solid #DD3C10; margin:0 0 10px;

padding:10px; }

.success { background-color:#FFF9D7; border:1px solid #E2C822; margin:0 0 10px;

padding:10px; }

/*IFrame tabs*/

.tabs { padding-left:10px; }

ptg

128 Chapter 7 Building the Canvas

Listing 7.15 Continued

.tabList { list-style-image:none; list-style-position:outside;

list-style-type:none; margin:0px; padding:0px; }

.tabList li { display:inline; background-color:#F1F1F1; }

.tabList li a { display:inline-block; padding:3px 8px; text-decoration:none;

color:#000000; background-color:#F1F1F1; font-weight:bold;

margin:0px -2px; border:1px solid #898989;}

.tabList li a.selected:hover {text-decoration:none;}

.tabList .selected a { background-color:#6D84B4; color:#FFFFFF;}

/*YUI autocomplete*/

#autocomplete { padding-bottom:2em; } /*Add to prevent collapse into next div*/

.yui-skin-sam .yui-ac-content .network { color:#95A5C6; }

.yui-skin-sam .yui-ac-content li{ border-top:1px solid #DDDDDD; padding:3px; }

.yui-skin-sam .yui-ac-content li.yui-ac-highlight { background:#3B5998; }

To emulate the <fb:friend-selector>, we use the YUI JavaScript libraries.The CSS
and JavaScript files are included and referenced from their server.We will go over how we
emulate <fb-friend-selector> after we discuss the rest of the function.

After the form is submitted and the data is verified, we want to display the results to
the user. However, we no longer have access to the FBML tags for name and picture. So,
we must call users_getInfo(), passing the Facebook user ID of the target and a list of
the fields we want—name and picture.After we have that information, it is simple to
show the image and name of the target.

Building the form is more complex.We need to get the names, primary network, and
ID for all the user’s friends to display in the AutoComplete field.We call
users_getInfo() again, this time passing the results of a call to friends_get() and our
list of desired fields.That gives us all the information we need to show the list.

The code for the YUI AutoComplete control is contained in the
getTypeAheadControl() function.This control requires a LocalDataSource, which
needs to be initialized with a multidimensional array of our data.We iterate through the
data we got back from users_getInfo() and create the JavaScript array.The <div> with
ID autocomplete contains the elements the control needs to work.The containing <td>
has the class yui_skin_sam, which enables skinning of the control using the Yahoo CSS
file included at the top of the function.

The <script> block sets up the YUI control.We write out the JavaScript array as a
parameter to the LocalDataSource constructor.We describe the data schema and pass
that information to the AutoComplete constructor, telling it to display the name field.
Two custom function overrides exist.The first overrides the selection event and stores the
Facebook user ID for the selected user in the hidden form input target.The second
does custom HTML formatting for the AutoComplete list, so that we can show the pri-
mary network below the username.

As you can see, this required much more work than the FBML version for the same
functionality.Thankfully, there are external JavaScript libraries to help with this effort, and

ptg

129Using Tabs for Multiple Pages

the Facebook JavaScript Client Library (which Chapter 12 covers) can allow you to use
the FBML controls in your IFrame.

Using Tabs for Multiple Pages
Now that we have two pages, it makes sense to connect them with a standard Facebook
tab control.We do this differently for the FBML and IFrame pages, because Facebook
provides a nice set of tags for FBML, and we have to roll our own for the IFrame.

Listing 7.16 shows the code for the FBML tabs.Add the lines in bold just after the
banner <div> in renderPage() in index.php.The URLs should be located on Facebook
instead of on our server.

Listing 7.16 index.php: Tabs for the FBML Canvas Page

<div class='banner'

style='background: url(".LOCAL_APP_URL."/img/banner.png) no-repeat;' />

<fb:tabs>

<fb:tab-item href='".FB_APP_URL."/' title='Send(FBML)' selected='true'/>

<fb:tab-item href='".FB_APP_URL."/index_iframe.php?fb_force_mode=iframe'

title='Send(IFrame)' />

</fb:tabs>";

Listing 7.17 shows how to do the tabs for the IFrame.We don’t want to load the entire
page again—just the IFrame src—to take advantage of the speed increase.We have to
pass along all the fb_sig variables that our current IFrame was passed to keep the session
information intact.Add the lines in bold just after the banner <div> in renderPage() in
index_iframe.php. Listing 7.18 contains a new function, getFBQueryString(), to put
into utils.inc that gathers up all the fb_sig variables and creates a query string out of
them.We then append that to the end of the URL for the IFrame tab.

Listing 7.17 index_iframe.php: Tabs for the IFrame Canvas Page

<div class='banner'

style='background: url(".LOCAL_APP_URL."/img/banner.png) no-repeat;' >

</div>

<div class='tabs clearfix'>

<ul class='tabList'>

Send(FBML)

<li class='selected'>

<a href='".LOCAL_APP_URL."/index_iframe.php?fb_force_mode=iframe&".

getFBQueryString($_GET) ."' target='iframe_canvas'>Send(IFrame)

</div>";

ptg

130 Chapter 7 Building the Canvas

Listing 7.18 utils.inc: getFBQueryString Function

function getFBQueryString($array) {

$fbParams = array();

foreach ($array as $key => $value) {

if (strpos($key, "fb_sig_") === 0) {

$fbParams[$key] = $value;

}

}

if (isset($_GET['fb_sig'])) {

$fbParams['fb_sig'] = $_GET['fb_sig'];

}

$fbQueryString = http_build_query($fbParams);

return $fbQueryString;

}

Test out the IFrame canvas page and the tabs in your browser.The page should look
similar to what’s shown in Figure 7.2.

Figure 7.2 Compliments application IFrame canvas page

ptg

131Summary

Summary
This chapter talked about the differences between FBML and IFrame canvas pages and
built one of each. Here are some key points:

n FBML canvas pages offer simplicity and access to the Facebook look and feel via
FBML tags, but at the cost of more limitations when using JavaScript and other
HTML tags.

n IFrame canvas pages are flexible and allow the reuse of existing full-featured con-
tent, but they require extra work to emulate the functionality that Facebook users
are accustomed to having.The Facebook JavaScript Client Library can enable
IFrame canvas pages to incorporate those Facebook-specific tags.

n FBML tags perform a lot of the work for you, replacing API calls to fetch user in-
formation, pictures, and more. Using these tags can save development time and
make canvas pages load faster.

n The fb_force_mode query parameter allows applications to set a canvas page to a
specific type, regardless of what the overall application type is set to.This is the best
way to mix IFrame canvas pages into an FBML application.

n Using the <fb:tab> tag on FBML canvas pages and custom tabs on IFrame canvas
pages can make navigating through an application’s features intuitive and reduce
loading times by only rendering what is needed.

ptg

This page intentionally left blank

ptg

8
Updating the Profile

Although Facebook has shifted to the stream as the source of what a user is doing, the
profile still provides a snapshot into who a user is and what she finds important.Applications
can supply profile boxes, application tabs, and info sections that add to this information.

This chapter goes over the constraints and benefits of each profile box type and then
shows how to create and update them.The Compliments application will be updated to
use each profile feature.We also discuss how to use manage the Facebook cache for Face-
book Markup Language (FBML) and images.

Profile Boxes
As discussed in Chapter 1,“Facebook Applications:The Basics,” there are three kinds of
profile boxes: Main,Wide, and Narrow. Main profile boxes appear on the left of the Wall
and Info tabs of the profile, and they are limited to 184px wide × 250px high. Only four
of these profile boxes can appear at a time; as additional boxes are added, the oldest ones
are moved to the Boxes tab. Narrow and Wide profile boxes appear on the Boxes tab.The
Narrow and Wide designation is for on which side of the page they appear.The left side
is Wide, with a width of 380px.The right side is Narrow, with a width of 184px. Both
sides have no height limit. Figure 8.1 shows the various profile box sizes.

Users can move a profile box between the Wall and Boxes tabs by clicking the blue
pencil in the top-right corner of the profile box and clicking Move to X Tab. Users move
a box between the Wide and Narrow sides of the Boxes tab by dragging and dropping it.
Content inside a <fb:narrow> tag only shows up when the profile box is on the Narrow
side, while content in a <fb:wide> tag only shows up on the Wide side.A good profile
box should support all these locations by displaying content formatted appropriately for
the context.

All profile boxes are FBML based. However, Facebook specifically disallows profiles
from using IFrames and from anything automatically playing, such as Flash or JavaScript.
Users must first interact with the profile content before it can become active.

Profile box content is set by the application using the profile.setFBML() application
programming interface (API) call. Listing 8.1 shows a sample call. Notice that the Main

ptg

134 Chapter 8 Updating the Profile

380px

184px

250px

184px

Figure 8.1 Size constraints of the different profile
boxes

profile box FBML is passed separately from the Narrow and Wide FBML.The $markup
and $profileAction parameters have been deprecated, so NULL should always be passed
for these.Table 8.1 shows the parameters of the PHP Client Library’s
profile_setFBML().

Table 8.1 profile_setFBML() Parameters

Parameter Name Type Details

markup string Deprecated. Always pass NULL.

uid int The user ID for the user or Public Profile to update, de-
faulting to the current user.

profile string The FBML for the profile box on the Boxes tab.

profile_action string Deprecated. Always pass NULL.

mobile_profile string The FBML that appears on http://m.facebook.com.

profile_main string The FBML that appears on the Wall tab, called the Main
profile box.

ptg

135Profile Boxes

Listing 8.1 Example of Setting the Profile FBML

$markup = NULL;

$mainFBML = "Appears on Wall tab";

$profileFBML = "

<fb:narrow>Appears on narrow side</fb:narrow>

<fb:wide>Appears on wide side</fb:wide>";

$mobileFBML = "

<fb:mobile>Appears on m.facebook.com</fb:mobile>";

$profileAction = NULL;

$facebook = new Facebook(FB_API_KEY, FB_APP_SECRET);

$facebook->api_client->profile_setFBML($markup, $appUserID, $profileFBML,

$profileAction, $mobileFBML, $mainFBML);

Creating the Compliments Profile Boxes
We will update the Compliments application to use all the profile boxes and then go
through each part of the changes.The Compliments profile boxes let viewers send the
owner a compliment.When the user clicks the Send button, he is taken to the application
canvas page to see that his compliment has been sent. Figures 8.2 and 8.3 show the Main
profile and Wide profile boxes.

The first step is to add a call to a new function, updateProfileBox(), to index.php
and index_iframe.php.Add the following line just before renderPage():

updateProfileBox($facebook->user);

Figure 8.2 Compliments Main profile box

ptg

Figure 8.3 Compliments Wide profile box

Defining the Profile Box Utility Functions
Next, create a new file called profile.inc in the inc directory, and add the source from
Listing 8.2 into it.This file contains all the code relating to creating profile content and
updating it on Facebook.Add the following line to the top of index.php and
index_iframe.php to include this new file:

require_once 'inc/profile.inc';

Listing 8.2 profile.inc: Profile Box Utility Functions

<?php

/** Updates the profile box for a user with the latest content for that user **/

function updateProfileBox($appUserID){

$facebook = new Facebook(FB_API_KEY, FB_APP_SECRET);

$generatedProfileFBML = generateProfileBoxFBML($appUserID);

$profileFBML = $generatedProfileFBML['profile'];

$mainFBML = $generatedProfileFBML['main'];

try {

$facebook->api_client->profile_setFBML(NULL, $appUserID, $profileFBML,

NULL, NULL, $mainFBML);

} catch (Exception $ex) {

wr("<Exception: uid: $appUserID - " . $ex->getMessage() . ">");

return false;

}

return true;

}

/** Generates the profile box FBML for a user */

function generateProfileBoxFBML($appUserID) {

global $g_categories;

136 Chapter 8 Updating the Profile

ptg

137Profile Boxes

Listing 8.2 Continued

// include our external stylesheet

$styles = htmlentities(file_get_contents(LOCAL_APP_DIR.'/css/profile.css'),

true);

$headerBlock = "

<style>

$styles

</style>

<fb:subtitle>

<fb:action href='".FB_APP_URL."'>Send a Compliment to a Friend</fb:action>

</fb:subtitle>";

$categories = "";

foreach($g_categories as $name => $info){

$categories .="

<div class='category'>

<img class='categoryImg' title='{$info['title']}'

src='".LOCAL_APP_URL."/img/".$info['smallimg']."'/>

<div class='categoryTitle'>{$info['title']}</div>

<input type='radio' name='category' value='$name' />

</div>";

}

$formBlock = "

<div class='sendCompliment'>

Send me a compliment

<form method='POST' id='complimentForm' action='".FB_APP_URL."/' >

<div class='categories'>

$categories

<div style='clear:both;'></div>

</div>

<input type='hidden' name='target' value='$appUserID'/>

<input class='textInput' name='compliment'/>

<input class='inputbutton' type='submit' name='submitCompliment'

value='Send'>

</form>

</div>";

$wideContent = "

<fb:wide>

<div class='wide'>

<div class='profileContent'>

$formBlock

</div>

</div>

ptg

Listing 8.2 Continued

</fb:wide>";

$narrowContent = "

<fb:narrow>

<div class='narrow'>

<div class='profileContent'>

$formBlock

</div>

</div>

</fb:narrow>";

$mainContent = "

<div class='main'>

<div class='profileContent'>

$formBlock

</div>

</div>";

$profileText['profile'] = $headerBlock . $wideContent . $narrowContent;

$profileText['main'] = $headerBlock . $mainContent;

return $profileText;

}

?>

The updateProfileBox() function calls generateProfileBoxFBML()to create the
FBML for the various profile boxes. It then sends that FBML to profile_setFBML(),
passing NULL for the unused parameters. In general, it is a good idea to put calls to the
Facebook API inside exception handlers. Sometimes, the Facebook servers can be down
for a period of time, and it is better to fail gracefully than have the application die.We
display this as an example for this function, but eliminate it in future listings for clarity.

generateProfileBoxFBML() creates all the FBML for the profile boxes.The first thing
it does is include a style sheet specifically for the profile. Unfortunately, Facebook does
not support external style sheets on profiles, so we use PHP to put it into a <style>
block as part of the FBML.

A header block is created that uses the <fb:subtitle> tag.This tag adds text to the
top left of the profile box.You might often see this in applications saying Displaying 10 of
100 Items. It takes an optional seeallurl parameter that adds a See All link to the top
right of the box. <fb:subtitle> also supports <fb:action> child tags.These add links at
the top right of the box for various actions the user can take. Compliments uses this tag
to add a Send a Compliment to a Friend link.

Next, we iterate through the $g_compliments array to generate the set of radio but-
tons for compliment categories from which the user can choose.This works the same way

138 Chapter 8 Updating the Profile

ptg

139Profile Boxes

as it did on the canvas page, where it is placed into a form block. Notice that the hidden
input for the target is set to the profile owner’s user ID.When the form is submitted, the
user is redirected to the canvas page to see that her compliment was sent successfully. In
Chapter 11,“FBJS, Mock AJAX, and Flash,” we use Facebook JavaScript (FBJS) to handle
this right on the profile box.

Because each profile box context has different size constraints, we create a separate
block for Wide, Narrow, and Main. Each block has a <div> at the top with a class set for
the type of block.We use this class in the style sheet to manage the styling for each set of
context.The Narrow and Wide blocks enclose their code in <fb:narrow> and
<fb:wide> tags.

An important thing to know about these two tags is that they are not just processing
comments, but they create full blocks, as if they were <div>s. Listing 8.3 shows an exam-
ple of how these tags close off blocks of FBML.

Listing 8.3 Not Using Full Blocks with <fb:wide> and <fb:narrow>

// Block 1: goal of starting a div with a different header for

// narrow and wide boxes

<fb:narrow>

<div class='header'>

</fb:narrow>

<fb:wide>

<div class='header'>

</fb:wide>

</div>

// Block 2: this ends up being the equivalent of

<div class='narrow'>

<div class='header'>

</div>

<div class='wide'>

<div class='header'>

</div>

</div>

// Block 3: It must be done like this instead

<div class='header'>

<fb:narrow>

</fb:narrow>

<fb:wide>

ptg

140 Chapter 8 Updating the Profile

Listing 8.3 Continued

</fb:wide>

</div>

The first block in Listing 8.3 tries to use the <fb:narrow> and <fb:wide> tags to dis-
play the right header image, just by setting part of the header <div>. However, the ren-
dered code ends up working like the second block, where the header <div> is closed by
the end of the narrow section.The correct way to achieve this is to use code like the third
block, which treats the <fb:narrow> and <fb:wide> tags as complete <div> sections.

Styling the Profile Boxes
We need to add the styles for the profile boxes. Create a new file called profile.css in
the css directory and add the source from Listing 8.4 into it.This file sets some base
styles for the profile and then uses overrides to correctly display the content for each pro-
file box context.

Listing 8.4 profile.css: Styles for Use in the Profile Boxes

.profileContent { margin-top:-12px; text-align:center;}

.sendCompliment { text-align:center;}

.sendTitle {font-weight: bold;}

#complimentTable .textInput {width: 200px;}

.categories { padding-bottom: 5px; }

.categoryTitle { height:30px; font-weight:bold; }

.category { float:left; text-align:center; margin:3px; width:43px;

height:65px; padding:5px; }

.categoryImg { width:24px; height:24px;}

.wide .banner { width:380px; height:45px; }

.wide .category { width:108px; }

.wide .categoryTitle { height:20px;}

.narrow .banner { width:193px; height:23px; }

.main .banner { width:193px; height:23px; }

Adding the Profile Boxes
Profile boxes are not automatically created for the user.The user must manually click a
Facebook-provided button to add one to her profile.Thankfully, Facebook also provides a
way to only display this button if the user hasn’t already added the profile box. Figure 8.4
shows what this button looks like.

When a user clicks this button, she is presented with the dialog in Figure 8.5. She can
choose the Wall or Boxes tab as destinations for the profile box. If she clicks Add, she’s

ptg

141Profile Boxes

Figure 8.4 Add to Profile button in the Compliments canvas page
banner

taken to her profile and asked if she wants to Keep or Remove the box. If she chooses
No Thanks, the dialog disappears.

Warning
The Add to Profile button does not appear for a user unless the profile content has already
been set using the profile.setProfileFBML() API method.

Displaying Add to Profile Buttons in FBML Canvas Pages
Displaying the Add to Profile button is simple for an FBML canvas page. Just add the bold
lines in Listing 8.5 to the renderPage() function in index.php, after the banner in the
header block.The <fb:if-section-not-added section='profile'> tag tells Facebook
to only render the inside FBML if the user hasn’t added the profile box yet.This can be
useful if your application wants to offer additional text about why the user should add the

Figure 8.5 Dialog that appears when a user clicks
the Add to Profile button

ptg

142 Chapter 8 Updating the Profile

profile box that would only be shown when the profile box hasn’t been added. <fb:add-
section-button section='profile' /> renders the actual button.This is all enclosed
in a <div> so that we can position it where we want on the page using CSS.

Listing 8.5 index.php: FBML for the Add to Profile Button

<div class='banner'

style='background: url(".LOCAL_APP_URL."/img/banner.png) no-repeat;' >

<div id='buttons' class='clearfix' >

<div id='addbutton'>

<fb:if-section-not-added section='profile'>

<fb:add-section-button section='profile' />

</fb:if-section-not-added>

</div>

</div>

</div>

Displaying Add to Profile Buttons in IFrame Canvas Pages
Getting an IFrame version of the Add to Profile button requires more work, because
there is no way to create this button without using FBML. Because IFrames don’t support
FBML, we must use XFBML, which requires the Facebook JavaScript Client Library and
all the supporting code.Although Chapter 12,“Facebook JavaScript Client Library,” dis-
cusses the Facebook JavaScript Client Library, we add the basic setup now to enable the
Add to Profile button.

The first step is to update the Developer Settings for this application. Go to www.
facebook.com/developers/apps.php and click the Edit Settings link for Compliments. Go to
the Connect tab and enter in your Canvas Callback URL into the Connect URL field
and click Save. Next, create a file called xdreceiver.html in your application root direc-
tory, and add the contents of Listing 8.6 into it. Chapter 3,“Platform Architecture
Overview,” covered what this file is used for, but as a refresher, it allows the Facebook
JavaScript Client Library to work around the browser limitation of communicating
between different domains.

Listing 8.6 xdreceiver.html: Cross-Domain Receiver for the Facebook JavaScript
Client Library

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

<title>Cross-Domain Receiver Page</title>

</head>

<body>

<script src="http://static.ak.facebook.com/js/api_lib/v0.4/XdCommReceiver.js?2"

type="text/javascript"></script>

ptg

143Profile Boxes

Listing 8.6 Continued

</body>

</html>

The Facebook JavaScript Client Library can now communicate with our application.
To put the Add to Profile button on the page, we need to create a placeholder <div> that
the Library can use. Add the following bolded lines to the renderPage() function in
index_iframe.php, after the banner in the header block:

<div class='banner'

style='background: url(".LOCAL_APP_URL."/img/banner.png) no-repeat;' >

<div id='buttons' class='clearfix' >

<div id='addbutton'></div>

</div>

</div>

Now, we need to add a script block that loads and initializes the Facebook JavaScript
Client Library and tells it to replace the placeholder <div> with the Add to Profile but-
ton.Add the code in Listing 8.7 to the end of renderPage() in index_iframe.php, just
before the </body> tag.

Listing 8.7 index_iframe.php: Using the Facebook JavaScript Client Library to Show
the Add to Profile Button

$pageOutput .= "

<script

src='http://static.ak.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php'

type='text/javascript'></script>

<script type='text/javascript'>

FB_RequireFeatures(['XFBML'], function() {

FB.Facebook.init('".FB_API_KEY."', 'xdreceiver.html', null);

FB.Connect.showAddSectionButton('profile',

document.getElementById('addbutton'));

FB.Connect.showAddSectionButton('info',

document.getElementById('infobutton'));

});

</script>

</body>

</html>

";

This loads the Facebook JavaScript Client Library, requiring that it loads all the neces-
sary parts to display XFBML. It initializes it with the application API key and the location
of the xdreceiver.html file, relative to the root. It then calls showAddSectionButton()
with the placeholder <div>.As with all XFBML, this code runs on the client, so there
might be a slight delay as the library renders the new button HTML. Chapter 12 details
how the Facebook JavaScript Client Library works.

ptg

144 Chapter 8 Updating the Profile

It is time to test the profile boxes. Go to your application and click the Add to Profile
button on either the FBML or IFrame tab. Click Add, which takes you to your profile.
Click Keep to accept the new profile box.Try moving it from the Wall to the Boxes tab
and from the Narrow to the Wide side. See how the layout changes with each location.

Application Tabs
Application tabs are a way for applications to display profile content in a much larger
space.They behave mostly like profile boxes, but are 760px wide.Application tabs are
populated via a callback instead of presetting the content once via profile.setFBML().
This callback is used the first time a user goes to that tab on his profile.As long as he is
still on his profile, switching back to that tab uses a cached version.

When an application supports an application tab, the user can click the + at the right
side of his profile tab list and select it from a list to add the tab.The name of the tab is
limited to 11 characters, and it can be different than the application name.

To allow users to add an application tab, you need to update the Developer Settings.
Go to the Profiles tab and fill in Compliments for the Tab Name and apptab.php for the
Tab URL.Then, create a new file called apptab.php in the application root directory and
add the contents of Listing 8.8.This file is the handler for the application tab callback and
reuses functionality from profile.inc to help generate the FBML.

Listing 8.8 apptab.php: Callback Handler for Displaying the Application Tab

<?php

require_once dirname(__FILE__).'/inc/globals.inc';

require_once dirname(__FILE__).'/inc/db.inc';

require_once dirname(__FILE__).'/inc/utils.inc';

require_once dirname(__FILE__).'/inc/profile.inc';

dumpRequestVars(true, basename(__FILE__));

$facebook = new Facebook(FB_API_KEY, FB_APP_SECRET);

$generatedProfileFBML = generateProfileBoxFBML($facebook->profile_user);

$appTabFBML = $generatedProfileFBML['tab'];

echo $appTabFBML;

?>

This code calls the generateProfileBoxFBML() function to get the FBML for the tab
and then echoes it out.We need to update profile.inc with the content of Listing 8.9
to add the tab specific content.Add the $appTabHeaderBlock section just after the
$headerBlock in the file and add the $tabContent section after $mainContent.

ptg

145Application Info Sections

Listing 8.9 Application Tab Updates for profile.inc

$appTabHeaderBlock = "

<style>

$styles

</style>

<div class='subtitle'>

Send a Compliment to a Friend

</div>";

$tabContent = "

<div class='tab'>

<div class='profileContent'>

$formBlock

</div>

</div>";

$profileText['tab'] = $appTabHeaderBlock . $tabContent;

Application tabs do not support the <fb:subtitle> tag we used for the profile boxes,
so we need to manually create the link.We also need a larger banner image, so we will
use the same one as the canvas page. Just like the other profile boxes, we enclose the
FBML in a <div> with the class tab so that we can apply custom styles.Add the styles in
Listing 8.10 to profile.css.

Listing 8.10 Application Tab Updates for profile.css

.tab .banner { width:760px; height:90px; }

.tab .sendTitle {font-size:20px; }

.tab .category { width:108px; }

.tab .categoryTitle { height:15px; }

.tab .textInput { width: 400px; }

.tab .profileContent { text-align:right; margin:0px;}

.subtitle { text-align:right; border-bottom:1px solid #ECEFF5; color:#444444;

margin:0px 0px 5px 0px; padding:2px 8px; }

Test out the tab by going to your profile, clicking the + next to your tabs and selecting
Compliments.You should see what is shown in Figure 8.6.

Application Info Sections
Application info sections appear on the user’s Info tab on his profile. Info sections come
in two formats:Text and Object.Text info sections consist of several text fields and values,
while Object info sections can contain images and descriptions.To see a Text info section,

ptg

146 Chapter 8 Updating the Profile

Figure 8.6 Compliments application tab

Applications create these info sections in a similar way to profile content. First, the user
must click an Add to Info button in the application. Next, the application must call the
profile.setInfo() API method, passing in the info section data.This data is then
cached until the application calls this API function again.Table 8.2 shows the parameters
of the PHP client library’s profile_setInfo() method.

The Compliments application adds an Object info section containing the latest com-
pliments that the user has received. It updates this info section each time the user visits

Table 8.2 profile_setInfo() Parameters

Parameter Name Type Details

title string Title for the info section.

type int Either 1 for a Text info section or 5 for an Object info
section.

info_fields array The array of data to put in the info section. Each da-
tum consists of the following:
n field: Name of the info field.
n info-items array, with each info-item

composed of a label, link, and, optionally,
an image, description, and sublabel.

uid int The user ID adding the info section.

look at your own profile’s Info tab.All the information that Facebook displays there uses
Text info sections.

ptg

147Application Info Sections

the application.The implementation for this mirrors what we did for the profile boxes.
Figure 8.7 shows what the user sees on the Info tab.

Getting the Compliments Data
As each user sends a compliment, we store it in the database.We need to get the last five
compliments received for our info section, so add the getComplimentsForUser() func-
tion from Listing 8.11 into db.inc to fetch that data.This function returns the result as an
associative array keyed by the compliment sender’s Facebook user ID.

Listing 8.11 db.inc: getComplimentsForUser() Function

/** returns the latest compliments for a user **/

function getComplimentsForUser($appUserID) {

$appUserID = $this->real_escape_string($appUserID);

$count = 5;

$query = "SELECT DISTINCT * from compliments WHERE targetID = $appUserID

ORDER BY complimentTime LIMIT $count";

$result = $this->_execQuery($query);

$output = array();

if ($result) {

while ($row = $result->fetch_assoc()) {

$output[$row['appUserID']] = $row;

}

$result->close();

}

return $output;

}

Field Image Subtitle Description

Label and Link

Figure 8.7 Compliments info section with labels for
each field of the info-item

ptg

148 Chapter 8 Updating the Profile

Creating the Info Section
Now that we have the data, we need to display it.Add a call to a new function,
updateInfoSection(), to index.php and index_iframe.php, just after
updateProfileBox():

updateInfoSection($facebook->user);

Next, create a new file called info.inc in the inc directory, and add the source from
Listing 8.12 into it.This file contains all the code needed to create the content for our
info sections and update them on Facebook.Add this line to the top of index.php and
index_iframe.php to include this new file:

require_once 'inc/info.inc';

Listing 8.12 info.inc: Info Section Utility Functions

<?php

function updateInfoSection($appUserID) {

global $g_categories;

$db = new DB();

$infoData = $db->getComplimentsForUser($appUserID);

$facebook = new Facebook(FB_API_KEY, FB_APP_SECRET);

// Get all the complimentor's names from Facebook

$uids = array_keys($infoData);

$uids[] = $facebook->user;

$users = array();

$userNames = $facebook->api_client->users_getInfo($uids, 'name');

foreach ($userNames as $user) {

$users[$user['uid']] = $user['name'];

}

// Display the latest compliments received

$complimentInfoFields = array();

foreach($infoData as $compliment) {

$complimentInfoFields[] = array(

'label'=> $users[$compliment["targetID"]].' is '.

$g_categories[$compliment["category"]]["title"],

'image' => LOCAL_APP_URL."/img/".

$g_categories[$compliment["category"]]["bigimg"],

'sublabel' => 'Sent by '.$users[$compliment["appUserID"]],

'description'=> 'because '.$compliment["compliment"],

'link'=> FB_APP_URL);

}

$infoFields = array(

ptg

149Application Info Sections

Listing 8.12 Continued

array('field' => 'Compliments Received', 'items' => $complimentInfoFields)

);

// Update the info section

$facebook->api_client->profile_setInfo('Compliments', 5, $infoFields,

$appUserID);

}

?>

updateInfoSection() gets the last set of compliments the user has received from the
database using getComplimentsForUser().This is returned as an associative array keyed
by user IDs.We need to display the name of each user who sent a compliment. Unfortu-
nately, info sections do not support FBML tags, so we can’t use a simple tag, such as
<fb:name uid='xxxxxxx' />, to do the work for us. Instead, we call users_getInfo()
to get the names for each sender, passing in the list of user IDs.We now can create a map-
ping of the user IDs to names in $users.

We loop through each of the compliments, and create an array of info-item objects.
Each object must contain a label and link, and can optionally include a subtitle, image,
and description.That array of objects is enclosed in another array of fields; our Compli-
ments application might add another field called Compliments Sent and include a set of
info-item objects for that.

Finally, we call profile_setInfo(), passing in a title for our info section, the type of
info section, our array of data, and the user ID for which to create the info section.We are
using an Object info section, so we pass 5 for the type.

Adding Info Section Buttons
Just like the Add to Profile buttons, we need to update our canvas pages to display the
Facebook-provided Add to Info button. For the FBML canvas page, add the following
code under the addbutton <div> in index.php:

<div id='infobutton'>

<fb:if-section-not-added section='info'>

<fb:add-section-button section='info' />

</fb:if-section-not-added>

</div>

For the IFrame, add the following line for the new infobutton placeholder <div> af-
ter the addbutton placeholder <div> in index_iframe.php:

<div id='infobutton'></div>

Add this line after the showAddSectionButton() call for the Profile button in
index_iframe.php:

FB.Connect.showAddSectionButton('info',document.getElementById('infobutton'));

ptg

150 Chapter 8 Updating the Profile

Finally, add the following line to main.css to position the button in the banner:

#infobutton { position:absolute; top:48px; right:33px; }

You should now be able to go to your canvas page and click the Add to Info button. It
should take you to your Info tab, where you see a new info section for Compliments.

Allowing Users to Update Info Sections
Applications can also allow users to edit info sections from the Info tab by calling
profile.setInfoOptions() with an array of possible values for one of the fields. If you
put a callback handler in the Information Update Callback URL in the Developer Set-
tings, your application can be notified when a user updates this information. Listing 8.13
shows sample code for implementing this functionality, and Figure 8.8 shows what a user
editing the options sees.

Listing 8.13 Example of Allowing Users to Edit an Info Section

// Create an info section for My Favorite Compliment Type

$favoriteComplimentTypes = array(

array('field' => 'My Favorite Compliment Type',

'items' => array(

array('label'=> 'A Great Cook',

'description'=> 'I love to cook and it shows',

'link'=> 'http//apps.facebook.com/compliments/'

)

)

)

);

$facebook->api_client->profile_setInfo('Compliments', 5,

$favoriteComplimentTypes, $appUserID);

// Submit the editable options for Compliment Type

$complimentTypes = array(

array(

'label'=> 'A Great Cook',

Figure 8.8 Editing an info section

ptg

151Working with Facebook’s Caching

Listing 8.13 Continued

'description'=> 'I love to cook and it shows',

'link'=> 'http//apps.facebook.com/compliments/'),

array(

'label'=> 'Full of Life',

'description'=> 'I have a zest for living',

'link'=> 'http//apps.facebook.com/compliments/'),

array(

'label'=> 'Magic',

'description'=> 'I make things happen for people',

'link'=> 'http//apps.facebook.com/compliments/'),

);

// The first parameter must match the name of one of the 'fields' passed in

// the setInfo call above

$facebook->api_client->profile_setInfoOptions('My Favorite Compliment Type',

$complimentTypes);

Working with Facebook’s Caching
After the content of a profile box or info section is set, Facebook caches it until the time
the application updates it. Facebook not only caches the FBML for profiles, but also the
images. But, there are times when you might want to manage the cache yourself, either to
refresh your images or to cache common sections of FBML.

Refreshing the Image Cache
Facebook’s image caching is great news for your servers, because each image is only
loaded from your servers once. However, if you ever update an image, Facebook contin-
ues to supply the cached version. It is also possible that Facebook might fail to success-
fully load the image, because of an error on your server, and the cache might be empty.
Images stay in Facebook’s cache as long as they are being used.After a period of disuse,
Facebook might drop them from the cache and reload them from your server the next
time a user accesses them.This means that it is possible for an image that appears now to
disappear later, if an error occurs.

You can manually update the cached version of an image by passing the absolute URL
to the image on your server to fbml_refreshImgSrc(), like this:

$facebook->api_client->fbml_refreshImgSrc("http://server.com/img.jpg");

Facebook refetches the image from your server and adjusts the src attribute for
tags, referencing it to something like this:

http://platform.ak.facebook.com/www.new/app_full_proxy.php?app=195482325614&v=
➥1&size=p&cksum=b30fbadecf8274988ca7e5f2d5bbcade&src=http%3A%2F%2Fserver.com
%3A85%2Fimg.jpg

ptg

152 Chapter 8 Updating the Profile

Managing the FBML Cache
FBML for profile boxes are cached “forever.” For applications with completely static con-
tent, this might be fine. Updating a user’s profile boxes when he accesses the application
might make sense most of the time; it allows the profile boxes to reflect the most current
information. However, there are times when you want to update many of your users’ pro-
file boxes at once.This might be because of a general style change or there might be a
content change that applies to a large set of users.

It is simple to set up a server-side cron job to iterate through all the application’s users
and call profile.setFBML() for them. However, as the number of users increases, this
can take longer and longer to accomplish, and eventually be unmanageable.Thankfully, a
better solution uses Facebook itself to update all the profile boxes for you.

The <fb:ref> FBML tag can mark blocks of FBML that can be updated across many
profiles with a single call.There are two ways to use this tag: by URL and by Handle.
They both can achieve the same result, but one might fit better with your application de-
sign than the other. Specifying a URL tells Facebook to call that URL to get the new
content when the cache is being refreshed, while specifying a Handle lets your applica-
tion directly pass the new FBML content.You can also nest <fb:ref> tags, but only the
content of the Handle or URL specified is updated.

Listing 8.14 shows how an application might use <fb:ref> with a Handle.You create
a block of FBML and pass it to fbml.setRefHandle() with a unique Handle identifier.
Then, use <fb:ref handle='youridentifier'/> in your profile FBML content wher-
ever you want that block of FBML to appear and pass it to profile.setFBML(). From
then on, your application can just call fbml.setRefHandle() with new FBML to update
all profiles that contain that Handle to use the new content. Only the section in the Han-
dle is updated.

Listing 8.14 Using <fb:ref> with a Handle

//Store the FBML in a handle

$commonFBML = "<div>Today's temperature is 60 degrees F</div>";

$facebook->api_client->fbml_setRefHandle("temp", $commonFBML);

$profileFBML = "

<div>

<h1>Today's weather</h1>

<fb:ref handle='temp'/>

</div>";

$facebook->api_client->profile_setFBML(NULL, $appUserID, $profileFBML,

NULL, NULL, NULL);

Listing 8.15 shows how to accomplish the same thing using a URL. In this case, you
don’t set cache the FBML ahead of time, but instead, you supply a callback URL from
which the FBML can be retrieved.To update it, call fbml.refreshRefUrl() passing the

ptg

153Working with Facebook’s Caching

URL.The callback should just return the FBML, and is only called one time, not once
per profile updated.

Listing 8.15 Using <fb:ref> with a URL

$profileFBML = "

<div>

<h1>Today's weather</h1>

<fb:ref url='http://server.com/getweather.php'/>

</div>";

$facebook->api_client->profile_setFBML(NULL, $appUserID, $profileFBML,

NULL, NULL, NULL);

$facebook->api_client->fbml_refreshRefUrl("http://server.com/getweather.php");

In Compliments, we might want to update the list of available categories to all of our
users at once.This is a great use for <fb:ref>. Listing 8.16 shows how to modify the
code for $formBlock in the renderPage() function in profile.inc to use <fb:ref> for
the categories list.

Listing 8.16 profile.inc: Example of Using <fb:ref> for the Compliment
Categories

$formBlock = "

<div class='sendCompliment'>

Send me a compliment

<form method='POST' id='complimentForm' action='".FB_APP_URL."/'>

<div class='categories'>

<fb:ref handle='profileCategories'/>

</div>

<input type='hidden' name='target' value='$appUserID'/>

<input class='textInput' name='compliment'/>

<input class='inputbutton' type='submit' name='submitCompliment'

value='Send'>

</form>

</div>";

Listing 8.17 shows a new updateCategoriesRef() function that generates the FBML
for the categories and stores it in a <fb:ref> handle.

Listing 8.17 updateCategoriesRef() Function for profile.inc

/** Update the facebook cache for the categories FBML */

function updateCategoriesRef(){

global $g_categories;

$facebook = new Facebook(FB_API_KEY, FB_APP_SECRET);

ptg

154 Chapter 8 Updating the Profile

Listing 8.17 Continued

$categories = "";

foreach($g_categories as $name => $info){

$categories .="

<div class='category'>

<img class='categoryImg' title='{$info['title']}'

src='".LOCAL_APP_URL."/img/".$info['smallimg']."'/>

<div class='categoryTitle'>{$info['title']}</div>

<input type='radio' name='category' value='$name' />

</div>";

}

$categories .= "<div style='clear:both;'></div>";

// Store in a ref handle so we can easily update the categories for everyone

$facebook->api_client->fbml_setRefHandle("profileCategories", $categories);

}

We just need to call updateCategoriesRef() whenever we update the
$g_categories list in globals.inc to update all of our users’ profiles.

Summary
This chapter talked about the profile boxes, application tabs, and info sections, as well as
how to manage the Facebook cache. Here are some key points:

n Facebook has three different types of profile boxes, each with their own dimen-
sions.Applications need to support each type of box with content that fits appro-
priately and serves a useful purpose.This content is preset via an API call and
cached by Facebook forever.

n Profile boxes and info sections are not added automatically but must be done as a
manual step by users by clicking an FBML button. IFrame canvas pages must use
XFBML to display the Add to Profile and Add to Info buttons.

n Application tabs provide applications with a canvas-size surface on the user’s profile.
The content is pulled from a callback rather than preset via an API call.Application
tabs can only use FBML.

n Info sections let applications add additional information to users’ Info tabs on their
profile.Text and images can be displayed.Applications can also allow users to edit
this information right from the Info tab.

n Facebook caches images in FBML.Applications can update this cache for an image
using fbml_refreshImgSrc().

n Applications can cache and update specific blocks of FBML using <fb:ref>. Either
a handle or an URL can be used as a unique identifier. Updating a cached block
updates it across all profiles that use that <fb:ref> identifier.

ptg

9
Feed Stories, Feed Forms, and

Templates

How an application communicates with its users and their friends is undoubtedly one
of the most important contributors to its ultimate success or failure. Since the Platform’s
launch, Facebook has significantly changed how applications can use the available chan-
nels to correspond with their users. Mastering these channels in a way that makes an
application more noticeable without becoming a nuisance to the Facebook population is
paramount.

This chapter presents the groundwork of the communication options Facebook pro-
vides for applications to interact with their users. It covers the creation and publishing of
Feed stories, different ways of getting stories published to the stream, and the manage-
ment of story template bundles using both Facebook tools and the application program-
ming interface (API).To increase its level of engagement, the sample application is
updated to use the new features presented.

Using Feed Forms and Templates
Facebook Feed forms are one the most important and frequently used methods of pub-
lishing content to Facebook.They come in two different types, which the following sec-
tions cover.To use them, however, you need to clearly understand the creation and
management of Feed templates and how they are used in the story-creation process. Feed
forms and templates are one of the more complex topics that this book covers, but they
are critical to understanding how to get great application content from an application
into the stream.

Introducing Feed Forms
Let’s start by looking at how to create our first control that can submit Feed stories to the
stream. Listing 9.1 is exactly like the code from Chapter 8,“Updating the Profile,” except

ptg

156 Chapter 9 Feed Stories, Feed Forms, and Templates

that the form tag has some new attributes, and we added a label to the Submit button.
Facebook requires the Submit button on Feed forms to have a label or Facebook fails to
correctly parse the page as FBML.This is all a developer needs to do to convert a normal
HTML form into an FBML Feed form.

Listing 9.1 index.php Converting an HTML Form to a Facebook Feed Form

<form method='POST' fbtype='multiFeedStory' id='complimentform'

action='".LOCAL_APP_URL."feed_form_callback.php' >

<h1>Select one of your friends and enter your compliment.</h1>

// rest of form elided for clarity...

<input class='inputbutton' type='submit' name='submitCompliment'

label='Send Compliment' value='Send Compliment'/>

</form>

The first change mandated by Facebook is that Feed forms have an action attribute set
to an absolute URL. It’s been set to the full URL of a new file, feed_form_callback.php.
The most important change is the addition of the fbtype attribute to the form tag.This
indicator tells Facebook to treat this form as a Feed form and publish its data to the
stream. Later in this section, you write the code for the feed_form_callback.php script.

Currently, Facebook provides two flavors of Feed forms: feedStory and multiFeed-
Story. Both allow the publishing of content to the stream.Although there are only minor
syntactic differences between them, their behaviors are completely different.

The feedStory form is created by setting the form’s fbtype attribute to feedStory. It
publishes content to the current user’s Wall and their friends’ News Feeds.

The multiFeedStory Feed form is created by setting fbtype to multiFeedStory. Unlike
the feedStory form, it publishes to both the Wall of the current user and one of his
friends.The multiFeedStory form also requires that an FBML <fb:friend-selector>

tag be placed on the form to allow the user to choose to which of their friends’Walls
they want to publish content.The multiFeedStory form only publishes to a single friend’s
Wall—targeting multiple friends is not supported.

For Compliments, it makes sense to use the multiFeedStory form because the applica-
tion is designed to send compliments to the user’s friends.When a user submits the form,
a story containing the compliment is published to the Wall of the friend he typed in the
<fb:friend-selector> control.

An <fb:friend-selector> tag already exists in your form’s code, but you need to re-
move its idname attribute and the hidden input control that it populates (it follows the
closing </table> tag):

<input type='hidden' name='target'>

ptg

157Using Feed Forms and Templates

Figure 9.1 Erroneous error shown when the idname
attribute is present in a multiFeedStory forms and

friends have been selected

Facebook requires that all Feed forms use the default value for the idname attribute of
the <fb:friend-selector>. If you don’t remove the idname attribute, you receive an er-
roneous error dialog, like the one shown in Figure 9.1, when you submit, saying that you
must select some friends, even though you have done so.This is currently a bug with the
Facebook Platform, and it might be fixed by the time you read this.

Now, you will remove the code that handles the form post from index.php and move
it to a new script, feed_form_callback.php. Save it in the same location as index.php.
Separating our form-processing logic from its presentation makes the code easier to un-
derstand and maintain.Add the code from Listing 9.2 to feed_form_callback.php.

Listing 9.2 feed_form_callback.php: Handling Form POSTs

<?php

require_once 'inc/globals.inc';

require_once 'inc/utils.inc';

require_once 'inc/profile.inc';

require_once 'inc/db.inc';

dumpRequestVars(basename(__FILE__), true);

// Handle the form submit

if (isset($_POST['friend_selector_id']) && isset($_POST['method']) &&

isset($_POST['compliment']) && isset($_POST['category'])) {

$target = $_POST['friend_selector_id'];

$feedFormType = $_POST['method'];

$compliment = $_POST['compliment'];

$category = $_POST['category'];

$facebook = new Facebook(FB_API_KEY, FB_APP_SECRET);

$db = new DB();

$db->addCompliment($facebook->user, $target, $category, $compliment);

updateProfileBox($facebook->user);

updateInfoSection($facebook->user);

// Output the results

$pageOutput = "

<fb:success>

ptg

158 Chapter 9 Feed Stories, Feed Forms, and Templates

Figure 9.2 You receive an invalid JSON response er-
ror when attempting to submit your form.

Listing 9.2 Continued

<fb:message>Your Compliment to <fb:name uid='$target'/> was
sent.</fb:message>

<fb:profile-pic uid='$target'/>

<img class='catImg'

src='".LOCAL_APP_URL."/img/".$g_categories[$category]['bigimg']."'/>

<fb:name uid='$target' linked='false'/> is

{$g_categories[$category]['title']} because \"$compliment\"

</fb:success>";

} else {

// Output the error

$pageOutput = "

<fb:error>

<fb:message>Sending the Compliment failed!</fb:message>

Please check that the form is filled out correctly

</fb:error>";

}

echo($pageOutput);

?>

Now, it’s time to test your new Feed form implementation. Navigate to your applica-
tion’s Canvas Page URL (http://apps.facebook.com/<appname>/) and fill out all the form’s
fields. Click the Send Compliment button.You should receive a cryptic error message simi-
lar to the one shown in Figure 9.2, which says something about an invalid JSON response.

Feed Templates
The reason why Facebook raises the error shown in Figure 9.2 is because it requires more
information about what content it should actually publish to the target friend’s Wall. It
just has a set of data posted by what it thinks is a multiFeedStory form, and that data is
missing something. It turns out that Facebook requires three more things in order to
publish a Feed story. It needs a “template” to tell it how to render the data in the story,
custom data provided by the application to fill in that template, and some code to tell it
where to take the submitting user after the story is published.

ptg

159Using Feed Forms and Templates

All feed stories are constructed from groups of templates that a developer registers for
an application.Templates are strings constructed from a set of tokens, text, and potentially
some FBML.Templates groups are called bundles. Each bundle contains the following: a
required template for a one line Feed story, an optional template for a short Feed story,
and optionally, one or more templates for action links that will be appended to each story
type. Here’s an example of a one line story template:

{*actor*} sent {*target*} a compliment.

Note
Chapter 1, “Facebook Applications: The Basics,” covered the basics of one line and short
Feed stories. Later in this section, you are introduced to action links.

As the name implies, one line stories should get their point across in one line.They can
contain only text and links. Short stories have both a title and a body, which allows them
to provide a more information than one line stories.They can contain images, Flash, mp3,
or video content. Short stories make up the core of the Facebook stream, and it’s critical
that you understand how to enable your applications to produce and publish them.

Tokens
Tokens are placeholders in templates that Facebook replaces with content before it pub-
lishes a story to the stream.All tokens must start and end with curly braces and asterisks.
Facebook provides two standard tokens—{*actor*} and {*target*}—which it replaces
with the user who published the story and the user to whom the story is targeted, respec-
tively. Facebook actually replaces these tokens with a user’s name hyperlinked to his Face-
book profile. Facebook also reserves four tokens that it uses to render graphical and
multimedia content in short Feed stories: {*images*}, {*flash*}, {*mp3*}, and
{*video*}.

Developers can also provide their own custom tokens. For example, the Compliments
application could provide a {*compliment*} token, which can be replaced with the con-
tent of the compliment a user publishes to a friend’s Wall. If an application registers cus-
tom tokens in a template bundle, it also needs to provide the custom data that Facebook
will use to replace them when a story is submitted.

For the Compliments application, we first use the Feed Template Console to register a
template bundle that consists of a one line story, a short story, and an action link.Then, we
modify the code to publish a short story to a friend’s Wall with an image and an action
link. Next, we demonstrate how to use the Facebook API to automatically publish a one
line Feed story. Finally, we cover how to manage template bundles using the API.

Using the Feed Template Console
To create your first template, you use the Feed Template Console, which Chapter 4,“Plat-
form Developer Tools,” introduced. However, we suggest that, before you start using the
Feed Template Console, you modify one of its features to make the template-creation
process clear.The Feed Template Console is wonderful because it uses the templates and

ptg

160 Chapter 9 Feed Stories, Feed Forms, and Templates

Figure 9.3 Selecting Compliments from the Choose an
Application drop-down list in the Feed Template Console

data you enter to show previews of how a Feed story based on them will appear when it’s
published to the stream.

As part of this process, Facebook replaces a template’s {*target*} tokens with a list of
names of five of your randomly chosen friends.There are three problems with this. First,
the only way to target a single story to multiple users is through the Facebook API (which
you are introduced to in the section,“Using the Facebook API”), not Feed forms.There-
fore, the tool’s behavior might lead you to believe that stories published to the stream
might always target multiple users.This is definitely not true. Second, support for targeting
multiple friends in a single story will very likely be removed in the near future. Finally, if
the current user has less than five friends, Facebook simply ignores the {*target*} token,
removing its content from all previews of the story with no explanation.This can easily be
confusing.

We need to change the behavior of the Feed Template Console so that it replaces the
{*target*} token with the name of a single friend, not a list of five.This requires skip-
ping to the final page of the Feed Template Console’s registration process to replace this
list of friends chosen by Facebook with a single one. Open the Feed Template Console
(http://developer.facebook.com/tools.php?feed). Choose the Compliments application from the
drop-list, as shown in Figure 9.3.

To get to the final page of the Console to fix the {*target*} issue, click the Next
button four times or until the Review and Register page appears.You’re interested in the
first text field, titled Sample Target IDs, as shown in Figure 9.4.

Delete all but one of the values in this list.Then, click the Back button three times or
until the page titled Create a One Line Story template appears, which is discussed in the
next section. Note that these steps do not need to be performed every time you register a
new template, assuming you understand the behavior. But, for purposes of illustration, it
would be confusing to someone new to the template-creation process to understand it.

ptg

161Using Feed Forms and Templates

Figure 9.4 Facebook chooses five random
friends’ user IDs for the Feed Template Console.

One Line Story Templates
The Create a One Line Story template page allows developers to create one line story
templates.As shown in Figure 9.5, the highlighted text field in the top left is prefilled with
a sample one line story template containing

{*actor*} likes one line templates.

Directly to the right of this is the story preview area, which shows a preview of how a
story will appear after it publishes to the stream. Replace the text in the One Line Tem-
plate text field with

{*actor*} used {*app*} to tell {*target*} they are {*ctitle*} because {*ctext*}.

If you click the Update Preview button—which only appears after you edit the text in
the One Line Template field—you receive an error dialog like the one shown in Figure 9.6.
This error is generated because you need to actually provide the template in the Feed
Console with the data it will use to replace your custom tokens.The data you provide in

Figure 9.5 The Feed Template Console allows you to create one line Feed
Templates.

ptg

162 Chapter 9 Feed Stories, Feed Forms, and Templates

Figure 9.6 Error shown when required Feed template
data is missing

this tool is just for testing purposes.Your applications must provide the real data when
Facebook requests it during the Feed form submission process.Test template data is en-
tered in the Sample Template Data section in the lower-left hand side of the page. Face-
book provides you with two images to use in an {*images*} token; however, these are
not supported for inclusion in one line stories, so Facebook ignores them.

JSON and Feed Templates
Template data must be formatted as a JSON object. Token names serve as the object’s
keys, and keys are assigned the values of the content that will replace them when rendered
into the final story:

{“custom_token_name”: value}

The values are usually static text, but they also can contain some HTML and Facebook
Markup Language (FBML). Custom template data can only use a few HTML and FBML
tags. Both one line and short stories’ custom template data can use the <a> HTML tag,
and short stories can additionally include the <small>,
, and <i> tags. Both story
types are allowed to use <fb:name>, <fb:pronoun>, and <fb:ref> FBML tags.We’ve cov-
ered all these except the last one; however, Facebook is apparently deprecating its support
for targeting multiple users with a single Feed story, and the <fb:if-multiple-actors>
tag is used only in this context. For both custom tokens, you provide sample data that ren-
ders links back to the application’s canvas page. It’s good practice to place at least a few
links in your stories to the page that allows users to authorize your application! In the
Sample Template Data field, replace anything already there with the following JSON, or
something similar, substituting your own valid values:

{

"app":"<a href='http://apps.facebook.com/<appname>/' >

Compliments",

"ctitle": "A Great Cook",

"ctext":"their tripe is the best!"

}

ptg

163Using Feed Forms and Templates

Creating and Editing Template Data
You might find it easier to generate template data in an external text editor and copy it into
this field, because hand-coding JSON objects in this small text area can be difficult, espe-
cially when dealing with differences between single and double quotes. In fact, it’s a best
practice to keep a text file with both your templates and sample template data handy so you
can easily copy and paste them into the Feed Template Console for testing without having to
retype them. This also makes testing different messaging much easier.

Several free JSON editors are available online that make the process easier. Check out this
book’s companion website (www.essentialfacebook.com) for suggestions.

Click the Preview button, and a one line story should be rendered in the preview area
on the right. Facebook automatically handles filling in the {*actor*} token with a link
to your profile and the {*target*} token with the name of the friend whose ID you en-
tered.Your story should look similar to what’s shown in Figure 9.7.

Short Story Templates
Facebook does not require an application to register a short story template; however, be-
cause one line stories are only sent to the Recent Activity section of users’Walls, as shown
in Figure 9.8, their visibility in the social graph is somewhat limited.To reach as many
users as possible, applications must be sure to get their Feed stories into the News Feed
on the Home pages of the application user’s friends, and the only way an application can
do this is through publishing short stories.

To create a short story template, click Next in the Feed Template Console.The Create
a Short Story template page appears. Notice that images show up in the preview area and
that the story includes a profile picture of the sending user.Also, the story body is larger
and contains multiple lines of text.

For the title, use the following template:

{*actor*} sent {*target*} a compliment with {*app*}!

For the template body, use this:

{*actor*} thinks {*target*} is {*ctitle*} because {*ctext*}

Now, add an image to your story. It’s important to understand that you cannot add the
{*images*} token to your sample data or template, because it is reserved by Facebook

Figure 9.7 The Feed Template Console displays a preview of one line Feed
stories.

ptg

164 Chapter 9 Feed Stories, Feed Forms, and Templates

Figure 9.8 Here is the recent activity section on the author’s Wall. All one
line feed stories end up here.

{

"app":

"<a href='http://example.com/<appname>/'>Compliments",

"ctitle": "A Great Cook",

"ctext":"their tripe is the best!",

"images":

}

Click Update Preview to verify the new template and data.You should see something
similar to what’s shown in Figure 9.9.

If you want to add multiple images to your template data, simply add more entries to
the images array, which ensures that each object has a valid src and href property. For
example:

"images":

Facebook allows a limited number of images to be included in an individual short
story template, depending on their size. Facebook scales images to fit, but you need to
create images that follow Facebook guidelines and aim to make them between 100 and
130 pixels wide and (at most) 100 pixels high.This ensures that they are clearly visible in
the story and cuts down on the processing time the Facebook servers must use to scale

and handled specially.The {*images*} token is different from {*actor*} and {*token*}

in that it is never used by template creators, only internally by Facebook.You just need to
provide an images entry in your template data and, when your application submits the
template data to Facebook, and it will automatically handle rendering of the images using
the {*images*} token. Image data must be encoded in the template data as a JSON ob-
ject with a key named images and a value that’s an array of JSON objects, each of which
contains a src and an href property.The src property must contain the absolute path to
the image.The href property is the link where the viewer of the story should be taken if
she clicks the image.Adding some sample template data with the images filled in makes it
easier to understand:

ptg

165Using Feed Forms and Templates

Figure 9.9 The Feed Template Console allows you to create and preview
Feed short stories.

Facebook also allows mp3 audio, Flash content, or videos to be included in short sto-
ries.As was the case with the {*images*} token, the {*mp3*}, {*flash*}, and
{*video*} tokens are also not directly used. If an entry exists in the template data for
more than one of the media types, Facebook will only use the data for one of them, in
the following order of preference: Image data will always be used if present, followed by
Flash, then mp3, and finally, video.

As an exercise, place a video in your Feed story template data to see how it works.To
add video content, two pieces of information are required: the URL of the video and the
absolute path to a preview image, which Facebook displays as a placeholder until the
video Play button is clicked.The reason for the preview image is that Facebook does not
allow videos (or Flash content) to play automatically when rendered in the stream or on
users’ profiles. Users must click the video content to actually play it. Note that the pre-
view image does not have to be the same size as the video. Facebook expands the video
to fit as best it can to fill the story body so the content can be viewed.To add a video, re-
move the images object from the sample template data and replace it with the following:

"video":{

"video_src":"http://www.youtube.com/watch?v=Izhh-JDigX4",

them, if needed. Be aware that, the more images custom template data contains, the
longer it takes Facebook to process and display the Feed form dialog to the user. Be
mindful of the fact that it can be several long seconds before image-heavy Feed stories
completely render, and your application’s users might abandon it if the wait time is too
long! Also, it’s critical to note that Facebook forbids the use of any images hosted on
Facebook, including users’ profile pictures, in your short stories. Storing profile pictures is
against the Facebook Terms of Service, so copying to and serving them from your own
web server is not a legal option to circumvent this restriction.

ptg

166 Chapter 9 Feed Stories, Feed Forms, and Templates

"preview_img":"http://s3.ytimg.com/vi/Izhh-JDigX4/default.jpg"

}

Click the Update Preview button. Rendered in a Feed form, it looks similar to what is
shown in Figure 9.10 and Figure 9.11. Feel free to experiment with the other media
types as you see fit.

Action Links
Next, you add an action link to your template.Action links are rendered as links at the
end of the Feed story content, and they direct viewers to take some action as a direct re-
sult of reading the story. Click Next on the Feed Template Console page to see the Create

Figure 9.10 Example of video embedded in a
Feed story

Figure 9.11 Clicking a video to play it within a story ex-
pands it to a viewable size.

ptg

167Using Feed Forms and Templates

an Action Link page. For the Action Link Text, enter something that starts with an action
verb and entices viewers to use the Compliments application (for example, SubmitYour
Own Compliment!) For the URL, enter the application’s URL on Facebook. Click the
Update Preview button, and you see both the one line and short stories rendered with
the new action links, as shown in Figure 9.12.You can only enter a single action link us-
ing the Feed Template Console. However, by using the API, you can enter more than one.

Registering Templates
Clicking Next on the Feed Template Console brings up the Review and Register page
for your template. Notice the Sample General Body text area below the Sample Target
IDs text box (discussed earlier).A short story template’s general body text allows you to
add more content to a Feed story.The content added here follows the rest of the text in
the story, but before the action link; it is subject to the same content restrictions as the
rest of the short story.You can enter a good deal of content here, but make sure that what
you provide in your stories’ content is relevant and interesting or viewers will not act on
them—or worse, they might specifically hide or block them.

Click the Register Template Bundle button to register your template with Facebook.
A popup like the one shown in Figure 9.13 appears. It’s important to copy the Feed Tem-
plate Bundle ID somewhere for safe keeping. Facebook needs this ID to replace the to-
kens in the template bundle with the custom data an application provides. If you misplace
or forget it, you can always retrieve it by going to the Registered Templates Console.You
should go there now to view your newly registered template bundle. Choose the applica-
tion from the drop-down list; it should look similar to what’s shown in Figure 9.14.

You can follow this process as many times as you like to create different stories. Face-
book allows each application to register up to 100 templates, so you have plenty of room
to create engaging content.Well-constructed Feed stories should describe a single event
that happened between the target user and some specific action he performed in the con-
text of the application that published the story. If possible, Feed stories should provide
other media, such as images, audio, or video that reinforces the action explained in the
story.When building them, avoid relative measures of time when describing actions (such

Figure 9.12 The Feed Template Console shows
a preview of the placement of action links in your

one line and short stories.

ptg

168 Chapter 9 Feed Stories, Feed Forms, and Templates

Figure 9.13 Note the Template Bundle ID. You’ll
need it shortly.

Figure 9.14 Use the Registered Templates Console to view your new tem-
plate and get its ID, if needed.

Using Feed Forms to Publish to the Stream
Now that you saved your template and have its ID saved, you need to update the code in
feed_form_callback.php to use it to publish a short story. Give it a meaningful name
that describes what the template bundle is used for in your application. Open
globals.inc and add to it the following line of code, replacing the following number
with the ID you saved:

define('TEMPLATE_BUNDLE_MULTIFEEDSTORY', 12312312312);

Save globals.inc. Listing 9.3 shows the updated code for submitting the Feed story.

Listing 9.3 feed_form_callback.php: Handling Submission of a MultiFeedStory
Feed Form

<?php

require_once 'inc/globals.inc';

require_once 'inc/utils.inc';

require_once 'inc/db.inc';

as the following adverbs: just, recently, or frequently), because they have no meaning in
the time context of the stream:You have no control over when target users will read or
see them. Short stories must not duplicate information in their titles and bodies. One line
stories should get their point across in a single line of text, if possible.

ptg

169Using Feed Forms and Templates

Listing 9.3 Continued

require_once 'inc/profile.inc';

dumpRequestVars(true, basename(__FILE__));

if (isset($_POST['friend_selector_id']) && isset($_POST['method']) &&

isset($_POST['compliment']) && isset($_POST['category'])) {

$target = $_POST['friend_selector_id'];

$feedFormType = $_POST['method'];

$compliment = $_POST['compliment'];

$category = $_POST['category'];

$facebook = new Facebook(FB_API_KEY, FB_APP_SECRET);

$db = new DB();

$sender = $facebook->user;

$db->addCompliment($sender, $target, $category, $compliment);

updateProfileBox($sender);

updateInfoSection($facebook->user);

// start filling in our template

$categoryInfo = $g_categories[$category];

$imageSrc = LOCAL_APP_URL.'/img/'.$ categoryInfo ['bigimg'];

$imageLink = LOCAL_APP_URL;

$images = array('src'=> $imageSrc, 'href'=> $imageLink);

$feed = array('template_id' => TEMPLATE_BUNDLE_MULTIFEEDSTORY,

'template_data' =>

array('app' => 'Compliments',

'ctitle' => $ categoryInfo ['title'],

'ctext' => $compliment,

'images' => array($images)));

$queryString = "ffh=1&tgt=$target&cat=$category&cpl=".urlencode($compliment);

$data = array('method' => $feedFormType,

'content' => array('feed' => $feed,

'next' => FB_APP_URL."?$queryString"));

} else {

$data = array('errorCode' => FACEBOOK_API_VALIDATION_ERROR,

'errorTitle' => 'Sending the Compliment failed!',

'errorMessage'=> 'Please fill the form out correctly.');

}

// send the data to Facebook

echo json_encode($data);

?>

Using multiFeedStory to Publish to the Wall
The process of publishing a Feed story from a Feed form is comprised of multiple steps.
First, the user submits the form from your application. Facebook intercepts the submis-
sion after recognizing the form data is coming from a multiFeedStory form. It then passes

ptg

170 Chapter 9 Feed Stories, Feed Forms, and Templates

the form data to the URL provided in the form’s action attribute.The code at this end-
point then must print a JSON-encoded object containing the template bundle ID and all
custom data needed to render the Feed story. Facebook waits for the output and uses it to
build the actual Feed story.

Because Facebook accepts only valid JSON as the output from this endpoint, it is im-
portant that your code not print anything else (like debug messages), or you receive an
error like the one that was shown back in Figure 9.2.This also means that you cannot
turn on Facebook’s debug messages on this page, either!

With those steps in mind, refer to Listing 9.3.The real work begins after the call to
updateInfoSection(). Creation of the custom data begins with the following code:

$feed = array('template_id' => TEMPLATE_BUNDLE_MULTIFEEDSTORY,

'template_data' =>

array('app' => 'Compliments',

'ctitle' => $categoryInfo['title'],

'ctext' => $compliment,

'images' => array($images)));

Notice that the code creates an associative array that contains two keys:

n template_id. Set to the template bundle ID
n template_data. Contains an array of the custom template data that is supplied to

Facebook

The names of these two keys cannot be changed. Furthermore, the names of the keys
in the template_data array must match the names of the custom tokens you placed in
your template bundle. Here’s the template for one line stories:

{*actor*} used {*app*} to tell {*target*} they are {*ctitle*} because {*ctext*}

You can see that {*actor*} and {*target*} are not keys in the template_data ar-
ray, as expected. Remember that Facebook automatically replaces {*actor*} with the
user publishing the story and {*target*} with the user chosen in the <fb:friend-se-

lector> control on the form. But, the keys app, ctitle, and ctext are all present, as is
the images token name, even though you did not directly use it while creating the tem-
plate bundle.

The code then builds a query string:

$queryString = "ffh=1&tgt=$target&cat=$category&cpl=".urlencode($compliment);

This string has two purposes. Remember, at the beginning of this chapter, when we
mentioned that Facebook required three things to publish a feed story? The first was a
registered template bundle; second, the data to fill it; and finally, a URL to redirect to after
publishing completes.This string will carry some information to that redirect for further
processing.

Finally, the code constructs the final template bundle package:

$data = array('method' => $feedFormType,// multiFeedStory

ptg

171Using Feed Forms and Templates

'content' => array('feed' => $feed,

'next' => FB_APP_URL."?$queryString"));

This associative array contains two keys.The first, method, tells Facebook which type
of Feed story the data should be used to create.The second, content, contains an associa-
tive array with two members.The feed key contains the entire template data payload.
The next key is set to the redirection URL.You could use next_fbjs in place of the
next key and provide, as its value, arbitrary FBJS to execute when publishing completes.

To complete the process, the array is JSON-encoded and printed:

// send the data to Facebook

echo json_encode($data);

The JSON itself that your application sends back should look similar to what’s
shown in Listing 9.4.The values vary, but the keys—other than the ones representing
your own custom tokens—should not. Listing 9.4 shows a complete JSON object that
Facebook can use to generate a multiFeedStory.

Listing 9.4 Sample JSON Sent to Facebook to Render a multiFeedStory

{

"method":"multiFeedStory",

"content":{

"feed":{

"template_id":123456789,

"template_data":{

"app":"<a
href=\"http:\/\/apps.facebook.com\/<appname>\">Compliments<\/a>",

"ctitle":"A Great Cook",

"ctext":"his tripe is the best!",

"images":[

{

"src":"http:\/\/example.com\/<appname>\/img\/pan_48.png",

"href":"http:\/\/apps.facebook.com\/<appname>/"

}

]

}

},

"next":"http:\/\/apps.facebook.com\/<appname>?ffh=1&tgt=698700806&cat=cook&cpl=

his+tripe+is+the+best%21"

}

}

Now,when you submit the form, you see something like the dialog shown in Figure 9.15.
You can add a comment to the text field and choose to Publish the story, at which point
Facebook publishes it on the target friend’s Wall. Notice that the action links are not

ptg

172 Chapter 9 Feed Stories, Feed Forms, and Templates

rendered in this preview. Facebook automatically adds these, and some other links, to the
story when it’s published. Figure 9.16 shows the final story published to the target friend’s
Wall.As Figure 9.17 shows, Facebook also publishes a one line story to the Recent Activ-
ity section of your Wall.

Using feedStory to Publish to the News Feed
In the last few pages, you have successfully created a multiFeedStory Feed form and had it
publish a short story to a friend’s Wall and a one line story to your Wall. But, something is
obvious.When published, it doesn’t show up in the News Feed on your friends’ Home
pages, and this limits its exposure to a smaller audience. How can you get a Feed story
published to the stream and have it show up in the News Feed?

Figure 9.15 The Facebook Feed story dialog shows a preview of the story
that is about to publish to a friend’s Wall.

Figure 9.16 Short stories created with a
multiFeedStory Feed form show up on the target

friend’s Wall.

ptg

173Using Feed Forms and Templates

Figure 9.17 A one line story is also published to the
user who submits the story.

Enter the feedStory form.As you recall, it allows an application to publish stories to
the Wall of the publisher and their friends’ News Feeds. Let’s get started on providing this
functionality to your application.

First, you need to create a new template and register it with Facebook because stories
created with feedStory forms do not use the {*target*} token.To compensate, you need
to provide something similar to take its place, or it will be replaced with an empty string
in your stories. Let’s test this to understand the behavior. Edit your index.php file and re-
place the multiFeedStory value of the form’s fbtype attribute with the value
feedStory. Save the file and visit the canvas page in the browser.When the form is sub-
mitted, you should see a feed story submission dialog like that in Figure 9.18. Notice that
Facebook leaves the target’s name (where it replaced the {*target*} token in the tem-
plate) blank in the final story.

To rectify this behavior, add a new template.You use the same templates from your
previous effort; however, remove the {*target*} tokens and replace them with a couple
of custom tokens, which you will replace with an <fb:name> FBML tag in the template
data, as shown in Listing 9.5.

Figure 9.18 Notice how Facebook leaves the space
blank where the {*target*} token existed for feedStory

form stories (where the cursor is pointing).

ptg

174 Chapter 9 Feed Stories, Feed Forms, and Templates

Listing 9.5 Modified Templates for Use with feedStory Feed Form

/* One line story template */

{*actor*} used {*app*} to tell {*friend*} they are {*ctitle*} because {*ctext*}

/* Short story template */

// Short story title template

{*actor*} sent {*friend_you*} a compliment with {*app*}!

// Short story body template

{*actor*} thinks {*friend*} is {*ctitle*} because {*ctext*}

/* Sample Template Data */

{

"app":"<a href='http://example.com/<appname>'>Compliments",

"friend_you": "<fb:name uid='xxxxxxxx' useyou='true' />",

"friend": "<fb:name uid='xxxxxxxx' />",

"ctitle": "A Great Cook",

"ctext":"their tripe is the best!",

"images":

}

Remember that feed stories of either type can use the <fb:name> FBML tag.You use
two versions of it in Listing 9.5. First, you use the useyou attribute on the
{*friend_you*} token.The default behavior of this FBML tag renders the pronoun
“you” instead of “User Name” if the person viewing the page is the currently logged-in
user. For the {*friend*} token, you use the <fb:name> tag with its useyou attribute set
to false, which renders the full name of the user, no matter who views the page. Refer
to Listing 9.5, and remember to replace the Facebook user IDs and URLs with your own.

Use the same action link as you did previously. Remember to register your template
and save its ID. Create another entry in globals.inc for the new feedForm template
bundle after the one added for the multiFeedStory, substituting your template bundle’s ID:

define('TEMPLATE_BUNDLE_MULTIFEEDSTORY', 74225284158);

define('TEMPLATE_BUNDLE_FEEDSTORY', 74225289158);

You need to modify feed_form_callback.php to handle the new feedForm data. Re-
place the code that builds the custom template data with the code shown in Listing 9.6.

Listing 9.6 feed_form_callback.php: Modified to Handle Both feedStory and
multiFeedStory Feed Forms

// start filling in our template

$categoryInfo = $g_categories[$category];

$imageSrc = LOCAL_APP_URL.'/img/'.$categoryInfo['bigimg'];

$imageLink = LOCAL_APP_URL;

$images = array('src'=> $imageSrc, 'href'=> $imageLink);

ptg

175Using Feed Forms and Templates

Listing 9.6 Continued

if('multiFeedStory' === $feedFormType) {

$feed = array('template_id' => TEMPLATE_BUNDLE_MULTIFEEDSTORY,

'template_data' =>

array('app' => 'Compliments',

'ctitle' => $categoryInfo['title'],

'ctext' => $compliment,

'images' => array($images)));

} else {

$feed = array('template_id' => TEMPLATE_BUNDLE_FEEDSTORY,

'template_data' =>

array('app' =>

'Compliments',

'friend_you' => "<fb:name uid='$target'
➥useyou='true' />",

'friend' => "<fb:name uid='$target' />",

'ctitle' => $categoryInfo['title'],

'ctext' => $compliment,

'images' => array($images)));

}

Save the code and fill and submit the form. If you do not receive any errors, you see a
short story published to your Wall, like that in Figure 9.19, and a short story published to
your developer (or test user account) friend’s Home page News Feed, as shown in Figure
9.20. Note that the cursor in each figure points to the data that replaced the
{*friend_you*} token.When John views his News Feed, he sees “you” instead of his
name in the title of the short story.When Cappy views his Wall, he sees John’s full name.

To make it easier to test both types of Feed forms, it makes sense to change the code
so that you can test either style at will.We’ll add a request variable to the URL for the
application that allows you to select which type of Feed form to use.Add the following
code to renderPage() in index.php, replacing the original form tag:

$feedFormType = isset($_GET['feedform']) ? $_GET['feedform'] : 'multiFeedStory';

// Show the compliment form

Figure 9.19 feedForm publishes a short story to a friend’s
Home page News Feed. Note the effects of useyou attribute.

ptg

176 Chapter 9 Feed Stories, Feed Forms, and Templates

Figure 9.20 feedForm publishes a short story to the publisher’s Wall.
Note that the useyou attribute has no effect in this case.

$pageOutput .= "

<div class='panel'>

<form method='POST' fbtype='$feedFormType' id='complimentform'

action='".LOCAL_APP_URL."/feed_form_callback.php' >

Now, if you append ?feedform=feedStory to the application URL typed in the ad-
dress bar, the form submits via a feedStory form or uses the multiFeedStory form by
default.

Handling Feed Form Publication Errors
Finally, you need to understand how to tell if a story was published and what happens in
case there’s an error.We discuss the error condition first. Look at the ending else clause
from feed_form_callback.php once more (refer to Listing 9.3):

$data = array('errorCode' => FACEBOOK_API_VALIDATION_ERROR,

'errorTitle' => 'Sending the Compliment failed!',

'errorMessage'=> 'Please fill the form out correctly.');

Remember that, as a user, you never see any output onscreen from the
feed_form_callback.php script. So, what do you do if you encounter an error condi-
tion and want to alert the user? Facebook allows you to pass a JSON-encoded object that
contains an error code, message title, and message body. If Facebook detects this object in
your script’s output, it uses it to populate and show an error dialog, like the one shown in
Figure 9.21. Realize that you can have several error codes and messages depending on the
logic in your script. Notice that the code only does extremely rudimentary validation of
the submitted form data to make the code easy to understand; therefore, only one exam-
ple is provided.A production application would undoubtedly have several to cover differ-
ent error conditions. But, beware: Facebook currently supports only the value 1 for the
errorCode value, although this is not clear from any of the Facebook documentation. If
you want to use a different error code, be sure to include it in the errorTitle or
errorMessage values in the array, or you get an unhelpful error saying,“Missing or

ptg

177Using the Facebook API

invalid ‘feed’ parameter,” not your custom error message. Luckily, the FacebookRestClient
class provides the FACEBOOK_API_VALIDATION_ERROR constant. Use it all the time for the
errorCode value, and you won’t have the problem.

Handling errors in this manner might seem one-sided. Production code would un-
doubtedly have some client-side validation, probably written in JavaScript, to check the
form’s data before allowing the submission. So, why use this method to display an error to
the user? Because Facebook intercepts the form submission before your code ever gets
the chance.This means that client-side code cannot handle the form’s onsubmit event to
execute client-side JavaScript validation. It also means that you cannot dynamically
change the form’s fbtype attribute to different Feed form values, which is why we used
the request string variable.The only place to do Feed form data validation is on the
server, after Facebook sends the posted data back to the URL given in the original form’s
action attribute.

One final, and important, note about the Feed submission process bears mention.Your
code is not notified if the user cancels the story submission (either by clicking the Skip
button or hitting the ESC key when the submission dialog is onscreen.) Unfortunately,
there is also no way for your code to determine whether a user published a story. Face-
book made a conscious decision to disallow this to cut down on applications incenting or
forcing users to publish content and limit the possibility of application spamming or
abuse.The only thing you can know is that the dialog is no longer visible when the ac-
tion that you set in the value of your next or next_fbjs key occurs. Either you are redi-
rected to the URL you set for the value of the next key or the arbitrary FBJS you set for
the next_fbjs key executes.

Using the Facebook API
In previous sections, you created Feed templates and both types of Feed forms and used
them to publish both one line and short stories to the stream on both users’Walls and
News Feeds. But, there was a small catch with Feed forms.Application users had to man-
ually allow stories to be published to the stream on their behalf. If they decided to skip

Figure 9.21 Facebook uses the error data sent to it
by your code to populate this dialog.

ptg

178 Chapter 9 Feed Stories, Feed Forms, and Templates

the publishing step, your application did not publish any Feed stories whatsoever, which
severely limits its potential for growth in the social graph.

Using the API to Publish to the Stream
One way to mitigate this restriction, at least partially, is through the Facebook API. It al-
lows applications to publish one line stories to the Wall of the currently logged-in user
without requiring permission (by default). Stories are automatically posted to the Recent
Activity section on his Wall, without prompting.There are some caveats to understand,
however. First, one line stories only get published to the current user’s Wall, so the user’s
friends never see them in their News Feed.They only see them when they visit the cur-
rent user’s profile. Next, an application can send only a specific number of one line stories
through this API per user, per day.We cover this allocation scheme in Chapter 10,“Pub-
lisher, Notifications, and Requests.” Finally, only one line stories can be published by
default—never short stories.

Using the API to Automatically Publish One Line Feed Stories
Applications can use the API method called feed.publishUserAction() to publish to the
stream (It’s called feed_publishUserAction() in the PHP Library.) Table 9.2 shows its
prototype.

Table 9.2 feed_publishUserAction() Parameters

Parameters (In Order)

Name Type Description

template_bundle_id int The template bundle ID. Required.

template_data object JSON-encoded object containing template
data. Required.

target_ids string Comma-separated list of Facebook user
IDs to replace the {*target*} token if
present in the template.

body_general string Contains extra markup for the body of a
short story (only). Can be directly gener-
ated by an application.

story_size int Size of the story to publish: can be either
1 for oneline stories (the default) or 2 for
short stories. Use the constants from the
Facebook PHP Client Library:
FacebookRestClient::STORY_SIZE_

ONE_LINE or
FacebookRestClient::STORY_SIZE_

SHORT.

ptg

179Using the Facebook API

You are probably already familiar with many of the parameters this API call takes, ex-
cept for the target_ids and user_message parameters.The target_ids parameter is
important because it makes the feed.publishUserAction() API call unique. It provides
the only means in the Facebook Platform for applications to publish stories to multiple
targets at once.The user_message parameter is only used when the API publishes short
stories to the stream.

To automatically publish one line stories, you need to update your code to call
feed_publishUserAction().You could use one of your existing template bundle IDs for
the one required by the API, because both included a one line story. However, because
both Feed form types already publish something to the actor’s Wall, it would be redun-
dant to publish the same one line story twice when a multiFeedStory form was pub-
lished. Let’s create a new template that provides the number of compliments sent to a
given target user.

To get this number, you have to add another method to the DB class.We also append a
suffix to the number to make it an adjective for use in the story (1 becomes “1st,” 3 be-
comes “3rd,” and so on.) Add the code in Listing 9.7 into the DB class in db.inc.

Listing 9.7 db.inc: Adding the getComplimentCountForUser() Function

function getComplimentCountForUser($appUserID) {

$appUserID = $this->real_escape_string($appUserID);

$query = "SELECT COUNT(*) FROM compliments WHERE targetID = $ appUserID ";

$result = $this->_execQuery($query);

$row = $result->fetch_array(MYSQLI_NUM);

return isset($row[0])? $row[0] : 0;

}

This method returns the number of compliments for a given target (represented by a
Facebook user ID). Now, add the code in Listing 9.8 into utils.inc to handle format-
ting this number as an adjective.

Listing 9.8 utils.inc: getAdjectiveSuffixForNumber() Function

function getAdjectiveSuffixForNumber($number) {

if($number == 0) {

return '';

}

$suffixes = array('st', 'nd', 'rd');

$mod = $number % 100;

$ext = 'th';

user_message string Content created by the user that’s submit-
ted with short stories as a comment.
Facebook’s Terms of Service require that
this code be user generated.

Table 9.2 Continued

ptg

180 Chapter 9 Feed Stories, Feed Forms, and Templates

Listing 9.8 Continued

if($mod > 13 || $mod < 11) {

$mod %= 10;

if($mod != 0 && $mod < 4) {

$ext = $suffixes[$mod - 1];

}

}

return $ext;

}

Finally, add the code to call the feed_publishUserAction() PHP Library method.
Add the code from Listing 9.9 to the feed_form_callback.php file right after the code
that sets up the Feed form template data.You also need a new Feed template bundle reg-
istered for your new one line stories.This is referred to as TEMPLATE_BUNDLE_ONELINE_1
in Listing 9.9. Don’t rush to the Feed Template Console to register it, however.We will
register it in a different way than we have in previous templates. It’s shown here for refer-
ence so the following code makes sense:

'{*actor*} just sent {*target*} {*pronoun*} {*count*} {*app*}!'

Listing 9.9 feed_form_callback.php: Calling the feed_publishUserAction()
PHP Library Method

// top of file elided for clarity...

$queryString = "ffh=1&tgt=$target&cat=$category&cpl=".urlencode($compliment);

$data = array('method' => $feedFormType,

'content' => array('feed' => $feed,

'next' => FB_APP_URL."?$queryString"));

// new code follows this point...

$complimentCount = $db->getComplimentCountForUser($target);

$onelinedata = array('pronoun' => "<fb:pronoun uid='$target'
possessive='true'/>",

'count' => "$complimentCount" .

getAdjectiveSuffixForNumber($complimentCount),

'app' => "Compliment ");

$body_general = '';

$user_message = '';

try {

$facebook->api_client->feed_publishUserAction(TEMPLATE_BUNDLE_ONELINE_1,

$onelinedata,

array($target),

$body_general,

FacebookRestClient::STORY_SIZE_ONE_LINE,

$user_message);

} catch(FacebookRestClientException $ex) {

$data = array('errorCode' => FACEBOOK_API_VALIDATION_ERROR,

ptg

181Using the Facebook API

Listing 9.9 Continued

'errorTitle' => 'One line feed story failed!',

'errorMessage'=> 'Code '. $ex->getCode(). ': '.$ex->getMessage());

}

Listing 9.9 calls feed_publishUserAction() with a template bundle ID, the array of
template data, an array of Facebook user IDs, an empty string for both the body_general
and user_message parameters (which are ignored for one line stories anyway), and a
constant to indicate the size of the stories to publish by default. {*actor*} is replaced au-
tomatically as before. {*target*}, however, is not automatically replaced; you need to
provide the value for it in the target_ids parameter. Notice that the code also handles
any Facebook exceptions that might be raised and uses them to fill in the data structure
we’ll echo back to Facebook to display an error dialog. Because we can’t use the excep-
tion’s code as the errorCode, we instead encode it in the errorMessage value.

A common question is,“How can an application user keep my application from send-
ing messages on their behalf?”The answer lies in the application’s user settings, shown in
Figure 9.22. From the Compliments canvas page, hover the mouse cursor over the Set-
tings link in the top Facebook menu bar. Click Compliments Settings, and a dialog titled
Edit Compliments Settings appears onscreen. Click the Additional Permissions tab in this
dialog, and you see a checkbox—checked by default—with the label Publish Recent Ac-
tivity (One Line Stories) to My Wall.

Try it out. Uncheck the box and try sending a friend a compliment.You get an error
similar to the one shown in Figure 9.23. Facebook actually throws a
FacebookRestClientException with a code of 200 (permissions error). But, as you re-
call from your code in feed_form_callback.php in Listing 9.9, you handle the excep-
tion and package it into the JSON-encoded data structure that Facebook uses to show
the error dialog.

Figure 9.22 Unchecking this checkbox keeps
feed_publishUserAction() from automatically publishing any stories to

your Wall.

ptg

182 Chapter 9 Feed Stories, Feed Forms, and Templates

Using the API to Manage Template Bundles
Another feature offered by the Facebook API is the capability to register template bundles
without using the Feed Template Console.This can be a great timesaver if you are experi-
enced in creation and registration of templates and find the Console tedious.Also, the API
provides one other feature that the Console does not: the capability to register multiple
action links for a single template bundle.

Let’s introduce some API methods that let you manage your template bundles via
code.The Facebook API currently provides four methods for doing so:

n feed.registerTemplateBundle()

n feed.getRegisteredTemplateBundles()

n feed.getRegisteredTemplateBundleByID()

n feed.deactivateTemplateBundleByID()

Instead of delving into each of these in detail, let’s write some code that uses them to
manage your templates.We also add the new template we introduced, but did not register,
for the feed_publishUserAction() call in Listing 9.9.The code shows all the templates
that are currently registered for the application, register new templates, and optionally, un-
register all existing templates. Create a new file called register_feed_templates.php
and add the code shown in Listing 9.10 into it. Notice that you call the PHP client li-
brary versions of the APIs in the previous list. Create a new directory named config and
save the script there as register_feed_templates.php. It is a good idea to secure the
config directory because you do not want someone to arbitrarily execute this script.

Listing 9.10 register_feed_templates.php: Managing Feed Templates with the
Facebook PHP Library

<?php

require_once './../inc/globals.inc';

require_once './../inc/utils.inc';

$facebook = new Facebook(FB_API_KEY, FB_APP_SECRET);

$fbapi = $facebook->api_client;

Figure 9.23 Facebook returns a permission error
when attempting to automatically publish a one line

story to the profile of a user who has explicitly disabled
this feature in the settings for the application.

ptg

183Using the Facebook API

Listing 9.10 Continued

$pageOutput = "

<!DOCTYPE html PUBLIC '-//W3C//DTD XHTML 1.0 Strict//EN'

'http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd'>

<html xmlns='http://www.w3.org/1999/xhtml'
xmlns:fb='http://www.facebook.com/2008/fbml'>

<head>

<title>Compliments: Register Facebook Feed Templates</title>

<style>

h2 {padding:7px;background:#ddffbb;border:1px solid #558833;width:40%;}

.define {padding:15px;background:#ffeebb;border:1px solid #ba0000;width:30%;

font:14px monospace;}

.error {padding:7px;background:red; border:1px solid black; width:40%;}

.template{margin:1px;background:#efefff; width:40%; border:1px solid #aaaaaa;}

</style>

</head>

<body>

";

try {

$registeredTemplates = $fbapi->feed_getRegisteredTemplateBundles();

if(displayRegisteredTemplates($registeredTemplates, $pageOutput)) {

unregisterExistingTemplates($registeredTemplates, $pageOutput);

}

$templateData = registerNewTemplates($pageOutput);

if($templateData) {

$pageOutput .= "<div>

<h2>Congratulations! You registered new Feed template(s).</h2>

<h3>Copy the following line(s) to globals.inc:</h3>";

foreach($templateData as $template) {

$pageOutput .= "

<div class='define'>

define('TEMPLATE_BUNDLE_{$template['name']}', {$template['bundleID']});

</div>";

}

$pageOutput .= "

<p>Be sure to remove any template definitions that were removed!</p>

</div>";

}

} catch (FacebookRestClientException $fbex) {

echo '<div class="error">'

.'Facebook error while registering templates:
<tt>'

.$fbex->getMessage().'</tt></div>';

} catch(Exception $e) {

echo '<div class="error">'

.'Exception:
<tt>'

.$fbex->getMessage().'</tt></div>';

ptg

184 Chapter 9 Feed Stories, Feed Forms, and Templates

Listing 9.10 Continued

}

$pageOutput .= "

</body>

</html>";

echo($pageOutput);

/**

* Prints formatted contents of all currently-registered Feed Templates for

* current application

*

* @param array $registeredTemplates feed templates

* @param string $output (ref) page markup

*/

function displayRegisteredTemplates($registeredTemplates, &$output) {

if(isset($registeredTemplates[0])) {

$output .= "<h2>Currently Registered Feed Templates</h2>
";

foreach($registeredTemplates as $registeredTemplate) {

$output .= "<div class='template'>

<pre>".var_export($registeredTemplate, TRUE). "</pre>

</div>";

}

return true;

} else {

$output .= "<h2>No Feed Templates Registered.</h2>";

}

return false;

}

/**

* Unregisters all existing Facebook Feed Template Bundles for the application

*

* @param array $registeredTemplates feed templates

* @param string $output (ref) markup for page

*/

function unregisterExistingTemplates($registeredTemplates, &$output) {

global $fbapi;

if(isset($_GET['u']) && '1' === $_GET['u']) {

$output .= "<h2>Unregistering Existing Templates</h2>";

for($i = 0, $len = count($registeredTemplates); $i < $len; ++$i) {

$bundleID = $registeredTemplates[$i]['template_bundle_id'];

$result = $fbapi->feed_deactivateTemplateBundleByID($bundleID);

$output .= "<h3>Unregistering Template Bundle ID: $bundleID. Result: ".

($result == 1 ? "SUCCESS" : "FAIL")."</h3>";

}

}

}

ptg

185Using the Facebook API

Listing 9.10 Continued

/**

* registers a new Facebook Feed Template Bundle

*

* @param string $output (ref) markup for page

*/

function registerNewTemplates(&$output) {

global $fbapi;

$bundles = buildTemplateBundles();

$templateData = array();

foreach($bundles as $template) {

$result = $fbapi->feed_registerTemplateBundle($template['oneline'],

$template['short'],

null, // deprecated

$template['actionlinks']);

// if length of return is <= 4 it's an error code

// see http://wiki.developers.facebook.com/index.php/Error_codes

if(strlen(strval($result)) > 4) {

$templateData[] = array('name' => $template['name'],

'bundleID' => $result) ;

} else {

$output .= "<div class='error'>

Error registering template bundle {$template['name']}.
Code: $result

</div";

}

}

return $templateData;

}

function buildTemplateBundles() {

$bundles = array(

array(

// used in multiFeedStory form submission

'name' => 'MULTIFEEDSTORY_1', // name we'll append to the constant
➥ definition

'oneline' => array(

'{*actor*} used {*app*} to tell {*target*} they are {*ctitle*} because

{*ctext*}'

),

'short'=> array (

array(

'template_title' => '{*actor*} sent {*target*} a compliment with
➥{*app*}!',

'template_body' => '
{*actor*} thinks {*target*} is {*ctitle*} because

{*ctext*}'

)

),

ptg

186 Chapter 9 Feed Stories, Feed Forms, and Templates

Listing 9.10 Continued

'actionlinks' => array(

array("text" => "Send your own Compliment!",

"href" => FB_APP_URL

)

)

),

// used in feedStory form submission

array(

'name' => 'FEEDSTORY_1', // name we'll append to the constant definition

'oneline' => array(

'{*actor*} used {*app*} to tell {*target*} they are {*ctitle*} because

{*ctext*}'

),

'short'=> array(

array(

'template_title' => '{*actor*} sent {*friend_you*} a compliment with

{*app*}!',

'template_body' => '
{*actor*} thinks {*friend*} is {*ctitle*} because

{*ctext*}'

)

),

'actionlinks' => array(

array("text" => "Send your own Compliment!",

"href" => FB_APP_URL

)

)

),

// used in feed.publishUserAction one line submission

array(

'name' => 'ONELINE_1', // name we'll append to the constant definition

'oneline' => array(

'{*actor*} just sent {*target*} {*pronoun*} {*count*} {*app*}!'

),

'short'=> null,

'actionlinks' => array(

array("text" => "Send your own Compliment!",

"href" => FB_APP_URL)

)

),

);

return $bundles;

}

To see it in action, enter the URL of the file in your browser’s address bar. Use the full
path to it on your web server, not on Facebook. For example, use

ptg

187Using the Facebook API

http://example.com/<appname>/config/register_feed_templates.php, not
http://apps.facebook.com/....

You see something similar to what’s shown in Figure 9.24 and Figure 9.25. In
Figure 9.24, one template is shown but several can be present, depending on the
application. Note the '?u=1' query string that’s been appended to the URL.

The code then registers all new templates and renders some handy statements that you
can copy to your globals.inc for use in your code, using the names provided in each
template data structure to uniquely identify them. Notice that the code uses exception
handling around its main code path and that it handles the specific
FacebookClientRestException, which is thrown by most of the methods in the Face-
book PHP Client Library.

The code first calls the feed_getRegisteredTemplateBundles() PHP Library
method, which returns a numerically indexed array containing all the template bundles
currently registered by the application. For each registered template, it uses PHP’s
var_export() function to display the preformatted template objects to the screen. If the
optional u=1 is added to the query string, it unregisters each template by using the
feed_deactivateTemplateBundleByID() method. Deactivating a template is the same
thing as deleting it; after this method is called for a specific template bundle ID, you can-
not retrieve it. Finally, it registers all the templates you provide in the
buildTemplateBundles() function using the feed_registerTemplateBundle()
method.To verify the script’s action, run it once and then open the Registered Feed Tem-
plates tool for Compliments.This tool should show the newly registered templates, along

Figure 9.24 register_feed_templates.php displays all templates
currently registered for this application.

ptg

188 Chapter 9 Feed Stories, Feed Forms, and Templates

Figure 9.25 register_feed_templates.php unregisters all exist-
ing templates if the ‘?u=1’ query string is present on the URL.

Note the third parameter to feed_registerTemplateBundle(). Facebook used to
have three story sizes: one line, short, and full. Full stories could include much more data
and were allowed to use more HTML and FBML tags; however, they were deprecated,
but the placeholder for them still exists in the API for backwards-compatibility.Always
pass null for it.Also, check out the return value handling for the call. Its return value is
either an error code or the template bundle ID of the newly registered template.Template
bundle IDs are always longer than four digits, so the code checks the length of the re-
turned ID: If it is less than four characters, we assume it is an error code—all Facebook
APIs return and handle it appropriately.

Let’s look at the one line template data structure in detail and how it’s used in the call
to feed_registerTemplateBundle() in Listing 9.11.We use the new template that we
are registering for the one line stories we want to publish through the API.

Listing 9.11 register_feed_templates.php: One Line Story Template Bundle in
Detail

// used in feed.publishUserAction one line submission

array(

'name' => 'ONELINE_1', // name we'll append to the constant definition

'oneline' => array(

'{*actor*} just sent {*target*} {*pronoun*} {*count*} {*app*}!'

),

'short'=> null,

'actionlinks' => array(

with any already present, depending on whether you passed the query string variable to
unregister all templates first.

ptg

189Using the Facebook API

Listing 9.11 Continued

array("text" => "Send your own Compliment!",

"href" => FB_APP_URL)

)

),

);

As you recall from Table 9.2, the feed.publishUserAction() API method takes two
required parameters: the template bundle ID and the JSON-encoded template data for
the stories it will publish. In the data in Listing 9.11, we provided one line template data,
but not short.This is fine because the only required part of a template bundle is the one
line story template.You do not have to JSON-encode this data when using
feed.publishUserAction(); the Facebook PHP Library first checks to see if the tem-
plate data is an array and automatically JSON-encodes it on your behalf if needed. Finally,
look at the actionlinks array. If you want to provide multiple action links for this story
(or any others registered in this file), you simply add another entry to the array. For illus-
trative purposes, you can add two action links to your story: one that contains the
feedform=feedStory query string, which allows you to publish via a feedStory Feed
form, and the other, which publishes by using the default multiFeedStory.To do this,
change the actionlinks array like so:

'actionlinks' => array(

array("text" => "Compliment via feedStory!",

"href" => FB_APP_URL.'?feedform=feedStory'),

array("text" => "Compliment via feedFormStory!"

"href"= FB_APP_URL)

);

Previously, it was said that one of the great benefits of feed.publishUserAction() is
that it allowed the sending of stories without any user prompting or interaction. Let’s ob-
serve that behavior. Save and run the register_feed_templates.php again and add the
new template bundle ID constant definition(s) to your globals.inc. Now, send a com-
pliment to someone. Do not publish the story to the stream. Click Skip or the X at the
top right of the feed story publish dialog to close it. Now, browse to your Facebook pro-
file. Notice that, although you did not publish the short story, the one line story automat-
ically published by feed.publishUserAction() is still present in your Recent Activity
section (see Figure 9.26).

Figure 9.26 Even after canceling the normal
feed story submission, Facebook still automatically

sends the one line story published by
feed_publishUserAction().

ptg

190 Chapter 9 Feed Stories, Feed Forms, and Templates

Do you see the trailing exclamation point in the one line story in Figure 9.26? HTML
rules cause this behavior: Connected words wrap together, and Facebook places the ac-
tion links in a element right after the one line story’s text with no space between
them.The easiest way to combat this is to ensure that your one line stories end with a
space. Open register_feed_templates.php and change the template in your one line
story bundle to end with a space, like so:

array(

'name' => 'ONELINE_1',

'oneline' => array(

'{*actor*} just sent {*target*} {*pronoun*} {*count*} {*app*}! ' // note
space

),

Facebook puts the full text of the story on one line, as shown in Figure 9.27.

Sandbox Mode and Testing Feed Stories
One concern you might have is that, if you are publishing all these stories to the stream,
all of your friends—and potential competitors—are able to view them.The Feed Tem-
plate Console allows you to test your stories before they publish; however, sometimes, you
need to test the story in the wild.What’s the best way to handle this?

This is where your application’s Developer Settings come in handy. Chapter 1 covered
them in detail, but there is one setting that is specifically important in this context: Sand-
box mode. If you open your application’s Developer Settings page and click the Advanced
tab, you see the Sandbox Mode choice at the top, as shown in Figure 9.28.This should be
set to Enable.There are three important reasons for this.

First, only the actual developers of your application are permitted to install and use it.
Even if a friend of yours on Facebook has the absolute URL to your application’s au-
thentication page, she will not be allowed to add it. In fact, she receives an HTTP 404
File Not Found error if she tries.To the outside world, it’s as if your application does not
exist. Remember this if you are showing your application to a friend (or client!).

Second, your application can publish Feed stories at will while in Sandbox mode, and
only other application developers ever see them! You can verify this simply. Publish a
multiFeedStory short story to a friend who’s a developer on the application.Verify that he
can see it on his Wall, and you can see it on his Wall when you view his profile, and that

Figure 9.27 The first one line feed story is cor-
rectly terminated without wrapping, unlike the sec-

ond story, where the exclamation point wraps.

ptg

191Summary

Figure 9.28 Sandbox mode is critical for testing application Feed stories
while keeping them from being viewed by nondevelopers or being subject to

Facebook allocation limits.

both of you can see the one line story on your Walls. Now, have a friend who’s not a de-
veloper visit both of your profiles. He should see neither story.

Finally, Sandbox mode prevents your application from being subject to Facebook’s
strict messaging-allocation limits.We cover this in a Chapter 10 but for now, realize that
applications that are not in Sandbox mode are subject to strict quotas for the different
types of messages they can send per user per day and, in some cases, per user per week, to
minimize spam and potential abuse.

If, by chance, you are testing an application that is not in Sandbox mode, you can still
remove the stories you don’t want all users to see. Notice the mouse pointer way back in
Figure 9.16.The owner of this profile can click the Remove button on all stories on his
Wall and they will be removed from the stream.This also removes them from their
friends’ Home pages.

Summary
This chapter covered many of the core features and techniques for creating, managing,
and publishing Feed stories to the Facebook stream.The sample application added nu-
merous new features, enabling it to send multiple types of messages to its users. Here are
some key points:

n Feed forms are specialized HTML forms that allow an application to submit Feed
stories to the stream.There are two types: feedStory and multiFeedStory, each of
which targets their messages to different endpoints on users’Walls and Home page
News Feeds.

n Feed forms do not allow any client-side validation opportunities; however, they do
provide an error-handling capability that allows you to emulate the behavior on a
callback to your server.

n Templates and template bundles are critical components in the creation of Feed
stories.They can be composed, previewed, and manually registered through the
Feed Template Console or managed directly using the Facebook API.

ptg

192 Chapter 9 Feed Stories, Feed Forms, and Templates

n Facebook offers two different story types: one line and short.They are composed of
different content and are submitted to the stream in different ways. By default, short
stories can never be submitted without a user’s explicit permission, while one line
stories can be published to an application user’s Wall through the use of the Face-
book API.

n Sandbox mode is a critical setting that should be enabled on all applications cur-
rently in development. It prevents nondevelopers from viewing the stories pub-
lished to the stream by the application and excuses the application from
messaging-allocation limits imposed by Facebook.

ptg

10
Publisher, Notifications, and

Requests

Chapter 9,“Feed Stories, Feed Forms, and Templates,” introduced you to the basics of
interacting with and producing content for the Facebook stream via Feed forms and the
Facebook application programming interface (API). Facebook offers several other alter-
native communication channels for applications and their users that can greatly expand
an application’s reach within the Facebook social graph, and ultimately, its potential for
success.

This chapter first covers another novel way for application users to publish content to
the stream via a special construct known as the Publisher. It’s unique in that it is more
closely associated with an application user’s profile and Home page than it is with an ap-
plication.This chapter also introduces you to several notification types, which are gener-
ally lightweight messages sent by applications without user interaction; however, they also
include one of the most powerful application communication mechanisms available. Fi-
nally, we delve into requests, which are one of the more controversial and misunderstood
methods of application messaging. Requests are interesting, because they encompass one
of the most direct means for applications to spread: invitations.You use all of your new
knowledge to update your sample application to use these features, which greatly en-
hances its capabilities.

Getting to the Heart of Feed: The Publisher
The Publisher is undoubtedly one of the most often used communication channels in
Facebook.You see it every time you visit a Facebook profile or your own Home page: It’s
the control that’s placed right above the Feed that lets you update your Facebook status
message. Figure 10.1 shows it in its default compact state on the author’s profile.

ptg

Introduction to the Publisher
The purpose and power of the Publisher is to allow users to insert new application-
specific content directly and immediately to the stream without having to leave their pro-
files or Home pages.Applications can register their own custom Publishers, and content
created by them is always submitted to the stream in short story Feed format, so it can
contain rich media, such as images, audio, or video. Clicking inside the Publisher box’s
text area expands it to show all the applications that have provided Publisher integration
for the current profile; clicking the small arrow to the right of these brings up the full list,
as shown in Figure 10.2.

The list of available Publishers is organized automatically by Facebook. Publisher links
for default Facebook applications always appear first in the list, followed by any application-
specific ones ordered by how recently they were used.This arrangement is specific to the
profile owner, not the viewing user, so if you visit a friend’s profile, you see his Publishers
arranged in an order that reflects the applications or Publishers that friend has used.

194 Chapter 10 Publisher, Notifications, and Requests

Figure 10.1 The Publisher is one of the most used
pieces of functionality on Facebook, and it is found

both on users’ Home pages and profiles.

Figure 10.2 Clicking in the text input area of the Publisher shows the
list of applications that integrate with it on the current page.

ptg

195Getting to the Heart of Feed: The Publisher

Figure 10.3 The Facebook Music/YouTube Publisher offers many inter-
active options for creating content.

One of the most engaging and powerful features of the Publisher, for both application
users and developers, is that it allows applications to present their own custom interactive
interfaces for creating Feed content that are not subject to the same constraints that Face-
book imposes on other application interaction points, such as profile boxes or application
tabs. Unlike either of these, the Publisher allows applications to automatically play Flash
videos and hook the onload() event in Facebook JavaScript (FBJS).

Take a moment to explore the different possibilities already in place on your own pro-
file or Home page. Some are quite interactive. For example, look at the default Facebook
Music/YouTube Publisher provided by iLike, shown in Figure 10.3. It offers the ability to
preview and publish songs and video, and more.

Another reason why the Publisher is so important is that it offers a flexible and liberal
means of interacting with users where they normally live on Facebook: on their friends’
profiles and on their own Home page. In comparison, Feed forms are specialized HTML
forms that exist on application-specific canvas pages or application tabs. Facebook handles
Feed forms specially and a side-effect of this special handling makes client-side form vali-
dation impossible.A Publisher interface has no such restrictions. Publishers can use FBJS
directly to dynamically enable a form’s Submit button, depending on the state of the
form’s data or variables.When users employ the Publisher, they don’t have to visit
application-specific pages to publish application content; moreover, they can be presented

ptg

196 Chapter 10 Publisher, Notifications, and Requests

Figure 10.4 The Facebook Developer application allows you to
set custom Publisher values.

an entirely different interface from the one you would see if you used the Publisher on
your own profile or Home page.

Finally, the Publisher can directly insert content into the Home page News feed and
the Wall simultaneously and instantaneously.When a user submits a Feed story from a
Publisher to his own profile or Home page, a short Feed story is created in both locations
and on the Home page News feed of all of their friends. Stories submitted by a user to a
friend’s profile are shown on the friend’s profile and the Home page News feeds of that
friend and all of their friends.

Integrating with the Publisher
Applications that provide Publisher interfaces have the opportunity to provide two sepa-
rate integration points.The first integration point is used for publishing content to a
user’s own profile and the second for publishing to friends’ profiles. Because Publishers are
not required, applications can supply integration points for neither, one, or both. How-
ever, for illustrative purposes we’ll update Compliments to provide both. From this point
forward we’ll refer to the former flavor of Publisher as a Self-Publisher and the latter, an
Other-Publisher.

Publisher Developer Settings
To get started with Publishers, you first have to revisit the Compliments application’s De-
veloper Settings page (www.facebook.com/developers/apps.php). Choose Compliments from
the list on the left and then Edit Settings. Now, click the Profiles tab and look for the sec-
tion titled Profile Publisher.The options listed here specify the text for the links used to
activate the Publishers and the URLs from which Facebook will pull their content.

The first pair of options is for the Other-Publisher. For the Publish Text value, enter
Compliment. For the Publish Callback URL, enter something like http://example.com/
<appname>/publisher_callback.php, but be sure to use your own local URL.The second
pair is for the Self-Publisher. Enter the same values as you did for the first; we’ll handle
the differences between them in code. If you decide to use different values for the link
labels, be aware that Facebook limits them to 20 characters.Your settings should look
similar to what’s shown in Figure 10.4.

ptg

197Getting to the Heart of Feed: The Publisher

Figure 10.5 The Self-Publisher user interface
looks similar to this.

Figure 10.6 The Self-Publisher creates Feed stories like this for
the user’s Wall and Home page Feeds.

Our goal is to produce a Publisher interface like the one shown in Figure 10.5. It will
look identical for both the Self- and Other-Publishers; the only difference being the text
that’s shown when they’re displayed.The Self-Publisher refers to you when it’s shown on
the currently logged-in user’s profile or Home page, while the Other-Publisher uses the
friend’s first name when it’s launched from their friend’s profile. Figure 10.6 and Figure 10.7
show the different Feed stories that each flavor of Publisher ultimately produces when
we’re done.

Creating the Publishers
Now that you have set the necessary options in the Compliments Developer Settings, you
can actually implement the Publishers. First, we need to go over how Facebook commu-
nicates with the application when using a Publisher. Facebook actually requests informa-
tion from the Publisher Callback URLs on two separate occasions. First, when a user
clicks a Publisher link in a profile or Home page, Facebook calls it to request the FBML

ptg

198 Chapter 10 Publisher, Notifications, and Requests

Figure 10.7 The Other-Publisher creates Feed
stories like this for the target’s Wall and his

friends’ Home page Feeds.

Table 10.1 Important POST Variables Facebook Sends to the Publisher Callback URLs

POST Variable Name POST Variable Value Always Sent?

fb_sig_user Facebook ID of user interacting
with the Publisher.

Yes.

fb_sig_profile_user Facebook ID of user from
whose profile the Publisher
was requested.

Yes.

fb_sig_session_key If sent, means the user identi-
fied by fb_sig_user has
authorized the application that
provided the Publisher.

No.

We’ll be able to differentiate between the two flavors of Publishers rather than provid-
ing two separate implementations.We can do this because Facebook also sends this infor-
mation in the POST variables sent to this callback.Table 10.1 shows five POST variables
sent by Facebook that you’ll come across when creating Publishers.

to display the Publisher. If a user then submits a story from that Publisher, Facebook calls
it a second time to request the content for the Feed story it will publish, which is a
process that was discussed in Chapter 9.Your callback’s code can determine which type of
request Facebook makes by checking the value of the method POST variable, which
Facebook will send with each call.

ptg

199Getting to the Heart of Feed: The Publisher

method Set to
publisher_getInterface

on first request,
publisher_getFeedStory

for Feed story content.

Yes.

app_params Contains an array of the
Publisher’s form variable data,
keyed by form element name.

No; only sent when
method has the
value
publisher_getFeedSt

ory.

Armed with the data in Table 10.1, we can determine that if the values of
fb_sig_user and fb_sig_profile_user are equal, then the user interacting with the
Publisher is also the owner of the profile (or Home page) from which it was launched;
therefore, we need to display the Self-Publisher to allow this user to publish a Feed story
to his own Wall and Home page News feed. If these values are different, we need to dis-
play the Other-Publisher, which allows publishing to the Wall of the user identified by
fb_sig_profile_user and his friends’ Home pages. If we want the Publisher to offer en-
hanced functionality to users that have authorized the application that provides it, we can
check for the existence of fb_sig_session_key in the POST variables—it is only sent
when this is true.

Create a new file called publisher_callback.php in your application root directory.
We separate the code for this file over the next few listings to make it very clear. First, the
core behaviors of both displaying a custom Publisher and publishing a story to Facebook
are shown in Listing 10.1.Add this to publisher_callback.php.

Listing 10.1 publisher_callback.php: Handling Publisher Callbacks From
Facebook

<?php

require_once 'inc/globals.inc';

require_once 'inc/utils.inc';

require_once 'inc/db.inc';

require_once 'inc/profile.inc';

require_once 'inc/notifications.inc';

// Comment out before deploying

//dumpRequestVars(true, basename(__FILE__));

$fb = new Facebook(FB_API_KEY, FB_APP_SECRET);

$publisher = $fb->user || $fb->fb_params['page_id']; // who's publishing

$target = $fb->fb_params['profile_user']; // who they're publishing to

Table 10.1 Continued

ptg

200 Chapter 10 Publisher, Notifications, and Requests

Listing 10.1 Continued

$isSelfPub = $publisher === $target; // 'true' if publisher on own profile/home

$publisherAction = $_POST['method'];

$fbResponse = '';

if(isset($publisherAction) &&

isset($publisher) &&

isset($target)) {

// Facebook is requesting the user interface of the Publisher

if('publisher_getInterface' === $publisherAction) {

$markup = getPublisherUI($isSelfPub ? $publisher : $target);

$fbResponse = array('content'=> array('fbml' => $markup,

'publishEnabled' => true),

'method' => $publisherAction);

} else if ('publisher_getFeedStory' === $publisherAction) {

// Facebook is requesting the data for the Feed story

$formValues = $_POST['app_params'];

if(isset($formValues)) {

global $g_categories;

if(!isset($fb->fb_params['page_id'])) {

// save the compliment in the DB

$db = new DB();

$db->addCompliment($publisher, $isSelfPub ? $publisher : $target,

$formValues['category'], $formValues['compliment']);

}

// start filling in our template

$categoryInfo = $g_categories[$formValues['category']];

$imageSrc = LOCAL_APP_URL.'/img/'.$categoryInfo['bigimg'];

$imageLink = LOCAL_APP_URL;

$images = array('src'=> $imageSrc, 'href'=> $imageLink);

$feed = array('template_id' =>

$isSelfPub ? TEMPLATE_BUNDLE_SELF_PUBLISH_1 :

TEMPLATE_BUNDLE_OTHER_PUBLISH_1,

ptg

201Getting to the Heart of Feed: The Publisher

Listing 10.1 Continued

'template_data' =>

array('app' => '<a href="'.FB_APP_URL.

'">Compliments',

'ctitle' => $categoryInfo['title'],

'ctext' => $formValues['compliment'],

'images' => array($images)));

} else {

$fbResponse = getPublisherError('Incorrect method

requested: Expected either publisher_getFeedStory or

publisher_getInterface');

}

$fbResponse = array('method' => $publisherAction,

'content' => array('feed' => $feed));

} else {

$fbResponse = getPublisherError('Missing form values from Publisher');

}

} else {

$fbResponse = getPublisherError('Either method, user, or target are not

specified');

}

// respond to Facebook

echo json_encode($fbResponse);

?>

Listing 10.1 uses a few utility functions. It calls the getPublisherError() function to
create arrays that Facebook uses to notify your users of specific error conditions.This is
exactly the same process you used when handling errors with Feed forms.Again, you
must provide Facebook with a JSON-encoded associative array containing three keys:
errorCode (which must always be set to 1, handily defined by the constant
FACEBOOK_API_VALIDATION_ERROR), errorTitle, and errorMessage.The values for
errorTitle and errorMessage populate an error dialog’s title and body content, respec-
tively. Listing 10.2 shows the code for the getPublisherError() function.Add this to
the end of publisher_callback.php.

Listing 10.2 publisher_callback.php: getPublisherError() Function

/** Creates an error array to return to Facebook if the Publisher experiences an

error */

function getPublisherError($msg) {

return array('errorCode' => FACEBOOK_API_VALIDATION_ERROR,

ptg

202 Chapter 10 Publisher, Notifications, and Requests

Listing 10.2 Continued

'errorTitle' => 'Facebook Publisher Error',

'errorMessage'=> $msg);

}

Listing 10.1 uses the getPublisherUI() function to provide the markup for the Pub-
lisher’s user interface. Facebook requests it after sending the publisher_getInterface
POST variable. getPublisherUI(), in turn, uses the getCSS() function to provide the
styles for the Publisher. Listing 10.3 shows the code for both of these functions.Add these
functions to the end of publisher_callback.php.

Listing 10.3 publisher_callback.php: Publisher User Interface Functions

/** Returns the CSS for the Publisher interface */

function getCSS() {

$css = "

<style>

h1 { font-size: 14px; font-weight:bold; text-align:center; margin-top:6px;

margin-bottom:6px; }

.panel { text-align:center; background-color:#F7F7F7; padding:10px 0;}

#complimentTable { margin: 5px auto; }

#complimentTable .textInput { width: 85%; }

#complimentTable td { text-align:center; }

.category { float:left; height:75px; text-align:center; margin:8px; }

.category img { width:48px; height:48px; }

.category .categoryTitle { height:20px; font-weight:bold; }

</style>";

return $css;

}

/** Gets the Publisher's FBML markup */

function getPublisherUI($uid) {

global $g_categories;

$out = getCSS();

$out .= "

<div class='panel'>

<form>

<table id='complimentTable'>

<tr>

<td>

<fb:if-is-friends-with-viewer uid='$uid' includeself='false'>

<h1>

<fb:name uid='$uid' firstnameonly='true' linked='false'/> is:

</h1>

ptg

203Getting to the Heart of Feed: The Publisher

Listing 10.3 Continued

<fb:else>

<h1>

<fb:name uid='$uid' capitalize='true' linked='false'/> are:

</h1>

</fb:else>

</fb:if-is-friends-with-viewer>

</td>

</tr>

<tr>

<td>";

foreach($g_categories as $name => $info){

$out .= "

<div class='category'>

<img class='catImg'

src='".LOCAL_APP_URL."/img/{$info['bigimg']}'/>

{$info['title']}

<input type='radio' name='category' value='$name'/>

</div>";

}

$out .= "

<div style='clear:both;'></div>

</td>

</tr>

<tr>

<td>

<fb:if-is-friends-with-viewer uid='$uid' includeself='false'>

<h1>because they:</h1>

<fb:else>

<h1>because you:</h1>

</fb:else>

</fb:if-is-friends-with-viewer>

</td>

</tr>

<tr>

<td>

<input class='textInput' name='compliment' />

</td>

</tr>

</table>

</form>

</div>";

return $out;

}

ptg

204 Chapter 10 Publisher, Notifications, and Requests

The most important parts of the code in Listing 10.1 are the sections that deal with
responding to the receipt of the method variable in the POST variables received from
Facebook.When the value of method is publisher_getInterface, your code must pro-
vide Facebook with a specific JSON response that provides it with the raw FBML that
comprises the Publisher’s user interface, as follows:

if('publisher_getInterface' === $publisherAction) {

$markup = getPublisherUI($isSelfPub ? $publisher : $target);

// The reponse to publisher_getInterface

$fbResponse = array('content'=> array('fbml' => $markup,

'publishEnabled' => true),

'method' => $publisherAction);

}

The associative array stored in the $fbResponse variable will ultimately be JSON-
encoded before printing it back to Facebook, just like we did with the Feed form data in
Chapter 9.The first entry in the array must be named content and be set to an associa-
tive array itself containing two entries named fbml and publishEnabled.The first entry,
fbml, must be set to the raw FBML that renders the Publisher interface.The final entry in
the array must be named method and be set to the value for the method POST variable,
which, in this case, is publisher_getInterface.

The publishEnabled value deserves a closer look.When it is set to true, the Share
button is always enabled, and the user can submit the Publisher content immediately.
When it is set to false, the Share button is disabled until the application uses the
Facebook.setPublishStatus() FBJS function to enable it.This manual enabling allows
the application to perform client-side validation. Our code sets it to true for simplicity;
obviously, this would be unwise in production code that accepts user input, and we rectify
that in Chapter 11,“FBJS, Mock AJAX, and Flash.”

When Facebook sets the value of the method POST variable to
publisher_getFeedStory, it expects your code to return to it another specifically for-
matted JSON response containing the template data needed to produce the appropriate
Feed story from the Publisher. For Compliments, this callback happens after the user sub-
mits the Publisher form. Listing 10.1 responds to this by storing the compliment in the
database and then building the template data.The following excerpt focuses on how the
template data is created and returned:

else if ('publisher_getFeedStory' === $publisherAction) {

$formValues = $_POST['app_params'];

// elided for clarity

$feed = array('template_id' => $isSelfPub ? TEMPLATE_BUNDLE_SELF_PUBLISH_1 :

TEMPLATE_BUNDLE_OTHER_PUBLISH_1,

'template_data' =>

array('app' =>'<ahref="'.FB_APP_URL.'">Compliments',

'ctitle' => $categoryInfo['title'],

'ctext' => $formValues['compliment'],

ptg

205Getting to the Heart of Feed: The Publisher

'images' => array($images)));

$fbResponse = array('method' => $publisherAction,

'content' => array('feed' => $feed));

}

Again, Facebook expects a JSON-encoded array in a specific format. In this case, the
associative array requires two keys: method and content.The method key is again set to
the value of the method POST variable.The content key must be assigned an associative
array containing one key, feed, which contains all the template data required for Face-
book to publish the Feed story. (It’s saved in the variable $feed first to make the code
clear.) Notice that the code refers to two new template bundle IDs:
TEMPLATE_BUNDLE_SELF_PUBLISH_1 for the template used for stories from the Self-
Publisher and TEMPLATE_BUNDLE_OTHER_PUBLISH_1 used for those from the Other-
Publisher.You need to add the code for these new template bundles to the end of the
buildTemplateBundles() function in the register_feed_templates.php script cre-
ated in Chapter 9.The code for the new function is shown in Listing 10.4.

Listing 10.4 register_feed_templates.php: Publisher Templates to Be
Registered by buildTemplateBundles()

// used in Publisher for publishing to own Wall and friends' Home Pages

array(

'name' => 'SELF_PUBLISH_1', //name appendedto the constant definition

'oneline' => array('{*actor*}'), //unused, but need to have something here

'short' => array(

array(

'template_title' => '{*actor*} gave themselves a pat on the back with

{*app*}!',

'template_body' => '
{*actor*} thinks they are {*ctitle*} because

they "{*ctext*}"'

)

),

'actionlinks' => array(

array("text" => "Send your own Compliment!",

"href" => FB_APP_URL.'?asrc=selfpub')

)

),

// used in Publisher for publishing to a friend's Wall, Home Page, and their

// friends' Home Pages

array(

'name' => 'OTHER_PUBLISH_1', //name appended to the constant definition

'oneline' => array(

'{*actor*} used {*app*} to tell {*target*} they are {*ctitle*} because

they {*ctext*}'

),

ptg

206 Chapter 10 Publisher, Notifications, and Requests

Figure 10.8 Facebook shows this when it encounters
an unhandled error when dealing with The Publisher.

Listing 10.4 Continued

'short' => array(

array(

'template_title' => '{*actor*} sent {*target*} a compliment with

{*app*}!',

'template_body' => '
{*actor*} thinks {*target*} is {*ctitle*}

because they "{*ctext*}"'

)

),

'actionlinks' => array(

array("text" => "Send your own Compliment!",

"href" => FB_APP_URL.'?asrc=otherpub')

)

),

After you add these new template bundle definitions, you need to rerun the
register_template_bundles.php script and replace all the template bundle ID con-
stant definitions in globals.inc.You should now have five template bundle constant
IDs defined in globals.inc similar to those in the code that follows, with your own
IDs, of course:

define('TEMPLATE_BUNDLE_MULTIFEEDSTORY_1', 78457479158);

define('TEMPLATE_BUNDLE_FEEDSTORY_1', 78457499158);

define('TEMPLATE_BUNDLE_ONELINE_1', 78457504158);

define('TEMPLATE_BUNDLE_SELF_PUBLISH_1', 78457509158);

define('TEMPLATE_BUNDLE_OTHER_PUBLISH_1', 78457514158);

Handling Publisher Errors
When dealing with the Publisher, you are bound to encounter errors. If Facebook en-
counters an error that is not covered by one of the error conditions your code handles, it
provides a most unhelpful response in the form of the dialog shown in Figure 10.8.

If you receive such an error, there are two easy ways to determine their cause. First,
you can open your web server’s error log and check for the error that corresponds to it;
however, this can be inconvenient.An easier way is to use Firebug, the Firefox add-on

ptg

207Notifications

Figure 10.9 Use the Firebug extension in Firefox to discover the real
cause of your unhandled Publisher errors without having to monitor your

web server’s error log.

discussed in Chapter 4,“Platform Developer Tools.”To use it to determine what is caus-
ing your Publisher errors, perform the following steps.We’ve also included a screenshot to
make following them easier, shown in Figure 10.9:

1. With the error dialog onscreen, open Firebug.

2. Enable the Net tab in Firebug (if it is not already) and select it.

3. Click the XHR button in the Firebug toolbar to filter out all but XMLHttpRequest
(AJAX) traffic.

4. Locate and expand the last call to the following URL: www.facebook.com/ajax/
composer/attachment.php.

5. Click the Response tab.

A bunch of JSON should display:The cause of the error should be the value of the
errorMessage property. If it’s a syntax error, this property shows you the line number of
the offending code and the call stack leading up to it.

Notifications
Notifications are another important means of communication provided by Facebook to
applications. Notifications are lightweight messages that applications can send on their
users’ behalf to other Facebook users.An important feature of notifications is that applica-
tions can send them without direct user interaction in some cases; however, because of
past abuses by applications, Facebook strictly enforces limits on how many an application
can send in a given time period.

Notifications are intended to alert users to an event, change, or activity in an applica-
tion that affect them and are sent directly to the notifications area of the target user’s
Facebook chrome. Notice that we did not specifically say Home page or profile:The No-
tifications area is always visible next to the chat control on the bottom of the Facebook
chrome while a user is logged into Facebook, as shown in Figure 10.10.The number of
new notifications is displayed in a small red balloon above the notification icon.

ptg

208 Chapter 10 Publisher, Notifications, and Requests

Figure 10.11 The Notifications page shows all notifications sent or re-
ceived by a user over the last few days.

To view his recently received notifications, a user can click the Notifications icon to
expand a list.The full list of notifications is found on the Facebook Notifications page,
which can be reached by clicking the Inbox link at the top of the Facebook user inter-
face.The Notifications tab holds all notifications from the past several days, as shown in
Figure 10.11.

Notifications are also subject to allocation limits to prevent applications from spam-
ming users.These limits are discussed in detail in the section,“Application Messaging and
Allocations.”

Notification Types
There are two different types of notifications. User-to-user notifications are sent on behalf
of an application user to one of his friends (who might not be an application user) or to
another application user (who might not be one of his friends.) Application-to-user noti-
fications are sent by an application only to authorized application users.

Figure 10.10 The Notifications area is always displayed in the
Facebook user interface next to the chat control when a user is

logged into Facebook.

ptg

209Notifications

Figure 10.12 The target of a user-to-user notifi-
cation receives a popup in her Notifications area if

she is currently logged into Facebook.

Figure 10.13 Senders of a user-to-user notifica-
tions are notified before the send initiates and are
given the opportunity to undo the send action, if de-

sired.

User-to-User Notifications
User-to-user notifications have the potential to engage online application users in a novel
way. If an application sends a user-to-user notification to another Facebook user who’s
currently online and logged into Facebook, that user is shown a notification popup that
appears above her Notifications area (see Figure 10.12).The user who sends the notifica-
tion also receives a similar popup, which allows her to cancel the sending of the notifica-
tion if possible, as shown in Figure 10.13.

These popups remain visible for a few seconds before they fade out; however, the noti-
fication still shows up in the receiver’s Notifications list and her Notifications tab in the
Inbox.The thing to note about this behavior is that it allows applications to send a form
of real-time messages to other application users or friends of the current application user.
This is an excellent way to increase an application’s user engagement and is great for
time-sensitive or turn-based applications, such as online games where they can immedi-
ately alert users when it’s their turn.

ptg

210 Chapter 10 Publisher, Notifications, and Requests

Table 10.2 notifications_send() Parameters

Parameter Type Description

to_ids array Contains an array of Facebook user IDs of the
notification’s recipients. Recipients must have
authorized the application or be friends of the
currently logged in application user. Setting this
to an empty string sends the notification to the
logged-in user without his name as the first
word. Required.

notification string Contains the notification’s content. It can be up
to 2,000 characters of FBML and contain text
and links only. Required.

Application-to-User Notifications
Application-to-user notifications allow applications to send messages to their authorized
users about actions that have occurred in the application that affect them, such as actions
by multiple friends.Applications can send them to their users without needing a session
to do so. Because of this, Facebook allows fewer of these to be sent to users than user-to-
user notifications.

Sending Notifications with the Facebook API
Now that you understand the basics of notifications, it’s time to update the Compliments
application code to send notifications of its own.You’ll update the application to send no-
tifications to alert users when someone has sent them a compliment.This example is
purely for illustration; in a real application, careful attention would be paid to notification
messaging because of its important role in Facebook’s determination of an application’s
messaging allocations, something which is covered later.When designing your own appli-
cations to use notifications, one thing to keep in mind is that the Facebook Platform
Guidelines have specific limits on how and when they should be sent. Chapter 5,“Face-
book Terms of Service and Application Programs,” discussed these, but here is a summary:

n User-to-user notifications must be sent within one hour of the first action that
triggered them.

n Application-to-user notifications should be from the application and not the user.
They must also be about either more than one user or more than one action.They
must be sent a maximum of one week after the earliest trigger and must contain
the date of that trigger.

Notifications are sent using the Facebook notification.send() API method
(notifications_send() in PHP).The API call returns an error code if there was a prob-
lem or a comma-separated list of the Facebook user IDs that were notified if there was
not.Table 10.2 presents the parameters of this method.

ptg

211Notifications

type string Holds the type of the notification. Can be set to
either app_to_user or user_to_user (the

default).

The body of a notification message can only contain text or links. Because of this, it
only supports a limited number of HTML and FBML tags. (Consult the online docu-
mentation for this list; it is too exhaustive to present here.) Unlike Feed stories, notifica-
tions do not require templates, template data, or template bundles.The FBML string that’s
passed in the notification parameter of the notifications_send() method contains the
complete raw FBML that is used to display it.

Listing 10.5 demonstrates the code necessary to send both user-to-user and app-to-
user notifications.Add this code to a new file called notifications.inc in your applica-
tion’s inc directory.

Listing 10.5 notifications.inc: sendUserNotification() Function

<?php

/** Sends a Facebook notification to a user; tries user-to-user first then

app-to-user */

function sendUserNotification(Facebook $facebook, $target) {

// no <fb:name/> needed at start, provided by Facebook

// automatically unless '' is passed as first param to API call

$notification = "sent <fb:name uid='$target' /> a ".

"Compliment";

$return = null;

try {

$return = $facebook->api_client->notifications_send(array($target),

$notification,

'user_to_user');

if(! isset($return[0])) {

// probably reached allocation limit for day, try an app-to-user

// notification instead

// app-to-user notifications don't include the sender's name (since they

// are generated by the app) so we'll add it

$notification = "<fb:name uid='{$facebook->user}'/> ".$notification;

$return = $facebook->api_client->notifications_send(array($target),

$notification,

'app_to_user');

}

} catch(FacebookRestClientException $ex) {

Table 10.2 Continued

ptg

212 Chapter 10 Publisher, Notifications, and Requests

Listing 10.5 Continued

wr($ex->__toString());

}

return isset($return);

}

?>

Notice that the code first attempts to send a user-to-user notification to the user’s
friend. If this fails, an application-to-user notification is sent instead. Sending a user-to-
user notification might fail, depending on how many user-to-user notifications the appli-
cation has left in its allocation to send to that friend for the current day. Developers
should use application-to-user notifications judiciously.Also, note that the FBML for the
user-to-user notification does not contain an <fb:name> tag for the sender; this is pro-
vided automatically for user-to-user notification messages unless the to_ids parameter is
set to an empty string.

Next, modify the code in the feed_form_callback.php script from Chapter 9 to call
the sendUserNotification() function.You’ll call this function when the user posts a
Feed story using a multiFeedStory form, because the Feed stories they generate are tar-
geted at a user’s friends. First, add notifications.inc to the list of included files at the
top of feed_form_callback.php, as shown in the following code:

require_once 'inc/notifications.inc';

Now, update the block of code in feed_form_callback.php that handles the multi-
FeedStory form to call the sendUserNotification() function and display an error if it
fails, as shown in the following code. New code is shown in bold:

if('multiFeedStory' === $feedFormType) {

$feed = array('template_id' => TEMPLATE_BUNDLE_MULTIFEEDSTORY_1,

'template_data' =>

array('app' => 'Compliments',

'ctitle' => $comp['title'],

'ctext' => $compliment,

'images' => array($images)));

if(! sendUserNotification($facebook, $target)) {

echo json_encode(

array('errorCode' => FACEBOOK_API_VALIDATION_ERROR,

'errorTitle' => 'Notifications Failed!',

'errorMessage'=> 'Error sending Facebook notifications.'));

die();

}

}

ptg

213Application Email

Application Email
Applications can send emails to their users, but special permissions, called extended permis-
sions, must be granted by a user to an application to allow it to send them. Emails are sent
to the email address that the user provided when he set up his Facebook account, not to
the Facebook email Inbox as you might expect. Facebook does not reveal the actual email
address of the application user. Instead, it provides what’s known as a proxied email ad-
dress, which hides the actual email address from the application.

Extended Permissions
To understand the steps needed to allow an application to send email, we need to briefly
discuss the concept of extended permissions. Extended permissions are required by Face-
book to grant applications access to certain APIs that allow them to do a range of things.
To give an application the right to use these features, users must have a much higher de-
gree of trust in that application.

Facebook provides several ways for applications to request extended permissions from
a user, as shown in the following list:

n By using the <fb:prompt-permission> FBML tag
n By using a special attribute, promptpermission, within an element in an HTML form
n By calling the FBJS Facebook.showPermissionDialog() function from FBML

canvas pages
n By calling the FB.Connect.showPermissionDialog() function in the Facebook

JavaScript Client Library for IFrame-based canvas pages or sites that implement
Facebook Connect

n By directing users to a specific URL: www.facebook.com/authorize.php?api_key=
<FB_API_KEY>&v=1.0&ext_perm=<extendedpermissionname>

The different extended permissions that can be granted to an application are found in
the following list.To check which extended permissions have been granted, developers
can either call the Facebook user.hasAppPermission() API method or check for the
value(s) of the fb_sig_ext_perms HTTP REQUEST variable sent by Facebook to an
application:

n email. Allows an application to send email to an application user.This permission
can only be granted through the <fb:prompt-permission> tag or the
promptpermission attribute.

n offline_access. Gives an application the right to access a user’s data that requires
a session when the user is offline. Effectively, this grants an application the right to
use an infinite session key for the user.This permission can only be granted through

ptg

214 Chapter 10 Publisher, Notifications, and Requests

the <fb:prompt-permission> tag or the promptpermission attribute.The applica-
tion must store the session key granted to the user to log them in as needed by call-
ing the Facebook::set_user() PHP Library method.

n create_event. Lets an application create or modify Facebook events for users.
n rsvp_event. Allows an application to RSVP to an event on behalf of a user.
n sms. Grants an application the capability to use text messages to communicate

with users.
n publish_stream. Encapsulates a lot of others; it’s part of Facebook’s new Open

Stream API that’s in beta at the time of this writing. It allows an application to set a
user’s status, upload photos or videos without manual approval, manage Facebook
Notes, or post links to the user’s profile.

n read_stream. Also part of the Open Stream API, it allows an application to read or
display content from a user’s stream.

n auto_publish_recent_activity. Does not appear that you can set this using the
Facebook extended permissions system; however, you will notice it in the HTTP
variables that Facebook sends to an application.Appears to grant applications the
right to automatically publish one line Feed stories via the
feed.publishUserAction() API method.

Sending Application Email
Now that you’ve been introduced to the concept of extended permissions, we’ll update
Compliments to send email to its users. Because we are primarily dealing with FBML in
this example, we’ll use the <fb:prompt-permission> tag to present the user with a link
she can click to grant the email extended permission to the application.We’ll modify
index.php to include the tag and main.css to include a new style for it.Add the bold
lines below after the form code in index.php at the end of the renderPage() function:

<input class='inputbutton' type='submit' name='submitCompliment'

label='Send Compliment' value='Send Compliment'/>

</form>

<fb:prompt-permission perms='email'>

<div class='perm'>

Click here to receive updates via email!

</div>

</fb:prompt-permission>

Add the next line to your main.css file to add the new style for the perm class used in
the previous code:

.perm { margin-top: 5px; font-weight: bold;}

When a user clicks the link to receive email updates, the Request for Special Permis-
sions dialog appears, as shown in Figure 10.14. Clicking the Allow Emails button removes
the link from the page the next time it is viewed.

ptg

215Application Email

Figure 10.14 Clicking the extended permission link shows the user
the Request for Special Permissions dialog.

Figure 10.15 Users can access the
Compliments application settings from the

Facebook main navigation bar’s Settings menu.

Figure 10.16 To remove the extended permission al-
lowing the application to send emails, users can

uncheck the Send Me Emails box.

You can always revoke the special permission by modifying the application settings, as
shown in Figure 10.15 and Figure 10.16.

ptg

216 Chapter 10 Publisher, Notifications, and Requests

Listing 10.6 presents the code to send email to users.Add this code to a new script
called email.inc in your inc directory.

Listing 10.6 email.inc: Sending Facebook Email to Application Users

<?php

/** Sends an email to a user */

function sendUserEmail(Facebook $facebook, $target, Array $bodyData) {

$return = '';

try {

// only send the $target email if they've given us the right to do so

if($facebook->api_client->users_hasAppPermission('email', $target)) {

$sender = $facebook->user;

$textBody = getTextEmailBody($facebook, $bodyData);

$fbmlBody = getFbmlEmailBody($sender, $target, $bodyData);

$subject =

"<fb:name uid='$sender' useyou='false' /> sent you a Compliment!";

// send the email; this API call will return a comma-separated list of

// the users to whom the email was successfully sent or an empty string

// otherwise

$return =

$facebook->api_client->notifications_sendEmail($target,

$subject,

$textBody,

$fbmlBody);

}

} catch(FacebookRestClientException $ex) {

wr($ex->__toString());

}

return isset($return[0]);

}

/** used to build the FBML body of an email message; used when recipient's email

client accepts HTML email */

function getFbmlEmailBody($sender, $target, Array $bodyData) {

$appUrl = "{$bodyData['images'][0]['href']}/?appref=email";

return "

<meta content='text/html; charset=UTF-8' http-equiv='content-type'>

ptg

217Application Email

Listing 10.6 Continued

<style type='text/css'>

table { text-align: center; font-size: 16px;

font-family: Arial,Helvetica,sans-serif; }

img { border: none; width: 96px; height: 96px; }

td.compliment { color: #33cc00; font-weight: bold; }

td p { font-size: 12px; }

</style>

<table>

<tbody>

<tr>

<td><fb:name uid='$target' firstnameonly='true' useyou='false' />,

</td>

</tr>

<tr>

<td>

<fb:name uid='$sender' useyou='false' firstnameonly='true' />

thinks you are</td>

</tr>

<tr>

<td>

<img alt='You\'re {$bodyData['ctitle']}!'

title='You\'re {$bodyData['ctitle']}!'

src='{$bodyData['images'][0]['src']}'>

</td>

</tr>

<tr>

<td class='compliment'>{$bodyData['ctitle']}</td>

</tr>

<tr>

<td>Because you '{$bodyData['ctext']}'</td>

</tr>

<tr>

<td>

<p>

Click here

to send a Compliment back to

<fb:name uid='$sender' useyou='false' firstnameonly='true' />!

</p>

</td>

</tr>

</tbody>

</table>";

ptg

218 Chapter 10 Publisher, Notifications, and Requests

Listing 10.6 Continued

}

/** gets the plain text body for an email; used if email client only accepts

text email */

function getTextEmailBody(Facebook $facebook, Array $bodyData) {

$compliment = "";

$userInfo = $facebook->api_client->users_getInfo($facebook->user,

'first_name');

if(isset($userInfo[0]) && isset($userInfo[0]['first_name'])) {

$userInfo['first_name'] = $userInfo[0]['first_name'];

} else {

$userInfo['first_name'] = 'A friend';

}

return

"{$userInfo['first_name']} sent you a Compliment ".

"using the Compliments application on Facebook!".PHP_EOL.PHP_EOL.

"They think you are '{$bodyData['ctitle']}' because ".

"you '{$bodyData['ctext']}'".PHP_EOL.PHP_EOL.

"—-".PHP_EOL.

"Check it out at ".FB_APP_URL."!".PHP_EOL;

}

?>

Notice that we call two Facebook API methods to handle the task of sending email.
First, we use the users_hasAppPermission() method to check that the target has
granted the email extended permission. If they have, we call
notifications_sendEmail() to actually send the email to the user.
notifications_sendEmail() takes two parameters for the content of the body of the
email it creates.The first, $textBody (in Listing 10.6), sets the plain text body in case the
user’s email only accepts text email.The second, $fbmlBody, provides FBML for HTML-
enabled clients.

As you can see, we use a variety of markup in the FBML email body because Face-
book permits a lot of tags to be used in email. Facebook always uses the FBML body if
it’s present and falls back on the plain-text version if it’s not, but you must provide a value
for one of these two or the method will fail.Also, notice that we call the
users_getInfo() API method in the getTextEmailBody() function because the plain-
text body parameter passed to notifications_sendEmail() will not be parsed as
FBML; therefore, we cannot use the <fb:name> tag and have Facebook render the
sender’s name as we previously did.

To actually send the email, we’ll add a checkbox to the form in index.php, which is
checked by default.We use this value in feed_form_callback.php to determine whether

ptg

219Application Email

to call sendUserEmail().Add the bold code in Listing 10.7 to renderPage() in
index.php.

Listing 10.7 index.php: renderPage() Function Updated with a Checkbox to
Enable Email

<tr>

<td class='label'>because:</td>

<td class='content'>

<input class='textInput' name='compliment' />

</td>

</tr>

<tr>

<td class='content' colspan='2'>

<input type='checkbox' name='email' checked='checked' />

Check this box to send your friend an email as well.

</td>

</tr>

</table>

Now, modify the feed_form_callback.php script to call the sendUserEmail() func-
tion. Listing 10.8 shows the updated code to allow this.

Listing 10.8 feed_form_callback.php: Calling sendUserEmail()

<?php

require_once 'inc/globals.inc';

require_once 'inc/utils.inc';

require_once 'inc/db.inc';

require_once 'inc/profile.inc';

require_once 'inc/notifications.inc';

require_once 'inc/email.inc';

// some code elided for clarity...

if('multiFeedStory' === $feedFormType) {

$feed = array('template_id' => TEMPLATE_BUNDLE_MULTIFEEDSTORY_1,

'template_data' =>

array('app' => 'Compliments',

'ctitle' => $comp['title'],

'ctext' => $compliment,

'images' => array($images)));

if(! sendUserNotification($facebook, $target)) {

echo json_encode(

array('errorCode' => FACEBOOK_API_VALIDATION_ERROR,

'errorTitle' => 'Notifications Failed!',

'errorMessage'=> 'Error sending Facebook notifications.'));

ptg

220 Chapter 10 Publisher, Notifications, and Requests

Listing 10.8 Continued

die();

}

if('on' !== $_POST['email'] ||

! sendUserEmail($facebook,

$target,

$feed['template_data'])) {

wr(basename(__FILE__)." no email sent to $target.");

}

} else { // rest of file...

Now, when you send a compliment to a friend that’s enabled email, she should see a
message, like the one shown in Figure 10.17, if she accepts HTML email. If she does not
accept HTML, she’ll see a plain-text email, as shown in Figure 10.18.

Figure 10.17 Sample HTML email sent by the
Compliments application

Figure 10.18 Plain-text email sent by the Compliments
application

ptg

221Requests

You would think that clicking one of the links at the end of emails in Figure 10.17
and Figure 10.18 to disable the sending of emails would direct the user to a similar appli-
cation settings page, like that shown previously in Figure 10.15; however, these links point
to the main user settings page for her Facebook account.There are no direct links to ap-
plication settings for a specific application.

Requests
The next communication channel to discuss is requests. In a general sense, requests can be
seen as notifications that provide a call to action.Their sole purpose is to ask a user to do
something with an application, unlike Feed stories, notifications, or email.All these can
provide secondary links to or suggestions for using an application, but their main focus is
provide information rather than demanding a user act in an explicit way. By far, the most
popular and prevalent form of requests are application invitations. Invitations obviously
are designed to get an application more users. Facebook also uses them to send friend,
event, and group invitations.

Overview of Requests and Invitations
No other application communication type in Facebook has been more maligned than in-
vitations, and for good reason. In the early days of the Facebook Platform, invitations
were the easiest and best way for applications to quickly gain users. However, many appli-
cations abused them terribly by requiring new users to invite all of their friends before
being able to actually use them.This, of course, resulted in some applications gaining mil-
lions of users in a matter of days, but at the expense of users’ patience and goodwill.

To address this problem, Facebook first put a limit on the number of friends that could
be invited with a single invitation. Developers quickly countered by coding multiple suc-
cessions of invitation pages into applications to achieve the same result, or by requiring
users to invite friends before being able to access some critical piece of functionality in
their applications. Quiz-type applications were notorious for requiring invitations to be
sent before users could get their results, for example.

Facebook responded by requiring that all invitation screens shown to a user had some
way for them to skip or opt out of the invitation process; moreover, it required all devel-
opers to use a standardized Facebook invitation control that all users would come to im-
mediately recognize.This control provided a link for users to report forced invitation
schemes used by applications and allowed Facebook to restrict the grossest offenders. Still,
invitations clogged the News feeds of every user. Finally, Facebook launched a complete
user-interface redesign that pushed invitations to a much less noticeable part of users’
Home pages and removed them from their profiles entirely. Users now must manually
view them from their Home page Requests section if they so desire, as shown in Figure
10.19. Notice that all of them are rolled up an Other Requests link on the user’s Home
page, depending on how many outstanding unviewed requests a user has. Friend, event,
and group requests are always shown.

ptg

222 Chapter 10 Publisher, Notifications, and Requests

Figure 10.20 shows the effect having few outstanding requests has on a user being able
to see your invitation directly.

So, with all the controversy surrounding them, why should developers use requests and
invitations? Because they are still a direct way for an application to gain new users, al-
though their efficacy in doing so is undoubtedly diminished from what it once was, espe-
cially with the rise of the Facebook Feed. Nevertheless, they offer developers an
important channel for viral growth, and they provide the easiest way for them to target
multiple users at once. multiFeedStory Feed forms are the only other communication
mechanism that allows applications to target a user’s friends who have not authorized an
application. However, multiFeedStory forms can only target up to three users at once.
Application users can potentially send many more invitations to their friends than this,
depending on the number of requests the application is allowed to send per user per day.
Currently, this starts at 20; however, Facebook increases this number as an application
gains users and if these users respond well to it.We discuss that process when we present
allocations in the section,“Application Messaging and Allocations.”

Sending Requests and Invitations
In FBML-based canvas pages, applications must present users with a standardized Face-
book invitation control, shown in Figure 10.21, that’s comprised of a number of special-
ized FBML tags.We’ll add another tab to the user interface in the Compliments
application to show the invite control on its own page. Listing 10.9 shows the code
needed to do this.

Figure 10.19 Invitations and requests have been de-emphasized in the
latest revision of the Facebook user interface.

Figure 10.20 If a user only has a few pending
requests, the direct link to the invitation is shown

in the Requests area.

ptg

223Requests

Figure 10.21 This is the invitation page with which most
Facebook users are familiar.

Listing 10.9 invite.php: Showing the Standard Facebook Invitation FBML Control

<?php

require_once 'inc/globals.inc';

require_once 'inc/utils.inc';

$facebook = new Facebook(FB_API_KEY, FB_APP_SECRET);

$pageOutput = getHeaderContent();

$pageOutput .= getInviteContent();

echo($pageOutput);

/** Gets the markup to show the default Facebook invite control */

function getInviteContent() {

global $facebook;

$content = "

<fb:name uid=\"{$facebook->user}\" useyou=\"false\" /> loves sending

 compliments to their friends and

would like you to be able to do the same!

<fb:req-choice url=\"".FB_APP_URL."\"

label=\"Send your Own!\" />";

ptg

224 Chapter 10 Publisher, Notifications, and Requests

Listing 10.9 Continued

$content = htmlentities($content);

$appuserFriendsArray = $facebook->api_client->friends_getAppUsers();

$appuserFriendsArray = implode(',', $appuserFriendsArray);

return("<fb:request-form

method='post'

type='Compliments'

content='$content'

action='".FB_APP_URL."'

invite='true'>

<fb:multi-friend-selector

actiontext='Allow your friends to send their own Compliments'

exclude_ids='$appuserFriendsArray'

bypass='cancel'

showborder='true'

rows='5'

cols='5'

email_invite='true' />

</fb:request-form>");

}

/** renders the page header and navigation */

function getHeaderContent() {

$header = "

<link rel='stylesheet' type='text/css'

href='".LOCAL_APP_URL.getFileVer("/css/main.css")."' />

<!—[if IE]>

<link rel='stylesheet' type='text/css'

href='".LOCAL_APP_URL.getFileVer("/css/ie.css")."' />

<![endif]—>

<fb:title>Send a Compliment</fb:title>

<div class='banner'

style='background: url(".LOCAL_APP_URL."/img/banner.png) no-repeat;' >

<div id='buttons' class='clearfix' >

<div id='addbutton'>

<fb:if-section-not-added section='profile'>

<fb:add-section-button section='profile' />

</fb:if-section-not-added>

</div>

<div id='infobutton'>

<fb:if-section-not-added section='info'>

<fb:add-section-button section='info' />

</fb:if-section-not-added>

</div>

</div>

</div>

ptg

225Requests

Listing 10.9 Continued

<fb:tabs>

<fb:tab-item href='".FB_APP_URL."/' title='Send(FBML)' selected='true'/>

<fb:tab-item href='".FB_APP_URL."/index_iframe.php?fb_force_mode=iframe'

title='Send(IFrame)' />

<fb:tab-item href='".FB_APP_URL."/invite.php'

title='Invite your Friends' />

</fb:tabs>";

return $header;

}

?>

Add the code in Listing 10.9 into a new file called invite.php in your application’s
root directory.You’ll also need to update index.php to show the new tab. Update its
getHeaderContent() function, as shown in the following code (new code shown in bold):

/** renders the page header and navigation */

function getHeaderContent() {

// code hidden for clarity...

$header .= "

<fb:tabs>

<fb:tab-item href='".FB_APP_URL."/' title='Send(FBML)' selected='true'/>

<fb:tab-item href='".FB_APP_URL."/index_iframe.php?fb_force_mode=iframe'

title='Send(IFrame)' />

<fb:tab-item href='".FB_APP_URL."/invite.php'

title='Invite your Friends' />

</fb:tabs>";

return $header; }

The new tab, and the resulting invite control the code in Listing 10.9 renders, was
shown in Figure 10.21.As Figure 10.22 illustrates, clicking the invite link shows a pre-
view of the resulting invite to the sender and allows him to add his own message or can-
cel its delivery.We cover the details of the FBML tags and their attributes used in Listing
10.9 in the following sections.

Invites use a set of specialized FBML tags to render an invite control.The first,
<fb:request-form>, renders as a specialized HTML form whose sole purpose is to send
requests/invites to users.Table 10.3 presents the attributes used in this tag and how they
control its behavior and appearance.

The most important and frustrating part of using <fb:request-form> is getting the
value for the content attribute right. Pay careful attention that all quotes are escaped cor-
rectly when using it. If you receive FBML rendering errors when rendering an
<fb:request-form>, this attribute’s value is the first place to look.View the page’s source

ptg

226 Chapter 10 Publisher, Notifications, and Requests

Figure 10.22 When a user clicks the link to send an invitation or re-
quest, he is shown a dialog that shows a preview of what the receiver will
see on her Requests page and allows him to add his own message to the

invitation.

Although it can be used to send requests to a single user, <fb:request-form> is used
most often to target multiple users.To give it this capability, you must include one of the
FBML tags that display different user selection options to the user. <fb:friend-
selector> is the first one we’ll discuss.You’re already familiar with it because you used it
to provide the typeahead control on the main form that allows you choose a friend to
which you’ll send a compliment. Next on the list is the <fb:multi-friend-input> tag.
It allows you to select multiple friends and stores each one in the control as their name is
typed and selected (see Figure 10.23).To actually be able to send the invitation when us-
ing either of these multiple-selection tags, you must include the <fb:request-form-
submit> tag, which renders a Submit button on the form.The Submit button is special in
that it prompts the user with a dialog to confirm the sending of the request as a way to
further protect recipients from unwanted invitations.

Finally, we introduce the <fb:multi-friend-selector> tag. It does not require the
<fb:request-form-submit> tag to be present on <fb:request-form>. It not only pro-
vides the typeahead functionality of the previous two tags, but it also allows a user to
choose from his friends graphically, as Figure 10.24 shows.There are actually a few flavors of
this tag, each of which offers similar behavior but in different-sized packages. Discussing all
the potential combinations here would be overwhelming.The one we used in invite.php
is designed to be used when an application has a full canvas page or large space to show a
selection form that can show the profile pictures and names of friends.This tag renders the

in your browser and pay attention to all the quotes, opening, and closing tags in the
content FBML.You can also use the Facebook FBML Test Console to verify your code.

ptg

227Requests

Figure 10.23 The <fb:multi-friend-
input> FBML tag allows users to type the

names of and select multiple users from their
list of friends.

Table 10.3 <fb:request-form> Attributes

Attribute Description

type Set to the type of invite/request to create and is usu-
ally set to the name of the application originating the
request. Required.

content Contains the markup of the actual request/invite. It
should be FBML that only contains links and the
<fb:req-choice> FBML tag. This is by far the
most confusing attribute and piece of functionality
in the request/invite creation process. You must
encode the value using the PHP htmlentities()

function or this content does not render
correctly.

invite Controls whether an invite or request is sent. It’s set to
false (the default) to generate a request form, true
to generate an invite form.

action Sets a custom redirect URL where users are sent after
sending or skipping the request. It defaults to an appli-
cation’s Canvas Page URL. You cannot and must not
use this to entice or force a user to invite others if she
skips doing so the first time.

method Specifies whether to use GET or POST for the submit,
as you would for an HTML form.

grid of users you see displayed in Figure 10.21 and Figure 10.22. It also offers another great
feature: Users can invite their friends who aren’t yet on Facebook by typing their email ad-
dress in the bottom of the control.This tag provides several attributes that control its behav-
ior, styling, and content that merit further attention.Table 10.4 provides the details.

ptg

228 Chapter 10 Publisher, Notifications, and Requests

Table 10.4 <fb:multi-friend-selector> Attributes

Attribute Description

actiontext Used as the title of the rendered control.
Required.

showborder If set to true, this shows a border around the out-
side of the rendered control.

cols Set this to the number of columns of Facebook
user profile pictures to show in the control. This
value determines the width of the control and can
be set to 2, 3, or 5. Defaults to 5.

rows Controls the number of rows of friends that dis-
play in the control. The default is 5, and it must
be set to a value between 3 and 10.

max Controls the total number of friends that can be
selected in the control at once. Must be a value
between 1 and 35, but is capped by the number
of requests the user has remaining for the day.

exclude_ids Set to a comma-separated list of Facebook user
IDs, it contains all the friends of the current user
that will not be shown in the selection area of the
control. This attribute is extremely critical be-
cause it allows you to exclude friends of the cur-
rent user, who’ve also authorized the application,
from receiving invitations.

Figure 10.24 <fb:multi-friend-selector> allows both
typeahead and graphical selection of users.

The showborder attribute has a strange side effect that can affect the style of the ren-
dered control: If you don’t set it to true, the control still takes up the space for the bor-
der, as shown in Figure 10.25.

ptg

229Requests

With Border:

Without Border:

Figure 10.25 Facebook still uses the space oc-
cupied by the border when it renders <fb:multi-
friend-selector> with showborder set to

false.

Attribute Description

Bypass Used for the label of the Skip button. Set this
attribute’s value to skip, step, or cancel,

which render Skip, Skip This Step,

or Cancel for the button’s label (respec-
tively).

email_invite Set this to true if you want to display the box at
the bottom of the control to allow the user to
invite friends via email who have not yet joined
Facebook. Defaults to true.

Requests Versus Invitations
Because we use the terms request and invitation interchangeably, you might be confused as
to the difference between the two. It’s quite simple and controlled by the invite attribute
of the <fb:request-form> tag we showed in Table 10.5. If the value of this attribute is
true, Facebook renders the word invite or invitation in the markup produced for the tag. If
it’s false, it uses request instead. If you go back to Figure 10.22 and replace every in-
stance of the word invitation with request, you’d see the difference that both the sender and
receiver would see between the two.

Table 10.4 Continued

ptg

230 Chapter 10 Publisher, Notifications, and Requests

Figure 10.26 To view the allocation limits for an appli-
cation, click the Statistics link to display the Application

Insights tool.

Application Messaging and Allocations
Now that we’ve covered all the major ways an application can communicate with its users
and implemented them all in the Compliments application, it’s time for a dose of reality.
Facebook strictly limits how many messages of a given type an application can send to its
users. In Sandbox mode, an application is freed from many of these limits, but after it’s re-
leased to the general Facebook population, it is carefully monitored and enforced.

In the early days of the Facebook Platform, few constraints were placed on application
messaging, and the daily limits for each type of message were generous, especially in the
numbers of invitations and notifications they could send.Applications abused these limits
and, soon, users were inundated with copious amounts of application communication
that many saw as spam. Facebook responded by imposing the allocation system that’s in
place today.

Viewing Application Allocation Limits
To view the allocation limits for Compliments, open the Developer Settings for the appli-
cation. Select Compliments (if it is not already selected) and choose Statistics from the list
of links along the right side of the screen, as shown in Figure 10.26.This brings up the In-
sights tool for Compliments. Click the Allocations tab, as Figure 10.27 shows.

Facebook limits an application’s capability to send two different types of messaging:
user-to-user notifications and requests/invitations.Application-to-user notifications are
limited to seven per week per user, and all applications on Facebook have this limit.

ptg

231Application Messaging and Allocations

Applications are placed in groups that Facebook calls buckets; they determine the maxi-
mum number of notifications and requests they can send per user per day.The upper limits
of each bucket do not change linearly. Facebook does not publish these limits, but as you
can see in Figure 10.27, new applications are placed a little above the middle of the scale.

How Facebook Determines Allocations
Facebook does not publicly provide the algorithms it uses to determine application alloca-
tions, but it certainly provides Platform guidelines to follow and gives developers access to
some of the user-response metrics Facebook uses in the process. Facebook closely monitors
how users respond to application messaging, especially notifications and requests.To see what
they track for a given application and why, click the User Response tab of the Insights tool.

Not Enough Data?
Most likely, the Metric Ratio column for your application only contains the words “Not
Enough Data.” Because Compliments is in developer Sandbox mode, it has no users other
than its developers. If the application were released to the public, these columns would con-
tain user-response metrics. We’ll address this by showing user-response data from one of
our established applications, Doorbell (http://apps.facebook.com/mydoorbell/), which at
the time of this writing, has more than 825,000 users.

Figure 10.27 The Insights tool provides developers the alloca-
tion limits set for an application’s messaging channels.

Because user-to-user notifications have dynamic limits, when we use the term notifications
in this section, we mean user-to-user notifications.As you probably noticed in Figure 10.27,
emails are also listed as being subject to an allocation limit, but these limits do not apply to
new applications, only those that were launched before extended permissions were intro-
duced.Applications can send as many emails as they want to their users after they are
granted the email extended permission. However, Facebook still tracks user response to
email by monitoring the number of times users click the disable link sent in every
application-originated one.

ptg

232 Chapter 10 Publisher, Notifications, and Requests

Figure 10.28 The Insights tool displays user-response met-
rics for the Doorbell application.

As Figure 10.28 shows, Facebook tracks several different metrics related to application
messaging and users’ responses to them. Notice that all metric-ratio calculations use
actions taken over the last seven days (notifications viewed, times request form shown, and
so on).These metrics are one of the variables that Facebook uses to determine an applica-
tion’s allocations, but each of them does not carry the same weight. Facebook calculates
allocations daily; it uses both data from the last seven days and some historical data to do
so.The following sections detail the different user-response metrics that Facebook uses
and how they’re calculated.

Notification Allocations
Facebook uses two different notification metrics when calculating allocations for an ap-
plication.These apply to both user-to-user and application-to-user notifications. It is un-
clear which type of notification, if either, has more weight in final allocation numbers.

The first ratio, Spam Reports per First Impression, is calculated by dividing the number
of notifications users flagged as spam by the number of unread notifications viewed for the
first time over the last seven days.The denominator in this equation deserves more explana-
tion. It means that when a user goes to his Notifications tab and flags all notifications from a
specific application as spam, Facebook takes into account how many of the total number of
notifications on the page are being viewed by that user for the first time in the last week.
Figure 10.29 shows how users can tell Facebook that specific notifications are spam.

ptg

233Application Messaging and Allocations

Figure 10.29 Users can hide all notifications from a specific applica-
tion or report them as spam from the Notifications tab of their Inbox.

The second, Hide Alls per First Impression, is calculated by dividing the number of no-
tifications users hid categorically divided by the number of unread notifications viewed for
the first time over the last seven days. Figure 10.29 also shows one way users can Hide
All notifications from a given application. Users can also control hiding all notifications
from specific applications by using the checkboxes in the ApplicationsYou’ve Authorized
section along the right column of the Notifications tab. Removing the checkmark
from an application’s checkbox has the same effect as clicking the Hide All button in
Figure 10.29.

Request Allocations
Facebook calculates four metric ratios for requests. Some of these definitely have greater
influence than others in the allocation determination.As previously mentioned, requests
are identical to invitations and only differ by name.We use requests to refer to both types
in the following paragraphs.

The ratio for the first request metric, Force Invites per Impressions, is influential. Users
are shown the Report Forced Invites link on a request form if they view it more than
once in a short period of time. Figure 10.30 shows an invite form after the user clicks the
link. Clicking the link brings up the Forced Invite Reported dialog. Notice that a user
can immediately remove any application that attempts to force them to invite others.
Also, notice that the median for all applications is effectively 0%—Facebook does not take
these lightly.To calculate the ratio, Facebook uses the number of times users have clicked
the Report Forced Invite link in the form divided by the number of request forms shown
to all users of the application.

The next three metric ratios are similar and only differ by the actions users take in
response to requests. Users can accept, ignore, or block requests after they receive them, as
Figure 10.31 illustrates. Facebook determines three ratios for request-related user actions:
Accepts per Action, Ignores per Action, and Blocks. Each is calculated by dividing the number
of requests accepted, ignored, or blocked (depending on the metric) by the sum of all
requests accepted, ignored, or blocked.

ptg

234 Chapter 10 Publisher, Notifications, and Requests

Email Allocations
When Facebook sends mail from an application to a user, it places a link to allow the user
to disable any future emails from that application. If the link is placed at the top of the
email, there is a greater chance of it being clicked by users (because it’s the first thing they
read) than if it’s placed at the bottom. Facebook takes the placement of this link into ac-
count when calculating the Weighted Disable Clicks per Sent ratio.The ratio itself repre-
sents the number of times the links were clicked divided by the number of emails sent.
Figure 10.32 shows this link in an example email message.

Figure 10.30 The Forced Invited Reported dialog shown after click-
ing the Report Forced Invites link on a request form.

Figure 10.31 Recipients of invitations have the option to accept them, ig-
nore them, or block them.

ptg

235Application Messaging and Allocations

Figure 10.32 Facebook provides a link to disable the sending
of emails from an application. It’s up to Facebook where it’s
placed, but ideally, it should be at the end of the message to

minimize its click-through rate.

As previously stated, email allocations and the metric ratios associated with them are
no longer relevant to applications launched since Facebook introduced the email ex-
tended permission.The metric still is available in the Insights tool, so it deserves men-
tion. Before the email permission was introduced, applications could send a small
number of emails to their users every day. Currently, these applications are grandfa-
thered and still allowed to send email without user permission.This metric only applies
to them.

Tracking Allocations
The values shown for Doorbell in Figure 10.28 merit further study. First, the application
currently only uses application-to-user notifications, and these are much less likely than
the Facebook average to be flagged as spam, but a bit more likely to be hidden the first
time they’re viewed.This might impact its notification allocations, but probably not by
much. Currently, the application is in bucket 13 (out of a possible 16) and is granted
60 notifications per user per day.The only requests this application sends are invitations,
and they are 12 percent more likely to be ignored and a whopping 71 percent more
likely to be blocked than the average application invitations, which undoubtedly directly
affects its request allocations. Currently, the application is in request bucket 7 and is only
allowed 6 per user per day (14 less than Compliments), which, as a new application, starts
in bucket 9 and is granted 20 requests per day.

Tracking Allocations with the Facebook API
Because messaging is so important to an application’s success, it’s important for developers
to pay close attention to the allocations their applications have been granted.We’ve
shown one way to get them by checking the values shown on the Allocations tab from
the Insights tool.This helps, but developers must manually check it for every application
they own.

It would be much more convenient if there were some way for an application to
check its messaging allocations itself and adjust its messaging behavior in response. Face-
book provides some of this functionality via the admin_getAllocations() API method

ptg

236 Chapter 10 Publisher, Notifications, and Requests

(admin_getAllocations() in the PHP client library), which returns the limit for a given
message integration point. Unfortunately, the admin.getAllocations() method does
not provide the number of messages of a specific type that have been sent by a specific
user or the application.The following list shows the different string values for the
integration_point_name parameter that this method accepts and what the method re-
turns in response:

n notifications_per_day. Returns the number of user-to-user notifications
the application can send per user per day

n announcement_notifications_per_day. Returns the number of
application-to-users the application can send per week

n requests_per_day. Returns the number of requests the application can send
per user per day

Best Practices
Although Facebook does not disclose either how much weight each user-response metric
ratio has on its allocation calculations, nor does it provide any information on what hap-
pens if an application consistently attempts to exceed them, it is a good practice for devel-
opers to try to keep their applications from exceeding the limits they’ve been allocated,
because this undoubtedly has some effect.The easiest way to do this is to track the num-
ber of messages of a given type sent by each application and user per day, and prevent ap-
plications from sending messages if they exceed their daily allocations. Facebook currently
resets the values at 12 AM Pacific time. Developers could have a script for their applica-
tions that run daily via a cron job sometime after this to both store the daily limits (for
efficiency) and reset all the counts.This is beyond the scope of this chapter, but keep it in
mind when you’re designing a robust application.

Application user ratings can also affect allocations.These ratings were introduced in
May 2009, as part of the launch of a completely redesigned Application Directory. Devel-
opers have reported that applications with high user ratings are being granted higher allo-
cations than applications with low user ratings, even if the application has poor
user-response metrics. Facebook has not publicly confirmed this, but it makes sense. Get-
ting an application verified through the Facebook Verified Apps program also has directly
affects allocations:They get a two-bucket bump for both user-to-user notifications and
requests after they’re verified.Additionally, they are given special priority in the Applica-
tion Directory, which increases their visibility to new users.

Facebook Sharing
There is yet one more way to publish content to Facebook. It’s called Sharing, and Face-
book provides multiple ways to access it. Sharing is interesting because it offers users a
means to publish content to Facebook in two completely different ways. Sharing func-
tionality can be added to applications via the <fb:share-button> FBML tag.

ptg

237Facebook Sharing

Figure 10.33 Facebook Share
buttons in an application

Figure 10.34 Facebook provides a Share action
link at the end of many of its Feed stories.

Publishing Content Via Sharing
The Share button rendered from <fb:share-button> is undoubtedly familiar to most
Facebook users. Figure 10.33 shows the default appearance of this familiar button, both in
its normal and hovered state. Notice the tooltip in the figure: It mentions that users can
either send something to their friends or post it on their profile.

The result of sending something to a profile combines the behavior of publishing
content with Feed forms or Publishers:A Feed story is published to the user’s profile,
Home page, and their friends’ Home pages, effectively targeting every stream-
integration point.The only noticeable difference in the Feed stories produced by the
Sharing system is that Facebook adds a Share action link to them that provides the
same behavior as the button. In fact, Facebook adds the Share action link to many of
the Feed stories it automatically publishes, such as photo notifications, imported Face-
book Notes notifications, and others. Notice the Share action links in the Facebook
Note Feed story in Figure 10.34.

The other publishing option offered by Sharing is unique. It allows users to send con-
tent to a maximum of 20 friends’ Facebook Inboxes as Facebook messages.This is the
only method for applications to send content to a user’s Facebook Inbox. Unfortunately,
there’s no way to do this programmatically.

ptg

238 Chapter 10 Publisher, Notifications, and Requests

Sharing Preview
The interface users are presented with when attempting to share content is also unique.
Figure 10.35 and Figure 10.36 show the dialog users are shown when a Share button or
Share link is clicked. In Figure 10.35, the Send a Message tab is selected. Notice that, in
the To: field, the user is given the option to type the name of a specific friend, a Facebook
friend list, or an external email address to which he can send content. Users can also pro-
vide their own custom subject and message. Figure 10.36, on the other hand, displays an
interface similar to that used for publishing stories from a Feed form.

Figure 10.35 Facebook Share preview dialog Send a
Message tab

Figure 10.36 Facebook Share preview dialog Post to
Profile tab

ptg

239Facebook Sharing

The dialog also displays a content preview that can be customized by the application
for each media type that can be shared; links, photos, and multimedia all have different
previews.

The following code shows how to render a button to share a link using the
<fb:share-button> FBML tag. Figure 10.37 shows the preview dialog rendered from it
when a user clicks it. Notice that there’s no image shown in the preview; the
apps.facebook.com subdomain is used as the title, and the URL is shown below it:

<fb:share-button class="url" href="http://apps.facebook.com/example" />

Figure 10.37 Share preview for a basic hyperlink

To make content more likely to be shared by others, it’s best to make the preview of
that content as engaging as possible. Listing 10.10 shows how to implement a Facebook
Share button for a web page with a preview image. Figure 10.38 shows the preview gen-
erated by clicking a Share button using this code. Notice how the values from the
content attributes from the <meta name=’title’> and <meta name=’description’>

elements are used in the preview.The image preview is generated from the URL passed
in the <link rel=’image_src’> element.

Listing 10.10 <fb:share-button> FBML for a Web Page Preview

<fb:share-button class="meta">

<meta name="title" content="meta title content" />

<meta name="description" content="meta description content" />

<link rel="target_url" href="http://www.example.com/" />

<link rel="image_src" href="http://www.example.com/images/img.jpg" />

</fb:share-button>

ptg

240 Chapter 10 Publisher, Notifications, and Requests

Facebook also allows the sharing of multimedia content. For example, the FBML
shown in Listing 10.11 is used to share a podcast.The rendered content looks similar to
what was shown in Figure 10.37.

Listing 10.11 <fb:share-button> FBML for Sharing an Audio File

<fb:share-button class="meta" >

<meta name="medium" content="audio" />

<meta name="title" content="The Greatest Podcast Ever" />

<meta name="description" content="A weekly podcast about the greatest things
ever" />

<meta name="audio_type" content="application/mp3" />

<meta name="audio_title" content="Episode 20: Why Facebook is Great" />

<meta name="audio_artist" content="John Doe" />

<link rel="image_src" href="http://example.com/images/podcast.gif" />

<link rel="audio_src" href="http://example.com/podcasts/podcast.mp3" />

<link rel="target_url" href="http://example.com/podcasts/podcast.mp3" />

</fb:share-button>

As Listings 10.10 and 10.11 illustrate, <fb:share-button> can contain <meta> and
<link> elements and a class attribute that controls its behavior.The class attribute
should be set to url if the button will be used to share a link and meta if it will be used
to share other media, such as images, audio, or video. None of these elements can contain
any HTML in their content attribute values—Facebook strips it out.

When using <fb:share-button class=’meta’>, always at least provide title and
description <meta> elements to ensure the preview is correctly rendered.As Figure 10.38
demonstrates, title is the title of the preview (and of the resulting Feed story or
Facebook message). description is the body of the preview, story, or message. If you

Figure 10.38 Share preview for a web page with a pre-
view image

ptg

241Summary

want to provide a preview image, a <link rel=’image_src’> element must be present
with its href attribute set to the image’s full URL. Finally, although Facebook does not
require it, it’s a good practice to provide a <link rel=’target_url’> element. In many
cases, a preview won’t render without it.

Summary
This chapter covered some of the most important messaging channels for Facebook appli-
cations, including the Publisher, notifications, application email, and requests/invitations.
It also discussed using extended permissions to allow users to grant applications access to
more advanced functionality. Finally, it presented how Facebook monitors application
messaging and user response to set messaging limits. Here are some key points:

n The Publisher is one of the most powerful communication channels available to ap-
plication developers.There are two types available, and they allow users to publish
application content directly to the stream and are not subject to allocation limits.

n Facebook provides two different types of notifications: User-to-user notifications
require an active session to be sent, while application-to-user notifications do not.

n Applications can send email to their users, but users must grant an application per-
mission to do so.

n Users can grant applications extended permissions that give them access to an array
of powerful features of the Facebook API that they do not normally have. Facebook
provides several ways for applications to prompt users to request them.

n Requests and invitations are not as important as they once were, but they are still the
most direct way for applications to gain new users. Several controls are available to
customize both the sender’s and receiver’s user experience when dealing with them.

n Facebook restricts the numbers of user-to-user notifications, application-to-user
notifications, and invitations applications can send for a given time period.These al-
location limits are directly related to how users respond to application messaging
and behavior.

n Facebook Sharing allows the publishing of links, photos, and multimedia content to
the stream and the Facebook Inbox.

ptg

This page intentionally left blank

ptg

11
FBJS, Mock AJAX, and Flash

So far, we spent a great deal of time on server-side PHP that comprises Facebook ap-
plications. However, nearly every web application today uses at least some JavaScript for
client-side logic and validation. For Facebook applications, the more logic and processing
that can be offloaded to the user’s machine, the better.Why? First, client-side processing is
free. JavaScript executes within the user’s browser on his local machine.Although hosting
is undoubtedly cheaper than ever, it can still quickly get expensive if an application sud-
denly explodes in popularity or you host several popular applications on a single server.
Secondly, it decreases application response time when code can execute locally without
the user’s browser having to send an HTTP request to a remote server and wait for a re-
sult. Finally, it allows more dynamic user interfaces to be created through the user of
DOM manipulation and technologies, such as AJAX and Flash.

Allowing External JavaScript in Facebook
Most websites or domains that allow third parties to embed JavaScript within them usu-
ally segregate that JavaScript by requiring that it be hosted in IFrames.This keeps them
somewhat insulated from code over which they have little control, because the IFrame’s
contents are usually served from a different domain on a remote server.The browser’s
same-origin policy protects scripts from the remote domain from interacting with those
running in the host page’s window execution context.There are downsides to this ap-
proach, however. First, search engines do not index IFrames like they do normal web
pages.They simply link to the content in the IFrame, not to the page that hosts it. It also
takes time to load the external IFrame code; users do not want to wait for an external
page to populate an IFrame if they are on a page to interact or get information.

Taking these points in context with Facebook, more issues arise. For example, FBML
was designed so that application developers can access Facebook design primitives and
have their code translated into normal HTML and JavaScript that could be served from a
Facebook domain. Remember that applications and their canvas pages are addressed with
URLs, such as the following: http://apps.facebook.com/appname. During the translation
process, Facebook parses an application’s FBML—served from a remote server—to

ptg

244 Chapter 11 FBJS, Mock AJAX, and Flash

normal HTML and JavaScript. It then wraps this code in an HTML <div>, surrounds it
by the Facebook chrome, and serves it up like any other page on its domain. If Facebook
allowed full access to JavaScript in this environment, developers could easily manipulate
not only their own document structure, but the entire Facebook user interface and many
of the client-side subsystems it provides, such as Chat, the Applications menu, or the No-
tifications area.

Profile boxes also present risks.As discussed in Chapter 8,“Updating the Profile,”
their contents are cached and run from Facebook servers. If Facebook allowed arbitrary
JavaScript to run on profile boxes, the code would have access to all the global JavaScript
objects available on the Facebook domain.The security risk to Facebook would be over-
whelming, not only from a DOM manipulation or exploit standpoint, but from a pri-
vacy one:All the personal information of hundreds of millions of Facebook users would
be at risk.

Even with these issues, Facebook had to provide some way to allow developers to use
JavaScript in their Facebook Markup Language (FBML) applications. JavaScript is the
most widely used scripting language for client-side web application development. Devel-
opers would never have adopted the FBML model of application design without it.To
solve this problem, Facebook decided to use a technique, called sandboxing, to allow a
modified, safer version of JavaScript to run within FBML.

Sandboxing
Sandboxing has its roots in the object capability movement of software design and security.
(You can read more about it on the web at http://en.wikipedia.org/wiki/Objectcapability_
model.) Simply put, this is a software security model that believes objects should have no
innate abilities of their own unless they are passed them as a reference or sent them in a
message.

The core JavaScript language and all browsers’ implementations of it violate this
principle in several ways. For example, in the JavaScript core language, global objects
(such as Object, Array, and String) are always accessible to any JavaScript code and can
be changed simply by modifying their prototype properties. Browsers add DOM inter-
faces to allow HTML/XML manipulation of the documents they load that are accessi-
ble to JavaScript; JavaScript functions provided by the browsers, such as
document.write(), can allow arbitrary code or malware to be dynamically injected into
web pages.The core JavaScript eval() function can execute arbitrary code that has ac-
cess to the global environment.

All three of these are simple examples of unintended side effects (or ambient effects, in
object-capability terms) that can lead to disaster. Not to mention the ubiquity of cross-
site scripting (XSS) and cross-site request forgery (XSRF) exploits both enabled by
JavaScript, which have resulted in untold millions of privacy breaches and lost revenue
across the web.To allow JavaScript in some form on FBML pages, Facebook clearly had
to ensure that only a sanitized subset of the full JavaScript language and DOM interfaces
were made available to third-party client-side code.

ptg

245Sandboxing

How Facebook Restricts JavaScript
To create the sandbox, Facebook removed many of the offending functions and access to
the global objects that might be misused.When an FBML application canvas page loads,
or profile content is set via the profile.setFBML() Facebook API method, Facebook
scans it for JavaScript. If it finds any, it automatically places it in a special namespace cre-
ated by prepending every JavaScript function, object, array, variable, and event reference it
finds with an identifier that contains the current application’s ID.This action ensures that
there are no clashes with variables defined in the global namespace and effectively re-
moves the ability for this JavaScript to obtain any reference to global objects or functions.
Facebook also hides the powerful JavaScript eval() function and any global functions
that might be used as attack vectors.

Finally, Facebook significantly modifies the DOM object model.Access to the global
Window object, which is the root object and default execution context in all client-side
JavaScript programming, is forbidden.Also gone is the darling of most client-side web
programmers, the DOM-provided alert() function. DOM properties themselves are
also restricted and only a subset is exposed; however, instead of properties, they are re-
placed with get and set functions. Event handlers are also significantly modified. Many
common event handlers familiar to JavaScript programmers, such as the onload()
functions, are not available, and events themselves are also modified.These are just some
of the changes that Facebook made to JavaScript to create its safer, sanitized Facebook
JavaScript (FBJS).

One of the first questions new Facebook developers have about FBJS is the availability
of third-party JavaScript library support.With the explosion of AJAX-enabled sites, many
libraries—Dojo, Mochikit,YUI, Prototype, Scriptaculous, and jQuery, to name a few—
have been developed that provide loads of extra functionality, objects, and primitives to
JavaScript developers.The short answer is that none of these libraries are available in FBJS.
If you need them for your code, you must use an IFrame-based canvas page to do so.

Sandbox Creation and Initialization
To get a better understanding of the sandbox, we present a simple example using the
FBML Test Console.To use it, log in to Facebook and visit the Developer Tools page at
http://developer.facebook.com/tools.php. Click the FBML Test Console tab.Type this code
into the FBML text field within the console:

Hello World!

<script>

document.getElementById('hello');

</script>

Now, select Canvas from the Position drop-down menu. Next, click the Preview but-
ton and examine the HTML Source window’s contents.As you can see, Facebook creates
a lot of JavaScript in the background for the simple document.getElementId() call made
from a canvas page. Listing 11.1 shows this content in detail (with irrelevant features

ptg

246 Chapter 11 FBJS, Mock AJAX, and Flash

removed or commented out), and we bolded the code from the previous small program
to make it easier to see in context.

Listing 11.1 JavaScript Generated for a Simple “Hello World” FBJS Script

<a href="#" id="app2353941073_hello" onclick="(new Image()).src =

'/ajax/ct.php?app_id=2353941073&action_type=3&

post_form_id=e7270c8ceb77f9ce89258268a463a860&position=3&' +

Math.random();return true;" fbcontext="0dab11581b51">

Hello World!

<script type="text/javascript">

var app_2353941073 = new fbjs_sandbox("2353941073").setBridgeHash("");

app_2353941073.validation_vars = {

<!— 'fb_sig'-style variables —>

};

app_2353941073.context = "0dab11581b51";

app_2353941073.contextd = [JSON code not relevant to discussion];

app_2353941073.data = {

"user": 714497440,

"installed": true

};

app_2353941073.bootstrap();

</script>

<script type="text/javascript">

a2353941073_document.getElementById('hello');

</script>

<!— lots of JavaScript omitted —>

</script>

The most important thing happening in Listing 11.1 is the creation of the sandbox it-
self. Facebook creates the sandbox instance with the code line shown here:

var app_2353941073 = new fbjs_sandbox("2353941073").setBridgeHash("");

Notice that the new sandbox is assigned to a variable called app_[app id], and the
application ID is passed as a parameter to the fbjs_sandbox() constructor.As men-
tioned, Facebook uses this ID to rename all the functions and variables in your FBJS to
ensure that they do not conflict with any other code in the global namespace. Listing 11.2
shows the implementation of fbjs_sandbox().

ptg

247Sandboxing

Listing 11.2 Creation of the fbjs_sandbox Object

function fbjs_sandbox(appid) {

if (fbjs_sandbox.instances['a' + appid]) {

return fbjs_sandbox.instances['a' + appid];

}

this.appid = appid;

this.pending_bootstraps = [];

this.bootstrapped = false;

fbjs_sandbox.instances['a' + appid] = this;

}

fbjs_sandbox.instances = {};

After the sandbox instance is created, Facebook calls the app_[app_id].bootstrap()
function it provides to fill the sandbox.This core function constructs the FBJS sandbox
and sets up the types and functions that are allowed in FBJS. Listing 11.3 shows this func-
tion in detail.We went a step further and bolded the actual FBJS objects and functions
you are allowed to use so that you can easily see the way Facebook creates them.

Listing 11.3 fbjs_sandbox.bootstrap() Function Filling in the FBJS Sandbox

fbjs_sandbox.prototype.bootstrap = function() {

if (!this.bootstrapped) {

var appid = this.appid;

var code = [

'a', appid, '_Math = new fbjs_math();',

'a', appid, '_Date = fbjs_date();',

'a', appid, '_String = new fbjs_string();',

'a', appid, '_RegExp = new fbjs_regexp();',

'a', appid, '_Ajax = fbjs_ajax(', appid, ');',

'a', appid, '_Dialog = fbjs_dialog(', appid, ');',

'a', appid, '_Facebook = new fbjs_facebook(', appid, ');',

'a', appid, '_Animation = new fbjs_animation();',

'a', appid, '_LiveMessage = new fbjs_livemessage(', appid, ');',

'a', appid, '_document = new fbjs_main(', appid, ');9,

'a', appid, '_undefined = undefined;',

'a', appid, '_console = new fbjs_console();',

'a', appid, '_setTimeout = fbjs_sandbox.set_timeout;',

'a', appid, '_setInterval = fbjs_sandbox.set_interval;',

'a', appid, '_escape = escapeURI;',

'a', appid, '_unescape = unescape;'

];

for (var i in {

clearTimeout: 1,

clearInterval: 1,

parseFloat: 1,

parseInt: 1,

ptg

248 Chapter 11 FBJS, Mock AJAX, and Flash

Listing 11.3 Continued

isNaN: 1,

isFinite: 1

}) {

code = code.concat(['a', appid, '_', i, '=', i, ';']);

}

eval(code.join(''));

}

// come code omitted for clarity

this.bootstrapped = true;

}

The code simply builds an array of the object types and global functions that make up
FBJS, and then passes it to JavaScript’s Array.join() function to make a string out of
them.This string is executable JavaScript code, so it’s passed as an argument to an eval()
call to execute the joined string as code, which initializes the sandbox.

As you can see, the FBJS sandbox is built from several internal Facebook objects that
expose a specific set of functions and properties to the client, many of which are covered
in this chapter. In Listing 11.3, the bold names are the actual object names you use in
FBJS to access each type’s functions or properties. For example, if you look at Listing 11.1,
you can notice the original call to document.getElementById() was replaced with
a[app id]_document.getElementById(). In our code, however, we just used document,
not a[app id]_document. Notice that, in Listing 11.3, the a[app_id]_document object
is created from a line in the code array in the bootstrap() function. It’s an instance of a
type known as fbjs_main, but this is hidden from the user.They just use the document
object as they normally would in regular JavaScript.The fbjs_main object exposes spe-
cific functions from its underlying DOM document object for FBJS use.

Basic FBJS
We covered a lot about the how and why of FBJS, so now it’s time to learn what is avail-
able in FBJS.This section overviews some of the major FBJS objects and the functions or
properties they offer.As with any other part of Facebook, FBJS is evolving.This section is
not an exhaustive FBJS reference; it’s more of a guide to some of FBJ’s more interesting
and important features.

FBJS2
In January 2009, Facebook announced a beta of the next major version of FBJS, dubbed
FBJS2. It was designed to allow more access to traditional JavaScript language features,
DOM functionality, and semantics. However, with the rise of Facebook Connect and the func-
tionality recently exposed to IFrame-based canvas pages via XHTML and the Facebook
JavaScript Library, Facebook has temporarily ceased work on it. It has provided a download of
the actual sources for anyone interested. FBJS2 can be downloaded from http://developers.
facebook.com/fbopen/fbjs2-0.1.tar.gz. It is not covered further in this book.

ptg

249Basic FBJS

Browser Detection
Developers regularly use some method of browser detection to work around bugs in
browsers’ implementations, conditionally use specific features, or customize user experi-
ences.Although JavaScript browser detection has faded in popularity in recent years as
browser feature or capability testing has gained in popularity, it is still a valuable tool. Un-
fortunately, the browser object most often used in client-side JavaScript for detection, the
Navigator, is not part of FBJS.

Facebook provides a way to do this, although not a very intuitive one. It involves the
use of the <fb:user-agent> FBML tag.This tag accepts two attributes, includes and
excludes, that are to be set to the value of the user agent (browser name) that the devel-
oper wants to target or exclude inside the FBML tag. Both attributes can be provided;
however, includes are always processed first.The following example shows how the tag is
used in FBML:

<fb:user-agent includes='firefox, ie' excludes='ie 6'>

<!— do something exclusive of Internet Explorer 6 —>

</fb:user-agent>

Developers can use these tags on their canvas pages to set variables in script that can
later be checked in FBJS.Taking the previous code, we can set a variable that tells us that
the browser we are working with is IE 6, as shown here:

<script type='text/javascript'>var isIE6 = true;</script>

<fb:user-agent includes='firefox, ie' excludes='ie 6'>

<script type='text/javascript'>isIE6 = false;</script>

</fb:user-agent>

You can then use the isIE6 variable later in your FBJS code to conditionally execute
code based on its value.This is just one way to detect the browser that Facebook provides.
Of course, it’s also possible to do this on the server side by checking and parsing the value
of the PHP $_SERVER['HTTP_USER_AGENT'] variable. Many excellent examples of doing
this are available on the web.

FBJS and the DOM
One of the most important uses of client-side JavaScript is manipulating a document
loaded into a browser window using the DOM functions provided by the browser in
which the JavaScript is executing. Facebook realized that it had to provide some DOM
manipulation functionality or developers would never adopt FBJS. Facebook implements
many of the familiar DOM functions and some of the properties found in the W3C
DOM Level 1 and 2 specifications; however, properties are converted into functions. Face-
book did this by wrapping numerous DOM properties with get and (sometimes) set
functions. For example, in FBJS, instead of using obj.lastChild in your code, you’d use
obj.getLastChild().

The following sections summarize DOM support in FBJS.We only focus on those
functions or properties that have unique behaviors or syntax, have no equivalent in the

ptg

250 Chapter 11 FBJS, Mock AJAX, and Flash

Figure 11.1 Getting the reference to an FBJS DOM element

DOM, or are of special interest.The remaining DOM properties and functions are easy to
figure out, and Facebook provides an exhaustive list on its site (http://wiki.developers.
facebook.com/index.php/FBJS). Another quick way to get an idea of what functions are
available is through the use of the FBML Test Console, the Firefox browser, and the Fire-
bug Firefox add-on.To use these to get the list of available functions, go to the Facebook
FBML Test Console. Enter this line of code into the FBML edit field:

<h1 onclick='console.log(this);'>hi</h1>

After you do this, click the Preview button and click the “Hi” text in the Facebook
FBML Test Console Preview window. Make sure that you enabled the Firebug console so
that you can see the output of the console.log() call in the previous code.You should
see something similar to what’s shown in Figure 11.1.

Notice that the object reference displayed in the Firebug console window is actually a
link. Click it, and you are taken to the DOM tab, which shows you the list of all the func-
tions Facebook has added to the element. Be sure to check the Show User-defined Prop-
erties and Show User-defined Functions options in the DOM menu. Figure 11.2
illustrates the process and output.The PRIV_obj property displayed at the top of the
DOM list is the Facebook-wrapped instance of the actual <h1> DOM node.

Facebook supports all the usual DOM functions that JavaScript developers are familiar
with, such as appendChild(), insertBefore(), cloneNode(), and others. It exposes a few
properties as get functions for which it provides no partner set function, because the
DOM properties are read-only.Table 11.1 provides these functions, the DOM properties
they wrap, and a description of their behavior.

ptg

251Basic FBJS

Figure 11.2 Displaying FBJS functions and prop-
erties added by Facebook to a DOM element

FBJS DOM Document Object
The document object wraps functionality provided by the native DOM document object
present in all browsers as part of the W3D DOM Level 1 specification.The FBJS version

Table 11.1 Overview of Select FBJS DOM Functions

FBJS Function DOM Property Description

getParentNode() parentNode Gets a reference to the calling ele-
ment’s parent node. Returns null if
used to go beyond the root element
of your FBML code.

getNextSibling()

getPreviousSibling()

nextSibling

previousSibling

Gets a reference to the next or
previous element at the same
level in the document as the current
element.

getFirstChild()

getLastChild()

firstChild

lastChild

Returns a reference to the first or
last child of the current element.

getChildNodes() childNodes Returns a read-only collection of the
child nodes of the current element.
The list returned does not contain
text nodes, unlike its DOM counter-
part.

ptg

252 Chapter 11 FBJS, Mock AJAX, and Flash

Table 11.2 FBJS document Functions

document Function Parameters
(Type)

Notes

getElementById() ID of DOM ele-
ment (string)

Semantically equivalent to the familiar
document.getElementById() func-
tion.

getElementsByTagName() Element tag
name (string)

Not documented in the Facebook docu-
mentation for FBJS, but it works like its
DOM partner.

getRootElement() None Facebook hides the global document
and window objects from FBJS code.
This workaround lets you get access to
the root node of your application con-
tent.

createElement() FBML/HTML
element tag
name (string)

Can create normal HTML elements; how-
ever, for FBML, it is currently restricted
only to the creation of <fb:swf> ele-
ments.

setLocation() URL (string) Replaces the normal DOM location prop-
erty and can redirect the browser to a
new URL.

offers significantly less functionality.Table 11.2 shows the details on some of the most im-
portant functions it offers.

DOM Node Content Manipulation
Facebook provides three functions that allow developers to set the content of a DOM
node.When FBJS first launched, not all these functions were available, so updating the
content of an existing element with HTML was somewhat difficult.The functions Face-
book provides have some quirks that we cover in the following section.

setTextValue()
The setTextValue() function sets the text content of the node on which it’s called.
When using it, you must be aware of a couple of things. First, this only sets text values for
the node. If you add HTML markup as part of the value you want it to set, it is included
as text, not markup.

Here’s a quick demonstration.Type the code shown in Listing 11.4 into the FBML Test
Console FBML edit field.

Listing 11.4 Using the FBJS setTextValue() Function

<h1 onclick='setNodeText(this);'>Click Me</h1>

<script>

ptg

253Basic FBJS

Listing 11.4 Continued

function setNodeText(elt) {

elt.setTextValue('<h2>New Text</h2>');

}

</script>

Now, click the “Click Me” text in the FBML Preview window.You can see that the
text changes from “Click Me” to “<h2>New Text</h2>.” Notice that the <h2> tag is in-
terpreted as text and not used to render the text in an <h2> element.This function only
sets or replaces the text within an element; furthermore, it removes all child elements of
the node on which it’s called, as Listing 11.5 demonstrates. Clicking the text “Click Me”
causes setTextValue() to replace the entire contents of the <h1> element, including the
embedded , with the text “<h2>Thanks!</h2>.” The Facebook documentation
states that no FBML or HTML tags are accepted by setTextValue(). Listing 11.5 shows
that’s not entirely true; they are accepted, but they’re simply inserted as literal text.

Listing 11.5 setTextValue() Removes All Child Nodes

<h1 onclick='setNodeText(this);'>Click me please</h1>

<script>

function setNodeText(elt) {

elt.setTextValue('<h2>Thanks!</h2>');

}

</script>

setInnerFBML()
setInnerFBML() sets static FBML content for an element.There’s one important require-
ment for using it:The value you pass to it must contain a reference to a block of FBML,
not a string of literal FBML.This can be somewhat confusing for those unfamiliar with its
behavior.To set FBML content dynamically for an element, you need to use AJAX, which
is covered later in this chapter.

An example clarifies its use. Replace the call to setTextValue() in Listing 11.5 with
setInnerFBML() and execute it. Notice that the “Click me please” text does not change
as expected, but the FBML Test Console does not show any errors; however, Firebug dis-
plays an error:

fbjs_private.get(fbml_ref) is null

fbjs_dom.prototype.setInnerFBML = function(fbml_ref) {

var html=fbjs_private.get(fbml_ref).htmlstring;

http://static.ak.fbcdn.net/rsrc.php/.../somefile.js

Line 85

Observe in the text of this error that the setInnerFBML() function expects an argu-
ment named fbml_ref.This FBML reference variable is an object created through the use
of a special FBML tag, <fb:js-string>.The purpose of this tag is to render a block of

ptg

254 Chapter 11 FBJS, Mock AJAX, and Flash

FBML as an object instead of directly rendering it to the page. Facebook requires a con-
struct like this, because it needs to parse the string of FBML into its HTML and JavaScript
equivalents before the content is displayed in the element. Because setInnerFBML() only
runs on the client, the string of FBML does not get evaluated by the FBML parser run-
ning on Facebook’s servers. For example, if it were possible to pass a string to this func-
tion, calling setInnerFBML() with an argument such as <fb:name uid=’714497440’/>
would result in that string being rendered as the content of the element, not “Cappy
Popp” as you might expect.

To use setInnerFBML(), you need to create an <fb:js-string> ahead of time and use
it to call setInnerFBML(). Listing 11.6 shows how to accomplish this.

Listing 11.6 Using <fb:js-string> and setInnerFBML() Together

<h1 onclick='setNodeText(this);'>Click me please</h1>

<fb:js-string var='fbml_content'>

<h2>Thanks!</h2>

</fb:js-string>

<script>

function setNodeText(elt) {

elt.setInnerFBML(fbml_content);

}

</script>

Running Listing 11.6 in the FBML Test Console and clicking the “Click me please”
text now displays “Thanks!,” as expected. Observe the bold code in Listing 11.6. It illus-
trates how <fb:js-string> takes an attribute, var, that is set to the name of the
JavaScript variable that is used as the reference to the block of FBML.This variable is
passed to setInnerFBML().We revisit <fb:js-string> when we discuss AJAX later in
this chapter. For now, be aware of <fb:js-string>’s role in the creation of static FBML
content for DOM elements.

setInnerXHTML()
When FBJS first launched, there was no way for developers to set pure HTML content
for elements. For security reasons, the familiar DOM function setInnerHTML() is not part
of FBJS.This posed a real problem for developers because there was no easy way to
quickly add markup to an element or document.To set any kind of markup for an ele-
ment, you had to either know that markup ahead of time and use <fb:js-string> with
setInnerFBML(), use AJAX to have it returned dynamically, or manually add new nodes
to the document using document.createElement(), appendChild(), and other DOM
manipulation functions.

The setInnerXHTML() function rectifies this.This function takes a string of valid
XHTML and inserts it as the content of the DOM node on which it’s called. Be aware
that the parameter passed to setInnerXHTML() must be valid XHTML.This means that it
must contain markup that starts and ends with valid tags, uses all lowercase tag names, be

ptg

255Basic FBJS

correctly nested, and have every tag within it properly closed. Plain text not wrapped in
enclosing tags is not supported. For example, this won’t work: setInnerXHTML('hi'),
while this does: setInnerXHTML('hi').

This function is notoriously fussy about the markup it accepts. For example, you must
also escape characters like “&,” which cannot appear in literal form in most XHTML.This
is something to be aware of when you use setInnerXHTML() to add <a> tags to an ele-
ment dynamically using URLs with query strings. Listing 11.7 shows the issues faced
when using setInnerXHTML() for this.Type this code into the FBML Test Console and
click the Create Link button rendered in the FBML Preview window.

Listing 11.7 Using setInnerXHTML() to Build Hyperlinks

<input type='button' onclick='buildLink(this);' value='Create Link' />

<script>

function buildLink(elt) {

var parent = elt.getParentNode();

var linkDiv = document.createElement('div');

parent.appendChild(linkDiv);

linkDiv.setInnerXHTML("hyperlink");

}

</script>

Notice that, after the button is clicked, no list is added to the Preview window. If you
have Firebug running, turn on Show XML Errors in its Console tab’s drop-down menu.
Now, when you click the button in the Preview window, you see an error like the one
shown in Figure 11.3.

The reason for the error is the embedded ampersand character in the query string of
the URL in the href attribute of the <a> tag.To rectify it, we need to replace it with a
numeric character reference or the string “&.”Try it; you should see that links are added
below the Create Link button every time it’s clicked.

Form Validation
One important activity in client-side JavaScript is HTML <form> validation.All produc-
tion code that accepts user input (using a form or otherwise) always validates user input
ideally both on the client and server side to minimize security risks. FBJS provides many
of the DOM properties and functions that can be used for doing client-side validation.

This section revisits the Compliments application and adds client-side form validation
to it by using FBJS.We no longer use Feed forms in this chapter; instead, later in this
chapter, we introduce a way to submit Feed stories from the client side in FBJS.This is
more efficient because we don’t need multiple round trips to Facebook’s servers to submit
a Feed story.To begin the process of adding client-side validation to our <form>, open the
index.php file and replace the renderPage() function with the code shown in Listing
11.8.We bolded the places where code changes have occurred.

ptg

256 Chapter 11 FBJS, Mock AJAX, and Flash

Figure 11.3 Error shown by Firebug when running the code from Listing 11.7

Listing 11.8 renderPage() Function Updated for Client-Side Validation

function renderPage() {

global $g_categories;

$pageOutput = getHeaderContent();

$pageOutput .= "

<script type='text/javascript'>

function submitForm(formObj) {

return false;

}

</script>

<div id='panel' class='panel'>

<form method='POST' id='complimentform' onsubmit='return submitForm(this);'>

<h1>Select one of your friends and enter your compliment.</h1>

<table id='complimentTable'>

<tr>

<td class='label'>Your Friend:</td>

<td class='content' id='friend_selector'>

<fb:friend-selector id='fsel' name='uid' idname='target' />

</td>

</tr>

<tr>

<td class='label'>is:</td>

<td class='content' id='categories'>";

foreach($g_categories as $name => $info){

$pageOutput .= "

<div class='category clearfix'>

ptg

257Basic FBJS

Listing 11.8 Continued

<img class='categoryImg'

src='".LOCAL_APP_URL."/img/{$info['bigimg']}'/>

{$info['title']}

<input type='radio' name='category' value='$name' />

</div>";

}

$pageOutput .= "

</td>

</tr>

<tr>

<td class='label'>because:</td>

<td class='content'>

<input class='textInput' id='compliment' name='compliment' />

</td>

</tr>

<tr>

<td class='content' colspan='2'>

<input type='checkbox' name='email' checked='checked' />

Check this box to send your friend an email as well.

</td>

</tr>

</table>

<input class='inputbutton' type='submit'

name='submitCompliment'

label='Send Compliment' value='Send Compliment'/>

</form>

<fb:prompt-permission perms='email'>

<div class='perm'>

Click here to receive updates via email!

</div>

</fb:prompt-permission>

</div>

</div>

";

echo $pageOutput;

}

Because we’ll soon be using an FBJS equivalent to a Feed form, there is no need for
the fbType attribute on the <form> element to specify a Feed form type.Also, in this
chapter, we eventually POST the contents of the <form> using AJAX, so we also removed
the action attribute. Finally, we added a simple <script> block to the top of the page,
which contains a submitForm() function that is called when the user clicks the Submit
button for the <form>.We added a FBJS onsubmit() event handler to the <form> ele-
ment to which we pass the instance of the form. Currently, submitForm() just returns
false, which means that the form will not be submitted.

ptg

258 Chapter 11 FBJS, Mock AJAX, and Flash

Now, let’s add some more FBJS to the submitForm() function to get all the values of the
fields from the form. FBJS provides a serialize() function to do the work of parsing the
form’s data into name-value pairs. Update the submitForm() function to contain the code
shown in Listing 11.9.

Listing 11.9 Using the FBJS serialize() Function to Obtain Form Values

<script type='text/javascript'>

function submitForm(formObj) {

var formData = formObj.serialize();

var name = formData.uid;

var compliment = formData.compliment;

var category = formData.category;

// Validate the form

if ((name == \"Start typing a friend's name\") ||

(name == \"\") ||

(category == null) ||

(compliment == \"\")) {

// form not valid, return false to prevent submit

var formIsValid = false;

} else {

// form is valid

formIsValid = true;

}

return formIsValid;

}

</script>

Here, the FBJS serialize() function gets an object that contains the form’s <input>
values keyed by their name.We use it to verify that each of the form’s fields is set to an ap-
propriate value and return false if one is not—thereby stopping the form submission in
the process. Notice the use of the formIsValid variable: It’s declared in the if statement
but used outside this scope.This is OK because, in FBJS, like JavaScript, variables do not
have block-level scope.This means that all variables declared in a function are accessible
throughout that function, unlike block-scoped languages, such as C++ or Java.

Realize that FBJS provides other functions to handle getting or setting the values of
<form> elements; you are by no means constrained to using serialize(). For example,
you can use the DOM node access functions, such as getChildNodes(), to accomplish a
similar task, recursively building a list of <input> values to check. FBJS provides numerous
functions to use, such as the getValue() or setValue() functions to retrieve or set the
contents of an <input> tag, getChecked() and setChecked() functions to handle check-
box control state, getType() and setType() functions to manage detection of <input>
elements, and more.

ptg

259Basic FBJS

FBJS Dialogs
One of the first hurdles that new Facebook developers encounter is the lack of dialogs to
interact with users or use for simple debugging.The alert(), prompt(), and confirm()
functions are not part of FBJS. FBJS provides its own versions of these via the FBJS
Dialog class.

The Dialog class constructs two different types of dialogs: popup and contextual.
Popup dialogs are displayed in the center of the page from which they are created and
provide either one button (such as the alert() dialog in JavaScript) or two (such as the
confirm() one).This means that the user cannot interact with the rest of the page while
the dialog is displayed on screen, which is similar to the behaviors of the JavaScript dialog
functions. Contextual dialogs are tied to a specific element on the page and are rendered
with an arrow pointing to this element.These are perfect for alerting users to a specific lo-
cation or error condition on your page.

First, let’s look at how to create and use both types of dialogs in the FBML Test Con-
sole.Then, we’ll update Compliments to use contextual dialogs to indicate the sources of
specific form-validation failures. Open the FBML Test Console again and enter the code
shown in Listing 11.10 into it.After doing so, click the Preview button and try clicking
both links in the Preview window.When you click the first link, you see a popup dialog
similar to the one shown in Figure 11.4. Clicking the second link displays a contextual
one, which is shown in Figure 11.5.

Figure 11.4 FBJS provides the popup dialog to replace the alert() and
confirm() JavaScript functions.

Figure 11.5 The contextual dialog can point to specific elements on a
page.

ptg

260 Chapter 11 FBJS, Mock AJAX, and Flash

Listing 11.10 Displaying Both Types of FBJS Dialogs

<a href="#"

onclick="var d = new Dialog();

d.showMessage('Popup Dialog Title',

'Popup Dialog Content',

'Popup Dialog Button Text');

return false;">

Click to show an FBJS Popup Dialog

<a href="#"

onclick="var d = new Dialog(Dialog.DIALOG_CONTEXTUAL);

d.showMessage('Contextual Dialog Title',

'Contextual Dialog Content',

'Contextual Dialog Button Text');

d.setContext(this.getPreviousSibling());

return false;">

Click to show an FBJS Contextual Dialog

Notice that, when you click one link and then the other without closing the dialog
currently on screen, Facebook automatically hides the current dialog to show the next
one.You cannot have more than one of these dialogs displayed on screen at a time.These
can actually stack up, and you need to separately dismiss each one.

FBJS provides several dialog-related functions.The most important ones are
summarized here:

n Dialog(type). The constructor function for all dialogs. It takes a single param-
eter, which can have a constant value of Dialog.DIALOG_POP (the default) or
Dialog.DIALOG_CONTEXTUAL.

n onconfirm(). An event handler function called when a user clicks the dialog
button known as the confirm button, which is currently the left-most button shown.
If it returns true, the dialog will be hidden.

n oncancel(). Called when a user clicks the cancel button (the right-most). If it
returns true, the dialog will be hidden.

n setStyle(). Sets the CSS styles for a dialog’s content.
n showMessage(title, content, button). The function used in the

previous example. It takes three parameters: the first, title, is a string used for the
title text of the dialog; the second, content, is used for the dialog’s body content;
and the final, button, is a string used for the text of the confirm button, which de-
faults to Okay.

n showChoice(title, content, buttonConfirm,
buttonCancel). Renders an FBJS confirm()-style dialog with two buttons.The
title and content parameters behave exactly like those for the showMessage()

ptg

261Basic FBJS

function. buttonConfirm is a string used for the text of the confirm button (it de-
faults to Okay), and buttonCancel is a string used for the text of the cancel button
(it defaults to Cancel).

n setContext(). Used for contextual dialogs to set the element to which they are
bound, or more simply, the element at which the dialog’s arrow points.

n hide(). Hides the dialog on which it’s called.

Let’s update the Compliments application to use contextual dialogs to point at the in-
dividual elements in the form that have failed validation. Modify the submitForm() func-
tion in index.php to match Listing 11.11.

Listing 11.11 Updating submitForm() to Use FBJS Contextual Dialogs

<script type='text/javascript'>

function submitForm(formObj) {

// Create the validation dialog

var dialog = new Dialog(Dialog.DIALOG_CONTEXTUAL);

dialog.setStyle('color', 'red');

var formData = formObj.serialize();

var name = formData.uid;

var compliment = formData.compliment;

var category = formData.category;

var title = 'Validation Error';

// Validate the form

var formIsValid = false;

if ((name == \"Start typing a friend's name\") || (name == \"\")) {

dialog.setContext(document.getElementById('friend_selector'));

dialog.showMessage(title,

'Please choose someone to compliment');

} else if (category == null) {

dialog.setContext(document.getElementById('categories'));

dialog.showMessage(title,

'Please enter a compliment category');

} else if (compliment == \"\") {

dialog.setContext(document.getElementById('compliment'));

dialog.showMessage(title,

'Please enter a compliment');

} else {

formIsValid = true;

}

return formIsValid;

}

</script>

ptg

262 Chapter 11 FBJS, Mock AJAX, and Flash

Try submitting the form without filling in any of its fields. Figure 11.6 illustrates what
you should see. Notice that the arrow of the contextual dialog points to the <input> ele-
ment for which validation has failed.As you fill each field, notice how the next element
that fails validation is presented with its own contextual dialog.

Dialogs are not restricted to simple strings as their content. Complex examples can be
created from FBML; however, any FBML used in a dialog must be pre-rendered by Face-
book’s servers before you can use it on the client side.To accomplish this, use the <fb:
js-string> tag, like we did when discussing the setInnerFBML() function, to allow
Facebook to pre-render its contents and store it in a reference variable that you can pass as
the content parameter to the Dialog.showMessage() or Dialog.showChoice() function.

Facebook also provides FBML equivalents of the dynamic FBJS dialogs for cases where
FBJS is not possible or the developer is unfamiliar with JavaScript or FBJS syntax.The
<fb:dialog>, <fb:dialog-response>, <fb:dialog-title>, <fb:dialog-content>, and
<fb:dialog-button> tags can all create dialogs in FBML, although these are used less fre-
quently than the FBJS versions because they lack much of the flexibility that the FBJS
versions provide.They also depend on a unique Facebook technology called Mock AJAX,
which is covered next.

Mock AJAX
These days, it’s nearly impossible to discuss web programming of any kind without men-
tioning AJAX. Sites like Facebook would not even be possible without it. Imagine having
to refresh the entire page every time you clicked a link within the Facebook chrome to
leave a comment, flagged something you “Like,” or clicked an application tab in your pro-
file. For all its detractors,AJAX has undoubtedly revolutionized the user experience on

Figure 11.6 Using contextual dialogs to highlight
form-validation failures

ptg

263Mock AJAX

the web. It seems ludicrous to not have access to AJAX when building a web application
for any platform, not just Facebook.

AJAX
Asynchronous JavaScript and XML (AJAX) is comprised of a set of client-side web-development
techniques that creates dynamic and interactive web content. With it, web applications can
asynchronously fetch data without modifying the operation of or causing a refresh of an ex-
isting page. Much of AJAX’s functionality is implemented using the browser’s
XMLHttpRequest object; however, although its name suggests it, AJAX does not actually re-
quire either JavaScript or XML.

However, when Facebook first launched the developer platform, there was no FBJS,
JavaScript, or AJAX support for FBML applications. If your application needed to use AJAX,
it was required to use IFrame-based canvas pages and your own implementation of AJAX
primitives—most likely, via a third-party JavaScript library. But, using IFrame-based pages had
a cost:You could not use the FBML controls that made it easy for developers to make appli-
cations that had the look and feel of Facebook itself. Facebook understood the pain develop-
ers faced and provided an AJAX-like functionality for FBML called Mock AJAX.

Today, although there is full AJAX support included as part of FBJS, Mock AJAX is still
available for use on profiles, application tabs, or canvas pages, and it is required for some
FBML tags, such as <fb:dialog>. Mock AJAX uses a set of special FBML attributes that
Facebook parses from the FBML and replaces it with AJAX-like behaviors (for example,
modifying only portions of element content on a page without reloading it or dynami-
cally controlling element visibility based on user action).

We’ll update Compliments to use Mock AJAX to submit the form. In the process, we
cover many of the Mock AJAX attributes you can use. Note that we do not update the
application to display a Feed form or actually submit a compliment to Facebook via
Mock AJAX.We just update it to specifically demonstrate how Mock AJAX works.

First, create and save a new script in your application’s root directory named
mock_ajax_handler.php.The code for this file is found in Listing 11.12.

Listing 11.12 mock_ajax_handler.php: Mock AJAX Form Handler

<?php

require_once dirname(__FILE__).'/inc/globals.inc';

require_once dirname(__FILE__).'/inc/utils.inc';

require_once dirname(__FILE__).'/inc/db.inc';

require_once dirname(__FILE__).'/inc/profile.inc';

dumpRequestVars();

$result = "

<fb:dialog id='errorDialog'>

<fb:dialog-title>Compliment Validation Error</fb:dialog-title>

<fb:dialog-content>%s</fb:dialog-content>

<fb:dialog-button type='button' value='OK' close_dialog='true'/>

</fb:dialog>

ptg

264 Chapter 11 FBJS, Mock AJAX, and Flash

Listing 11.12 Continued

<a href='#' clicktoshowdialog='errorDialog' clicktohide='formResult'

style='font-weight:bold;font-size:larger;color:yellow;background:red;'>

Click here for form validation errors!

";

if(!isset($_POST['uid']) || !isset($_POST['target'])) {

$result = sprintf($result, 'You must select a friend');

} else if(!isset($_POST['compliment'])){

$result = sprintf($result, 'You must enter a compliment');

} else if(!isset($_POST['category'])) {

$result = sprintf($result, 'You must select a compliment type');

} else {

$target = $_POST['target'];

$compliment = trim($_POST['compliment']);

$category = $_POST['category'];

$facebook = new Facebook(FB_API_KEY, FB_APP_SECRET);

$db = new DB();

$sender = $facebook->user;

$db->addCompliment($sender, $target, $category, $compliment);

updateProfileBox($sender);

// start filling in our template

$comp = $g_categories[$category];

$imageSrc = LOCAL_APP_URL.'/img/'.$comp['bigimg'];

$imageLink = LOCAL_APP_URL;

$result = "

<h1>Your Compliment to <fb:name uid='$target'></fb:name> was sent.</h1>

<p>

<fb:profile-pic size='square' uid='$target'>

</fb:profile-pic>

<fb:name uid='$target'></fb:name>

is '{$comp['title']}'

because $compliment

</p>";

}

echo $result;

?>

ptg

265Mock AJAX

In Listing 11.12, the first thing to notice is the use of the <fb:dialog>, <fb:

dialogtitle>,<fb:dialog-content>, and <fb:dialog-button> tags to create a Facebook
popup dialog using FBML instead of FBJS. If you look at the HTML and JavaScript ren-
dered from this FBML, you can see that it creates a dialog in a similar fashion to the way we
did with FBJS.The one thing that’s different here is that, unlike the FBJS dialogs, the FBML
dialog cannot be shown automatically because FBML is rendered on Facebook’s servers, not
on the client.This is the reason for the <a> tag and its clicktoshowdialog Mock AJAX at-
tribute.Applying this attribute to any clickable DOM element allows you to show the dia-
log when the element is clicked.Also note that the <a> element sets another Mock AJAX
attribute, clicktohide, to the ID of a <div> into which we place the results of the form
submission.

Now, we need to modify the form code in index.php to use Mock AJAX instead of a
normal POST to submit the form.We just add another button to the form in index.php
to handle submission via Mock AJAX, and we add a hidden <div> element to accept the
results of the Mock AJAX call—the very same one whose ID was set in the clicktohide
attribute of the <a> element in Listing 11.12. First, add a new <div> element to the page
right after the closing </script> tag and before the <div id='panel'> element. Refer to
Listing 11.4 for the full <form> code; we just show the new code in context in bold:

</script>

<div id='formResult' class='success' style='display:none;'></div>

<div id='panel' class='panel'>

<form method='POST' id='complimentform' onsubmit='return submitForm(this);'>

Next, add another <input> button next to the existing one from the form.Again, new
code is shown in bold:

<input class='inputbutton' type='submit'

name='submitCompliment'

label='Send Compliment' value='Send Compliment'/>

<input class='inputbutton' type='submit'

name='submitComplimentMockAJAX'

clickrewriteurl='".LOCAL_APP_URL."/mock_ajax_handler.php'

clickrewriteform='complimentform'

clickrewriteid='formResult'

clicktoshow='formResult'

label='Send Compliment Mock AJAX' value='Send Compliment via Mock AJAX'/>

</form>

Finally, add the success style to main.css:

.success {padding: 3px; text-align: center;}

Reload the application canvas page and click the Send Compliment via Mock AJAX
button.You can see something similar to what’s shown in Figure 11.7. Notice that a bold
link is displayed at the top of the form, which indicates that some validation errors have
occurred. Note that the current form validation code in the submitForm() function did

ptg

266 Chapter 11 FBJS, Mock AJAX, and Flash

not get executed: No contextual dialogs are shown when there’s an error.We cover why
this is so a bit later.

Clicking the link displays an <fb:dialog> box like the one displayed in Figure 11.8.
Notice how the original <div> with the error message and link disappears when the
<fb:dialog> is displayed, and it stays hidden when the OK button on the dialog is
clicked.

If you successfully fill out the form and submit it, you see something like what’s shown
in Figure 11.9.

Several things are happening in this example.The first thing to notice are the attributes:

n clickrewriteurl. When the user clicks the <input> button, the contents of
the form identified by clickrewriteform are automatically POSTed to Facebook’s

Figure 11.7 Result of submitting an incomplete form via Mock AJAX

Figure 11.8 An <fb:dialog> showing our form validation errors

ptg

267Mock AJAX

Figure 11.9 Result of successfully submitting the form via Mock AJAX

n clickrewriteform. Set to the ID of the <form> whose contents are POSTed
to Facebook when the element that contains this attribute is clicked.

n clickrewriteid. Set to the ID of the DOM element used as the target for the
FBML rendered by Facebook from that returned from the clickrewriteurl.

n clicktoshow.The ID of the DOM element set in this attribute is displayed
when the element that contains it is clicked. In this case, when the <input> button
is clicked, the <div id='formResult'> element is shown.This <div> originally had
an inline CSS style of display:none.

The mock_ajax_handler.php file uses a couple more Mock AJAX attributes worthy
of mention.This file uses a somewhat contrived example: In production code, you would
rarely require a user to click to receive error messages; however, in this case, it was illustra-
tive to demonstrate not only the <fb:dialog> tags in action, but also the Mock AJAX at-
tributes that make them possible.The attributes used in this file are

n clicktohide. Placed on the <fb:dialog-button> element and is set to the ID
of the element to hide when the <fb:dialog-button> is clicked. In this case, it’s
the <div id='formResult'> element in index.php that’s hidden when the OK
button on the dialog is clicked.

servers and passed to this URL.This URL must be a full URL and point to a non-
Facebook domain.This URL must return valid FBML, which is parsed by Face-
book and sent to the element identified by clickrewriteid.

ptg

268 Chapter 11 FBJS, Mock AJAX, and Flash

n clicktoshowdialog. Dialogs rendered via <fb:dialog> cannot be displayed
without a user clicking some DOM element to allow it.We set this attribute on an
arbitrary link to allow us to display form-validation errors.

What exactly is happening when these Mock AJAX attributes are placed on DOM ele-
ments? What code does Facebook render for them? If you look at the source for the can-
vas page after the Mock AJAX attributes are added to the <input> element, you can easily
see what Facebook is doing behind the scenes.The following code is an excerpt from the
<input> button after it’s been rendered by Facebook. Some of the attributes, such as class
and value, have been removed for clarity, and all HTML-encoded characters have been
converted to human-readable forms. Notice that Facebook adds a custom onclick()
event handler, which calls the FBML.clickRewriteAjax() function.This means that our
own onsubmit() handler for the form is never called and is, therefore, why we never see
the contextual dialogs. Facebook intercepts the submission of the form as part of the
Mock AJAX request:

<input type="submit" name="submitComplimentMockAJAX"

clickrewriteurl="http://example.com/compliments/mock_ajax_handler.php"

clickrewriteform="complimentform"

clickrewriteid="formResult"

clicktoshow="formResult"

onclick="FBML.clickRewriteAjax(

'63560904158',

1,

'app63560904158_formResult',

'http://example.com/compliments/mock_ajax_handler.php',

$('app63560904158_complimentform'),

'');

FBML.clickToShow('app63560904158_formResult');

return false;" />

Here is the pseudo-code for the FBML.clickRewriteAjax() function.As you can see,
it does an AJAX call on your behalf, passing the serialized form data to a URL on Face-
book’s domain and setting the result data as the innerHTML of the DOM element specified
by your clickrewriteid attribute:

function clickRewriteAjax(appID, userLoggedIn, targetElementID, handlerURL,
formObj,...) {

var postData = formObj.serialize();

var ajax = new Ajax-Like-Object();

ajax.setURI('http://www.facebook.com/fbml/mock_ajax_proxy.php');

ajax.setMethod('POST');

postData.url = handlerURL;

// set a bunch more postData properties...

ajax.setData(formData);

ajax.setHandler(function(result) {

if(result.ok) {

document.getElementById(targetElementID).innerHTML = result.html;

ptg

269Advanced FBJS

} else {

// handle error

}

return true;

}

}

ajax.send();

}

Advanced FBJS
As you can see, Mock AJAX offers a lot of functionality using a simple syntax. If you don’t
need the full control of all aspects of an AJAX call or object, Mock AJAX offers a simple
alternative to accomplish a similar set of behaviors. It also offers some unique features to
manage element visibility.

However, if you need the power of AJAX on your FBML pages, FBJS AJAX is the tool
of choice. FBJS also offers the means to accomplish dynamically displaying elements
through the use of specific FBJS CSS functions. For even more striking and interactive ef-
fects, it also provides a full-featured animation package.This section covers the advanced
features of FBJS and AJAX.

Developers rejoiced when Facebook released AJAX for FBJS.At the time, the only al-
ternative was to use Mock AJAX, which performed asynchronous requests like AJAX, but
offered no notification callback functions or error handlers. Readers are probably already
familiar with the basics of AJAX, including its benefits and shortcomings, so this book
does not cover the details of the technology.You can find a complete reference for AJAX
in Ajax for Web Application Developers by Kris Hadlock (part of the Addison-Wesley
Developer’s Library).

One of the nice things about FBJS AJAX is that, like many JavaScript libraries, it ab-
stracts all the low-level details of making an AJAX call. It provides an FBJS class, aptly
named Ajax, that handles all the low-level tasks normally associated with AJAX, such as
dealing with creation of the correct XMLHttpRequest object for the current browser,
monitoring state with onreadystatechange handlers, and managing data formats for the
HTTP response.

FBJS AJAX provides a powerful object that’s customized for use in Facebook applica-
tions that differ from normal AJAX implementations. First, calls are always asynchronous,
and there is no way to use it for synchronous data transfer. Next, Facebook automatically
proxies all calls made via FBJS AJAX through its servers. It does this to provide Facebook-
centric POST variables to identify the current Facebook user (in the form of fb_sig
variables that were introduced in Chapter 6,“The Basics of Creating Applications”) and
parse any FBML content it finds. Finally, it automatically processes AJAX responses into
different Facebook-friendly formats. It can return server response data unaltered, as JSON,
or even as parsed FBML. Facebook also provides a way to skip the Facebook proxy

ptg

270 Chapter 11 FBJS, Mock AJAX, and Flash

entirely if you don’t need the FBML parser or don’t require the normal Facebook POST
variables in your AJAX handler.

The Ajax class provides the following three methods:

n Ajax(). Constructor for the Ajax class; it takes no arguments.
n abort(). Stops an AJAX call if needed, perhaps because of a timeout or an-

other error.
n post(targetURL, queryObject). Actually performs the asynchronous

call via HTTP POST.The targetURL parameter must be set to a full URL on the
same domain as the originating application because of the JavaScript same-origin
restrictions discussed at the beginning of this chapter. queryObject is a simple
JavaScript/FBJS object that contains the query data to be passed to the target URL.

The Ajax class also offers numerous properties:

n ondone(resultData). Can be set to a callback function that takes one ar-
gument.This function is called when the AJAX request successfully completes.
resultData is set to an object that contains the AJAX response from your server; its
format depends on the response type set.

n onerror. Can be set to a callback function that’s called when an error occurs
during the AJAX call.

n requireLogin.A Boolean value that can be set to true to require the current
user to log in to the application before making the AJAX call. If he refuses to do so,
the call fails.When he is logged in, Facebook sends all of its usual fb_sig POST pa-
rameters to the AJAX target URL.

n responseType. Can be set to any of the values in the following list. If not set,
responseType defaults to Ajax.RAW:

n Ajax.FBML. Use this to have the data sent back from your server as an
FBML object—like the ones created by <fb:js-string>—that can be used
directly as the argument to setInnerFBML(). Using it requires that your call
goes through the Facebook AJAX proxy to ensure any FBML in the request
or response is parsed appropriately.

n Ajax.RAW. Setting this causes Facebook to return the data from your
server unaltered.

n Ajax.JSON. Causes the response from your server to be parsed and re-
turned as a JSON object.To encode your response data appropriately from
PHP, use its json_encode() function before sending the response.

n useLocalProxy. (Beta feature.) Setting this to true allows your call to com-
pletely bypass the Facebook AJAX proxy.You cannot use it if you return FBML
from your AJAX call. It requires that Adobe Flash Player 9 or higher is installed on
the system, and requests can only be sent to port 80 on the target server.

ptg

271Advanced FBJS

Using Ajax.FBML
To understand how to use the Ajax class, we update Compliments to use it to submit the
form data, just like we did with Mock AJAX earlier in this chapter. First, we need to up-
date index.php to use the Ajax class to send the form contents to our target URL and
handle receipt of the data and the updating of the page. Listing 11.13 shows the modified
submitForm() function that you need to add AJAX support to the page and the changes
to the <form> required to use it. (Changes in the <form> are bold.)

Listing 11.13 Updating the submitForm() Function to Use AJAX

function renderPage() {

global $g_categories;

$pageOutput = getHeaderContent();

$ajaxURL = LOCAL_APP_URL."/ajax.php?submitform=1";

// Show the compliment form

$pageOutput .= "

<script type='text/javascript'>

function submitForm() {

// Create the validation dialog

var dialog = new Dialog(Dialog.DIALOG_CONTEXTUAL);

dialog.setStyle('color', 'red');

var formObj = document.getElementById('complimentform');

var formData = formObj.serialize();

var name = formData.uid;

var compliment = formData.compliment;

var category = formData.category;

var title = 'Validation Error';

// Validate the form

if ((name == \"Start typing a friend's name\") || (name == \"\")) {

dialog.setContext(document.getElementById('friend_selector'));

dialog.showMessage(title,

'Please choose someone to compliment');

} else if (category == null) {

dialog.setContext(document.getElementById('categories'));

dialog.showMessage(title,

'Please enter a compliment category');

} else if (compliment == \"\") {

dialog.setContext(document.getElementById('compliment'));

dialog.showMessage(title,

'Please enter a compliment');

} else {

// Submit the form via AJAX

var ajax = new Ajax();

ptg

272 Chapter 11 FBJS, Mock AJAX, and Flash

Listing 11.13 Continued

ajax.responseType = Ajax.FBML;

// Handle the result of the AJAX call by

// updating the canvas with a success message

ajax.ondone = function(data) {

var statusDiv = document.getElementById('formResult');

statusDiv.setInnerFBML(data);

};

ajax.onerror = function() {

new Dialog().showMessage('Ajax error');

}

var queryParams = formData;

ajax.post('".$ajaxURL."', queryParams);

}

}

</script>

<div id='formResult'></div>

<div id='panel' class='panel'>

<form method='POST' id='complimentform'>

<h1>Select one of your friends and enter your compliment.</h1>

<table id='complimentTable'>

<!— table unchanged from previous listings;

removed for clarity —>

</table>

<input class='inputbutton' type='submit'

onclick='submitForm();return false;' name='submitCompliment'

label='Send Compliment' value='Send Compliment'/>

</form>

<!— unchanged from previous listings, removed for clarity —>

</div>

Notice that we defined the PHP variable $ajaxURL to hold the AJAX target URL at
the top of the renderPage() function.Also, we removed the parameter from the
submitForm() function and the onsubmit() event handler from the <form>, because
we’ll submit the form via AJAX instead of via normal HTTP POST or GET.To accom-
plish this, we added an onclick() event handler to the submit button that calls our
submitForm() function. Finally, for clarity, we removed the Mock AJAX submit button.

We use Ajax.FBML as the response type because we want to update an FBML element
on the page to show the result of the AJAX call.To do this, we need the FBML sent back
from our server to be parsed into an FBML object reference that we can pass to
setInnerFBML(). Later, we show how setting the Ajax.responseType property to
Ajax.JSON can return both JSON and rendered FBML from an AJAX call.

Now, we add the script for handling the AJAX request. Copy Listing 11.14 into a new
script file and save it in the application’s root as ajax_handler.php.

ptg

273Advanced FBJS

Listing 11.14 ajax_handler.php: AJAX Endpoint

<?php

require_once 'inc/globals.inc';

require_once 'inc/utils.inc';

require_once 'inc/db.inc';

require_once 'inc/profile.inc';

require_once 'inc/notifications.inc';

require_once 'inc/email.inc';

dumpRequestVars(true, basename(__FILE__));

if ($_GET['submitform']) {

if (isset($_POST['target']) && isset($_POST['compliment']) &&

isset($_POST['category'])) {

global $g_categories;

$target = $_POST['target'];

$compliment = $_POST['compliment'];

$category = $_POST['category'];

$facebook = new Facebook(FB_API_KEY, FB_APP_SECRET);

if ($facebook->user == NULL) {

// Work around bug in FB where sometimes the signature passed doesn't

// actually match the one that the FB PHP library generates from the passed

// parameters.

/// http://wiki.developers.facebook.com/index.php/Verifying_The_Signature

$facebook->set_user($_COOKIE[FB_API_KEY . '_user'],

$_COOKIE[FB_API_KEY . '_session_key'],

$_COOKIE[FB_API_KEY . '_expires'],

$_COOKIE[FB_API_KEY . '_ss']);

}

$sender = $facebook->user;

$db = new DB();

$db->addCompliment($sender, $target, $category, $compliment);

updateProfileBox($sender);

$comp = $g_categories[$category];

$imageSrc = LOCAL_APP_URL.'/img/'.$comp['bigimg'];

$imageLink = LOCAL_APP_URL;

$images = array('src'=> $imageSrc, 'href'=> $imageLink);

// create the FBML to be parsed on the return

$fbmlStatus = "<div class='success'>

<h1>Your Compliment to <fb:name uid='$target' /> was

ptg

274 Chapter 11 FBJS, Mock AJAX, and Flash

Listing 11.14 Continued

sent.</h1>

<p>

<fb:profile-pic size='square' uid='$target' />

<fb:name uid='$target' />

is '{$comp['title']}'

because

$compliment

</p>

</div>";

// Output the results

$output = array("app" => "Compliments",

"target" => intval($target),

"images" => array($images),

"ctitle" => $comp['title'],

"ctext" => $compliment);

sendUserEmail($facebook, $target, $output);

sendUserNotification($facebook, $target);

echo $fbmlStatus;

}

}

?>

Now, when the user submits the form, its serialized data will be sent via HTTP POST
to ajax_handler.php.After you submit the form, you see something similar to
Figure 11.10. Notice that the browser window does not reload, nor does the URL in the
address bar change to indicate that any interaction with ajax_handler.php occurred,
which is what you might expect of an AJAX call.

The code in ajax_handler.php is similar to that in mock_ajax_handler.php or the
code we used in our Feed form callback files in Chapter 9,“Feed Stories, Feed Forms, and
Templates.” It first checks to make sure that all the expected POST variables we need are
set, updates our database and profile box with new content, and sends the appropriate
Facebook notifications.The most important thing to note for this example is that we are
creating a block of FBML in ajax_handler.php and using PHP’s echo() function to re-
turn it to the client code in index.php. Facebook intercepts the response from
ajax_handler.php, notices that FBML is expected as the format for the response, and
parses the FBML into an object before returning it to the ondone() handler in the
submitForm() function in index.php.

ptg

275Advanced FBJS

Figure 11.10 Result of a successful AJAX form submission

Using Firefox and Firebug to Monitor AJAX
One of the most powerful aids to debugging and following AJAX calls is the Firebug add-
on for Firefox. It’s indispensable for diagnosing AJAX errors or observing AJAX requests
and responses.We explain the basics of using it to inspect the data posted to and returned
from Facebook in AJAX calls and, in the process, make the FBJS AJAX lifecycle clearer.

First, by using a JavaScript breakpoint, we use Firebug to verify that our ondone() han-
dler is being called.To accomplish this, run the application in Firefox with Firebug en-
abled. Set a breakpoint on the first line of the ondone() handler in index.php by doing
the following:

1. Open the application canvas page in Firefox with Firebug enabled. Press the F12
key to open Firebug if the Firebug window is not visible.

2. Click the Script menu item in the Firebug menu bar.

3. Click the drop-down arrow to the right of the Script menu and ensure that
JavaScript debugging is enabled. Click Enabled in the menu if it’s not.

4. Refresh the page (if necessary) to load the script for the Compliments application in
the Firebug Script panel.

5. Search for the ondone() handler using the Firebug search box, not the Firefox one.
You can see two of them. Skip the first one; it’s actually commented out as part of
the developer view of the page. Remember that Facebook gives developers a pre-
view of the page with the pre-parsed FBML and original non-sandboxed FBJS in
one huge HTML comment at the start of the page. So, the first ondone() handler is

ptg

276 Chapter 11 FBJS, Mock AJAX, and Flash

actually in code that’s commented out. Click to the left of the line number of the
first line of the handler in the Script window to set the breakpoint. For reference,
set it on the line that looks like this:

var a<app id>_statusDiv = a<app id>_document.getElementById('formResult');

6. Submit the form, making sure that you correctly filled all the fields. Firebug stops at
your breakpoint, as shown in Figure 11.11.

In Figure 11.11, observe where the cursor is pointing in the Watch window in Firebug.
It shows that the argument passed to the ondone() handler from the Facebook proxy is
actually a JavaScript object.This Object instance contains the FBML reference that we
pass to setInnerFBML() on the next line in the script.

Another important use of Firebug is to monitor the actual AJAX HTTP headers: Re-
quest and Response.The following steps describe how to do this:

1. Open the application canvas page in Firefox with Firebug enabled. Press the F12
key to open Firebug if the Firebug window is not visible.

2. Click the Net menu item in the Firebug menu bar.

3. Click the drop-down arrow to the right of the Net menu and ensure that Enabled
is checked.

4. With the Net menu selected, click the XHR (short for XMLHttpRequest, which is
the core object in AJAX) button in the toolbar below it.This filters the Net panel in
Firebug to only show AJAX calls.

5. Refresh the page in the browser to update the Net panel.

6. Fill out and submit the Compliments form.An entry for the Facebook AJAX proxy
URL—http://www.facebook.com/fbml/fbjs_ajax_proxy.php—appears in the Net panel.

Figure 11.11 Stopping at a breakpoint while debugging FBJS using
Firebug

ptg

277Advanced FBJS

7. Click the Facebook AJAX Proxy URL link in the Net panel. It expands and shows
a set of tabs, the first of which, Headers, is selected by default.This shows all the
HTTP Request headers sent to the Facebook server and the Response headers sent
back from it to the browser. Note the Response header’s content-type value.We re-
fer to it later.

8. Click the Post tab beneath the expanded proxy URL.You see something similar to
Figure 11.12.

9. You can also view XMLHttpRequest calls in Firebug’s Console panel by setting the
appropriate options, as shown in Figure 11.13.

If you look closely at the POST variables sent to Facebook, shown in Figure 11.12,
you can see that the form data is sent as part of a query array.Values for other Ajax class
properties are also sent. First, the require_login variable holds the value of the
Ajax.requireLogin property, which is currently false (the default). Next, the type vari-
able contains the response format we expect (in this case, 2), which is actually the value of
Ajax.FBML. Finally, url contains the full URL of our server’s ajax_handler.php file.

Click the Response tab to see the raw HTTP response data returned to the browser
from Facebook. Notice that it’s actually JavaScript that does nothing but has a JSON ob-
ject tacked on the end of it. If you look at the Response headers sent back to the browser
from Facebook, you notice that content-type was set to application/x-javascript;
charset=utf8. Keep this in mind as you examine the example HTTP response shown in
Listing 11.15.

Figure 11.12 Showing the HTTP POST variables sent in an AJAX
request

ptg

278 Chapter 11 FBJS, Mock AJAX, and Flash

Figure 11.13 Using the Console panel to view
XMLHttpRequest calls

Listing 11.15 Sample AJAX Response Body from Facebook

for (;;); {

"error": 0,

"errorSummary": "",

"errorDescription": "",

"errorIsWarning": false,

"payload": {

"data": "<!— our fully-parsed FBML —>",

"type": 2 // Ajax.FBML

},

"bootload": ,

"name": "js\/aspzj17g3yg4cc88.pkg.js",

"type": "js",

"src": "http:\/\/static.ak.fbcdn.net\/rsrc.php\/zCVHY\/hash\/ealyqk9w.js",

"permanent": false,

"sticky": false

}. // more like this...

{

// etc.

}],

"onload": ["some JavaScript"]

}

We removed some of the content of the HTTP response body, formatted it to make it
easier to understand, and added a few comments for clarity. If an error occurred during
the execution of the call, the error property of the JSON object would hold an error
code and both the errorSummary and errorDescription properties might contain more
information about the error.The important thing to see is that our FBML response is
passed in the JSON object set as the value of the payload.data property (shown in bold).

ptg

279Advanced FBJS

It’s the value of payload.data that’s passed back to the ondone() handler, after some
post-processing on the client by Facebook’s own JavaScript.

You might wonder why Facebook returns JavaScript instead of JSON if that’s what the
response really contains.The JavaScript in the response is actually just a shield to protect the
real payload: the JSON object that follows it, of which the AJAX response data is only part.
So, why does Facebook not use a JSON-specific content type, such as application/json?
Doing so would invariably cause problems with older browsers that do not understand
what to do with JSON. Users on older browsers receiving these responses likely receive a
prompt asking them to save or download the content. By using the application/
x-javascript content type, Facebook ensures that all modern browsers accept the content
without prompting the user or displaying the file as plain text, because all browsers natively
understand JavaScript.Also, Facebook returns and uses JSONP, also known as JSON with
padding, which wraps an extra callback function around a JSON response that executes on
the client when evaluated. If Facebook did not serve the content as JavaScript, these
JSONP callbacks would never execute, rendering them useless. In fact, if you look at the
Facebook JavaScript code, you find that, when handling asynchronous responses, Facebook
simply strips the for(;;); string from the front of the response data and uses JavaScript’s
eval() function to convert the JSON that follows it into an instance of a JavaScript object.

We only presented one method of monitoring AJAX calls here. Other popular
browsers have similar solutions for inspecting AJAX calls or debugging JavaScript.The
Google Chrome and Apple Safari browsers provide a JavaScript console that show the
Request and Response headers. Microsoft’s new Internet Explorer 8 browser also has sim-
ilar development tools built in. However, none provide the rich functionality that Firebug
currently does for Firefox.These tools were presented in Chapter 4,“Platform Developer
Tools,” and we leave more detailed investigation as an exercise for readers.

Using Ajax.JSON
As promised, we now switch our AJAX code to use the Ajax.JSON response type.This re-
sponse type allows your AJAX calls to receive not only JSON but also fully parsed and ren-
dered FBML in a single request, which is undoubtedly a great optimization and benefit.

To begin the process, we modify our submitForm() function to switch the response
type and store the data returned in the ondone() handler.The code shown in bold shows
the modifications you need to make to submitForm():

// Submit the form via AJAX

var ajax = new Ajax();

ajax.responseType = Ajax.JSON;

// Handle the result of the AJAX call

ajax.ondone = function(data) {

var statusDiv = document.getElementById('formResult');

statusDiv.setInnerFBML(data.fbml_markup);

};

ptg

280 Chapter 11 FBJS, Mock AJAX, and Flash

In the ondone() handler, other than switching the response type, we just passed the
value of the data.fbml_markup property to setInnerFBML().We also need to make
changes in the ajax_handler.php file to complete the switch to JSON, as shown in the
following code.Again, we only show a portion of the file with the relevant changes in
bold.The rest of the script remains unchanged:

// Output the results

$output = array("app" => "Compliments",

"target" => intval($target),

"images" => array($images),

"ctitle" => $comp['title'],

"ctext" => $compliment,

"fbml_markup" => $fbml

);

sendUserEmail($facebook, $target, $output);

sendUserNotification($facebook, $target);

$output = json_encode($output);

echo $output;

Notice that we simply added a new entry to the end of the $output array, with a key
name of fbml_markup, which is set to the value of the $fbml variable.As you probably
noticed, this key shares its name with the property of the data parameter that’s now
passed to setInnerFBML() in the ondone() handler.Also, instead of sending pure FBML
back from ajax_handler.php, we’re now using the PHP json_encode() function to
convert the $output array to JSON and sending it back to the client as a JSON object.All
these changes are required to make the transition to JSON as our AJAX response type.

Let’s view the effects these code changes make. Make sure that your breakpoint is still
enabled in Firebug; if not, reset it to the first line of the ondone() handler in index.php.
Refresh the application canvas page in the browser, fill out the form, and submit it.After
the breakpoint is hit, you can see the results of the changes in the data argument sent to
the ondone() handler, as shown in Figure 11.14. Observe that it now contains both pure
JavaScript data for the compliment we sent and an FBML object reference that we can
pass directly to setInnerFBML().

Facebook allows this transmission of both JSON and FBML references by using a sim-
ple technique.When the response type is set to Ajax.JSON, it scans the JSON object re-
turned from the AJAX endpoint for properties prefixed with fbml_, parses their values as
FBML, and converts them to FBML object references, exactly like the results one gets
from using the <fb:js-string> FBML tag.There is a catch with using Ajax.JSON, how-
ever. Its payload size is limited; each JSON property and value in the response is limited to
a current maximum length of 5,000 characters. If you need to return more data than this
limit allows, you need to use one of the other response types. If this limit is a problem—
and it well might be, depending on how complex the FBML is that your handler re-
turns—realize that you do not need to send back FBML references from your AJAX
handler if you only want to create pure HTML elements using the data passed to the

ptg

281Advanced FBJS

Publishing Feed Stories with FBJS
The real reason why we returned both FBML and data from our AJAX handler was to in-
troduce you to the FBJS method of submitting Feed stories, such as Feed forms or Pub-
lishers: the Facebook.showFeedDialog() function. It provides a Feed-publishing
mechanism similar to that of the Feed forms that Chapter 9 discussed.

The real beauty of this function, however, is that, unlike all other Facebook stream-
publishing mechanisms that accept direct user input that we’ve discussed to date, this one
does not require a round trip to Facebook’s servers to publish a Feed story. Remember that
Feed forms required one round trip: Facebook intercepts the originating HTML <form>
POST and calls the Feed form callback specified in that <form>’s action attribute to get
the custom template data needed to populate the Feed story submission dialog. Publishers
required at least two round trips: one to get the content for the Publisher’s user interface
and a second to get the Feed template data to populate the Feed story submission dialog.

The Facebook.showFeedDialog() function handles all this on the client side, which
makes it more useful and responsive, in most cases.This function accepts numerous param-
eters, which are described in Table 11.3.

Table 11.3 Parameters of the Facebook.showFeedDialog() Function

Parameter Type Description

template_

bundle_id

int Contains the ID of a Feed Template bundle registered us-
ing the Feed Template Console or Facebook API. Required.

template_

data

object Contains a JavaScript associative array that contains
the custom data needed to populate the Feed Template.

body_general string Can contain extra markup for use in the body of a short
story.

Figure 11.14 Using a response type of Ajax.JSON allows both data and
rendered FBML to be returned from an AJAX handler.

ondone() handler. Earlier, this chapter discussed the FBJS setInnerXHTML() function to
allow you to build pure HTML dynamic DOM elements.

ptg

282 Chapter 11 FBJS, Mock AJAX, and Flash

The Facebook.showFeedDialog() function behaves differently depending on the value
of the target_id parameter passed to it. If this is set, the function behaves like a multi-
FeedStory Feed form. Short Feed stories published with it in this mode appear of the re-
cipient’s Wall and the Home page News Feeds of all the recipient’s friends.A one line Feed
story is also published to the sender’s Wall Feed in his Recent Activity section. Unlike a
multiFeedStory Feed form, however, only one recipient is allowed.When the target_id is
set to null, the function behaves like a feedStory Feed form. Short stories submitted by it
appear on the sender’s Wall Feed and the Home page News Feeds of their friends.

Now, we use this function to submit a Feed story (targeted to the recipient of our
compliment) in the AJAX ondone() handler.We add another FBJS function to index.php
to handle the logic. Listing 11.16 provides the code for the new getFeedDialog() func-
tion. Copy it to the end of your index.php file.

Listing 11.16 Implementing the getFeedDialog() Function

/** returns HTML for the Feed Dialog **/

function getFeedDialog() {

$output = "

<script type='text/javascript'>

function showFeedDialog(templateData) {

// The short story template for reference

//{*actor*} sent {*target*} a compliment with {*app*}!

//
{*actor*} thinks {*target*} is {*ctitle*} because {*ctext*}

var targetID = [templateData.target];

var templateID = ".TEMPLATE_BUNDLE_MULTIFEEDSTORY_1.";

var bodyGeneral = '';

var callback = feedDialogDone;

var feedDialogPrompt = 'Publish your Compliment';

Table 11.3 Parameters of the Facebook.showFeedDialog() Function

Parameter Type Description

target_id int Set to the Facebook user ID of the actor of the Feed
story. If set, the template bundle must contain the
{*target*} token.

continuation

_callback

function Can be set to a JavaScript function that is called when a
user publishes or cancels publication of a Feed story.
There is no way to detect which caused the call.

user_prompt string Used as the content that appears on top of the text field
on the Feed story submission dialog (next to the ques-
tion, “What’s on your mind?”)

user_

message

object Can be set to a JavaScript object containing a single
property, value, which is set to the text entered by a
user in the Feed story submission dialog.

ptg

283Advanced FBJS

Listing 11.16 Continued

// NOTE: this is for illustrative purposes only. Setting the

// user_message to text not physically entered by a user

// violates the Facebook Developer guidelines.

var feedDialogUserMsg = {value:'I love sending Compliments!'};

Facebook.showFeedDialog(templateID, templateData, bodyGeneral, targetID,

callback, feedDialogPrompt, feedDialogUserMsg);

}

function feedDialogDone(){

document.setLocation('".FB_APP_URL."');

}

</script>

";

return $output;

}

In Listing 11.16, observe the showFeedDialog() function. It takes a single argument
that contains the data returned to our ondone() handler. Notice that we use the properties
of the argument to build the parameters for the Facebook.showFeedDialog() function.
Pay special attention to the comment about directly setting its user_message parameter in
application code.You cannot (and must not) do this in production; the user_message must
be generated by a physical Facebook user or the application violates the Facebook Devel-
oper Guidelines.This means that, at the least, it would fail the application verification
process.We just included it in this sample to show the correct syntax for using it.

We need to update the code in index.php to actually call the getFeedDialog() func-
tion.Add a line of code to do so at the top of the renderPage() function in index.php,
as demonstrated in the following bold code:

function renderPage() {

global $g_categories;

$pageOutput = getHeaderContent();

$ajaxURL = LOCAL_APP_URL."/ajax_handler.php?submitform=1";

$pageOutput .= getFeedDialog();

// Show the compliment form

$pageOutput .= "

<script>

Next, we need to call the showFeedDialog() function from the ondone() handler.The
modified code in the submitForm() function is shown in bold:

// Submit the form via AJAX

var ajax = new Ajax();

ajax.responseType = Ajax.JSON;

ptg

284 Chapter 11 FBJS, Mock AJAX, and Flash

// Handle the result of the AJAX call by displaying a feed dialog

// and updating the canvas with a success message

ajax.ondone = function(data) {

showFeedDialog(data);

var statusDiv = document.getElementById('formResult');

statusDiv.setInnerFBML(data.fbml_markup);

};

Now, it’s clear why the Ajax.JSON response type is so handy.We get back formatted
FBML to update our user interface and the data needed to create a Feed story. Now, when
you submit the form, you are prompted with a Feed story submission dialog like the one
shown in Figure 11.15. Clicking either the Publish or Skip button on the dialog causes
the code in the feedDialogDone() function to execute, which refreshes the page and re-
sets the controls on it to their default state.

FBJS and CSS
One of the great things about using JavaScript and the DOM is that it provides the ability
to retrieve or set CSS styles dynamically using the DOM element’s style property; how-
ever, this property is not available in FBJS. FBJS replaces it with the getStyle() and
setStyle() functions.

The getStyle() function can get the value of a specific CSS style on a DOM ele-
ment. It takes a string argument of the CSS style property and returns its value. It has one
major shortcoming. It only returns inline styles set on an element, not ones applied
through external <style> tags.This, of course, is inconvenient because most HTML code
these days uses external CSS applied in this manner.Also, to use CSS style attributes that
contain a dash in their names—like font-size, text-align, or margin-top, for example—you
must convert them to camel-cased versions before passing them to either of these FBJS

Figure 11.15 Feed story submission dialog generated by the
Facebook.showFeedDialog() function

ptg

285Advanced FBJS

functions to ensure that they behave similarly on all browsers.To convert a dashed prop-
erty name to camel case, simply remove the dash, capitalize the word after it, and combine
the two words. For example, text-align becomes textAlign.

If you run Listing 11.17 in the FBML Test Console in WebKit-based browsers, such as
Chrome or Safari, calling the getStyle() function with a dashed name works, while on
Firefox and Internet Explorer, it does not. On all four browsers, the camel-cased version
works. None of them work when querying for non-inline CSS styles.

Listing 11.17 Using the FBJS getStyle() Function

<style>

.foo {color:red;}

</style>

<div class='foo'

style='text-align:center;font-weight:bold;'

onclick='styleTests(this);return false;'>Click Me</div>

<script>

function styleTests(obj) {

var dashed = "'" + obj.getStyle('text-align')+ "'";

var camelCased = "'" + obj.getStyle('fontWeight')+ "'";

var extCSSValue = "'" + obj.getStyle('color') + "'";

// Google Chrome, Safari show: 'center' - 'bold' - ''

// Firefox and IE show: 'undefined' - 'bold' - ''

new Dialog().showMessage('FBJS getStyle() tests',

dashed + ' - ' + camelCased + ' - ' + extCSSValue);

}

</script>

The setStyle() function can set a single style on an element or multiple ones at a
time.To set multiple styles on an element, you need to incorporate them as properties of
an FBJS object literal and pass that object to the setStyle() function.The properties of
this object are set to the names of the CSS styles to set; their values are set to strings con-
taining the style information.We use this to set multiple styles on an element in the next
section,“FBJS Animation.”The following code shows the various right and wrong ways to
call setStyle().The most common mistakes developers make when using this function
involve either not passing the second argument as a string or omitting the units (“px” for
example) when setting a dimensions of an element:

element.setStyle('fontWeight', 'bold'); // correct on all browsers

element.setStyle({fontWeight: 'bold'}); // correct on all browsers

element.setStyle('font-weight', 'bold'); // does not work on IE or Firefox

element.setStyle('fontWeight:bold'); // fails

element.setStyle('fontSize', 20); // fails, second argument must be string

element.setStyle('fontSize', '20'); // fails, need to append 'px' to the value

ptg

286 Chapter 11 FBJS, Mock AJAX, and Flash

FBJS also contains some functions for managing CSS classes on elements.The follow-
ing list explains how they’re used:

n addClassName(name) and removeClassName(name). The former adds
the CSS class name to an element (to its className DOM property, specifically); if
it’s not already present, the latter removes it.

n getClassName() and setClassName(name). The former gets the value of
the className property of an element, and the latter sets it to the value passed in
the name parameter.

n toggleClassName(name). Adds the named CSS class if not already present
on the element (and removes it if it is).

n hasClassName(name). Returns true if the element’s className property
contains the named CSS class; otherwise, it returns false.

FBJS Animation
As part of FBJS, Facebook provides a rich set of JavaScript-based animation functions that
can make your user interfaces more interesting and dynamic. Facebook actually provides a
version of the animation functions in a library for use in pages outside Facebook.You can
download it from http://developers.facebook.com/animation. Internally, Facebook uses a ver-
sion of this library extensively in its client-side user interface code and exposes the same
library via the FBJS Animation class.You see it in action every time you use Facebook.
For example, if you run Listing 11.17, notice how the FBJS dialogs gradually fade from
view rather than instantly disappearing when their Okay buttons are clicked.This behav-
ior is implemented behind the scenes using functions of the Animation class.

We briefly discuss it here and update the Compliments application to dynamically
show the <div> that holds the FBML returned from our AJAX handler. Modify the code
in the ondone() handler to match Listing 11.18. Now, if you submit the form, you see the
<div> at the top of the form gradually appear by scrolling across and down to fill its full
height and width over the course of one second or so.A few seconds later, the Feed story
submission dialog appears.

Listing 11.18 Using Facebook FBJS Animation

ajax.ondone = function(data) {

var statusDiv = document.getElementById('formResult');

statusDiv.setStyle({

display: 'none',

border: '3px solid #bdc7d8',

padding: '0px 3px',

textAlign: 'center'

});

ptg

287Advanced FBJS

Listing 11.18 Continued

statusDiv.setInnerFBML(data.fbml_markup);

// create an instance of the Animation class, passing a

// reference to the DOM element to animate

var anim = Animation(statusDiv);

// keep the height of the statusDiv at 0px...

anim.to('height', '0px').from('height', '0px');

// ...while expanding the statusDiv to its full width

anim.to('width', 'auto').from('width', '0px');

// now expand the statusDiv to its full height; however, add a

// checkpoint to make sure the width expansion finishes first.

// The blind() calls ensure that text does not wrap while the

// statusDiv expands

anim.show().blind().checkpoint().to('height', 'auto').blind();

// do the whole thing in 1 second

anim.duration(1000);

// The number below is multiplied by duration value

// to get resulting milliseconds to wait before firing

// checkpoint. In this case, duration is set to 1000 so

// the checkpoint below will call the function passed as its

// second argument 5 seconds after the animation finishes

var feedDialogDelayFactor = 5;

anim.checkpoint(feedDialogDelayFactor, function() {

// show the Feed story submission dialog as before

showFeedDialog(data);

});

// start the animation sequence

anim.go();

};

A lot is happening in this code.We start with the call to the FBJS setStyle() func-
tion. Notice that we’re setting multiple styles on the <div> element using an object literal
whose keys are set to the (potentially camel-cased) names of the CSS style properties and
whose values are set to strings.After these styles are applied to the element, we set the
FBML content of it by using the FBML object returned from our AJAX call.

The animation code starts on the next line. First, we create an instance of the
Animation class by passing its constructor a reference to the DOM element we want to
animate.The lines following its instantiation look complex; however, nearly all the

ptg

288 Chapter 11 FBJS, Mock AJAX, and Flash

Animation functions (and most FBJS DOM functions) return references to the object on
which they’re called, which allows you to chain multiple function calls together in a single
line of code.

The Animation.from() and Animation.to() functions tween CSS styles of an ele-
ment.The Animation.from() function overrides the existing style used as the starting
point for the animation. In this case, even if the <div> had its width set to 200px, it would
start with a width of 0px in this animation.Tweening, or inbetweening, in animation is
the process of smoothly inserting frames in between the start and end of an animation to
make it look fluid. So, the following lines of code expand the width of the <div> from
0px to its full width—smoothly—while keeping the height of the <div> at 0px the entire
time. If we did not do this, the <div> wipes in from left to right instead of expanding to
its full width and then expanding vertically.

anim.to('height', '0px').from('height', '0px');

anim.to('width', 'auto').from('width', '0px');

The next code line is more involved. It’s shown here for reference:

anim.show().blind().checkpoint().to('height', 'auto').blind();

First, the Animation.show() function explicitly sets the <div>’s CSS display attribute
to “block” to ensure that it behaves as a block-level element. Next, the
Animation.blind() function keeps the text—or any other content that might wrap—in
an element from wrapping or constantly repositioning to fill the intermediate sizes of the
element being animated. It’s much easier to see than explain. If you uncomment the line
in Listing 11.18 that does not use blind(), you see the effects of using it.Without it, the
content of the <div> is visible no matter what, and it constantly readjusts itself to fill the
space provided. Not very smooth animation.The blind() function adds a special con-
tainer <div> as a child of the element we’re animating. It’s set to a fixed width and height
that keeps the content from wrapping until the animation is complete.When the anima-
tion completes, the <div> is removed.

The checkpoint() function breaks the animation into steps to ensure that one anima-
tion completes before the next one starts. In this case, it lets the <div> expand to its full
width before expanding it vertically.The duration() function takes a value (in millisec-
onds) that sets the length of the entire animation sequence. Here, we set it to 1 second.
Next, and most importantly, we use another checkpoint(); however, this time, we pass it
two arguments.The first argument is multiplied by the duration to get the number of mil-
liseconds to wait after the animation completes before calling the anonymous function
passed as the checkpoint’s second argument.This function simply calls our
showFeedDialog() function—5 seconds after the animation finishes. Finally, the
Animation.go() function starts the entire animation process. It’s actually called last be-
cause it’s usually called at the end of a long line of chained animation functions and signi-
fies the end of that chain.

ptg

289Advanced FBJS

The animation functions offer more functionality than what we’ve discussed here. It’s
actually enjoyable to experiment with it in the FBML Test Console.We encourage you to
try it out on your own to see what it can do.

FBJS Events
One of the most important shifts in programming for the web occurred when developers
shifted from using only static HTML to provide content to modern event-driven pro-
gramming. No longer was the web static.The rise of dynamic HTML, the DOM, CSS,
JavaScript, and technologies like AJAX allowed developers to make users’ experience on
the web more interactive and have revolutionized the way people use the web.Without
these technological shifts, sites like Facebook would not be possible.

At the core of the interactive web are events and event handlers. Effectively using them
is an important skill that all web developers should master.As the W3C codified the
DOM and its base functionality, different means of handling events emerged from the dif-
ferent browsers. Currently, the W3C DOM addEventListener() function is the most
widely accepted means of registering an event listener on a single target, and FBJS bases
its events on this model. FBJS abstracts the browser differences from developers so they
can use a familiar and consistent syntax to make their applications more interactive and re-
sponsive. Using events in FBJS is somewhat different than doing so with the DOM.We
point out those differences as we encounter them.

To help you understand events more clearly, we provide some examples.We also try to
follow the tenets of what’s known as unobtrusive JavaScript.This is a recent paradigm in
client-side web programming that holds that script on a page should not draw attention to
itself or intrude on the viewers experience or the content on the page. It needs to degrade
gracefully and show the viewer no error messages if it fails. Ideally, and most importantly, it’s
separated from the markup of the page as much as possible, preferably in external files.You
can read more about it on theWeb Standards Project site at www.webstandards.org/action/dstf/
manifesto/.

FBJS Event Handling
FBJS allows developers to add or remove event handlers to DOM elements by using the
addEventListener() and removeEventListener() functions.They both require two pa-
rameters, which are discussed in a moment. Currently, the Facebook documentation for
FBJS states that these functions require a third parameter, useCapture, that the W3C DOM
functions of the same name do; however, the Facebook documentation is incorrect. Be-
cause there is a discrepancy between the Facebook documentation and the actual imple-
mentation of these functions in FBJS, we discuss this third parameter anyway. It’s
important to understand what it does and how FBJS uses it.Table 11.4 describes the argu-
ments to these functions.

ptg

290 Chapter 11 FBJS, Mock AJAX, and Flash

The useCapture parameter might be confusing to some. It helps to understand the
W3C DOM Event flow model, which is detailed at www.w3.org/TR/DOM-Level-3-
Events/events.html#Events-flow. Simply put, events propagate from the root of the DOM to
their ultimate target and then back up to the root. Multiple DOM elements can register
event handlers for the same event. Elements that register handlers for an event are called
targets for that event.Those higher in the DOM tree are known as the target’s ancestors, and
the one immediately preceding it is the target’s parent. Events go through three phases dur-
ing their lifecycle:

1. Capture phase. Occurs as the event travels down through the target’s ancestors to
its parent. If the target had passed true for the useCapture parameter of the
addEventListener() function (a process known as initiating capture), it would allow
it to handle the event before it reached any targets beneath it in the DOM hierarchy
or tree. Similarly, if a target’s parent or ancestor had done the same, it would be able
to handle the event before the target.

2. Target phase. Happens as the event reaches its final target. Normal event listeners
operate at this phase to handle the event.

3. Bubbling phase. Events not only travel down through the DOM to reach their
target, but they also travel back up.The process of doing so is known as bubbling.
Handlers registered for this phase handle the event after it’s been handled by the tar-
get, or more colloquially, as the event bubbles back up the DOM tree. Event listen-
ers that have initiated capture are never called during this phase.

In FBJS, the useCapture parameter of addEventListener() is always set to false,
which means that we will only ever be able to handle the event during the target or bub-
bling phase (whichever comes first).

FBJS also provides a couple of utility functions for dealing with event handlers.The
purgeEventListeners() function takes a single argument—the type of the event—and

Table 11.4 Parameters of the addEventListener() and
removeEventListener() Functions

Parameter Type Description

type string Contains the name of the event for which to regis-
ter/remove a handler, such as “click,” “submit,”
and so on.

listener function Contains the name of the FBJS function to add/re-
move as the event handler. It can also be an inline
anonymous function.

useCapture boolean Set to true if you want to handle the event before it
reaches its final target; false, otherwise.

This parameter is not required by FBJS, where it’s
always false.

ptg

291Advanced FBJS

removes all the currently registered handlers for it from the element on which it’s called.
listEventListeners() takes the same argument and returns an array of all the handlers
registered for the event type it’s passed.

A final note: FBJS does not support the older form of event handler registration that
was available before addEventListener() was introduced.This older model exposed
events as properties of an element to which handler functions could be directly assigned,
like this: element.click = function(){}.These properties are not available in FBJS.

Event Handling and Internet Explorer
We have not discussed the differences in event handling between different browsers. All
modern browsers, with the notable exception of Internet Explorer, use W3C-style event han-
dling. Internet Explorer—including version 8—uses a completely different and nonstandard
event handling syntax, using the functions attachEvent() and detachEvent(). Thank-
fully, FBJS handles the differences internally so that you don’t have to.

Implementing FBJS Event Handling
Now, let’s update our application to use an FBJS event handler. First, we add a new event
handler to the page for our submit button on the <form> instead of using the inline
onclick() handler as our first step on the path to writing unobtrusive code. In doing so,
we begin to move our FBJS code to an external file instead of including it in index.php.
To begin, create a new directory named js in the root of your application.Add the code
in Listing 11.19 to a new file and save it as fbjs.js in this new directory.

Listing 11.19 fbjs.js: Adding an Unobtrusive onclick() Handler

// keep our script out of global scope;

// not really required here since FBJS is already

// sandboxed but good practice

(function() {

var functionsToCallOnLoad = [addEventHandlers];

// since FBJS does not expose the onload event handler for the page

// we'll fudge one by running this function 10 ms after the page loads

var interval = setInterval(function() {

var root = document.getRootElement();

if(root) {

clearInterval(interval);

for(var i = 0, len = functionsToCallOnLoad.length; i < len; ++i) {

functionsToCallOnLoad[i]();

}

}

}, 10);

function $(element) {

if ('string' == typeof element) {

element = document.getElementById(element);

ptg

292 Chapter 11 FBJS, Mock AJAX, and Flash

Listing 11.19 Continued

}

return element;

}

function addEventHandlers() {

var submitButton = $('submitButton');

if(submitButton) {

submitButton.addEventListener('click', function(event){

submitForm();

event.stopPropagation();

event.preventDefault();

return false;

}, false);

}

}

})();

The first thing to notice about Listing 11.19 is that the entire file is enclosed in an
anonymous function, which is executed immediately after the script loads.The reason for
this is to ensure that none of the variables or functions clash with any others defined in
the global namespace by using the function’s scope as a temporary namespace.This is an
important practice to use when writing external JavaScript files for a page, especially if
you don’t control the other scripts that the page can load. In this case, it’s not that impor-
tant because all of your FBJS code runs in a sandbox that virtually guarantees that no
name conflicts will occur; however, it is a best practice to follow nonetheless, and it helps
in our approach to write unobtrusive code.

The next part of the code gets around a limitation of FBJS: the lack of access to the
page’s onload() handler. In normal DOM scripting, a developer usually defers any
JavaScript that interacted with the DOM until the page on which it’s used is fully loaded.
At this point, the window object fires the load event.Typically, the developer registers a
handler for this event and, in it, runs any script that needed to run as soon as users can in-
teract with the document. But, in FBJS, we must provide a workaround by using the
setInterval() function to do a time-based deferral of our script’s execution. Not a per-
fect solution, but it’s effective in most cases. Here, we use setInterval() to poll every
10ms to check for the existence of our canvas page’s root element.When it’s found, we
clear the interval and execute our startup code.

We organized the functions that we need to run immediately by using an array.When
our startup code executes, it walks this array, calling each function in turn. For this exam-
ple, we only added the addEventHandlers() function to this array.

Note the utility $() function. It’s used to put some syntactic sugar on the process of
getting a reference to a DOM element using its ID. Much less work is needed to type $()
to get a reference to a DOM element than typing document.getElementById() each
time. Many commercial JavaScript libraries do something similar.

ptg

293Advanced FBJS

Finally, we can add our new event handler. In the addEventHandlers() function, we
first get a reference to the submit button DOM instance and, with it, we call the FBJS
addEventListener() function. In our case, the event handler it sets is always called dur-
ing the target phase because we cannot initiate capture in FBJS, and there are no elements
deeper in the DOM tree that have registered handlers for the event.

Notice that we then call two functions on the event instance that’s passed to our han-
dler.The first, stopPropation(), immediately halts the event’s progress through the event
phases.This means that if there were another target further along in the DOM that had
registered a handler for this event—and we set useCapture to true when calling
addEventListener() on the submit button—the final target element would never receive
the event.This also prevents any other handlers from receiving it as the event bubbles back
up.The next function, preventDefault(), stops the default action the event causes on the
implementation of the target. For example, the normal default action for the click event in
an <input type='submit'> button might be to submit the <form> in which it’s found.
By calling preventDefault(), we cancel this action because we are submitting the form
ourselves using AJAX.

Now, we need to update our submit button to use the new event handler.The first
thing we need to do is include the external fbjs.js file in our canvas page.The following
code shows the line we need to add to the getHeaderContent() function in index.php
to do it:

function getHeaderContent() {

$header = "

<link rel='stylesheet' type='text/css'

href='".LOCAL_APP_URL.getFileVer("css/main.css")."' />

<!—[if IE]>

<link rel='stylesheet' type='text/css'

href='".LOCAL_APP_URL.getFileVer("css/ie.css")."' />

<![endif]—>

<fb:title>Send a Compliment</fb:title>

<script src='".LOCAL_APP_URL.getFileVer("js/fbjs.js")."'
type='text/javascript'></script>

<div class='banner'

style='background: url(".LOCAL_APP_URL."/img/banner.png) no-repeat;' >

Next, we modify the existing submit button to remove the onclick() handler it’s cur-
rently using. Because we’re adding the event handler in FBJS dynamically, we just need to
remove the onclick attribute completely, as shown here:

<input id='submitButton'

class='inputbutton'

type='submit'

name='submitCompliment'

label='Send Compliment'

value='Send Compliment'/>

ptg

294 Chapter 11 FBJS, Mock AJAX, and Flash

That’s all the changes required to use FBJS event handling in our application.Test it
out and verify that submitting the form behaves exactly like it did before our changes.
Clicking the submit button submits the form exactly as before.The next step of making
our FBJS more unobtrusive is to completely remove the FBJS from index.php and place
it into fbjs.js.We leave that as an exercise for you.

Using Flash
Abobe Flash is a popular, powerful, and mature technology for implementing interactive
applications for the web (and elsewhere).According to Adobe, more than 98 percent of all
PC web browsers have at least version 9 of the Flash Player installed. Flash has always been
a popular choice for developers to use in creating engaging Facebook applications. In fact,
many of the top applications on Facebook today use it.

Recently, a new library, fully supported by both Facebook and Adobe, was released to
allow developers to use Flash or Flex and ActionScript 3 (the JavaScript-like scripting lan-
guage supported by Flash) to create complete Facebook applications that can run either
within Facebook or externally.This library gives Flash the ability to call the Facebook API
directly, much like the PHP library does.This is a huge time-saver; prior to its release, de-
velopers had no way to easily call the Facebook API from their SWF files; moreover, they
had to manage all the communication between their Flash SWF files and their Facebook
applications themselves.

One of the most frequent issues that developers deal with in using Flash in traditional
Facebook web applications is how to communicate between their Flash objects and the
application pages on which they’re placed.This section covers that in detail. For more in-
formation on the Facebook ActionScript 3 Library, visit the Adobe Developer Connec-
tion site at www.adobe.com/devnet/facebook/.

Hosting Flash Content in Facebook Applications
Flash content can be inserted in Facebook profiles, application tabs, or canvas pages. Re-
member that developers have a choice to use either IFrame- or FBML-based canvas
pages. Hosting Flash content from within an IFrame-based page is similar to hosting it on
a normal web page. Generally, the Flash is placed on the page using an HTML <object>
tag or using JavaScript detection and embedding scripts. FBML canvas pages are slightly
different and, for these, Facebook provides a special FBML tag, <fb:swf>, to host Flash
content within FBML.

The <fb:swf> tag can be used directly or created using FBJS.The <fb:swf> tag ac-
cepts a large number of attributes, which are explained in Table 11.5.

Using FBJS to embed a Flash SWF on a page is done with the FBJS
document.createElement() function; this tag is currently the only FBML tag that can be
created using FBJS in this way. Several FBJS functions parallel many of the attributes
found in the <fb:swf> tag; instead of presenting them in a table, we discuss them in code.

ptg

295Using Flash

Table 11.5 <fb:swf> Attributes

Attribute Type Description

swfsrc string Must be set to the full path to the SWF file. Cannot be a
Facebook domain. Required.

imgsrc string Set to a full URL of an image to use as a placeholder for
the SWF on Facebook profiles and application tabs.
Defaults to a blank “dummy” image if none is provided.
Ignored on canvas pages.

height int Height of the SWF and the image set in imgsrc.

width int Width of the SWF and the image set in imgsrc.

imgstyle string CSS style attributes for the image set in imgsrc.

imgclass string CSS class for the image set in imgsrc.

flashvars string Can be set to a list of name=value pairs separated by &
characters (basically like a query string). Must be URL en-
coded.

swfbgcolor string Set to the color of the SWF’s background, in hexadecimal
notation. The value set in the SWF is ignored. Defaults
to 000000, or black; however, the wmode attribute
influences it.

waitforclick boolean Set to false to allow Flash to start playing automatically
on canvas pages. If set to true, it requires the user to
click the SWF before it begins playing. On profiles and ap-
plication tabs, it’s ignored unless an AJAX call happens
first. Defaults to true.

salign string Analogous to the salign attribute used on an HTML
<embed> tag. Can be set to top (t), left (l), bottom (b),
right (r), or any valid combination of these.

align string Set this to the alignment for the movie in the browser:
left, center, or right. Defaults to left.

loop boolean Set to true if you want the Flash movie to loop; other-
wise, false. Defaults to false.

quality string Set to the quality you want the SWF to be rendered in:
best, high, medium, or low. Defaults to high.

wmode string Sets the opacity for the Flash movie. Can be transparent,
opaque, or window. Defaults to transparent, which results
in the swfbgcolor attribute’s value being ignored.

ptg

296 Chapter 11 FBJS, Mock AJAX, and Flash

Creating a SWF That Can Communicate with FBJS
To understand how Flash can communicate with our application, we need to create the
base SWF file to use. Listing 11.20 contains a complete Document class for a Flash SWF
written in ActionScript 3. It’s basic and simply illustrates how to use the Facebook
ActionScript 3 Library to enable two-way communication between FBJS and Flash.You
can simply include this code in a new Flash ActionScript 3 project, add a reference to the
Flash ActionScript 3 Library, and build.We provide the .fla on this book’s website.
Figure 11.16 shows it running from within the Compliments application. Much of the
code in Listing 11.20 is specific to Flash user-interface coding, and we won’t cover that
here. Several great references on the web, including the Adobe Developer Center, can give
you the essentials of building Flash applications.We focus on the communication between
Flash and Facebook.

Creating the compliments.swf File for Facebook
For this example, we assume that you have Adobe Flash CS4 or newer installed. If you have
Adobe Flex Builder, Flash Develop, or some other development environment installed, con-
sult its help or documentation on how to include an ActionScript class file into a project. To

Figure 11.16 The Compliments Flash application that communicates
with Facebook and FBJS

ptg

297Using Flash

create the SWF for this project in Adobe Flash CS4, follow the steps in the following list. If
you just want to compile your own SWF from the compliments.fla project file included
with the book’s code listings, simply open the compliments.fla file, publish the movie,
and copy the resulting compliments.swf to your Facebook application’s root directory.

1. Open Flash and create a new .fla file by choosing Flash File (ActionScript 3.0).

2. Copy and save the compliments.as file from our code listing into a directory of
your choice.

3. Save the project as compliments.fla in the same directory into which you copied
the compliments.as file.

4. Open the Window menu and check the Properties entry.

5. Change the size of the Stage to be 750x550px. To do this, click the Edit button next
to the Size entry in the Properties panel and change Dimensions to 750px for the
width and 550px for the height.

6. Open the Publish Settings dialog by clicking the Edit button to the right of the Profile
entry in the Properties panel.

7. On the Format tab, uncheck everything but Flash (.swf).

8. On the Flash tab, choose Flash Player 9 from the Player drop-down at the top of the di-
alog.

9. Make sure that ActionScript 3.0 is selected in the Script drop-down.

10. Click the Settings button to the right of the the Script drop-down.

11. In the Document Class text field at the top of the dialog, enter Compliments. Click the
pencil icon to the right of the text field and verify that the compliments.as file opens
in the Flash IDE code editor.

12. Click OK at the bottom of the dialog.

13. Click Publish at the bottom of the next dialog.

14. Verify that the compliments.swf file has been created in the same directory as the
compliments.as and compliments.fla files.

15. Modify the Compliments class to contain your application’s Facebook API key for the
API_KEY constant’s value. Save the class file.

16. Publish the compliments.swf file once more.

17. Copy the compliments.swf to the root directory of your Compliments application.

Listing 11.20 Compliments.as: ActionScript 3 Class for Communicating with FBJS

package {

import fl.controls.Button;

import fl.controls.TextArea;

import fl.controls.DataGrid;

import fl.controls.dataGridClasses.*;

import fl.data.DataProvider;

import flash.display.Loader;

ptg

298 Chapter 11 FBJS, Mock AJAX, and Flash

Listing 11.20 Continued

import flash.display.LoaderInfo;

import flash.display.MovieClip;

import flash.display.Stage;

import flash.display.StageAlign;

import flash.display.StageScaleMode;

import flash.events.Event;

import flash.events.MouseEvent;

import flash.events.StatusEvent;

import flash.events.ErrorEvent;

import flash.net.URLRequest;

import flash.net.URLLoader;

import flash.text.TextField;

import flash.text.TextFormat;

import flash.text.TextFieldAutoSize;

import com.facebook.data.FBJSData;

import com.facebook.errors.FacebookError;

import com.facebook.events.FacebookEvent;

import com.facebook.Facebook;

import com.facebook.utils.FBJSBridgeUtil;

import com.facebook.session.WebSession;

import com.facebook.utils.FacebookSessionUtil;

public class Compliments extends MovieClip {

// Constants:

// This needs to be replaced with your API key

private static const API_KEY:String = 'YOUR API KEY';

// Facebook AS3 Library variables

private var fbSessionUtil:FacebookSessionUtil;

private var fbBridgeUtil:FBJSBridgeUtil;

// Flash variables

private var flashVarsParams:Object;

// UI variables

private var button:Button;

private var textField:TextField;

private var dataGrid:DataGrid;

private var textArea:TextArea;

// constructor

public function Compliments() {

init();

}

ptg

299Using Flash

Listing 11.20 Continued

private function createDataGrid(): void {

dataGrid = new DataGrid();

dataGrid.setSize(550, 315);

dataGrid.x = (stage.stageWidth - dataGrid.width) / 2;

dataGrid.y = 120;

dataGrid.columns = [new DataGridColumn("FBVars"), new
DataGridColumn("FBVals")];

dataGrid.columns[0].headerText = 'Facebook Variable';

dataGrid.columns[1].headerText = 'Value Passed in FlashVars';

var facebookData:DataProvider = new DataProvider();

for(var i:* in flashVarsParams) {

facebookData.addItem({ FBVars:i, FBVals:flashVarsParams[i] });

}

facebookData.sortOn("FBVars");

dataGrid.dataProvider = facebookData;

addChild(dataGrid);

}

private function createTraceField():void {

textArea = new TextArea();

textArea.setSize(550, 100);

textArea.x = (stage.stageWidth - textArea.width) / 2;

textArea.y = dataGrid.height + dataGrid.y + 10;

addChild(textArea);

textArea.appendText('trace window\n');

}

private function createTextField():void {

textField = new TextField();

textField.autoSize = TextFieldAutoSize.LEFT;

textField.background = true;

textField.border = false;

var format:TextFormat = new TextFormat();

format.size = 20;

format.bold = true;

format.font = 'Arial';

textField.defaultTextFormat = format;

textField.visible = false;

addChild(textField);

}

private function createButton(): void {

ptg

300 Chapter 11 FBJS, Mock AJAX, and Flash

Listing 11.20 Continued

button = new Button();

button.label = 'Say Hi Back to FBJS...'

button.width = 140;

button.visible = false;

button.addEventListener(MouseEvent.CLICK,

onCallFBJSClicked, false, 0, true);

addChild(button);

}

private function onCallFBJSClicked (event:MouseEvent): void {

trace('onCallFBJSClicked');

fbBridgeUtil.call('callFromFlash', ['Hi from Flash!']);

}

private function doTrace(msg:String): void {

textArea.appendText(msg + "\n");

trace(msg);

}

private function init():void {

stage.scaleMode = StageScaleMode.NO_SCALE;

stage.align = StageAlign.TOP_LEFT;

// Contains the 'fb_sig' parameters passed

// by Facebook to the SWF when it loads on a Facebook-chromed

// page

flashVarsParams = loaderInfo.parameters;

// create simple UI widgets

createDataGrid();

createTraceField();

createTextField();

createButton();

// Auto-determines session type from loaderInfo,

// will be 'WebSession' for regular FBML/IFrame app

// null is FB_APP_SECRET key, stored in loaderInfo

// to protected from decompilation

fbSessionUtil = new FacebookSessionUtil(API_KEY, null, loaderInfo);

fbSessionUtil.addEventListener(FacebookEvent.CONNECT,

onFacebookConnect, false, 0, true);

// could make calls directly to Facebook API

// using fbSessionUtil.facebook property!

ptg

301Using Flash

Listing 11.20 Continued

isAppAllowed(flashVarsParams.fb_sig_session_key);

}

private function onFacebookConnect(event:FacebookEvent):void {

// Succesfully logged in, & have valid authentication for your session type

if (event.success) {

trace(event.toString());

} else {

trace('error connecting to Facebook ' + event);

trace(event.error.errorCode, event.error.errorMsg,
event.error.requestArgs, event.error.reason);

}

}

private function isAppAllowed(sigSessionKey:String):void {

if (sigSessionKey != null) {

fbSessionUtil.verifySession();

setupFBJSBridge();

} else {

trace('error: App not authorized by user ' + flashVarsParams.fb_sig_user);

}

}

private function setupFBJSBridge(): void {

fbBridgeUtil = new FBJSBridgeUtil(API_KEY,

flashVarsParams.fb_local_connection,

flashVarsParams.fb_fbjs_connection);

fbBridgeUtil.addEventListener(FacebookEvent.COMPLETE, fbjsCallbackHandler);

}

private function fbjsCallbackHandler(event:FacebookEvent):void {

doTrace(event.data.toString());

if (event.success) {

var argsFromFBJS = (event.data as FBJSData).results;

doTrace(argsFromFBJS.toString());

loadFacebookProfilePic(argsFromFBJS[0],

argsFromFBJS[1]);

}

if (event.error) {

doTrace('error');

}

}

private function loadFacebookProfilePic(name:String, picUrl:String): void {

ptg

302 Chapter 11 FBJS, Mock AJAX, and Flash

Listing 11.20 Continued

var loader:Loader = new Loader();

var request:URLRequest = new URLRequest(picUrl);

loader.contentLoaderInfo.addEventListener(Event.COMPLETE, completeHandler);

loader.addEventListener(MouseEvent.CLICK, clickHandler);

addChild(loader);

try {

loader.load(request);

} catch (e:Error) {

doTrace(e.toString());

}

function completeHandler(event:Event):void {

trace("completeHandler: " + event);

loader.contentLoaderInfo.removeEventListener(Event.COMPLETE,
completeHandler);

loader.x = 100;

loader.y = 30;

textField.text = 'Hello from Flash, ' + name + '!';

textField.x = loader.x + loader.width + 10;

textField.y = loader.y + (loader.height - textField.height) / 2;

textField.visible = true;

button.y = loader.y + (loader.height - button.height) / 2;

button.x = textField.x + textField.width + 10;

button.visible = true;

}

function clickHandler(event:MouseEvent):void {

trace("clickHandler: " + event);

var loader:Loader = Loader(event.target);

loader.unload();

textField.visible = false;

button.visible = false;

}

}

}

}

In Figure 11.16, the Flash SWF occupies everything within the thin border below
the Call Flash button, which is part of the Facebook application. Initially, the area above
the DataGrid containing the Facebook variable data sent to the SWF is empty; clicking

ptg

303Using Flash

the Call Flash button calls an ActionScript method exposed by the Flash SWF, passing the
name of the currently authorized user and the path to his profile picture as parameters to
this method. Flash then displays these items above the grid and presents the user with a
button with the label Say Hi Back to FBJS. Clicking this button sends a message back to
FBJS, which displays it in the FBJS popup dialog shown in Figure 11.17.

Hosting and Communicating with Flash from FBJS
The first thing to understand is how the communication channel between Facebook and
our Flash application is structured.To gain this understanding, we need to provide the
other half of the puzzle, namely the Facebook FBML and FBJS code that interacts with
the Flash SWF.This is shown in Listing 11.21. Save this code in a file in the Compliments
application root called flashdemo.php.

This adds another tab to the application named Flash that will host the Flash content;
however, to have it work from all the application’s pages, you need to include the follow-
ing line of code as the last line of each of their <fb:tabs> tags:

<fb:tab-item href='".FB_APP_URL."/flashdemo.php' title='Flash' />

Notice that, in this case, we did not place the FBJS code in a separate file.

Listing 11.21 flashdemo.php: Communicating with Flash Using FBJS

<?php

require_once 'inc/globals.inc';

require_once 'inc/utils.inc';

$facebook = new Facebook(FB_API_KEY, FB_APP_SECRET);

$picUrl = '';

$name = '';

// get the current user's full name and profile picture URL

$userInfo = $facebook->api_client->fql_query(

'SELECT pic_square, name FROM user WHERE uid='.$facebook->user);

if(isset($userInfo) && is_array($userInfo) && isset($userInfo[0])) {

Figure 11.17 Result of clicking the Flash button to communicate back
to FBJS from Flash

ptg

304 Chapter 11 FBJS, Mock AJAX, and Flash

Listing 11.21 Continued

$picUrl = $userInfo[0]['pic_square'];

$name = $userInfo[0]['name'];

}

echo(getHeaderContent());

function getHeaderContent() {

$header = "

<link rel='stylesheet' type='text/css'

href='".LOCAL_APP_URL.getFileVer("css/main.css")."' />

<!—[if IE]>

<link rel='stylesheet' type='text/css'

href='".LOCAL_APP_URL.getFileVer("css/ie.css")."' />

<![endif]—>

<fb:title>Send a Compliment</fb:title>

<div class='banner'

style='background: url(".LOCAL_APP_URL."/img/banner.png) no-repeat;' >

<div id='buttons' class='clearfix' >

<div id='addbutton'>

<fb:if-section-not-added section='profile'>

<fb:add-section-button section='profile' />

</fb:if-section-not-added>

</div>

<div id='infobutton'>

<fb:if-section-not-added section='info'>

<fb:add-section-button section='info' />

</fb:if-section-not-added>

</div>

</div>

</div>

<div id='status'> </div>

<fb:tabs>

<fb:tab-item href='".FB_APP_URL."/' title='Send(FBML)' />

<fb:tab-item href='".FB_APP_URL."/index_iframe.php?fb_force_mode=iframe'

title='Send(IFrame)' />

<fb:tab-item href='".FB_APP_URL."/invite.php'

title='Invite your Friends' />

<fb:tab-item href='".FB_APP_URL."/flashdemo.php'

title='Flash' selected='true'/>

</fb:tabs>";

return $header;

}

?>

<!— ***CRITICAL*** —>

ptg

305Using Flash

Listing 11.21 Continued

<!— The fbjs-bridge is REQUIRED to allow communication

back and forth between Flash and FBJS. MUST BE placed

above any fb:swf tag or it will fail! —>

<fb:fbjs-bridge/>

<div style='text-align:center; margin: 10px 0px;'>

<input id='callFlash_id' onclick='callFlash(); return false;'

type="button" class="inputsubmit"

style='width:250px; height:25px'

name="callFlash" value="Call Flash" />

</div>

<!— The element that will hold our SWF —>

<div style='border:1px solid #5973A9' id="swfContainer"></div>

<script type='text/javascript'>

var swfId = 'compliments_swf_id';

// create the <fb:swf> tag dynamically

var swf = document.createElement('fb:swf');

swf.setId(swfId);

// set these to the same values you did in your .fla file

// or Flex project

swf.setWidth('750');

swf.setHeight('550');

// center the SWF on the page

swf.setAlign('center');

// *BUG* in Facebook currently causes this to fail...

// swf.setSWFBGColor('5973A9');

// don't require users to click on the SWF to activate it

// on canvas pages (or profiles after an AJAX call)

swf.setWaitForClick(false);

// set to full path to SWF on our web server

swf.setSWFSrc('<?php echo(LOCAL_APP_URL.'compliments.swf'); ?>');

// add the SWF to the <div> we've provided

document.getElementById('swfContainer').appendChild(swf);

//==

ptg

306 Chapter 11 FBJS, Mock AJAX, and Flash

Listing 11.21 Continued

// callFlash

//

// This calls the 'asFunction' method IN the Flash SWF, passing

// the currently-logged-on user and the path to their profile picture

//

function callFlash() {

var s = document.getElementById(swfId);

if(s) {

var r = s.callSWF("asFunction",

"<?php echo($name); ?>",

"<?php echo($picUrl); ?>");

} else {

new Dialog().showMessage('FBJS Bridge Error',

'Unable to call Flash method');

}

}

//==

// callFromFlash

//

// This is BY the Flash SWF

//

function callFromFlash(msg) {

new Dialog().showMessage('Call from Flash', msg);

}

</script>

Now that we have both sides of the channel in place, let’s discuss how it all works.We
discuss the Facebook side of things first. Notice that we create the <fb:swf> tag dynami-
cally using document.createElement().Why do we do it this way? One important rea-
son: If you use the <fb:swf> tag, it is harder to get the ID of the HTML <embed>
element the Facebook parser renders for it.You can use DOM navigation methods to find
it, assuming that it’s the only <embed> object within your application’s sandbox, but it’s not
guaranteed, and this ID is needed to use the FBJS DOM callSWF() function to call into
the SWF.

Setting SWF Background Colors with FBJS
Currently, there is no way to set the SWF background color using FBJS because there’s a bug
in the FBJS setSWFBGColor() function. The bgcolor attribute of the <fb:swf> FBML tag
works perfectly; therefore, if the background color is important for you to set in your code,
you must use the FBML tag instead of creating it dynamically with FBJS.

ptg

307Using Flash

However, the most important line in Listing 11.21 is a seemingly simple one:

<fb:fbjs-bridge/>.

Communicating Between Flash and FBJS Using <fb:fbjs-bridge>
The <fb:fbjs-bridge> tag is the key to enabling communication between Flash and
FBJS. It was originally designed to deal with a change Adobe made in Flash Player ver-
sion 9. Previous versions of the player allowed developers to easily change the browser’s
current location using ActionScript or JavaScript, a trick many Flash developers used to
allow their users to navigate through their applications. However,Adobe changed this be-
havior in version 9 of its player by requiring that all HTML code hosting SWFs not run-
ning on the same domain as the hosting HTML set the allowscriptaccess attribute in
the <object> or <embed> tags for the SWF to a value of always.This allows the SWFs to
access any JavaScript on their hosting page and, therefore, direct the browser at will.

This was a big problem for Facebook Flash developers for two reasons. First, as dis-
cussed, Facebook does not allow the <object> or <embed> tags in FBML canvas pages, so
developers could not set this attribute themselves. Secondly, it sets this property to never
for security reasons when the <fb:swf> FBML tag is parsed. Because FBML canvas
pages—and therefore any SWFs within them—always run on a different domain than
Facebook’s, this effectively broke many Facebook applications that used this technique.

To fix it, Facebook and its developer community came up with a unique solution that
basically used a bridge SWF to act as broker between application SWFs and the pages
that hosted them.The way it works is transparent to users.When the Facebook FBML
parser encounters the <fb:fbjs-bridge> tag, it generates an <embed> or <object> tag
on the page (depending on the browser) containing the invisible bridging Flash SWF on
the page. Its job is to open a communication channel between the FBJS code and SWFs
on the page and provide the Flash Player navigation behavior for which it was originally
designed.

From this point, we refer to it as the fbjs-bridge SWF. Note that its FBML tag must ap-
pear on the page before any <fb:swf> tag that wants to use it or none of the functional-
ity we describe in the following sections will work for it. For safe measure, it’s best to put
it as close to the top of a page as possible.

If you look at the HTML generated for our SWF embedding code, you can see why
the bridging SWF is needed, as shown in this pseudo-code:

<embed

allowscriptaccess="never"

id="app63560904158_compliments_swf_id"

src="<path>/compliments.swf

<!— some flashvars omitted and url-encoding removed —>

flashvars="

fb_sig_user=<user id>&

fb_sig_session_key=<session key>&

fb_sig_api_key=<api key>&

ptg

308 Chapter 11 FBJS, Mock AJAX, and Flash

fb_local_connection=_id4a809a2a486922285231199&

fb_fbjs_connection=_swf156848"

fbjs="_swf156848"

/>

The first attribute, allowscriptaccess, is critical. Setting this to never expressly for-
bids the SWF from accessing any JavaScript on the page, as mentioned. Notice that Face-
book automatically passes its list of session variables to the SWF in the flashvars
attribute. Using Flashvars is just one way to pass information to the SWF; we could have
used it to pass the user’s name and profile picture URL this way if we’d chosen to do so
instead of calling a method in our SWF.When using it, you need to be aware of some
things. Flashvars can only be 64K total size, which might seem like a lot, but it might not
be if you pass all the information about an application user who has thousands of friends
with it, on top of all the data Facebook might be passing.Also, it’s a one-way trip.There’s
no way to call back into FBJS when using it.There are two important flashvars Face-
book sends to our SWF that are important in the bridging process:
fb_local_connection and fb_fbjs_connection.We return to them in a moment.

The fbjs-bridge provides two important pieces of functionality. First, because the em-
bedding code, which hosts it, always has its allowscriptaccess attribute set to always,
it’s able to interact with JavaScript on the page in a way we discuss a bit later.Also, it han-
dles bridging all the method calls to and from our SWF using ActionScript
LocalConnection objects. LocalConnection objects allow SWFs to invoke methods on
each other.There are important same-domain issues to be aware of when using them,
which we do not discuss here; however, luckily, Facebook and the ActionScript 3 Library
handle them transparently for us.

Communicating Between SWFs Using LocalConnnection
The way LocalConnection objects work is simple. Both SWFs that want to communica-
tion must create an instance of a LocalConnection object. One SWF is deemed the
receiver, which exposes methods to the other, known as the sender.They interact in the fol-
lowing way. First, the receiver calls the LocalConnection.connect() method passing a
string to identify the “channel” on which it will accept calls from the sender. It sets the
methods it wants to expose using an object assigned to the LocalConnection.client
property.The sender then uses the LocalConnection.send() function to call the function
exposed by the receiver on this channel. send() takes three arguments: first, the same
channel name used by the receiver, second, the method name in the receiver to call, and
finally, an array of arguments to pass to it.

Both SWF and the fbjs-bridge SWF perform both roles, depending on the direction
of the communication.The fb_fbjs_connection channel name is used when our SWF
is the receiver, exposing an ActionScript function named asMethod(), that the fbjs-bridge
SWF can call. Conversely, fb_local_connection is used when our SWF wants to call
the FBJS bridging method exposed by the fbjs-bridge SWF, appropriately named
callFBJS().

ptg

309Using Flash

Communicating Between the <fb:fbjs-bridge> and FBJS Using
ExternalInterface
The ExternalInterface object allows the SWF (via the Flash Player) to communicate
with JavaScript on the hosting page. It works similarly to LocalConnection, instead using
a callback mechanism to allow communication from JavaScript to the fbjs-bridge SWF.
The SWF uses ExternalInterface.addCallback() to register a callback with the Flash
Player that JavaScript can call.The fbjs-bridge SWF can call a JavaScript method on the
page using the ExternalInterface.call() method, thanks to its generous
allowscriptaccess setting.

FBJS provides the callSWF() function for developers to use. It calls through
ExternalInterface into the fbjs-bridge SWF, which forwards the call via its
LocalConnection.send() method to our SWF. On the contrary, when the SWF wants
to call our FBJS calledFromFlash() function, it goes through the fbjs-bridge SWF, who
forwards the call.

Finally, let’s look at the ActionScript code.We use the Facebook ActionScript 3 Li-
brary’s FbjsBridgeUtil class internally to handle all the internals of using the
LocalConnection objects for us.We just use event handlers in our Compliments class to
handle the calls to and from it.

In Listing 11.20, the setupFBJSBridge() function is called when we’ve been success-
fully set up a session with Facebook using the ActionScript Library. Notice that we pass it
the names of the channels the LocalConnection objects will use. Internally, the Library’s
FBJSBridgeUtil class simply handles setting up both of the LocalConnection objects
and handles dispatching the method calls for us. One caveat: It only exposes a single
method to FBJS, named asMethod(). If you need to expose multiple methods, there are
other alternatives available, or you can use this as a basis for creating your own solution.

Listing 11.22 sums up the entire discussion thus far, showing which objects are respon-
sible for which calls at which time.

Listing 11.22 FBJS, <fb:fbjs-bridge>, and External SWF Communication

// ———————————————————

// In our SWF

// ———————————————————

// [1] when acting as receiver for the fbjs-bridge

var swfReceiver:LocalConnection = new LocalConnection();

swfReceiver.client = {

asFunction: function(...params):void {

// display profile pic and welcome message

// create button for user to click to send back to FBJS

}

};

swfReceiver.connect(fb_fbjs_connection); // name passed in flashvars

ptg

310 Chapter 11 FBJS, Mock AJAX, and Flash

Listing 11.22 Continued

// [2] when acting as a sender to the fbjs-bridge

var swfSender:LocalConnection = new LocalConnection();

// ...when acting as sender to call fbjs-bridge`

function onButtonClick(event:Event): void {

swfSender.send(fb_local_connection, // value passed in flashvars

"callFBJS", // hard-coded name of fbjs-bridge method

"callFromFlash", // argument 1 to fbjs-bridge

"Hello from Flash!") // etc...

}

// ———————————————————

// In the fbjs-bridge SWF

// ———————————————————

// [3] ...when acting as receiver from our SWF

var bridgeReceiver:LocalConnection = new LocalConnection();

bridgeReceiver.client = {

callFBJS: function(fbjsMethodName:String, params:Array):void {

// call the FBJS (JavaScript) function we've exposed

ExternalInterface.call(fbjsMethodName, params);

},

navigateToURL: function(targetURL:String):void {

// we have the right to call this here

// because we have allowscriptaccess='always' set

navigateToURL(targetURL);

}

};

bridgeReceiver.connect(fb_local_connection);

// [4] ...when acting as a sender to our SWF

var bridgeSender:LocalConnection = new LocalConnection();

ExternalInterface.addCallback("callFlash", _callFlashImpl);

function _callFlashImpl(methodName:String, userName:String, picURL:String): void {

bridgeSender.send(fb_js_connection, // value known when page rendered

methodName, // 'asMethod'

userName, // argument 1 to our SWF

picURL) // etc...

// NOTE: likely uses bridgeSender.apply(null, [args]) since it does not know

// how many args it may take ahead of time, but this is clearer...

ptg

311Summary

Listing 11.22 Continued

}

// ———————————————————

// In our FBJS

// ———————————————————

var swf = document.getElementById('swf_id');

swf.callSWF('asFunction', arg1, arg2);

function callFromFlash(msg) {

// show msg

}

// ———————————————————

// In the FBJS DOM Sandbox

// ———————————————————

fbjs_dom_impl.callSWF(method, args) {

fbjs_bridge_obj.callFlash(method, args);

}

Summary
This chapter covered how Facebook has built FBJS to be safe for it to expose on pages
running on its domain while providing a rich set of features for Facebook application de-
velopers. Here are some key points:

n Facebook places all FBJS code in its own sandbox to keep it from conflicting with
other JavaScript code but also to protect itself from malicious JavaScript.As part of
this process, all the global JavaScript objects and many of the DOM interfaces are
restricted or missing from FBJS, but Facebook provides novel ways of DOM inter-
action and dynamic scripting.

n FBJS provides a Dialog class, which gives developers an alternative to the JavaScript
DOM alert(), prompt(), and confirm() functions not available in FBJS.

n Mock AJAX is an earlier implementation of AJAX that Facebook exposed for de-
velopers before it released its full FBJS AJAX support; however, it offers a unique
set of features and provides a lot of functionality for minimal coding effort.

n The FBJS Ajax class provides developers with a powerful AJAX library that handles
much of the low-level coding and cross-browser issues faced by directly using the
XmlHTTPRequest object.

n FBJS provides a client-side alternative to Feed forms and Publishers via the
Facebook.showFeedDialog() function, which can publish Feed stories without
the need for round trips to the Facebook servers.

ptg

312 Chapter 11 FBJS, Mock AJAX, and Flash

n Facebook added a powerful Animation library to FBJS, which can be downloaded
and used outside of Facebook.

n The FBJS event handling model is based on W3C-style event handling and handles
all the browser incompatibilities internally so you don’t have to.

n Flash is a powerful technology for creating interactive content. Using it to commu-
nicate with FBJS code is not a simple task, but Facebook provides some powerful
primitives to make the job easier.

ptg

III
Integrating Facebook into an

External Website

12 Facebook JavaScript Client Library

13 Facebook Connect

ptg

This page intentionally left blank

ptg

12
Facebook JavaScript

Client Library

The Facebook JavaScript Client Library lets developers access most of the functionality
of the Facebook application programming interface (API) from Facebook applications
with IFrame canvas pages or an external website.This chapter goes over what the Library
offers and how to use it. In this chapter, the Compliments application is updated to use
the Facebook JavaScript Client Library.

The Facebook JavaScript Client Library differs from Facebook JavaScript (FBJS) in
several ways.Although FBJS was designed to allow developers to use a subset of JavaScript
that could run on Facebook Markup Language (FBML) pages, profiles, and application
tabs, the Facebook JavaScript Client Library offers access to the Facebook API and user
interface (UI) controls.Additionally, FBJS works only on FBML canvas pages, whereas the
Facebook JavaScript Client Library works only within IFrames and external sites.

The line between the Facebook JavaScript Client Library and Facebook Connect is
more difficult to define.The release of Facebook Connect extended the Facebook
JavaScript Client Library to include XFBML and single sign-on functionality to external
sites. Chapter 13,“Facebook Connect,” goes into more detail on Facebook Connect, fo-
cusing on integrating Facebook into an external site.This chapter focuses on using the
Facebook JavaScript Client Library inside Facebook Application IFrame canvas pages;
however, the same techniques can be used on external sites.

The Facebook JavaScript Client Library requires a Facebook application to work.This
application supplies the API key that initializes the Library and the Connect URL to al-
low the Library to communicate with Facebook. If you are going to use the Library on
an IFrame canvas page, you can simply set the Connect URL for your existing applica-
tion. For use on an external website, the application won’t need to have anything set be-
sides the Connect URL.We set this up for the Compliments application in Chapter 8,
“Updating the Profile.”

The Facebook JavaScript Client Library has some additional requirements to allow it
to work across domains.The authentication model is also slightly different than what the

ptg

316 Chapter 12 Facebook JavaScript Client Library

Figure 12.1 Facebook JavaScript Client Library communicates
across domains using IFrames.

normal Facebook Platform API uses.This chapter discusses the differences in the follow-
ing Cross-Domain Communication section.

Cross-Domain Communication
For security reasons, web browsers put some restrictions on JavaScript communication
between different web domains.The Facebook JavaScript Client Library makes use of a
trick involving IFrames to get around them, while still maintaining security. It is based on
the ability of IFrames from the same domain to talk to each other, regardless of where
they are located in the DOM hierarchy. Refer to Figure 12.1 as you review the following
steps to see how the communication works.

1. When the main external web page loads, it includes the Facebook JavaScript
Client Library loader object and initializes it with the location of a special file, usu-
ally called xd_receiver.html, which the developer placed on his server.This file
loads some JavaScript that acts as a receiver for calls from the main page. In almost
all cases, this cross-domain receiver file has exactly the same code displayed in
Listing 12.1.

2. During initialization, the Library creates an IFrame (API Server IFrame) with its id
attribute set to "fb_api_server" and src attribute set to http://facebook.com/
client_restserver.php. This API Server IFrame contains another IFrame (Receiver
IFrame) with its src attribute set to the xd_receiver.html file on the external do-
main.The location must be a relative path from the page that uses the Library.

ptg

317Cross-Domain Communication

3. When the main page calls a Facebook JavaScript Client Library API function, the
Library creates a new IFrame (API Call IFrame) with the src attribute set to
http://facebook.com/client_restserver.php and adds the API call and parameters as a
bookmark.This IFrame tag might look like this:

<iframe
src="http://facebook.com/client_restserver.php#method=friends.getAppUsers">

4. This new API Call IFrame does the actual API call to Facebook and receives the re-
sult.This is possible because this IFrame’s src attribute is set to the Facebook domain.

5. The API Call IFrame then calls the JavaScript in the API Server IFrame, passing the
results of the API call. Both of these IFrames are on the Facebook domain.

6. The API Server IFrame changes the src attribute of its child Receiver IFrame to
include the results as a bookmark, like this:

<iframe
src="http://example.com/xd_receiver.html#{"responseText":"[698700806]"}/>

7. The Receiver IFrame is on the same external domain as the main page; therefore, it
can communicate back to the original JavaScript that called the API and return the
results.

Listing 12.1 xd_receiver.html Contents

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

<title>Cross-Domain Receiver Page</title>

</head>

<body>

<script src="http://static.ak.facebook.com/js/api_lib/v0.4/XdCommReceiver.js?2"

type="text/javascript"></script>

</body>

</html>

Using the Library
The Library is simple to use.You select the features to dynamically load, initialize it with
the API key and cross-domain receiver file, and use one of the many classes that the Li-
brary provides.

ptg

Table 12.1 Facebook JavaScript Client Library Features

Feature Depends On Description

Base None Boot loading

Common Base Common code and utility functions

XdComm Common Cross-domain communication

Api XdComm Access to the Facebook API

CanvasUtil XdComm Functionality for IFrame canvas pages, such as Feed
forms and IFrame resizing

Connect API and

CanvasUtil

Facebook Connect session management, user manage-
ment, Feed form dialogs, permission dialogs, and the
profile and info section Add buttons.

XFBML Connect Rendering for XFBML elements

FeatureLoader
The first step to using the Facebook JavaScript Client Library is to include
FeatureLoader.This object is defined in a JavaScript file provided by Facebook that al-
lows developers to dynamically choose which parts of the Library to load. Include the
following line in your code, but make sure that it is after the <head> tag so that it can
modify the <body> elements:

<script

src="http://static.ak.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php"

type="text/javascript">

</script>

After the JavaScript from the script block is loaded, the only Facebook JavaScript
Client Library functionality available is the FB.Bootstrap class. It contains functions to
initialize the Library and choose which of its features to load.The functions of the
FB.Bootstrap class all have aliases in the main FB namespace, so FB.Bootstrap.init()
can also be called as FB.init(), and FB.BootStrap.requireFeatures() becomes
FB_RequireFeatures().We use the aliases in the examples.

Including Features
The Facebook JavaScript Client Library is comprised of several sublibraries called fea-
tures.Table 12.1 lists the available features and their dependencies.The XFBML feature
set is the easiest one to use because it loads all the others, and it is the default if no spe-
cific feature set is requested.

318 Chapter 12 Facebook JavaScript Client Library

The FB.init() function does all the feature loading for you. FB.init() takes your
application’s API key and the relative location of the cross-domain file as parameters and

ptg

319Using the Library

loads the XFBML feature set.The features are loaded asynchronously, so make sure that
they are completely loaded before you try to access them.You can do this by calling
FB.ensureInit() after calling FB.init(). Listing 12.2 shows how to do this.

Listing 12.2 Using FB.ensureInit() to Wait for Loading to Complete

<script

src="http://static.ak.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php"

type="text/javascript”>

</script>

<script type="text/javascript">

var apiKey = 'XXXXXXXXXXXXXX';

var xdReceiverPath = 'xd_receiver.html';

FB.init(apiKey, xdReceiverPath);

FB.ensureInit(function() {

FB.Facebook.apiClient.requireLogin(function() {

// use the Library features

});

});

</script>

If part of your application or website doesn’t need all the Connect functionality at
once, you can choose to load individual features at different times using the
FB_RequireFeatures() function.This function takes an array of features to load and a
callback function that will be called after they finish loading. If a feature has already been
loaded, a second request for it will just reuse it. Listing 12.3 shows an example of using
this function.You still need to call FB.init() with your application’s API key and the
path to the cross-domain receiver file.

Listing 12.3 Using FB_RequireFeatures() to Load Specific Features

<script

src="http://static.ak.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php"

type="text/javascript">

</script>

<script type="text/javascript">

var apiKey = 'XXXXXXXXXXXXXX';

var xdReceiverPath = 'xd_receiver.html';

FB_RequireFeatures(['API', 'CanvasUtil'], function() {

FB.init(apiKey, xdReceiverPath);

// use the Library features

});

</script>

ptg

320 Chapter 12 Facebook JavaScript Client Library

Authentication
Because the Facebook JavaScript Client Library runs on the client, its authentication
process is different from that used of the server-side Facebook PHP Library or REST
API.All Facebook REST API calls made via the Library require the user to be authorized
for the application, and they can only be used to perform operations as the current user.
This is because, by default, the Library doesn’t use the Secret key that each application is
issued when it is created. Instead, it uses a temporary secret key that is generated using the
session, called the session secret. Putting the Secret key on the client side would make it
visible to anyone using the application, which is a significant security risk because it
would allow anyone to impersonate the application.

Client-side authentication for the Library is handled by the FB.apiClient.

requireLogin() function.This function first checks the URL of the IFrame or external
website for a session parameter that contains the session key. If this parameter isn’t
present, the user is redirected to the Facebook login page. Users are prompted to author-
ize the application, if they haven’t already, and the temporary session is generated.This
session consists of a session key, session secret, and session expiration timestamp.To make
sure that it is the application that called requireLogin(), the Callback URL from the
application’s developer settings is used as the base URL, with the new session parameter
appended.The user is redirected to this new URL.This time, FB.apiClient.
requireLogin() uses the session parameter to extract all the session information.

If your application must use any of the Facebook admin and permissions APIs or
needs to create or modify any profile content for another user, you must force the Library
to use your application’s Secret key. Listing 12.4 shows how to do this to get your
application’s app_id from the application properties.We must use the apiClient.
callMethod() function directly, because the apiClient class doesn’t expose a function
for the admin API calls. If FB.Facebook.appSecret isn’t set, callMethod() will fail to
recognize the facebook.admin.getAppProperties function and will return an error of
“unknown method.”The appSecret must also be set before FB.Facebook.init() is
called, which happens inside FB.init(). Listing 12.4 uses FB_RequireFeatures to load
the FB.Facebook.apiClient class.

Listing 12.4 Setting the App Secret

script

src="http://static.ak.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php"

type="text/javascript">

</script>

<script type="text/javascript">

var apiKey = 'XXXXXXXXXXXXXX';

var xdReceiverPath = ‘xd_receiver.html';

FB_RequireFeatures(['Api'], function() {

FB.Facebook.appSecret = 'XXXXXXXXXXXXXX';

ptg

321Using the Library

Listing 12.4 Continued

FB.init(apiKey, xdReceiverPath);

FB.ensureInit(function() {

FB.Facebook.apiClient.requireLogin(function() {

var parameters = { properties :['app_id', 'callback_url'] };

FB.Facebook.apiClient.callMethod('facebook.admin.getAppProperties',

parameters, function(result, exception) {

//Use the admin properties

});

});

});

});

</script>

The session information is stored in a set of cookies. If you are using the Facebook
PHP library for other parts of your application, it also uses the same cookies, so the
user’s session state will be shared between the two libraries.The Facebook JavaScript
Client Library uses the five cookies in Table 12.2 to validate the signature. Each cookie is
prefixed with the API key of the application and is set on the application’s domain, such
as .example.com.

The signature is verified from the first four cookies using the following steps.

1. The API_KEY prefix is removed from the cookie name.

2. A string is created by combining the cookie name and its value in the format
"name=value".

3. The strings from all the cookies are concatenated in alphabetical order by cookie
name.

4. A hash of the string is created using the md5() function.

5. The value of the hash should match the value of the signature cookie.Thankfully,
both the Facebook JavaScript Client and PHP libraries validate this for you.

Table 12.2 Session Cookies Used by the Library for Validation

Cookie Description

API_KEY_user The currently logged in user’s ID.

API_KEY _

session_key

The current session key.

API_KEY _expires The time that the current session expires.

API_KEY _ss The session secret. This is used instead of an application’s
Secret key that generally should not be sent across client
side.

API_KEY This is the signature generated from the other cookie
values.

ptg

322 Chapter 12 Facebook JavaScript Client Library

Calling Facebook JavaScript Client Library Functions
The Library API functions can be executed immediately or in batch. In all the previous
listings, we passed a function as an argument to the Library calls.This function is used as a
callback taking two arguments—result and exception—holding the function results or
failure exception information, respectively.The API call is executed immediately, execut-
ing the callback when it is done.

For handling many API calls, it is more efficient to do the calls in batch, sending a sin-
gle request to Facebook to get all the data at once. Up to 20 API calls can be batched at a
time.To batch the calls, you create an instance of a FB.BatchSequencer and pass it to all
the API calls instead of a callback function.This adds those calls to the batch sequence,
but it doesn’t execute them.After the last call is added to the batch, you call the
BatchSequencer’s execute function.The batched calls are executed in parallel on the
server, but you can set the BatchSequencer’s isParallel property to false if you need
to have them run in order. Listing 12.5 shows an example of batching calls.A batch se-
quencer is created and passed to users_isAppUser() and friends.get().These func-
tions return immediately, setting the appUser and friends variables to PendingResult
objects by the API calls before the batch operation happens.When the execute function
completes, those PendingResult variables are updated to contain the result and
exception information for the corresponding call.

Listing 12.5 Batching API Calls

<script

src="http://static.ak.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php"

type="text/javascript">

</script>

<script type="text/javascript">

var apiKey = 'XXXXXXXXXXXXXX';

var xdReceiverPath = 'xd_receiver.html';

FB.init(apiKey, xdReceiverPath);

FB.ensureInit(function() {

FB.Facebook.apiClient.requireLogin(function() {

var batch = new FB.BatchSequencer();

var appUser = FB.Facebook.apiClient.users_isAppUser(batch);

var friends = FB.Facebook.apiClient.friends_get(null, batch);

batch.execute(function() {

//appUser and friends are now updated with the results of the call

});

});

});

</script>

ptg

323Key Library Classes

Key Library Classes
The Facebook JavaScript Client Library contains many classes.This section goes over the
most important classes from the Library, with examples.

FB.apiClient
The apiClient class contains a wrapper for the Facebook API. Most of the API func-
tions have wrapper methods, but for those that don’t, you can call the apiClient.

callMethod() function yourself, passing in the API method name and encoding the
parameters like we did for the admin.getAppProperties() call.

Besides providing the API wrapper functions, the apiClient class also provides utility
functions to get information about the current session, including the logged in user’s
Facebook user ID. Listing 12.6 shows how to get those values. Notice that we use
apiClient as an alias for the FB.Facebook.apiClient class for convenience.We will use
this from now on.

Listing 12.6 Getting Session Information

<script

src="http://static.ak.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php"

type="text/javascriptv">

</script>

<script type="text/javascript">

var apiKey = 'XXXXXXXXXXXXXX';

var xdReceiverPath = 'xd_receiver.html';

FB.init(apiKey, xdReceiverPath);

FB.ensureInit(function() {

var apiClient = FB.Facebook.apiClient;

apiClient.requireLogin(function() {

var uid = apiClient.get_session().uid;

var sessionKey = apiClient.get_session().session_key;

var secret = apiClient.get_session().secret;

});

});

</script>

FB.Bootstrap
Bootstrap is the class that is made available by the FeatureLoader script and is used to
control which features are loaded.We used the FB_RequireFeatures(), FB.init(), and
FB_ensureInit() functions in previous examples.

ptg

324 Chapter 12 Facebook JavaScript Client Library

FB.Connect
Connect houses session-management functions for Facebook Connect applications and
some utility functions for showing dialogs.We defer discussing the Connect session-
management functions until Chapter 13.The Connect.showAddSectionButton() func-
tion is the only way to let users add a profile box or info section for IFrames.
Connect.showFeedDialog() allows IFrame-based canvas pages to present users with a
Feed form dialog to publish stories to the stream, like the Feed forms discussed in
Chapter 9,“Feed Stories, Feed Forms, and Templates.”

Listing 12.7 shows how to add an Add to Profile button to a canvas page.The place-
holder <div> for the Add button must be added to the page first, and its ID is passed to
the showAddSectionButton() function.

Listing 12.7 Adding an Add to Profile Button

<script

src="http://static.ak.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php"

type="text/javascript">

</script>

<div id='addbutton'></div>

<script type="text/javascript">

var apiKey = 'XXXXXXXXXXXXXX';

var xdReceiverPath = 'xd_receiver.html';

FB.init(apiKey, xdReceiverPath);

FB.ensureInit(function() {

FB.Connect.showAddSectionButton('profile',

document.getElementById('addbutton'));

});

</script>

A Feed dialog can be shown using FB.Connect.showFeedDialog().; however, a ses-
sion is required, so make sure that requireLogin() is called first. Listing 12.8 shows an
example of how to display a Feed dialog with FB.Connect.showFeedDialog() using of
the templates we registered in Chapter 9. Figure 12.2 shows the resulting Feed dialog.
This dialog produces a short story that can only target one user.The difference between
the Facebook JavaScript Client Library dialog and Facebook.showFeedDialog()
function is in these three parameters: require_connect, story_size, and callback.The
require_connect parameter is for Facebook Connect integrations and allows the dialog
to automatically prompt the user to login to Facebook. story_size is deprecated and
should always be null. callback is a function that is automatically called after the dialog

ptg

325Key Library Classes

is closed.The Feed dialog launched from showFeedDialog() does not provide a way to
notify the caller of whether the user actually published the story.We add a Feed dialog to
the Compliments application in the section,“Updating Compliments’ IFrame Page.”

Listing 12.8 Showing a Feed Dialog

<script

src="http://static.ak.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php"

type="text/javascript">

</script>

<script type="text/javascript">

var apiKey = 'XXXXXXXXXXXXXX';

var xdReceiverPath = 'xd_receiver.html';

FB.init(apiKey, xdReceiverPath);

FB.ensureInit(function() {

FB.Facebook.apiClient.requireLogin(function() {

// The short story template

//{*actor*} sent {*target*} a compliment with {*app*}!

//
{*actor*} thinks {*target*} is {*ctitle*} because

//{*ctext*}

var templateID = '230103595614';

var templateData =

{"app": "Compliments",

"ctitle": "A Great Cook",

"ctext": "His tripe is the best!",

"images":};

var targetID = [714497440];

Figure 12.2 Feed dialogs displayed using
FB.Connect.showFeedDialog() look just like the FBJS

versions created by Facebook.showFeedDialog().

ptg

326 Chapter 12 Facebook JavaScript Client Library

Listing 12.8 Continued

var bodyGeneral = '';

var story_size = null;

var require_connect = FB.RequireConnect.doNotRequire;

var callback = function() {

alert('dialog shown');

}

var feedDialogPrompt = 'Publish your Compliment';

var feedDialogUserMsg = {value:'I love sending Compliments!'};

FB.Connect.showFeedDialog(templateID, templateData, targetID,

bodyGeneral, story_size,

require_connect, callback,

feedDialogPrompt, feedDialogUserMsg);

});

});

</script>

showPermissionDialog() is another way to display permission requests instead of
using the <fb:prompt-permission> tag. It displays a series of dialogs for each permission
requested and passes a string with the ones that the user accepted to a callback.This
acceptance information is only provided if you use this function; the <fb:prompt-
permission> tag will not supply this. Figure 12.3 shows one of these dialogs, and Listing
12.9 shows the code to produce it.This code requests both the status_update and
email extended permissions and results in two dialogs, one for each permission.

Listing 12.9 Showing a Permission Dialog

<script src="http://static.ak.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php"

type="text/javascript"></script>

<script type="text/javascript">

var apiKey = 'XXXXXXXXXXXXXX';

Figure 12.3 Displaying a Permissions dialog using
the FB.Connect.showPermissionsDialog() func-
tion to get status_update and email extended per-

missions

ptg

327Key Library Classes

Listing 12.9 Continued

var xdReceiverPath = 'xd_receiver.html';

FB.init(apiKey, xdReceiverPath);

FB.ensureInit(function() {

FB.Connect.showPermissionDialog('status_update,email',

function(permissions) {

//do something with the permissions that the user allowed

}

);

});

</script>

FB.FBDebug
The FBDebug class provides some useful utilities for tracing your own messages and seeing
the trace messages from the Library.The type of trace messages shown are controlled by
the FBDebug.logLevel variable. Each level shows all the traces from the lower levels.
Table 12.3 shows the various levels and the types of information that they show. Listing
12.10 shows the trace output for some sample code, with each line prefixed with the
trace level required to show it.

Listing 12.10 Trace Dump and Levels for Example Code

FB_RequireFeatures(['XFBML'], function(result, exception){

FB.FBDebug.isEnabled = true;

FB.FBDebug.logLevel = 6;

FB.FBDebug.dump("custom trace message");

FB.init(apiKey, xdReceiverPath);

Table 12.3 FBDebug Levels

Level Description

0 Tracing off

1 Error messages, session key value, API call results

2 Cross-domain communication data handler registration, XFBML errors, and
CanvasClient information

3 HTTP call tracing with URLs and data

4 Cross-domain received packet dumps

5 Cross-domain channel communication, IFrame creation and removal, general
cache information

6 Cache key usage

ptg

328 Chapter 12 Facebook JavaScript Client Library

Listing 12.10 Continued

FB.ensureInit(function(result, exception) {

FB.Facebook.apiClient.requireLogin(function(result, exception) {

FB.Facebook.apiClient.friends_getAppUsers(function(result, exception) {

FB.FBDebug.dump(result, 'getAppUsers results');

});

});

});

});

Produces this output:

1 - string: custom trace message

1 - Cannot use Flash on Firefox due to a possible bug in Flash

2 - Register data handler loginServer

2 - Register data handler fbLogout

1 - session key = 2.LZrDwfH8SNH8NKeDWTnSyA__.86400.1245009600-698700806

2 - Register data handler http_client

3 - XdHttpRequestClient: send request for

http://api.facebook.com/restserver.php?method=friends.getAppUsers

3 - <<<<<<< http://example.com/appname/?

➥fb_sig_in_iframe=1&fb_sig_locale=en_US&fb_sig_in_new_facebook=1&fb_sig_time=

➥1244920024.0249&fb_sig_added=1&fb_sig_profile_update_time=1241522567

➥&fb_sig_expires=1245009600&fb_sig_user=698700806&fb_sig_session_key=

➥2.LZrDwfH8SNH8NKeDWTnSyA__.86400.1245009600-698700806&fb_sig_ss=

➥MnCxv__a0B_zxM39hO7BWQ__&fb_sig_ext_perms=auto_publish_recent_activity&

➥fb_sig_api_key=52bcc10ac263e1d0d2645182e01e0c99&fb_sig_app_id=

➥195482325614&fb_sig=8d465c17579c2ee5573a5d84c980b087

3 - Server.send: handler=http_server

3 - data: 0: 0 1: POST 2: /restserver.php?method=friends.getAppUsers 3:

method=friends.getAppUsers&api_key=52bcc10ac263e1d0d2645182e01e0c99&format=

➥JSON&call_id=86&v=1.0&session_key=2.LZrDwfH8SNH8NKeDWTnSyA__.

➥86400.1245009600-698700806&ss=1&sig=b32f8e2ef809bb487106613b59dea597 4:

Content-Type: application/x-www-form-urlencoded

3 - endPoint: frameName: fb_api_server relation: 2 channelUrl:

http://api.facebook.com/static/v0.4/xd_receiver.php?r=163033 UID: 0 origin:

null

2 - Send with native postMessage: 1rd try

2 - Send with native postMessage: 2rd try

2 - Register data handler http_server

4 - received full packet: sc: http://example.com/appname/xdreceiver.html sf:

➥iframe_canvas sr: 1 h: http_server nd: 0: 0 1: POST 2: /restserver.php?

➥method=friends.getAppUsers 3: method=friends.getAppUsers&api_key=

➥52bcc10ac263e1d0d2645182e01e0c99&format=JSON&call_id=253&v=1.0&

➥session_key=2.LZrDwfH8SNH8NKeDWTnSyA__.86400.1245009600-

➥698700806&ss=1&sig=55a4b9911aff67e4bd58c2a43667b57b 4: Content-Type:

➥application/x-www-form-urlencoded df: 2 id: 0 sid: 0.741

ptg

329Key Library Classes

Listing 12.10 Continued

4 - sender: frameName: iframe_canvas relation: 1 channelUrl:

➥http://example.com/appname/xdreceiver.html UID: 0 origin: null

3 - XdHttpRequestServer: make XHR request to

➥http://api.facebook.com/restserver.php?method=friends.getAppUsers

1 - POST http://api.facebook.com/restserver.php?method=friends.getAppUsers

4 - received full packet: sc: http://www.facebook.com/xd_receiver_v0.4.php sf:

➥loginStatus sr: 2 h: loginServer nd: 0: 0 1: loginStatus 2: InitLogin

➥3: session: uid: 698700806 session_key: 3.ZKT5K8i0AO31IOtq59yQOg__.

➥86400.1245009600-698700806 secret: MnCxv__a0B_zxM39hO7BWQ__ expires:

➥1245009600 sig: ecf3b700aa3c807be9a2d3c004627de7 settings:

➥feedStorySettings: one_line: 1 short: 1 inFacebook: true connectState:

➥1 baseDomain: publicSessionData: null 4: false df: 2 id: 0 sid: 0.626

4 - sender: frameName: loginStatus relation: 2 channelUrl:

➥http://www.facebook.com/xd_receiver_v0.4.php UID: 0 origin: null

3 - XdRpcServer.Received: InitLogin

3 - XdHttpRequestServer: send result back http_client

3 - <<<<<<< http://api.facebook.com/static/v0.4/client_restserver.php?

➥r=163033&debug_level=3

3 - Server.send: handler=http_client

3 - data: status: 200 statusText: OK responseText: [714497440,1161559271] id: 0

3 - endPoint: frameName: iframe_canvas relation: 1 channelUrl:

➥http://example.com/appname/xdreceiver.html UID: 0 origin: null

2 - Send with native postMessage: 1rd try

4 - received full packet: sc:

➥http://api.facebook.com/static/v0.4/xd_receiver.php sf: fb_api_server

➥sr: 2 h: http_client nd: status: 200 statusText: OK responseText:

➥ [714497440,1161559271] id: 0 df: 2 id: 0 sid: 0.791

4 - sender: frameName: fb_api_server relation: 2 channelUrl:

➥http://api.facebook.com/static/v0.4/xd_receiver.php UID: 0 origin: null

3 - XdHttpRequestClient: got result

1 - getAppUsers results :

1 - 0: 714497440 1: 1161559271

Seeing the trace output requires that there is a script debugger attached to the browser,
such as Firebug for Firefox or the Script Debugger for Internet Explorer.At one point,
the Library supported dumping output to a DOM object on the page with
id='_traceTextBox', but this no longer works.

The following are the tracing functions in this class:

n FBDebug.dump(object, title).Writes out an object with a title you
specify

n FBDebug.writeLine(string).Writes out a string
n FBDebug.logLine(logLevel, string).Writes out a string when the
FBDebug.logLevel is set to a value >= to the level passed in the logLevel parameter

ptg

330 Chapter 12 Facebook JavaScript Client Library

n FBDebug.assert(condition, message). Pops up a dialog allowing you
to break into the debugger if the condition fails.

FB.UI
The UI class houses a few different Facebook-style popup dialogs that you can use to dis-
play pre-rendered HTML or FBML strings.The FB.UI.PopupDialog class requires you
to pass an existing DOM element that contains the content for the dialog. Listing 12.11
shows a simple example of using this dialog to display HTML. First, the <div> containing
the text to display is created but not added to the document. Next, a new PopupDialog()
is constructed, passing a dialog title, the content <div>, and false for the last two parame-
ters, showLoading and hideUntilLoaded. showLoading displays a loading indicator in the
dialog’s title bar, and hideUntilLoaded keeps the dialog hidden until the content is fin-
ished loading. However, at the time of this writing, the dialog never believes that it has
loaded, which makes these parameters unusable.We use the setContentWidth() function
to set the dialog’s inner width to 200 pixels. Finally, the dialog is shown and should look
like what is shown in Figure 12.4.

Listing 12.11 Using FB.UI.PopupDialog()

<script

src="http://static.ak.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php"

type="text/javascript">

</script>

<script type="text/javascript">

var apiKey = 'XXXXXXXXXXXXXX';

var xdReceiverPath = 'xd_receiver.html';

FB.init(apiKey, xdReceiverPath);

FB.ensureInit(function() {

var dlgContent=document.createElement("div");

dlgContent.innerHTML = "Hello,viewer";

var dialog = new FB.UI.PopupDialog("Hello", dlgContent, false, false);

dialog.setContentWidth(200);

dialog.show();

});

</script>

Figure 12.4 A simple popup dialog displaying
HTML

ptg

331Key Library Classes

The FB.UI.FBMLPopupDialog takes an FBML string to display inside the dialog.
Listing 12.12 shows an example of displaying the viewing user’s profile picture using the
<fb:profile-pic> FBML tag.You could also use this dialog to display an <fb:request-
form> for enabling user invites. Figure 12.5 shows what this dialog looks like.

Listing 12.12 Using FB.UI.FBMLPopupDialog()

<script

src="http://static.ak.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php"

type="text/javascript">

</script>

<script type="text/javascript">

var apiKey = 'XXXXXXXXXXXXXX';

var xdReceiverPath = 'xd_receiver.html';

FB.init(apiKey, xdReceiverPath);

FB.ensureInit(function() {

var uid = FB.Facebook.apiClient.get_session().uid;

var fbml = "Hello
<fb:profile-pic uid='"+uid+"'/>";

var dialog = new FB.UI.FBMLPopupDialog("Hello", fbml);

dialog.setContentWidth(200);

dialog.show();

});

</script>

FB.XFBML
XFBML is Facebook’s method of allowing IFrame canvas pages and external sites to use
FBML tags.There are a few constraints for what can be used and several methods of ren-
dering the tags. Briefly, XFBML tags that appear on the page are automatically rendered
by default into their HTML equivalents by FB.init().We start by reviewing the types of
tags that can be displayed and then go over how they are rendered. For these tags to be
rendered, the fb namespace must be added to the <HTML> tag, like this:

Figure 12.5 An FBML popup dialog displaying
FBML content

ptg

332 Chapter 12 Facebook JavaScript Client Library

<html xmlns=http://www.w3.org/1999/xhtml

xmlns:fb="http://www.facebook.com/2008/fbml">

Client Side Tags
Only a subset of the FBML tags can be directly placed onto a page. Most of the common
user information tags are included in this list.All XFBML tags require closing tags rather
than the single tag using /> at the end.These FBML tags are directly supported:

n <fb:name>. Displays a user’s name.
n <fb:profile-pic>. Displays a user’s profile photo.An optional parameter,
facebook-logo, displays a small Facebook logo overlay on pictures.

n <fb:pronoun>. Displays “he”,“she”, and so on, for a user.
n <fb:grouplink>. Displays a link to a group.
n <fb:eventlink>. Displays a link to an event.
n <fb:user-status>. Displays a user’s current status.
n <fb:photo>. Displays a Facebook photo.
n <fb:prompt-permission>. Displays a link to prompt the user for an ex-

tended permission.
n <fb:share-button>. Displays a share button for a URL, pictures, audio, and

video.
n <fb:comments>. Displays a Wall-like box that allows users to add comments to

the page. Chapter 13 goes over this in more detail.

XFBML also has some of its own tags that are directly supported, including a special
tag for including the rest of the FBML tags:

n <fb:container>. Conditionally displays HTML.We go through an example of
this later.

n <fb:serverfbml>. A wrapper tag that handles displaying the FBML tags that
aren’t listed here.We go over how this works later.

n <fb:connect-form>. Displays a form to allow users to invite their friends to
use Facebook Connect on an external site.We cover this in Chapter 13.

n <fb:login-button>. Displays a Facebook Connect login button.We cover
this in Chapter 13.

n <fb:unconnected-friends-count>. Displays the number of a user’s
friends who have not linked their Facebook account to the site using Facebook
Connect.

Server Tags
To display the rest of the FBML tags, you need to wrap them in an <fb:serverfbml>
tag.The contents of these tags are rendered by Facebook and displayed in an IFrame.

ptg

333Key Library Classes

Listing 12.13 shows how to put an <fb:request-form> tag on the page. It is important
that the <fb:serverfbml> tag is inside a <body> tag or it will not be rendered.The re-
sulting form is displayed in Figure 12.6.

Listing 12.13 Using <fb:serverfbml> Tag to Display an Invite Request Form

<script

src="http://static.ak.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php"

type="text/javascript">

</script>

<body>

<fb:serverfbml>

<script type="text/fbml">

<fb:fbml>

<fb:request-form method="POST" invite="true" type="Compliments"

content="Tell your friends about Compliments.

<fb:req-choice url='http://apps.facebook.com/appname'

label='Try Compliments' /> ">

<fb:multi-friend-selector showborder="false"

actiontext="Invite your friends to use Compliments.">

Figure 12.6 Using the <fb:serverfbml> tag to display a
<fb-request-form>

ptg

334 Chapter 12 Facebook JavaScript Client Library

Listing 12.13 Continued

</fb:request-form>

</fb:fbml>

</script>

</fb:serverfbml>

<script type="text/javascript">

var apiKey = 'XXXXXXXXXXXXXX';

var xdReceiverPath = 'xd_receiver.html';

FB.init(apiKey, xdReceiverPath);

FB.ensureInit(function() {

});

</script>

</body>

Displaying Content Conditionally
<fb:container> allows you to display content only if certain conditions are met.
Listing 12.14 shows how to display a user’s profile picture only to users who are allowed
to see it. Figure 12.7 displays what those viewers would see. However, if the viewing user
is not allowed to see the other user’s picture, nothing shows up.Viewers who have not au-
thorized the application or are not logged in to Facebook also cannot see the picture.
(However, there is a brief point where the image is shown and then hidden.The section,
“Rendering XFBML Elements,” goes over how to prevent this.)

Listing 12.14 Conditionally Showing a Profile Picture

<script src="http://static.ak.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php"

type="text/javascript"></script>

<fb:container condition="FB.XFBML.Conditions.ifCanSee('698700806', 'photosofme')">

<fb:profile-pic uid="698700806" facebook-logo="true" linked="false">

</fb:profile-pic>

</fb:container>

<script type="text/javascript">

var apiKey = 'XXXXXXXXXXXXXX';

var xdReceiverPath = 'xd_receiver.html';

Figure 12.7 Users who authorize the application
and are allowed to view the user’s picture see this

image.

ptg

335Key Library Classes

Listing 12.14 Continued

FB.init(apiKey, xdReceiverPath);

FB.ensureInit(function() {

});

</script>

Rendering XFBML Elements
There are three ways to show XFBML content that match the various ways you might
add HTML elements to your page in general.The first is to directly place the tags on
the page, as we did in Listings 12.13 and 12.14. For the subset of tags that that are listed
as client-side, Facebook automatically parses the DOM as part of FB.init() and
replaces them with the HTML equivalents.This is controlled by the FB.XFBML.Host.
autoParseDomTree field, which defaults to true.You can set this to false before calling
FB.init() to control when elements are rendered manually, as shown in Listing 12.15.

The second way is to add XFBML tags dynamically via JavaScript.You can call
FB.XFBML.Host.parseDomTree() to render tags on the entire page or
FB.XFBML.Host.parseDomElement() to render just a single element. Listing 12.15 shows
how to manually render a <fb:profile-pic>.A container <div> is added to the docu-
ment to hold the dynamically created elements. FB.XFBML.Host.autoParseDomTree is
set to false to prevent FB:init() from automatically rendering the XFBML elements.
This means that, before FB.XFBML.Host.parseDomElement() is called, a generic profile
picture is displayed, as shown in Figure 12.8. FB.XFBML.Host.parseDomElement() then
replaces this with the user’s profile picture.

Listing 12.15 Manually Rendering XFBML Elements

<script

src="http://static.ak.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php"

type="text/javascript">

</script>

<div id='container'></div>

<script type="text/javascript">

var apiKey = 'XXXXXXXXXXXXXX';

var xdReceiverPath = 'xd_receiver.html';

Figure 12.8 A generic profile picture displayed
briefly before the final picture fully loads

ptg

336 Chapter 12 Facebook JavaScript Client Library

Listing 12.15 Continued

FB_RequireFeatures(['XFBML'], function() {

FB.XFBML.Host.autoParseDomTree = false;

FB.init(apiKey, xdReceiverPath);

FB.ensureInit(function() {

var api = FB.Facebook.apiClient;

api.requireLogin(function() {

var uid = api.get_session().uid

var container = document.getElementById('container');

container.innerHTML = '<fb:profile-pic uid="'+uid+'">

</fb:profile-pic>';

FB.XFBML.Host.parseDomElement(container);

});

});

});

</script>

To prevent elements from showing up before they are fully rendered, like the generic
profile picture in Listing 12.15, you can hide them initially and then use the
FB.XFBML.Host.get_areElementsReady() object to make them visible when they are
rendered. Listing 12.16 shows how to do this.The default profile picture will not be
shown, and the profile picture we saw in Figure 12.7 appears.

Listing 12.16 Hiding Elements Until They Are Rendered

<script

src="http://static.ak.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php"

type="text/javascript">

</script>

<div id='container' style='visibility:hidden;'></div>

<script type="text/javascript">

var apiKey = 'XXXXXXXXXXXXXX';

var xdReceiverPath = 'xd_receiver.html';

FB_RequireFeatures(['XFBML'], function() {

FB.XFBML.Host.autoParseDomTree = false;

FB.init(apiKey, xdReceiverPath);

FB.ensureInit(function() {

var api = FB.Facebook.apiClient;

api.requireLogin(function() {

var uid = api.get_session().uid

var container = document.getElementById('container');

container.innerHTML = '<fb:profile-pic uid="'+uid+'">

</fb:profile-pic>';

FB.XFBML.Host.parseDomElement(container);

FB.XFBML.Host.get_areElementsReady().waitUntilReady(

ptg

337Key Library Classes

Listing 12.16 Continued

function() {

document.getElementById('container').style.visibility =

"visible";

});

});

});

});

</script>

The third way is to create HTML elements with attributes that match their FBML
equivalents and then use FB.XFBML.Host.addElement() to replace them with rendered
FBML. Listing 12.17 creates a div to be turned into a <fb:profile-pic>, sets the uid
attribute to the logged in user, and calls FB.XFBML.Host.addElement() to render it.The
same profile picture from Figure 12.7 is shown.

Listing 12.17 Dynamic Replacement for XFBML Elements

<script

src="http://static.ak.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php"

type="text/javascript">

</script>

<div id='pic'></div>

<script type="text/javascript">

var apiKey = 'XXXXXXXXXXXXXX';

var xdReceiverPath = 'xd_receiver.html';

FB.init(apiKey, xdReceiverPath);

FB.ensureInit(function() {

var api = FB.Facebook.apiClient;

api.requireLogin(function(exception){

var uid = FB.Facebook.apiClient.get_session().uid;

var pic = document.getElementById("pic");

pic.setAttribute('uid', uid);

FB.XFBML.Host.addElement(new FB.XFBML.ProfilePic(pic)); });

});

</script>

Testing XFBML
There isn’t a developer tool for testing XFBML like the FBML Test Console; however,
Facebook does include one in its RunAround sample application (located at www.
somethingtoputhere.com/demo/xfbml_console/index.html). It also lets you control the
FBDebug setting, so it is easy to try out various calls and see exactly what is happening.

ptg

338 Chapter 12 Facebook JavaScript Client Library

The page still displays the outdated trace output box with id='_traceTextBox', but this
will not display anything. Instead, it appears in your script debugger console.

Updating Compliments’ IFrame Page
The Compliments application’s FBML page was updated in Chapter 9 to display a Feed
form when a user sends a compliment, and Chapter 11,“FBJS, Mock AJAX, and Flash,”
used FBJS to do some validation on the compliment form, displaying a dialog for er-
rors.We will update the IFrame page with similar functionality by using
FB.Connect.showFeedDialog() to show the Feed form and FB.UI.FBMLPopupDialog()

to display validation errors.
The first set of changes is in index_iframe.php. Update the renderForm() function

with the bold code shown in Listing 12.18.

Listing 12.18 Updates to renderForm() in index_iframe.php

/** outputs the page content **/

function renderPage() {

global $facebook;

global $g_categories;

$pageOutput = getHeaderContent();

$ajaxURL = LOCAL_APP_URL."/ajax.php?submitform=1";

$output = getFeedDialog();

$output .= "

<script>

function getRadioValue(radio){

var value = '';

var element = document.getElementsByName(radio);

var bt_count = element.length;

for (var i = 0; i <bt_count; i++) {

if (element[i].checked == true) {

value = element[i].value;

break;

}

}

return value;

}

function submitForm() {

// Create the validation dialog

var dialog = null;

var dlgContent=document.createElement('div');

var errorText = document.createElement('div');

errorText.classname = 'error';

ptg

339Updating Compliments’ IFrame Page

Listing 12.18 Continued

dlgContent.appendChild(errorText);

var button = document.createElement('input');

button.type = 'button';

button.className = 'inputbutton okbutton';

button.value = 'OK';

button.onclick = function() { dialog.close(); return false; };

dlgContent.appendChild(button);

dialog = new FB.UI.PopupDialog('Hello', dlgContent, false, false);

dialog.setContentWidth(300);

// Validate the form

if (document.getElementById('target').value == '') {

errorText.innerHTML = 'Please choose someone to compliment';

dialog.show();

}

else if (getRadioValue('category') == '') {

errorText.innerHTML = 'Please enter a compliment category';

dialog.show();

}

else if (document.getElementById('compliment').value == '') {

errorText.innerHTML = 'Please enter a compliment';

dialog.show();

}

else {

// Submit the form via AJAX

// Handle the result of the AJAX call by displaying a feed dialog

// and updating the canvas with a success message

var successHandler = function(o) {

var data = YAHOO.lang.JSON.parse(o.responseText);

showFeedDialog(data.target, data.category,

data.compliment, data.img);

var status = \" \

<div class='success'> \

<h1>Your Compliment to <fb:name uid='\"+data.target+\"'> \

</fb:name> was sent.</h1> \

<p> \

<fb:profile-pic size='square' uid='\"+data.target+\"'> \

</fb:profile-pic> \

<img class='categoryImg' \

src='\"+data.img+\"' /> \

<fb:name uid='\"+data.target+\"'></fb:name> \

is '\"+data.category+\"' \

ptg

340 Chapter 12 Facebook JavaScript Client Library

Listing 12.18 Continued

because \"+data.compliment+\" \

</p> \

</div>\";

var statusDiv = document.getElementById('status');

statusDiv.innerHTML = status;

FB.XFBML.Host.parseDomElement(statusDiv);

};

var callback = {

success: successHandler

}

var formObject = document.getElementById('complimentform');

YAHOO.util.Connect.setForm(formObject);

var request = YAHOO.util.Connect.asyncRequest('POST','".$ajaxURL."',

callback);

}

}

</script>

...

The submitForm() function is similar to the same function in index.php, except that
here we use FB.UI.PopupDialog() for form validation.The dialog is dynamically created
but not shown, with the errorText variable set within each field validator. If validation
fails, the dialog is shown with the error.The user can close the dialog by clicking the OK
button, which calls the FB.UI.PopupDialog()’s close() function.

If validation succeeds, we use another feature of theYUI JavaScript Library: the Con-
nect class.This class allows us to set our form data to be serialized to a URL using AJAX.
After the AJAX call returns, a new function, showFeedDialog(), is passed the results,
which are now the items needed to fill out the template data for the feed story.A Feed di-
alog is displayed, and after it is closed, the status <div> is updated with the compliment
details.We are now using XFBML to display the target user’s name and profile picture.

getFeedDialog() returns a script block containing the showFeedDialog() function.
It takes the passed-in template data and fills out the parameters to FB.Connect.
showFeedDialog().This script block is returned to the getComplimentForm() function
to be displayed with the form.Add the code in Listing 12.19 to index_iframe.php.

Listing 12.19 getFeedDialog() in index_iframe.php

/** returns HTML for the Feed Dialog **/

function getFeedDialog() {

$output = "

<script type='text/javascript'>

function showFeedDialog(targetID, category, compliment, img) {

// The short story template

ptg

341Updating Compliments’ IFrame Page

Listing 12.19 Continued

//{*actor*} sent {*target*} a compliment with {*app*}!

//
{*actor*} thinks {*target*} is {*ctitle*} because {*ctext*}

var templateData = {\"app\": \"Compliments\", \"ctitle\": category,

\"ctext\": compliment,

\"images\":};

var targetID = [targetID];

var templateID = ".TEMPLATE_BUNDLE_MULTIFEEDSTORY_1.";

var bodyGeneral = '';

var story_size = null;

var require_connect = FB.RequireConnect.doNotRequire;

var callback = null;

var feedDialogPrompt = 'Publish your Compliment';

var feedDialogUserMsg = {value:'I love sending Compliments!'};

FB.Connect.showFeedDialog(templateID, templateData, targetID,

bodyGeneral, story_size, require_connect,

callback, feedDialogPrompt,feedDialogUserMsg);

}

</script>

";

return $output;

}

All these code changes produce the familiar Feed dialog in Figure 12.9 after the user
submits the compliment.

Figure 12.9 Compliments application displaying a Feed dialog using the
Facebook JavaScript Client Library

ptg

342 Chapter 12 Facebook JavaScript Client Library

Summary
This chapter talked about how the Facebook JavaScript Client Library works across
domains, handles dynamic loading of features and authentication. It also discussed the key
Library classes, with examples of how to call Facebook API functions, display dialogs, en-
able tracing, and render XFBML. Here are some key points:

n You can manually control which features of the Library get loaded or have them all
loaded automatically by using different functions in the Bootstrap class.You must
always call FB.init() with the application’s key and a cross-domain receiver file.

n The FB.apiClient class contains wrappers for the Facebook REST API. Users
must have authorized the application to call API functions.To call functions in the
admin or permissions API, or to set another user’s profile FBML, you must pass
your application’s Secret key to the Library. Do this carefully and on nonpublic
pages, because this can expose your key to anyone with access to a page where this
happens.

n The FB.Connect class is the only way for IFrame applications to create the Add to
Profile and Add to Info buttons. It also provides other dialogs for permissions and
feed stories.The rest of this class is used for Facebook Connect user and session
management and is covered in Chapter 13.

n The FB.FBDebug class enables tracing for developer applications and the Library.A
debugger must be attached to the browser to see the output.

n The FB.UI class provides Facebook-style dialogs for displaying HTML and FBML.
The FBML dialog can render FBML directly without using XFBML equivalents.

n The FB.XFBML class allows the use of XFBML tags on the page.These tags are ren-
dered by the Library into the FBML equivalents.A subset of these tags can be
placed directly onto the page, whereas others must be placed inside an
<fb:serverfbml> tag.

ptg

13
Facebook Connect

Facebook Connect was launched in December 2008.At the time, Facebook was a
walled garden—all content stayed within the site. MySpace, Google, and other networks
were lining up to use the OpenSocial platform to allow applications to be built once and
run on multiple platforms. Facebook then launched Beacon to allow external sites that
users visited to post Facebook status updates on the users’ behalf. Unfortunately, Beacon
had public-relations issues.The default setting for publishing updates was on, and users
did not like having everyone know what they were doing without their permission.

Facebook Connect went in a different direction. Users explicitly use Connect to log
in to external sites using their Facebook credentials.These websites then become more
valuable to them because they have the ability to incorporate information from their
Facebook friends. Currently, more than 15,000 websites have implemented Facebook
Connect into their sites. Many of these sites have seen a massive increase in registrations,
engagement, and friend referrals.This chapter goes over the major features of Facebook
Connect.

Facebook Connect Features
Facebook Connect extends the Facebook JavaScript Client Library and offers external
sites several key features:

n Trusted authentication. Users can link their Facebook credentials with the ex-
ternal site instead of having to create an entirely new account.The authentication
process is handled by Facebook with the results returned to the site.

n Real identity. Users bring their Facebook information with them, without having
to reenter everything on the external site.

n Dynamic privacy. When a user changes or removes information on Facebook,
those changes are automatically reflected on the external site.

n Friends access. The user brings their friends with them to the site, allowing the
external site to provide information about what their friends are doing. Connect

ptg

344 Chapter 13 Facebook Connect

Figure 13.1 The default <fb:login-button>
rendered

can also allow a site to suggest that the user invite friends who are also registered on
the site to enable Connect for their accounts.

n Social distribution. The external site can publish a user’s actions as status updates.
n Commenting and the live stream. Users can add comments and status updates

that immediately appear on their Facebook profiles.

The following sections review each feature.

Trusted Authentication
Most users dream of a single username and password that can identify who they are and
be used everywhere.They dislike having to set up everything over and over again on each
new network. Many solutions to this problem have been proposed and tried: Microsoft
Passport, OpenID, and Google Friend Connect being some of the most famous.

Facebook chose to create its own version of single sign-on that works with a user’s
Facebook credentials.With its large user base, Facebook can expect that it will be adopted
by many sites that want to capture those users.

Facebook Connect does not have to be the only method for logging into a site. It can
be an alternative to regular account creation or just an add-on that adds Connect func-
tionality to an existing account.

When a user goes to a Connect-enabled site, she is presented with a login button that
looks like the one shown in Figure 13.1.

This button uses the <fb:login-button> XFBML tag.When a user clicks the link, he
is presented with a login dialog hosted by Facebook, shown in Figure 13.2.After logging
in to Facebook, the user is then logged into the site.

Logging out of Facebook or any Facebook Connect site also logs a user out of all
Facebook sites.This is by design; the user has a single identify that is either logged in or
logged out.

Real Identity
Facebook users have already spent the time identifying their friends, filling out profile in-
formation, and adding a profile picture.A big benefit of Facebook Connect is that this in-
formation travels with them to each Connect site.These sites also benefit, because they
get access to most of this information with the knowledge that it is usually kept current.
This allows them to customize users’ experience to their interests; for example, a book

ptg

345Facebook Connect Features

Figure 13.2 The Facebook Connect login
dialog is displayed when the user clicks the

<fb:login-button>.

Connected sites do not get access to the user’s email address—all Facebook platform
applications have this same limitation.They do get access to the user’s proxied email ad-
dress, as outlined in Chapter 10,“Publisher, Notifications, and Requests,” so sending email
to users is still possible, as long as they have been properly prompted and have granted
that extended permission. Connected sites usually do this immediately after a user Con-
nects to their sites for the first time, because otherwise, there isn’t an easy way to contact
them in the future. Figure 13.3 shows an email extended permission dialog.

Figure 13.3 Email extended permissions must be re-
quested and granted by a user before a Connected site can

send them email.

store might highlight books that match the user’s favorite genres, or a travel site might au-
tomatically show deals that start in a user’s current location.

ptg

Figure 13.4 Changes that a user makes in his privacy settings are
reflected on Facebook and Connected sites.

Dynamic Privacy
Facebook Beacon failed in part because users perceived that they didn’t have control over
their information. Facebook Connect enables users to use the same privacy settings that
they created on Facebook to only show certain sets of information to certain groups of
people. Because the user’s information for Connect sites comes from Facebook, any
changes that the user makes to her account—managing friends, sharing more or less in-
formation, and so on—is reflected in the Connected site. Figure 13.4 shows how a user
controls privacy for applications and Connected sites.

346 Chapter 13 Facebook Connect

Friends Access
Facebook users want to stay connected with their friends, and Facebook Connect lets
them bring those friends with them to each Connected site.The social graph provides
opportunities for Connected sites to add extra value to users. Sites can show which of a
user’s friends have enabled Connect on the site, what activities they have performed, and
suggest actions for the user based on what those friends have done.

Facebook Connect also allows users to send invitations to their friends to join a site
via the normal multi-Friend selector or via Friend Linking. Friend Linking allows sites to

ptg

Figure 13.5 <fb:connect-form> allows
users to invite friends to Connect who have regis-
tered on your site with a regular email address.

347Facebook Connect Features

submit email addresses to Facebook to see if they are currently Facebook users. If they
are, the site can use an <fb:connect-form> XFBML tag to allow users to invite those
friends to Connect their accounts. Figure 13.5 shows this form in action.

Social Distribution
Connected sites can publish user activity as Facebook Feed stories by using the
FB.Connect.showFeedDialog() function.As with Facebook applications, Feed stories
can be effective in getting new users to the site, as long as they contain useful or relevant
content.These stories show up in Facebook on the users’ Wall and in their friends’
streams. For example, a music site might allow users to tell their friends about a particular
song or album when they mark it as a favorite. Figure 13.6 shows a Feed dialog generated
from the FB.Connect.showFeedDialog() function.

Figure 13.6 Connected sites can display Feed dialogs in
response to user actions to create stories that will appear

in the stream.

ptg

348 Chapter 13 Facebook Connect

Figure 13.7 A Comments Box enables users to
enter text that will appear on the site and in stories

in the Facebook stream.

Commenting and the Live Stream
Connect provides a comment box that can be added to a site using the <fb:comments>
XFBML tag. Both Facebook users and nonusers can enter comments, but Facebook users
have the opportunity to have their comments posted to their profiles. Figure 13.7 shows a
Comments Box.

Facebook used the 2009 Presidential Inauguration as the first large, public test of the
Live Stream Box and have subsequently released it for use on Connect sites. Users can
post their own and see other users’ updates in real time.These updates are also posted
back to their profile, with a link to the Live Stream Box, so that others can participate.
Users can see all updates or just their friends’.This can be useful for implementing a chat
as part of an online event or for general on-site communication. Figure 13.8 shows a Live
Stream Box.

Setting Up Facebook Connect
We already set up most of what is needed for Facebook Connect in Chapter 12,“Face-
book JavaScript Client Library,” because Facebook Connect builds on this library. How-
ever, Connect adds a few more important fields that are discussed next. Figure 13.9 shows
the Connect Settings section on the Connect tab in the Developer Settings in the Face-
book Developer application.

We previously set the Connect URL as the location Facebook Connect and the
JavaScript Library use to find the xd_receiver.html file.The Facebook Connect logo is
used on the dialogs displayed when a user logs into a site using Connect, as was shown in
Figure 13.2.You can see the Compliments star and name on the left.

When a user receives a request to Connect to an external site from a friend, the
Account Preview URL is sent as the link to his account.The URL entered should be in
the following format, with id and hash as optional parameters. Facebook replaces
{account_id} and {email_hash} with values specific to that user:

http://example.com/?id={account_id}&hash={email_hash}

The Base Domain field tells Facebook Connect to store its cookies in the base do-
main, such as example.com instead of a subdomain, so that Connect can be used across
multiple subdomains, such as www.example.com and blogs.example.com.

ptg

349Setting Up Facebook Connect

Figure 13.8 Live Stream Boxes enable real-time
conversations between users on an external site.

Figure 13.9 The Connect Settings on the
Connect tab in the Developer Settings

Facebook uses the Account Reclamation URL field for users who have Connected to
an external site and then deleted their Facebook account.This is described in more detail
in the section,“Reclaiming Accounts.”

The Friend Linking settings are shown in Figure 13.10.The Friend Linking Access field
enables a Connected site to match an external site’s user email addresses with Facebook
accounts.The Native Friend Linking field should be checked if the site already enables

ptg

350 Chapter 13 Facebook Connect

Figure 13.10 The Friend Linking settings on the Connect tab in
the Developer Settings

users to search or import their friends. Both fields are only enabled after a review by
Facebook, and supporting documentation must be supplied in the text boxes below them.

The Widgets tab contains settings for widgets and the Comments Box (see Figure
13.11).The Administrators field is a list of users who can edit Widget settings.All users
listed as developers of the Connect application are also able to edit these settings.The
Moderators field is a list of users who can moderate the content and modify the whitelists
and blacklists for a widget.A whitelist contains the list of users who can see or interact
with a widget, while a blacklist contains a list of users who cannot.These are set on a per-
widget basis.The Notification Subscribers field is a list of users who are notified when a
widget’s content changes.

The Permissions Mode setting for the Comments Box can be set to Whitelist to only
allow whitelisted users to see it or Blacklist to prevent only blacklisted users from seeing
it.The Whitelist and Blacklist fields are lists of those users who are allowed to interact
with the widget and those who are not, respectively. Finally, the Allow Anonymous Com-
ments check box allows non-Facebook users to interact with the Comments Box.Wid-
gets, including the Comments Box and Live Stream Box, are detailed in the section,
“Widgets.”

Another change that sites using Facebook Connect have to make is to include
http: //static.ak.connect.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php instead of the Face-
book JavaScript version, http://static.ak.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php, to
get the FeatureLoader loaded.You can always get the latest Facebook Connect informa-
tion from http://wiki.developers.facebook.com/index.php/Category:Facebook_Connect.

ptg

351User Authentication

Figure 13.11 The Widgets settings on the Widgets tab in the
Developer Settings

User Authentication
Authentication for Facebook Connect is the most complicated part of the implementa-
tion.This is because external sites already have user management systems in place and
must integrate Facebook Connect into them.A successful integration must handle both
new account creation and linking of existing accounts.

Authentication consists of two concepts: being logged in and being connected. Being
logged in means that a user is logged in to Facebook.A user’s logged in state is global: She
is either logged in to Facebook and all Connected sites or logged out of Facebook and all
Connected sites. Being connected is similar to authorizing a Facebook application; the
user has linked her account with the site and authorized it to interact with Facebook.
A user must be logged in to be connected.

Detecting Login Status
When the Connect library is first loaded, it uses the cross-domain communication
method outlined in Chapter 12 to get the user’s login status. It creates an IFrame with its
src attribute set to http://www.facebook.com/extern/login_status.php.This page reads the
Facebook cookies, retrieves the user’s login status, and passes it back to the site’s
xdreceiver.html IFrame, which passes it back to the main IFrame.The Connect library
then stores that login state in cookies for the external domain and sets its internal vari-
ables to the login state.

If a page wants to ensure that all visitors are logged in to Facebook and have author-
ized the site, it can call the FB.Connect.requireSession() function after Library

ptg

352 Chapter 13 Facebook Connect

initialization, as Listing 13.1 demonstrates. FB.Connect.requireSession() first checks
the cookies, and if the user is not logged in, pops up a login dialog instead of doing a
redirect to the Facebook login page as the FB.apiClient.requireLogin() function
does.This can be useful on pages where a manual login method is not appropriate.

Listing 13.1 Forcing Users to Connect Using requireSession()

<script type="text/javascript"

src="http://static.ak.connect.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php">

</script>

<script type="text/javascript">

var apiKey = 'XXXXXXXXXXXXXX';

var xdReceiverPath = 'xd_receiver.html';

FB.init(apiKey, xdReceiverPath);

FB.ensureInit(function() {

FB.Connect.requireSession(function() {

// The user is connected

});

});

</script>

Pages can dynamically handle the user’s connection state by either passing extra pa-
rameters to the FB.init() function or by calling the FB.Connect.ifUserConnected()
function. Both are asynchronous and accept parameters that are either a URL to navigate
to or a function to call for each connection state. Listing 13.2 shows how to use the
FB.init() and FB.Connect.ifUserConnected() functions. In the real world, these
functions are never used together.A developer chooses one or the other depending on
what makes the most sense for the site. In the example, we pass callbacks to each func-
tion.When the user’s connection state is detected, the callback for that state is called.This
technique is useful for dynamically displaying information based on login state, such as
the Connect button, or for sending logged-in users to a members-only page.

Listing 13.2 Dynamically Handling the User’s Connection State

<script type="text/javascript"

src="http://static.ak.connect.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php">

</script>

<script type="text/javascript">

var apiKey = 'XXXXXXXXXXXXXX';

var xdReceiverPath = 'xd_receiver.html';

function onLoggedIn(UID) {

// The user with UID is connected

}

function onLoggedOut() {

ptg

353User Authentication

Listing 13.2 Continued

// The user is not connected

}

FB.init(apiKey, xdReceiverPath,{'ifUserConnected' : onLoggedIn,

'ifUserNotConnected' : onLoggedOut });

FB.ensureInit(function() {

FB.Connect.ifUserConnected(onLoggedIn, onLoggedOut);

});

</script>

You can also register a function to be called when the user is logged in using the
FB.Facebook.get_sessionWaitable().waitUntilReady(callback) function.This is
called immediately after the page loads if the user was already logged in. Otherwise, it is
called after a user logs in using Facebook Connect. It can also dynamically add Connect
content to a normal page. Listing 13.3 shows how to use this function to receive a call-
back when the user is logged in.

Listing 13.3 Getting Notified When the User Is Logged In

<script type="text/javascript"

src="http://static.ak.connect.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php">

</script>

<script type="text/javascript">

var apiKey = 'XXXXXXXXXXXXXX';

var xdReceiverPath = 'xd_receiver.html';

function sessionCallback(sessionInfo) {

// The user is connected

}

FB.init(apiKey, xdReceiverPath);

FB.ensureInit(function() {

FB.Facebook.get_sessionWaitable().waitUntilReady(sessionCallback);

});

</script>

The final way for a page to handle a user’s connection state is to have the page reload
if the session state changes. By passing the reloadIfSessionStateChanged parameter to
the FB.init() function, the page monitors the cookie session state and forces the page
to reload when it changes.This state change might be triggered by any login dialog on
the page, but it won’t happen in response to the user logging out of Facebook or the site
in another browser. Listing 13.4 shows how to set this parameter.This might be useful if
there are several places on the site where users can be prompted to log in, such as a Com-
ments Box.This parameter cannot be passed at the same time as the ifUserConnected
and ifUserNotConnected parameters.

ptg

354 Chapter 13 Facebook Connect

Listing 13.4 Reloading the Page When the Session State Changes

<script type="text/javascript"

src="http://static.ak.connect.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php">

</script>

<script type="text/javascript">

var apiKey = 'XXXXXXXXXXXXXX';

var xdReceiverPath = 'xd_receiver.html';

FB.init(apiKey, xdReceiverPath,{'reloadIfSessionStateChanged' : true });

FB.ensureInit(function() {

});

</script>

Logging the User In
When the user isn’t logged in, sites can use the <fb:login-button> XFBML tag to dis-
play several styles of buttons that users can click to log in, or the site can display a button
it has manually created that performs the same actions via JavaScript.

If the user is already logged in, clicking the button does not show the log in dialog
again. It is best to hide the button or use the autologoutlink parameter to change it
into a logout button, as shown in Figure 13.12.

You can place this XFBML tag on your site, usually next to your normal site log in
functionality. It can take the optional parameters shown in Table 13.1. Most of these pa-
rameters govern the look of the button and can be set to match the site’s design. Using
the small and short parameter values shows only a small Facebook “f ” that can be
placed next to a login link at the top of the page.The autologoutlink parameter can be
used instead of dynamically hiding the button when the user is logged in.The onlogin()
function can direct logged in users to a different page (see Listing 13.5).

Figure 13.12 Using <fb:login-button> to
display a logout button via the autologoutlink

parameter

Table 13.1 <fb:login-button> Parameters

Parameter Type Description

condition string JavaScript code that evaluates to a Boolean that deter-
mines whether the button is visible or hidden.

ptg

355User Authentication

Listing 13.5 Using the <fb:login-button> onlogin Parameter

<script type="text/javascript"

src="http://static.ak.connect.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php">

</script>

<fb:login-button onlogin="window.location='http://example.com/loggedin.php';">

</fb:login-button>

<script type="text/javascript">

var apiKey = 'XXXXXXXXXXXXXX';

var xdReceiverPath = 'xd_receiver.html';

FB.init(apiKey, xdReceiverPath);

FB.ensureInit(function() {

});

</script>

Examples of login buttons using the various sizes and lengths are located at http://
wiki.developers.facebook.com/index.php/Facebook_Connect_Login_Buttons.

You can create your own login button and handle the click with JavaScript, but you
must use a Facebook-provided image for the button. In the onclick() handler, call
FB.Connect.requireSession(). Listing 13.6 shows the code for displaying a login but-
ton without using the XFBML tag. In most cases, however, <fb:login-button> is what
you use.

Table 13.1 <fb:login-button> Parameters

Parameter Type Description

size string Set to the size of the button image, either small,
medium, or large. The default value is large.

autologoutlink bool Displays “logout” if the user is connected and logged
in. Otherwise, the login button is shown all the time.
The default value is false.

background string Set to the type of background antialiasing the button im-
age will have. Pick from white, dark, or light to match the
page background you have. The default value is light.

length string Sets the text of the button: Connect for short or Connect
with Facebook for long. The default value is short.

onlogin string URL to navigate to or JavaScript to execute when the
user is logged into Facebook. There is no equivalent
function for when the user is logged out.

ptg

356 Chapter 13 Facebook Connect

Listing 13.6 Creating a Custom Login Button

<script type="text/javascript"

src="http://static.ak.connect.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php">

</script>

<a href="#" onclick="FB.Connect.requireSession(function(){

window.location='http://example.com/loggedin.php';});" >

<img src="http://static.ak.fbcdn.net/images/fbconnect/login-buttons/

connect_light_large_short.gif" />

<script type="text/javascript">

var apiKey = 'XXXXXXXXXXXXXX';

var xdReceiverPath = 'xd_receiver.html';

FB.init(apiKey, xdReceiverPath);

FB.ensureInit(function() {

});

</script>

Logging Out the User
When a user logs out of a Facebook Connect site, he also logs out of Facebook. Depend-
ing on how you have integrated Facebook Connect into your existing user management
system, you might want to give users the ability to manually log out.There are a few ways
to do this.

One option is to use <fb:login-button> with autologoutlink set to true.This pairs
well with passing the reloadIfSessionStateChanged parameter to FB.init(), so that,
after the user clicks logout, the page reloads to display the logged-out state.

Another option is to provide your own button or link, and call either the
FB.Connect.logout() or FB.Connect.logoutAndRedirect() function when a user
clicks it. FB.Connect.logout() takes a callback function, which you can use to handle
any site-specific logout logic, while FB.Connect.logoutAndRedirect() takes a URL
that users are directed to after the session logout occurs.

Listing 13.7 shows a simple example of handling login and logout and appropriately
displaying the <fb:login-button> or logout link.The displayLoggedIn() and
displayLoggedOut() functions passed to FB.init() are called immediately after the ses-
sion state is detected by the Connect library and shows the login or logout links.When a
user clicks the login or logout buttons, the handleLogin() or handleLogout() functions
are called, which can handle any site cleanup and then display the opposite button.

Listing 13.7 Handling Login and Logout

<script type="text/javascript"

src="http://static.ak.connect.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php">

</script>

<script type="text/javascript">

ptg

357User Authentication

Listing 13.7 Continued

var apiKey = 'XXXXXXXXXXXXXX';

var xdReceiverPath = 'xd_receiver.html';

function displayLoggedOut() {

document.getElementById('login').style.display = 'inline';

document.getElementById('logout').style.display = 'none';

}

function displayLoggedIn() {

document.getElementById('login').style.display = 'none';

document.getElementById('logout').style.display = 'inline';

}

function handleLogin() {

displayLoggedIn();

}

function handleLogout() {

displayLoggedOut();

}

FB.init('".FB_API_KEY."', 'xdreceiver.html',
{'ifUserConnected' : displayLoggedIn,

'ifUserNotConnected' : displayLoggedOut

}

);

FB.ensureInit(function() {

});

</script>

Disconnecting Users from Facebook
If a user decides to disconnect his Facebook account from a Connected site, he can do it
on the site.To do this, the site must use the auth.revokeAuthorization() Facebook ap-
plication programming interface (API) call.As discussed in Chapter 12, this API function
is not available via the Facebook JavaScript Client Library, unless you pass your applica-
tion’s Secret key to FB.init().The easiest, and safest, way to handle this is to redirect
users to a page where this call can be executed on the server.

Users can also disconnect their account via the Application Settings page on Facebook
by removing your site from the Authorized group under External Websites.When this
happens, your site’s Post Remove URL is pinged, which gives your site the capability to
do any needed cleanup.

After a user’s account is disconnected, the site cannot call any Facebook API functions
on their behalf until the user chooses to reconnect his account.

ptg

358 Chapter 13 Facebook Connect

Reclaiming Accounts
If a user creates an account on your website using Facebook Connect and chooses to
delete his Facebook account from Facebook, Connect allows your site to provide a URL
for that user to access his account using site-specific credentials.

To enable this, fill out the Account Reclamation URL field in the Developer Settings
for your Connect application.When a user deletes his Facebook account, Facebook sends
him an email with reclamation URLs for sites where he has enabled Facebook Connect.

Listing 13.8 shows an example of how to handle reclamation.The Account Reclama-
tion URL receives two GET parameters: the Facebook user ID of the account and the
user ID hashed with your Connect application’s Secret key.The PHP library provides a
helper function called verify_account_reclamation() that compares an md5 hash of
the user ID and the Application Secret to the received hash. If they match, the call action
is legitimate and your site needs to help the user enable a native login.

Listing 13.8 Handling Account Reclamation

function handleReclaimation() {

// The userid reclaiming

$userID = $_GET['u'];

// The verification hash

$hash = $_GET['h'];

// verify that this comes from the actual user

if (verify_account_reclamation($userID, $hash)){

// this is the real user, so enable them to login natively

}

}

Friend Linking
Most websites already have a native method of managing user accounts, which usually re-
quires email addresses as either the login or as part of the required information. Friend
Linking lets your website send those email addresses to Facebook so that it can try to
match them with Facebook users.The website can then use the <fb:connect-form>
XFBML tag to display a form that lets connected users send requests to their uncon-
nected friends to link up their accounts.The friends that appear in this form are the ones
that Facebook matched from the email-address uploads.

The caveat with Friend Linking is that Facebook must approve a website before it can
be used.As the section,“Setting Up Facebook Connect,” discussed, description fields
must be filled out in the Developer Settings to help convince Facebook that a site merits
access. Facebook has stated that they have a turnaround of two–five days for approval.

ptg

359Friend Linking

Once approved, the Friend Linking process begins by sending the email addresses to
Facebook using the connect.registerUsers() API function.This function takes one
key parameter—accounts—which we go over here.This is an array of up to 1,000 arrays.
The inner arrays each represent one user account. Each account array is composed of an
email_hash and optional account_id and account_url properties.The email_hash
must be generated in a particular format, which Listing 13.9 shows as the
generateEmailHash() function.

Listing 13.9 Generating the email_hash for connect.registerUsers()

function generateEmailHash($email) {

//normalize email - remove white space, convert to lower case

$email = trim(strtolower($email));

//Compute the CRC32 value of email and convert to unsigned int

$CRC = crc32($email);

$CRC = sprintf('%u', $crc);

//Compute the MD5 hash of email

$MD5 = md5($email);

//Concatenate the CRC32 value with the MD5 separated by underscore

$email_hash = "{$CRC}_{$MD5}";

return $email_hash;

}

After the hash is created, you can create the accounts array. Only one of the two op-
tional properties needs to be added to the array. account_id represents a unique identifier
on your site for that user, and it is what Facebook uses to substitute for the {account_id}
parameter in the Account Preview URL setting, and the email_hash value is substituted
for the {email_hash} parameter. If you set the account_url property, that URL is used
instead of the Account Preview URL.After creating the accounts array, pass it to the
connect.registerUsers() API function, as Listing 13.10 shows.

Listing 13.10 Calling connect.registerUsers() with Native User Accounts

// Get array of user email addresses and identifiers from site database

$userInfo = getUserInfo();

$accounts = array();

foreach ($userInfo as $user) {

$email_hash = generateEmailHash($user["email"]);

$account_id = $user["id"];

$array_push($accounts,

array("email_hash" => $email_hash, "account_id" => $account_id));

}

$result = connect_registerUsers($accounts);

ptg

360 Chapter 13 Facebook Connect

A site can check to see if there are unconnected users before displaying the
<fb:connect-form> tag by calling the connect.getUnconnectedFriendsCount() func-
tion, which returns the number of unconnected users found by the
connect.registerUsers() method. The <fb:unconnected-friends-count> XFBML tag
can display this number on the page.

Listing 13.11 shows how to display <fb:connect-form>. Notice how it must be con-
tained within a <fb:server-fbml> tag.The action attribute is the location the form
redirects to after submitting the request or after the user clicks the Close button.You can
also call the FB.Connect.inviteConnectUsers() library function to display the form in
a popup dialog.The recipient receives the request shown in Figure 13.13.

Listing 13.11 Displaying <fb:connect-form>

<script type="text/javascript"

src="http://static.ak.connect.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php">

</script>

<fb:serverfbml style="width:400px;">

<script type="text/fbml">

<fb:connect-form action="http://example.com/requestcomplete.php">

</fb:connect-form>

</script>

</fb:serverfbml>

<script type="text/javascript">

var apiKey = 'XXXXXXXXXXXXXX';

var xdReceiverPath = 'xd_receiver.html';

FB.init(apiKey, xdReceiverPath);

FB.ensureInit(function() {

});

</script>

Figure 13.13 <fb:connect-form> sends a request to the
selected unconnected users.

ptg

361Widgets

Widgets
Facebook provides several widgets for use on websites.Widgets are self-contained
XFBML controls that utilize Facebook Connect. Currently, Facebook has released two
widgets for Connected sites: the Comments Box and the Live Stream Box. Each widget is
discussed in this section.

Comments Box
The Comments Box, as previously described in the section “Facebook Connect Fea-
tures,” adds a box that enables users to enter comments about the content on a page.
Figure 13.14 shows a Comments Box on an external site before a user logs in. Users can
either enter a comment by entering their name and email address or by logging in via
Facebook Connect, either on the site itself or on the Comments Box.

When a user enters her name and email address, Facebook considers any comments
she enters as coming from an anonymous source. Her name and email address are not
passed to the hosting website; they are just used to display the user information next to
the comment. Figure 13.15 shows the expanded entry fields that are displayed when a
user begins to enter her information.A user also must pass a CAPTCHA to submit her
comment; CAPTCHAs verify that a human is entering the form data rather than a com-
puter (or bot) using text identification. Underneath the form in Figure 13.15 is a sample
anonymous comment.

If a user chooses to use Facebook Connect to log in, the Comments Box changes to
what’s shown in Figure 13.16.The user has the option to also post her comments to her
own Facebook profile. Comments posted from Connected users display the user’s picture
shown at the bottom of Figure 13.16 and, if she has the box checked, a Feed story similar
to what is shown in Figure 13.17 is posted to theWall tab of her profile and her friends’
streams on their Home pages. Each story contains a link back to the Connected site on
which it was created.

Figure 13.14 A Comments Box offers two meth-
ods of logging in to enter a comment.

ptg

362 Chapter 13 Facebook Connect

Figure 13.15 To enter an anonymous comment, a
user has to fill out her information and pass a

CAPTCHA.

Figure 13.16 Users who are logged in with
Facebook Connect see this Comments Box.

Figure 13.17 A Feed story created by adding a
comment to a Comments Box

ptg

363Widgets

Next to the submitted comments shown in Figures 13.16, there is a Delete link.This is
shown to users listed as Administrators or Moderators in the Developer Settings for the
Connected site.At the top of Figure 13.16, also notice the Administer Comments link,
which is only shown to Administrators. Clicking this link displays the Widget Settings
form shown in Figure 13.18, which is almost identical to the Widgets tab in Developer
Settings.

To add a Comments Box to your site, use the <fb:comments> XFBML tag.This tag
can take the optional attributes listed in Table 13.2.

Figure 13.18 Administrators can manage the
Comments Box settings by clicking the Administer

Comments link on the Comments Box.

Table 13.2 <fb:comments > Attributes

Tag Type Description

xid string A unique identifier for these comments. You need to specify
your own, because the default is a URL-encoded version of the
page URL, which can change if the parameters change. You can
use this ID later to programmatically retrieve the comments.

numposts int The maximum number of comments to display, defaulting to 10.

width string The width of the Comments Box, defaulting to 550px.

ptg

364 Chapter 13 Facebook Connect

Listing 13.12 shows how to incorporate a Comments Box into a site.We pass set the
xid attribute so that we can access these comments later.

Listing 13.12 Displaying a Comments Box

<script type="text/javascript"

src="http://static.ak.connect.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php">

</script>

<fb-comments xid='main_1' /></fb-comments>

<script type="text/javascript">

var apiKey = 'XXXXXXXXXXXXXX';

var xdReceiverPath = 'xd_receiver.html';

FB.init(apiKey, xdReceiverPath);

FB.ensureInit(function() {

});

</script>}

}

Table 13.2 <fb:comments > Attributes

Tag Type Description

css string A URL of a stylesheet to use for the Comment Box. Restrictions
on these styles are displayed next.

title string The text to display above the source URL in news stories, de-
faulting to the web page title.

url string The URL that is used in the news stories for the source and
links, defaulting to the current page URL.

simple bool If true, disables the shaded box around the comment entry
form, defaulting to false.

reverse bool If true, shows the most recent comments at the bottom in-
stead of at the top of the list, defaulting to false.

quiet bool Prevents the Comments Box from sending notifications to previ-
ous commentors, defaulting to false.

ptg

365Summary

Live Stream Box
The Live Stream Box is similar in concept to the Comments Box, but it enables real-time
communication rather than long-lived comments. It is scalable, supporting millions of si-
multaneous users. It also allows users to switch between what everyone is saying and what
their friends are saying. Figure 13.8 showed an example.

Listing 13.13 demonstrates how to display a Live Stream Box.The <fb:live-stream>
XFBML tag can take three optional attributes: width of the Box, height of the Box, and
the xid unique identifier of the Box.

Listing 13.13 Displaying a Live Stream Box

<script type="text/javascript"

src="http://static.ak.connect.facebook.com/js/api_lib/v0.4/FeatureLoader.js.php">

</script>

<fb:live-stream width="400" height="500" xid="1"></fb:live-stream>

<script type="text/javascript">

var apiKey = 'XXXXXXXXXXXXXX';

var xdReceiverPath = 'xd_receiver.html';

FB.init(apiKey, xdReceiverPath);

FB.ensureInit(function() {

});

</script>

The Live Stream Box doesn’t have the complex administration options of the Com-
ments Box. It just has a Ban User link, which is visible to Administrators and Moderators,
next to user posts.

Summary
This chapter covered how Facebook Connect sits on top of the Facebook JavaScript

Client Library, extending its features to integrate the Facebook social graph into exter-
nal websites.We also reviewed the major features of Facebook Connect. Here are some
key points:

n Facebook Connect enables single sign-on for external sites, allowing users to log in
with their Facebook account.This resulted in large increases in registrations for
Connected sites, and these registrations represent real users.

n Users take their settings and information with them to Connected sites, which
gives them control over what others can see and enables changes on Facebook to
propagate across all of their Facebook Connect sites.

n Integrating the Connect login mechanisms with a website’s native user manage-
ment system can be the most difficult part of the process. Connect provides migra-
tion functions and controls to make this easier, such as the <fb:connect-form>.

ptg

366 Chapter 13 Facebook Connect

n There are several ways to detect and react to a user’s connected state, from the
<fb:login-button> to the ifConnected callback function passed to FB.init().
These methods enable sites to display different content to their native and Con-
nected users.

n Facebook Connect provides functions and widgets that enable activities on a Con-
nected site to publish stories to the stream, including links back to the originating
website.This can result in more traffic from good content.

ptg

IV
Post Launch

14 Measuring Application Success

15 Spreading and Monetizing Applications

16 Improving Application Performance and Workflow

ptg

This page intentionally left blank

ptg

14
Measuring Application Success

After spending all the effort to design and implement a stellar Facebook application, de-
velopers expect great success and acclamation from users. It can be disconcerting, there-
fore, when the application fails to attract or retain users.Without a mechanism in place to
understand exactly what is causing the failure—difficult workflow, unappealing wording
or imagery, or incorrect assumptions—an application is doomed to grow slowly or rely
on luck to hit success.A/B testing, along with collecting the metrics to measure its ef-
fects, helps developers get their applications to spread on Facebook.

This chapter discusses A/B testing and tuning and goes over what metrics the built-in
Facebook Insights and third-party libraries provide and what they mean.

Metrics: Why They Matter
A Facebook application has many channels available to communicate with users: the
stream, notifications, email, profile boxes, and requests. Each channel has an associated
loop that the application’s developers hope will be viral.The goal is to make each chan-
nel’s communication bring in new users or re-engage existing ones.You can achieve this
through understanding the viral loops, implementing metrics to gather data on how users
interact with the application, and using A/B testing to tune the application.

Note
Virality is a term that that describes the growth rate of applications and is based on a metaphor
of infectious diseases, such as viruses. Virality is based on the number of people who can
spread the disease (users) and how easily it can infect others (cause new installations).

Viral Loop
You can measure the virality (or k-factor) of a communication channel generally as k =
communication * engagement of others. So, if an application’s users each send requests to 5
friends, and 25 percent of those friends install the application, that channel has a virality
of 1.25.Anything above 1 means that the application is growing virally, with the goal be-
ing to maximize this value for each channel.An application’s overall k-factor is the sum

ptg

370 Chapter 14 Measuring Application Success

Viral
Loop

User sends
invitation to 5

friends

80% of new
users don’t
install right

away

50% of
recipients
click the
invite link

60% of
visitors add

the
application

k = 5 * 50% * 60% * 80*
k = 1.2

Figure 14.1 Viral loop for application invitations

of the individual channel k-factors. So, if an application has notifications at .3, invitations
at .7, and news stories at .6, the overall k-factor of 1.6 means that the application is grow-
ing well.

Each channel can be measured in even more depth by tracking the entire communica-
tion process: Each invitation is opened by 50 percent of the recipients, 60 percent of those
users add the application, and 80 percent of those users don’t uninstall it right away.With
5 requests sent, that is a k-factor of 5 * .5 * .6 * .8 = 1.2, as shown in Figure 14.1.A good
application makes sure that it uses as many of these communication channels as possible
and optimizes each one’s effectiveness.This does not mean spamming; in fact, measure-
ment of the viral channels can show exactly how much contact users want or can tolerate
from your application.

It is important to measure both the overall k-factor and the percentage of each stage in
the loop continuously, especially if your application is making changes to how it uses
these channels.You then immediately know whether those changes had a positive effect
or stalled your growth. It also helps deal with the eventual drop-off in the effectiveness of
each channel, as users become inured to its effects or Facebook switches the platform to
focus on newer communication methods.

ptg

371Metrics: Why They Matter

Jesse Farmer, on his blog (http://20bits.com) describes two models for how users come
to install an application:

n Threshold model. Users install applications because enough of their friends have.
Each person has his own internal threshold: Some will try anything and others resist
specifically because all of their friends are using it.The Threshold model is only
valid after an application already has some type of user base.

n Cascade model. Also called word of mouth, this model says that a user installs an
application as a result of a friend directly interacting with them, such as an invita-
tion or notification. Friends who are more influential have a higher chance of af-
fecting behavior.The Cascade model is what the k-factor measures for a
communication channel.Applications rely on the Cascade model until they reach a
sufficient number of users for the Threshold model to apply.

Collecting Metrics
Metrics are critical to understanding both the viral loop and how users respond to appli-
cation features. Developers can implement their own metrics-collection system to track
feature usage and conversions. Facebook also provides some general metrics in the form
of its Insights tools and some FBML tags to add Quantcast or Google Analytics to canvas
pages.Third-party developers, such as Kontagent, released instrumented versions of Face-
book client libraries to enable more detailed tracking.The section,“Metrics Dashboards,”
discusses them.

Metrics enable you to make decisions based on data rather than assumptions. Combin-
ing metrics with a methodology like A/B testing, which is discussed in the next section,
can lead to effective tuning of application features and communication channels.With a
reasonable number of users, the time between starting to test and getting enough data to
support a decision can be short.

Not all metrics need to be based on running software. Some metrics might simply be
the results of in-person user-experience testing using mockups or paper testing. By vali-
dating new concepts and features early in the development cycle, you can save time and
headaches later.This also allows for much quicker development cycles, which enables ap-
plications to evolve to meet users’ needs.

When in doubt, test. However, metrics must be limited to things that matter and you
can take action on.Too much data about the little things can cause you to lose focus on
areas that you can actually improve.The metrics should also be part of measuring desired
outcomes—new user installs, repeat user visits, and virtual currency purchases.This helps
you decide where to apply your development resources: If increasing the number of news
stories generated by 10 percent increases your user count by 20 percent, but increasing
your notification response by 30 percent increases user count by only 10 percent, news-
story generation is where you need to spend time.

Segmenting metrics into larger categories can help you get a quick feel for how an ap-
plication is doing.You might use groupings, such as Acquisition, Engagement, Retention,
and Revenue. Be careful that you also understand what they are based on, so that you

ptg

372 Chapter 14 Measuring Application Success

Origin

Origins of installs

app

directory

invite

profile

search

installs

379

639

50,793

1,165

113

Figure 14.2 Simple tracking of application-installation
origins using home-grown metrics

don’t miss important indicators. For example, aggregate metrics like Daily or Monthly
Active Users measure both new users and existing users. It is possible for this number to
increase only because new users come once and never return. Eventually, an application
like this will die out when enough users have had their one pass at it. So, watch the sum-
maries, but drill down into the aggregate metrics.

Some large development shops, like Slide, have 10 percent of their staff devoted to
metrics, but that is obviously not feasible for individual developers or small companies.
Applications can start out using Facebook Insights with no additional work needed and
get some basic application usage data. Developers can also add basic tracking to the appli-
cation by appending tags to the end of URLs used in communication channels, which
makes it simple to find out how users are getting to the application, as shown in Figure
14.2. Facebook has recently added support for tracking the origins of user application au-
thorizations.You can append app_ref=<upto8chars> to the Facebook add URL, like we
do here, to see the results in Facebook Insights for that application:

http://www.facebook.com/add.php?api_key=YOUR_API_KEY&app_ref=<upto8chars>

A/B Testing
A/B testing, sometimes called split-testing, means comparing the effects of two things.
Most often, option A is the existing version, and option B is the new version. In a Face-
book application, these two options can be entire workflows, the text of a news story, or
the layout of a canvas page.An application randomly displays either option and uses met-
rics to determine which one had the desired effect.A/B tests can also help determine the
order of steps in a workflow, such as presenting a Feed dialog before or after displaying

ptg

373Metrics: Why They Matter

the results of an action.The results of A/B tests can be surprising, because it replaces as-
sumptions with real data; users might not prefer a better-looking interface or be able to
use a new feature at all.

Facebook uses A/B testing itself, most publicly in the release of its new application
menu. Facebook wanted to ensure that users discovered and used the Bookmarks effec-
tively, and it went through many design iterations before finalizing on what we have today.

If you make A/B testing a normal part of the development process (which is simple to
do), you and your developers are more likely to use it.The alternative is to rely on intu-
ition or do what the whitepaper “Practical Guide to Controlled Experiments on the Web:
Listen to Your Customers not to the HiPPO,” by the Microsoft Experimentation Platform
Team (http://exp-platform.com/hippo.aspx) refers to as listening to the HiPPO (Highest
Paid Person’s Opinion).This is a person with the power to make decisions who might not
have the data to back it up.This paper describes how efforts at Amazon, Microsoft,
Dupont, and NASA have seen a greater return on investment and increased innovation
because of this type of testing.

Let’s go through an example for the Compliments application. Currently, it is seeing
only a 2 percent install rate for the notifications that it generates when a user sends a
compliment.The current text users receive is “John Maver sent you a Compliment!”We
think that a call to action might improve this, so we want to test “John Maver sent you a
Compliment! Click here to send your own.”A simple A/B test would be to change our
PHP code that sends the notifications to what is shown in Listing 14.1.We create strings
for both the old and new notifications and pick a number between 1 and 2. If the num-
ber is 1, we show the old notification and if it is 2, we show the new one.

Listing 14.1 Sample Code to Randomly Send Notifications for A/B Testing

$notification1 = "sent <fb:name uid='$target' /> a ".

"Compliment";

$notification2 = "sent <fb:name uid='$target' /> a ".

"Compliment.".

"Click here to send your own.";

if (rand(1 , 2) == 1) {

$notification = $notification1;

else {

$notification = $notification2;

}

$return = $facebook->api_client->notifications_send(array($target),

$notification,

'user_to_user');

ptg

374 Chapter 14 Measuring Application Success

Table 14.1 Day 1 Results for Notification A/B Test

Option Visitors Clicks Conversion Rate

Original 51 1 2%

New 50 6 12%

Table 14.2 Day 2 Results for Notification A/B Test

#Option Visitors Clicks Conversion Rate

Original 100 2 2%

New 100 12 12%

We ran this test for a day, and Table 14.1 shows the results.

It looks like the new notification is a winner, but we have to check that it is statisti-
cally significant.The more notifications we send out, the more likely that the results aren’t
just random noise.To determine its significance, we can use the following calculation (a
Pearson’s Chi-Square test with a confidence of 95 percent):

N = Total number of clicks = 7

D = (Option 1 click – Option 2 clicks) / 2 = 2.5

D2 = 6.25

The results are significant if D2 is greater than N. 6.25 is not bigger than 7, so we don’t
have enough test results yet.We need to let this test run longer.After another day, we get
the results shown in Table 14.2.

This time, the calculation is
N = 14

D = 5

D2 = 25

25 is greater than 13, so our new notification is a good change and needs to be made
permanent.

Note
Pearson’s Chi-Square test is a statistical procedure for comparing the distribution of results
versus expectations. More recently, the G-test has becoming increasingly used as comput-
ers are able to handle the more time-consuming calculations.

ptg

375Metrics Dashboards

One downside to A/B testing is that if the new option isn’t good, all the users that ex-
perience it are getting a bad experience.You can mitigate this by reducing the percentage
of users seeing the new option below 50 percent, but you then need to wait longer for
the results to be statistically significant. It also doesn’t tell you why users picked one over
the other; you have to conduct interviews to figure that out.

Metrics Dashboards
A dashboard is a single place to reference all the metrics you have collected and possibly
perform additional analysis or display trends. If you are collecting your own custom met-
rics, we encourage you to build a simple dashboard.This section goes over the dashboards
supplied by Facebook and the Kontagent Analytics package.

Facebook Insights and the Metrics API
We already covered using Facebook’s Insights tool to monitor user response to messaging
and Facebook messaging allocations in Chapter 10,“Publisher, Notifications, and Re-
quests.” However, this tool provides more data than this for application developers; more-
over, much of the data that backs it is available through the Facebook application
programming interface (API).This gives developers a great opportunity to develop their
own custom monitoring solutions, dashboards, and A/B testing frameworks.

Looking at Metrics in Facebook Insights
Figure 14.3 shows the Insights tool containing actual data for Active Users (Engagement)
from a live application, currently with several hundred thousand active monthly users.
Notice that there are several tabs’ worth of data available to the developer.The following
sections discuss not only the metrics on each tab, but also how to get them programmati-
cally.Additionally, we explain how the metrics named in the Insights tool map to the
names used to access them using the API.

The first tab, Usage, contains several different metrics that focus on user engagement
with the application and that application’s interaction with the Facebook Platform.
Table 14.3 describes them in detail.The first column shows the name of the metric as
shown in the Insights tool, the second is the name of the metric as it’s used when access-
ing it the Facebook API, which we cover later. Granularity explains the number of differ-
ent values that are available for a given metric type.

Table 14.3 Facebook Insights: Usage Metric

Metric (Insights) Metric (API) Description Granularity

Active Users
(Engagement)

active_users Total number of active
users for the
application

Last 1-,7-,
and 30 days

ptg

376 Chapter 14 Measuring Application Success

The next tab, HTTP Request, has three sections: the status codes summary, recent
HTTP requests, and a graph of an HTTP status codes returned over the selected time pe-
riod. Figure 14.4 shows the status code summary and recent HTTP requests.The sum-
mary shows that most requests that are returned are status code 200, which is great;

Table 14.3 Facebook Insights: Usage Metric

Metric (Insights) Metric (API) Description Granularity

Active Users (API) unique_api_calls Number of users
whose use of the appli-
cation resulted in a
Facebook API call

Last 1-,7-,
and 30 days

Canvas Page
Views

canvas_page_views Total number of appli-
cation canvas page
views

Last 1-,7-,
and 30 days

Unique Canvas
Page Views

unique_canvas_page_

views

Total number of users
who viewed at least
one of an application’s
canvas pages

Last 1-,7-,
and 30 days

Average HTTP
Request Time on
Canvas Pages
(ms)

canvas_http_request

_time_avg

The average time re-
quired to finish an indi-
vidual HTTP request for
the application’s can-
vas pages

Last 1-,7-,
and 30 days

Average FBML
Render Time on
Canvas Pages
(ms)

canvas_fbml_render_

time_avg

The average time is
took Facebook to ren-
der the application’s
canvas pages

Last 1-,7-,
and 30 days

Unique Blocks unique_blocks The number of users
who blocked the appli-
cation

1 day only

Unique Unblocks unique_unblocks The number of users
who unblocked the ap-
plication

1 day only

API Calls api_calls Total number of API
calls made by the ap-
plication

Last 1-,7-,
and 30 days

Unique API Calls unique_api_calls

(alias)

Number of users
whose use of the appli-
cation resulted in a
Facebook API call
(alias)

Last 1-,7-,
and 30 days

ptg

377Metrics Dashboards

Figure 14.3 The Facebook Insights tool shows data for dif-
ferent time periods. Here, it shows Active Users (Engagement)

for a popular Facebook application.

Figure 14.5 displays trend data for individual HTTP status codes.This can be useful
to look through, because patterns in usage or errors show up that might not otherwise
be found.

Table 14.4 correlates the name of the HTTP request metric in the Insights tool with
the name used for it when using the API. Only some of the status codes are discussed here.
Facebook provides metrics for all the major HTTP status codes supported by the protocol.

Table 14.4 Facebook Insights: HTTP Request Metrics

Metric (Insights) Metric (API) Description

HTTP Code 0 canvas_page_views

_http_code_0

Total number of canvas pages that timed
out while loading

HTTP Code 200 canvas_page_views

_http_code_200

Total number of canvas pages that re-
turned HTTP 200 (OK)

however, almost 25 percent of those return no data, which is something that the devel-
oper might want to look into.The recent requests show the full URL for the HTTP re-
quest, which can help diagnose problems.

ptg

378 Chapter 14 Measuring Application Success

Figure 14.4 The HTTP Request tab in Insights shows the sta-
tus codes that the application has been returning.

Finally, the Features tab shows metrics that are not currently available from the Face-
book API and represents aggregated data for feature-based user interactions on Facebook
as they relate to an application. Dozens of metrics are available, too many to list in this
section; however, some of them are incredibly useful because they are given nowhere else in
Facebook, the API, or from third-party tools. For example, Figure 14.6 shows the number of
canvas page views for a popular Facebook application over a six-month period. Figure 14.7
shows some of the unique metrics available on this tab.The major categories of these met-
rics are summarized in the following list:

n Canvas. Aggregated metrics for canvas pages, including total number of links
clicked on all of an application’s canvas pages and errors encountered when serving
or viewing them.

Table 14.4 Facebook Insights: HTTP Request Metrics

Metric (Insights) Metric (API) Description

HTTP Code 200
(ND)

canvas_page_views

_http_code_200ND

Total number of canvas pages that re-
turned OK and no data

HTTP Code 403 canvas_page_views

_http_code_403

Total number of canvas pages that re-
turned HTTP 403 (Forbidden)

HTTP Code 404 canvas_page_views

_http_code_404

Total number of canvas pages that re-
turned HTTP 404 (Not Found)

HTTP Code 500 canvas_page_views

_http_code_500

Total number of canvas pages that re-
turned HTTP 500 (Internal Server Error)

ptg

379Metrics Dashboards

Figure 14.5 The HTTP Request tab in Insights also has a
graph that shows the status codes that the application has

been returning over time.

Figure 14.6 The Features tab provides interesting metrics,
such as a long historical view of total canvas page views.

n Feed. Incredibly valuable, because this category provides developers with metrics
telling how many times an application’s users clicked the Publish or Cancel (Skip)
buttons in Feed submission dialogs (from either Feed forms, Publishers, or other
sources).As discussed in Chapter 9,“Feed Stories, Feed Forms, and Templates,” and
Chapter 10, there is no way for developers to programmatically know whether a

ptg

380 Chapter 14 Measuring Application Success

Figure 14.7 Some of the unique metrics offered on the
Features tab of the Insights tool include ones found nowhere
else, such as these for canvas page errors and Feed dialog

interactions.

n Profile. Gives metrics and interaction data for Facebook profile boxes and applica-
tion tabs, which, as we discussed throughout this book, are cached and served from
Facebook’s own servers and not the developers’ servers. Facebook provides infor-
mation on the number of times users add or remove profile boxes, Info sections, or
application tabs for an application, and how many clicks were made on them by the
actual owners of the profiles or by viewers.

n Requests. Gives similar data to the User Response tab discussed in Chapter 10;
however, they also provide the number of times application users clicked the Skip
button on the requests or invitations generated by it.

n Notifications. Centers around only user-to-user notifications and gives detailed
information on the number of times they were clicked by their recipients and the
number of them flagged as spam by recipients and incorrectly tagged as spam by
senders, among others.

n Email. Gives the numbers of emails successfully sent during a given time period
and the number of total number of users who granted or revoked the email ex-
tended permission to the application.

n Other. Catch-all category that provides developers with information on numbers
of violation reports submitted to Facebook by users in a specific time period (for

user actually published a Feed story.The only notification they are given is when
they’ve dismissed the dialog, published or not.These metrics give those numbers.

ptg

381Metrics Dashboards

example, drugs, violence, or privacy violations). It also provides details on the num-
ber of times the application was bookmarked.

Using the Facebook API to Get Metrics
Facebook provides a programmatic way to get more detailed application metrics by using
the API. Developers can use the admin.getMetrics() function or FQL to query the
application and metrics tables; we go over each.This metrics data can be merged with
any custom application metrics into a developer dashboard.

The admin.getMetrics() function uses the metrics FQL table to return the informa-
tion in Table 14.3 and Table 14.4. Up to 30 days of metrics can be returned at a time, us-
ing 1 day (86,400 seconds), 7 day (604,800 seconds), or 30 day (2,592,000 seconds)
periods. Listing 14.2 shows how to get the number of total active users for the last
30 days and the results from the PHP client library.

Listing 14.2 Using admin.getMetrics() to Get the Total Active User Count over the
Last 30 Days

$result = $facebook->api_client->admin_getMetrics(strtotime("-29 days”), time(),

86400, array('active_users'));

/** Results

array

0 =>

array

'end_time' => string '1247641200' (length=10)

'active_users' => string '754,383' (length=1)

1 =>

array

'end_time' => string '1247727600' (length=10)

'active_users' => string '754,440' (length=1)

2 =>

array

'end_time' => string '1247814000' (length=10)

'active_users' => string '755,221' (length=1)

...

*/

Using FQL, we can access the application table to get the daily, weekly, and monthly
active user values. Listing 14.3 shows sample code that fetches all three values.

Listing 14.3 Using admin.getMetrics() to Get the Total Active User Count over the
Last 30 Days

$query = "SELECT daily_active_users, weekly_active_users, monthly_active_users

FROM application

WHERE app_id = ".FB_APP_ID;

ptg

382 Chapter 14 Measuring Application Success

Listing 14.3 Continued

$result = $facebook->api_client->fql_query($query);

/** Results

array

0 =>

array

'daily_active_users' => string '27479' (length=5)

'weekly_active_users' => string '124004' (length=6)

'monthly_active_users' => string '347816' (length=6)

*/

Kontagent
Kontagent (www.kontagent.com) provides several metrics and monitoring options for Face-
book applications. It offers both free and premium services.The premium service offers
more options; however, even its free services add incredible value, on top of Facebook
metrics collected via Insights. Plus, it provides a free dashboard that provides in-depth
graphs of all the metrics it collects. Its services are based on a data-collection REST API
that applications call directly or through one of their free libraries. Currently, it provides
free libraries for PHP, Ruby on Rails, and .NET.To use Kontagent to collect metrics for
their applications, developers have three options:

n Wrapper libraries. Using the wrapper libraries is the easiest but least customiz-
able option. Developers don’t need to make many changes to their code, except in-
cluding a few files and modifying a few calls to pass extra parameters for tracking.
In the Kontagent PHP wrapper, for example, developers simply create an instance
of Kontagent’s Kt_Facebook class, which extends the PHP Library’s Facebook class,
and use it instead to make their API calls. Kontagent transparently handles data col-
lection and calls the automatically appropriate Facebook methods.

n Low-level wrapper. For PHP developers who use a custom Facebook wrapper li-
brary, Kontagent provides a low-level wrapper that abstracts the direct calls to the
Kontagent REST API. Developers just directly call their analytics functions and
make the calls to Facebook as normal.

n REST API. For those developers that use either the Facebook REST-like API di-
rectly or client libraries (such as the ActionScript 3 Library discussed in Chapter 11,
“FBJS, Mock AJAX, and Flash,” for example) that Kontagent cannot wrap, Konta-
gent provides a complete REST API to directly report metrics.

Kontagent Metrics
Kontagent collects several metrics that Facebook’s Insights tool does not.The following
list describes several features that its APIs provide for free. More importantly, it does this
without violating the Facebook Terms of Service, which means that developers can focus

ptg

383Metrics Dashboards

on acting on data rather than worrying that they are collecting, storing, or using it in vio-
lation of Facebook policy:

n Facebook viral channel monitoring. Kontagent tracks most major Facebook
messaging channels, including invitations, requests, notifications (both user-to-user
and application-to-user), and Feed stories. Developers can categorize calls to these
channels by using developer-defined categories or subtypes to make A/B testing of
messaging much easier, automatically.

n Viral growth tracking. Using its TrueVirality feature, Kontagent tracks not only
viral growth (k-factor), but does so for each viral channel and tracks origination
points of each install.

n Detailed demographics. Kontagent breaks Facebook user demographics down
by age, gender, geographic location, and more.This allows easy identification of ap-
plications’ most active users.

n Engagement monitoring. Developers can use this feature to easily find what
parts of their applications are being used and filter the results demographically.The
authors have actually used this feature to discover, much to their surprise, that their
successful applications’ largest and most active demographic was not whom they
predicted, and, in fact, were not even from the countries they expected.This infor-
mation is critical: It allows developers to tie applications to their target audiences
intimately and quickly provide content that can be customized or localized to their
most active segments.

Kontagent also offers a paid premium service that provides more features, including
automatic monetization tracking, feature-based testing, benchmarking, advertising/traffic
monitoring, and more.

Kontagent Dashboards
Not only does Kontagent provide an API, it also provides a free dashboard that developers
can use to get a graphical view of their applications’ performance, metrics, or demograph-
ics. Most of the dashboards provide detailed filtering options, such as the ability to view
installs broken down by age, gender, time, and geographic location. Figure 14.8 shows the
demographic filtering in action.

ptg

384 Chapter 14 Measuring Application Success

Figure 14.8 Kontagent provides free dashboards for viewing its metrics
and monitoring results.

Summary
This chapter discussed the viral loop, why metrics are important, how to use A/B test-

ing, and Facebook Insights and Kontagent’s Analytics package. Here are some key points:

n The virality of a communication channel is measured by the amount of communi-
cation multiplied by the resulting engagement.The goal is to get this value to be
larger than 1 for an application to grow virally.

n Metrics are better than intuition for making sure that the changes made to an ap-
plication have a useful impact.Without them, the HiPPO tends to dominate.

n A/B testing is the comparison of two options by randomly displaying them to
users. It is important to make sure that the data is statistically significant to rule out
the effects of chance. Using metrics collected during the test, developers can deter-
mine whether a new option is a useful change to make to an application.

n Facebook Insights automatically provides developers with metrics and graphs about
how many users are accessing the application, page views, and HTTP Request sta-
tus codes.

n Developers can use the API to retrieve application metrics for use in their own
dashboards.These can be pulled for a 30-day period in 1, 7, or 30-day increments.

n The Kontagent Analytics library provides two levels of advanced application met-
rics. Developers can either use the Kontagent library as a wrapper for a Facebook
client library or add individual calls to the Kontagent REST API to track metrics.
Kontagent provides an interactive dashboard to help with metrics analysis.

ptg

15
Spreading and Monetizing

Applications

This chapter describes the ways developers can help their application spread. It discusses
how to seed the application with users via advertising, co-promoting, and other methods.
It also goes over some of the ways that applications can generate income.

Spreading Your Application
The days of building a Facebook application and having it rocket to millions of users
overnight are gone.Too many applications are vying for attention and the Platform has
tightened up many of the viral channels that were exploited by early applications. In some
ways, this is a blessing. Even if you have conducted exhaustive private beta tests using
Sandbox mode, real-world users are likely to do things with your application that surprise
you. Having more time to react to user feedback at the start helps refine workflow issues
and ferret out bugs. Figure 15.1 shows a possible growth curve for an application.

In most cases, applications must develop an initial critical mass of users that then spread
the application to their friends and enable growth.This section goes over several ways for
applications to do this.We assume that your application follows the best practices outlined
in Chapter 2,“Making Great Applications,” for identifying the target demographic, adding
value, and enabling engagement.

However, before you spend a dime on promoting your application, make sure that you
have exhaustively analyzed and fine-tuned your application as Chapter 14,“Measuring
Application Success,” detailed. If your application has difficult workflows, users aren’t
coming back, or the viral channels are not helping it spread, any money you throw at it is
going down the drain.

After you are sure that your application is as good as it can be, you can look at pro-
moting it on Facebook, both within the site and other applications, using ads.Two kinds
of ads can help spread an application.The first are Facebook Ads, which Facebook pro-
vides.They are shown throughout the Facebook user interface along the right side of the

ptg

386 Chapter 15 Spreading and Monetizing Applications

User Growth
250,000

200,000

150,000

100,000

50,000

0

Users

Linear (Users)

Expon. (Users)

Figure 15.1 Most application growth isn’t exponential or even linear, but you can help it
along with some promotion.

Facebook Ads
Facebook has two ad tiers: Home page Ads and Standard Ads. Home page Ads integrate
into users’ Home pages, as shown in Figure 15.2.This is key real estate with a lot of
views, and the pricing reflects that. Home page Ad campaigns have minimum purchases
in the tens of thousands of dollars and a $5–7 CPM cost.This is probably only an option
for applications with large budgets.

Standard Ads appear on all the other Facebook pages, including application canvas
pages. Figure 15.3 shows what these ads look like.

Standard Ads use a self-service model that is useful not only for creating targeted ads,
but also for understanding the size of Facebook demographics and for doing A/B testing
of ad messaging; you can create many different ads with slightly different content or tar-
gets and measure the response. Here is a walkthrough of creating an ad for the Compli-
ments application.

screen.The second is using some of the many Ad Networks that supply ad inventory for
other applications to display.

ptg

387Spreading Your Application

Figure 15.2 Facebook Home page Ads catch a
lot of eyeballs and have the pricing to match.

Figure 15.3 Facebook Standard Ads can appear
on all the other Facebook pages.

Go to the Facebook Ads Manager (www.facebook.com/ads/manage/) and click the Create
Ad button.You then see the Design Your Ad section (see Figure 15.4). Click the I Want to
Advertise Something I Have on Facebook link and select Compliments from the Face-
book Content dropdown. Fill out the rest of the Title and Body as we do in the image.
Notice that each field is limited in the number of characters.

Your Title and Description need to describe the application briefly without over-
whelming the viewer with details.They must also include a call to action to install the ap-
plication.The text cannot contain any formatting or blank lines, so you might have to

ptg

Figure 15.4 Designing a Facebook ad requires carefully crafting the
message and image to stand out and drive action.

The Image should stand out and cause users to take notice. It need not be your appli-
cation logo, but it must somehow relate to your application.The one strange thing about
the Image is that it is limited to 110px by 80px.This is smaller than the width of the ad
box and slightly shifts it to the left.

Each ad must be approved before it runs, so make sure that you review Facebook’s
Common Ad Mistakes (www.facebook.com/ads/mistakes.php) and Advertising Guidelines
(www.facebook.com/ad_guidelines.php). If your ad is rejected, modify it to remove the of-
fending text or image and resubmit it.

After you create the ad content, it is time to set the targeting settings shown in
Figure 15.5.This process can be enlightening, because Facebook updates the Estimate of
the people matching the parameters with each change. In the figure, we chose to target
users who live in the United States aged 18 and older who have set “awesomeness” as one
of their interests.This provides us with an estimate of 34,860 people. If we had removed
all targeting except United States, the estimate would be 75,694,320 people. If we restrict
this even further by specifying people who live in Boston, 18 and up, who like “awesome-
ness” and are male, we get just 160 people. So, targeting helps you focus your ads on spe-
cific groups.The smaller the group, the more likely your ad is to be shown.

The one key item we want to set is the Target Users Who Are Not Already Connected
To field.We don’t want our ads to be shown to users who have already installed our ap-
plication, so enter Compliments in that box.

The pricing section is shown in Figure 15.6.You can choose to create a new named
campaign or add this ad to an existing one. Because this is our first ad, we choose a new
one.We call it Gain Critical Mass.

388 Chapter 15 Spreading and Monetizing Applications

play with the text to make it look like it is spaced correctly.You also cannot use or refer
to Facebook in the text.That also includes abbreviations, such as FB.

ptg

389Spreading Your Application

Figure 15.5 Targeting Facebook Ads makes sure that they are shown
to the users you want to install your application.

Figure 15.6 Setting the budget and bid for an ad determines how of-
ten it will be shown.

ptg

390 Chapter 15 Spreading and Monetizing Applications

Figure 15.7 Be sure to carefully review your ad before it goes live.

Next, we choose a Daily Budget.This value is a life-saver.With hundreds of millions of
potential target users and with no restrictions in place, Facebook could easily show your
ad so many times that your advertising budget could be decimated in hours, if not sooner.
We leave this set to $50 to start with, so that we can tweak our ad copy and analyze the
results.

You need to decide on whether to use a CPM or CPC model. CPM means cost per
thousand views (Mille is French/Latin for thousand), and CPC means cost per click. CPC
is safer to go with at the beginning, because you only pay when a user clicks the ad. Face-
book uses a bid system to determine how often to show your ad; the higher the bid ver-
sus ads targeting the same users, the more likely it is to be shown. Facebook recommends
a maximum bid, but you can pick anything above 1 cent.

The Estimate at the bottom of that section shows how many clicks or views Facebook
thinks you will receive with your current targeting, budget, and bid, so you can play with
each of these to get your desired results.Then, click the Create button to go to the Re-
view Ad page, which is shown in Figure 15.7.This page gives you a change to make any
last-minute changes before running the ad.

After you verify the information and click the Place Order button, go back to the Ads
Manager page on which we started.Your new campaign is displayed (see Figure 15.8).
You can see that it is marked as Pending review—no ads are shown until Facebook ap-
proves it.

After it is approved and starts to run, your campaign receives daily status updates. In
Figure 15.9, we display some data for a test ad that ran for about 2 hours.You can see that

ptg

391Spreading Your Application

Figure 15.8 Before they start running, newly created ads must be ap-
proved by Facebook.

the ad was displayed over 270,000 times and resulting in 70 clicks.We might spend some
time trying to improve the ad content or better target it to improve that click-through
ratio from .03 percent.

Ad Networks
Some of the early leader application developers, such as RockYou and Slide, have been
able to gather millions of daily users, and they now offer the opportunity to display ads
inside their own applications. Other ad networks, such as Cubics (www.cubics.com), allow
you to display your ads inside any application that publishes their ads.Ads in these net-
works have the potential to offer higher click-through ratios than Facebook Ads, because
these users are likely to install additional applications since they already have installed at
least one to see the ad.

Applications supply these networks with a set of ad images in a variety of sizes and an
end-point URL. In some cases, you spend a preset amount to get a set number of CPM
or CPC, such as $5,000 to get 6,500 clicks. Other services use a budget/bid system simi-
lar to Facebook.When planning your ad campaign, it is a good idea to get a feel for the
prices of these other networks.

Developer Link Exchanges
Many developers are unhappy with the thought of having to advertise to spread their ap-
plication, and a few options emerge for sharing links instead. Link exchanges work by de-
velopers putting their application’s URL into a pool.Applications earn credits for
displaying other application’s links on their canvas page.Applications use credits when

Figure 15.9 Facebook provides daily statistics on how each ad is
doing for impressions and clicks.

ptg

392 Chapter 15 Spreading and Monetizing Applications

Figure 15.10 Link exchanges provide a free alternative to ad-
vertising for promoting an application.

their application’s link is displayed by other applications. No one has to pay anything and
everyone benefits. fbExchange (http://fbexchange.com) and Cubics both offer link ex-
changes, and new ones seem to pop up all the time. Figure 15.10 shows what a link ex-
change ad from might look like.

The Facebook Developer Forums also have requests from other developers to share
links. It can be worth some time searching for these posts and building relationships with
other developers to help spread your application for free.

Monetizing Your Application
After you launch and grow your application, one of your goals might be to make some
money from it.We go over several ways to do this in this section. However, something to
keep in mind is that you want to make sure that your monetization efforts don’t drive
away your users with pages filled with flashing ads or virtual goods that don’t relate to the
application.

Displaying Ads
A huge number of companies offer application developers ads to publish inside their ap-
plication canvas pages.These ads can either be from external advertisers or from other
Facebook applications. Each works to acquire an inventory of advertisers, so all a devel-
oper needs to do is add a few HTML tags onto his canvas pages to display them. It is best
to try to integrate ads from the beginning of the application’s design process. If you de-
velop a user base with an ad-free application, and then try to monetize the application us-
ing ads, you might experience heated resistance. Figure 15.11 shows a typical banner ad
for another application.

Figure 15.11 Banner ads can be as simple as this
or graphically rich with flash animations.

ptg

393Monetizing Your Application

Applications with a lot of traffic can earn a reasonably good income using ads. How-
ever, different ad networks can generate different returns, and these returns can change
over time. It is best to either set up multiple ad networks in some type of rotation or
change your ad network from time to time, so that you can evaluate and compare their
payouts and performance. Most of the ad networks provide detailed statistics of impres-
sions and clicks along with daily totals, so you can track how individual ad networks are
doing for your application.

The rate of return is based on how relevant the ads shown are to the application users
and how visible the ads are. It is best to place them so that they are always visible and to
use the ad networks’ customizations of ad categories to target your demographic. Some
developers have reported earning as little as $.04 CPM and as high as $4.78 CPM; how-
ever, it is probably fair to base your estimates on something like $.50 CPM. Cost per Ac-
tion (CPA) ads can pay more, requiring users to fill out surveys or install toolbars to
generate revenue.

Here are a few Facebook-aware ad networks to get you started.All of them support
multiple ad sizes, have dashboards with performance statistics, and provide code snippets
that are easy to integrate with an application. Experiment with each of them to deter-
mine which type of ad resonates with your users:

n Ad Parlor (www.adparlor.com)
n Ad Chap (www.adchap.com)
n Cubics (www.cubics.com)
n RockYou (http://ads.rockyou.com)

Be aware that some of the other ad networks either won’t work at all or won’t work
effectively on FBML canvas pages because of their use of JavaScript or the need for con-
textual analysis.You can also look at the Advertising/Monetization topic in the Facebook
Developer Forums to find out about new networks and other developers’ experiences.

Ads and User Data
In July 2009, after a series of highly publicized user complaints, Facebook clamped down on
third-party ad networks. Users complained that ad networks were using their Facebook pho-
tos and other information without permission, sometimes even inappropriately. One well-
known example involved a husband seeing an ad for singles containing a picture of his wife.
Other examples included advertisements for applications implying that a user’s friend had
challenged them when, in fact, the friend was not even an application user.

In response, Facebook suspended several ad networks and informed the rest that they
needed to follow the data privacy rules outlined in the Facebook Terms of Service. Applica-
tions are not allowed to pass their users’ private data information to third parties, such as
advertisers, without their users’ permission. This should lead to better quality ads being dis-
played, although perhaps with a lower click-through rate.

ptg

394 Chapter 15 Spreading and Monetizing Applications

Sponsors
If your application effectively targets a niche or has a large enough user base, you can at-
tract corporate sponsors.A great example of this was the Vampires application. Because of
its three million users, Sony Pictures got its developer, RockYou, to rebrand the applica-
tion around the movie 30 Days of Night.The rationale was that someone interested in
Vampires would probably be interested in movies about vampires.

Don’t be afraid to contact companies who would make good sponsors.A fast-growing
application for a relevant niche might be a great financial opportunity for both parties.
The Compliments application might approach a greeting card company, as compliments
are a subcategory of their industry.

Affiliate Links
Applications that feature goods and services can generate income by using affiliate links.
You can see the use of affiliate links in applications like LivingSocial, where books have
links to buy them on Amazon.com or on iLike, where you can buy music on iTunes. Be-
cause having easy purchase links can be considered a valuable feature to users, developers
should definitely explore this option.

Many affiliate programs exist beside Amazon and iTunes. In fact, the Internet is rife
with them. It is just a matter of finding products and services that both match your users’
interests and are relevant to your application.The Compliments application might include
audio ringtones as part of the compliment and links to buy the full song on iTunes.

Subscriptions
The freemium model has taken hold on the web, offering a free version that is good
enough to attract and retain users and a premium version that is enticing enough to get
them to pay to upgrade.The same philosophy can work for applications. Zoosk (http:
//apps.facebook.com/zooskers/), a dating application, has a premium service for
$9.99/month that enables additional communication options and enhanced placement of
your dating profile.As of this writing, it’s one of the top applications on Facebook with
millions of monthly active users.

You can roll your own subscription billing service using a payment service, such as
PayPal, as the backend—PayPal provides an API just for this purpose.A company called
Zuora (http://developer.zuora.com/facebook) offers an end-to-end subscription management
service and several Facebook applications are using it, such as Teach the People (http://
apps.facebook.com/teachthepeople/).

If your application has value that people are willing to pay for monthly, the tools now
exist to make implementation relatively simple.The Compliments application might en-
able users to send a limited number of compliments for free or only send pre-canned
messages, while the premium model would be unlimited and offer Flash- or video-based
compliments.

ptg

395Monetizing Your Application

Andrew Chen has some excellent posts on effectively using a freemium model along
with a downloadable spreadsheet (http://andrewchenblog.com/2009/01/19/how-to-create-a-
profitable-freemium-startup-spreadsheet-model-included/). His key point is that the value you
get out of your paying customers has to be more than how much it costs to acquire them
plus the cost of running your application.You can calculate the lifetime value for a user
with the following formula. Our example uses a 50 percent retention rate and revenue of
$10 each month.With 1,000 users, our Long Term Value (LTV) is $20,000. By increasing
the retention by 50 percent, you can double your LTV.

Ret = Retention % for the period observed

Rev = Revenue per user for the period observed

Long Term Value (LTV) = 1 / (1-Ret) * Rev

LTV = 1 / (1-.5) * 10 * 1000 = $20,000

LTV = 1 / (1-.75) * 10 * 1000 = $40,000

Virtual Goods, Currencies, and Economies
Many developers believe that the best way to monetize is by charging for virtual goods.A
simple and successful example of using virtual goods for monetization is Facebook’s Gift
(www.facebook.com/giftshop.php) application, where users spend $1 to send a virtual gifts to
friends, or by creating an entire virtual economy like MafiaWars (http://apps.facebook.com/
inthemafia/). Facebook currently pulls in $75 million a year from Gifts, so users are defi-
nitely willing to pay for goods they find valuable. However, some developers report that
only 5–15 percent of users will ever pay for any virtual goods in an application, so this
would combine well with an advertising strategy.

There are a few options for selling virtual goods.The first is to do a straight cash pur-
chase.You can implement this via the PayPal API or other online payment vendors.
Something to watch out for with applications that sell items is that, unless your applica-
tion is complex to reproduce, another developer might release a “free” version to com-
pete.The Free Gifts application became successful doing this and was able to monetize via
ads and sponsorships.

The next option is to implement a point-based system, where users accrue points—or
some equivalent—via actions they take in your application and then giving them the op-
tion to purchase more of them using real money. Generally, you design this system so that
users can quickly gain many more points by buying them outright than they ever could
by using the application normally, or the points they can purchase are very limited or
hold special significance in the application. For example, the Mafia Wars application lets
users spend points on additional features, such as skill upgrades or additional family mem-
bers. Mafia Wars has created its own payment system for handling point transactions.

If you don’t want to implement your own point-management system or you want to
enable more options for users, you can integrate services from an external provider.The
Spare Change service (http://sparechangeinc.com/) allows users to buy points that work

ptg

across over 700 Facebook applications. Users can add money to their Space Change ac-
count from any application supporting it. If they choose to spend their points on your ap-
plication, you earn the cash equivalent Social Gold and Gambit are some other popular
point payment systems, and Facebook is currently beta testing its own payment system.

Other services, such as OfferPal (www.offerpalmedia.com) or SuperRewards (www.srpoints.
com), go beyond just purchasing points. Users can also perform tasks, such as subscribing
to Netflix or downloading a ringtone to earn points. Each service takes a small cut of the
transactions, but that might be worth it for having them deal with refunds and other
customer-service issues dealing with payments.

The biggest and potentially most rewarding method of selling virtual goods is to create
an entire virtual economy.Your application provides a marketplace for either reselling exist-
ing goods or for selling user-created goods.Your application takes a cut of all transactions.

Here are some basic tips for successfully offering virtual goods:

n Offer enough free content that people don’t feel that you are trying to use them.
Make the paid content better enough in their eyes to justify its cost.

n Keep the available content updated for both paid and free virtual goods.This en-
sures that all of your users always have something new to buy.

n Introduce scarcity via limitations on quantity, time, or higher prices. Some users pay
premiums for unique items, and scarcity causes users to purchase sooner.

n Make the content relevant to the application. Compliments might offer gifts to be
sent along with the compliment or premium compliments that incorporate multi-
media to make them much more engaging and desirable for their targets and the
users who send them.

n Integrate a ladder concept, where goods get better and more expensive as users in-
teract with the application longer.This encourages both increased usage and gener-
ates scarcity.

n Goods can also be decoration.The (Lil) Green Patch application (http://apps.
facebook.com/greentrees/) sells decorations with the added twist that they only last for
a few weeks before they must be purchased again.

n Monitor and analyze the system to make sure that the workflows are streamlined.
Finding out user purchase patterns can help refine how you offer goods and the
method used to buy them.

Summary
This chapter discussed using ads to promote your application and make money from

it.We also discussed other methods of monetization. Here are some key points:

n Use Facebook Home page Ads to promote your application on the high visibility
Facebook Home page or Facebook Standard Ads to display ads on the sidebar of
pages.

396 Chapter 15 Spreading and Monetizing Applications

ptg

397Summary

n Facebook Ads Manager allows you to explore the sizes of different demographics
on Facebook and target specifically who will see your application’s ads.You can
run multiple ads with different targeting parameters or content and compare the
performance.

n You can use a link exchanges with other developers to promote your application
for free.

n Displaying banner ads or integrated ads can make some money for your page, but
because of low CPM rates, it requires a large number of page views to make it
worthwhile.

n Sponsors and affiliates can increase revenue for applications that target specific
niches or are concerned with real-world goods and services.

n Virtual goods offer the biggest income opportunity, but they take some effort and
tuning to work effectively.There are many ways to integrate them: direct payment,
points, offers, and entire virtual economies.

ptg

This page intentionally left blank

ptg

16
Improving Application

Performance and Workflow

This chapter covers advanced techniques for increasing application performance, us-
ing Facebook’s built-in query language for accessing data, and working with multiple
developers.

Facebook only gives your application about 8 seconds to return content from the can-
vas pages and callbacks before it times out. For canvas pages, this results in displaying an
error to the user. For AJAX callbacks, it means that the user’s last action won’t look like it
worked. If your application loads, but is slow, users will become frustrated and stop using
it.This chapter details some methods for improving your application’s performance using
batching and the Facebook Query Language (FQL).

When multiple developers are working on a project in multiple locations, it can be
convenient to create separate applications.We go over how to create a configuration file
and setup script that allow developers to easily use their own settings, while maintaining a
single set of source files.

Batching API Calls
Batching application programming interface (API) calls decreases page load times by re-
ducing the number of round trips to the Facebook server.We covered this for users of the
Facebook JavaScript Client Library in Chapter 12,“Facebook JavaScript Client Library;”
in this chapter we show how to use the batching API using the PHP client library. Our
example will be setting the profile box FBML content for multiple users. Listing 16.1
shows how to do this both with and without batching.

Listing 16.1 extracts the first ten friends of the logged-in user and then executes the
separateCalls() function to individually call profile_setFBML() for each user ID.This
is the normal way to execute API functions.The batchedCalls() function is then called.
Inside, before calling users_getInfo(), this function calls begin_batch(), which causes
the PHP client library to delay executing subsequent API calls. profile_setFBML() is
called for each user, but notice that the result is returned by reference.This is because the

ptg

400 Chapter 16 Improving Application Performance and Workflow

API call isn’t executed until after batch_end() is called.At that point, the references are
filled in with the actual results. In local tests, batching the API calls was about 5–6 times
faster than individually executing the calls.

Listing 16.1 Batching API Calls

$users = array_slice($facebook->api_client->friends_list, 0, 10);

separateCalls($facebook, $users);

batchedCalls($facebook, $users);

function separateCalls($facebook, $users) {

$results = array();

foreach ($users as $userID) {

$results[] = $facebook->api_client->profile_setFBML(NULL, $userID,

"Some FBML", NULL, NULL, NULL);

}

}

function batchedCalls($facebook, $users){

$results = array();

$facebook->api_client->begin_batch();

foreach ($users as $userID) {

$results[] = & $facebook->api_client->profile_setFBML(NULL, $userID,

"Some FBML", NULL, NULL, NULL);

}

$facebook->api_client->end_batch();

}

Note
Currently, there is a bug in the Facebook PHP client library with the profile_setFBML()
declaration. It doesn’t return its value as a reference, so the results array in the
batchedCalls() function won’t be set. You can fix this by changing the declaration to in-
clude an & in facebookapi_php5_restlib.php:

function &profile_setFBML($markup, ...

There are a few constraints with batching. First, you can only batch 20 API calls at a
time. Second, you cannot use the results of one API call in another API call in the same
batch (for example, calling the friends_getAppUsers() function and then using the IDs
returned as parameters in a call to the users_getInfo() function).The solution to this
problem is to use FQL, which the next section covers.You can, however, force the batched
calls to be executed sequentially instead of in parallel, which is the default. Do this by set-
ting the batch_mode variable like this:

$facebook->api_client->batch_mode =

FacebookRestClient::BATCH_MODE_SERIAL_ONLY;

ptg

401FQL

You can set it back like this:

$facebook->api_client->batch_mode =

FacebookRestClient::BATCH_MODE_PARALLEL;

All the batched calls are executed on the Facebook servers, even if one of them has an
error. Unfortunately, the PHP client library throws a FacebookRestClientException ex-
ception the first time it encounters an error as it parses the results of the batch run.This
means that only those result references the library has already set at that point have values,
and you won’t know what happened with the rest of the batched calls.

FQL
FQL provides developers with a SQL-like interface to the data store that backs the Face-
book Platform. It has several advantages over using the API functions. First, you can con-
strain the data returned, which can reduce query times and bandwidth. Second, you can
replace multiple API calls with FQL statements that use multiple tables instead. FQL speed
improvements are large enough that many of the API calls themselves just wrap FQL
queries internally.We start with an overview of FQL queries, use the fql.multiquery()
function to perform multiple queries that can reference each other, and finish with look-
ing at how to run queries on page load using Preload FQL.

FQL Overview
FQL queries are in this format:

SELECT [fields] FROM [table] WHERE [conditions] [ORDER BY {field}]

[LIMIT {[offset,] row count}]

The FROM clause must reference a single table, as shown in Table 16.1.You can access
the full list of tables that comprise the Facebook data store at http://wiki.developers.facebook.
com/index.php/FQL_Tables. Facebook defines a few fields for each of these tables as being
indexable, which means that indexes have been created for them in the data store for per-
formance reasons.The WHERE clause must contain at least one indexable field, but not
everything in the WHERE clause must be indexable.

Table 16.1 FQL Tables and Equivalent API Functions

Table Name Description API Equivalent

album Information about a photo al-
bum, such as the name.

photos.getAlbums()

application Information about a specific
application, such as name
and usage metrics.

admin.getAppPropertie

s()

ptg

402 Chapter 16 Improving Application Performance and Workflow

Table 16.1 FQL Tables and Equivalent API Functions

Table Name Description API Equivalent

comment Information about a set of
user comments, such as the
comment’s creator and text.

comments.get()

cookies Information about a user
cookie, such as the cookie’s
name and value.

data.getCookies()

connection Information about a user’s
connections, such as which
Public Profiles they are a Fan
of and who their friends are.

pages.isFan() and
friends.areFriends()

event Information about an event,
such as the name and date.

events.get()

event_member Information about a user’s
status for an event, such as
whether they have RSVP’d.

events.get()

friend Information about a whether
two users are friends.

friends.areFriends()

friend_request Information about whether a
friend request has been sent
from or received by the
logged-in user.

No equivalent

friendlist Information about the friend
lists the logged-in user has
created.

friends.getLists()

friendlist_member Information about which
users are a member of a
friend list.

friends.getLists()

group Information about a specific
group, such as the name
and description.

groups.get()

group_member Information about the mem-
bers of a group, such as the
position they have.

groups.get() and
groups.getMembers()

link Information about a specific
link, such as the title
and URL.

links.get()

ptg

403FQL

Table 16.1 FQL Tables and Equivalent API Functions

Table Name Description API Equivalent

mailbox_folder Information about a user’s
Inbox folders, such as name
and unread count. This re-
quires the read_mailbox
permission for access.

message.getThreadsInF

older()

message Information about a mes-
sage in an Inbox thread,
such as author and body.
This requires the
read_mailbox permission
for access.

message.getThreadsInF

older()

metrics Information about an appli-
cation’s metrics, such as the
total number of users and
page views.

admin.getMetrics()

note Information about a specific
note, such as the content
and title.

notes.get()

notifications Information about the notifi-
cations for a user, such as ti-
tle and application id.

notifications.getList

()

page Information about a Public
Profile, such as the name
and profile picture.

pages.getInfo()

page_admin Information about a Public
Profile administrator, such
as the page ID and type they
administer.

pages.getInfo() and
pages.isAdmin()

page_fan Information about a Public
Profile Fan, such as the
page ID and type they are a
fan of.

pages.getInfo() and
pages.isFan()

permissions Information about the ex-
tended permissions a user
has granted, such as email
and offline access.

Permissions.checkGran

tedApiAccess()

photo Information about a specific
photo, such as its URL and
caption.

photos.get()

ptg

404 Chapter 16 Improving Application Performance and Workflow

Table 16.1 FQL Tables and Equivalent API Functions

Table Name Description API Equivalent

photo_tag Information about a specific
photo’s tags, such as the co-
ordinates and text.

photos.get() and
photos.getTags()

profile Information about a user’s
profile, such as their profile
picture and URL.

user_getInfo() and
pages.getInfo()

standard_friend_info Information about whether
two users are friends. This
should only be used outside
of an active session, such
as for cron jobs. You should
use the friend table during
an active session.

friends.get() and
friends.areFriends()

standard_user_info Information about a specific
user. This should only be
used outside of an active
session, such as for cron
jobs. You should use the
user table during an active
session.

users.getInfo() and
users.getStandardInfo

()

status Information about a user’s
status, such as the time and
message.

status.get()

stream Information about posts in a
user’s stream, such as the
post time and message.

stream.get()

stream_filter Returns a filter key that is
can be used to filter queries
on the stream table, such as
by friend list or networks.

stream.getFilters()

thread Information about the con-
versation threads in a user’s
Inbox, such as the subject
and recipients. This requires
the read_mailbox permis-
sion for access.

message.getThreadsInF

older()

user Information about a specific
user, such as birthday and
last name.

users.getInfo() and
users.getStandardInfo

()

ptg

405FQL

Let’s go over a few quick examples. Listing 16.2 shows an API call to
friends.getAppUsers() and then its equivalent in FQL, using the fql.query() func-
tion.The friends.getAppUsers() function returns the user IDs of all the friends of the
currently logged-in user who have authorized the application.The FQL query appears to
be more complex, so let’s walk through it.

The user table has the is_app_user field, which represents whether a user has author-
ized the application.The friend table defines relationships between two user IDs using
fields uid1 and uid2. FQL can only reference a single table in the FROM clause, so we can’t
use both the friend and user tables in it.We want to end up with a set of user IDs, so we
use the user table in FROM.That means that the WHERE clause has to use a subquery to ac-
cess the friend table.The subquery gets the IDs of the users who are friends of the
logged-in user.The WHERE clause constrains the uids that match the subquery by those
users who also have is_app_user set to 1.

Listing 16.2 Simple API Call and Its FQL Equivalent

$appUsers = $facebook->api_client->friends_getAppUsers();

$query = "

SELECT uid FROM user WHERE uid IN (

SELECT uid2 FROM friend WHERE uid1 = $loggedInUser

)

AND is_app_user = 1";

$appUsers = $facebook->api_client->fql_query($query);

Previously, we talked about using the IDs returned from friends_getAppUsers() in
calls to users_getInfo() to get all their birthdays. Listing 16.3 shows how to implement
that in a single FQL query.

Listing 16.3 Combining Multiple API Calls in One FQL Query

SELECT uid, birthday

FROM user

WHERE uid IN (SELECT uid2 FROM friend WHERE uid1 = $loggedInUser)

AND is_app_user = 1

Notice that all we had to do was add the birthday field to the previous query. FQL
also lets you access subfields, such as the country from the user’s current location.
Listing 16.4 shows how to do this for a particular user.

Listing 16.4 Accessing Subfields Directly

SELECT current_location.country

FROM user

WHERE uid = $userID

ptg

406 Chapter 16 Improving Application Performance and Workflow

Note
Unfortunately, the FQL Tables wiki page does not display the subfields for each table. For that,
you need to go to the equivalent API function wiki page at http://wiki.developers.facebook.
com/index.php/API.

We mentioned that the WHERE clause must reference an indexable field. If you wanted
to get all the photos for a particular user, you might try to write the query like this:

SELECT pid FROM photo WHERE owner = $userID

However, owner is not an indexable field, so the query fails. Instead, you have to use
the indexable album ID field, aid, in a subquery. Here, we get the photos from albums the
user owns:

SELECT link FROM photo WHERE aid IN (SELECT aid FROM album WHERE owner = $userID)

Subqueries can also nest other subqueries, as Listing 16.5 demonstrates.This query
finds all the photos tagged with application user friends of a particular user. Notice how
we reuse the FQL query from Listing 16.2 for getting the friends of a user who are also
application users.

Listing 16.5 Nested Subqueries

SELECT pid FROM photo_tag WHERE subject IN (

SELECT uid FROM user WHERE uid IN (

SELECT uid2 FROM friend WHERE uid1 = $userID

)

AND is_app_user = 1

)

FQL also supports some functions and operators, as shown in Table 16.2.

Table 16.2 FQL Functions and Operators

Table Name Description

now() Returns the current UNIX time.

rand() Returns a random number.

strlen(string) Returns the length of a string.

concat(string1, ...) Returns a concatenation of several strings.

substr(string, start,

length)

Returns a substring from a start position with a
given length. Returns 0 if not found.

strpos(haystack, needle) Returns the index of a needle in the haystack.
Returns -1 if not found.

lower() Returns a lowercase string.

ptg

407FQL

Say that you want to retrieve a list, formatted for display, of all a user’s friends who have
birthdays in the next three months. Listing 16.6 shows how to write that query.We use the
FQL concat() function to create a formatted string of the user’s name and birthday.We use
the FQL substr() function to get the month from first two characters of the
birthday_date field, which is always formatted mm/dd/yyyy.We subtract the current
month number and constrain our results to when that value is greater than 3.

Listing 16.6 Accessing Subfields Directly

SELECT concat(name, " - ",birthday) FROM user WHERE uid IN (

SELECT uid2 FROM friend WHERE uid1 = $userID

)

AND (substr(birthday_date, 0, 2) - $currentMonthNumber) >= 3

fql.multiquery
One of the problems with the standard FQL query is that that subqueries cannot refer-
ence the outer query.This often means that you have to use multiple queries to get the
data you need.The fql.multiquery() function lets you pass all these queries to be exe-
cuted in one call, and each query can reference the other.This method takes a JSON-
encoded array of queries, each with its own name. Queries use the same format as the
normal fql.query() method, except you can now reference the results of other queries
using their name in the FROM clause.

For example, if you want to get both tagged photos and recent links for all app user
friends, you can call fql.multiquery(), as demonstrated in Listing 16.7.We create a
query for the commonly used app user friends query called appfriends.This query is
used as the pool of UIDs for the other two queries, referencing it like we do here, with
the query name preceded by a #:

SELECT uid FROM #friends

Table 16.2 FQL Functions and Operators

upper() Returns an uppercase string.

comparison operators FQL supports the following comparison operators:

=, >, <, >=, <=

arithmetic operators FQL supports the following arithmetic operators:

+, -, *, /

logical operators FQL supports the following logical operators:

AND, OR, NOT

ptg

408 Chapter 16 Improving Application Performance and Workflow

Listing 16.7 Using fql.multiquery to Reference Names Queries

$queries = '{

"appfriends":"SELECT uid FROM user WHERE uid IN (

SELECT uid2 FROM friend WHERE uid1 = 698700806

) AND is_app_user = 1",

"taggedPhotos":"SELECT pid FROM photo_tag WHERE subject IN (

SELECT uid FROM #friends

) LIMIT 10",

"links":"SELECT link_id FROM link WHERE owner IN (

SELECT uid FROM #friends

) LIMIT 10"}';

$appUsers = $facebook->api_client->fql_multiquery($queries);

The PHP client library’s fql_multiquery() function returns the result of each query
in an array, as shown in Listing 16.8.

Listing 16.8 PHP Client Library fql_multiquery() Results

array

0 =>

array

'name' => string 'appfriends' (length=7)

'fql_result_set' =>

array

0 =>

array

'uid' => string '698700806' (length=12)

...

1 =>

array

'name' => string 'links' (length=5)

'fql_result_set' =>

array

0 =>

array

'link_id' => string '122217238584' (length=12)

...

The fql.multiquery() function performs faster than using several individual
fql.query() calls, even if those calls are batched using the batching API.

Preloading FQL
If your application canvas pages end up using the same queries (or API calls that ulti-
mately call them) each time they are loaded, you can tell Facebook to automatically run
those queries before calling your page and pass you the results.Although this doesn’t re-
duce the FQL query time, it does remove the round-trip time those queries take if they
are executed via fql.query() calls.

ptg

409FQL

Note
This feature is still in beta, but it has been used for a while now by many developers. It was
also used for one of the biggest applications on Facebook, Top Friends.

This preloading is achieved through the user of the admin.setAppProperties() API
function.This function is not called during the normal operation of an application, but as
a set up mechanism, much like registering Feed Template bundles.We will set the
preload_fql property, passing in an array of rules. Each rule is composed of three parts:
the name, the pattern, and the query:

n Name is a user-defined name to apply to this rule.This name is used as part of a
POST variable passed to the application canvas page.

n Pattern is a regular expression that matches the canvas pages to which this should be
sent.The entire URL is available, so you can match individual files, entire directo-
ries, or the entire site.

n Query is an FQL statement to be executed. It can be parameterized to use the
value of any GET parameter and can use a special parameter, {*user*}, which is the
active user.

Let’s use our app user friends query as an example. Listing 16.9 shows how to create a
rule and pass it to admin.setAppProperties().We set the name to appfriends and our
pattern to match all pages.The query is the same one we have been using, except we use
the {*user*} token for the active user.We use json_encode() to make sure that the reg-
ular expressions are escaped properly and convert the array to the string format that the
API call expects. If we want to use a GET parameter called UID instead of the active user
for the query, we just replace the curly braces with {UID}.

Listing 16.9 Preloading FQL Using admin.setAppProperties()

$rules = json_encode(

array("appfriends" =>

array("pattern" => ".*",

"query" => "SELECT uid FROM user WHERE uid IN (

SELECT uid2 FROM friend WHERE uid1 = {*user*})

AND is_app_user = 1")));

$facebook->api_client->admin_setAppProperties(array("preload_fql" => $rules)));

After this code is executed, Facebook changes what it sends to your application in the
POST variables.This differs between FBML and IFrame canvas pages, so we start with what
happens with FBML canvas pages. First, Facebook no longer sends the fb_sig_friends
variable. If you depend on this list of all the user’s friends, you need to add another rule
for it, like this:

array("friends" =>

array("pattern" => ".*",

"query" => "SELECT uid2 FROM friend WHERE uid1 = {*user*}"))

ptg

410 Chapter 16 Improving Application Performance and Workflow

The second thing is that Facebook now sends an fb_sig_appfriends variable that
contains the JSON-encoded results of your query. If there is an error executing the query,
this value will be something like the following line, returning the text of the query that
Facebook attempted to execute:

'appfriends' => string '{"error_query":"SELECT uid FROM ..."}'

The third change is that there is a new fb_sig_preload_fql_timestamp variable.This
is the timestamp for when Facebook started to process your FQL rules.You can compare
this to fb_sig_time, which is when Facebook finished and called your canvas page, to
know if you need to spend time tuning your preload queries.

For IFrame canvas pages, preloading FQL is disabled by default.These canvas pages
can either use the Facebook JavaScript Client Library FB.Facebook.apiClient
.preloadFQL_get() function, passing a callback parameter that receives the preloaded
FQL results, or they can turn on preloading for the canvas page using a special rule.This
rule has the name fb_iframe_post, and the pattern should be set to match those IFrame
canvas pages you want to receive the preloaded FQL. No query is needed for this rule.
Listing 16.11 shows the addition of this rule for IFrame canvas pages.

Listing 16.10 Preloading FQL for IFrame Canvas Pages

$rules = json_encode(

array("appfriends" =>

array("pattern" => ".*",

"query" => "SELECT uid FROM user WHERE uid IN (

SELECT uid2 FROM friend WHERE uid1 = {*user*})

AND is_app_user = 1"),

"fb_iframe_post" =>

array("pattern" => ".*")));

$facebook->api_client->admin_setAppProperties(array("preload_fql" => $rules)));

After this rule is added, IFrames canvas pages receive all the POST variables prefixed
with fb_post_sig_ instead of fb_sig_.This prevents namespace collisions with the exist-
ing Facebook information that IFrame canvas pages already receive as GET parameters
prefixed with fb_sig_.There is a slight cost to enable preload FQL for IFrames, because
Facebook must perform a slight, cached redirect on page access.

Working with Multiple Developers
Developing a Facebook application with multiple developers can be complicated, because
it makes it difficult to verify local code changes without pushing to the live server. Gener-
ally, developers run a web server on their local machines to test these changes and push
them to a live web server only when complete.This section covers a few things that you

ptg

411Working with Multiple Developers

can do to make this process easier. For our examples, we use the Compliments application
with two developers.

Setting Up Port Forwarding for Each Developer
It is likely that multiple developers will be working in the same spot, at least some of the
time. Because Facebook applications need to be externally accessible, each developer
needs to use a different port for their application, or more specifically, for their local web
server to listen on. For example, one developer would get port 81 forwarded to his ma-
chine at each location, and the other developer would get port 82 forwarded to his ma-
chine at each location. Port 80 is required for some flash testing, so that often rotates
between developers as needed.These ports are used in the following steps.

Additionally, if you want to support multiple development locations, create DNS en-
tries for each location, such as location1.example.com and location2.example.com. In the fol-
lowing examples, we assume that the application deployment server is set to
www.example.com.We use these values to generate our local callback URLs.

Creating Additional Applications for Each Developer
We already created the main Compliments application in the Facebook Developer appli-
cation. Now, each developer needs to create his own Compliments application for local
testing and debugging.These new applications need to mirror the main application except
for the application name, Canvas Page URL, and the Callback URLs.We recommend us-
ing a standard naming convention for these, such as the application name followed by the
developer’s initials. For example, say John creates an application named Compliments-J,
with Canvas Page URL set to compliments-j, and all the Callback URLs set to his local
server and assigned port.

Developers need to also add each other as developers to the applications, and turn on
Sandbox mode to keep their applications from being accessed by other Facebook users
and ensure that any messaging these applications publish to Facebook is only visible to
their developers. In their local web servers’ configuration, they should map their applica-
tion to the local source directory for Compliments and make sure that the server is listen-
ing on their assigned port. Each application will have its own application ID,API key, and
Secret key that will be used in the configuration explained in the next step.

Creating a Smart Local Configuration File
The main Compliments application uses a hardcoded globals.inc file that contains con-
stants for URLs, paths,API and Secret keys, and template bundle IDs. However, multiple
developers need a way to use the correct settings for each developer and location.To do
this, we create a configuration file that contains the settings for all the versions of the ap-
plication. For Compliments, we create a new file called config.ini in the inc directory
and add the contents of Listing 16.11 into it.

This file contains the specific settings for each developer: the application settings, such
as name and keys; the database server and schema; the port that is being forwarded; and

ptg

412 Chapter 16 Improving Application Performance and Workflow

whether to turn on Sandbox mode. Note that this and any configuration files should
never be shown or accessible via the web server; if they were, anyone could access your
Secret key, and developers must take appropriate steps to ensure that it stays private.

Listing 16.11 Preloading FQL for IFrame Canvas Pages

DEV1_FB_APP_KEY = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX;

DEV1_FB_APP_SECRET = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX;

DEV1_FB_APP_NAME = compliments-j;

DEV1_FB_APP_ID = XXXXXXXXXXX;

DEV1_FB_DB_SERVER = localhost;

DEV1_FB_DB_SCHEMA = compliments;

DEV1_PORT = 81;

DEV1_DEV_MODE = true;

DEV2_FB_APP_KEY = YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY;

DEV2_FB_APP_SECRET = YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY;

DEV2_FB_APP_NAME = compliments-c;

DEV2_FB_APP_ID = YYYYYYYYYYYY;

DEV2_FB_DB_SERVER = localhost;

DEV2_FB_DB_SCHEMA = compliments;

DEV2_PORT = 82;

DEV2_DEV_MODE = true;

WWW_FB_APP_KEY = ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ;

WWW_FB_APP_SECRET = ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ;

WWW_FB_APP_NAME = compliments;

WWW_FB_APP_ID = ZZZZZZZZZZZ;

WWW_DB_SERVER = maindb.example.com;

WWW_FB_DB_SCHEMA = compliments;

WWW_DEV_MODE = false;

PHP_DBG_LOG_EXT = _log.txt;

VISIBLE_APP_NAME = Compliments;

Listing 16.12 shows a script that parses this configuration file and generates the con-
stants used in the application. For Compliments, we create a new file called setup.php in
the config directory and add the contents of Listing 16.12 into it.This script requires two
arguments, the developer’s name and the current location, like this:

php setup.php dev1 location1

The developer’s name is put into $user and is used to pull the settings prefixed with it,
so dev1 uses all the settings prefixed DEV1_.The current location is put into $location
and used to set the proper subdomain for the callback URLs.The config.ini file is then
read in, and the values are stored in the $settings array and added to $userConstants
string to be written out.The non-user specific constants are generated and then they are
all written out to a file called constants.inc in the inc directory. Finally, an array of

ptg

413Working with Multiple Developers

application properties are created to pass to the Facebook admin.setAppProperties()API
function. In this example, we set the Canvas Callback URL and whether the application is
in Sandbox mode.You might add other properties as they fit your application’s needs.
admin.setAppProperties() is called to register these properties, and the script is done.

Listing 16.12 Script to Generate Constants from Configuration

<?php

// usage: php setup.php user location

$user = strtoupper($argv[1]);

$location = $argv[2];

//

// Parse the config file

$settings = parse_ini_file('config.ini');

// assumption is that we are in a subdirectory of the root, such as config

chdir('..');

$settings["MAIN_PATH"] = str_replace('\\', '/', getcwd() . '/') ;

$settings["FBLIB_PATH"] = $settings["MAIN_PATH"] . "fblib/";

$settings["INC_PATH"] = $settings["MAIN_PATH"] . "inc/";

$settings["PORT"] = $settings["{$user}_PORT"];

$settings["FB_APP_NAME"] = $settings["{$user}_FB_APP_NAME"];

$settings["FB_APP_KEY"] = $settings["{$user}_FB_APP_KEY"];

$settings["FB_APP_SECRET"] = $settings["{$user}_FB_APP_SECRET"];

$settings["DEV_MODE"] = $settings["{$user}_DEV_MODE"];

$userConstants = "

define('FB_APP_KEY', '".$settings["{$user}_FB_APP_KEY"]."');

define('FB_APP_SECRET', '".$settings["{$user}_FB_APP_SECRET"]."');

define('FB_APP_ID', '".$settings["{$user}_FB_APP_ID"]."');

define('FB_APP_NAME', '".$settings["{$user}_FB_APP_NAME"]."');

define('FB_DB_SERVER', '".$settings["{$user}_FB_DB_SERVER"]."');

define('FB_DB_SCHEMA', '".$settings["{$user}_FB_DB_SCHEMA"]."');

define('FB_DBG_OUT_FILE', '".$settings["MAIN_PATH"]."'.

'".$settings["{$user}_FB_APP_NAME"]."'.

'".$settings["PHP_DBG_LOG_EXT"]."');

";

if(isset($settings["PORT"])) {

$settings["BASE_URL"] = "http://$location.example.com".

":{$settings["PORT"]}/";

} else {

$settings["BASE_URL"] = "http://$location.example.com/";

}

//

// Output the constants file

define('DIVIDER', PHP_EOL.'====================================='.PHP_EOL);

$output = "<?php

define('MAIN_PATH', '{$settings["MAIN_PATH"]}');

ptg

414 Chapter 16 Improving Application Performance and Workflow

define('FBLIB_PATH', '{$settings["FBLIB_PATH"]}');

define('INC_PATH', '{$settings["INC_PATH"]}');

define('VISIBLE_APP_NAME', '{$settings["VISIBLE_APP_NAME"]}');

$userConstants

//==============================

// FACEBOOK constants

//==============================

require_once FBLIB_PATH.'facebook.php';

define('FB_APPS_BASE_URL', strval(Facebook::get_facebook_url('apps')));

define('FB_APP_URL', FB_APPS_BASE_URL.'/'.FB_APP_NAME.'/');

//==============================

// App-specific constants

//==============================

define('BASE_URL', '{$settings["BASE_URL"]}');

define('APP_URL', BASE_URL.FB_APP_NAME.'/');

define('IMG_PATH', APP_URL.'img/');

?>";

echo(DIVIDER.'WRITING CONSTANTS.INI AS:'.DIVIDER);

print_r($output);

$path = $settings["MAIN_PATH"].'inc/constants.inc';

$file = fopen($path, 'w');

fwrite($file, $output);

fclose($file);

///

// Register the new application settings with Facebook

define('APP_URL', $settings["BASE_URL"].$settings["FB_APP_NAME"].'/');

// properties to set via admin.setAppProperties(). Add more settings as needed

$data = array('dev_mode' => $settings["DEV_MODE"],

'callback_url' => APP_URL

);

echo(DIVIDER."Setting up for location: $location".DIVIDER);

echo(DIVIDER.'SETTING APP PROPERTIES TO THE FOLLOWING:'.DIVIDER);

print_r($data);

require_once $settings["FBLIB_PATH"].'facebook.php';

$facebook = new Facebook($settings["FB_APP_KEY"], $settings["FB_APP_SECRET"]);

Listing 16.12 Continued

ptg

415Working with Multiple Developers

define('FB_APP_URL', strval(Facebook::get_facebook_url('apps')).'/'.

$settings["FB_APP_NAME"]);

if(isset($facebook)) {

$result = $facebook->api_client->admin_setAppProperties($data);

if($result == TRUE) {

echo(DIVIDER.'SUCCEEDED!'.DIVIDER);

} else {

print_r(DIVIDER.'ERROR\t'.$result.DIVIDER);

}

} else {

echo(DIVIDER."Facebook object error. Cannot set app properties.".DIVIDER);

}

?>

Listing 16.13 shows the output of this script in constants.inc.

Listing 16.13 Script Output in constants.inc

<?php

define('MAIN_PATH', 'D:/src/products/compliments/');

define('FBLIB_PATH', 'D:/src/compliments/fblib/');

define('INC_PATH', 'D:/src/compliments/inc/');

define('VISIBLE_APP_NAME', 'Compliments');

define('FB_APP_KEY', 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX');

define('FB_APP_SECRET', 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX');

define('FB_APP_ID', 'XXXXXXXXXXX');

define('FB_APP_NAME', 'compliments-j');

define('FB_DB_SERVER', 'localhost');

define('FB_DB_SCHEMA', 'compliments');

define('FB_DBG_OUT_FILE', 'D:/src/compliments/'.

'compliments-j'.

'_log.txt');

//==============================

// FACEBOOK constants

//==============================

require_once FBLIB_PATH.'facebook.php';

define('FB_APPS_BASE_URL', strval(Facebook::get_facebook_url('apps')));

define('FB_APP_URL', FB_APPS_BASE_URL.'/'.FB_APP_NAME.'/');

Listing 16.12 Continued

ptg

416 Chapter 16 Improving Application Performance and Workflow

//==============================

// App-specific constants

//==============================

define('BASE_URL', 'http://location1.example.com:81/');

define('APP_URL', BASE_URL.FB_APP_NAME.'/');

define('IMG_PATH', APP_URL.'img/');

?>

Typically, config.ini and setup.php are checked in to the project source control,
while constants.inc is not, because it is generated and specific to each user.

Source Control
If you are not already using a source control system to manage your application project
files, consider Subversion (http://subversion.tigris.org/) or Git (http://git-scm.com/). Source
control is a critical component of any nontrivial software-development effort because it al-
lows multiple developers to work on the same set of files, keeps backups (revisions) of all
files, and allows you to roll back to previous versions of files for testing or bug fixes. In
most source control systems, every revision of a file is stored with its timestamp and an
identifier for the user who made the revision. Different revisions of a file can be compared,
and changes made to the same file by multiple users can be merged. This allows every de-
veloper to use the same set of source files; moreover, it prevents “...but it works on my ma-
chine”-style bugs. No serious software effort should ever be launched without one in place!

The Compliments application includes constants.inc instead of globals.inc.The
setup.php script is run on each development machine once to generate the
constants.inc file, and then again whenever the developer switches locations. It also
makes sense to include the functionality from the register_feed_templates.php file
we created in Chapter 9,“Feed Stories, Feed Forms, and Templates,” so that it automati-
cally adds the new template bundle IDs to constants.inc.

Summary
This chapter covered the use of the batching API, using FQL, and working with mul-

tiple developers. Here are some key points:

n Facebook requires that pages load in 8 seconds or less, so using batching and FQL
can be critical for an application’s success.

Listing 16.13 Continued

ptg

417Summary

n The batching API can eliminate several round trips between your application and
Facebook by sending up to 20 calls at once.These calls can be executed in parallel
on the Facebook server, further reducing page load times.

n The batch.run() Facebook API function executes all the batched API calls regard-
less of whether any fail. However, the Facebook PHP client library end_batch()
function throws an exception at the first error result it encounters, which leaves
your application without the ability to know the results of the rest of the calls.

n FQL is a SQL-like language that implements many of the API functions. It offers
speed improvements and the ability to eliminate additional API calls because of its
flexibility.

n FQL has the constraint of only accessing one table in the FROM clause of the
SELECT statement. If you require data from multiple tables, you need to use the
fql.multiquery() API function while enabling queries to reference other queries.

n Multiple developers can simplify testing and their transition between development
environments by using a setup file that automates generating constants and updat-
ing the developer settings for their application.

ptg

This page intentionally left blank

ptg

V
Appendices

Appendix A Resources

Appendix B Beta Features

ptg

This page intentionally left blank

ptg

Appendix A
Resources

This appendix serves as a quick reference for important resources or commonly accessed
URLs related to developing for the Facebook Platform.Additionally, the most important
beta features Facebook has released are described. Because these lists constantly change,
we provide an updated list on our website (www.essentialfacebook.com).

Links
These links are grouped into links on Facebook, links related to developer tools outside of
Facebook, and other external sites that provide good references for Facebook developers.

Facebook
Facebook provides a lot of documentation on its wiki and other pages, which can make it
difficult to find specific items.We believe that these are the URLs that developers will ac-
cess frequently:

n Application Verification Program. http://developers.facebook.com/verification.php
n Client Libraries. http://wiki.developers.facebook.com/index.php/Client_Libraries
n Custom Tags Directory. http://wiki.developers.facebook.com/index.php/

Custom_Tags_Directory
n Developer Application. www.facebook.com/developers
n Developer Wiki. http://wiki.developers.facebook.com/index.php/Main_Page
n Developer Forum. http://forum.developers.facebook.com/
n Developer Test Accounts. www.facebook.com/developers/become_test_account.php
n Developer Test Consoles. http://developers.facebook.com/tools.php
n Facebook Open Source. http://developers.facebook.com/opensource.php
n fbFund. http://developers.facebook.com/fbFund.php?tab=about
n Guiding Principles. http://developers.facebook.com/get_started.php?tab=principles
n Platform Statistics. www.facebook.com/press/info.php?statistics
n Terms of Service. www.facebook.com/terms.php

ptg

422 Appendix A Resources

Developer Tools
These websites contain tools that enable or assist with Facebook development that we
cover in this book:

n APC. http://php.net/apc
n Firebug. www.getfirebug.com
n Firebug Lite. http://getfirebug.com/lite.html
n Memcached. www.danga.com/memcached
n Web Developer Toolbar. http://chrispederick.com/work/web-developer
n YSlow. http://developer.yahoo.com/yslow
n YUI Library. http://developer.yahoo.com/yui

Facebook News
These websites provide news updates for developers and users:

n All Facebook. http://allfacebook.com
n Developer News. http://developers.facebook.com/news.php
n Facebook News. http://blog.facebook.com/blog.php
n Inside Facebook. www.insidefacebook.com

ptg

Appendix B
Beta Features

Facebook constantly adds new features for developers to use; however, they all must go
through a beta period before Facebook releases them or changes the Platform to use
them. For some features, the beta period can be long, and some features never make it out
of beta. For example, as of this writing, the Data Store application programming interface
(API) has been in beta for almost two years.This appendix quickly overviews the most
important features that are currently in beta.

Add Page Referrer
Tracking how parts of an application are used is critical, as discussed in Chapter 14,
“Measuring Application Success.” In that chapter, we went over how Facebook Insights
can show which parts of the application are being used and how users respond to its
messaging.The Add Page Referrer feature allows developers to track the origins of appli-
cation installs by adding a new parameter, called app_ref, to the end of links that point to
the application’s authorization page. For example, links in an invitation might have
&app_ref=invite appended, whereas links on a canvas page might have
&app_ref=canvas.The results for these tracking parameters are shown in the application’s
Insights.

Stream
With Facebook’s switch to a real-time streaming update model, it realized that it needed
to provide developers with a new way to access the Feed. Facebook also wanted to pro-
vide developers access to the stream from outside of Facebook, whether it is on an exter-
nal website, a mobile application, or a desktop application.The new Open Stream API
replaces the existing Feed publishing model and allows applications to read content from
the stream, publish their own content, and manage comments or ratings for individual
Feed stories.This feature is important because it represents the future of developer access
to the heart of Facebook’s information flow. If you check out any of Facebook’s beta fea-
tures, make it this one.

ptg

424 Appendix B Beta Features

Custom Tags
Custom tags provide a way for developers to define their own Facebook Markup Lan-
guage (FBML) tags.These tags can be used within an application to hold common frag-
ments of FBML to reduce bandwidth for the application by sending only the custom tag
across the wire.They can also be made public and shared in Facebook’s Custom Tags Di-
rectory so that any application can use them.

Custom FBML tags can be defined to accept parameterized input, such as most FBML
tags, and can include both FBML and Facebook JavaScript (FBJS) code.They even allow
for sharing functionality across applications, such as the Family Crest tag, which shows a
family crest for a surname, or the iLike tag, which displays a users’ favorite songs and
playlists.

Data Store API
The Data Store API is an object-based database that’s hosted on Facebook’s servers with
the goal of allowing applications to deploy quickly without having to worry about scaling
their own database server. Object Types are like tables in traditional relational databases
with the object’s properties representing columns.An instance of an Object is like a table
row. For small sets of data, the Data Store API is convenient; however, larger amounts of
data have caused access times to become increasingly slow.This feature has also been in
beta for a long time with minimal updates, so it is not clear if it has a long-term future.

FBJS Local Proxy
When applications make AJAX calls via the FBJS Ajax class, the call is routed through a
Facebook proxy.This is done so that any FBML returned can be parsed and sanitized. If
an application makes AJAX calls that are not returning FBML, it is more efficient to skip
the proxy and directly connect the caller to the endpoint.

The FBJS Local Proxy enables this by including a Flash object on the page to serve as
a local proxy between the calling FJBS code and the AJAX endpoint.This additionally re-
quires a special file, known as a cross-domain policy file, at the root of the server, and lim-
its the AJAX endpoint URLs to use only port 80. Endpoints will also not receive any
session information as part of the call, so this method should not be used if the code at
the AJAX endpoint needs it to call Facebook API methods that require it.

Cookies
The Cookies feature enables application-created cookies to be associated with a user’s
Facebook account so that the data is present across all browsers and machines. For small
amounts of data, cookies can provide a convenient and fast data store. Cookies can even
be stored for users who have not authorized the application.

ptg

425IFrame URL

FBML Tags
There are several FBML tags currently in the beta phase that are of interest.

<fb:board>
The <fb:board> tag adds a discussion board similar to the one on Public and Application
Profiles. Facebook provides the full functionality and hosting for the board.

<fb:chat-invite>
The <fb:chat-invite> tag renders as a list of the viewer’s friends who are currently on-
line and available for Facebook Chat. Clicking an individual user in this list opens a new
chat window with that user.The application can provide a precanned chat message, po-
tentially containing a URL, that is displayed automatically in the new window.This could
be used inside a game or in any situation where an application has a need for real-time
collaboration between users.

<fb:feed>
The <fb:feed> tag displays a News Feed containing the latest stories from the applica-
tion about the viewing user’s friends.This can be used only on canvas pages.

<fb:typeahead-input>
The <fb:typeahead-input> tag creates a typeahead or autocomplete input control that
behaves like the <fb:friend-selector> FBML tag or the YUI autocomplete control.
The set of completion values are created for a set of <fb:typeahead-option> subtags,
one for each value.

IFrame URL
Many IFrame applications switch between pages by setting the URL target to the
IFrame rather than the parent.This can cut down on load times, but the URL in the ad-
dress bar of the browser might not change, which leaves the user without a way to prop-
erly navigate.The beta feature for Facebook Connect provides two methods to enable
IFrame applications to set the proper URL in the address bar.The first is the
FB.CanvasClient.syncUrl() function, which, when called during page load, automati-
cally updates the address bar’s URL with the current page using the Quick Transition
syntax (see the section,“Quick Transitions”).The other method, used by pages that up-
date their content dynamically, manually calls FB.CanvasClient.changeUrlSuffix()
when a new “page” has been loaded, passing the new URL identifier.The browser address
bar is then updated using the Quick Transition syntax.

ptg

426 Appendix B Beta Features

Links, Notes, and Status
There are new API methods and Facebook Query Language (FQL) queries to create and
retrieve links, notes, and status updates from within an application.To post links to a user’s
wall, they must grant the share_item permission.To create or edit notes, they must grant
the create_note permission.To set a user’s status, they must grant the status_update
permission.All notes, the most recent status updates, and links set through the application
can be retrieved.

LiveMessage
The LiveMessage feature exists in both FBJS and the API, and it allows applications to
send messages to a specific user’s browser.A message consists of an event name, a recipient
user ID, and a JSON-encoded string of the message data. If the targeted recipient is cur-
rently interacting with the application on the profile or canvas page, the message can be
received by an FBJS callback function registered to accept messages for that event name.
This functionality enables real-time updating of application content.

Quick Transitions
Clicking a URL within Facebook previously caused a full page reload, including all of
the surrounding Facebook UI (or chrome). Quick Transitions is a technique implemented
by Facebook, where clicking a link appends a portion of the new URL onto the old
URL, separated by a #. For example, clicking my profile and then the Thought Labs Pub-
lic Profile results in this URL: www.facebook.com/home.php#/pages/Thought-Labs/
68071669609.The benefit of this URL system is that Facebook knows that it doesn’t
need to reload the chrome for the portion after the #, so it just loads the inner content
using AJAX, which can speed up page-load times.Applications can enable support for this
within their application’s settings.

IFrame applications also need to modify how they handle links to other pages or tabs
to support Quick Transitions.They can either add onclick handlers for each link to set the
correct URL or use the IFrame URL functionality, previously discussed.

Video Upload
The Video Upload feature enables users to upload video to the Facebook video servers
from inside an application. Users must grant the application the video_upload permis-
sion, and they are subject to the same upload limits that they would have if they uploaded
directly via the Facebook Video application.These limits can be checked ahead of time
through an API call.

ptg

Symbols
* (asterisks), 159
{ } (curly braces), 159
$() function, 292
20 bits blog, 371

A
A/B testing, 372-375

Compliments application, 373
disadvantages, 375
notifications, sending, 373
significance, 374

abort() function, 270
access

databases, 110-111
FQL subfields, 405-407
friends, 346
test accounts, 60

accounts
arrays, 359
Preview URLs, 348
Reclamation URLs, 349
test, 59-60
user

reclaiming, 358
Statement of Rights and

Responsibilities, 71
termination, 71

action attribute, <request-form> tag, 227
actions

applications, 74
links, 166
Share action links, 237

ActionScript 3
Flash communication class, 297-302
library, 42

actiontext attribute, <multi-friend-selector>
tag, 228

active users
amount, 3
metric, 375

Ad Chap, 393
Ad Parlor, 393
Add Page Referrer feature, 423
Add to Profile button, viewing

FBML canvas page, 141
IFrame canvas page, 142-144

addClassName() function, 286
addCompliment() method, 110
addElement() function, 337

ptg

addEventListener() function, 289
adding

action links, Feed templates, 166
application tabs, 144
audio, short stories, 165
bookmarks, applications, 7
buttons, info sections, 149-150
Comments Boxes, 363-364
event handlers, 289-291
Flash content, short stories, 165
images, short stories, 164
Live Stream Boxes, 365
profile boxes, 140-144
profile buttons, canvas pages, 324
video, short stories, 165-166

admin_getAllocations() function, 235
Adobe Flash. See Flash
ads, 386

affiliate links, 394
banner, 392
creating, 387-391

approvals, 388-390
clicks/views estimate, 390
daily statistics, 390
images, 388
pricing, 388-390
targeting users, 388
titles/descriptions, 387

developer link exchanges, 391
displaying, 392-393
Home page, 386
networks, 391
sponsors, 394
Standard, 386
third-party ad networks, 393
user feedback, 393

Ads Manager, 387
Advanced Settings tab (Compliments

application), 93
Advanced Settings section, 93
Attachments section, 94
Legal section, 95
Mobile Integration, 94
security, 94

advertising guidelines, 73, 388
affiliate links, 394
AJAX (Asynchronous JavaScript and XML), 262

application authorization, 104
FBJS, 269

Ajax class, 269-270
form data, submitting, 271-272

JSON responses, 279-281
monitoring, 275-279
request handling, 272-274
successful form submission, 274

FBML support, 263
attributes, 266-267
clickRewriteAjax() function, 268
form handler, 263-265
form submissions, 266
form validation errors, 266
incomplete forms, submitting, 266

overview, 262
Ajax class, 269-270
Ajax() function, 270
Ajax for Web Application Developers

(Hadlock), 269
album tables, 401
align attribute, <swf> tag, 295
All Facebook website, 422
allocations

calculating, 231-232
email, 234-235
limits, viewing, 230-231
notifications, 232
requests, 233
tracking, 235-236
user ratings, 236

allowscriptaccess attribute, <fbjs-bridge>
tag, 307

Alternative PHP Cache (APC), 32, 422
ambient effects, 244
animation (FBJS), 286-289

breaking into steps, 288
Compliments application example,

286-287
content wrapping, preventing,

288
CSS styles, tweening, 288
length, 288
library, 286
starting, 288

Animation class, functions, 286-288
Apache HTTP server, 32
APC (Alternative PHP Cache), 32, 422
Api feature set (JavaScript Client Library), 318
API key field (FBML Test Console), 55
APIs

allocation tracking, 235-236
authorization, 35
batching, 36

428 addEventListener() function

ptg

calls
metric, 376
batching, 399-401

comments, 36
Data Store, 36, 424
events, 36
FBML, 36
feed, 37
feed template bundles

managing, 182-190
one line stories, 188
registering/unregistering, 187

FQL, 37
functions

combining into FQL query, 405
FQL table equivalents, 401-405
wiki page, 406

keys, 44
links, 37
messaging, 38
methods, 49-52
metrics, viewing, 381-382
notes, 38
notifications, sending, 210-212
one line Feed stories, publishing, 178-181
Open Stream, 38
pages, 38
permissions, 35
photo, 38
PHP client library, 57
profile, 38
REST, 382
Test Console, 49-52
user management, 37
video, 38

apiClient class, 323
Application Description field (Basic Settings

tab), 87
Application field (API Test Console), 50
applications

allocations, 230-236
architecture, 43-46
authorization, 99-105
badges, 77
bookmarking, 7
buckets, 231
Compliments. See Compliments

application
creating, 21-23
desktop, 16
Developer, 84-86
examples of great, 26-27

fbFund program, 78-80
Flash content, hosting, 294
functionality, 25
Guiding Principles, 23-26
icons, 87
Insights tool, 230
installing, 371
integration points. See integration points
logos, 87
migrating, 108
mobile phones, 40-42
monetizing, 392-396
names, 86
performance. See performance
Platform, 16
profile info sections, 9-10
prohibited actions, 74
reliability, 26
response time, 25
Settings page, bookmarking

applications, 7
skeletons, 95-96
spreading, 385-391
tables, 401
tabs

adding, 144
Compliments application, 145
Platform Guidelines, 74
profiles, 8-9
styles, 145
updates, 144
viewing, 144

users
action responses, 74
notifications, 210

verification program, 77, 421
Applications menu

Bookmark URL, 91
integration point, 6

app_params variable, Publisher callback URLs,
199

approving ads, 390
architecture (applications), 43

Canvas Callback URL, 44
Canvas Page URL, 44
canvas page workflow, 44
profile box workflow, 46
Secret keys, 44

areFriends() function, 402-404
API test, 49
JSON callback, 51
response formats, 51

429areFriends() function

ptg

arithmetic operators, 407
assert() function, FBDebug class, 330
asterisks (*), feed templates, 159
Asynchronous JavaScript and XML. See AJAX
attachments, settings, 94
attributes

addEventListener() function, 289
Ajax class, 270
autologoutlink, 354
<comments> tag, 363
Connect class, 324
FBML canvas REQUEST, dumping, 115
feed_publishUserAction() function, 178
feed_registerTemplateBundle()

function, 188
<friend-selector> tag, 118
idname, 157
<login-button> tag, 354
Mock AJAX, 266-267
<multi-friend-selector> tag, 228
notifications_send() function, 210
POST, Publisher callback URLs, 198-199
<profile-pic> tag, 119
profile_setFBML() function, 134
profile_setInfo() function, 146
reloadIfSessionStateChanged, 353
<request-form> tag, 225
removeEventListener() function, 289
requirelogin=’1’, 104
sending to applications, 99-102
showFeedDialog() function, 281-282
<swf> tag, 294-295

audio
Music/YouTube Publisher, 195
sharing, 240
short stories, 165

authentication
application installation settings, 88
callback fields (Authentication Settings

tab), 89
callback URLs, 89
Facebook Connect, 351

disconnecting users, 357
logging in, 354-355
logging out, 356-357
login status, 351-353
reclaiming accounts, 358

JavaScript Client Library, 320-321
settings, 88
Settings tab (Compliments application),

88-89
trusted, 344

authorization
AJAX, 104
API, 35
attributes, sending, 99-102
Compliments application, 97-98
Developer application, 85
FBML, 105
post-authorization, 104
pre-authorization, 103
requirelogin=’1’ attribute, 104
require_login() method, 104
signatures, creating, 102-103

auto_publish_recent_activity extended
permission, 214

auth_token parameter, 101
autologoutlink attribute, 354-355
automatic publishing (stories), 181

B
background attribute, <login-button> tag, 355
background colors (Flash), 306
badges (applications), 77
banner ads, 392
base domains (Facebook Connect), 348
Base feature set (JavaScript Client Library), 318
Basic Settings tab (Compliments application), 86

application description, 87
contact information, 88
Developer, 88
essential information, 86
Help/Privacy/Terms of Service, 88
icons and logos, 87
language, 88

batchedCalls() function, 399
batching API calls, 36

page load times, 399-401
sequencing, 322

BatchSequencer class, 322
benefits

application verification, 77
fbFund, 78
metrics, 369

beta features
Add Page Referrer, 423
Cookies, 424
custom tags, 424
Data Store API, 424
FBJS Local Proxy, 424
FBML tags, 425
IFrame URLs, 425
links/notes/status, retrieving, 426

430 arithmetic operators

ptg

LiveMessage, 426
Quick Transitions, 426
streaming, 423
Video Upload, 426

birthdays query, 407
blind() function, Animation class, 288
<board> tag, 425
body_general attribute

showFeedDialog() function, 281
feed_publishUserAction() function, 178

Bookmark URL (Applications menu), 91
bookmarks, 7-8
Bootstrap class, 323
bootstrap() function, 247-248
borders (HTML elements), 64
Boxes tab (profile boxes), 5
breaking animations into steps, 288
breakpoints

JavaScript functions, 61
stopping, 275-276

browsers
debugging tools, 60-65
detection, 249
event handling support, 291
resizing, 64

buckets, 231
bugs, 400
buildTemplateBundles() function, 187, 205-206
Bundle IDs, 167
bundles, 159
buttons

info sections, adding, 149-150
profile, adding to canvas pages, 324
Share, 237

bypass attribute, <multi-friend-selector> tag, 229

C
caches, disabling, 64
caching

FBML, 152-154
images, refreshing, 151

calculating allocations, 231-232
email, 234-235
notifications, 232
requests, 233

Callback field (API Test Console), 51
callbacks

Canvas Callback URL, 44
feed_form_callback, 174
Publisher, 197-201

callMethod() function, 320, 323
calls, API methods, 49-52
callSWF() function, 309
Canvas Callback URL, 44, 90
canvas pages

Compliments application, 109
authorized users, 98
database setup, 109-111
external CSS files, 113
FBML canvas page tabs, 129
IFrame canvas page tabs, 129
multiple pages, 129
non-authorized users, 97
types of compliments, 114
utility functions, 111-113

Compliments application FBML, 114
REQUEST variables, dumping, 115
Send Compliment form, 116-121

Compliments application IFrame, 121
dumping, 126
loading, 121
Send Compliment form, 122-126
style overrides, 127-128
YUI AutoComplete control, 128

defined, 4
FBML

Add to Profile button, viewing, 141
render time, 376

FBML versus IFrame, 107-109
HTTP request time, 376
IFrame

Add to Profile button, viewing,
142-144

FQL preloading, 410
Size, 92

metrics, 378
optional URLs, 91-92
profile buttons, adding, 324
quick transitions, 93
Render Method, 92
required URLs, 90
settings, 90
URL, 44, 90
views metric, 376
width, 93
workflow, 44

Canvas Settings tab (Compliments
application), 90

Canvas Width, 93
IFrame Size, 92
optional URLs, 91-92

431Canvas Settings tab (Compliments application)

ptg

Quick Transitions, 93
Render Method, 92
required URLs, 90

Canvas Width field (Canvas Settings tab), 93
CanvasUtil feature set (JavaScript Client

Library), 318
CAPTCHAs, 361
cascade models (application installation), 371
Causes application, 27
changeUrlSuffix() function, 425
<chat-invite> tag, 425
checkGrantedApiAccess() function, 403
checkpoint() function, 288
Chen, Andrew, 395
child nodes, deleting, 253
Choose an Application drop-down list (Feed

Template Console), 160
classes

ActionScript 3 Flash communication,
297-302

Ajax, 269-270
Animation, 286-288
BatchSequencer, 322
CSS, 286
DB, 110
Dialog, 259
Facebook, 83
FacebookDesktop, 83
FacebookRestClient, 83
FB.Bootstrap, 318
FbjsBridgeUtil, 309
JavaScript Client Library

apiClient, 323
Bootstrap, 323
Connect, 324-327
FBDebug, 327-330
UI, 330-331
XFBML. See XFBML class

clean interfaces, 25
clickRewriteAjax() function, 268
clickrewriteform attribute, 267
clickrewriteid attribute, 267
clickrewriteurl attribute, 266
clicktohide attribute, 267
clicktoshow attribute, 267
clicktoshowdialog attribute, 268
client libraries website, 421
client-side authentication, JavaScript Client

Library, 320
client-side form validation (Compliments

application), 255-258

client side tags, XFBML class, 332
collecting metrics, 371-372, 382
comments

API, 36
Connect Comments Boxes, 361-364
Facebook Connect, 348
tables, 402

<comments> tag, 332, 363
common ad mistakes website, 388
Common feature set (JavaScript Client

Library), 318
common welfare, 70
communication, cross-domain, 316-317
comparison operators (FQL), 407
compliment categories

profile boxes, 138
updating, 153-154

Compliments application
A/B testing, 373
ads, creating, 387-391
Advanced Settings tab, 93-95
allocations, 230-236
animation, adding, 286-287
application tab, 145
Authentication Settings tab, 88-89
authorization page, 97-98
Basic Settings tab, 86-88
canvas pages, 109

database setup, 109-111
external CSS files, 113
multiple pages tabs, 129
types of compliments, 114
utility functions, 111-113

Canvas Settings tab, 90-93
client-side form validation, adding,

255-258
compliment categories, updating,

153-154
compliment count sent to target user

template, 179
configuration files, constants, 411-416
Connect Settings tab, 93
Edit Compliments Settings dialog

box, 181
email, sending, 214-221
environment, setting up, 83-84
FBML canvas page, 114

REQUEST variables, dumping, 115
Send Compliment form, 116-121
tabs, 129

432 Canvas Settings tab (Compliments application)

ptg

Flash
communication with FBJS, 297-302
SWF file, creating, 297

form data, submitting, 271-272
IFrame canvas page, 121

loading, 121
Send Compliment form, 122
tabs, 129
updating, 338-341

info sections, 146-151
Mock AJAX form handler, 263-265
naming, 86
non-authorized user canvas page, 97
notifications, sending, 210-212
profile boxes, 135-144
Profiles Settings tab, 90
Publishers, 196-197
skeleton, 95-97
Widget Settings tab, 93

compliments data, info sections, 147
compliments.swf file, creating, 297
concat() function, 406
condition attribute, <login-button> tag, 354-355
conditional content, displaying, 334
configuration files, multiple developers, 411-416

constants, generating, 413-415
constants, output, 415-416

Connect. See Facebook Connect
Connect class, 324-327

Feed dialogs, displaying, 325-326
Permission dialogs, displaying, 326
profile buttons, adding, 324

<connect-form> tag, 332
Connect tab (Developer Settings)

Connect Settings, 348
Friend Linking Settings, 350

ConnectedWedding, 79
connecting freedom, 70
connection tables, 402
<container> tag, 332
consoles

API Test, 49-52
FBML Test, 52-55
Feed Template, 56, 159-168
Firebug, 63
Registered Templates, 57

constants, generating from configuration files,
413-415

contact information (Basic Settings tab), 88

content
conditional, displaying, 334
notifications, 211
Platform Guidelines, 73
profile boxes, setting, 134
prohibited, 71
publishing with Sharing

previews, 238-241
Share action links, 237
Share buttons, 237

sharing, 13
Statement of Rights and

Responsibilities, 71
terminated accounts, 71
XFBML, 335-337

content attribute, <request-form> tag, 227
contextual FBJS dialogs

contents, rendering, 262
example, 259
form-validation failures, highlighting, 262
updating, 261-262

continuation callback attribute,
showFeedDialog() function, 282

cookies
beta feature, 424
session, 321
tables, 402

copyright policies, 73
corporate sponsors (ads), 394
costs

ads, 388-390
Home page ads, 386

CourseFeed, 79
CPC (cost per click), 390
CPM (cost per thousand views), 390
create_event extended permission, 214
create_note permission, 426
create statement (database tables), 109
createElement() function, 252
criteria

application verification program, 77
fbFund program, 78

cross-domain communication (JavaScript Client
Library), 316-317

cross-domain receivers (JavaScript Client
Library), 142

cross-platform portability, 108
CSS

animation, 288
debugging, 61-62
external CSS files, 113

433CSS

ptg

FBJS support, 284-286
Send Compliment form, 120

css attribute, <comments> tag, 364
Cubics, 391-393
curly braces ({ }), feed templates, 159
custom tags

beta features, 424
directory website, 421

customer service, developers, 73

D
dashboards

Kontagent, 383
metrics, viewing, 375

API, 381-382
Insights tool, 375-378

data store API, 36, 424
databases

access class, 110-111
Compliments canvas page, 109-111
constants, 109
memcached, 32

DB class, 110
debugging tools

browsers, 60-66
PHP API client library, 57
unfiltered FBML output, 58

deleting
child nodes, 253
event handlers, 289-291

demographic metrics, 383
designing ads, 387-391

approvals, 388-390
clicks/views estimate, 390
images, 388
pricing, 388-390
targeting users, 388
titles/descriptions, 387

desktop applications, 16
Developer application, 84

application names, 86
authorizing, 85
new applications, creating, 85
website, 421

Developer Toolbar (Internet Explorer), 65
developers

Contact Email field (Basic Settings
tab), 88

field (Basic Settings tab), 88
guidelines, 73-77
link exchanges, 391

multiple, 410-416
news website, 422
resources, 421-422
responsibilities, 72
settings, 348-350

Dialog class, 259
Dialog() function, 260
dialogs

Edit Compliments Settings, 181
FBJS, 259-262
Feed, displaying, 325-326
Feed story, 172
Forced Invited Reported, 233
Permission, 326
popup, 330-331
Request for Special Permissions, 214
Sharing preview, 238-239

Digital Millennium Copyright Act, 73
disabling caches, 64
disconnecting users, 357
displaying. See also viewing

ads, 392-393
conditional content, 334
Feed dialogs, 325-326
invite request forms, 333
Permission dialogs, 326
XFBML content, 335-337

displayLoggedIn() function, 356
displayLoggedOut() function, 356
document object (FBJS DOM), 251-252
DOM, FBJS support, 249-251

dialogs, 259-262
document object, 251-252
form validation, 255-258
functions, 250-251
node content, 252-255

dump() function, FBDebug class, 329
dumpRequestVars() function, 111, 115
duration() function, Animation class, 288
dynamic handling, logins, 352
dynamic privacy (Facebook Connect), 346
dynamic replacement (XFBML elements), 337

E
Edit Compliments Settings dialog box, 181
email

allocations, 234-235
extended permission dialog box, 345
metrics, 380
sending, 214-221

email extended permission, 213

434 CSS

ptg

email_hash array, 359
email_invite attribute, <multi-friend-selector>

tag, 229
enabling

applications, mobile profiles, 40
email, 218
Sandbox mode, 93
social activities, 24

engagement
monitoring, 383
users, 3

ensureInit() function, 319
environment, setting up

PHP client library, downloading, 83
web servers, 84

equality, 70
<error> tag, 119
errors

AJAX, 275-279
Feed

Form publication, handling, 176-177
template data, 162

form validation (Mock AJAX), 266
handling, 206-207
Publisher, 201
Send Compliment form, 119

essential information field (Basic Settings
tab), 86

EU Safe Harbor Framework, 72
<eventlink> tag, 332
event_member tables, 402
events

API, 36
creating, 3
FBJS, handling, 289-294
listeners, registering, 289
tables, 402

exclude_ids attribute, 119, 228
execQuery() method, 110
<explanation> tag, 119
extended permissions, 213-214
external CSS files (Compliments canvas

page), 113
external JavaScript, 243-244
ExternalInterface object, 309

F
Facebook

Developer application, 84-86, 421
Markup Language, 18
News website, 422

Open Platform, 32
Query Language. See FQL

Facebook class, 83
Facebook Connect, 343

authentication, 351-358
Comments Boxes, 348, 361-364
dynamic privacy, 346
features, 343-344
feature set (JavaScript Client Library), 318
Friend Linking, 358-360
friends access, 346
iPhone support, 42
JavaScript Client Library, compared, 315
Live Stream Boxes, 348, 365
Platform Guidelines, 76
setting up, 348-350
settings, 93
Settings tab (Compliments

application), 93
single-sign on, 344
social distribution, 347
user identities, 344-345

facebook-logo attribute, 120
FacebookDesktop class, 83
FacebookRestClient class, 83
failures, form-validation, 262
Farmer, Jesse, 371
FB.Bootstrap class, 318
fb_sig_added parameter, 99-102
fb_sig_added variable, 116
fb_sig_api parameter, 99
fb_sig_app_id parameter, 99
fb_sig_authorize parameter, 100
fb_sig_canvas_user parameter, 100
fb_sig_expires parameter, 101
fb_sig_ext_perms parameter, 101
fb_sig_friends parameter, 101, 116
fb_sig_in_canvas parameter, 99-101, 116
fb_sig_locale attribute, 99
fb_sig_logged_out_facebook parameter, 100
fb_sig parameter, 99
fb_sig_profile_update_time parameter, 100-101
fb_sig_profile_user variable, 198
fb_sig_session_key parameter, 101, 198
fb_sig_time parameter, 99
fb_sig_uninstall parameter, 102
fb_sig_user parameter, 101-102, 116, 198
FBDebug class, 327-330

functions, 329
trace levels, 327-329

435FBDebug class

ptg

fbExchange, 392
fbFund program, 78-79

applying, 79
benefits, 78
criteria, 78
winner examples, 79-80
website, 421

FBJS, 18
AJAX, 269

Ajax class, 269-270
form data, submitting, 271-272
JSON responses, 279-281
monitoring, 275-279
request handling, 272-274
successful form submission, 274

animation, 286-289
browser detection, 249
client-side form validation, 255-258
CSS support, 284-286
dialogs, 259-262
DOM support, 249-251

dialogs, 259-262
document object, 251-252
form validation, 255-258
functions, 250-251
node content, editing, 252-255

events, 289-294
feed stories, publishing, 281-284
Flash communication, 302-303

background colors, 306
Compliments application example,

297-301
ExternalInterface object, 309
<fbjs-bridge> tag, 307-308
flashdemo.php example, 303-306
listing, 309-311
LocalConnection objects, 308

Hello World JavaScript, 246
JavaScript Client Library, compared, 315
Local Proxy, 424
sandbox, 18
third-party JavaScript library support, 245

<fbjs-bridge> tag, 307-308
FBJS2, 248
FbjsBridgeUtil class, 309
FBML

AJAX support, 263
attributes, 266-267
clickRewriteAjax() function, 268
form handler, 263-265
form submissions, 266
form validation errors, 266
incomplete forms, submitting, 266

API, 36
application authorization, 105
beta tags, 425
cache, managing, 152-154
canvas pages, creating, 107-109, 141
Compliments canvas page, 114-121, 129
external JavaScript, 243
FBJS dialog equivalents, 262
feed templates, 162
Flash content, hosting, 294
HTML form conversions, 155
profile boxes, 133
render time on canvas pages metric, 376
static node content, 253-254
tags

<js-string>, 253
<swf>, 294-295
<user-agent>, 249

Test Console, 52
API key field, 55
FBJS CSS styles, 285
FBJS dialogs, viewing, 259-260
FBML textbox field, 55
HTML Source field, 55
Position field, 54
Preview field, 55
Profile field, 54
sandbox creation/initialization,

245-248
setTextValue() function, 252
User field, 53

testing, 54
textbox field (FBML Test Console), 55
unfiltered output, 58
viewing with popup dialogs, 331

fbml_refreshImgSrc() function, 151
fbml.refreshRefUrl() function, 152
FeatureLoader object, 318
feed

API, 37
application integration points, 10-13
dialogs, displaying, 325-326
forms, 155

converting HTML forms to
FBML, 155

feedStory, 156
idname attribute, 157
multiFeedStory, 156
posts, handling, 157
publishing, 168-169
stories, publishing, 170-177
testing, 158

436 fbExchange

ptg

metrics, 379
news, 172-176
one line stories, 178-181, 188
Platform Guidelines, 74
stories

creating from Connect Comments
Boxes, 361

dialog, 172
FBJS publishing, 281-284
testing in Sandbox mode, 190-191

stream, 12-13
templates, 158

action links, 166
API management, 182-190
Bundle IDs, 167
bundles, 159
console, 56, 159-164
data, generating, 163
formatting, 162
one line stories, 159-163, 188
registering, 167-168, 187
short stories, 159-166
tokens, 159
unregistering, 187
wizard, 56

user activity, publishing as feed stories, 347
Wall, application integration point, 11

feed_deactivateTemplateBundleByID()
function, 187

feed_getRegisteredTemplateBundles()
function, 187

feed_publishUserAction() function, 178
feed_registerTemplateBundle() function, 188
<feed> tag, 425
feedStory Feed form, 156, 172-176
Fiddler, 66
fields

Advanced Settings tab, 93-95
API Test Console, 50-52
Authentication Settings tab, 88-89
Basic Settings tab, 87-88
Canvas Settings tab, 90-93
FBML Test Console, 53-55

file version function, 113
filemtime() function, 113
files

configuration, multiple developers,
411-416

external CSS, 113
flashdemo.php, 303-306
PHP client library, 83

sharing, 76
source control systems, 416
SWF, creating, 296-297

filling sandboxes, 247-248
Firebug, 60

AJAX calls, monitoring, 275-279
Console view, 63
HTML/CSS inspections/modifications,

61-62
JavaScript, 60-61
logging, 63
network monitoring, 62
website, 422

Firebug Lite, 65, 422
Firefox

Firebug add-on. See Firebug
Firebug Lite, 65, 422
Web Developer, 64
YSlow, 64

Flash, 294
content

hosting, 294
short stories, 165

FBJS communication, 303
background colors, 306
Compliments application example,

297-302
ExternalInterface object, 309
<fbjs-bridge> tag, 307-308
flashdemo.php example, 303-306
listing, 309-311
LocalConnection objects, 308

library, 294
SWF files, creating, 296-297

flashdemo.php, 303-306
flashvars attribute <swf> tag, 295
Flixster Movies application tab, 9
Force Invites per Impressions ratio, 233
Force.com library, 42
Forced Invited Reported dialog box, 233
forcing logins, 352
formatting

Feed Templates, 162
FQL queries, 401

forms
feed, 155

converting HTML forms to
FBML, 155

feedStory, 156
idname attribute, 157
multiFeedStory, 156

437forms

ptg

posts, handling, 157
publication error handling, 176-177
publishing stories to news feeds,

172-176
publishing stories to Wall, 169-172
stream publishing, 168-169
testing, 158

methods, converting, 64
Mock AJAX, 263-266
Send Compliment, 116-121
validation

errors (Mock AJAX), 266
FBJS support, 255-258
failures, 262

forwarding port, 411
FQL (Facebook Query Language), 18

API, 37
application performance, 401
combining API calls into FQL query, 405
functions/operators, 406-407
links/notes/status, retrieving, 426
multiquery() function, 407-408
preloading, 408-410
queries

format, 401
names, referencing, 407
results, 408
testing, 52

subfields, accessing, 405-407
subqueries, nesting, 406
tables and API function equivalents,

401-405
free flow of information, 70
freedoms, sharing/connecting, 70
freemium models, 394
friend_request tables, 402
friendlist_member tables, 402
friendlist tables, 402
<friend-selector> tag

attributes, 118
idname attribute, 157
invitations/requests, 226-228

friends
accessing, Connect, 346
linking, 349, 358-360
tables, 402

from() function, Animation class, 288
functionality (applications), 25, 73
functions

$(), 292
addCompliment(), 110

addElement(), 337
addEventListener(), 289
admin_getAllocations(), 235
Ajax class, 270
APIs, 49-52, 401-406
areFriends(), 49-51, 402-404
assert(), 330
batchedCalls(), 399
bootstrap(), 247-248
buildTemplateBundles(), 187, 205-206
callMethod(), 320, 323
callSWF(), 309
changeUrlSuffix(), 425
checkGrantedApiAccess(), 403
clickRewriteAjax(), 268
CSS class management, 286
displayLoggedIn(), 356
displayLoggedOut(), 356
DOM node content, editing, 252-255
dump(), 329
dumpRequestVars(), 111, 115
ensureInit(), 319
execQuery(), 110
FBDebug class, 329
FBJS dialogs, 260-261
FBJS document object, 251-252
FBJS DOM, 250-251
fbml_refreshImgSrc(), 151
fbml.refreshRefUrl(), 152
feed_deactivateTemplateBundleByID(),

187
feed_getRegisteredTemplateBundles(),

187
feed_publishUsesrAction(), 178
feed_registerTemplateBundle(), 188
file versions, 113
filemtime(), 113
form, 64
FQL, 406-407
generateProfileBoxFBML(), 138
generate_sig(), 102
get(), 402
getAdjectivesSuffixForNumber(), 179
getAlbums(), 401
getAppProperties(), 323, 401
getAppUsers(), 35
getComplimentCountForUser(), 179
getComplimentsForUser(), 147-149
getCookies(), 402
getElementId(), 245
getFBML(), 50

438 forms

ptg

getFBQueryString, 130
getFeedDialog(), 282-283, 340
getFilters(), 404
getInfo(), 403-404
getList(), 403
getLists(), 402
getMembers(), 402
getMetrics(), 381, 403
getPublisherError(), 201
getPublisherUI(), 202-204
getStandardInfo(), 404
getStyle(), 284-285
getTags(), 404
getThreadsInFolder(), 403-404
getTypeAheadControl(), 128
ifUserConnected(), 352
init(), 318, 353
isAdmin(), 403
isFan(), 402
JavaScript

breakpoints, 61
log(), 63

JavaScript Client Library, calling, 322
listEventListeners(), 290
logging, 111
logLine(), 329
multiquery(), 407-408
notifications_send(), 210
onlogin(), 354
parseDomElement(), 335
parseDomTree(), 335
PopupDialog(), 330-331
profile_setFBML(), 134
profile_setInfo(), 146
purgeEventListeners(), 290
query(), 52
registerUsers(), 359
removeEventListener(), 289
renderForm(), updating, 338
renderPage(), 116

client-side form validation, 255-257
email, 218
IFrame canvas page, 127-128

RequireFunctions(), 319
requireLogin(), 104, 320
requireSession(), 351
REST, 33
revokeAuthorization(), 357
sendUserEmail(), 219-220
sendUserNotification(), 211-212
separateCalls(), 399

serialize(), 258
setAppProperties(), 409-410
setContentWidth(), 330
setFBML(), 50
setStyle(), 285
setupFBJSBridge(), 309
showAddSectionButton(), 143, 324
showFeedDialog(), 281-282, 324, 347
syncUrl(), 425
updateCategoriesRef(), 153-154
updateInfoSection(), 148-149
updateProfileBox(), 135, 138
users_hasAppPermission(), 218
utility

Compliments canvas page, 111-113
info sections, 148-149
profile boxes, 136-138

wr(), 111
writeLine(), 329

fundamental service, 70

G
generateProfileBoxFBML() function, 138
generate_sig() method, 102
get() function, 402
getAdjectivesSuffixForNumber() function, 179
getAlbums() function, 401
getAppProperties() function, 323, 401
getAppUsers() function, 35
getChildNodes() function, 251
getClassName() function, 286
getComplimentCountForUser() function, 179
getComplimentsForUser() function, 147-149
getCookies() function, 402
getElementById() function, 252
getElementId() function, 245
getElementsByTagName() function, 252
getFBML() method, 50
getFBQueryString() function, 130
getFeedDialog() function, 282-283, 340
getFilters() function, 404
getFirstChild() function, 251
getInfo() function, 403-404
getLastChild() function, 251
getList() function, 403
getLists() function, 402
getMembers() function, 402
getMetrics() function, 381, 403
getNextSibling() function, 251
getParentNode() function, 251
getPreviousSibling() function, 251

439getPreviousSibling() function

ptg

getPublisherError() function, 201
getPublisherUI() function, 202-204
getRootElement() function, 252
getStandardInfo() function, 404
getStyle() function, 284-285
getTags() function, 404
getThreadsInFolder() function, 403-404
getTypeAheadControl() function, 128
Gift application, 395, 416
global constants, setting, 95-96
go() function, Animation class, 288
Goalcamp Challenge, 79
Graffiti application, 27
great applications, 26-27
group_member tables, 402
group tables, 402
GroupCard, 80
<grouplink> tag, 332
grouping metrics, 371
growth

curve (applications), 385
general, 3
international, 4

Guiding Principles (applications)
meaningful, 23-24
trustworthy, 24-25
well designed, 25-26
website, 421

H
Hadlock, Kris, 269
handling

AJAX requests, 272-274
dynamic

login states, 352
notifications, 353

errors, Publishers, 206-207
events, 289-294
Feed Form publication errors, 176-177
onclick(), 355
Publisher callbacks, 199-201
<ref> tag, 152

hasClassName() function, 286
headers

HTTP, 276-277
profile boxes, 138

height attribute, <swf> tag, 295
Hello World FBJS script, 246
Help URL (Basic Settings tab), 88
Hide Alls per First Impression ratio, 233
hide() function, 261

hiding elements until rendered, 336-337
HiPPOs (Highest Paid Person’s Opinion), 373
Home page ads, 386
hosting Flash content, 294
Hotberry, 79
HTML

content, DOM nodes, 254-255
debugging, 61-62
elements, outlining, 64
email example, 220
feed templates, 162
forms, converting to FBML, 155
invitation/request form, 225
Source field (FBML Test Console), 55
viewing with popup dialogs, 330

HTTP
headers, 276-277
requests, 376-378
responses, 277-278

I
icons (applications), 87
identities (users), 344-345
Idname attribute, 119, 157
<if-multiple-actors> tag, 162
IFrames

canvas pages, creating, 107-109
Add to Profile button, viewing,

142-144
FQL preloading, 410

Compliments canvas page, 121
dumping, 126
loading, 121
Send Compliment form, 122-126
style overrides, 127-128
tabs, 129
updating, 338-341
YUI AutoComplete control, 128

Flash content, hosting, 294
JavaScript Client Library cross-domain

communication, 316-317
Receiver, 317
size, 92
URLs, 425

ifUserConnected() function, 352
images

ads, 388
caching, refreshing, 151
short stories, 164

imgclass attribute, <swf> tag, 295

440 getPublisherError() function

ptg

imgsrc attribute, <swf> tag, 295
imgstyle attribute <swf> tag, 295
implementing

FBJS event handling, 291-294
REST, 34-35
sandboxes, 246

include_lists, 119
include_me attribute, 119
info_fields attribute, profile_setInfo()

function, 146
info sections (profiles), 9-10, 145

buttons, adding, 149-150
Compliments application, 146
compliments data, 147
creating, 146-149
object, 145
text, 145
updating, 150-151
utility functions, 148-149

Info tabs
Platform Guidelines, 74
profile boxes, 5

init() function, 318, 353
initializing sandboxes, 245-248
Inside Facebook website, 422
Insights tool, metrics, viewing, 375

categories, 378
HTTP request, 376-378
usage, 375-376

installed attribute, 102
installing applications, 371
integration points

content sharing, 13
FBML testing, 54
Feed, 10-13
invitations, 15
non-iPhones, 40
Notes, 14
notifications, 15
photos, 14
Platform Guidelines, 74
private messages, 14
profiles, 5-10
Publishers, 196

application communication, 197
callbacks, handling, 199-201
creating, 197
Developer Settings, 196-197
error handling, 206-207
error notifications, 201
POST variables, 198-199

templates, registering, 205-206
user interface, 202-204

requests, 15
interfaces

clean, 25
REST, 33-35
user

Notifications area, 207
Publishers, 202-204

internal servers, 31
internal technologies, 32-33
international growth, 4
international support, EU Safe Harbor

Framework, 72
Internet Explorer

Developer Toolbar, 65
event handling support, 291
Firebug Lite, 65
Send Compliment form, 121
version 8, 66

invitations
benefits, 222
integration points, 15
limits, 221
overview, 221
requests, compared, 229
sending, 222-228

invite attribute, <request-form> tag, 227
invite request forms, displaying, 333
iPhone support, 42
isAdmin() function, 403
isFan() function, 402
iterating applications, 23

J
J2Play, 79
JavaScript. See also FBJS

Client Library, 39-42
Add to Profile button, viewing, 143
API functions, calling, 322
apiClient class, 323
authentication, 320-321
Bootstrap class, 323
Connect class, 324-327
cross-domain communication, 316-317
cross-domain receivers, 142
Facebook Connect, compared, 315
FBDebug, 327-330
FBJS, compared, 315
FeatureLoader, 318

441JavaScript

ptg

features, 318-319
requirements, 315
UI, 330-331
viewing users with XFBML script,

39-40
debugging, 60-61
external, 243-244
functions

breakpoints, 61
log(), 63

Hello World FBJS script, 246
restrictions, 245
sandboxing, 61
third-party library support, 245
unobtrusive, 289

<js-string> tag, 253
JSON

AJAX responses, 279-281
Feed templates, formatting, 162
multiFeedStories, 171
with padding, 52, 279

JSONP (JSON with padding), 52, 279

K–L
keys, 44
Kontagent, 80, 382-383

Language field (Basic Settings tab), 88
languages. See FBJS; FBML; FQL; PHP; XFBML
legalities, settings, 95
length (animations), 288
length attribute, <login-button> tag, 355
libraries, 42

ActionScript 3.0, 42
animation, 286
Facebook Connect for iPhone, 42
Flash, 294
Force.com, 42
JavaScript Client. See JavaScript, Client

Library
PHP, 42

debugging support, 57
downloading, 83
Feed Template management, 182-190
files, 83
multiquery() function results, 408

third-party, 43
third-party JavaScript, 245
wrapper, 382

life cycle (FBJS events), 290
Lil Green Patch application, 396

limitations
invitations, 221
test accounts, 59

link exchanges, 391
link tables, 402
linked attribute, 120
links

action, 166
affiliate, 394
API, 37
Friend Linking, 358-360
retrieving, 426
Share action, 237
Share preview, 239

listener attribute, addEventListener()/
removeEventListener() functions, 290

listeners (events), 289
listening to HiPPOs, 373
listEventListeners() function, 290
listings

A/B testing, 373
account reclamation, 358
AJAX, HTTP response, 277-278
API calls, batching, 400
apiClient class, 323
application tabs, 144-145
client-side form validation, 255-258
Comments Boxes, adding, 364
compliment categories, updating, 153-154
compliments array, 114
Compliments application

basic skeleton application, 96-97
FBML canvas page tabs, 129
FBML canvas REQUEST variables,

dumping, 115
getFBQueryString() function, 130
global constants, 95-96
IFrame canvas page, 122-126
IFrame canvas page, dumping, 126
IFrame canvas page, style overrides,

127-128
IFrame canvas page tabs, 129
IFrame page, updating, 338-341
Send Compliment form CSS

styles, 120
Send Compliment form Internet

Explorer styles, 121
signatures, creating, 102
support files, 115

compliments data retrieval, 147
conditional content, displaying, 334

442 JavaScript

ptg

cross-domain receivers for JavaScript
Client Library, 142

databases
access class, 110-111
constants, 109
table create statement, 109

DOM node content, editing
child nodes, deleting, 253
hyperlinks, 255
setTextValue() function, 252
static FBML, 254

email
enabling, 218
sending, 216-218

FBJS
AJAX, 271-274
animation, 286-287
CSS styles, 285
dialogs, 259-262
event handling, implementing, 291

feed
dialogs, displaying, 325-326
form posts, handling, 157
template management with PHP

Library, 182-190
feed_form_callback, 174
feed_publishUserAction() function,

calling, 180
feedStory Feed form, 173
file version function, 113
Firebug logging, 63
Flash communication with FBJS, 297-311
FQL

API equivalents, 405
combining API calls into FQL

query, 405
multiquery() function PHP client

library results, 408
multiquery() function to reference

names queries, 407
preloading, 409-410
subfields, accessing, 405-407
subqueries, nesting, 406

Friend Linking
accounts array, 359
request, 360
sending email addresses to

Facebook, 359
getComplimentCountForUser()

function, 179
getFeedDialog() function, 282-283

HTML
form conversions to FBML, 156
Source field (FBML Test Console), 55

info sections
creating, 148-149
updating, 150-151

invitation FBML control, 222-225
invite request forms, displaying, 333
JavaScript Client Library

Add to Profile button, viewing, 143
API calls, batching, 322
cross-domain communication, 317
features, loading, 319

JavaScript Hello World FBJS script, 246
Live Stream Boxes, 365
logging constants, 111
logging functions, 111
logins

buttons, creating, 355
forcing, 352
handling logins/logouts, 356
notifications, 353
onlogin attribute (<login-button>

tag), 355
reloading pages on session state

changes, 353
status, dynamic handling, 352

metrics, total active user count over last
30 days, 381

mobile SMS responses, handling, 40-42
Mock AJAX, form handler, 263-265
MultiFeedStory Feed form

JSON example, 171
publishing to streams, 168-169

multiple developer configuration files,
constants

generating, 413-415
output, 415-416

notifications, sending, 211-212
one line story template bundles, 188
Permission dialogs, displaying, 326
popup dialogs

FBML, viewing, 331
HTML, viewing, 330

profile boxes
content, setting, 134
FBML Add to Profile button, 142
styles, 140
utility functions, 136-138
Wide/Narrow blocks, 139-140

profile buttons, adding, 324

443listings

ptg

Publishers
callbacks, handling, 199-201
error notifications, 201
getPublisherUI() function, 202-204
template registration, 205-206

<ref> tag, 152
renderPage() function, 116-118
sandboxes

creating, 246
filling, 247-248
implementing, 246

secret keys, setting, 320
sendUserEmail() function, 219-220
Share previews

audio example, 240
web page example, 239

trace levels, 327-329
unfiltered FBML output, 58
users, viewing with XFBML, 39-40
XFBML elements, rendering

dynamic replacement, 337
hiding elements until rendered,

336-337
manually, 335

Live Stream Boxes (Connect), 348, 365
LiveMessage feature, 426
LivingSocial application, 26-27
LocalConnection objects, 308
log() function, 63
logging

constants, 111
Firebug, 63
functions, 111

logging out (Connect), 356-357
logical operators (FQL), 407
<login-button> tag, 332, 354
logins

buttons, creating, 354-355
Connect, 354-355
dynamic handling, 352
forcing, 352
notifications, 353
status

detecting, 351-353
dynamically handling, 352
forcing users, 352
notifications, 353
reloading pages on session state

changes, 353
logLine() function, FBDebug class, 329
logos (applications), 87

look and feel, replicating, 18-19
loop attribute, <swf> tag, 295
low-level wrappers, 382
lower() function, 406
LTV (Long Term Value), 395
LuckyCal, 79

M
Mafia Wars, 395
mailbox_folder tables, 403
Main profile boxes, 133-135
managing

CSS classes, 286
FBML cache, 152-154
template bundles with API, 182-190

marketing, Platform Guidelines, 73
markup attribute, profile_setFBML()

function, 134
max attribute, <multi-friend-selector> tag, 228
meaningful applications, 23-24
measuring virality, 369-371
memcached, 32, 422
messages

allocations
calculating, 231-232
email, 234-235
limits, viewing, 230-231
notifications, 232
requests, 233
tracking, 235-236

API, 38
private, integration points, 14
tables, 403

method attribute
Publisher callback URLs, 199
<request-form> tag, 227

Method field (API Test Console), 52
methods. See functions
metrics

A/B testing, 372-375
benefits, 369
collecting, 371-372, 382
dashboards, viewing, 375

API, 381-382
Insights tool, 375-378

grouping, 371
Kontagent, 382-383
tables, 403
total active user count over

last 30 days, 381
virality, 369-371

444 listings

ptg

migrating applications, 108
Mobile Integration options (Advanced Settings

tab), 94
mobile_profile attribute, profile_setFBML()

function, 134
mobile support, 40

applications, 40-42
iPhones, 42
non-iPhones integration points, 40
settings, 94

Mock AJAX, 263
attributes, 266-267
clickRewriteAjax() function, 268
forms, 263-266
incomplete forms, submitting, 266

monetizing applications, 392
affiliate links, 394
displaying ads, 392-393
sponsors, 394
subscriptions, 394-395
virtual goods, 395-396

monitoring
AJAX calls, 275-279
networks, 62

Mousehunt, 80
moving profile boxes, 133
MultiFeedStory Feed form, 156

JSON example, 171
publishing

stream, 168-169
Wall, 169-172

<multi-friend-input> tag, 226-228
<multi-friend-selector> tag, 226
multiple developers, 410

additional applications, creating, 411
configuration files, creating, 411-416
port forwarding, setting up, 411

multiple pages, 129
multiquery() function, 407-408
Music/YouTube Publisher, 195
MyListo, 79
MySQL, 32

N
name attribute, 119
names

applications, 86
queries, referencing, 407

<name> tag, 119, 332
Narrow profile boxes, 133, 139-140
<narrow> tag, 139

nesting subqueries, 406
networks

ads, 391
monitoring, 62

news
feeds, 172-176
update resources, 422

nodes (DOM)
child, deleting, 253
content, editing, 252-254

notes
API, 38
application integration, 14
retrieving, 426
tables, 403

notification attribute, notifications_send()
function, 210

notifications, 208
A/B testing, sending, 373
allocations, 232
application integration, 15
content, 211
logins, 353
metrics, 380
Notifications area, 207
overview, 207
Platform Guidelines, 75
Publisher errors, 201
sending, 210-212
SMS, mobile applications, 40-42
tables, 403
types, 208-210
viewing, 208

notifications_send() function, 210
now() function, 406
numposts attribute, <comments> tag, 363

O
object info sections, 145
objectives (applications), 21
objects

ExternalInterface, 309
FBJS DOM document, 251-252
FeatureLoader, 318
LocalConnection, 308

OfferPal, 396
offline_access extended permission, 213
oncancel() function, 260
onclick() handler, 355
onconfirm() function, 260
ondone() handler verification, 275-276

445ondone() handler verification

ptg

ondone property (Ajax class), 270
one line feed stories

automatic publishing, 181
feed stream, 12-13
publishing with API, 178-181
templates, 159-163

bundles, 188
HTML/FBML data, 162
missing data error, 162
previewing, 163

onerror property (Ajax class), 270
onlogin attribute, <login-button> tag, 355
onlogin() function, 354
open platforms/standards, 70
open source website, 421
Open Stream API, 38
operators (FQL), 406-407
optional URLs field (Canvas Settings tab), 91-92
Other-Publisher, 198
outlining HTML elements, 64
outstanding requests, 222
ownership, 70-73

P
page_admin tables, 403
page_fan tables, 403
pages

API, 38
Application Settings, 7
canvas, 4
HTML pages, outlining, 64
load times, reducing, 399-401
tables, 403

parameters. See attributes
Paros website, 66
parseDomElement() function, 335
parseDomTree() function, 335
Pearson Chi-Square tests, 374
performance

FBML versus IFrame, 108
FQL. See FQL
multiple developers, 410-416
page load times, 399-401

Performance view (YSlow), 64
permissions

API, 35
dialogs, displaying, 326
email extended permission dialog, 345
extended, 213-214
tables, 403

<photo> tag, 332
photo_tag tables, 404
photos

API, 38
application integration, 14
profiles, displaying, 334
tables, 403
uploading, 3

PHP client library, 32, 42
debugging support, 57
downloading, 83
Feed Template management, 182-190
files, 83
multiquery() function results, 408

platform, 4
applications, 16
guidelines, 73-77
internal servers, 31
servers, 31
statistics website, 421
technologies, 32-33

Podclass, 80
point-based systems (virtual goods), 395
PopupDialog() function, 330-331
popup dialogs, 330-331

FBJS, 259
FBML, 331
HTML, 330

port forwarding, multiple developers, 411
Position field (FBML Test Console), 54
Post-Authorize Callback URLs, 89
Post-Authorize Redirect URL, 92
post() function, 270
Post Remove Callback URLs, 89
POST variables, Publisher callback URLs,

198-199
posts, feed forms, 157
PR policies, 76
Practical Guide to Controlled Experiments on

the Web: Listen to Your Customers not to the
HiPPO, 373

preloading FQL, 408-410
IFrame canvas pages, 410
setAppProperties() function, 409-410

Preview field (FBML Test Console), 55
previewing

invitations, 225
one line Feed stories, 163
Sharing, 238-241
short story templates, 164

Principles document, 70

446 ondone property (Ajax class)

ptg

privacy
dynamic, 346
policy, 72
users, 24, 70

Privacy URL (Basic Settings tab), 88
private messages, application integration, 14
profile_action attribute, profile_setFBML()

function, 134
profile attribute, profile_setFBML() function,

134
profile boxes, 133

Compliments application, 135
adding, 140-144
compliment categories, 138
headers, 138
Main and Wide, 135
size constraints, 139
styles, 140
utility functions, 136-138
wide/narrow blocks, 139-140

content, setting, 134
external JavaScript, 244
FBML, 133
Main, 133
moving, 133
Narrow, 133
size, 133
Wide, 133
workflow, 46

Profile field (FBML Test Console), 54
profile_main attribute, profile_setFBML()

function, 134
<profile-pic> tag, 119, 332
profiles, 5

API, 38
application integration points, 5-10
application tabs, 144-145
boxes. See profile boxes
buttons, adding to canvas pages, 324
FBML cache, managing, 152-154
image caching, refreshing, 151
info sections, 145-151
metrics, 380
mobile, 40-42
pictures, displaying, 334
public, 16
settings, 90
tables, 404
updating, 152

profile_setFBML() declaration bug, 400
profile_setFBML() function, 134
profile_setInfo() function, 146

Profiles Settings tab (Compliments
application), 90

prohibited application actions, 74
prohibited content, 71
promoting applications

ads, 386
approvals, 388-390
clicks/views estimate, 390
creating, 387, 390-391
daily statistics, 390
developer link exchanges, 391
Home page, 386
images, 388
networks, 391
pricing, 388-390
Standard, 386
targeting users, 388
titles/descriptions, 387

growth curves, 385
preparations, 385

<prompt-permission> tag, 214, 332
<pronoun> tag, 332
properties. See attributes
property rights, 71
Public Profiles, 16, 88
publicity, 73
publish_stream extended permission, 214
Publishers

callbacks, 197
creating, 197

application communication, 197
callbacks, handling, 199-201
error notifications, 201
POST variables, 198-199
templates, registering, 205-206
user interface, 202-204

error handling, 206-207
integration points, 196-197
listing of available, 194
Music/YouTube, 195
Other-Publisher, 198
overview, 194-196
Platform Guidelines, 75
profiles, application integration points, 10
Self-Publisher, 197
text input area, 194
user interaction, 195

publishing
content with Sharing

previews, 238-241
Share action links, 237
Share buttons, 237

447publishing

ptg

feed stories with FBJS, 281-284
one line Feed stories, 178-181
short stories

error handling, 176-177
News Feed, 172-176
stream, 168-169
Wall, 169-172

user activity as feed stories, 347
purgeEventListeners() function, 290

Q–R
quality attribute, <swf> tag, 295
queries (FQL)

format, 401
names, referencing, 407
results, 408
testing, 52

query() method, 52
Quick Transitions feature, 426
Quick Transitions field (Canvas Settings tab), 93
quiet attribute, <comments> tag, 364

RAID 10, 31
rand() function, 406
read_stream extended permission, 214
Receiver IFrame, 317
reclaiming accounts, 358
<ref> tag, 152-153
referencing FQL queries, 407
refreshing image caching, 151
Register Template Bundle button, 167
Registered Templates Console, 57
registering

FBJS events, 291
Feed templates, 167-168, 187
Publisher templates, 205-206

registerUsers() function, 359
reliability (applications), 26
reloadIfSessionStateChanged attribute, 353
reloading pages on session state changes, 353
removeEventListener() function, 289
Render Method field (Canvas Settings tab), 92
renderForm() function, updating, 338
rendering

FBJS dialog content, 262
XFBML elements, 335-337

renderPage() function, 116
client-side form validation, 255-257
email, 218
IFrame canvas page, 127-128

Representational State Transfer. See REST

Request for Special Permissions dialog box, 214
<request-form> tag, 225
<request-form-submit> tag, 226
REQUEST variables, FBML canvas page, 115
requests, 221

AJAX, handling, 272-274
allocations, 233
application integration, 15
benefits, 222
invitations, compared, 229
invite request forms, displaying, 333
metrics, 380
outstanding, 222
sending, 222-228

Required URLs field (Canvas Settings tab), 90
RequireFeatures() function, 319
requirelogin=’1’ attribute, 104
requireLogin() function, 104, 320
requireLogin property (Ajax class), 270
requireSession() function, 351
resizing browsers, 64
resources

ads, 388
developer websites, 422
Facebook links, 421
news updates websites, 422
URIs as, 33

respecting users, 25
Response Format field (API Test Console),

51
responses

AJAX JSON, 279-281
API methods, 49-52
application user action, 74
time (applications), 25

responseType property (Ajax class), 270
responsibilities (developers), 72
REST (Representational State Transfer), 33

API, 382
data exchanges, 33
implementing, 34-35
methods, 33
status codes, 34
URIs as resources, 33

restrictions (JavaScript), 245
reverse attribute, <comments> tag, 364
revokeAuthorization() function, 357
rights (Statement of Rights and

Responsibilities), 71
RockYou website, 393
rows attribute, <multi-friend-selector> tag, 228

448 publishing

ptg

rsvp_event extended permission, 214
rules, 69

content of terminated accounts, 71
developer guidelines, 72-77
user guidelines, 70-72

S
safety. See security
Salign attribute, <swf> tag, 295
sandboxes, 18, 61, 244

creating, 245-248
enabling, 93
feed stories, testing, 190-191
filling, 247-248
implementing, 246
initialization, 245, 248
JavaScript restrictions, 245

scalability (applications), 23
Scribe, 33
secret keys, 44, 320
security

authentication, 344
settings, 94
user privacy, 24, 70-71

Self-Publisher, 197
selling virtual goods, 395

cash purchases, 395
options, 395
point-based systems, 395
tips, 396
virtual economies, 396

Send Compliment form
Compliments IFrame canvas page,

122-126
FBML canvas page, 116-121

sending
email, 214-221
invitations, 222-228
notifications, 210-212, 373
attributes, applications, 99-102
requests, 222-228

sendUserEmail() function, 219-220
sendUserNotification() function, 211-212
separateCalls() function, 399
serialize() function, client-side form

validation, 258
server tags, XFBML class, 332-334
<serverfbml> tag, 332
servers

Apache HTTP, 32
internal, 31

Scribe, 33
web, setting up, 84

sessions
cookies, JavaScript Client Library

validation, 321
information, retrieving, 323
state changes, reloading pages, 353

setAppProperties() function, 409-410
setContentWidth() function, 330
setContext() function, 261
setFBML() function, 50
setInnerFBML() function, 253-254
setInnerXHTML() function, 254-255
setLocation() function, 252
setStyle() function, 260, 285
setTextValue() function, 252-253
settings

application descriptions, 87
application icons/logos, 87
attachments, 94
authentication, 88-89
canvas pages, 90-93
Connect, 93
contact information, 88
developer, 88
environment, 83-84
essential information, 86
Facebook Connect, 348-350
Help/Privacy/Terms of Service URLs, 88
languages, 88
legal, 95
mobile support, 94
port forwarding, 411
profiles, 90
secret keys, 320
security, 94
widgets, 93

setupFBJSBridge() function, 309
Share action links, 237
<share-button> tag, 239-240, 332
Share buttons, 237
share_item permission, 426
sharing

content, 13
files, 76
freedom, 70
links, 391
previews, 238-241
Share action links, 237
Share buttons, 237

Short Message Service. See SMS

449Short Message Service

ptg

short stories
feeds

stream, 13
templates, 159

publishing
error handling, 176-177
News Feed, 172-176
streams, 168-169
Wall, 169-172

templates, 163-166
audio, 165
creating, 163
Flash content, 165
images, 164
previewing, 164
video, 165-166

show() function, Animation class, 288
showAddSectionButton() function, 143, 324
showChoice() function, 260
showFeedDialog() function, 281-282, 324, 347
showMessage() function, 260
signatures, creating, 102-103
simple attribute, <comments> tag, 364
single-sign ons, 344
six degrees of separation, 4
size

IFrames, 92
images, short stories, 164
profile boxes, 133, 139

skeletons (applications), 95
basic skeleton application, 96-97
global constants, 95-96

Smiley sample application, application info
section, 10

SMS (Short Message Service), 40
applications, 40-42
extended permission, 214

social activities, enabling, 24
social distribution (Facebook Connect), 347
social graph, 4
social value, 70
source control systems, 416
Spam Reports per First Impression ratio, 232
Spare Change service, 395
split-testing. See A/B testing
sponsors (ads), 394
spreading applications, 385

ads, 386
approvals, 388-390
clicks/views estimate, 390
creating, 387, 390-391

daily statistics, 390
developer link exchanges, 391
Home page, 386
images, 388
networks, 391
pricing, 388-390
Standard, 386
targeting users, 388
titles/descriptions, 387

growth curves, 385
preparations, 385

SQL. See FQL
standard ads, 386
standard_friend_info tables, 404
standard_user_info tables, 404
starting animations, 288
Statement of Rights and Responsibilities

developers, 72-73
users, 70-71

static FBML content, DOM nodes, 253-254
Stats view (YSlow), 64
status

codes, 34
login, 351-353
retrieving, 426
tables, 404

status_update permission, 426
storable data policies, 75
stores (feed templates), 159
stories

defined, 10
feed

creating from Connect Comments
Boxes, 361

dialog, 172
FBJS publishing, 281-284
one line, 178-181, 188
testing in Sandbox mode, 190-191
templates, 159

publishing
API, 178-181
automatically, 181
error handling, 176-177
News Feeds, 172-176
streams, 168-169
Wall, 169-172

templates
one line stories, 161-163
short stories, 163-166

story_size attribute, feed_publishUserAction()
function, 178

450 short stories

ptg

stream (feed)
application integration point, 11-13
beta features, 423
one line stories, 12-13
short stories, 13, 168-169
tables, 404

stream_filter tables, 404
strlen() function, 406
strops() function, 406
styles

application tabs, 145
profile blocks, 140

subfields (FQL), 405-407
submit handlers, 118
submitting forms (Mock AJAX), 266
subqueries, nesting, 406
subscriptions (applications), 394-395
substr() function, 406
<subtitle> tag, 138
Subversion, 416
<success> tag, 119
SuperRewards, 396
SWF files, creating, 296-297
<swf> tag, 294-295
swfbgcolor attribute, <swf> tag, 295
swfsrc attribute, <swf> tag, 295
syncUrl() function, 425

T
tables

album, 401
application, 401
comment, 402
connection, 402
cookies, 402
event, 402
event_member, 402
FQL, 401-405
friend, 402
friend_request, 402
friendlist, 402
friendlist_member, 402
group, 402
group_member, 402
link, 402
mailbox_folder, 403
message, 403
metrics, 403
note, 403
notifications, 403
page, 403

page_admin, 403
page_fan, 403
permissions, 403
photo, 403
photo_tag, 404
profile, 404
standard_friend_info, 404
standard_user_info, 404
status, 404
stream, 404
stream_filter, 404
thread, 404
user, 404

tabs
Application, 8-9, 144-145
Boxes, 5
Feed, 10-13
Info, 5
Wall, 5

tags
<client side>, 332
<custom>, 424
<comments>, 332
<connect-form>, 332
<container>, 332
<eventlink>, 332
<fbjs-bridge>, 307-308
<FBML beta>, 425
<friend-selector>

idname attribute, 157
invitations/requests, 226-228

<grouplink>, 332
<if-multiple-actors>, 162
<js-string>, 253
<login-button>, 332
<multi-friend-input>, 226-228
<multi-friend-selector>, 226
<name>, 332
<narrow>, 139
<photo>, 332
<profile-pic>, 332
<prompt-permission>, 214, 332
<pronoun>, 332
<ref>, 152-153
<request-form>, 225
<request-form-submit>, 226
<server>, 332-334
<serverfbml>, 332
<share-button>, 239-240, 332
<subtitle>, 138
<swf>, 294-295

451tags

ptg

<unconnected-friends-count>, 332
<user-agent>, 249
<user-status>, 332
<wide>, 139
XFBML

comments, 363
login-button, 354

target_id attribute, showFeedDialog()
function, 282

target_ids attribute, feed_publishUserAction()
function, 178

targeting
ad usage, 388
audiences, 22

Teach the People application, 394
technologies, 32-33
template_bundle_id attribute

feed_publishUserAction() function, 178
showFeedDialog() function, 281

template_data attribute
feed_publishUserAction() function, 178
showFeedDialog() function, 281

templates
bundles, 159, 182-190
feed, 158

action links, 166
API management, 182-190
Bundle IDs, 167
bundles, 159
console, 56, 159-160
data, generating, 163
formatting, 162
one line stories, 159-163, 188
registering, 167-168, 187
short stories, 159, 163-166
tokens, 159
unregistering, 187

Publishers, registering, 205-206
Registered Templates Console, 57

termination, 71
Terms of Service, 69

content of terminated accounts, 71
developer guidelines, 72-77
user guidelines, 70-72
URL (Basic Settings tab), 88
website, 421

test accounts, 59
access, 60
creating, 59
limitations, 59

testing
A/B, 372-375
API method calls/responses, 49-52
FBML, 54, 109
feed

forms, 158
stories, 190-191

FQL queries, 52
IFrame, 109
Pearson Chi Square, 374
XFBML content, 337

text
DOM nodes, 252-253
info sections, 145
input area (Publisher), 194

third-party
ad networks, 393
JavaScript library support, 245
libraries, 43

thread tables, 404
threshold models (application installation), 371
Thrift, 32
title attribute

<comments> tag, 364
profile_setInfo() function, 146

titles (ads), 387
to() function, Animation class, 288
to_ids attribute, notifications_send()

function, 210
toggleClassName() function, 286
tokens (feed templates), 159
tools

API Test Console, 49-52
Application Insights, 230
browser debugging, 60-66
debugging

PHP API client library, 57
unfiltered FBML output, 58

FBML Test Console, 52-55
Feed Template Console, 56
Insights, metrics viewing, 375-378
Registered Templates Console, 57
test accounts, 59-60
website, 49

total active user count over last 30 days
metric, 381

trace levels, 327-329
tracking allocations, 235-236
transparent process, 70
Trazzler, 80
troubleshooting AJAX, 275-279

452 tags

ptg

TRUSTe, 72
trusted authentication (Facebook Connect), 344
trustworthy applications, 24-25
<typeahead-input> tag, 425
type attribute

addEventListener()/
removeEventListener() functions, 290

notifications_send() function, 211
profile_setInfo() function, 146
<request-form> tag, 227

types
compliments, 114
notifications, 208-210

U
UI class, 330-331
UI Elements, 75
uid attribute, 119

profile_setFBML() function, 134
profile_setInfo() function, 146

<unconnected-friends-count> tag, 332
unique unblocks metric, 376
unintended side effects, 244
unobtrusive JavaScript, 289
unregistering feed templates, 187
updateCategoriesRef() function, 153-154
updateInfoSection() function, 148-149
updateProfileBox() function, 135, 138
updating

application tabs, 144
compliment categories, 153-154
Compliments IFrame page, 338-341
contextual FBJS dialogs, 261-262
form data submissions, 271-272
info sections, 150-151
invitation header content, 225
profiles, 152

uploading photos/videos, 3
upper() function, 407
URIs, as resources, 33
url attribute, <comments> tag, 364
URLs

Account Preview, 348
Account Reclamation, 349

U.S. Copyright Office, 76
usage metrics, 375-376
useCapture attribute, addEventListener()/

removeEventListener() functions, 290
useLocalProxy property (Ajax class), 270
<user-agent> tag, 249
User field (FBML Test Console), 53

User ID field (API Test Console), 50
user_message attribute

feed_publishUserAction() function, 179
showFeedDialog() function, 282

user_prompt attribute, showFeedDialog()
function, 282

users
accounts

reclaiming, 358
Statement of Rights and

Responsibilities, 71
termination, 71

actions (application responses), 74
active amount, 3
activity, 347
ad feedback, 393
applications

installation, 88
interaction, 22

attention, 24
authentication

application installation settings, 88
callback fields (Authentication

Settings tab), 89
callback URLs, 89
Facebook Connect, 351-358
JavaScript Client Library, 320-321
settings, 88-89
trusted, 344

birthdays query, 407
disconnecting, 357
dynamic privacy, 346
engagement, 3, 383
expression, 24
extended permissions, 213-214
growth, 3
guidelines, 70-72
identities, 344-345
interfaces

Notifications area, 207
Publishers, 202-204

logging in, 354-355
logging out, 356-357
management APIs, 37
notifications. See notifications
privacy, 24, 70
profiles, 90
Publisher interaction, 195
ratings, allocations, 236
respecting, 25
rights, 71

453users

ptg

safety, 71
single-sign ons, 344
tables, 404
targeting, 388
viewing with XFBML, 39-40

<user-status> tag, 332
user-to-user notifications, 209
users_hasAppPermission() function, 218
utility functions

Compliments canvas page, 111-113
info sections, 148-149
profile boxes, 136-138

V
validating

forms, 255-258
JavaScript Client Library, 321

values
applications, 22
social, 70

variables. See attributes
verification program (applications), 77
videos

API, 38
Music/YouTube Publisher, 195
short stories, 165-166
uploading, 3, 426

viewing. See also displaying
Add to Profile button, 141-144
allocation limits, 230-231
application tabs, 144
FBJS dialogs, 259-260
FBML with popup dialogs, 331
HTML with popup dialogs, 330
metrics

API, 381-382
Insights tool, 375-378
Kontagent, 382-383

notifications, 208
users, XFBML, 39-40

viral channel monitoring, 383
viral growth tracking metrics, 383
virality, 369-371
virtual economies, 395-396
virtual goods (application monetization), 395

cash purchases, 395
options, 395
point-based systems, 395
tips, 396
virtual economies, 396

W
waitforclick attribute, <swf> tag, 295
Wall, short stories, publishing, 169-172
Wall tab, profile boxes, 5
Web Developer, 64, 422
web servers, setting up, 84
Web Standards Project Web site, 289
websites

20 bits blog, 371
Ad Chap, 393
Ad Parlor, 393
advertising guidelines, 388
All Facebook, 422
Alternative PHP Cache, 32
Apache HTTP server, 32
APC, 422
API functions wiki page, 406
Application Verification Program, 421
Canvas Page URL, 44
Causes application, 27
Chen,Andrew, 395
client libraries, 421
common ad mistakes, 388
Cubics, 391-393
custom tags directory, 421
developer, 421-422
Developer News, 422
EU Safe Harbor Framework, 72
Facebook

News, 422
Open Platform, 32
resources, 421

fbFund, 421
FBJS2, 248
fgExchange, 392
Fiddler, 66
Firebug, 60, 422
Firebug Lite, 65, 422
Gift application, 395, 416
Graffiti application, 27
guiding principles, 421
IE Developer Toolbar, 65
Inside Facebook, 422
Kontagent, 382
Lil Green patch, 396
LivingSocial application, 26
login buttons, creating, 355
Mafia Wars, 395
Memcached, 422
MySQL, 32

454 users

ptg

news updates resources, 422
OfferPal, 396
open source, 421
Paros, 66
PHP, 32
platform

guidelines, 73
statistics, 421

Practical Guide to Controlled Experiments
on the Web: Listen to Your Customers not
to the HiPPO, 373

Privacy Policy, 72
RockYou, 393
Scribe, 33
Spare Change service, 395
Statement of Rights and

Responsibilities, 70
Subversion, 416
SuperRewards, 396
Teach the People, 394
terms of service, 421
Thrift, 32
tools, 49
TRUSTe, 72
U.S. Copyright Office, 76
Web Developer, 64, 422
Web Standards Project, 289
YSlow, 64, 422
YUI Library, 422
Zoosk, 394
Zuora, 394

Weddingbook, 80
well designed applications, 25-26
Wide profile boxes, 133

blocks, 139-140
Compliments application, 135

<wide> tag, 139
Widget Settings tab (Compliments

application), 93
widgets

Comments Boxes, 361-364
Facebook Connect settings, 350
Live Stream Boxes, 365
settings, 93

Widgets tab (Developer Settings), 350
width (canvas), 93
width attribute

<comments> tag, 363
<swf> tag, 295

Wildfire, 80
Wmode attribute, <swf> tag, 295

workflows
canvas page, 44
profile box, 46

wr() function, 111
wrapper libraries, 382
writeLine() function, FBDebug class, 329

X–Y–Z
XdComm feature set (JavaScript Client

Library), 318
XFBML, 19

Add to Profile button in IFrame canvas
pages, 143

content, displaying, 335-337
feature set (JavaScript Client Library), 318
tags

<comments>, 363
<login-button>, 354

users, viewing, 39-40
XFBML class, 331

client side tags, 332
conditional content, displaying, 334
server tags, 332-334
XFBML content, 335-337

xid attribute, <comments> tag, 363

YSlow, 64, 422
YUI

AutoComplete control, 128
Library website, 422

Zimride Carpool, 80
Zoosk, 394
Zuora, 394

455Zuora

ptg

The Facebook Era
Clara Shih • ISBN 978-0-13-715222-3

Tap Social Networks to
Improve Your Business

Online social networks are fundamentally changing the way we live, work, and
interact. They offer businesses immense opportunities to transform customer
relationships for profit: opportunities that touch virtually every business
function from sales and marketing to recruiting, collaboration to executive
decision-making, and product development to innovation. In The Facebook
Era, Clara Shih systematically outlines the business promise of social
networking and shows how to transform that promise into reality.

Shih is singularly qualified to write this book: One of the world’s top business
social networking thought leaders and practitioners, she created the first
business application on Facebook and leads salesforce.com’s partnership with
Facebook. Through case studies, examples, and a practical how-to guide, Shih
helps individuals, companies, and organizations understand and take
advantage of social networks to transform customer relationships for sales and
marketing. Shih systematically identifies your best opportunities to use social
networks to source new business opportunities, target marketing messages, find
the best employees, and engage customers as true partners throughout the
innovation cycle. Finally, she presents a detailed action plan for positioning
your company to win in today’s radically new era—The Facebook Era.

“...A must-read for CEOs and other executives
who want to understand Facebook and, more
importantly, take the right actions to stay relevant
and stay competitive.”

—David Mather, President, Hoovers, Inc.

For more information and to read sample material,
please visit informit.com.

This title is also available at safari.informit.com.

ptg

Register the Addison-Wesley, Exam

Cram, Prentice Hall, Que, and

Sams products you own to unlock

great benefits.

To begin the registration process,

simply go to informit.com/register
to sign in or create an account.

You will then be prompted to enter

the 10- or 13-digit ISBN that appears

on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS

Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock

the following benefits:

• Access to supplemental content,

including bonus chapters,

source code, or project files.

• A coupon to be used on your

next purchase.

Registration benefits vary by product.

Benefits will be listed on your Account

page under Registered Products.

informit.com/register

THIS PRODUCT

ptg

InformIT is a brand of Pearson and the online presence

for the world’s leading technology publishers. It’s your source

for reliable and qualified content and knowledge, providing

access to the top brands, authors, and contributors from

the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-

ing timely and relevant information and tutorials? Looking for expert opin-

ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by

subscribing to a wide variety of newsletters.

Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at

informit.com/articles.

• Access thousands of books and videos in the Safari Books

Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the

hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?

Connect with Pearson authors and editors via RSS feeds, Facebook,

Twitter, YouTube, and more! Visit informit.com/socialconnect.

ptg

Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top
technology publishers, including Addison-Wesley Professional, Cisco Press,
O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books,
Safari’s extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the fi rst
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY!

www.informit.com/safaritrial

ptg

Your purchase of Essential Facebook® Development includes access to a free online
edition for 45 days through the Safari Books Online subscription service. Nearly every
Addison-Wesley Professional book is available online through Safari Books Online,
along with more than 5,000 other technical books and videos from publishers such as
Cisco Press, Exam Cram, IBM Press, O’Reilly, Prentice Hall, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specific answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at
www.informit.com/safarifree

STEP 1: Enter the coupon code: ITYEREH.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have difficulty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

	Addison Wesley - Essential Facebook Development (December 2009) (ATTiCA)
	Contents at Glance
	Table of Contents
	Preface
	Acknowledgments
	About the Authors
	Part I: Introduction to Facebook Applications
	1 Facebook Applications: The Basics
	Environment and Integration Points
	Extending Facebook
	Facebook Platform Core Components
	Summary

	2 Making Great Applications
	Begin with a Plan
	Facebook’s Guiding Principles
	Examples of Great Applications
	Summary

	3 Platform Architecture Overview
	Facebook’s Internal Servers
	Facebook’s External REST Interface
	Overview of the Facebook API
	Facebook Mobile Support
	Library Support
	Application Architecture
	Summary

	4 Platform Developer Tools
	Facebook Provided Tools
	Browser Debugging Tools
	Summary

	5 Facebook Terms of Service and Application Programs
	Facebook Terms of Service
	Facebook Application Programs
	Summary

	Part II: Developing Applications
	6 The Basics of Creating Applications
	Setting Up the Environment
	Using the Developer Application
	Creating the Application Skeleton
	Application Authorization
	Summary

	7 Building the Canvas
	Choosing Between an FBML and IFrame Canvas
	Preparing the Compliments Canvas Pages
	Creating the Compliments FBML Canvas Page
	Creating the Compliments IFrame Canvas Page
	Using Tabs for Multiple Pages
	Summary

	8 Updating the Profile
	Profile Boxes
	Application Tabs
	Application Info Sections
	Working with Facebook’s Caching
	Summary

	9 Feed Stories, Feed Forms, and Templates
	Using Feed Forms and Templates
	Using the Facebook API
	Sandbox Mode and Testing Feed Stories
	Summary

	10 Publisher, Notifications, and Requests
	Getting to the Heart of Feed: The Publisher
	Notifications
	Application Email
	Requests
	Application Messaging and Allocations
	Facebook Sharing
	Summary

	11 FBJS, Mock AJAX, and Flash
	Allowing External JavaScript in Facebook
	Sandboxing
	Basic FBJS
	Mock AJAX
	Advanced FBJS
	Using Flash
	Summary

	Part III: Integrating Facebook into an External Website
	12 Facebook JavaScript Client Library
	Cross-Domain Communication
	Using the Library
	Key Library Classes
	Updating Compliments’ IFrame Page
	Summary

	13 Facebook Connect
	Facebook Connect Features
	Setting Up Facebook Connect
	User Authentication
	Friend Linking
	Widgets
	Summary

	Part IV: Post Launch
	14 Measuring Application Success
	Metrics: Why They Matter
	Metrics Dashboards
	Summary

	15 Spreading and Monetizing Applications
	Spreading Your Application
	Monetizing Your Application
	Summary

	16 Improving Application Performance and Workflow
	Batching API Calls
	FQL
	Working with Multiple Developers
	Summary

	Part V: Appendices
	A: Resources
	Links

	B: Beta Features
	Add Page Referrer
	Stream
	Custom Tags
	Data Store API
	FBJS Local Proxy
	Cookies
	FBML Tags
	IFrame URL
	Links, Notes, and Status
	LiveMessage
	Quick Transitions
	Video Upload

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K–L
	M
	N
	O
	P
	Q–R
	S
	T
	U
	V
	W
	X–Y–Z

