
ptg

ptg

Praise for The iPhone Developer’s
Cookbook

“This book would be a bargain at ten times its price! If you are writing iPhone soft-
ware, it will save you weeks of development time. Erica has included dozens of crisp
and clear examples illustrating essential iPhone development techniques and many
others that show special effects going way beyond Apple’s official documentation.”

—Tim Burks, iPhone Software Developer,TootSweet Software

“Erica Sadun’s technical expertise lives up to the Addison-Wesley name. The iPhone
Developer’s Cookbook is a comprehensive walkthrough of iPhone development that will
help anyone out, from beginners to more experienced developers. Code samples and
screenshots help punctuate the numerous tips and tricks in this book.”

—Jacqui Cheng,Associate Editor, Ars Technica

“We make our living writing this stuff and yet I am humbled by Erica’s command of
her subject matter and the way she presents the material: pleasantly informal, then very
appropriately detailed technically.This is a going to be the Petzold book for iPhone
developers.”

—Daniel Pasco, Lead Developer and CEO, Black Pixel Luminance

“The iPhone Developer’s Cookbook should be the first resource for the beginning iPhone
programmer, and is the best supplemental material to Apple’s own documentation.”

—Alex C. Schaefer, Lead Programmer,ApolloIM, iPhone Application Development Specialist,
MeLLmo, Inc.

“Erica’s book is a truly great resource for Cocoa Touch developers.This book goes far
beyond the documentation on Apple’s Web site, and she includes methods that give the
developer a deeper understanding of the iPhone OS, by letting them glimpse at what’s
going on behind the scenes on this incredible mobile platform.”

—John Zorko, Sr. Software Engineer, Mobile Devices

ptg

“I’ve found this book to be an invaluable resource for those times when I need
to quickly grasp a new concept and walk away with a working block of code.
Erica has an impressive knowledge of the iPhone platform, is a master at
describing technical information, and provides a compendium of excellent
code examples.”

—John Muchow, 3 Sixty Software, LLC; founder, iPhoneDeveloperTips.com

“This book is the most complete guide if you want coding for the iPhone,
covering from the basics to the newest and coolest technologies. I built several
applications in the past, but I still learned a huge amount from this book. It is a
must-have for every iPhone developer.”

—Roberto Gamboni, Software Engineer,AT&T Interactive

“It’s rare that developer cookbooks can both provide good recipes and solid
discussion of fundamental techniques, but Erica Sadun's book manages to do
both very well.”

—Jeremy McNally, Developer, entp

ptg

The iPhone™

Developer’s
Cookbook

Building Applications with
the iPhone 3.0 SDK

Second Edition

Erica Sadun

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

ptg

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publish-
er was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

AirPort, App Store, Apple, the Apple logo, Aqua, Bonjour, the Bonjour logo, Cocoa, Cocoa
Touch, Cover Flow, Dashcode, Finder, FireWire, iMac, Instruments, Interface Builder, iPhone,
iPod, iPod touch, iTunes, the iTunes Logo, Leopard, Mac, Mac logo, Macintosh, Multi-Touch,
Objective-C, Quartz, QuickTime, QuickTime logo, Safari, Snow Leopard, Spotlight, and Xcode
are trademarks of Apple, Inc., registered in the U.S. and other countries. OpenGL® or
OpenGL Logo®: OpenGL is a registered trademark of Silicon Graphics, Inc. The YouTube logo
is a trademark of Google, Inc. Intel, Intel Core, and Xeon are trademarks of Intel Corp. in
the United States and other countries.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Sadun, Erica.

The iPhone developer’s cookbook : building applications with the iPhone 3.0 SDK / Erica
Sadun. — 2nd ed.

p. cm.

Includes index.

ISBN 978-0-321-65957-6 (pbk. : alk. paper) 1. iPhone (Smartphone)—Programming. 2.
Computer software—Development. 3. Mobile computing. I. Title.

QA76.8.I64S33 2010

004.167—dc22

2009042382

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For information regarding permis-
sions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-321-65957-6
ISBN-10: 0-321-65957-0

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor,
Michigan.

First printing December 2009

Editor-in-Chief
Karen Gettman

Senior Acquisitions
Editor
Chuck Toporek

Senior Development
Editor
Chris Zahn

Managing Editor
Kristy Hart

Project Editor
Anne Goebel

Copy Editor
Geneil Breeze

Senior Indexer
Cheryl Lenser

Proofreader
Sheri Cain

Technical Reviewers
Joachim Bean,
Aaron Basil,
Tim Isted,
Mr. X,
Tim Burks,
Daniel Pasco,
Alex C. Schaefer,
John Muchow
(3 Sixty Software,
LLC Founder,
iPhoneDeveloper-
Tips.com),
Roberto Gamboni

Editorial Assistant
Romny French

Cover Designer
Gary Adair

Composition
Jake McFarland

ptg

❖

I dedicate this book with love to my husband,Alberto,
who has put up with too many gadgets and too

many SDKs over the years while remaining both
kind and patient at the end of the day.

❖

ptg

Contents at a Glance
Preface xix

1 Introducing the iPhone SDK 1

2 Building Your First Project 37

3 Objective-C Boot Camp 91

4 Designing Interfaces 143

5 Working with View Controllers 187

6 Assembling Views and Animations 211

7 Working with Images 257

8 Gestures and Touches 301

9 Building and Using Controls 341

10 Alerting Users 391

11 Creating and Managing Table Views 423

12 Making Connections with GameKit
and Bonjour 495

13 Networking 545

14 Device Capabilities 589

15 Audio, Video, and MediaKit 611

16 Push Notifications 655

17 Using Core Location and MapKit 689

18 Connecting to the Address Book 723

19 A Taste of Core Data 757

20 StoreKit: In-App Purchasing 779

21 Accessibility and Other iPhone OS Services 799

A Info.plist Keys 821

Index 825

ptg

Table of Contents
Preface xix

1 Introducing the iPhone SDK 1
iPhone Developer Programs 1

Getting Started 3

Understanding Model Differences 7

Platform Limitations 9

SDK Limitations 12

Using the Developer Portal 13

Assembling iPhone Projects 17

iPhone Application Components 22

Programming Paradigms 28

Summary 35

2 Building Your First Project 37
Creating New Projects 37

Building Hello World the Template Way 39

Using the Simulator 46

The Minimalist Hello World 48

Using the Debugger 53

Memory Management 58

Recipe: Using Instruments to Detect Leaks 59

Recipe: Using Instruments to Monitor Cached Object
Allocations 62

Using the Clang Static Analyzer 64

Building for the iPhone 65

From Xcode to Your iPhone: The Organizer Interface 69

Using Compiler Directives 73

Building for Distribution 78

Clean Builds 80

Building for Ad Hoc Distribution 83

Customizing Xcode Identities 85

Creating Custom Xcode Templates 86

One More Thing: Viewing Side-by-Side Code 88

Summary 89

ptg

viii The iPhone Developer’s Cookbook

3 Objective-C Boot Camp 91
The Objective-C Programming Language 91

Classes and Objects 92

Methods, Messages, and Selectors 95

Class Hierarchy 102

Logging Information 103

Properties 105

Simple Memory Management 110

Crafting Singletons 119

Categories (Extending Classes) 120

Protocols 122

Foundation Classes 125

One More Thing: Message Forwarding 138

Summary 141

4 Designing Interfaces 143
UIView and UIWindow 143

UIViewControllers 147

View Design Geometry 151

Building Interfaces 155

Walk-Through: Building a Temperature Converter
with IB 156

Walk-Through: Building a Converter Interface
by Hand 166

Walk-Through: Creating a Hybrid Converter 169

Walk-Through: Loading .xib Files Directly from Code 173

Designing for Rotation 174

Enabling Reorientation 175

Autosizing 176

Moving Views 179

Swapping Views 183

One More Thing: A Half Dozen Great Interface
Builder Tips 184

Summary 186

5 Working with View Controllers 187
Developing with Navigation Controllers 187

Utility Function 190

Recipe: Building a Simple Two-Item Menu 192

ptg

ixContents

Recipe: Adding a Segmented Control 193

Recipe: Navigating Between View Controllers 195

Recipe: Using Creative Popping Options 197

Recipe: Presenting a Custom Modal Information
View 199

Recipe: Tab Bars 201

Recipe: Remembering Tab State 204

One More Thing: Interface Builder and Tab Bar
Controllers 207

Summary 208

6 Assembling Views and Animations 211
View Hierarchies 211

Recipe: Recovering a View Hierarchy Tree 213

Recipe: Querying Subviews 214

Managing Subviews 215

Recipe: Tagging and Retrieving Views 217

Recipe: Naming Views 219

View Geometry 222

Recipe: Working with View Frames 224

Recipe: Randomly Moving a Bounded View 231

Recipe: Transforming Views 232

Display and Interaction Traits 235

UIView Animations 236

Recipe: Fading a View In and Out 237

Recipe: Swapping Views 239

Recipe: Flipping Views 240

Recipe: Using Core Animation Transitions 242

Recipe: General Core Animation Calls 244

Curl Transitions 246

Recipe: Bouncing Views as They Appear 248

Recipe: Image View Animations 250

One More Thing: Adding Reflections to Views 251

Summary 255

7 Working with Images 257
Recipe: Finding and Loading Images 257

Recipe: Accessing Photos from the iPhone Photo
Album 262

ptg

x The iPhone Developer’s Cookbook

Recipe: Selecting and Customizing Images from the
Camera Roll 265

Recipe: Snapping Photos and Writing Them
to the Photo Album 268

Recipe: Saving Pictures to the Documents Folder 270

Recipe: E-Mailing Pictures 272

Recipe: Capturing Time Lapse Photos 273

Recipe: Using a Custom Camera Overlay 275

Recipe: Displaying Images in a Scrollable View 278

Recipe: Creating a Multiimage Paged Scroll 280

Recipe: Creating New Images from Scratch 281

Recipe: Building Thumbnails from Images 285

Fixing Photo Orientation 288

Taking Screenshots 290

Recipe: Working Directly with Bitmaps 291

One More Thing: Going Grayscale 298

Summary 299

8 Gestures and Touches 301
Touches 301

Recipe: Adding a Simple Direct Manipulation
Interface 304

Recipe: Constraining Movement 305

Recipe: Testing Touches 307

Recipe: Testing Against a Bitmap 309

Recipe: Adding Persistence to Direct Manipulation
Interfaces 311

Recipe: Persistence Through Archiving 314

Recipe: Adding Undo Support 316

Recipe: Adding Shake-Controlled Undo Support 319

Recipe: Drawing Onscreen 321

Recipe: Calculating Lines 323

Recipe: Detecting Circles 325

Recipe: Detecting Multitouch 327

Recipe: Gesture Distinction 329

One More Thing: Interactive Resize and Rotation 333

Summary 338

ptg

xiContents

9 Building and Using Controls 341
The UIControl Class 341

Buttons 344

Adding Buttons in Interface Builder 345

Building Custom Buttons in Xcode 348

Multiline Button Text 351

Adding Animated Elements to Buttons 351

Recipe: Animating Button Responses 352

Recipe: Working with Switches 354

Recipe: Adding Custom Slider Thumbs 356

Recipe: Creating a Twice-Tappable Segmented
Control 362

Recipe: Subclassing UIControl 363

Recipe: Dismissing a UITextField Keyboard 366

Recipe: Dismissing UITextView Keyboards 370

Recipe: Building a Better Text Editor 371

Recipe: Text Entry Filtering 374

Recipe: Adding a Page Indicator Control 376

Recipe: Creating a Customizable Paged Scroller 379

Building a Toolbar 384

One More Thing: Smart Labels 387

Summary 388

10 Alerting Users 391
Talking Directly to Your User Through Alerts 391

Recipe: No-Button Alerts 394

Recipe: Creating Modal Alerts with Run Loops 396

Recipe: Soliciting Text Input from the User 399

Recipe: Using Variadic Arguments with Alert Views 402

Recipe: Presenting Simple Menus 403

Recipe: Displaying Text in Action Sheets 405

“Please Wait”: Showing Progress to Your User 406

Recipe: Building a UIProgressView 407

Recipe: Building Custom Overlays 409

Recipe: Tappable Overlays 411

Recipe: Orientable Scroll-Down Alerts 412

ptg

xii The iPhone Developer’s Cookbook

Recipe: Using the Network Activity Indicator 415

Recipe: Badging Applications 416

Recipe: Simple Audio Alerts 417

One More Thing: Showing the Volume Alert 420

Summary 421

11 Creating and Managing Table Views 423
Introducing UITableView and UITableViewController 423

Recipe: Implementing a Very Basic Table 426

Recipe: Changing a Table’s Background Color 430

Recipe: Creating a Table Image Backsplash 432

Recipe: Exploring Cell Types 433

Recipe: Building Custom Cells in Interface Builder 435

Recipe: Alternating Cell Colors 439

Recipe: Building a Custom Cell with Built-In
Controls 441

Recipe: Remembering Control State for Custom
Cells 443

Recipe: Creating Checked Table Cells 446

Recipe: Removing Selection Highlights from Cells 448

Recipe: Working with Disclosure Accessories 449

Recipe: Deleting Cells 451

Recipe: Reordering Cells 456

Recipe: Adding Undo Support to a Table 457

Recipe: Sorting Tables 462

Recipe: Searching Through a Table 464

Recipe: Working with Sections 467

Recipe: Creating Grouped Tables 473

Recipe: Customizing Headers and Footers 474

Recipe: Creating a Group Table with Many Cell Types and
Heights 477

Recipe: Building a Multiwheel Table 480

Recipe: Using a View-Based Picker 484

Recipe: Using the UIDatePicker 487

One More Thing: Formatting Dates 490

Summary 493

ptg

xiiiContents

12 Making Connections with GameKit and Bonjour 495
Recipe: Creating Basic GameKit Services 495

Recipe: Peeking Behind the Scenes 509

Recipe: Sending Complex Data Through GameKit 510

Recipe: GameKit Voice Chat 512

Recipe: Using Bonjour to Create an iPhone Server 515

Recipe: Creating a Mac Client for an iPhone Bonjour
Service 520

Recipe: Working Around Real-World GameKit
Limitations 523

Recipe: iPhone to iPhone Gaming Via
BonjourHelper 528

Creating an “Online” GameKit Connection 537

One More Thing: Scanning for Services 540

Summary 543

13 Networking 545
Recipe: Checking Your Network Status 545

Recipe: Extending the UIDevice Class for
Reachability 547

Recipe: Scanning for Connectivity Changes 549

Recipe: Recovering IP and Host Information 552

Recipe: Checking Site Availability 555

Recipe: Synchronous Downloads 557

Recipe: Asynchronous Downloads 560

Recipe: Handling Authentication Challenges 565

Recipe: Using the Keychain to Store Sensitive Data 566

Recipe: Uploading Via POST 569

Recipe: Uploading Data 572

Recipe: Sharing Keychains Between Applications 575

Recipe: Converting XML into Trees 577

Recipe: Building a Simple Web-Based Server 582

One More Thing: FTPHelper 586

Summary 588

14 Device Capabilities 589
Recipe: Accessing Core Device Information 589

Adding Device Capability Restrictions 590

ptg

xiv The iPhone Developer’s Cookbook

Recipe: Recovering Additional Device Information 592

Recipe: Monitoring the iPhone Battery State 594

Recipe: Enabling and Disabling the Proximity
Sensor 596

Recipe: Using Acceleration to Locate “Up” 597

Recipe: Using Acceleration to Move Onscreen
Objects 599

Recipe: Detecting Device Orientation 601

Recipe: Detecting Shakes Using Motion Events 603

Recipe: Detecting Shakes Directly from the
Accelerometer 605

One More Thing: Checking for Available Disk Space 608

Summary 609

15 Audio, Video, and MediaKit 611
Recipe: Playing Audio with AVAudioPlayer 611

Recipe: Looping Audio 618

Recipe: Handling Audio Interruptions 621

Recipe: Audio That Ignores Sleep 622

Recipe: Recording Audio 624

Recipe: Recording Audio with Audio Queues 629

Recipe: Playing Video with the Media Player 634

Recipe: Recording Video 636

Recipe: Picking and Editing Video 639

Recipe: Picking Audio with the
MPMediaPickerController 641

Creating a Media Query 645

Recipe: Using the MPMusicPlayerController 649

One More Thing: Additional Movie Player Properties 653

Summary 653

16 Push Notifications 655
Introducing Push Notifications 655

Provisioning Push 659

Registering Your Application 662

Recipe: Push Client Skeleton 667

Building Notification Payloads 672

Recipe: Sending Notifications 676

Recipe: Push in Action 681

ptg

xvContents

Feedback Service 685

Designing for Push 686

Summary 687

17 Using Core Location and MapKit 689
How Core Location Works 689

Recipe: Core Location in a Nutshell 691

Recipe: Tracking Speed 695

Recipe: Computing Speed and Distance 696

Recipe: Keeping Track of “North” by Using Heading
Values 698

Recipe: Reverse Geocoding 700

Recipe: Viewing a Location 703

Recipe: User Location Annotations 707

Recipe: Creating Map Annotations 709

One More Thing: Geocoding 717

Summary 721

18 Connecting to the Address Book 723
Recipe: Working with the Address Book 723

Recipe: Searching the Address Book 738

Recipe: Accessing Image Data 741

Recipe: Picking People 742

Recipe: Limiting Contact Picker Properties 745

Recipe: Adding New Contacts 747

Recipe: Modifying Existing Contacts 748

Recipe: The ABUnknownPersonViewController 750

One More Thing: Adding Random Contact Art 752

Summary 755

19 A Taste of Core Data 757
Introducing Core Data 757

Recipe: Using Core Data for a Table Data Source 767

Recipe: Search Tables and Core Data 770

Recipe: Integrating Core Data Tables with Live
Data Edits 773

Recipe: Implementing Undo-Redo Support with
Core Data 775

Summary 778

ptg

xvi The iPhone Developer’s Cookbook

20 StoreKit: In-App Purchasing 779
Getting Started with StoreKit 779

Creating Test Accounts 781

Creating New In-App Purchase Items 782

Submitting the Application 787

Building a GUI 787

Purchasing Items 789

Validating Receipts 794

Summary 797

21 Accessibility and Other iPhone OS Services 799
Adding VoiceOver Accessibility to Your Apps 799

Recipe: Adding Custom Settings Bundles 806

Recipe: Creating URL-Based Services 814

Summary 819

A Info.plist Keys 821

Index 825

ptg

Acknowledgments
This book would not exist without the efforts of Chuck Toporek (my editor and whip-
cracker), Chris Zahn (the awesomely talented development editor), Romny French (the
faithful and rocking editorial assistant who kept things rolling behind the scenes), and
to Karen Gettman (Chuck’s Editor-in-Chief) for her continued support of this ever-
growing (and I do mean growing—just check out the page count) book.Also, a big
thank you to the entire Addison-Wesley/Pearson production team, specifically Kristy
Hart,Anne Goebel, Gary Adair, Keith Cline, Geneil Breeze, Cheryl Lenser, Chelsey
Marti, and Jake McFarland.Thanks also to the crew at Safari for getting my book up in
Rough Cuts and for quickly fixing things when technical glitches occurred.

Thanks go as well to Neil Salkind, my agent of many years, to the tech reviewers
who helped keep this book in the realm of sanity rather than wishful thinking, and to all
my colleagues, both present and former, at TUAW,Ars Technica, and the Digital
Media/Inside iPhone blog.

Special thanks go to Joachim Bean and Aaron Basil. In addition to tech reviewing this
book, these two men provided early feedback as I was developing each chapter, offering
critical insight and advice. More than anyone else, they helped shape the book you now
hold in your hands.They delivered a level of feedback that was both astonishing, and
deeply, deeply appreciated, even when queried at inhuman hours of the day.Thanks also
to Tim Isted (author of Core Data for iPhone, coming soon from Addison-Wesley), for his
valuable input on the Core Data chapter in this book. I’d also like to thank someone for
placing some keen eyes on the GameKit chapter, but I can’t, so I’ll just have to say,
“Thanks, Mr. X.” I couldn’t have done this without the help of my technical review
team, so thank you all very much. Special thanks to the rest of my technical review team
including Roberto Gamboni, John Muchow, and Scott Mikolaitis.

I am deeply indebted to the wide community of iPhone developers, including Alex
Schaefer, Nick Penree, James Cuff, Jay Freeman, Mark Montecalvo,August Joki, Max
Weisel, Optimo, Kevin Brosius, Planetbeing, Pytey, Roxfan, MuscleNerd, np101137,
UnterPerro,Youssef Francis, Bryan Henry, Daniel Peebles, ChronicProductions, Greg
Hartstein, Emanuele Vulcano, Sean Heber, Steven Troughton-Smith, Dick Applebaum,
Kevin Ballard, Jay Abbott,Tim Grant Davies, Landon Fuller, Stefan Hafeneger, Scott
Elich, chrallelinder, J. Roman, jtbandes,Artissimo,Aaron Alexander, Scott Lawrence,
Kenny Chan Ching-Kin, Sjoerd van Geffen,Absentia, Nownot, Matt Brown, Chris
Foresman,Aron Trimble, Paul Griffin, Nicolas Haunold,Anatol Ulrich (hypnocode
GmbH), Kristian Glass,Yanik Magnan, ashikase, Eric Mock, and everyone at the iPhone
developer channels at irc.saurik.com and irc.freenode.net, among many others too
numerous to name individually.Their techniques, suggestions, and feedback helped make
this book possible. If I have overlooked anyone who helped contribute, please accept my
apologies for the oversight.

ptg

Special thanks go out to my family and friends, who supported me through month
after month of new beta releases and who patiently put up with my unexplained
absences and frequent howls of despair. I appreciate you all hanging in there with me.
And thanks to my children for their steadfastness, even as they learned that a hunched
back and the sound of clicking keys is a pale substitute for a proper mother. My kids
provided invaluable assistance over the last few months by testing applications, offering
suggestions, and just being awesome people. I am such an insanely lucky mom that these
kids are part of my life.

About the Author
Erica Sadun has written, coauthored, and contributed to about three dozen books on
technology, particularly in the areas of programming, digital video, and digital photogra-
phy.An unrepentant geek, Sadun has never met a gadget she didn’t need. Her checkered
past includes run-ins with NeXT, Newton, iPhone, and myriad successful and unsuccess-
ful technologies.When not writing, she and her geek husband parent three adorable
geeks-in-training, who regard their parents with restrained bemusement.

ptg

Preface

F ew platforms match the iPhone’s unique developer technologies.The iPhone com-
bines OS X-based mobile computing with an innovative multitouch screen, location
awareness, an onboard accelerometer, and more.When Apple first introduced the

iPhone SDK beta in March 2008, developers responded in droves, bringing Apple’s
servers to its knees. In less than a week, developers downloaded the iPhone SDK more
than 100,000 times.

Since then, more than 50,000 applications have been delivered to the App Store for an
audience that now exceeds 30 million iPhones and more than 20 million iPod touches.As
the iPhone ecosystem continues to grow, The iPhone Developer’s Cookbook will continue to
evolve as an accessible resource for those new to iPhone programming.

What’s New in This Edition?
If you purchased the first edition of this book, you might ask yourself, Why do I need to
buy the new edition, too? The answer is pretty simple: Just compare the size of the two
books.This new edition is more than 200% larger than the original edition.That’s right,
we’ve packed on almost 500 pages of new material so we could cover everything that’s
new to the iPhone 3.0 SDK, as well as expand on some of the topics covered in the first
edition.

Some things you’ll find new to this edition include chapters or coverage on

■ How to use Xcode and Interface Builder

■ An Objective-C jump-start tutorial

■ Core Data for the iPhone

■ MapKit and Core Location

■ Using GameKit beyond games to add chat and Bonjour networking

■ Advanced motion detection including shake-to-undo support

■ The new search display controller class, along with custom table headers and
footers

■ Apple’s new device capabilities specifications

■ In-App purchasing with StoreKit

■ Push notification, both from the client and server side

■ Searching for and playing media from the onboard iPod library

ptg

xx Preface

■ Video capture and editing, plus the new AV audio player and recorder classes

■ How to leverage the Accessibility framework, including VoiceOver, in your app

■ And much, much more!

You’ll also notice that we’ve taken your feedback to heart.When the first edition came
out, there was some confusion about who the target audience was for this book.Was it
for new developers or experienced developers? Well, we’ve taken care of that, too.While
this book is for experienced iPhone and Mac developers already familiar with
Objective-C, Xcode, and the Cocoa frameworks, this new edition includes an
“Objective-C Boot Camp” (see Chapter 3), and coverage of Xcode and Interface
Builder, to help developers who have experience working in other languages (or on
other platforms) quickly get oriented into the Mac/iPhone world.

While it is true that one book can’t be everything to everyone, we’re certainly giving
it a shot in this new edition.We hope you like the changes you see throughout this big-
ger book, and if you do, be sure to post a review on Amazon or send me a note
(erica@ericasadun.com).

Audience for This Book
This book is written for experienced developers who want to build apps for the iPhone
and iPod touch.You should already be familiar with Objective-C, the Cocoa frame-
works, and the Xcode Tools.That said, if you’re new to the platform, this new edition of
The iPhone Developer’s Cookbook includes a quick-and-dirty introduction to Objective-C,
along with an intro to the Xcode Tools, to help you quickly get up to speed.

New to the Mac or iPhone?
If you have some C experience, or have spent some time with another object-oriented lan-
guage such as C++ or Java, we included a section in this Preface to help guide you down
the road to being a Mac developer. Be sure to read the section “Your Roadmap to
Mac/iPhone Development,” later in this Preface.

Although each programmer brings different goals and experiences to the table, most
iPhone developers end up solving similar tasks in their development work:

■ “How do I build a table?”

■ “How do I create a secure Keychain entry?”

■ “How do I search the Address Book?”

■ “How do I move between views?”

■ “How do I use Core Location and the iPhone 3GS’s magnetometer?”

And so on. If you’ve asked yourself these questions, then this book is for you. Complete
with clear, fully documented examples, The iPhone Developer’s Cookbook will get you up

ptg

xxiWhat You’ll Need

to speed and working with the iPhone SDK in no time. Best of all, all of the code
recipes in the book have been tested—and put to the test in real-world applications—
offering you ready-to-use solutions for the apps you’re building today.

What You’ll Need
It goes without saying that, if you’re planning to build apps for the iPhone or iPod
touch, you’re going to need at least one of those devices to test out your application.The
following list covers the basics of what you need to begin programming for the iPhone
or iPod touch:

■ Apple’s iPhone SDK—The latest version of the iPhone SDK can be down-
loaded from Apple’s iPhone Dev Center (http://developer.apple.com/iphone).You
must join Apple’s (free) developer program before you download; however, if you
plan to sell apps through the App Store, you will need to become a paid iPhone
developer, which costs $99/year for individuals and $299/year for enterprise (i.e.,
corporate) developers. Registered developers receive certificates that allow them to
“sign” and download their applications to their iPhone/iPod touch for testing and
debugging.

University/Student Discounts
Apple also offers a University program for students and educators. If you are a CS student
taking classes at the university level, check with your professor to see if your school is
part of the University Program. For more information about the iPhone Developer University
Program, see http://developer.apple.com/support/iphone/university.

■ An Intel-based Mac running Mac OS X Leopard or Snow Leopard—
Snow Leopard is recommended, as it offers access to Xcode 3.2 with its many new
features like “Build and Analyze.”You need plenty of disk space for development,
and your Mac should have at least 1GB RAM, preferably 2GB or 4GB to help
speed up compile time.

■ An iPhone or iPod touch—Although the iPhone SDK and Xcode include a
simulator for you to test your applications in, you really do need to have an actual
iPhone and/or iPod touch if you’re going to develop for the platform.You can use
the USB cable to tether your unit to the computer and install the software you’ve
built. For real-life App Store deployment, it helps to have several units on-hand,
representing the various hardware generations, so you can test on the same plat-
forms your target audience will use.

■ At least one available USB 2.0 port—This enables you to tether a develop-
ment iPhone or iPod touch to your computer for file transfer and testing.

■ An Internet connection—This connection enables you to test your programs
with a live Wi-Fi connection as well as with an EDGE or 3G service.

http://developer.apple.com/iphone
http://developer.apple.com/support/iphone/university

ptg

xxii Preface

1 See http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/OOP_ObjC/

OOP_ObjC.pdf.

■ Familiarity with Objective-C—To program for the iPhone, you need to know
Objective-C 2.0.The language is based on ANSI C with object-oriented exten-
sions, which means you also need to know a bit of C, too. If you have pro-
grammed with Java or C++ and are familiar with C, making the move to
Objective-C is pretty easy. Chapter 3,“Objective-C Boot Camp,” helps you get up
to speed.

Note
Although the SDK supports development for the iPhone and iPod touch, as well as possible
yet-to-be-announced platforms, this book refers to the target platform as iPhone for the
sake of simplicity. When developing for the iPod touch, most of the examples in this book
are applicable; however, certain features such as telephony and onboard speakers are not
applicable to the iPod touch.

Your Roadmap to Mac/iPhone Development
As mentioned earlier, one book can’t be everything to everyone.And try as I might, if
we were to pack everything you’d need to know into this book, you wouldn’t be able to
pick it up.There is, indeed, a lot you need to know to develop for the Mac and iPhone
platforms. If you are just starting out and don’t have any programming experience, your
first course of action should be to take a college-level course in the C programming lan-
guage.While the alphabet might start with the letter A, the root of most programming
languages, and certainly your path as a developer, is C.

Once you know C and how to work with a compiler (something you’ll learn in that
basic C course), the rest should be easy. From there, you’ll hop right on to Objective-C
and learn how to program with that alongside the Cocoa frameworks.To help you along
the way, I’ve put together the flowchart shown in Figure P-1 to point you at some
books of interest.

Once you know C, you’ve got a few options for learning how to program with
Objective-C. For a quick-and-dirty overview of Objective-C, you can turn to Chapter 3
of this book and read the Objective-C Boot Camp. However, if you want a more in-
depth view of the language, you can either read Apple’s own documentation, Object-
Oriented Programming with Objective-C 2.0,1 or you can opt to buy a book such as
Stephen Kochan’s Programming in Objective-C 2.0 (Addison-Wesley, 2009).

http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/OOP_ObjC/OOP_ObjC.pdf
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/OOP_ObjC/OOP_ObjC.pdf

ptg

xxiiiYour Roadmap to Mac/iPhone Development

College-level
course on C

Do You Know
“Objective-C”?

Familiar with
Cocoa and Xcode?

No Yes

No Yes

No Yes

Do You Know
C?

Figure P-1 What it takes to be an iPhone programmer.

ptg

xxiv Preface

2 See the Cocoa Fundamentals Guide (http://developer.apple.com/mac/library/documentation/

Cocoa/Conceptual/CocoaFundamentals/CocoaFundamentals.pdf) for a head start on Cocoa, and

for Xcode, see A Tour of Xcode (http://developer.apple.com/mac/library/documentation/

DeveloperTools/Conceptual/A_Tour_of_Xcode/A_Tour_of_Xcode.pdf).

3 Big Nerd Ranch: http://www.bignerdranch.com.

With the language behind you, next up is tackling Cocoa and the developer tools,
otherwise known as Xcode. For that, you have a few different options.Again, you can
refer to Apple’s own documentation on Cocoa and Xcode,2 or if you prefer books, you
can learn from the best.Aaron Hillegass, founder of the Big Nerd Ranch in Atlanta,3 is
the author of Cocoa Programming for Mac OS X, now in its third edition.Aaron’s book is
highly regarded in Mac developer circles and is the most-recommended book you’ll see
on the cocoa-dev mailing list.To learn more about Xcode, look no further than Fritz
Anderson’s Xcode 3 Unleashed from Sams Publishing.While the current edition doesn’t
cover iPhone-specific features of Xcode (which were introduced with Xcode 3.1), the
book will give you a solid grounding in how to use Xcode as your development
environment.

Note
There are plenty of other books from other publishers on the market, including the best-
selling Beginning iPhone 3 Development, by Dave Marks and Jeff LaMarche (Apress, 2009),
so don’t just limit yourself to one book or publisher.

To truly master Mac development, you need to look at a variety of sources: books, blogs,
mailing lists,Apple’s own documentation, and, best of all, conferences. If you get the
chance to attend WWDC or C4, you’ll know what I’m talking about.The time you
spend at those conferences talking with other developers and in the case of WWDC,
talking with Apple’s engineers, is well worth the expense if you are a serious developer.

How This Book Is Organized
This book offers single-task recipes for the most common issues new iPhone developers
face: laying out interface elements, responding to users, accessing local data sources, and
connecting to the Internet. Each chapter groups related tasks together, allowing you to
jump directly to the solution you’re looking for without having to decide which class or
framework best matches that problem.

The iPhone Developer’s Cookbook offers you “cut-and-paste convenience,” which means
you can freely reuse the source code from recipes in this book for your own applications
and then tweak the code to suit your app’s needs.

http://www.bignerdranch.com
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaFundamentals.pdf
http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaFundamentals.pdf
http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/A_Tour_of_Xcode/A_Tour_of_Xcode.pdf
http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/A_Tour_of_Xcode/A_Tour_of_Xcode.pdf

ptg

xxvHow This Book Is Organized

Here’s a rundown of what you find in this book’s chapters:

■ Chapter 1, “Introducing the iPhone SDK”—Chapter 1 introduces the
iPhone SDK and explores the iPhone as a delivery platform, limitations and all. It
explains the breakdown of the standard iPhone application and helps you get start-
ed with the iPhone Developer Portal.

■ Chapter 2, “Building Your First Project”—Chapter 2 covers the basics for
building your first Hello World-style applications. It introduces Xcode and Interface
Builder, showing how you can use these tools in your projects.You read about basic
debugging tools, walk through using them, and pick up some tips about handy
compiler directives.You’ll also discover how to create provisioning profiles and use
them to deploy your application to your device, to beta testers, and to App Store.

■ Chapter 3, “Objective-C Boot Camp”—If you’re new to Objective-C as well as
to the iPhone, you’ll appreciate this basic skills chapter. Objective-C is the standard
programming language for both the iPhone and for Mac OS X. It offers a powerful
object-oriented language that lets you build applications that leverage Apple’s Cocoa
and Cocoa Touch frameworks. Chapter 3 introduces the language, provides an
overview of its object-oriented features, discusses memory management skills, and
adds a common class overview to get you started with Objective-C programming.

■ Chapter 4, “Designing Interfaces”—Chapter 4 introduces the iPhone’s library
of visual classes. It surveys these classes and their geometry. In this chapter, you
learn how to work with these visual classes and discover how to handle tasks like
device reorientation.You’ll read about solutions for laying out and customizing
interfaces and learn about hybrid solutions that rely both on Interface Builder-cre-
ated interfaces and Objective-C-centered ones.

■ Chapter 5, “Working with View Controllers”—The iPhone paradigm in a
nutshell is this: small screen, big virtual worlds. In Chapter 5, you discover the vari-
ous view controller classes that enable you to enlarge and order the virtual spaces
your users interact with.You learn how to let these powerful objects perform all
the heavy lifting when navigating between iPhone application screens.

■ Chapter 6, “Assembling Views and Animations”—Chapter 6 introduces
iPhone views, objects that live on your screen.You see how to lay out, create, and
order your views to create backbones for your iPhone applications.You read about
view hierarchies, geometries, and animations, features that bring your iPhone
applications to life.

■ Chapter 7, “Working with Images”—Chapter 7 introduces images, specifically
the UIImage class, and teaches you all the basic know-how you need for working
with iPhone images.You learn how to load, store, and modify image data in your
applications.You see how to add images to views and how to convert views into
images.And you discover how to process image data to create special effects, how

ptg

xxvi Preface

to access images on a byte-by-byte basis, and how to take photos with your
iPhone’s built-in camera.

■ Chapter 8, “Gestures and Touches”—On the iPhone, the touch provides the
most important way that users communicate their intent to an application.Touches
are not limited to button presses and keyboard interaction. Chapter 8 introduces
direct manipulation interfaces, multitouch, and more.You see how to create views
that users can drag around the screen and read about distinguishing and interpret-
ing gestures.

■ Chapter 9, “Building and Using Controls”—Control classes provide the basis
for many of the iPhone’s interactive elements, including buttons, text fields, sliders,
and switches.This chapter introduces controls and their use.You read about stan-
dard control interactions and how to customize these objects for your application’s
specific needs.You even learn how to build your own controls from the ground
up, as Chapter 9 creates a custom touch wheel.

■ Chapter 10, “Alerting Users”—The iPhone offers many ways to provide users
with a heads-up, from pop-up dialogs and progress bars to audio pings and status
bar updates. Chapter 10 shows how to build these indications into your applica-
tions and expand your user-alert vocabulary. It introduces standard ways of work-
ing with these pop-up classes and offers solutions that allow you to craft more lin-
ear programs without explicit callbacks.

■ Chapter 11, “Creating and Managing Table Views”—Tables provide a scroll-
ing interaction class that works particularly well on a small, cramped device. Many,
if not most, apps that ship with the iPhone and iPod touch center on tables,
including Settings,YouTube, Stocks, and Weather. Chapter 11 shows how iPhone
tables work, what kinds of tables are available to you as a developer, and how you
can use table features in your own programs.

■ Chapter 12, “Making Connections with GameKit and Bonjour”—
GameKit is Apple’s new ad hoc networking solution for peer-to-peer connectivity.
It’s built on a technology called Bonjour that offers simple, no-configuration com-
munications between devices. Chapter 12 introduces GameKit, allowing you to
build games and utilities that move information back and forth between iPhones
or between an iPhone and a desktop system.This chapter covers standard
GameKit, introduces GameKit Voice for walkie-talkie-style voice chats, and offers
some basic Bonjour programming that extends beyond GameKit limitations,
allowing you to expand your iPhone communications to the desktop.

■ Chapter 13, “Networking”—As an Internet-connected device, the iPhone is
particularly suited to subscribing to Web-based services.Apple has lavished the
platform with a solid grounding in all kinds of network computing services and
their supporting technologies. Chapter 13 surveys common techniques for net-
work computing and offering recipes that simplify day-to-day tasks.You read about

ptg

xxviiHow This Book Is Organized

network reachability, synchronous and asynchronous downloads, working with the
iPhone’s secure keychain to meet authentication challenges, and more.

■ Chapter 14, “Device Capabilities”—Each iPhone device represents a meld of
unique, shared, momentary, and persistent properties.These properties include the
device’s current physical orientation, its model name, battery state, and access to
onboard hardware. Chapter 14 looks at the device from its build configuration to
its active onboard sensors. It provides recipes that return a variety of information
items about the unit in use.You read about testing for hardware prerequisites at
runtime and specifying those prerequisites in the application’s Info.plist file.You
discover how to solicit sensor feedback and subscribe to notifications to create
callbacks when those sensor states change.This chapter covers the hardware, file
system, and sensors available on the iPhone device and helps you programmatically
take advantage of those features.

■ Chapter 15, “Audio,Video, and MediaKit”—The iPhone is a media master;
its built-in iPod features expertly handle both audio and video.The iPhone SDK
exposes that functionality to developers.A rich suite of classes simplifies media
handling via playback, search, and recording. Chapter 15 introduces recipes that use
these classes, presenting media to your users and letting your users interact with
that media.You see how to build audio and video players as well as audio and
video recorders.You discover how to browse the iPod library and how to choose
what items to play.

■ Chapter 16, “Push Notifications”—When developers need to communicate
directly with users, push notifications provide the solution.They deliver messages
directly to the iPhone screen via a special Apple service. Push notifications let the
iPhone display an alert, play a custom sound, or update an application badge. In
this way, off-phone services connect with an iPhone-based client, letting them
know about new data or updates. Chapter 16 introduces push notifications. In this
chapter, you learn how push notifications work and dive into the details needed to
create your own push-based system.

■ Chapter 17, “Using Core Location and MapKit”—Core Location infuses the
iPhone with on-demand geopositioning based on a variety of technologies and
sources. MapKit adds interactive in-application mapping allowing users to view
and manipulate annotated maps.With Core Location and MapKit, you can develop
applications that help users meet up with friends, search for local resources, or pro-
vide location-based streams of personal information. Chapter 17 introduces these
location-aware frameworks and shows you how you can integrate them into your
iPhone applications.

■ Chapter 18, “Connecting to the Address Book”—The iPhone’s Address
Book frameworks allow you to programmatically access and manage the contacts
database. Chapter 18 introduces the Address Book and demonstrates how to use its
frameworks in your applications.You read about accessing information on a con-
tact-by-contact basis, how to modify and update contact information, and how to

ptg

xxviii Preface

use predicates to find just the contact you’re interested in.This chapter also covers
the GUI classes that provide interactive solutions for picking, viewing, and modify-
ing contacts.

■ Chapter 19, “A Taste of Core Data”—Core Data offers managed data stores
that can be queried and updated from your application. It provides a Cocoa
Touch-based object interface that brings relational data management out from
SQL queries and into the Objective-C world of iPhone development. Chapter 19
introduces Core Data. It provides just enough recipes to give you a taste of the
technology, offering a jumping off point for further Core Data learning.You learn
how to design managed database stores, add and delete data, and query that data
from your code.

■ Chapter 20, “StoreKit: In-App Purchasing”—New to the 3.0 SDK, StoreKit
offers in-app purchasing that integrates into your software.This chapter introduces
StoreKit and shows you how to use the StoreKit API to create purchasing options
for users. In this chapter, you read about getting started with StoreKit.You learn
how set up products at iTunes Connect and localize their descriptions.And you
see what it takes to create test users and how to work your way through various
development/deployment hurdles.This chapter teaches you how to solicit purchase
requests from users and how to hand over those requests to the store for payment.
This chapter covers the entire StoreKit picture, from product creation to sales.

■ Chapter 21, “Accessibility and Other iPhone OS Services”—Applications
interact with standard iPhone services in a variety of ways.This chapter explores
some of these approaches.Applications can define their interfaces to the iPhone’s
VoiceOver accessibility handler, creating descriptions of their GUI elements.They
can create bundles to work with the built-in Settings applications so that users can
access applications defaults using that interface.Applications can also declare public
URL schemes allowing other iPhone applications to contact them and request
services that they themselves offer.This chapter explores application service inter-
action. It shows you how you implement these features in your applications.You
see how to build these service bridges through code, through Interface Builder,
and through supporting files.

■ Appendix A, “Info.plist Keys”—This appendix gathers together many of the
keys available for the iPhone’s Info.plist file, the file that describes an application to
the iPhone operating system.

About the Sample Code
For the sake of pedagogy, this book’s sample code usually presents itself in a single
main.m file.This is not how people normally develop iPhone or Cocoa applications, or
should be developing them, but it provides a great way of presenting a single big idea. It’s
hard to tell a story when readers must look through 5 or 7 or 9 individual files at once.

ptg

xxixAbout the Sample Code

Offering a single file concentrates that story, allowing access to that idea in a single
chunk.

These samples are not intended as stand-alone applications.They are there to demon-
strate a single recipe and a single idea. One main.m file with a central presentation
reveals the implementation story in one place. Readers can study these concentrated
ideas and transfer them into normal application structures, using the standard file struc-
ture and layout.The presentation in this book does not produce code in a standard day-
to-day best practices approach. Instead, it reflects a pedagogical approach that offers con-
cise solutions that you can incorporate back into your work as needed.

Contrast that to Apple’s standard sample code, where you must comb through many
files to build up a mental model of the concepts that are on offer.Those samples are built
as full applications, often doing tasks that are related to but not essential to what you
need to solve. Finding just those relevant portions is a lot of work.The effort may out-
weigh any gains. In this book, there are two exceptions to this one-file rule:

■ First, application-creation walkthroughs use the full file structure created by Xcode
to mirror the reality of what you’d expect to build on your own.The walk-
through folders may therefore contain a dozen or more files at once.

■ Second, standard class and header files are provided when the class itself is the
recipe or provides a precooked utility class. Instead of highlighting a technique,
some recipes offer these precooked class implementations and categories (that is,
extensions to a preexisting class rather than a new class). For those recipes, look for
separate .m and .h files in addition to the skeletal main.m that encapsulates the rest
of the story.

For the most part, the samples for this book use a single application identifier,
com.sadun.helloworld.You need to replace this identifier with one that matches your
provision profile.This book uses one identifier to avoid clogging up your iPhone with
dozens of samples at once. Each sample replaces the previous one, ensuring that
SpringBoard remains relatively uncluttered. If you want to install several samples at once,
simply edit the identifier, adding a unique suffix, such as com.sadun.helloworld.table-
edits.

Getting the Sample Code
The source code for this book can be found at the open source GitHub hosting site at
http://github.com/erica/iphone-3.0-cookbook-/tree.There, you find a chapter-by-
chapter collection of source code that provides working examples of the material cov-
ered in this book.

Sample code is never a fixed target. It continues to evolve as Apple updates its SDK
and the Cocoa Touch libraries. Get involved.You can pitch in by suggesting bug fixes
and corrections as well as by expanding the code that’s on offer. GitHub allows you to
fork repositories and grow them with your own tweaks and features, and share those
back to the main repository. If you come up with a new idea or approach, let us know.

http://github.com/erica/iphone-3.0-cookbook-/tree

ptg

xxx Preface

We’d be happy to include great suggestions both at the repository and in the next edi-
tion of this Cookbook.

Getting Git
You can download this Cookbook’s source code using the git version control system.A
Mac OS X implementation of git is available at http://code.google.com/p/git-osx-
installer. Mac OS X git implementations include both command line and GUI solutions,
so hunt around for the version that best suits your development needs.

Getting GitHub
GitHub (http://github.com) is the largest git hosting site, with more than 150,000 pub-
lic repositories. It provides both free hosting for public projects and paid options for pri-
vate projects.With a custom Web interface that includes wiki hosting, issue tracking, and
an emphasis on social networking of project developers, it’s a great place to find new
code or collaborate on existing libraries.You can sign up for a free account at their Web
site, allowing you to copy and modify the Cookbook repository or create your own
open source iPhone projects to share with others.

Contacting the Author
If you have any comments or questions about this book, please drop me an e-mail mes-
sage at erica@ericasadun.com, or stop by www.ericasadun.com for updates about the
book and news for iPhone developers. Please feel free to visit, download software, read
documentation, and leave your comments.

www.ericasadun.com
http://code.google.com/p/git-osx-installer
http://code.google.com/p/git-osx-installer
http://github.com

ptg

1
Introducing the iPhone SDK

The iPhone and iPod touch offer innovative mobile platforms that are a joy to
program.They are the first members of Apple’s new family of pocket-based
computing devices. Despite their diminutive proportions, they run a first-class

version of OS X with a rich and varied SDK that enables you to design, implement, and
realize a wide range of applications. For your projects, you can take advantage of the
iPhone’s multitouch interface and powerful onboard features using Xcode,Apple’s
integrated design environment. In this chapter, you discover the components of the SDK
and explore the product it creates: the iPhone application.You learn about Apple’s various
iPhone developer programs and how you can join.You explore the iPhone application
design philosophy and see how applications are put together. Finally, you read about setting
up your program credentials so you can put that philosophy to use and start programming.

iPhone Developer Programs
Are you ready to start programming for the iPhone? Ready to see what all the fuss is
about? Apple’s iPhone Software Development Kit (SDK) is readily available to members
of Apple’s iPhone developer programs.There are four.These programs include the free
online program, the paid enterprise program for in-house development, the paid standard
program that allows developers to submit their products to the App Store, and a special
University program (see Table 1-1).

Table 1-1 iPhone Developer Programs

Program Cost Audience

Online Developer
Program

Free Anyone interested in exploring the iPhone SDK without
commitment

Standard iPhone
Developer
Program

$99/
Year

Developers who want to distribute through App Store

ptg

2 Chapter 1 Introducing the iPhone SDK

Table 1-1 Continued

Program Cost Audience

0Enterprise
iPhone Developer
Program

$299/
Year

Large companies building proprietary software for
employees

University iPhone
Developer
Program

Free Free program for higher education institutions that
provide an iPhone development curriculum

Each program offers access to the iPhone SDK, which provides ways to build and deploy
your applications.The audience for each program is specific.

Online Developer Program
The free program is meant for anyone who wants to explore the iPhone SDK program-
ming environment but who isn’t ready to pay for further privileges.The free program
limits you to Mac-only programming.While you can run your applications in the simula-
tor, you cannot deploy those applications to the device or sell them in App Store.

Although each version of the simulator moves closer to representing actual device
performance, you should not rely on it for evaluating your application.An app that runs
rock solid on the simulator may be unresponsive or even cause crashes on the actual de-
vice.The simulator does not, for example, support vibration or accelerometer readings.
These and other features present on the device are not always available in the simulator.A
discussion about simulator limits follows later in this chapter in the section “Simulator
Limitations.”

Standard Developer Program
To receive device and distribution privileges, you must pay the $99/year program fee for
the standard iPhone developer program. Once paid, you gain access to App Store distri-
bution and can test your software on actual iPhone hardware.This program adds ad hoc
distribution as well, allowing you to distribute prerelease versions of your application to
up to 100 registered devices.The standard program provides the most general solution for
the majority of iPhone programmers who want to be in App Store. If you intend to con-
duct business through selling applications, this is the program to sign up for.

Enterprise Developer Program
The $299/year Enterprise program is meant for in-house application distribution. It’s tar-
geted at companies with 500 employees or more. Enterprise memberships do not offer
access to the iPhone App Store. Instead, you can build your own proprietary applications

ptg

3Getting Started

and distribute them to your employees’ hardware through a private storefront.The Enter-
prise program is aimed at large companies that want to deploy custom applications to
their employees such as ordering systems.

University Developer Program
Available only to higher education institutions, the University Developer Program is a
free program aimed at encouraging universities and colleges to develop an iPhone devel-
opment curriculum.The program allows professors and instructors to create teams with
up to 200 students, offering them access to the full iPhone SDK. Students can share their
applications with each other and their teachers, and the institution itself can submit appli-
cations to App Store.

Registering
Register for the free program at the main iPhone developer site at http://developer.
apple.com/iphone.You can sign up for the paid programs, Standard or Enterprise, at
http://developer.apple.com/iphone/program.

Getting Started
Regardless of which program you sign up for, you must have access to an Intel-based Mac
running a current version of Mac OS X. It also helps to have at least one, and preferably
several, iPhone and iPod touch units to test on to ensure that your applications work
properly on each platform, including legacy units like the first generation iPhone and
iPod touch.

There are often delays associated with signing up for paid programs.After registering,
it can take weeks for account approval and invoicing. Once you actually hand over your
money, it may take another 24 to 72 hours for your access to advanced portal features to
go live.

Registering for iTunes Connect, so you can sell your application through App Store,
offers a separate hurdle. Fortunately, this is a process you can delay until after you’ve fin-
ished signing up for a paid program.With iTunes Connect, you must collect banking in-
formation and incorporation paperwork prior to setting up your App Store account.You
must also review and agree to Apple’s distribution contracts.Apple offers full details at
itunesconnect.apple.com.

Downloading the SDK
Download your copy of the iPhone SDK from the main iPhone developer site at http:
//developer.apple.com/iphone. Use your program credentials to access the download
page. So be sure you’ve signed up for one of the three programs before attempting to
download.The free program offers access only to fully released SDKs.The paid program
adds early looks at SDK betas letting you develop to prerelease firmware.

http://developer.apple.com/iphone
http://developer.apple.com/iphone
http://developer.apple.com/iphone/program
http://developer.apple.com/iphone
http://developer.apple.com/iphone

ptg

4 Chapter 1 Introducing the iPhone SDK

The kit, which typically runs a few gigabytes in size, installs a complete suite of inter-
active design tools onto your Macintosh.This suite consists of components that form the
basis of the iPhone development environment. iPhone-specific components include the
following software:

n Xcode—Xcode is the most important tool in the iPhone development arsenal. It
provides a comprehensive project development and management environment,
complete with source editing, comprehensive documentation, and a graphical de-
bugger. Xcode is built around several open source GNU tools, namely gcc (com-
piler) and gdb (debugger).

n Interface Builder—Interface Builder (IB) provides a rapid prototyping tool for
laying out user interfaces graphically and linking to those prebuilt interfaces from
your Xcode source code.With IB, you place out your interface using visual design
tools and then connect those onscreen elements to objects and method calls in
your application.

n Simulator—The iPhone Simulator runs on the Macintosh and enables you to cre-
ate and test applications on your desktop.You can test programs without connecting
to an actual iPhone or iPod touch.The simulator offers the same API used on the
iPhone and provides a preview of how your concept designs will look.When
working with the simulator, Xcode compiles Intel x86 code that runs natively on
the Macintosh rather than ARM-based code used on the iPhone.

n Instruments—Instruments profiles how iPhone applications work under the
hood. It samples memory usage and monitors performance.This lets you identify
and target problem areas in your applications and work on their efficiency. Instru-
ments offers graphical time-based performance plots that show where your applica-
tions are using the most resources. Instruments is built around the open source
DTrace package developed by Sun Microsystems. Instruments plays a critical role in
tracking down memory leaks and making sure your applications run efficiently on
the iPhone platform.

n Shark—Shark provides performance optimization by analyzing where an applica-
tion spends most of it its time. It locates and identifies bottlenecks, enabling you to
speed your application performance.

Together, the components of this iPhone SDK suite enable you to develop your applica-
tions. From a native application developer’s point of view, the most important compo-
nents are Xcode, Interface Builder, and the simulator, with Instruments providing an
essential tuning tool. In addition to these tools, there’s an important piece not on this list.
This piece ships with the SDK but is easy to overlook. I refer to Cocoa Touch.

Cocoa Touch is the library of classes provided by Apple for rapid iPhone application
development. Cocoa Touch, which takes the form of a number of API frameworks, en-
ables you to build graphical event-driven applications using user interface elements such
as windows, text, and tables. Cocoa Touch on the iPhone is analogous to Cocoa and App-
Kit on Mac OS X and supports creating rich, reusable interfaces on the iPhone.

ptg

5Getting Started

Many developers are surprised by the size of iPhone applications; they’re tiny. Cocoa
Touch’s library support is the big reason for this. By letting Cocoa Touch handle all the
heavy UI lifting, your applications can focus on getting their individual tasks done.The
result is compact, focused code that does a single job at a time.

Using Cocoa Touch lets you build applications with a polished look and feel, consis-
tent with those developed by Apple. Remember that Apple must approve your software.
Apple judges applications on the basis of appearance, operation, and even content. Using
Cocoa Touch helps you better approximate the high design standards set by Apple’s native
applications.

Development Devices
A physical iPhone or iPod touch provides a key component of the software development
kit.Testing on the iPhone is vital.As simple and convenient as the SDK Simulator is, it
falls far short of the mark when it comes to a complete iPhone testing experience. Given
that the iPhone is the target platform, it’s important that your software runs its best on its
native system rather than on the simulator.The iPhone itself offers the fully leaded, un-
watered-down testing platform you need.

Apple regularly suggests that the development unit needs to be devoted exclusively to
development. Reality has proven more hit and miss on that point.When you first tether
your iPhone to your computer using a standard USB cable, Xcode detects your unit. If
you want to use your device for development, confirm that; otherwise, click Ignore.

Using a device as a development unit means that it is subject to onboard data changes
and might no longer work reliably as a field unit, but experience shows that once you’re
past early betas of new SDKs that the devices seem to hold up fine for regular day-to-day
use. It’s still best to have extra units on hand devoted solely to development, but if you’re
short on available units, you can probably use your main iPhone for development; just be
aware of the risks.

When developing, it’s important to test on as many iPhone platforms as possible. Be
aware that there are real platform differences between each model of iPhone and iPod
touch. For example, the second generation iPod has a built-in speaker; the first generation
does not. It also uses a faster processor than the first-generation iPod touch. iPhones have
cameras, which none of the current iPod touches offer.A discussion of model-specific
differences follows later in this chapter.

Simulator Limitations
Each release of the Macintosh-based iPhone Simulator continues to improve on previous
technology.That having been said, there are real limitations that you must take into ac-
count. From software compatibility to hardware, the simulator approximates but does not
equal actual device performance.

The simulator uses many Macintosh frameworks and libraries, offering features that are
not actually present on the iPhone.Applications that appear to be completely operational

ptg

6 Chapter 1 Introducing the iPhone SDK

and fully debugged on the simulator may flake out or crash on the device itself.You sim-
ply cannot fully debug any program solely by using the simulator and be assured that the
software will run bug-free on the iPhone.

The simulator is also missing many hardware features.You cannot use the simulator to
test the onboard camera or accelerometer feedback.Although the simulator can read ac-
celeration data from your Macintosh using its sudden motion sensor if there’s one on-
board (usually for laptops), the readings will differ from iPhone readings and are not
practical for development or testing.The simulator does not vibrate or offer multitouch
input (at least not beyond a standard “pinch” gesture). Core location is fixed to the coor-
dinates of 1 Infinite Loop in California, that is, the Apple Headquarters building.

From a software point of view, the basic keychain security system is not available on
the simulator.You cannot register an application to receive push notification either.These
missing elements mean that there are certain kinds of programs that can only be properly
used when deployed to an iPhone.

Another difference between the simulator and the device is the audio system.The au-
dio session structure is not implemented on the simulator, hiding the complexity of mak-
ing things work properly on the device. Even in areas where the simulator does emulate
the iPhone APIs, you may find behavioral differences as the simulator is based on the Mac
OS X Cocoa frameworks.

That’s not to say that the simulator does not play an important testing role. It’s quick
and easy to try out a program on the simulator, typically much faster than transferring a
compiled application to an iPhone unit.The simulator lets you rotate your virtual device
to test reorientation, produce simulated memory warnings, and try out your UI as if your
user were receiving a phone call. It’s much easier to test out text processing on the simu-
lator because you can use your keyboard; this simplifies repeated text entry tasks such as
entering account names and passwords for applications that connect to the net.

In the end, the simulator offers compromise.You gain a lot of testing convenience but
not so much that you can bypass actual device testing.

Tethering
All interactive testing must be done using a USB cable.At this time,Apple provides no
way to transfer, debug, or monitor applications wirelessly.That means you do nearly all
your work tethered over a standard iPhone USB cable.The physical reality of tethered
debugging can be problematic. Reasons for this include the following points:

n When you unplug the cable, you unplug all the interactive debugging, console, and
screenshot features. So you need to keep that cable plugged in all the time.

n You cannot reasonably use the iPhone with a dock. Sure, the dock is stable, but
touching the screen while testing interfaces is extremely awkward when the iPhone
is seated at a 75-degree angle.

n The tether comes to the bottom, not the top of the unit, meaning it’s easy to catch
that cable and knock your iPhone to the floor.

ptg

7Understanding Model Differences

Obviously, untethered testing would vastly improve many of these issues. Unfortunately,
Apple has not yet introduced that option. If you like, you can Rube Goldberg-ize your
iPhone to get around these problems. One solution is to attach Velcro to the back of an
iPhone case—a case that leaves the bottom port connector open—and use that to stabi-
lize your iPhone on your desk. It’s ugly, but it keeps your iPhone from getting knocked to
the floor all the time.You can also now purchase third-party cradles for the iPhone that
help with development work.These stands hold the iPhone a few inches off the desk and
keep the cable directed toward the back.

Always try to tether your unit to a port directly on your Mac for best results. If you
must use a hub, connect to a powered system that supports USB 2.0. Most older key-
boards and displays only provide unpowered USB 1.1 connections.When testing, it helps
to choose a reliable, powered 2.0 port you can count on.

Understanding Model Differences
When it comes to application development, many iPhone apps never have to consider the
platform on which they’re being run. Most programs rely only on the display and touch
input.They can be safely deployed to all the current iPhone-family devices; they require
no special programming or concern about which platform they are running on.

There are, however, real platform differences.These differences are both significant and
notable.They play a role in deciding how you tell App Store to sell your software and
how you design the software in the first place. Should you deploy your software only to
the iPhone? To the iPhone and the second generation and later iPod touch? Or should
your application be targeted to every platform? Here are some issues to consider:

Camera
Each iPhone ships with a camera; iPod touches do not.These cameras are useful.You can
task the camera to take shots and then send them to Flickr or Twitter.You can use the
camera to grab images for direct manipulation, and so forth.The iPhone SDK provides a
built-in image picker controller that offers camera access to your users, but only on
camera-ready platforms.Video services are limited to the 3G S model and later.

When building camera-ready applications, know that you cannot deploy them to
iPods. Camera services are limited to the iPhone family.The first and second generation
iPhone’s built-in 2 megapixel camera will never win awards.The third generation camera
is much improved, offering autofocus, macro photography, video recording, and better
low-light sensitivity.

Speakers and Microphones
First generation iPod touches lack the built-in speaker found on the iPhone and the sec-
ond generation iPod touch.Although the 1G touch is perfectly capable of powering
third-party speakers through its bottom connector port,Apple considers those to be
unauthorized accessories and their use is rare.

ptg

8 Chapter 1 Introducing the iPhone SDK

Don’t assume that end users will wear headphones when using applications.When de-
signing for the first generation iPod, carefully consider the role of audio cues. If they are
critical to the program, you may want to either recommend headphone use or consider
skipping the 1G iPod as a distribution platform.

The second generation iPod touch supports external headset microphones.The first
generation does not. If you do plan to deploy a recording application, make sure you
specify clearly that the iPod will require extra equipment to use those features.

The third generation iPhone 3G S provides a number of accessibility features includ-
ing voice control. It’s unclear at the time of writing whether voice control APIs will be
opened to iPhone developers.

Telephony
It may seem an overly obvious point to make, but the iPhone’s telephony system, which
handles both phone calls and SMS messaging, can and will interrupt applications when
the unit receives an incoming telephone call. Sure, users can quit out of apps whenever
they want on both iPhone and iPod platforms, but only the iPhone has to deal with the
kind of exit that’s forced by the system and not a choice by the user.

Consider how the different kinds of interruptions might affect your application. It’s im-
portant to keep all kinds of possible exits in mind when designing software. Be aware that
the choice to leave your app may not always come from the user, especially on the iPhone.

Another fall-out of telephony operations is that more stuff ends up running in the
background on iPhones than on iPod touches.This means that as a rule, the amount of
free memory is likely to be reduced on the iPhone compared to the touch.This is one
reason that making the iPhone your primary development device over the iPod touch
may be a smart move.Working within the iPhone’s greater limitations may produce soft-
ware that operates robustly on both the iPhone and touch platforms.

Core Location Differences
Core location depends on three different approaches, each of which may or not be avail-
able on a given platform.These approaches are limited by each device’s onboard capabili-
ties.Wi-Fi location, which scans for local routers and uses their MAC addresses to search
a central position database, is freely available on all iPhone and iPod touch platforms.

Cell location, however, depends on an antenna that is available only on the iPhone.
This technology triangulates from local cell towers, whose positions are well defined from
their installations by telephone companies.The final and most accurate strategy, GPS loca-
tion, is available only to second generation iPhones and newer. GPS was not built into the
first generation iPhone and is not currently available to any iPod touch units.

The third generation iPhone 3G S introduces a built-in compass (via a magnetometer)
along with the Core Location APIs to support it.

ptg

9Platform Limitations

Vibration Support and Proximity
Vibration, which adds tactile feedback to many games, is limited to iPhones. iPod touches
do not offer vibration support. Nor do they include the proximity sensor that blanks the
screen when holding the iPhone against your ear during calls. Until SDK 3.0, using the
proximity sensor in your applications has been theoretically off limits although it was used
in a number of App Store products, most notably in the mobile Google application
(http://itunes.com/apps/googlemobileapp). Starting with version 3.0, the UIDevice class
offers direct access to the current state of the proximity sensor.

Processor Speeds
The second generation iPod touch features a 532MHz processor.The touch offered the
highest power processing in the iPhone line until supplanted by the iPhone 3G S, run-
ning at a reported 600MHz. Make sure to test your software on older, slower units as well
as on the newer ones.Application response time can and will be affected by the device on
which it’s being run.

If your application isn’t responsive enough on the older platforms, consider working
up your efficiency.There is no option in App Store at this time that lets you omit the first
generation iPhone from your distribution base.

OpenGL ES
OpenGL ES offers a royalty-free cross-platform API for 2D and 3D graphics develop-
ment. It is provided as part of the iPhone SDK. Not all iPhone models provide the same
OpenGL ES support.The iPhone 3G S and newer models support both OpenGL ES 2.0
and 1.1. Earlier models including the 2G and 3G iPhone, and the first and second genera-
tion iPod touch, run only OpenGL ES 1.1.The 2.0 API provides better shading and text
support, providing higher quality graphics.

To target all iPhones, develop your graphics using only 1.1.Applications leveraging the
2.0 API are limited to the iPhone 3G S and other future models.

Platform Limitations
When talking about mobile platforms like the iPhone, several concerns always arise,
such as storage, interaction limits, and battery life. Mobile platforms can’t offer the same
disk space their desktop counterparts do.Along with storage limits, constrained inter-
faces and energy consumption place very real restrictions on what you as a developer
can accomplish.

With the iPhone, you can’t design for a big screen, for a mouse, for a physical keyboard
(yet), or even for a physical always-on A/C power supply. Instead, platform realities must
shape and guide your development. Fortunately,Apple has done an incredible job design-
ing a new platform that somehow leverages flexibility from its set of limited storage, lim-
ited interaction controls, and limited battery life.

http://itunes.com/apps/googlemobileapp

ptg

10 Chapter 1 Introducing the iPhone SDK

Storage Limits
The iPhone hosts a powerful yet compact OS X installation.Although the entire iPhone
OS fills no more than a few hundred megabytes of space—almost nothing in today’s cul-
ture of large operating system installations—it provides an extensive framework library.
These frameworks of precompiled routines enable iPhone users to run a diverse range of
compact applications, from telephony to audio playback, from e-mail to Web browsing.
The iPhone provides just enough programming support to create flexible interfaces while
keeping system files trimmed down to fit neatly within tight storage limits.

Note
Each application is limited to a maximum size of 2GB. To the best of my knowledge, no ap-
plication has ever come close to this size, and many users complain when applications ex-
ceed about 10MB.

Data Access Limits
Every iPhone application is sandboxed.That is, it lives in a strictly regulated portion of the
file system.Your program cannot directly access other applications, certain data, and certain
folders.Among other things, these limitations minimize or prevent your interaction with
the iTunes library and the calendar.Your program can, however, access any data that is
freely available over the Internet when the iPhone is connected to a network, and, new to
3.0, you can access a shared systemwide pasteboard.

Memory Limits
On the iPhone, memory management is critical.The iPhone does not support disk-swap-
based virtual memory.When you run out of memory, the iPhone shuts down your appli-
cation—as Apple puts it, random crashes are probably not the user experience you were
hoping for.With no swap file, you must carefully manage your memory demands and be
prepared for the iPhone OS to terminate your application if it starts swallowing too much
memory at once.You must also take care concerning what resources your applications use.
Too many high-resolution images or audio files can bring your application into the au-
toterminate zone.

Apple system engineers suggest that applications need to stay within 20MB of RAM.
Here is the rough rule of thumb that circulates in developer circles.At about 20MB of
use, the iPhone begins to issue memory warnings.At around 30MB, the iPhone OS shuts
the application down.

Note
Xcode automatically optimizes your PNG images using the pngcrush utility shipped with the
SDK. (You find the program in the iPhoneOS platform folders in /Developer.) Run it from the
command line with the –iphone switch to convert standard PNG files to iPhone-formatted
ones. For this reason, use PNG images in your iPhone apps where possible as your

ptg

11Platform Limitations

preferred image format. The open source fixpng utility, which is hosted at http://www.
cyberhq.nl, goes the opposite way. It restores compressed images back to Mac-friendly
formats and is a valuable tool to have on hand for iPhone development. The venerable
Graphics Convert application (http://lemkesoft.com, $35) also offers iPhone PNG support.

Interaction Limits
Losing physical input devices and working with a tiny screen doesn’t mean you lose inter-
action flexibility.With multitouch, you can build user interfaces that defy the rules.The
iPhone’s touch technology means you can design applications complete with text input
and pointer control using a virtual screen that’s much larger than the actual physical reality
held in your palm.

A smart autocorrecting onscreen keyboard, built-in microphone (for all units except on
the iPod touch), and an accelerometer that detects orientation provide just a few of the
key technologies that separate the iPhone from the rest of the mobile computing pack.
What this means, however, is that you need to cut back on things such as text input and
scrolling windows.

Focus your design efforts on easy-to-tap interfaces rather than on desktop-like mim-
icry. Remember, you can use just one window at a time—unlike desktop applications that
are free to use multiwindow displays.

Note
The iPhone screen supports up to five touches at a time, although it’s rare to find any appli-
cation that uses more than two at once.

Energy Limits
For mobile platforms, you cannot ignore energy limitations.That being said,Apple’s SDK
features help to design your applications to limit CPU use and avoid running down the
battery.A smart use of technology (for example, properly suspending themselves between
uses) lets your applications play nicely on the iPhone and keeps your software from burn-
ing holes in users’ pockets (sometimes almost literally). Some programs, when left running,
produce such high levels of waste heat that the phone becomes hot to the touch and the
battery quickly runs down.The Camera application is one notable example.

Application Limits
Apple has instituted a strong “one-application-at-a-time” policy.That means as a third-
party developer you cannot develop applications that run in the background like Apple’s
Mail and Phone utilities. Each time your program runs, it must clean up and metaphori-
cally get out of Dodge before passing control on to the next application selected by the
user.You can’t leave a daemon running that checks for new messages or that sends out pe-
riodic updates.

http://www.cyberhq.nl
http://www.cyberhq.nl
http://lemkesoft.com

ptg

12 Chapter 1 Introducing the iPhone SDK

On the other hand,Apple does support push data from Web services as of firmware
3.0. Registered services can push badge numbers and messages to users, letting them
know that data is waiting on those servers. Chapter 16,“Push Notifications,” introduces
push notifications and shows you how to transmit these messages to users.

Note
According to the iPhone Terms of Service, you may not use Cocoa Touch’s plug-in architec-
ture for applications submitted to the App Store. You can build static libraries that are in-
cluded at compile time, but you may not use any programming solution that links to arbitrary
code at runtime.

User Behavior Limits
Although it’s not a physical device-based limitation, get used to the fact that iPhone users
approach phone-based applications sporadically.They enter a program, use it quickly, and
then leave just as quickly.The handheld nature of the device means you must design your
applications around short interaction periods and prepare for your application to be cut
off as a user receives a phone call or sticks the phone back into a pocket. Save your appli-
cation state between sessions and relaunch quickly to approximate the same task your user
was performing the last time the program was run.This can demand diligence on the part
of the programmer but is worth the time investment due to the payoff in user satisfaction.

SDK Limitations
As you might expect, building applications for the iPhone is similar to building applica-
tions for the Macintosh. Both platforms run a version of OS X.You use Objective-C 2.0
to develop your code.You compile by linking to an assortment of frameworks. In other
ways, the iPhone SDK is limited. Here are some key points to keep in mind:

n Garbage Collection is MIA and probably always will be. On the iPhone, you are re-
sponsible for retaining and releasing objects in memory.The missing Garbage Col-
lection can be explained in two ways. First, a constrained mobile platform like the
iPhone demands precise performance characteristics, especially for processor-intense
applications like games. Garbage Collection adds an unpredictable element to per-
formance; it must freeze threads when it cleans up memory. Second, limited mem-
ory does not allow garbage collection to be implemented in any sane and useful
manner. Garbage collected applications use a higher watermark for memory usage.
This subjects applications to more OS shutdowns.

n Many libraries are still only partly implemented. Core Animation is partially available
through the Quartz Core framework, but some classes and methods remain missing
in action.The lesson here is that you’re working in early-release software even
though it has been quite some time since the first SDK debuted.Work around the

ptg

13Using the Developer Portal

Set up a Team Request
Certificates

Register Application
Identifiers

Create Provisioning
Profiles

Register Devices

Figure 1-1 Basic functions of the iPhone developer portal.

missing pieces and make sure to submit your bug reports to Apple so that it (we
hope) fixes the parts that need to be used. Be aware that Apple has deliberately cut
access to some proprietary classes and methods. For example, you read EXIF orienta-
tion from images, but you cannot add that data; the method to do so is unpublished.

Note
Xcode’s compiler lets you mix C++ and Objective-C code in the same project. The resulting
Objective-C++ hybrid projects let you reuse existing C++ libraries in Objective-C applications.
Consult Apple’s documentation for details.

Using the Developer Portal
The iPhone developer program portal hosts all the tools needed to set up your system for
iPhone development. It is found at http://developer.apple.com/iphone/manage/
overview/index.action, and you will not have access to it unless you have signed up for
one of the two paid iPhone developer programs. Here is where you can set up your devel-
opment team, obtain your certificates, register development devices and application iden-
tifiers, and build your provisioning profiles so you can properly sign your applications.

Because the details are subject to change, this overview focuses on the big picture.
Should Apple alter any of the particulars, you’ll still know what the major milestones are,
so you can adjust accordingly. Figure 1-1 shows the key points of the process.

Setting Up Your Team
An iPhone development team consists of one or more members.The primary member of
the team, called the “agent,” is the original person who enrolled into the iPhone devel-
oper program.The agent has basic administrative powers over the account: He or she can
add other members to the team if this is not an individual account, approve certificate re-
quests, and so forth. In addition, the agent can grant administrative privileges to other
members, who are called, unsurprisingly,“admins.” Members without administrative privi-
leges can request new provisions and download them, but that’s pretty much the limit.

Admins can invite new members at the portal using the Team screen.This is also where
you can update e-mail, check on certificates, and add and remove members.Additional

http://developer.apple.com/iphone/manage/overview/index.action
http://developer.apple.com/iphone/manage/overview/index.action

ptg

14 Chapter 1 Introducing the iPhone SDK

tabs in this screen let you check your technical support incidents and review your devel-
oper agreements with Apple.

Requesting Certificates
Certificates play a major role in iPhone development.You cannot deploy applications to
iPhones, even for testing, without a valid development certificate.You also need a distribu-
tion certificate for selling applications through the App Store.You can request and down-
load these certificates from the portal.

Start by generating a certificate request from your Macintosh’s Keychain Access utility.

1. Launch the program from the /Applications/Utilities folder.

2. Choose Keychain Access > Certificate Assistant > Request a Certificate from a
Certificate Authority. Check your e-mail address, choose Saved to Disk, and click
Continue.

3. Select where to save the certificate (the Desktop is a good choice) and click Save.
Wait for the certificate to generate and click Done.

You then upload the request at the portal to create either your development or distribu-
tion certificate.The portal walks you through the process. Each certificate must be ap-
proved by the team agent before it is issued. Once approved, you can download it from
the Certificates window on the portal site.

Install the new certificate into your keychain by double-clicking it. Certificates are cur-
rently good for one year. Make sure you remove any expired certificates from your key-
chain as Xcode cannot readily distinguish between them.You will encounter problems
compiling until you do so. Select the expired certificate in the Macintosh Keychain Access
application (/Applications/Utilities/Keychain Access.app) and delete it.

In addition to these two certificates, you must also install the WWDR intermediate
certificate issued by Apple’s worldwide developer relations. It can be downloaded from the
portal or directly at http://developer.apple.com/certificationauthority/AppleWWDRCA.
cer. Make sure you add this to your keychain as well.

Should you need to develop on more than one machine at a time, you can export your
developer and distribution certificates from the Keychain Access Utility. Right-click a cer-
tificate and choose the Export option. Choose the .p12 Personal Information Exchange
option and click Save. Enter a password that you will remember and verify that password.
Click OK to continue. OS X prompts you to enter your admin password for your Macin-
tosh. Enter it and click Allow. Keychain Access generates the encrypted p12 file.You can
transfer this to another Macintosh system and double-click to install.The local keychain
will prompt you for the password.

Registering Devices
You must register all development iPhones at the program portal.You do so by providing
a device name and its unique device identifier (UDID).You can register up to 100 devices
at any time. Once registered, you may use that device for your development and ad hoc

http://developer.apple.com/certificationauthority/AppleWWDRCA.cer
http://developer.apple.com/certificationauthority/AppleWWDRCA.cer

ptg

15Using the Developer Portal

provisions.To begin, start by viewing the Devices screen at the portal and clicking Add
Device. Enter a name, enter a UDID, and click Submit.

Finding UDIDs is not complicated:You can easily recover a device UDID from
iTunes.When docked, select the device name from the sources list (the left iTunes col-
umn) and view the Summary tab. Click the words Serial Number.This changes the dis-
play from Serial Number to Identifier (UDID). Choose Edit > Copy (Command-C) and
the UDID transfers to your system clipboard.You can then paste that number into a file.

Alternatively, have your users download a copy of Ad Hoc Helper (http://itunes.com/
apps/adhochelper) to their iPhone. It is a free utility that I created to help people e-mail
their device IDs directly to a developer.When launched, it automatically starts a new e-
mail that is populated with the user’s UDID. Users add your address as the recipient and
tap Send.

Apple offers several ways to register several devices at once.The most reliable option is
to enter several items into the Add Devices screen before clicking the Add Device button.
You can also use Apple’s iPhone Configuration Utility to manage UDIDs. It is available
for download at the portal site but has had its ups and downs in terms of stability.

Please note that Unregister does not immediately free up slots on your 100-slot devices
list. Due to some developers abusing the system there is a one-year time-out before a slot
can be reused.You can contact Apple and ask them to override this setting if there is a
valid reason that your slots need to be reused within the year.

Registering Application Identifiers
Each application you build should use an exclusive identifier.This string enables your ap-
plication to uniquely present itself to SpringBoard and guarantees that it will not conflict
with another application. Most typically, you build your identifiers using Apple’s reverse
domain notation, for example, com.sadun.myApplicationName, uk.co.sadun.myApplica-
tionName, org.sadun.myApplicationName, and so on.Avoid using any special characters
in your application identifiers.

You need not register each application at the portal, but you should register at least one
“wild-card” identifier. By this, I mean an identifier that uses an asterisk as a wild-card
matching character, for example, com.sadun.*.You can use this single identifier to create
provisions that work with all your applications, regardless of whether they are used only
during development or are destined for the App Store.A wild-card provision properly
signs all applications whose identifiers match its pattern.

The sole exception to this wild-card rule are application identifiers meant to be used
with push notifications. Chapter 16 details the difference, explaining why you must register
applications individually and how you can do so. Push-based applications aside, most devel-
opers can get by with registering a single wild-card application ID at the program portal.

For the most part, the samples for this book use a single application identifier,
com.sadun.helloworld.You need to replace this identifier with one that matches your pro-
vision profile. I mostly use just one identifier to avoid clogging up your iPhone with
dozens of samples at once. Each sample replaces the previous one, ensuring that Spring-
Board remains relatively uncluttered.

http://itunes.com/apps/adhochelper
http://itunes.com/apps/adhochelper

ptg

16 Chapter 1 Introducing the iPhone SDK

Note
If you’re wondering what those random characters that precede your registered IDs are, they
are Bundle Seed IDs and are meant to be used with applications that share keychain data.
Consult Chapter 13, “Networking,” and the Apple portal for more details about using seed IDs.

Provisioning
Provisioning profiles provide a way to associate registered developers and registered de-
vices with a specific iPhone development team.They are used in Xcode to sign your
code, authorizing the software to run on the device or to be allowed in the App Store.
Most developers use two key provisions: a wild-card development provision and a wild-
card distribution provision. In addition, most developers eventually build one or more ad
hoc provisions, which allow you to distribute your application outside the App Store to
devices you have registered at the portal.

Create your profiles at the Provisioning screen of the program portal. Choose the De-
velopment or Distribution tab, click Add Profile, check the certificate name box, and
choose your wild-card application ID. For development and ad hoc provisions, you must
select the devices that are included. Click Submit and then refresh the screen a few times.
It usually takes less than minute for the provision to be generated and made available for
download.

Should you need to add devices at a later time, you can easily do so. Expand the device
user base by editing your already-issued provisions. Choose Edit > Modify, check the new
devices, and click Submit. Re-download the updated provisioning profile by clicking
Download.

To install provisions, drag them onto the Xcode icon or (for development and ad hoc
provisions only) drop them into the Xcode Organizer window for the device. Xcode au-
tomatically reads them in and installs them into your home folder in ~/Library/Mo-
bileDevice/Provisioning Profiles.To remove a provision, use the Xcode organizer’s
Provisioning Profiles pane.

Note
If you’d rather manage your profiles from the command line, quit Xcode and delete them
from the profiles folder. The provisions do not retain their original names so be sure to
delete the correct file by using the command line grep utility (e.g. grep -i firstpush *)
or by peeking at the files in a text editor to find the right one.

Xcode automatically installs provisions onto devices to ensure that applications compiled
with those provisions can run properly.To remove a provision from a device, open
Settings > General > Profiles on the iPhone or iPod touch in question. Select a profile,
and click the red Remove button.When you remove a device provision, you won’t be
able to run any applications signed with that provision.

ptg

17Assembling iPhone Projects

Figure 1-2 Xcode projects bring source code, frameworks, and media to-
gether to form the basis for iPhone applications.

Assembling iPhone Projects
iPhone Xcode projects contain varied standard and custom components. Figure 1-2 shows
a minimal project. Project elements include source code, linked frameworks, and media
such as image and audio files. Xcode compiles your source, links it to the frameworks, and
builds an application bundle suitable for iPhone installation. It adds your media to this ap-
plication bundle, enabling your program to access that media as the application runs on
the iPhone.

iPhone code is normally written in Objective-C 2.0.This is an object-oriented superset
of ANSI C, which was developed from a mix of C and Smalltalk. Chapter 3,“Objective-C
Boot Camp,” introduces the language on a practical level. If you’re looking for more infor-
mation about the language,Apple provides several excellent online tutorials at its iPhone
developer site.Among these are an introduction to object-oriented programming with
Objective-C and an Objective-C 2.0 reference (http://developer.apple.com/iphone/
library/documentation/Cocoa/Conceptual/ObjectiveC/).

Frameworks are software libraries provided by Apple that supply the reusable class defi-
nitions for Cocoa Touch.Add frameworks to Xcode by dragging them onto your project’s
Frameworks folder.After including the appropriate header files (such as UIKit/UIKit.h or
QuartzCore/QuartzCore.h), you call their routines from your program.

Associated media might include audio, image, and video files to be bundled with the
package as well as text-based files that help define your application to the iPhone operat-
ing system. Drop media files into your project and reference them from your code.

http://developer.apple.com/iphone/library/documentation/Cocoa/Conceptual/ObjectiveC/
http://developer.apple.com/iphone/library/documentation/Cocoa/Conceptual/ObjectiveC/

ptg

18 Chapter 1 Introducing the iPhone SDK

main()

Application
Delegate

View
Controller

main.m

MyAppDelegate.h
MyAppDelegate.m

MyView Controller.h
MyViewController.m
MyViewController.xib

Figure 1-3 These files comprise the most com-
mon source code configuration for a minimal

iPhone application. You may or may not choose to
use a .xib file to define interfaces.

The project shown in Figure 1-2 is both simple and typical despite its fairly cluttered
appearance. It consists of five source files (main.m, MyAppDelegate.h, MyAppDelegate.m,
MyViewController.h, MyViewController.m) and two interface files (MyViewController.xib,
MainWindow.xib) along with the default iPhone project frameworks (UIKit, Foundation,
and Core Graphics) and a few supporting files (Default.png, icon.png, My-Info.plist).
Together these items form all the materials needed to create an extremely basic application.
As you discover in Chapter 2,“Building Your First Project,” Xcode can generate most
of these elements automatically for you.You can then edit them as needed to add
functionality.

Note
The My_Prefix.pch file is created automatically by Xcode. It contains precompiled header files.

The iPhone Application Skeleton
Nearly every iPhone application you build will contain a few key source files. Figure 1-3
shows the most common source code pattern: a main.m file, an application delegate, and a
view controller.These five files (more if you use Interface Builder .xibs) provide all the
components necessary to create a simple Hello World style application that displays a view
onscreen.

Some of these components may be familiar. Others may not. Here’s a rundown of the file
types:

ptg

19Assembling iPhone Projects

n The implementation files use a .m extension and not a .c extension.These .m files
contain Objective-C method implementations in addition to any C-style functions.
The project in Figure 1-3 uses three .m files.

n iPhone source files use the standard C-style .h extension for the header files. Header
files offer public declarations of class interfaces, constants, and protocols.You usually
pair each class implementation file (in this case the application delegate and view
controller .m files) with a header file, as you can see in Figure 1-3.

n XIB files (.xib) are created in Interface Builder.These XML-based user interface
definition files are linked to your application and called by your app at runtime in
their compiled .nib format.The project in Figure 1-3 uses a single .xib, which de-
fines the contents of the primary view.A standard Xcode project may add a Main-
Window.nib, which does little more than create a new, empty window.

Here is a quick rundown of those files, what they are and what role they play in the actual
application.

main.m
The main.m file has two jobs. First, it creates a primary autorelease pool for your applica-
tion. Second, it invokes the application event loop.These two elements provide critical el-
ements to get your application started and running. Here is what those two items are and
how they work.

int main(int argc, char *argv[])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

int retVal = UIApplicationMain(argc, argv, nil, @"MyAppDelegate");

[pool release];

return retVal;

}

Note
The argc and argv variables passed to main() refer to command-line arguments. Since
the iPhone does not use a command-line to launch its programs (all applications are run
from a common graphical user interface), these elements are not used. They are included
for consistency with standard ANSI C practices.

Autorelease Pools
Autorelease pools are objects that support the iPhone’s memory management system.This
memory system is normally based on keeping track of reference counts, that is, counting
how many objects refer to an allocated part of memory. Normally, you’re responsible for
releasing those objects.That’s where the autorelease pool steps in.The pool automatically
sends a release message to all the objects it owns at the end of every event loop cycle so
you don’t have to.

ptg

20 Chapter 1 Introducing the iPhone SDK

Autorelease objects are typically created with a pattern that looks like this:

[[[Someclass alloc] init] autorelease]

Once added to the autorelease pool, these objects pass their release responsibilities along
to the pool.At the end of the event loop, the pool drains and sends the releases.

The iPhone expects that there will always be an autorelease pool available so memory
can be recovered from these objects at the end of their lifetime. If you ever create a sec-
ondary thread in your application, you need to provide it with its own autorelease pool.
Autorelease pools and the objects they contain are discussed further in Chapter 3.

The UIApplicationMain Function
The UIApplicationMain function provides the primary entry point for creating a new
application object. It creates the new application instance and its delegate.The delegate is
responsible for handling application status changes and providing program-specific re-
sponses to those changes.

The third and fourth arguments of the UIApplicationMain function specify the name
of the principal application class and its delegate. If the third argument is omitted (set as
nil), the iPhone defaults to using the standard UIApplication class.

UIApplicationMain also establishes the application’s event loop.An event loop repeat-
edly looks for low-level user interactions such as touches on the screen or sensor triggers.
Those events are captured by the iPhone’s kernel and dispatch an event queue, which is
forwarded to the application for handling.

Event loops let you design your program around callbacks. Callbacks are where you
specify how the application should respond to these events. In Objective-C, this corre-
sponds to method invocations. For example, you can build methods to determine how the
application should reorient itself when the user moves the screen from portrait to land-
scape or how views should update when a finger is dragged onscreen.This style of pro-
gramming is based on the underlying event loop, which is set up in main.m.

Application Delegate
An application delegate implements how your program should react at critical points in
the application life cycle.The delegate is responsible for initializing a windowing system at
launch and wrapping up business at termination. It also acts as the key player for handling
memory warnings. Here are the more important delegate methods that your applications
will implement:

n The applicationDidFinishLaunching: method—This method is the
first thing triggered in your program after the application object has been instanti-
ated. Upon launch, this is where you create a basic window, set its contents, and tell
it to become the key responder for your application.

n The applicationWillTerminate: method—This method enables you to
handle any status finalization before handing control back to SpringBoard. Use this
to save defaults, update data, and close files.

ptg

21Assembling iPhone Projects

n The applicationDidReceiveMemoryWarning method—When called,
your application must free up memory to whatever extent possible.This method
works hand in hand with the UIViewController’s didReceiveMemoryWarning:
method. If your application is unable to release enough memory, the iPhone termi-
nates it, causing your user to crash back to the SpringBoard. SpringBoard is the main
iPhone GUI that presents the application icons, allowing users to launch programs.

The application delegate also handles responsibility for when your application suspends or
resumes, such as when the user locks the screen.

After launching and loading the window, the application delegate takes a back seat.
Nearly all application semantics move over to some child of a UIViewController class.
The application delegate typically does not take a role again until the application is about
to finish or if memory issues arise.

View Controller
In the iPhone programming paradigm, view controllers provide the heart of how an ap-
plication runs. Here is where you normally implement how the application responds to
selections, button presses, as well as sensor triggers. If you haven’t used Interface Builder to
create a precooked presentation, the view controller is where you load and lay out your
views.While the main.m and application delegate files are typically small, view controller
source code is normally extensive, defining all the ways your application accesses resources
and responds to users. Some of key methods include the following:

n The loadView and viewDidLoad methods—Assuming you aren’t using
XIB files to lay out your views, the loadView method must set up the screen and
lay out any subviews. Make sure to either call [super loadView] or, alternatively,
implement viewDidLoad, whenever you inherit from a specialized subclass such as
UITableViewController or UITabBarController.This allows the parent class to
properly set up the screen before you add your customizations to that setup.Apple’s
documentation and sample code encourage the viewDidLoad approach when basing
your code off specialized subclasses.

n The shouldAutorotateToInterfaceOrientation: method—Unless
you have pressing reasons to force your user to remain in portrait orientation, add
the should-autorotate method to allow the UIViewController method to auto-
matically match your screen to the iPhone’s orientation.You must define how the
screen elements should update.

n The viewWillAppear: and viewDidAppear: methods—These meth-
ods get called whenever a view is ready to appear onscreen or a view has fully ap-
peared onscreen.The viewWillAppear: method should update information for
views that are about to display.When called, your view may not have been loaded
yet. If you rely on accessing IBOutlets connected to subviews, poke self.view to
ensure the view hierarchy gets loaded. Use viewDidAppear: to trigger behavior for
once the view is fully transitioned onscreen, such as any animations.

ptg

22 Chapter 1 Introducing the iPhone SDK

The number and kind of XIB files varies with how you design your project. Figure 1-3
assumes you’ve created a single XIB for the view controller.You can use Interface Builder
to design additional components or skip IB entirely and create your interfaces program-
matically.

Note
Only UIView instances can directly receive touch calls; UIViewController objects cannot.
See Chapter 8, “Gestures and Touches,” to learn more about directly managing and inter-
preting touches and gestures in your application.

A Note About the Sample Code in This Book
For the sake of pedagogy, this book’s sample code usually presents itself in a single main.m
file. It’s hard to tell a story when readers must look through five or seven or nine individ-
ual files at once. Offering a single file concentrates that story.

These samples are not intended as stand-alone applications.They are there to demon-
strate a single recipe and a single idea. One main.m file with a central presentation reveals
the implementation story in one place. Readers can study these concentrated ideas and
transfer them into normal application structures, using the standard file system and layout.

There are two exceptions to this one-file rule. First, application-creation walk-throughs
use the full file structure created by Xcode to mirror the reality of what you’d expect to
build on your own.The walk-through folders may therefore contain a dozen or more files
at once.

Second, standard implementation and header files are provided when the class itself is
the recipe or provides a precooked utility class. Instead of highlighting a technique, some
recipes offer these precooked class implementations and categories (that is, extensions to a
preexisting class rather than a new class). For those recipes, look for separate .m and .h files
in addition to the skeletal main.m that encapsulates the rest of the story.

iPhone Application Components
Compiled iPhone applications live in application bundles. Like their Macintosh cousins,
these application bundles are just folders named with a .app extension.Your program’s
contents and resources reside in this folder, including the compiled executable, supporting
media (such as images and audio), and a few special files that describe the application to
the OS.The folder is treated by the operating system as a single bundle.

Application Folder Hierarchy
iPhone bundles are simple. Unlike the Mac, iPhone bundles do not use Contents and Re-
sources folders to store data or a MacOS folder for the executable.All materials appear at
the top level of the folder. For example, instead of putting a language support (.lproj)
folder into Contents/Resources/, Xcode places it directly into the top .app folder.You can

ptg

23iPhone Application Components

still use subfolders to organize your project, but these developer-defined folders do not
follow any standard.

The iPhone SDK’s core OS support includes the NSBundle class.This class offers access
to the files stored in the application bundle. NSBundle makes it easy to locate your
application’s root folder and to navigate down to your custom subfolders to point to and
load built-in resources like sounds, images, and data files.

Note
As on a Macintosh, user domains mirror system ones. Official Apple-distributed applications
reside in the primary /Applications folder. Third-party applications live in /var/mobile/
Applications. The underlying UNIX file system is obscured by the iPhone’s sandbox, which is
discussed later in this section.

The Executable
The executable application file of your application resides at the top-level folder of the ap-
plication bundle. It carries executable permissions so it can run and is signed as part of the
application bundle during the compilation process.You may only load and run applica-
tions that have been signed with an official developer certificate.Those certificates are is-
sued by Apple via the iPhone developer program portal at the official developer Web site.

Apple offers several kinds of signing profiles called mobile provisions that vary by how
the application will be deployed.You need separate provisions for applications that will be
tested during development on a local device, for applications that will be sent out to regis-
tered devices for testing, and for those that will be distributed through App Store.You’ve
already read about creating your provisions earlier in this chapter.The actual application
signing process is discussed in further detail in Chapter 2.

The Info.plist File
As on a Macintosh, the iPhone application folder contains that all-important Info.plist file.
Info.plist files are XML property lists that describe an application to the operating system.
Property lists store key-value pairs for many different purposes and can be saved in read-
able text-based or compressed binary formats. In an Info.plist file, you specify where the
application’s executable (CFBundleExecutable,“Executable file”) can be found, the text
that appears under the application icon (CFBundleDisplayName,“Bundle display name”),
and the application’s unique identifier (CFBundleIdentifier,“Bundle identifier).

Be careful when setting the display name.Titles that are too long to display properly
are truncated; the iPhone adds ellipses as needed. So your application named “My Very
First iPhone App” may display as “My Very F....”This provides less information to your
end user than a simpler title like “First App” would offer.

The application identifier typically uses Apple’s reverse domain naming format (for ex-
ample, com.sadun.appname).The identifier plays a critical role for proper behavior and
execution; it must not duplicate any other identifier on App Store. In use, the product

ptg

24 Chapter 1 Introducing the iPhone SDK

Figure 1-4 Customize your application’s bundle identifier by editing target
properties. Edits here are reflected in your application’s Info.plist file. The

PRODUCT_NAME identifier is specified in your project’s settings.

identifier registers your application with SpringBoard, the “Finder” of the iPhone. Spring-
Board runs the home screen from which you launch your applications.The product iden-
tifier also forms the basis for the built-in preferences system called the user defaults.

The identifier is case sensitive and must be consistent with the provisions you generate
at the developer portal. Problems with misnamed bundle identifiers have cost developers
many hours of wasted time. Specify the identifier by editing your project’s settings in
Xcode (see Figure 1-4).

Note
To change identifiers, open the Targets list in the Xcode project’s left-hand column. Double-
click Targets > Your Application Name. This opens the Target Info window. Click on the Prop-
erties tab and edit the Identifier from com.yourcompany to a reverse domain name that
represents your actual company. Enter your personal domain and let Xcode append the appli-
cation product name.

Application preferences are automatically stored in the application sandbox.The sandbox
mimics the domains and folders normally found on the core OS. On the iPhone, prefer-
ences appear in a local Library folder and use the application identifier for naming.This
identifier is appended with the .plist extension (for example, com.sadun.appname.plist),
and the preferences are stored using a binary .plist format.You can read a binary .plist by
transferring it to a Macintosh via Xcode’s organizer.

Note
To copy application data from the iPhone to your Macintosh, open the Organizer window
(Windows > Organizer). Select your device and then an item from the applications list. Click
the arrow next to the name to reveal the Application Data bundle and then drag that bundle
to the desktop. It expands to a standard folder named with the application identifier and the
date and time the data was retrieved.

ptg

25iPhone Application Components

You can edit property list files directly in Xcode or use the Property List Editor that ships
as part of Xcode’s utilities. It’s located in /Developer/Applications/Utilities and offers a
user-friendly GUI. Use Apple’s plutil utility to convert property lists from binary to a text-
based XML format: plutil –convert xml1 plistfile.Apple uses binary plists to lower
storage requirements and increase system performance.

As with the Macintosh, Info.plist files offer further flexibility and are highly customiz-
able.With them, you can set application-specific variables (UIRequiresPersistentWiFi)
or specify how your icon should display (UIPrerenderedIcon).These variables are pow-
erful.They can define multiple roles for a single application although this functionality is
not available to third-party development. For example, the Photos and Camera utilities are
actually the same application, MobileSlideShow, playing separate “roles.”Appendix A,
“Info.plist Keys,” lists these keys in detail.

Other standard Info.plist keys include UIStatusBarStyle for setting the look and
color of the status bar and UIStatusBarHidden for hiding it altogether.
UIInterfaceOrientation lets you override the accelerometer to create a landscape-only
(UIInterfaceOrientationLandscapeRight) presentation. Register your custom applica-
tion URL schemes (for example, myCustomApp://) by setting CFBundleURLTypes. See
Chapter 21,“Accessibility and Other iPhone OS Services,” for more information about
URL schemes.

The Icon and Default Images
The icon.png image and Default.png are two key image files. Icon.png acts as your appli-
cation’s icon, the image used to represent the application on the SpringBoard home
screen. Default.png (also known as your “launch image”) provides the splash screen dis-
played during application launch.

Unlike Default.png, the icon filename is arbitrary. If you’d rather not use “icon.png,”
set the CFBundleIconFile key in your Info.plist file to whatever filename you want to use
but be aware that this might cause trouble when submitting your application to App
Store; iTunes Connects requires the application to use icon.png (or Icon.png) even if the
Info.plist specifies another name.This key is not set by default, so be sure to add a value
regardless of the art you use.

Apple recommends matching Default.png to your application’s background. Many de-
velopers use Default.png to launch images for a logo splash or for a “Please wait” message.
These go against Apple’s human interface guidelines (launch images should provide visual
continuity, not advertising or excuses for delays) but are perfectly understandable uses.
Xcode lets you take screenshots of your application in action using its Organizer window
(Window > Organizer). It also offers the option to set one of those shots as your
Default.png image.

The official application icon size is 57-by-57 pixels. SpringBoard automatically scales
larger art. Provide flat (not glossy) art with squared corners. SpringBoard smoothes and
rounds those corners and adds an automatic gloss and shine effect. If for some compelling
reason you need to use prerendered art, set UIPrerenderedIcon to <true/> in your
Info.plist file.

ptg

26 Chapter 1 Introducing the iPhone SDK

As with all on/off Info.plist items, make sure to set the value for UIPrerenderedIcon
to the Boolean value true (<true/>, the checked box in the Xcode GUI). Using a string
for “true” (<string>true</string>) may work on the simulator while producing no ef-
fect on the iPhone.Also remember that the 3.0 Xcode property list editor hides the actual
key name.Add a field for the “Icon already includes gloss and bevel effects” key and check
the box that appears in the value column.

When submitting your application to App Store, you need to create a high-resolution
(512-by-512 pixel) version of your icon.Although you can up sample your 57-by-57
icon.png art, it won’t look good. Going the other way allows you to maintain high-quality
art that you can compress to your icon as needed. Keep your art simple and compressible.
An icon that looks stunning at 512x512 looks muddled and sloppy at 57x57 when overly
detailed.

Note
You may include a 29-by-29 pixel image called Icon-settings.png in your project. This image
represents your application in the Settings application. Most developers skip this option. If
not included, Settings simply scales your icon.png image.

NIB Files
Interface Builder creates .xib files that store precooked addressable user interface layouts in
XML format. (If you’re curious, you can open these files in your favorite text editor and
peek at the XML.) Most IB-based applications contain several .xib files that define various
view components.Typical .xib contents might include window layouts, custom table cells,
pop-up dialogs, and more.

When creating your application bundles, Xcode compiles the XML data into a NIB
package, which is placed alongside the executable and any other application components.
(NIB, somewhat archaically, stands for NeXT Interface Builder, which is the ancestor of
the OS X Interface Builder used to build iPhone applications.) The .nib files appear at the
top level of your application bundle and are used directly from your program when load-
ing screens.

Note
When you develop programs that do not use XIB Interface-Builder bundles, remove the
NSMainNibFile key from Info.plist and discard the automatically generated MainWindow.xib
file from your project. This reduces clutter in your program and keeps your application from
trying to load an interface file that you never fully defined. Set the fourth argument of
UIApplicationMain() in main() to the class name of your application delegate.

Files Not Found in the Application Bundle
As with the Macintosh, things you do not find inside the application bundle include pref-
erences files (generally stored in the application sandbox in Library/Preferences), applica-
tion plug-ins (stored in /System/Library at this time and not available for general
development), and documents (stored in the sandbox in Documents).

ptg

27iPhone Application Components

At this time, the iPhone SDK does not let you prepopulate these folders. Since your
program cannot edit or overwrite any files in the application bundle, copy any files that
need to be changed, such as database files, to another folder (Documents or Library) on
the first run of your program.

Another thing that seems to be missing (at least from the Macintosh programmer point
of view) is Application Support folders.You should copy your support data, which more
rightfully would be placed into an Application Support structure, to your Documents or
Library folders from the application bundle when your application is first launched.
Thereafter, check to make sure that data is there and recopy the data if needed.

IPA Archives
When users purchase your application they download a .ipa file from iTunes.This file is
actually a zipped archive. It contains a compressed payload, namely the app bundle you
built from the components just described. iTunes stores .ipa archives in the Mobile Appli-
cations folder in the iTunes Library. If you rename a copy of any .ipa file to use the .zip
extension, you can easily open it using standard compression software.

Each application is customized on download to ensure that it can only be installed and
run on the iPhone devices authorized by your iTunes account.This prevents the applica-
tion from being shared freely over the Internet.Although software pirates have created
cracking tools, these are not widely used in the wild.Apple’s basic protections ensure that
for the most part only those who have purchased and downloaded the application from
iTunes can run your software.

Sandboxes
The iPhone OS restricts all SDK development to application “sandboxes” for the sake of
security.The iPhone sandbox limits your application’s access to the file system to a mini-
mal set of folders, network resources, and hardware. In some ways, it’s like attending a re-
strictive school with a paranoid principal:

n Your application can play in its own sandbox, but it can’t visit anyone else’s sandbox.
n You cannot share toys.You cannot share data (except via the user-controlled system

pasteboard).You cannot mess in the administrative offices.Your files must stay in the
folders provided to you by the sandbox, and you cannot copy files to or from other
application folders.

n You cannot peek over the fence. Reading from or attempting to write to files out-
side your sandbox is grounds for App Store rejection.Your application is prevented
from writing to most folders outside the sandbox by the iPhone OS.

n Your application owns its own Library, Documents, and /tmp folders.These mimic
the standard folders you’d use on a less-restrictive platform but specifically limit
your capability to write and access this data.

In addition to these limitations, your application must be signed digitally and must au-
thenticate itself to the operating system with a coded application identifier, which you

ptg

28 Chapter 1 Introducing the iPhone SDK

must create at Apple’s developer program site. Details on how to do this follow in
Chapter 2.

On the bright side, sandboxing ensures that all program data gets synced whenever
your device is plugged into its home computer. On the downside, at this time Apple has
not clarified how that synced data can be accessed from a Windows- or Macintosh-based
desktop application.

Note
Sandbox specification files (using the .sb extension) are stored in /var/mobile/Applications
along with each actual sandbox folder. These files control privileges such as read-and-write
access to various bits of the file system. As a developer, you will not be able to see or ma-
nipulate these files, but they are there, controlling the ways your app may or may not interact
with the operating system.

Programming Paradigms
iPhone programming centers on two important paradigms: objected-oriented program-
ming and the Model-View-Controller (MVC) design pattern.The iPhone SDK is de-
signed around supporting these concepts in the programs you build.To do this, it has
introduced delegation (controller) and data source methods (model) and customized view
classes (view). Here is a quick rundown of some important iPhone/Cocoa Touch design
vocabulary used through this book.

Object-Oriented Programming
Objective-C is heavily based on Smalltalk, one of the most historically important object-
oriented languages. Object-oriented programming uses the concepts of encapsulation and
inheritance to build reusable classes with published external interfaces and private internal
implementation.You build your applications out of concrete classes that can be stacked to-
gether like LEGO toys, because it’s always made clear which pieces fit together through
class declarations.

Pseudo-multiple inheritance (via invocation forwarding and protocols) provides an im-
portant feature of Objective-C’s approach to object-oriented programming. iPhone classes
can inherit behaviors and data types from more than one parent.Take the class
UITextView, for example. It’s both text and a view. Like other view classes, it can appear
onscreen. It has set boundaries and a given opacity.At the same time, it inherits text-spe-
cific behavior.You can easily change its display font, color, or text size. Objective-C and
Cocoa Touch combine these behaviors into a single easy-to-use class.

Model-View-Controller
MVC separates the way an onscreen object looks from the way it behaves.An onscreen
button (the view) has no intrinsic meaning. It’s just a button that users can push.That
view’s controller acts as an intermediary. It connects user interactions such as button taps
to targeted methods in your application, which is the model.The application supplies and
stores meaningful data and responds to interactions such as these button taps by producing

ptg

29Programming Paradigms

some sort of useful result. MVC is best described in the seminal 1988 paper by Glenn
Krasner and Stephen Pope, which is readily available online.

Each MVC element works separately.You might swap out a pushbutton with, for ex-
ample, a toggle switch without changing your model or controller.The program continues
to work as before, but the GUI now has a different look.Alternatively, you might leave the
interface as is and change your application where a button triggers a different kind of re-
sponse in your model. Separating these elements enables you to build maintainable pro-
gram components that can be updated independently.

The MVC paradigm on the iPhone breaks down into the following categories:

n Model—Model methods supply data through protocols such as data sourcing and
meaning by implementing callback methods triggered by the controller.

n View—View components are provided by children of the UIView class and assisted
by its associated (and somewhat misnamed) UIViewController class.

n Controller—The controller behavior is implemented through three key technolo-
gies: delegation, target action, and notification.

Together, these three elements form the backbone of the MVC programming paradigm.
Let’s look at each of these elements of the iPhone MVC design pattern in a bit more
detail.The following sections introduce each element and its supporting classes.

View Classes
The iPhone builds its views based on two important classes: UIView and
UIViewController.These two classes and their descendants are responsible for defining
and placing all onscreen elements.

As views draw things on your screen, UIView represents the most abstract view class.
Nearly all user interface classes descend from UIView and its parent UIResponder.Views
provide all the visual application elements that make up your application. Important
UIView classes include UITextView, UIImageViews, UIAlertView, and so forth.The
UIWindow class, a kind of UIView, provides a viewport into your application and provides
the root for your display.

Because of their onscreen nature, all views establish a frame of some sort.This frame is
an onscreen rectangle that defines the space each view occupies.The rectangle is estab-
lished by the view’s origin and extent.

Views are arranged hierarchically and are built with trees of subviews.You can display a
view by adding it to your main window or to another view by using the addSubview
method to assign a child to a parent.You can think about views as attaching bits of trans-
parent film to a screen, each piece of which has some kind of drawing on it.Views added
last are the ones you see right away.Views added earlier may be obscured by other views
sitting on top of them.

Despite the name, the UIViewController class does not act as controllers in the MVC
sense.They more often act as view handlers and models than as controllers.Although
some will disagree,Apple terminology does not always match the MVC paradigm taught
in computer science classes.

ptg

30 Chapter 1 Introducing the iPhone SDK

View controllers are there to make your life easier.They take responsibility for rotating
the display when a user reorients his or her iPhone.They resize views to fit within the
boundaries when using a navigation bar or a toolbar.They handle all the interface’s fussy
bits and hide the complexity involved in directly managing interaction elements.You can
design and build iPhone applications without ever using a UIViewController or one of
its subclasses, but why bother? The class offers so much convenience it’s hardly worth
writing an application without them.

In addition to the base controller’s orientation and view resizing support, two special
controllers, the UINavigationController and UITabBarController, magically handle
view shifting for you.The navigation version enables you to drill down between views,
smoothly sliding your display between one view and the next. Navigation controllers re-
member which views came first and provide a full breadcrumb trail of “back” buttons to
return to previous views without any additional programming.

The tabbed view controller lets you easily switch between view controller instances us-
ing a tabbed display. So if your application has a top ten list, a game play window, and a
help sheet, you can add a three-buttoned tab bar that instantly switches between these
views without any additional programming to speak of.

Every UIViewController subclass implements a method to load a view, whether
through implementing a procedural loadView method or by pulling in an already-built
interface from a .xib file and calling viewDidLoad.This is the method that lays out the
controller’s main view. It may also set up triggers, callbacks, and delegates if these have not
already been set up in Interface Builder.

So in that sense alone, the UIViewController does act as a controller by providing
these links between the way things look and how interactions are interpreted.And, be-
cause you almost always send the callbacks to the UIViewController itself, it often acts as
your model in addition to its primary role as a controller for whatever views you create
and want to display. It’s not especially MVC, but it is convenient and easy to program.

Controller
When Apple designs interactive elements such as sliders and tables, they have no idea how
you’ll use them.The classes are deliberately general.With MVC, there’s no programmatic
meaning associated with row selection or button presses. It’s up to you as a developer to
provide the model that adds meaning.The iPhone provides several ways in which prebuilt
Cocoa Touch classes can talk to your custom ones. Here are the three most important: del-
egation, target-action, and notifications.

Delegation
Many UIKit classes use delegation to hand off responsibility for responding to user inter-
actions.When you set an object’s delegate, you tell it to pass along any interaction mes-
sages and let that delegate take responsibility for them.

A UITableView is a good example of this.When a user taps on a table row, the
UITableView has no built-in way of responding to that tap.The class is general purpose
and it has no semantics associated with a tap. Instead, it consults its delegate—usually a

ptg

31Programming Paradigms

view controller class or your main application delegate—and passes along the selection
change through a delegate method.This enables you to add meaning to the tap at a point
of time completely separate from when the table class was first implemented. Delegation
lets classes be created without that meaning while ensuring that application-specific han-
dlers can be added at a later time.

The UITableView delegate method tableView: didSelectRowAtIndexPath: is a
typical example.Your model takes control of this method and implements how it should
react to the row change.You might display a menu or navigate to a subview or place a
check mark next to the current selection.The response depends entirely on how you im-
plement the delegated selection change method.

To set an object’s delegate, assign its delegate property (this is preferred) or use some
variation on the setDelegate: method.This instructs your application to redirect interac-
tion callbacks to the delegate.You let Xcode know that your object implements delegate
calls by adding a mention of the delegate protocol it implements in the class declaration.
This appears in angle brackets, to the right of the class inheritance. Listing 1-1 shows a
kind of UIViewController that implements delegate methods for UITableView views.
The MergedTableController class is, therefore, responsible for implementing all required
table delegate methods.

Xcode’s documentation exhaustively lists all standard delegate methods, both required
and optional. Open Help > Documentation (Command-Option-Shift-?) and search for
the delegate name, such as UITableViewControllerDelegate.The documentation pro-
vides a list of instance methods that your delegate method can or must implement.

Delegation isn’t limited to Apple’s classes. It’s simple to add your own protocol declara-
tions to your classes and use them to define callback vocabularies. Listing 1-1 creates the
FTPHostDelegate protocol, which declares the ftpHost instance variable.When used, that
object must implement all three (required) methods declared in the protocol. Protocols are
an exciting and powerful part of Objective-C programming, letting you create client
classes that are guaranteed to support all the functionality required by the primary class.

Note
If your application is built around a central table view, use UITableViewController in-
stances to simplify table creation and use.

Listing 1-1 Defining and Adding Delegate Protocol Declarations to a Class Definition

@protocol FTPHostDelegate <NSObject>

- (void) percentDone: (NSString *) percent;

- (void) downloadDone: (id) sender;

- (void) uploadDone: (id) sender;

@end

@interface MergedTableController : UIViewController
<UITableViewDelegate,UITableViewDataSource>

{

UIView *contentView;

ptg

32 Chapter 1 Introducing the iPhone SDK

Listing 1-1 Continued

UITableView *subView;

UIButton *button;

id <FTPHostDelegate> *ftpHost;

SEL finishedAction;

}

@end

Target-Action
Target-actions are a lower-level way of redirecting user interactions.You encounter these
almost exclusively for children of the UIControl class.With target-action, you tell the
control to contact a given object when a specific user event takes place. For example,
you’d specify which object to contact when users press a button.

Here is a typical example.This snippet defines a UIBarButtonItem instance, a typical
buttonlike control used in iPhone toolbars. It sets the item’s target to self and the action to
@selector(trackNotifications:).When tapped, it triggers a call to the defining object send-
ing the setHelvetica: message:

UIBarButtonItem *helvItem = [[[UIBarButtonItem alloc]

initWithTitle:@"Helvetica" style:UIBarButtonItemStyleBordered

target:self action:@selector(setHelvetica:)] autorelease];

As you can see, the name of the method (setHelvetica:) is completely arbitrary.Target-
actions do not rely on an established method vocabulary the way delegates do. In use,
however, they work exactly the same way.The user does something, in this case presses a
button, and the target implements the selector to provide a meaningful response.

Whichever object defines this UIBarButtonItem instance must implement a
setHelvetica: method. If it does not, the program crashes at runtime with an undefined
method call error. Unlike delegates and their required protocols, there’s no guarantee that
setHelvetica: has been implemented at compile time. It’s up to the programmer to
make sure that the callback refers to an existing method.

Standard target-action pairs always pass either zero, one, or two arguments.These argu-
ments are the interaction object and a UIEvent object that represents the user’s input.Your se-
lector can choose to pass any or all of these. In this case, the selector uses one argument, the
UIBarButtonItem instance that was pressed.This self-reference, where the triggered object is
included with the call, enables you to build more general action code. Instead of building sep-
arate methods for setHelvetica:, setGeneva:, and setCourier:, you could create a single
setFontFace: method to update a font based on which button the user pressed.

Note
To build target-action into your own UIControl-style classes, add a target variable of type
id (any object class) and an action variable of type SEL (method selector). At runtime, use
performSelector: withObject: to send the method selector to the object. To use selec-
tors without parameters, for example, @selector(action), pass nil as the object.

ptg

33Programming Paradigms

Notifications

In addition to delegates and target-actions, the iPhone uses yet another way to communi-
cate about user interactions between your model and your view—and about other events,
for that matter. Notifications enable objects in your application to talk among themselves,
as well as to talk to other applications on your system. By broadcasting information, notifi-
cations enable objects to send state messages:“I’ve changed,”“I’ve started doing some-
thing,” or “I’ve finished.”

Other objects might be listening to these broadcasts, or they might not. For your ob-
jects to “hear” a notification, they must register with a notification center and start listen-
ing for messages.The iPhone implements many kinds of notification centers. For App
Store development, only NSNotificationCenter is of general use.

The NSNotificationCenter class is the gold standard for in-application notification.
You can subscribe to any or all notifications with this kind of notification center and listen
as your objects talk to each other.The notifications are fully implemented and can carry
data as well as the notification name.This name + data implementation offers great flexi-
bility, and you can use this center to perform complex messaging.

It’s easy to subscribe to a notification center. Register your application delegate or,
more typically, your UIViewController as an observer.You supply an arbitrary selector to
be called when a notification arrives, in this case trackNotifications:.The method
takes one argument, an NSNotification. Ensure that your callback method hears all ap-
plication notifications by setting the name and object arguments to nil.

[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(trackNotifications:) name:nil object:nil];

All notifications contain three data elements: the notification name, an associated object,
and a user information dictionary. If you’re unsure what notifications UIKit objects in
your application produce, have your callback print out the name from all the notifications
it receives—for example, NSLog(@"% @", [notification name]).

The kinds of notification vary by the task you are performing. For example, notifications
when rotating an application include UIApplicationWillChangeStatusBarOrientation
Notification and UIDeviceOrientationDidChangeNotification.

Make sure you implement the trackNotifications: method (or another callback
method whose selector you supplied), which gets called in this case for all program notifi-
cations, regardless of name or object. Setting these to nil when listening acts as a wild card.

(void) trackNotifications: (NSNotification *) theNotification

{

CFShow([theNotification name]);

CFShow([theNotification object]);

CFShow([[theNotification userInfo] description]);

}

ptg

34 Chapter 1 Introducing the iPhone SDK

Note
The recipes in this book use printf and CFShow as well as NSLog. Each debug feedback
method has its advantages and disadvantages. The former have the advantage of not print-
ing out the date and time, which results in cleaner output. How you choose to log informa-
tion is strictly a matter of taste. There are no wrong or right ways to put print statements
into your program. See Chapter 3 for more details about logging information.

Model
You’re responsible for building all application semantics—the model portion of any MVC
app.You create the callback methods triggered by your application’s controller and provide
the required implementation of any delegate protocol. For relatively simple programs,
model details often are added to a UIViewController subclass.With more complex code,
avoid shoehorning that implementation into a UIViewController. Custom-built classes
can better help implement semantic details needed to support an application’s model.

There’s one place that the iPhone SDK gives you a hand with meaning, and that’s with
data sources. Data sources enable you to fill UIKit objects with custom content.

Data Sources
A data source refers to any object that supplies another object with on-demand data.
Some UI objects are containers without any native content.When you set another object
as its data source, by assigning its dataSource property (preferred) or via a call like
[uiobject setDataSource:applicationobject], you enable the UI object (the view)
to query the data source (the model) for data such as table cells for a given UITableView.
Usually the data source pulls its data in from a file such as a local database, from a Web
service such as an XML feed, or from other scanned sources. UITableView and
UIPickerView are two of the few Cocoa Touch classes that support or require data
sources.

Data sources are like delegates in that you must implement their methods in another
object, typically the UITableViewController that owns the table.They differ in that they
create/supply objects rather than react to user interactions.

Listing 1-2 shows a typical data source method that returns a table cell for a given row.
Like other data source methods, it enables you to separate implementation semantics that
fill a given view from the Apple-supplied functionality that builds the view container.

Objects that implement data source protocols must declare themselves just as they
would with delegate protocols. Listing 1-1 showed a class declaration that supports both
delegate and data source protocols for UITableViews.Apple thoroughly documents data
source protocols.You find this documentation in Xcode’s Documentation window (Help
> Documentation).

Listing 1-2 Data Source Methods Fill Views with Meaningful Content

// Return a cell for the ith row, labeled with its number

- (UITableViewCell *)tableView:(UITableView *)tableView

cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

ptg

35Summary

Listing 1-2 Continued

UITableViewCell *cell = [tableView

dequeueReusableCellWithIdentifier:@"any-cell"];

if (!cell) {

cell = [[[UITableViewCell alloc] initWithFrame:CGRectZero

reuseIdentifier:@"any-cell"] autorelease];

}

// Set up the cell

cell.text = [tableTitles objectAtIndex:[indexPath row]];

return cell;

}

The UIApplication Object
In theory, you’d imagine that the iPhone “model” component would center on the
UIApplication class. In practice, it does not, at least not in any MVC sense of the word
model. In the world of the Apple SDK, each program contains precisely one
UIApplication instance, which you can refer to via [UIApplication sharedInstance].

For the most part, unless you need to open a URL in Safari, recover the key window,
or adjust the look of the status bar, you can completely ignore UIApplication. Build your
program around a custom application delegate class that is responsible for setting things up
when the application launches and closing things down when the application terminates.
Otherwise, hand off the remaining model duties to methods in your custom
UIViewController classes or to custom model classes.

Note
Use [[UIApplication sharedInstance] keyWindow] to locate your application’s main
window object.

Uncovering Data Source and Delegate Methods
In addition to monitoring notifications, message tracking can prove to be an invaluable
tool.Add the following snippet to your class definitions to track all the optional methods
that your class can respond to:

-(BOOL) respondsToSelector:(SEL)aSelector {

printf("SELECTOR: %s\n", [NSStringFromSelector(aSelector)

UTF8String]);

return [super respondsToSelector:aSelector];

}

Summary
This chapter introduced you to the iPhone SDK, the developer portal, and the iPhone
application.You saw how to choose a developer program and how to create provisions.
You explored typical iPhone applications, from projects and source files to the application

ptg

36 Chapter 1 Introducing the iPhone SDK

end product and learned about design limitations that should influence your develop-
ment. Here are a few thoughts you may want to take away with you before leaving this
chapter:

n Most developers end up choosing the $99/year standard iPhone developer pro-
gram.This is the best, most general program to sign up for as it allows you to test
on real devices and gives you access to the App Store.

n There are significant differences between each iPhone and iPod touch platform.
Make sure your applications understand those differences to provide the best end-
user experience.

n Developing for mobile platforms is not the same as developing for desktop systems.
Keep this cardinal rule in mind: Fingers big, screen small, attention span short.

n The iPhone application bundle is much simpler and less structured than its Macin-
tosh brother although it shares many common features such as Info.plist files and
.lproj folders.

n If you come from a Cocoa background, you’ll be prepared, if not overprepared, to
create iPhone applications. Familiarity with Objective-C and Cocoa best practices
will put you on a firm development footing.

n If you’re more comfortable using C++ than Objective C,Apple has made it possi-
ble to create hybrid projects that leverage your C++ expertise with a minimum of
Objective-C overhead.

ptg

2
Building Your First Project

Xcode and Interface Builder help you craft applications for the iPhone SDK.This
chapter introduces you to the basics of using these tools in your projects.You see
how to build a simple Hello World project, compile and test it in the simulator, and

then learn how to compile for and deploy to the device.You also discover some basic de-
bugging tools and walk through their use as well as pick up some tips about handy com-
piler directives.This chapter also looks at how to submit to App Store and distribute via
ad hoc. By the time you finish this chapter, you’ll have followed the application creation
progress from start to finish and learned valuable tricks along the way.

Creating New Projects
If diving into SDK programming without a lifeline seems daunting, be reassured. Xcode
makes getting started as simple as possible. It provides preconfigured projects that you can
easily adapt while exploring the SDK. Since each of these projects is a fully working
skeleton, all you need to do is add a little custom functionality to make that app your own.

To get started, launch Xcode and choose File > New Project (Command-Shift-N).
The New Project template window (see Figure 2-1) opens, allowing you to select one of
these application styles to get started.

These six project styles are chosen to match the most common development patterns
for iPhone.Your choices are

n Navigation-based Application—Usually based around lists and tables, navigation
applications offer a series of selection choices, each choice sliding to a new screen.
The bar at the top of the screen offers a Back button, letting you return to previous
screens.Apple’s Contacts application is a navigation-based application.

n OpenGL ES Application—When programming with OpenGL ES, all you need is
a view to draw into and a timer that offers an animation heartbeat.The OpenGL ES
template provides these elements, letting you build your OpenGL ES graphics on top.

n Tab Bar Application—Apple’s iPod and YouTube applications offer typical exam-
ples of Tab bar applications. In these applications, users can choose from a series of

ptg

38 Chapter 2 Building Your First Project

Figure 2-1 The Xcode New Project template selection window.

screens by tapping buttons in a bar at the bottom of the application. For example,
the YouTube application lets you choose from Featured videos, Most Viewed, Book-
marks, or the search pane.The Tab Bar Application template provides a skeleton that
you can grow to add panes and their contents.

n Utility Application—Meant to be the simplest style of application, the Utility
Application template creates a two-sided single-view presentation like the ones you
see in the Stocks and Weather application.The template provides a main view and a
flip view, which you can easily customize.

n View-based Application—The View-based template provides a skeleton that
supports a single view. It provides a view controller to manage the view and an
empty XIB to populate that view with custom GUI elements.This is the template
you use later in this chapter to build your first Hello World application.

n Window-based Application—The window-based application offers the same
template as the view-based one but without the view controller or view.You get an
application delegate and a window and that’s about it. One advantage of choosing
this template is that it’s relatively easy to strip out the Interface Builder elements
should you prefer to build your iPhone applications completely from scratch.

ptg

39Building Hello World the Template Way

Note
Apple offers sample code and tutorials at the iPhone Reference Library. The library is lo-
cated at http://developer.apple.com/iphone/library/navigation/index.html; you must use
your developer credentials to access its contents. In addition to sample code, you’ll find re-
lease notes, technical notes, Getting Started guides, Coding How-To’s, and more.

Building Hello World the Template Way
Xcode’s preconfigured template offers the easiest path to creating a Hello World-style
sample application. In the following steps, you create a new project, edit it to say Hello
World, and run it on the iPhone simulator.As you build your first Xcode project, you’ll
discover some of the key development pathways.

Create a New Project
With the iPhone SDK installed, launch Xcode. Close the Xcode news page; it’s the
window that says Welcome to Xcode and offers options like Create a new Xcode project.
This window continues to appear until you uncheck Show at Launch before closing.

Note
If you ever change your mind about hiding the window, you can find it again by choosing
Help > Welcome to Xcode.

To create the new project, choose File > New Project (Command-Shift-N).This opens
the template selection window shown previously in Figure 2-1. Notice that there are cur-
rently just two sets of iPhone templates (called Application and Library in the left-hand
column) available versus a dozen project styles available for the Macintosh.You can, in
fact, add new iPhone templates to Xcode, and you learn how to do so later in this chapter.
For now, choose Application if it has not already been selected for you.

Select View-based Application and click Choose.When Xcode prompts you to Save As,
name the project HelloWorld and save it to your Desktop with Save.A new HelloWorld
Xcode project window opens (see Figure 2-2).This project contains all the files you need
to design an application centered on a primary view.

The style of the project window depends on an Xcode setting. Choose Xcode > Pref-
erences (Command-,), select the General pane, and choose the layout from the pop-up.
The samples in this chapter use the All-In-One layout that combines operations to a sin-
gle window, as shown in Figure 2-2. Other options include Condensed, offering separate
windows for most tasks, and Default, which has a core project window and separate tool
windows.

Note
When creating new iPhone projects, some templates offer a Use Core Data for Storage
check box. These projects offer a skeleton that creates a Core Data stack for persistent
storage. See Chapter 19, “A Taste of Core Data,” for more details about Core Data.

http://developer.apple.com/iphone/library/navigation/index.html

ptg

40 Chapter 2 Building Your First Project

A

F

G

H

N

P

O

I

B C
D E

J K L M

Figure 2-2 This brand-new HelloWorld project was created by choosing the View-based
Application template.

Review the Project Window
The default Xcode project window is normally divided into three parts as you can see in
Figure 2-2.These parts include the gray toolbar at top, the left-hand column, and the cen-
ter-right portion of the window. Each part has a role to play in managing your project.

At the top, the gray toolbar provides a number of useful tools.The toggle on the very
left (A) moves you between the project overview and the visual debugger.To its right, a
pop-up (B) sets your targets and configuration.These control the application you intend
to build and the way you intend to build it.The default iPhone templates provide two
configurations, Debug and Release, which you can see from the pop-up choices.These
configurations are actually a poor match for the realities of iPhone development, where
better choices would have been Debug (for in-house development),Ad Hoc (for ad hoc
distribution), and Distribution (for App Store release). Fortunately, the configurations are
editable, and you discover how to create better choices later in this chapter.

To the right of the Configuration pop-up is Action (C), a pop-up that offers typical
project functionality like adding new files and Reveal in Finder to locate those files on
your Macintosh.To the right of that, you see the Build and Go button (D). Click it to
compile your application and run it, whether on the device or in the simulator.The Info
button (E) when clicked opens a window that you can use to customize parts of your
project.

ptg

41Building Hello World the Template Way

On the left side of the project window is the Groups and Files column (F).This col-
umn starts off with the source for your project.This list includes any files used to build the
application plus any other files you’ve added to the project.The folder system shown is
completely arbitrary.You can group with folders to organize your materials or skip the
folders entirely. Groups provide an elegant way to organize your code and resources inside
Xcode without touching the organization on the file system.

The Products folder (G), which is the last item in the folders list by default, contains
the item you intend to build. In this case, that is the HelloWorld.app application (H). It is
shown in red as it has not yet been built. Once built, it appears in black.

Below the first group of files is the Targets item (I). Click the gray disclosure triangle to
reveal the HelloWorld entry under Targets. Locating your target is important. Select it and
click the blue Info button at the top of the project window to open the Target “Hello
World” Info window.This Target Info window is going to become one of your most im-
portant tools. Remember this sequence: Open the Target disclosure triangle, select the tar-
get, and click Info.

To the right of the Groups and Files column is a tabbed area.At the top, are four op-
tions: Detail (J), Project Find (K), SCM Results (L), and Build (M).Although they’re
stacked together, these four pane options have different roles and yet they all provide criti-
cal project information.

n Detail lists and previews files in your project. It helps you find files and open them
to edit.

n Project Find searches through entire projects.You can match strings in files and
frameworks. It mirrors and expands upon the single-file Find pop-up you access via
Command-F.

n SCM Results shows the status of your files relative to a Source Code Management
System. SCM systems track changes to your project both for single and multiple
programmers. Xcode integrates with SVN, Perforce, or CVS, and displays the results
of your syncs. Unfortunately, there is no support for the git version control system
at this time.

n Build presents a results window for building your projects, showing any errors and
their details.

The Detail Pane
You’ll likely spend much of your time looking at the Detail pane (N), which is the default
selection for the project window.The pane lists all the files in your project. Here you find
all the individual elements listed by name.The Groups and Files column controls what
you see. Click the HelloWorld group at the very top of the column to see all the files at
once. Clicking on a group restricts the file list to just those files contained in that group.

The bottom pane (O) offers a preview of whichever element has been selected on the
top. It’s also a live editor, so any changes made in the bottom pane update the file in ques-
tion. Click main.m and the bottom immediately updates with the contents of that file.A

ptg

42 Chapter 2 Building Your First Project

Figure 2-3 An Xcode source code editing window.

resize bar (P) sits between the top file list and the bottom editor/preview. Use this to ad-
just the proportions between the two elements. If you do not want to see a preview, drag
the bar all the way down to the bottom.

Editor Windows
You will normally not want to edit your files in the tiny preview pane of the project win-
dow. Double-click any source file at the top, such as main.m, to open a stand-alone editor
window (see Figure 2-3).This source code window offers some of the same options as the
project window in the top gray bar. Below the top bar, it offers a standard Xcode source-
code editing window. Make any changes you need by editing the text in the window. Be
sure to regularly save your work using File > Save (Command-S).

Xcode provides full undo support for a single session.You can even undo past a previous
save so long as you do so within the same session.That is, you cannot close a project, re-
open it, and then revert changes made before the project was closed.

Note
To add line numbers to your source code editing windows, open Preferences (Xcode > Prefer-
ences, Command-,). Scroll over to the Text Editing pane, check Show line numbers (on the
left, under Display Options), click Apply, and then click OK.

ptg

43Building Hello World the Template Way

Review the Project
When Xcode creates your new project, it populates it with all the basic elements and
frameworks you need to build your first iPhone application. Items you see in this project
include the following:

n Foundation and Core Graphics frameworks—These essential frameworks en-
able you to build your iPhone applications using the same fundamental classes and
calls you are familiar with from the Macintosh.

n UIKit framework—This framework provides iPhone-specific user interface ele-
ments and is key to developing applications that can be seen and interacted with on
the iPhone screen.

n HelloWorld.app—Displayed in red, this placeholder is used to store your finished
application. Like on the Macintosh, iPhone applications are bundles and consist of
many items stored in a central folder.

n HelloWorld-Info.plist—This file describes your application to the iPhone’s system
and enables you to specify its executable, its application identifier, and other key fea-
tures. It works in the same way Info.plist files work on the Mac.

n MainWindow.xib—This Interface Builder file creates an unpopulated window.
You will not use this for this first walk-through.

n HelloWorldViewController.xib—This Interface Builder file builds the view that
displays in your first application.You edit this to customize how it looks.

n main.m, HelloWorldAppDelegate.h, HelloWorldAppDelegate.m,
HelloWorldViewController.h, and HelloWorldViewController.m—These
files contain a rough Objective-C skeleton that you can customize and expand to
create your application. Feel free to browse through the code, but you will not edit
these in this walk-through. Instead, you use the way that Xcode set them up and
limit your modifications to the view controller .xib.

Open the View Controller .xib
In the HelloWorld project window, locate the HelloWorldViewController.xib file.As you
read in Chapter 1,“Introducing the iPhone SDK,” .xib files store Interface Builder layouts.
Double-click the .xib file to launch Interface Builder so you can begin to edit the file.
This may take a few seconds as the program opens and loads data. Once launched, locate
the primary .xib window in Interface Builder shown in Figure 2-4.

The three icons in the .xib window represent three elements of the interface you’re
editing.To the very right is the View.The view is by default a member of the UIView class.
It contains the onscreen elements that you want to display in your application.

On the left, the File’s Owner represents the view controller.This is an abstract class, and
its icon is called a proxy because it plays a role in IB, but the object is not itself embedded
in the .xib archive.

ptg

44 Chapter 2 Building Your First Project

Figure 2-4 The Interface Builder window for a
view controller .xib

View controllers don’t have a visual presentation.They manage views, but they don’t dis-
play anything of their own. Each view controller has an instance variable called “view”
which is set to some UIView (in this case, the one at the right) that is responsible for pro-
viding the actual onscreen presentation. So in the case of view controllers, the File’s
Owner proxy represents the object that loads and owns the .xib.

You can discover this for yourself by opening an inspector window. Choose Tools >
Identity Inspector (Command-4). Click the File’s Owner object and look at its class in
the inspector. It is set to HelloWorldViewController.Then click the View object. Its class
is UIView.

To see how the two are connected, click the File’s Owner in the .xib window and then
choose Tools > Connections Inspector (Command-2).You see that there is one Outlet
listed. Outlet is IB-talk for instance variable. Move your mouse over the view-View listing
in the Connections Inspector and you see the View object in the .xib window highlight.
That’s because the view outlet for your view controller is already connected to that view.
Xcode prebuilt the file to work properly with the view.

The last icon, the one in the middle of Figure 2-4, is called First Responder. Like File’s
Owner, it’s a proxy object. It represents the onscreen object that is currently responding to
user touches. During the lifetime of an application, the first responder changes as users in-
teract with the screen. For example, imagine a form.As the user touches each text field in
that form, that field becomes active and assumes the first responder role.

Edit the View
To start customizing the view, double-click the View object in the .xib window.This
opens a new editor window (see Figure 2-5, left). By default, the view is empty. It’s up to
you to customize it and add some content.To do so, you rely on two tools: the Interface
Builder library and the inspector.

ptg

45Building Hello World the Template Way

Figure 2-5 An empty view editor window (left); the Interface
Builder Library (right).

Next, open the library by choosing Tools > Library (Command-Shift-L).The library (refer
to Figure 2-5, right) presents a list of all the prebuilt Cocoa Touch elements you can use in
your IB projects.These include both abstract elements like view controllers as well as vi-
sual components like buttons and sliders. Enter UILabel in the search field at the bottom
of the library window. Drag the label from the middle pane, which is highlighted in
Figure 2-5 (right) and drop it onto your view.Alternatively double-click the label in the
middle pane.This automatically adds that item to your view.The bottom pane offers doc-
umentation of the selected class and you cannot drag from it.

Once dragged to the view, double-click the label and change the words from “Label”
to “Hello World.” You can also move the label around in the window to appeal to your
aesthetic sensibilities or set its location in the Size Inspector (Command-3). Once satisfied,
save your project with File > Save (Command-S). You have now customized your view
with this content.

Select the view editor by clicking on it and then choose Tools > Attributes Inspector
(Command-1). In the inspector, locate the Background swatch. Click on it and choose a
new color from the Colors palette.The View automatically updates the background color.
As you can see, the attributes inspector lets you adjust the properties of the currently se-
lected object, in this case the view that you are editing.

ptg

46 Chapter 2 Building Your First Project

Figure 2-6 The customized Hello World applica-
tion runs on the simulator.

Run Your Application
Return to Xcode and to your project window. Choose Project > Set Active SDK >
iPhone Simulator (3.0).This tells Xcode to compile your project for the Macintosh-based
iPhone Simulator. Click Build and Go in the main project window and then wait as
Xcode gets to work. It takes a few seconds to finish compiling and then Xcode automati-
cally launches the simulator, installs your project, and runs it. Figure 2-6 shows the result,
the Hello World application running on the simulator.

Using the Simulator
The iPhone SDK Simulator makes it possible to test applications on the Macintosh using
many of the same actions a user would perform on an actual device. Because the Macin-
tosh is not a handheld touch-based unit, you must use menus, keyboard shortcuts, and the
mouse to approximate iPhone-style interactions.Table 2-1 shows how to perform these
tasks via the simulator.

ptg

47Using the Simulator

Table 2-1 Simulator Equivalents for iPhone Actions

Action Simulator Equivalent

Rotating the device Hardware > Rotate Left (Command-left arrow) and Hardware >
Rotate Right (Command-right arrow).

Shaking the device Hardware > Shake Gesture (Command-Control-Z). This simu-
lates a shake using a motion event but does not simulate
other accelerometer actions.

Pressing the Home Key Click the Home button on the Simulator screen or choose
Hardware > Home (Command-Shift-H).

Locking the device Hardware > Lock (Command-L).

Tapping and double-
tapping

Click with the mouse, either a single- or double-click.

Tapping on the keyboard Click the virtual keyboard or type on the Mac keyboard.

Dragging, swiping, and
flicking

Click, drag, and release with the mouse. The speed of the
drag determines the action. For flicks, drag very quickly.

Pinching in or out Press and hold the Option key on your keyboard. When the
two dots appear, drag them toward each other or away from
each other.

Running out of memory Hardware > Simulate Memory Warning.

In-progress phone call (vi-
sual display only)

Hardware > Toggle In-Call Status Bar. On the iPhone, you can
run an application while on a phone call. The in-call bar ap-
pears at the top of the screen for the duration of the call.

Simulator: Behind the Scenes
Because the simulator runs on a Macintosh, Xcode compiles simulated applications for the
Intel chip.Your application basically runs natively on the Macintosh within the simulator
using a set of Intel-based frameworks that mirror the frameworks installed with the iPhone
OS onto actual units.The simulator versions of these frameworks are located in the Xcode
developer directory: /Developer/Platforms/iPhoneSimulator.platform/Developer/SDKs/
iPhoneSimulator3.0.sdk/System/Library.

You can find your applications in your home’s Library/Application Support folder.
They are stored in iPhone Simulator/User/Applications/. It’s helpful to visit this folder to
peek under the hood and see how applications get deployed to the iPhone.

Each application is stored in an individual sandbox.The name of the sandbox is ran-
dom, using a unique code (generated by CFUUIDCreateString()). Until OS 3.0, a sand-
box file usually accompanied the sandbox folder. It used the same name with a .sb
extension and stored the permissions associated with the file. Starting with 3.0, these sand-
box permissions files no longer seem to be used. In the past, you had to zip up both the
folder and the .sb file to share compiled simulator applications with others. Now you can
zip up just the folder and still be able to share between Macintoshes.

ptg

48 Chapter 2 Building Your First Project

Each sandbox name hides the application it’s hosting, so you must peek inside to see
what’s there. Inside you find the application bundle (HelloWorld.app, for example), a Doc-
uments folder, a Library folder, and a /tmp folder.While running, each application is lim-
ited to accessing these local folders.They cannot use the main user Library as applications
might on a Macintosh.

If you want to clean out your applications folder, you can delete files directly while the
simulator is not running.Alternatively, use the press-and-hold-until-it-jiggles interface on
the simulator that you’re used to on the iPhone device itself.After pressing and holding
any icon for a few seconds, the application icons start to jiggle. Once in this edit mode,
you can move icons around or press the corner X icon to delete applications along with
their data. Press the Home button to exit edit mode.You can also delete all of the simula-
tor data by choosing iPhone Simulator > Reset Contents and Settings.

Although applications cannot access the user library folder, you can. If you want to edit
the simulator’s library, the files are stored in the iPhone Simulator/User/Library folder
in your home Application Support folder. Editing your library lets you test applications
that depend on the address book for example.You can load different address book sqlitedb
files into Library/AddressBook to test your source with just a few or many contacts.

Note
The iPhone Simulator and Mac OS X use separate clipboards. The simulator stores its own
clipboard data, which it gathers from the copy/paste features new to 3.0 firmware. Although
you can use Edit > Paste (Command-V) to paste text from the Macintosh into simulator appli-
cations, this does not affect the simulator’s onboard clipboard.

The Minimalist Hello World
While exploring the iPhone SDK, and in the spirit of Hello World, it helps to know how
to build parsimonious applications.That is, it helps know how to build an application
completely from scratch, without five source files and two interface files. So here is a
walk-through showing you exactly that, a very basic Hello World that mirrors the
UIViewController approach shown with the previous Hello World example but that
manages to do so with one file and no .xibs.

Start by creating a new project (File > New Project, Command-Shift-N) in Xcode.
Choose Window-based Application and save it as HelloWorld2 to your desktop.When the
project window opens, select the Classes folder from the left column and click backspace
to delete it. Choose Also Move to Trash when prompted. Next, delete MainWindow.xib.

Locate HelloWorld2-Info.plist (in the Resources folder) and double-click to open its
editor.The last line should read Main nib file base name. Select this line and delete it. Save
and close the file.

Open main.m and replace its contents with Listing 2-1.The source is included in
the sample code for this book (see the preface for details), so you don’t have to type it
in by hand.

ptg

49The Minimalist Hello World

Listing 2-1 Reductionist main.m

#import <UIKit/UIKit.h>

@interface HelloWorldViewController : UIViewController

@end

@implementation HelloWorldViewController

- (void)loadView

{

UIView *contentView = [[UIView alloc] initWithFrame:

[[UIScreen mainScreen] applicationFrame]];

contentView.backgroundColor = [UIColor lightGrayColor];

UILabel *label = [[UILabel alloc] initWithFrame:

CGRectMake(0.0f, 0.0f, 320.0f, 30.0f)];

label.text = @"Hello World";

label.center = contentView.center;

label.textAlignment = UITextAlignmentCenter;

label.backgroundColor = [UIColor clearColor];

[contentView addSubview:label];

[label release];

self.view = contentView;

[contentView release];

}

@end

@interface HelloWorldAppDelegate : NSObject <UIApplicationDelegate>

@end

@implementation HelloWorldAppDelegate

- (void)applicationDidFinishLaunching:(UIApplication *)application {

UIWindow *window = [[UIWindow alloc] initWithFrame:

[[UIScreen mainScreen] bounds]];

HelloWorldViewController *hwvc;

hwvc = [[HelloWorldViewController alloc] init];

[window addSubview:hwvc.view];

[window makeKeyAndVisible];

}

@end

int main(int argc, char *argv[])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

int retVal = UIApplicationMain(argc, argv, nil,

ptg

50 Chapter 2 Building Your First Project

Listing 2-1 Continued

@"HelloWorldAppDelegate");

[pool release];

return retVal;

}

So what does this application do? It builds a view, colors the background, and adds a label
that says “Hello World.” In other words, it does exactly what the first Hello World example
did, but it does so by hand, without using Interface Builder.

It starts in main.m by establishing the autorelease pool and calling
UIApplicationMain. From there, control passes to the application delegate, which is spec-
ified as the last argument of the call.This is a critical point for building a non-Interface
Builder project, and one that has snagged many a new iPhone developer.

The delegate, receiving an application did launch message, builds a new window and
creates a new instance of a custom view controller. It adds that controller’s view to the
window.The view controller waits for a request to load its view and when that request
comes in, it runs loadView, which builds the view and adds the Hello World text.

Building views by hand means using this loadView method to set up the primary view
and its children.This sample starts by creating a new view and telling it to fill the full
space available to the application. It then sets the background color, in this case to light
gray. Next, the sample builds a new instance of the UILabel class. Each of the label prop-
erties is set by hand.

In Interface Builder, the attributes inspector fills the same function.The inspector
shows the label properties, offering interactive controls to choose settings like left, center,
or right alignment. Here, that alignment is set programmatically to the constant
UITextAlignmentCenter, the background color is set to clear, and the label programmati-
cally moved into place via its center property. In the end, both the by-hand and Interface
Builder approaches do the same thing, but here the programmer leverages specific knowl-
edge of the SDK APIs to produce a series of equivalent commands.

As with other examples in this book, this code does not provide a dealloc method for
the application delegate as it never gets called.The iPhone OS recovers all application
memory during the application tear-down.Technically, the view controller leaks. In prac-
tice, this isn’t a problem.

Browsing the SDK APIs
The iPhone SDK APIs are fully documented and accessible from within Xcode. Choose
Help > Documentation (Command-Option-Shift-?) to open the Xcode Developer Doc-
umentation browser. Choose a documentation set from the top bar and search for
UILabel from the top-right.This brings you to the full UILabel Class Reference (see
Figure 2-7) where you can find all the class methods, properties, and instance methods as
well as a general class overview.

Apple’s Xcode-based documentation is thorough and clear.With it you have instant ac-
cess to an entire SDK reference.You can look up anything you need without having to

ptg

51The Minimalist Hello World

Figure 2-7 Apple offers complete developer documentation from within Xcode itself.

Interface Builder offers an extremely useful tool for developers at all expertise levels.
Relying on it for many developer tasks, such as hooking up instance variables and crafting
callbacks, may prove limiting.There is a lot more you can do in code that you cannot do
in IB. Xcode’s developer documentation helps you move past those limits and lets you fo-
cus your IB work on interface design, which is what the tool best offers. By understanding
the SDK at a deeper level, you can craft more nuanced and powerful applications.

Converting Interface Builder Files to Their Objective-C Equivalents
A handy open source utility by Adrian Kosmaczewski allows you to convert Interface
Builder files to Objective-C code.With it, you can extract all the layout information and
properties of your visual design and see how that would be coded by hand. nib2objc does
exactly what its name suggests.With it, you can generate converted code that takes into
account the class constructors, method calls, and more.

leave Xcode.When material goes out of date, a document subscription system lets you
download updates directly within Xcode.

ptg

52 Chapter 2 Building Your First Project

Listing 2-2 shows the result of running nib2objc on the .xib file used in the first walk-
through. Compare it to the far simpler (and less thorough) by-hand version in Listing 2-1.
It performs more or less the same tasks. It creates a new view, then creates a new label, and
adds the label to the view. However, this conversion utility exposes all the underlying
properties, of which just a few were edited in Listing 2-1.

To peek at the original IB xml, open the .xib file in Text Edit.You can do so by issuing
open -e from the Terminal command line while in the HelloWorld project folder.

open -e HelloWorldViewController.xib

Note
nib2obj is hosted at http://github.com/akosma/nib2objc/tree/master and issued under a
general “Use this for good not evil” style of license.

Listing 2-2 HelloWorldViewController.xib after Conversion to Objective-C

UIView *view6 = [[UIView alloc] initWithFrame:CGRectMake(0.0, 0.0, 320.0, 460.0)];

view6.frame = CGRectMake(0.0, 0.0, 320.0, 460.0);

view6.alpha = 1.000;

view6.autoresizingMask = UIViewAutoresizingFlexibleWidth |
UIViewAutoresizingFlexibleHeight;

view6.backgroundColor = [UIColor colorWithRed:0.740 green:0.750 blue:0.638
alpha:1.000];

view6.clearsContextBeforeDrawing = NO;

view6.clipsToBounds = NO;

view6.contentMode = UIViewContentModeScaleToFill;

view6.hidden = NO;

view6.multipleTouchEnabled = NO;

view6.opaque = YES;

view6.tag = 0;

view6.userInteractionEnabled = YES;

UILabel *view8 = [[UILabel alloc] initWithFrame:

CGRectMake(100.0, 188.0, 89.0, 21.0)];

view8.frame = CGRectMake(100.0, 188.0, 89.0, 21.0);

view8.adjustsFontSizeToFitWidth = YES;

view8.alpha = 1.000;

view8.autoresizingMask = UIViewAutoresizingFlexibleRightMargin |
UIViewAutoresizingFlexibleBottomMargin;

view8.baselineAdjustment = UIBaselineAdjustmentAlignCenters;

view8.clearsContextBeforeDrawing = YES;

view8.clipsToBounds = YES;

view8.contentMode = UIViewContentModeScaleToFill;

view8.enabled = YES;

view8.font = [UIFont fontWithName:@”Helvetica” size:17.000];

view8.hidden = NO;

view8.lineBreakMode = UILineBreakModeTailTruncation;

view8.minimumFontSize = 10.000;

http://github.com/akosma/nib2objc/tree/master

ptg

53Using the Debugger

Listing 2-2 Continued

view8.multipleTouchEnabled = NO;

view8.numberOfLines = 1;

view8.opaque = NO;

view8.shadowOffset = CGSizeMake(0.0, -1.0);

view8.tag = 0;

view8.text = @”Hello World”;

view8.textAlignment = UITextAlignmentLeft;

view8.textColor = [UIColor colorWithRed:0.000 green:0.000 blue:0.000 alpha:1.000];

view8.userInteractionEnabled = NO;

[view6 addSubview:view8];

Using the Debugger
Xcode’s integrated debugger provides a valuable tool for iPhone application development.
The following walk-through shows you where the debugger is and provides a simple
grounding for using it with your program. In these steps, you discover how to set break-
points and use the debugger console to inspect program details.These steps assume you
are working on the second, minimalist Hello World example just described and that the
project window is open and the main.m file displayed.

Set a Breakpoint
Locate the loadView method in the main.m file of your Hello World project. Click in the
leftmost Xcode window column, just to the left of the label.text assignment line.A
blue breakpoint indicator appears (see Figure 2-8).The dark blue color means the break-
point is active.Tap once to deactivate—the breakpoint turns light blue—and once more
to reactivate.You can remove breakpoints by dragging them offscreen and add them by
clicking in the column, next to any line of code.

Open the Debugger
Click the Project/Debug toggle in the project window to view the debugger.The debug-
ger provides a graphical front end for inspecting program objects, as well as a source win-
dow, and a log area with an interactive gdb shell. Locate the Activate/Deactivate button at
the top-right of the debugger and make sure that it is activated, that is, that the button says
“Deactivate.”

Run the Program
Make sure the breakpoint is dark blue and that the button at the top of the debugger says
“Deactivate” (which means that the breakpoint is active), and click Build and Go to run
the program in the simulator.The program automatically stops when it hits the breakpoint.

ptg

54 Chapter 2 Building Your First Project

Figure 2-9 Xcode’s graphical debugger enables you to interactively inspect pro-
gram state. A command-line version of gdb runs concurrently in the console window,

as shown by the (gdb) prompt. A red arrow appears at the active breakpoint.

Figure 2-8 Blue breakpoint indicators appear in the leftmost Xcode window column.

The simulator window remains black and the debugger window updates to show the in-
teractive interface of Figure 2-9.

ptg

55Using the Debugger

Note
Remove breakpoints by dragging them out from the left column.

Going Text
The bottom pane of the debugging window offers text-based GNU debugger (gdb) out-
put that mirrors the results and data from the top two panes. For example, type backtrace
at the gdb prompt to view the same trace shown in the top-left pane.After stopping at
the second breakpoint, the backtrace should show that you are near line 19 in the source
from main.m.

This bottom section is also known as the console. In Xcode, choose Run, Console
(Command-Shift-R) to jump to the Xcode console. If the debugger is already open, the
cursor jumps to the bottom pane.This pane is where your printf, NSLog, and CFShow
messages are sent by default when running in tethered standard debug mode or when you
use the simulator.You can resize the console by adjusting the resize bar at its top. If you

Inspect the Label
Once stopped at the breakpoint, the interactive debugger and the gdb command line let
you inspect objects in your program. For this example, navigate down the variable chain;
the variable inspection pane appears at the top-right of the debugger window. Locate the
Locals list of variables by scrolling down slightly below the Arguments list. Inside, click
the disclosure triangle to the left of label to show the properties of the label object. No-
tice that text is labeled either nil or Invalid.

The gray Step Into button appears in the top toolbar of the window. Click it once.
The text assignment executes and the red arrow moves down by one line.The summary
of the label.text updates. It should now say Hello World.

Set Another Breakpoint
You can set additional breakpoints during a debugging session. For example, add a second
breakpoint just after the line that sets the text alignment to center.You can do this in the
middle pane; there’s no need to reopen the original source window. Once again click in
the leftmost column next to the line where you want to set the breakpoint.

Confirm that the current alignment is set to 0, the default value, by inspecting the la-
bel’s textLabelFlags.You may have to scroll down a little and resize the variable column.
Figure 2-10 shows the two breakpoints, the red arrow just after the assignment, and the
alignment value defaulting to 0.

With the new breakpoint set, click the green Continue button. HelloWorld resumes
execution until the next breakpoint, where it stops.The red arrow should now point to
the addSubview line, and the alignment flag updates from 0 to 1 as that code has now
run, changing the value for that variable.

ptg

56 Chapter 2 Building Your First Project

Figure 2-10 You can set additional breakpoints during the debugging session.

To test console logging, add a NSLog(@”Hello World!”); line to your code; place it after
the contentView release. Compile and run the application in the simulator.The log mes-
sage appears in the console pane.The console keeps a running log of messages regardless
of how many times you have tested your application.You can manually clear the log as
needed.

You don’t have to be running with gdb and the debugger console to see log messages.
Tethered iPhones automatically send their NSLog output to the Xcode organizer
(Window > Organizer > Device Name > Console).The Organizer console shows the out-
put created by NSLog. For example, when run on an iPhone, that NSLog command dis-
plays like the following. It shows the date and time, the program name and the NSLog
output (in this case,“Hello World!”).

Sun May 3 09:08:11 unknown HelloWorld2[2198] <Warning>: Hello World!

Moving the Clear Log Button
In the current version of the iPhone SDK, the Clear Log button defaults to the very right
of the toolbar. Because of this, Clear Log does not appear when the window is sized too
small, as shown in Figure 2-10.You can access it by clicking the double-chevron at the top
right of the window. I find this default location too much of a pain as I use the button
constantly.

Fortunately, like most OS X toolbars, Xcode supports customization.To customize,
Control- or right-click the toolbar. Choose Customize Toolbar from the contextual

want, you can drag it all the way to the top.This provides a full-window text-based con-
sole when needed.

ptg

57Using the Debugger

pop-up. From here you can drag Clear Log to a better location so less important buttons
get sent to the chevron submenu and the Clear Log remains available at all times.To clear
the console log via the keyboard, type the extremely awkward Control-Option-Com-
mand-R key combo.Alternatively, use Xcode’s hotkey rebinding support. See the Key
Bindings pane in Xcode preferences (Command-,).

You can also automatically clear the console, although this can sometimes erase content
that you are still reviewing. Open Xcode Preferences (Xcode > Preferences, Command-,),
and then check Debugging > Auto Clear Debug Console.This erases the console each
time you execute the application.

Enabling Zombies
In the movies, a zombie is something dead that starts walking around. In Xcode vernacu-
lar, a zombie is an object that has been destroyed or released that you are still trying to
send messages to. During debugging, you can set a special mode called NSZombieEnabled.
This debug mode lets you gather information about messages sent to invalid objects. Say,
for example, you create an instance variable called array.You set this and release it in the
application’s loadView method:

// Create and then release array

array = [[NSArray alloc] init];

[array release];

Should you attempt to access this object elsewhere in the program, the application will
crash.The debugger will fail with objc_msgSend and at best you can view a backtrace to
try to locate the error. Backtraces show a system stack, tracing the chain of messages that
led to the current error.

- (void) accessArray

{

CFShow([array self]);

}

NSZombieEnabled lets you locate the exact problem. In your project, select the Project
view (as opposed to the Debug view). Locate Executables in the project list and open the
disclosure triangle. Select your application, and click the blue Info button at the top tool-
bar. Click the Arguments tab and locate the Variables section at the bottom of the
Arguments pane. Click +, add NSZombieEnabled as the name (zombie, not zombies) and
YES as the value. Close the Executable Info window.

Now when you run the program, you receive a far more helpful message:

2009-05-03 13:20:31.014 HelloWorld[16603:20b] *** -[CFArray self]: message sent to

deallocated instance 0xd32590

This message lets you use the interactive debugger window to match the instance value
with the identity of the object; you’ll know exactly which object went zombie on you.To
disable zombies, delete the NSZombieEnabled from the variables section of the Executable
Info. Make sure to do so before distributing the application.

ptg

58 Chapter 2 Building Your First Project

Note
In Xcode 3.2 and newer, you can also use Run > Run with Performance Tool > Instruments >
Zombies.

Memory Management
The iPhone does not offer garbage collection. It relies on a reference counted memory
management system.As a developer that means you must control when objects are created,
retained, and released from memory. Use too much memory and the iPhone warns your
application delegate and UIViewControllers. Delegates receive applicationDidReceive
➥MemoryWarning: callbacks; view controllers get didReceiveMemoryWarning. Continue
to use too much memory and the iPhone will terminate your application, crashing your
user back to the SpringBoard.As Apple repeatedly points out, this is probably not the user
experience you intend for your user, and it will keep your application from being ac-
cepted into App Store.

You must carefully manage memory in your programs and release that memory during
low-memory conditions. Low memory is usually caused by one of two problems: leaks
that allocate memory blocks that can’t be accessed or reused and holding on to too much
data at once.

Note
In addition to retain and release, Objective-C offers autorelease memory management. Send-
ing autorelease to an object, typically at the time of its creation, says that you want it dis-
posed of automatically at some time in the future. The method that requests the object can
use the autoreleased object right away, and let it be disposed of at the end of the current
run loop, or it can retain the object for future use. Chapter 3, “Objective-C Boot Camp,” dis-
cusses memory management in further detail.

Leaks
Every object in Objective-C is created with an integer-based retain count. So long as that
retain count remains at one or higher, objects will not be deallocated. It is up to you as a
developer to implement strategies that ensure that objects get released at the time you will
no longer use them.

Every object built with alloc, new, or copy starts with a retain value of 1. Sending a
retain message to the object increases that count by one; sending release decreases the
count. (Assigning the object to a retained property also increases the count.) If you lose
access to an object without reducing the count to 0, that lost object creates a leak, that is,
memory that is allocated and cannot be recovered.The following code leaks an array:

NSArray *leakyarray = [[NSMutableArray alloc] init];

leakyarray = nil;

ptg

59Recipe: Using Instruments to Detect Leaks

Caching
When you load too much data at once, you can also run short of memory. Holding on to
everything in your program when you are using memory-intense resources such as im-
ages, audio, or PDFs may cause problems.A strategy called caching lets you delay loads until
resources are actually needed and release that memory when the system needs it.

The simplest approach involves building a cache from a NSMutableDictionary object.
A basic object cache works like this.When queried, the cache checks to see whether the
requested object has already been loaded. If it has not, the cache sends out a load request
based on the object name.The object load method might retrieve data locally or from the
Web. Once loaded, it stores the new information in memory for quick recall.

This code here performs the first part of a cache’s duties. It delays loading new data
into memory until that data is specifically requested. (In real life, you probably want to
type your data and return objects of a particular class rather than use the generic id type.)

- (id) retrieveObjectNamed: (NSString *) someKey

{

id object = [self.myCache objectForKey:someKey];

if (!object)

{

object = [self loadObjectNamed:someKey];

[self.myCache setObject:object forKey:someKey];

}

return object;

}

The second duty of a cache is to clear itself when the application encounters a low-
memory condition.With a dictionary-based cache, all you have to do is remove the ob-
jects.When the next retrieval request arrives, the cache can reload the requested object.

- (void) respondToMemoryWarning

{

[self.myCache removeAllObjects];

}

Combining the delayed loads with the memory-triggered clearing allows a cache to oper-
ate in a memory-friendly manner. Once objects are loaded into memory, they can be used
and reused without loading delays. However, when memory is tight, the cache does its
part to free up resources that are needed to keep the application running.

Recipe: Using Instruments to Detect Leaks
Instruments plays an important role in tuning your applications. It offers a suite of tools
that lets you monitor performance. Its leak detection lets you track, identify, and resolve
memory leaks within your program. Recipe 2-1 shows an application that creates two
kinds of leaks on demands: a string built by malloc() that is not balanced by free(), and
the NSArray example shown earlier in this chapter.

ptg

60 Chapter 2 Building Your First Project

Figure 2-11 Instruments tracks leaks created by memory that cannot be recovered.

To see Instruments in action, first load the sample project for Recipe 2-1. Choose Run
> Run with Performance Tool > Leaks in Xcode.This launches both Instruments and the
simulator.The application begins to run in the simulator and Instruments watches over its
progress.

Click either button in the application to leak memory.The string button leaks a 128-
byte malloc’ed block.The array button leaks a 32-byte NSArray. Memory leaks appear in
Instruments as an orange triangle.The size of the triangle indicates the size of the leak.

Be sure to click on the Leaks line to see the list of individual leaks as shown in Figure
2-11. By default, the ObjectAlloc line is selected. Each leak shows the amount of memory
leaked, the address at which the leak starts, and the kind of object leaked.

To track details about where the leak occurred, open the Extended Detail pane (View >
Extended Detail, Command-E).Alternatively, click the detail button just to the left of the
words “Leaked Blocks” at the bottom of the Instruments window. Click any item in the
list of leaks.This opens a stack trace for that leak in the extended detail view, as shown in
Figure 2-12.

Here, you find a stack trace that connects the leak to its creation.As this screenshot
shows, the memory leak in question was allocated in leakCString after being malloc’ed.
Finding the genesis of the object can help you track down where the leak occurs during
its lifetime. Once discovered, hopefully you will be able to plug the leak and remove the
memory issue from your application.

ptg

61Recipe: Using Instruments to Detect Leaks

Figure 2-12 The stack trace in the Extended Detail view reveals where leaks occurred.

Recipe 2-1 Creating Programmatic Leaks

@implementation TestBedController

- (void) leakCString

{

char *leakystring = malloc(sizeof(char)*128);

leakystring = NULL;

}

- (void) leakArray

{

NSArray *leakyarray = [[NSMutableArray alloc] init];

leakyarray = nil;

}

- (void) viewDidLoad

{

// set up buttons

self.navigationController.navigationBar.tintColor =

COOKBOOK_PURPLE_COLOR;

self.navigationItem.rightBarButtonItem = BARBUTTON(@"Leak Array",

@selector(leakArray));

ptg

62 Chapter 2 Building Your First Project

Figure 2-13 Instruments helps monitor object allocations, letting you test your release
strategies during memory warnings.

self.navigationItem.leftBarButtonItem = BARBUTTON(@"Leak String",

@selector(leakString));

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 2, and open the project for this recipe.

Recipe: Using Instruments to Monitor Cached
Object Allocations
One feature of the simulator allows you to test how your application responds to low-
memory conditions. Selecting Hardware > Simulate Memory Warning sends calls to your
application delegate and view controllers, asking them to release unneeded memory. In-
struments, which lets you view memory allocations in real time, can monitor those re-
leases. It ensures that your application handles things properly when warnings occur.With
Instruments, you can test memory strategies like caches discussed earlier in this chapter.

Recipe 2-2 creates a basic image cache. Rather than retrieve data from the Web, this
image cache builds empty UIImage objects to simulate a real use case.When memory
warnings arrive, as shown in Figure 2-13, the cache responds by releasing its data.

The stair-step pattern shown here represents three memory allocations created by pressing
the Consume button.After, the simulator issued a memory warning. In response, the cache
did its job by releasing the images it had stored.The memory then jumped back down to
its previous levels. Instruments lets you save your trace data, showing the application’s

http://github.com/erica/iphone-3.0-cookbook-

ptg

63Recipe: Using Instruments to Monitor Cached Object Allocations

performance over time. Choose File > Save to create a new trace file. By comparing runs,
you can evaluate changes in performance and memory management between versions of
your application.

Some SDK objects are automatically cached and released as needed.The UIImage
imageNamed: method retrieves and caches images in this manner, although it has gained a
deserved reputation for not operating as smoothly as it should and retaining memory that
should rightly be released. Nibs used to build UIViewControllers are also cached, and
reload as necessary when controllers need to appear.

Note
As a general rule of thumb for the first two generations of iPhones, an application can use
up to about 20MB of memory before memory warnings occur and up to about 30MB until
the iPhone OS kills your application.

Recipe 2-2 Image Cache Demo

// Build an empty image

UIImage *buildImage(int imgsize)

{

UIGraphicsBeginImageContext(CGSizeMake(imgsize, imgsize));

UIImage *image = UIGraphicsGetImageFromCurrentImageContext();

UIGraphicsEndImageContext();

return image;

}

@implementation ImageCache

@synthesize myCache;

- (id) init

{

if (!(self = [super init])) return self;

myCache = [[NSMutableDictionary alloc] init];

return self;

}

- (UIImage *) loadObjectNamed: (NSString *) someKey

{

// This demo doesn’t actually use the key to retrieve

// data from the web or locally.

// It just returns another image to fill up memory

return buildImage(320);

}

- (UIImage *) retrieveObjectNamed: (NSString *) someKey

{

UIImage *object = [self.myCache objectForKey:someKey];

if (!object)

{

ptg

64 Chapter 2 Building Your First Project

object = [self loadObjectNamed:someKey];

[self.myCache setObject:object forKey:someKey];

}

return object;

}

// Clear the cache at a memory warning

- (void) respondToMemoryWarning

{

[self.myCache removeAllObjects];

}

- (void) dealloc

{

self.myCache = nil;

[super dealloc];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 2 and open the project for this recipe.

Using the Clang Static Analyzer
The LLVM/Clang static analyzer automatically helps detect bugs in Objective-C pro-
grams. It’s a terrific tool for finding memory leaks and other issues. Starting with Xcode
version 3.2, you can run the analyzer directly from Xcode. Choose Build > Build and An-
alyze (Command-Shift-A).The interactive screen shown in Figure 2-14 guides you
through all suspected leaks and other potential problems.

Issues found by the static analyzer are not necessarily bugs. It’s possible to write valid
code that Clang identifies as incorrect.Always critically evaluate all reported issues before
making any changes to your code.

A stand-alone version of Clang can be used with legacy Xcode. Here are the steps you
can take to download, install, and use the static analyzer with your own projects:

1. Download a copy of the analyzer from http://clang-analyzer.llvm.org/. Unzip it
and rename the folder. I use the name “analyzer”; adapt the script in step 3 to match
your name.

2. Move the folder into place, typically into your home directory. I placed mine in
~/bin and the short shell script that follows uses this path.

3. I created and added the following script to ~/bin, naming it “clangit.”Again, use
your own judgment on placement and naming.

http://github.com/erica/iphone-3.0-cookbook-
http://clang-analyzer.llvm.org/

ptg

65Building for the iPhone

Figure 2-14 The Clang static analyzer creates bug reports for
source code and displays them in an Xcode feedback window.

Building for the iPhone
Building for and testing in the simulator takes you only so far.The end goal of iPhone de-
velopment is to create applications that run on actual devices.There are three ways to do
so: building for development, for distribution, and for ad hoc distribution.These three, re-
spectively, allow you to test locally on your device, to build for the App Store, and to build

rm -rf /tmp/scan-build*

rm -rf build

~/bin/analyzer/scan-build —view xcodebuild

4. Open an Xcode project, choose the Simulator|Debug configuration, and then
close Xcode.

5. From the command line, navigate to the project folder. Run the clangit script from
that folder. Once analyzed, the analyzer report opens automatically in your Web
browser.

ptg

66 Chapter 2 Building Your First Project

Figure 2-15 The Properties tab reveals the current application identifier
settings.

test and review versions of your applications that run on up to 100 registered devices.
Chapter 1 introduced mobile provisions and showed how to create these in the Apple
iPhone developer program portal. Now it’s time to put these to use and deploy a program
to the iPhone itself.

Install a Development Provision
At a minimum, a development provision is a prerequisite for iPhone deployment. So be-
fore going further, make sure you have created a wild-card dev provision and installed it
into Xcode by dragging the mobileprovision file onto the Xcode application icon. (Alter-
natively, drop the provision onto iTunes.) After doing so, quit and restart Xcode to ensure
that the provision is properly loaded and ready to use.

You may also want to review your keychain and ensure that the WWDR (Worldwide
Developer Relations) and your developer identity certificates are available for use. During
compilation, Xcode matches the provision against the keychain identity.These must match
or Xcode will be unable to finish compiling and signing your application.To check your
certificates, open Keychain Access (from /Applications/Utilities) and type “developer” in
the search box on the top right.You see, at a minimum, an Apple Worldwide Developer
Relations certifications Authority and one labeled iPhone Developer followed by your
(company) name.

Edit Your Application Identifier
Your project application identifier can be set in the Target Info window under the Proper-
ties tab.To find this, open the disclosure triangle next to Targets in the left-hand column
of your project window. Select the item inside. Its name matches the name of your proj-
ect. Click the big blue Info button at the top of the project window.This opens the Target
Info window with its five tabs. Click Properties, which is the fourth tab (see Figure 2-15).

Your wild-card development provision must match your actual application identifier. So if
you registered a wild-card application identifier of, say, com.sadun.∗ and used that to

ptg

67Building for the iPhone

Figure 2-16 Select a provisioning profile for your Code Signing Identity. To be used, provi-
sions must match the application identifier.

generate your provisioning profile, your project’s application identifier must match the
registered identifier.You could use com.sadun.helloworld or com.sadun.testing, for exam-
ple, but not helloworld or com.mycompany.helloworld.

By default, Xcode sets the application identifier to com.yourcompany.productname,
where the product name is automatically filled in using the name you used to create your
project. Edit com.yourcompany without touching the Xcode variable, which starts with
the dollar sign, to match the values used in your wildcard identifier.

Note
You can change the default company name by editing the templates found at
/Developer/Platforms/iPhoneOS.platform/Developer/Library/Xcode/Project Templates/
Application or, better yet, by copying them and transforming them into custom templates.
This process is described later in this chapter.

Set Your Code Signing Identity
After setting your identifier, click on the Build tab and confirm that the Configuration
drop-down list at the top-left of the screen is set for the configuration type you want to
modify (Debug or Release). Scroll down to find the Code Signing Identity entry. Click
the triangle to disclose Any iPhone OS Device and click the pop-up to its right.This is
where you select the provisioning profile identity you use to sign your application.

As you start to accumulate provisions and identities, the list of options can become
long indeed.The sample shown in Figure 2-16 has been trimmed for narrative purposes.
Normally, it’s triple that size mostly due to third-party ad hoc provisions like the Polar
Bear Farm Beta Program one.

ptg

68 Chapter 2 Building Your First Project

You can see that there are items in black and items in gray. Gray items do not match the
project’s application identifier.They cannot be used to sign. In this example, these include
a couple of push notification provisions, which are tied to specific application IDs that
aren’t equal to the current com.sadun.HelloWorld identifier.

The black items include my three matching provisions: my normal ad hoc provision,
my wild-card distribution provision, and my wild-card development provision, which is
selected in the image. Each of these three is listed with a certificate identity, namely
iPhone Developer or iPhone Distribution followed by a colon, followed by my name.
These match both the identities stored in the keychain and the certificates used in the
portal to generate the provisions.

The two Automatic Profile Selectors automatically pick the first matching profile.This
works well for the Developer identity. I have only one.This works poorly for the Distrib-
ution identity, which matches first to my ad hoc profile, which I rarely use. In day-to-day
work, ignore the automatic profile selector and make sure you pick the item you actually
intend to use by inspecting both the certificate name and the profile identity just above
that name before choosing a profile.

Compile and Run the Hello World Application
Finally, it’s time to test Hello World on an actual iPhone or iPod touch. Connect a unit
that you will use for development. If this is your first time doing so, Xcode prompts you
to confirm that you want to use it for development. Go ahead and agree, understanding
that Apple always warns about possible dire consequences for doing so. First-time devel-
opers are sometimes scared that their device will be locked in some “development mode”;
in reality, I have heard of no long-lasting issues. Regardless, do your homework before
committing your device as a development unit. Read through the latest SDK release notes
for details.

Before you compile, you must tell Xcode to build for the iPhone’s ARM architecture
rather than the Macintosh’s Intel one. In the project window, choose iPhone Device as
your Active SDK (see Figure 2-17).Then, check the Active Executable setting. If you have
attached more than one development unit to your Macintosh, choose the one you want
to test on.A check mark appears next to the unit name that will be used.

Click the Build and Go button in the project window.Assuming you have followed the
directions earlier in this chapter properly, the Hello World project should compile without
error, copy over to the iPhone, and start running.

If the project warns you about the absence of an attached provisioned device, open the
Xcode Organizer window and verify that the dot next to your device is green. If this is
not the case, you may need to reboot your device or your computer.

Signing Compiled Applications
You can sign already compiled applications at the command line using a simple shell
script.This works for applications built for development. Signing applications directly
helps developers share applications outside of ad hoc channels.

ptg

69From Xcode to Your iPhone: The Organizer Interface

Figure 2-17 The Active Executable selection
chooses which device to use. Two development

units are connected to this Mac, with the Bologna
unit chosen.

If you use several iPhone Developer profiles in your keychain, you may need to adapt this
script so that it matches only one of those. Otherwise codesign complains about ambigu-
ous matching.

I personally used this approach to distribute test versions of the sample code from this
book. Using developer code-signing allowed me to skip the hassles of ad hoc distribution,
allowing me to rapidly turn around applications to an arbitrary audience.

From Xcode to Your iPhone: The Organizer
Interface
The Xcode Organizer helps manage your development units. Choose Window > Orga-
nizer (Control-Command-O).This window (see Figure 2-18) forms the control hub for
access between your development computer and your iPhone or iPod testbed.This win-
dow allows you to add and remove applications, view midtest console results, examine
crash logs, and snap screenshots of your unit while testing your application. Here’s a quick
rundown of the major features available to you through the Organizer.

#! /bin/bash

export CODESIGN_ALLOCATE=/Developer/Platforms/iPhoneOS.platform/Developer/usr/

bin/codesign_allocate

codesign -f -s "iPhone Developer" $1.app

ptg

70 Chapter 2 Building Your First Project

Figure 2-18 The Xcode-based iPhone Organizer window (Window > Organizer) provides a sin-
gle control hub for most of your application testing needs. Here, you can load firmware, install
and remove applications, read through crash logs, snap device-based screenshots, and more.

Projects and Sources List
Keep your current projects in easy reach by dragging them onto the Organizer.You can
drag in the entire project folder. Once added, double-click the project file to open that
project.You can add individual source files as well as complete projects. Use the Build,
Clean, Run, and Action options at the top of the Organizer window, to perform even
more development tasks directly from the Organizer.

In addition to storing files, the Projects and Sources list can be used for viewing the
contents of sandboxes.When you download sandbox data from a device with the Sum-
mary tab, Xcode automatically adds that folder to this list, where you can browse through
the file contents.

To remove items from this list, especially items that were added automatically and that
you didn’t choose to include, open the contextual pop-up. Right-click or control-click
any item and choose Remove from Organizer, and then click OK. Doing so does not af-
fect any files on your disk.You’re not deleting files; you’re just omitting the listing in the
Projects and Sources list.

ptg

71From Xcode to Your iPhone: The Organizer Interface

Devices List
The Devices list shows the name and status of those devices you’ve authorized as develop-
ment platforms.The indicators to the right of each name show whether the device is at-
tached (green light) or not (red light).A gray light indicates a unit that has not been set
up for development or that it has been “ignored”—that is, removed from the active list.
An amber light appears when a device has just been attached. Should the light remain
amber-colored, you may have encountered a connection problem.This may be due to
iTunes syncing, and the unit is not yet available, or there may be a problem connecting
with the onboard services, in which case a reboot of your iPhone usually resolves any
outstanding issues.

iPhone Development Tools
The items in this list offer Mac-based development resources.These include archival crash
logs (i.e., not tied to a particular device but offloaded to your system), a Provisioning Pro-
files manager, and a Software Images list that shows the firmware bundles currently avail-
able on your system.The profile manager is particularly useful as it shows which device
each profile is installed on, offers a profile identifier (so you can figure out which file in
~/Library/MobileDevice/Provisioning Profiles corresponds to which provision), and pro-
vides handy expiration date checks.

Summary Tab
The Summary tab tells you the name, capacity, serial number, and identifier of your
iPhone or iPod touch. Here is where you can provision your unit (that is, authorize it to
work with the projects you build in Xcode), add and remove applications, and load the
latest firmware.

Each developer license allows you to provision your personal or corporate
iPhones/iPod touches for testing.The Provisioning list shows a list of application provi-
sions available to your unit.The provision determines which applications may or may not
be run on the device.As a rule, only development and ad hoc distribution provisions are
listed here, which makes sense. Distribution provisions are used to sign applications for the
App Store, not for any specific device.

A list of installed applications appears at the bottom of the Summary tab. Use the –
button to remove applications.To install an application, drag it onto the list or use the +
button to browse for it. Make sure your application is compiled for the iPhone OS and
that the device is provisioned to run that application.The application will immediately
sync over.Applications installed from App Store are grayed out in the application list.

Open the disclosure triangle next to each application name to reveal the application
data associated with that application.To download the application data, click the down-
pointing arrow, choose a destination, and click Save. Xcode builds a dated folder and pop-
ulates it with the contents of the sandbox, namely the Documents, Library, and tmp

ptg

72 Chapter 2 Building Your First Project

directories. Xcode also adds the folder to the Projects and Sources list, where you can
browse the contents directly from the Organizer.

You can reverse this process and add edited sandboxes back to the device. Locate the
folder you created (use Reveal in Finder from the contextual pop-up in Projects and
Sources). Drop new items into any of the subfolders, and then drag the entire folder back
onto the application name at the bottom of the Summary pane. Xcode reads the new
items and instantly transfers them to the device.This is a great way to prepopulate your
Documents folder with test material.

Console Tab
Use the console to view system messages from your connected units.This screen shows
NSLog() calls as you’re running software on the tethered iPhone.You need not be using
Xcode’s debugger to do this.The console listens in to any application currently running
on the device.

In addition to the debugging messages you add to your iPhone applications, you also
see system notices, device information, and debugging calls from Apple’s system software.
It’s basically a text-based mess. Logged data also appears on the Xcode debugging console
(Run > Console) along with any printf output. Click Save Log As to write the console
contents out to disk.

Crash Logs Tab
Get direct access to your crash logs by selecting a particular crash (labeled with the iPhone
application name and the date and time of the crash) from the scrolling list.The crash de-
tails, including a stack trace, thread information, exception types, and so forth, appear in
the bottom pane.

In addition to crash logs that you generate yourself, you can also retrieve crash reports
from users from their home computer and from iTunes Connect.The iPhone automati-
cally syncs crash reports to computers when units back up to iTunes.These reports are
stored in different locations depending on the platform used to sync the device:

n Mac OS X—~/Library/Logs/CrashReporter/MobileDevice/DeviceName
n Windows XP—C:\Documents and Settings\UserName\Application Data\Apple

Computer\Logs\CrashReporter\MobileDevice\DeviceName
n Windows Vista—C:\Users\UserName\AppData\Roaming\Apple

Computer\Logs\CrashReporter\MobileDevice\DeviceName

iTunes Connect collects crash log data from your App Store users and makes it available to
you. Download reports by selecting Manage Your Applications > App Details > View
Crash Report for any application.There you find a list of the most frequent crash types
and Download Report buttons for each type.

ptg

73Using Compiler Directives

Copy reports into the Mac OS X crash reporter folder and they load directly into the
Organizer. Make sure to load them into the device folder for the currently selected de-
vice.The reports appear in IPHONE DEVELOPMENT > Crash Logs.

Once in the Organizer, Xcode uses the application binary and .dSYM file to replace
the hexadecimal addresses normally supplied by the report with function and method
names.This process is called symbolication.You don’t have to manually locate these items;
Xcode uses Spotlight and the application’s unique identifier (UUID) to locate the original
binary and .dSYM files so long as they exist somewhere in your home folder.

As with crash logs in the Organizer, the reports from users provide a stack trace that
you can load into Xcode to detect where errors occurred.The trace always appears in re-
verse chronological order, so the first items in the list were the last ones executed.

In addition to showing you where the application crashed, Crash Reports also tell you
why they crashed.The most common cause is EXC_BAD_ACCESS, which can be gen-
erated by accessing unmapped memory (KERN_INVALID_ADDRESS) or trying to
write to read-only memory (KERN_PROTECTION_FAILURE).

Other essential items in the crash report include the OS version of the crash and the
version of the application that crashed. Users do not always update software to the latest
release, so it’s important to distinguish which crashes arose from earlier, now potentially
fixed, versions.

Note
See Apple Technical Note TN2151 for more details about iPhone OS Crash Reporting.

Screenshot Tab
Snap your tethered iPhone’s screen by clicking the Capture button on the Screenshot tab.
The screenshot feature takes a picture of whatever is running on the iPhone, whether
your applications are open or not. So you can access shots of Apple’s built-in software and
any other applications running on the iPhone.

Once snapped, you can drag snapped images onto the desktop or save them as an open
project’s new Default.png image.Archival shots appear in a library on the left side of the
window.To delete a screenshot, select one and press the Delete key to permanently re-
move it.

Note
Screenshots are stored in your home Library/Application Support/Developer/Shared/
Xcode/Screenshots folder.

Using Compiler Directives
Xcode directives issue instructions to the compiler that can detect the platform and
firmware you’re building for.This lets you customize your application to safely take ad-
vantage of platform- or firmware-only features.Adding #if statements to your code lets

ptg

74 Chapter 2 Building Your First Project

you block or reveal functionality based on these options.To detect if your code is com-
piled for the simulator or for the iPhone, for example, use target defines:
TARGET_IPHONE_SIMULATOR and TARGET_OS_IPHONE.

#if TARGET_IPHONE_SIMULATOR

Code specific to simulator

#else

Code specific to iPhone

#endif

The simple “OS 3 or later” version check lets you build OS-specific blocks. For example,
you might want to include code specific to the 3.0 MapKit within these blocks so a pro-
gram would still compile and run on 2.2.x devices.This approach lets you create version-
specific builds.Your program will not adapt on the go to changing device conditions; as
with the platform directive, this is a compile-time only check.

#ifdef _USE_OS_3_OR_LATER

#import <MapKit/MapKit.h>

#endif

Another approach involves checking the minimum OS version required to run the appli-
cation. For this, you can use any of the OS presets.This ensures that 3.0 code applies
strictly to apps compiled for 3.0 and later.

#if __IPHONE_OS_VERSION_MIN_REQUIRED < 30000

Pre-3.0 Code

#else

3.0 Code

#endif

The values for the OS versions use the following basic naming pattern, which will pre-
sumably continue from 3.1 on.These definitions were pulled from a global set of iPhone
defines.The next section shows you how to recover these for yourself.

#define __IPHONE_2_0 20000

#define __IPHONE_2_1 20100

#define __IPHONE_2_2 20200

#define __IPHONE_3_0 30000

Recovering iPhone-Specific Definitions
Although directive-specific definitions are not secret, they are not exactly well known.To
check the current list of iPhone-specific defines, do the following.These steps dump a list
from Xcode during compilation that you can use as a ready reference.

1. Open the Target Info window for the Hello World iPhone project from earlier in
this chapter.

2. Add the following flags to the OTHER_CFLAGS in the Build tab:
-g3 -save-temps -dD.

ptg

75Using Compiler Directives

3. Build your project. It will compile with errors. Ignore these.

4. Open a Terminal shell and navigate to your project folder. Inside, you find a new
file: main.mi.

5. Issue the following command: grep -i iPhone main.mi | open -f.This searches
through the main.mi for all iPhone references and adds them to a new TextEdit
document.This list contains all the currently defined macro elements. Save the list
somewhere convenient.

6. Remove the custom flags from your project and save.You should now be able to re-
build without error.

Note
Platform-specific limitations like onboard camera or microphone access should also be ad-
dressed by your code. Read more about coding around these potential roadblocks in
Chapter 14, “Device Capabilities.”

Runtime Checks
Compiler directives allow you to build 2.x- and 3.x-specific versions of your applications.
They do not, however, provide a way to run code that adapts to the current firmware.

To sell your application to the greatest number of customers, do not build for any SDK
higher than your lowest desired customer. If your iPod customers are hesitant to pay for
upgrades to newer firmware, you can still sell software that uses an older firmware specifi-
cation so long as it has been thoroughly tested to run on newer firmware.

However, if you want to use more modern classes and calls, you either have to cut out
older firmware customers entirely or you need to develop applications that provide those
features while being compiled for earlier firmware.That means checking for compatibility
at runtime rather than compile time.

You can accomplish this in a number of ways. First, you can check against the system
running on the device, calling the firmware-appropriate methods.This sample does ex-
actly that. It produces compile-time warnings for a 2.x build, letting you know that table
cells may not respond to textLabel.This is not the preferred way of doing things.Apple
recommends that you check for functionality and availability, not against specific firmware
versions.

NSString *celltext = [[UIFont familyNames] objectAtIndex:

[indexPath row]];

if ([[[UIDevice currentDevice] systemVersion] hasPrefix:@"2."])

[cell setText:celltext];

else if ([[[UIDevice currentDevice] systemVersion] hasPrefix:@"3."])

[[cell textLabel] setText:celltext];

return cell;

ptg

76 Chapter 2 Building Your First Project

You can also test objects to see whether they respond to specific selectors.When 3.X
versions of the frameworks are available, objects will report that they respond to those
selectors, letting you call them without crashing the program.As with the previous
approach, this too generates compile-time warnings about unimplemented selectors.

NSString *celltext = [[UIFont familyNames] objectAtIndex:

[indexPath row]];

if (![cell respondsToSelector:@selector(textLabel)])

[cell setText:celltext];

else

[[cell textLabel] setText:celltext];

return cell;

To avoid those compile-time warnings, you can add 3.x specific interface declarations to
your 2.x source.

@interface UITableViewCell (SDK3)

- (UILabel *) textLabel;

@end

A better approach, however, is to set the Base SDK and Deployment targets for your proj-
ect. In Target Info > Build Settings, set Base SDK to the highest version of the OS you
want to target, namely some 3.x version. Set the iPhone OS Deployment Target to the
lowest OS version you intend to build for.

You can also use a variety of other workarounds like pulling the label out indirectly.
This code retrieves the label and sets its text.

UILabel *label = (UILabel *)[cell valueForKey:@"textLabel"];

if (label) [label setText:celltext];

You can access 3.x classes from a 2.x build by using NSClassFromString().Test to see
whether the class returns nil. If not, the class is available for your use in the current
firmware. Link against any framework you might use, regardless of whether it is available
for the 2.x build.

Class MFMCVC = NSClassFromString(@"MFMailComposeViewController");

If (MFMVC) myMFMCViewController = [[MFMCVC alloc] init];

And if you really want to go hard core, you can build NSInvocation instances directly, as
discussed in Chapter 3.

Pragma Marks
Pragma marks organize your source code by adding bookmarks into the method list pop-
up button at the top of each Xcode window.This list shows all the methods and functions
available in the current document.Adding pragma marks lets you group related items to-
gether, as shown in Figure 2-19. By clicking on these labels from the drop-down list, you
can jump to a section of your file (for example, to tag utilities) as well as to a specific
method (such as -tagExists:).

ptg

77Using Compiler Directives

Figure 2-19 Use pragma marks to organize your method and func-
tion list.

To create a new bookmark, just add a simple pragma mark definition to your code.To
replicate the first group in Figure 2-20, for example, add:

#pragma mark view retrieval functions

You can also add a separation line with a special pragma mark call. Do not add any text af-
ter the hyphen or Xcode will add a normal bookmark, not a spacer.

#pragma mark -

The marks have no functionality and otherwise do not affect your code.They are simply
organizational tools that you choose to use or not.

Collapsing Methods
When you need to see more than one part of your code at once, Xcode lets you close and
open method groups. Place your mouse in the gutter directly to the left of any method.A
pair of disclosure triangles appears. Click a triangle and Xcode collapses the code for that
method, as shown in Figure 2-20.The ellipsis indicates the collapsed method. Click again
on the disclosure triangle, and Xcode reveals the collapsed code.

ptg

78 Chapter 2 Building Your First Project

Figure 2-20 Xcode lets you collapse individual methods and
functions. This allows you to see parts of your program that nor-

mally would not fit onscreen together.

Building for Distribution
Building for distribution means creating a version of your application that can be submit-
ted to Apple for sale in the App Store. Before you even think about building, know how
to clean up builds, how to create a distribution configuration, and how to find your built
product.You want to compile for the App Store with precision. Cleaning first, then com-
piling with a preset distribution configuration helps ensure that your application uploads
properly. Locating the built application lets you compress and submit the right file.The
following sections cover these skills and others needed for distribution compiles.

Creating and Editing Configurations
In Xcode, configurations store build settings.They act as a quick reference to the way you
want to have everything set up, so you can be ready to compile for your device or for the
App Store just by selecting a configuration. Standard Xcode projects offer Debug and Re-
lease configurations.You may want to create a few others, such as ones for regular or ad
hoc distribution.

Assuming you’ve been following along in this chapter, you have already set up the Hel-
loWorld project and edited its debug build settings. It uses your development wild-card
provision to sign the application. Instead of editing the build settings each time you want
to switch the signing provision, you can create a new configuration instead.

In the Project window, select the HelloWorld group at the top of the Groups & Files
column. Click the blue Info button to open the Project Info window.This window contains
four tabs: General, Build, Configurations, and Comments. Open the Configurations tab.

Select the Debug configuration that you have already customized and click the Dupli-
cate button in the bottom-left of the window. Xcode creates a copy and opens a text

ptg

79Building for Distribution

Figure 2-21 Use the Project Info configuration window to create new config-
urations so you can build with preset options such as signing identities.

entry field for its name, as shown in Figure 2-21. Edit the name from Debug copy to Dis-
tribution. For real world development, you may want to edit and/or duplicate the Release
configuration rather than the Debug one.This example uses Debug as it’s already cus-
tomized.

Next, click the Build tab and choose the new Distribution option from the Configuration
pop-up. It’s important that you do so; otherwise, you’ll be editing whatever configuration
was last used. Locate the Code Signing Identity and set Any iPhone OS Device to your
wild-card distribution profile.When you have done so, close the Project Info window.

Following these steps adds a distribution configuration to your project, allowing you to
select it when you’re ready to compile. Remember that you must create a separate config-
uration for each project. Configurations do not transfer from project to project and are
stored as part of each project’s settings.

ptg

80 Chapter 2 Building Your First Project

Figure 2-22 Xcode can thoroughly clean compiled artifacts from your project.

Clean Builds
Clean builds ensure that every part of your project is recompiled from scratch. Doing a
clean also ensures that your project build contains current versions of your project assets
including images and sounds.You can force a clean build by deleting the build folder in-
side your project folder and you can use Xcode’s built-in utility. Choose Build > Clean
(Command-Shift-K).As Figure 2-22 shows, Xcode prompts you to choose whether to
clean dependencies and precompiled headers as well.As a general rule, there’s no harm in
agreeing. Click Clean and wait as Xcode gets to work.

Apple recommends cleaning before compiling any application for App Store review, and
it’s a good habit to get into. I combine methods. I dispose of the build folder and then
clean out dependencies and precompiled headers.This produces a single product that is
easily located and won’t be confused with other build versions.

Compiling for the App Store
To build your application in compliance with the App Store’s submission policies, it must
be signed by a valid distribution provision profile using an active developer identity. If
you’ve properly set up a developer configuration, most of this is taken care of for you.
Here’s what’s left.

n Select Device as the active SDK. I can’t tell you how many people have attempted
to submit simulator builds to App Store only to be frustrated for hours before dis-
covering their error.

n Choose Distribution as the active configuration.You may want to open the Target
Info window and confirm that your application identifier and code signing identity
are set properly. Check that the Configuration at the top of the window is set to

ptg

81Clean Builds

Active (Distribution) or Distribution.The Overview pop-up in the project window
should say Device | Distribution.

n Compile your application using Build > Compile (Command-K).Your application
should compile without errors. If not, reconsider your readiness to submit to the
App Store.

n Locate the compiled product. In the Groups & Files column, find the Products
group. Open it and right-click/Control-click your compiled application. It should
appear in black and not in red. Choose Reveal in Finder from the contextual pop-up.

n Use the Finder window to confirm that your build is located in a folder ending with
the name iphoneos. (Again, you cannot submit simulator builds to the App Store.)

n Right-click (Control-click) the application and compress it.You will submit the zip
file to the App Store through iTunes Connect.

If your application is larger than 10MB, use Apple’s OS X application loader utility to
submit your application to the App Store.This program is available for download through
iTunes Connect on the Managing Your Applications page. Scroll to the very bottom and
click Get Application Loader.

Debugging App Store Uploads
At times, it proves difficult to upload your application to the App Store.You log in to
iTunes Connect.You set up your application details and get ready to upload your binary,
but when you do, iTunes Connect rejects the binary. In a big pink message, the Web site
tells you your upload has failed. Do you have a real signature problem? Are your certifi-
cates invalid? Sometimes you do have a signature problem and sometimes you don’t. Here
are a few steps that can help. Some of these you’ve just read about in the previous section;
others are new. Make sure you go down the entire list until you’ve resolved your problem.

Start by visiting the program portal and make sure that your developer certificate is up
to date. It expires after a certain period of time (typically one year) and if you haven’t reis-
sued a new one, you cannot submit software to App Store. If your certificate has expired,
you need to request a new one and to build new provisioning profiles to match. For most
people experiencing the “pink upload of doom,” though, their certificates are already valid
and Xcode is properly configured.

Return to Xcode and check that you’ve set the active SDK to one of the device
choices, like Device - 3.0.Accidentally leaving the build settings set to Simulator can be a
big reason for the pink rejection. Next, make sure that you’ve chosen a build configura-
tion that uses your distribution (not your developer) certificate. Check this by double-
clicking on your target in the Groups & Files column on the left of the project window.
The Target Info window opens. Click the Build tab and review your Code Signing Iden-
tity. It should be iPhone Distribution: followed by your name or company name.

The top-left of your project window also confirms your settings and configuration. It
should read something like “Device | Distribution,” showing you the active SDK and the

ptg

82 Chapter 2 Building Your First Project

active configuration. If your settings are correct but you still aren’t getting that upload fin-
ished properly, clean your builds. Choose Build > Clean (Command-Shift-K) and click
Clean.Alternatively, you can manually trash the build folder in your Project from Finder.
Once you’ve cleaned, build again fresh.

Avoid spaces and special characters in the name of the zip archive you upload to
iTunes Connect.You cannot rename your app file but you can freely rename the zip
archive. Name issues can cause problems with some application uploads. So long as the
data inside the zip archive includes the proper application, the name of the zip file really
doesn’t matter.

If this does not produce an app that when zipped properly loads to iTunes Connect, do
this: Quit and relaunch Xcode.This one simple trick solves more signing problems and
“pink rejections of doom” than any other solution already mentioned. Quit, restart
Xcode, clean your build, rebuild, zip, and submit. For most developers, this final step is all
it takes to get past the invalid submission screen.

Assuming you are still having problems, download a copy of Apple’s OS X Application
Loader from iTunes Connect on the Manage Your Application page. Instead of uploading
directly, check the box that says Check Here to Upload Your Binary Later and use the
loader to submit the archive.

If you’re still having trouble submitting to the App Store, consider compressing with a
third-party archiver or try copying the application to the desktop before zipping it up.
This sometimes solves the problem, creating an acceptable submission for an application
that is otherwise properly signed. Some files rejected by the iTunes Connect Web site may
be uploaded without error through the Application Loader.

Try launching Terminal and navigating to your compiled application. Run codesign -
vvv YourApplication.app, substituting the actual application name to see whether any
errors are reported about invalid signatures.

If you continue to have application submission problems even after walking through all
these steps, contact Apple. Send an e-mail to iTunes Connect (they do not have a public
phone) and explain your situation.Tell them that you’ve checked your certificates, that
they are all valid, and mention the steps you’ve already tried.They may be able to help fig-
ure out why you’re still getting pink-rejected when you try to submit your apps. For
everybody else, the checklist items you’ve already seen are probably enough to help you
move past your submission issues and get your app on the way to review.

Note
When renewing your developer and distribution certificates, you must reissue all your mobile
provisions. Throw away the old ones and create new ones with your updated developer iden-
tity. Make sure to remove the outdated certificates from your keychain when replacing them
with the new ones.

ptg

83Building for Ad Hoc Distribution

Building for Ad Hoc Distribution
Apple allows you to distribute your applications outside the App Store via ad hoc distri-
bution.With ad hoc, you can send your applications to up to 100 registered devices and
run those applications using a special kind of mobile provision that allows the applications
to execute under the iPhone’s FairPlay restrictions.Ad hoc distribution is especially useful
for beta testing and for submitting review applications to news sites and magazines.

Register Devices
The ad hoc process starts with registering devices. Use the iPhone developer program
portal to add device identifiers (Program Portal, Devices) and names to your account. Re-
cover these identifiers from the iPhone directly (use the UIDevice calls from Chapter 9,
“Building and Using Controls”), from Xcode’s Organizer (copy the identifier from the
Summary tab), from iTunes (click on Serial Number in the iPhone’s Summary tab), from
System Profiler (select USB, iPhone, Serial Number), or via Ad Hoc Helper from iTunes.
Enter the identifier and a unique username.

Build the Ad Hoc Provision
If you have not done so already, build your Ad Hoc provision.To build a mobile provision,
select Program Portal > Provisioning > Distribution. Click Add Profile. Select Ad Hoc,
enter a profile name, your standard wildcard application identifier (for example,
com.yourname.*), and select the device or devices to deploy on. Don’t forget to check
your identity and then click Submit and wait for Apple to build the new mobile provi-
sion. Download the provision file and drop it onto the Xcode application icon.You will
use it to build your application.You may want to restart Xcode after adding the provision.

Add an Entitlement File to Your Project
A special entitlement file is needed in ad hoc projects. (See Apple Technical Note
TN2242.) In Xcode, choose File > New File > Code Signing > Entitlements. Click
Next. Create a new entitlement called dist.plist. Click Finish.This creates a new file and
adds it to your project.The name of the entitlement file is arbitrary.

Locate the new entitlements file.The file contains a single property that you must edit.
Double-click to open it in an editor and uncheck get-task-allow (that is, set it to a
Boolean value of FALSE). Save your changes and close the file.

Add the Entitlement to Your Settings
After setting up your entitlement, you need to add it to your target settings.With the Ad
Hoc configuration selected, open the Target Info window. Make sure that the configura-
tion pop-up in the Target Info window also says Ad Hoc. If it does not, select it.

In the Build tab, choose your Ad Hoc provision for your Code Signing Identity.
Then, double-click Code Signing Entitlements.This pops up an interactive dialog. Click
+ and add the filename dist.plist to the Code Signing Entitlement (see Figure 2-23) and

ptg

84 Chapter 2 Building Your First Project

Figure 2-23 Add dist.plist as a new code signing entitlement for Ad Hoc dis-
tribution builds.

click OK.Alternatively, you can drag the entitlements file onto the Code Signing Enti-
tlements field.

Build Your Ad Hoc Application
Now you’re ready to build your application. Make sure your Code Signing Identity is set to
your ad hoc provision. Select Build > Build (Command-B).You can find the newly com-
piled product via the Products group in the project window. Right-click (Control-click) it
and choose Reveal in Finder.A Finder window opens, showing the compiled item.

Distribute a copy of this application, which you just compiled with the mobile ad hoc
provision, along with the provision itself that you downloaded from Apple.Your user can
drop the provision and the application into iTunes before syncing your application to his
or her iPhone.The application runs only on those phones you registered, providing a se-
cure way to distribute these apps directly to your user.

Adding Artwork to Ad Hoc Distributions
Normally, iTunes does not display artwork for ad hoc programs. By default, it shows a styl-
ized “A” instead. Fortunately, you can work around this. iPhone developer Malcolm Hall
taught me how to set up ad hoc applications so they display the proper image.

Create a folder in Finder and populate it with two items.The first is a 512x512 JPEG
image called iTunesArtwork.The second is a folder called Payload.Add the application
bundle (do not compress it) into the Payload subfolder.Then zip up the entire folder and
rename the zip file to Appname.ipa, where the name of the application matches the bundle
you included in the Payload subfolder.

ptg

85Customizing Xcode Identities

Figure 2-24 In OS X’s address book, the contact
used for personalizing Xcode files is marked with a

“me” in the corner of the user’s icon.

This IPA package (IPA stands for iPhone application) mimics the way that Apple provides
applications for iTunes.When iTunes sees the iTunesArtwork file, it uses it to create the
image seen in the Applications library.

Add the iTunesArtwork file without an explicit extension. If needed, remove any exist-
ing extension by renaming the file at the command line.Although the file needs to be in
JPEG format, it should not use the standard .jpg or .jpeg naming.

Note
When distributing ad hoc builds to Windows Vista clients, instruct users to unzip the IPA first
and then add the unzipped folder into iTunes. Vista apparently unzips the file incorrectly, re-
sulting in application verification errors.

Customizing Xcode Identities
By definition, Xcode builds the following header into all your source code. Each of the
items contained within the double chevrons is a variable and is set at the time the code
gets created.Your user and organization names are retrieved from your Address Book,
where they correspond to your personal contact information.The icon for this contact is
marked with “me”—as shown in Figure 2-24.

/*

* main.m

* <<PROJECTNAME>>

*

* Created by <<FULLUSERNAME>> on <<DATE>>.

* Copyright (c) <<YEAR>> <<ORGANIZATIONNAME>>. All rights reserved.

*

*/

You can override these settings with a pair of defaults that you assign at the command
line.The following defaults command sets the organization and username to values dif-
ferent from those found in the address book.When used, these custom settings override
the address book entry.

defaults write com.apple.Xcode PBXCustomTemplateMacroDefinitions
'{ORGANIZATIONNAME = "Apple, Inc." ; FULLUSERNAME = "Jonathan I.}'

ptg

86 Chapter 2 Building Your First Project

You can also update the Organization Name in the Project Info > General settings on a
project-by-project basis.

Unfortunately, the one string most iPhone developers want to override cannot be set
by defaults.The com.yourcompany identifier that appears in new projects is hard coded
into Xcode templates. If you want to change that identifier, you must edit Apple’s built-in
templates or, better yet, create copies of those templates and edit them in your own user
library.

Creating Custom Xcode Templates
When you create new projects in Xcode, the program lets you select a template.You can
choose from iPhone and Mac OS X options that let you craft your application from any
number of predesigned program skeletons. For the iPhone, these include view-based ap-
plications and applications built with OpenGL ES. On the Mac, you can build dynamic li-
braries, command-line utilities, and apps built with Cocoa, among many others.

Sometimes, though, you find yourself taking the same steps over and over to customize
your projects to your own particular in-house design including updating that company
identifier. Fortunately, Xcode lets you add user templates that you can precustomize so
you can always start your new projects off where you really need to begin, not just where
Apple left off. Jay Abbott of TinyPlay.com first showed me how to do this. His instructions
involve making a copy of one of Apple’s templates, dragging it to a folder in your applica-
tion support library, and customizing it.

Apple stores its project templates in Xcode’s /Developer directory. iPhone project tem-
plates are found in /Developer/Platforms/iPhoneOS.platform/Developer/Library/
Xcode/Project Templates/Application. Each folder in that directory corresponds to a
single template.

Overriding com.yourcompany
Replacing com.yourcompany is one of the simplest patches you can make.To start, copy
the entire Application folder from the developer templates to your desktop. Search each
folder for instances of com.yourcompany inside Info.plist files and edit them to match the
actual identifier for your wild-card provisions. Make sure you look in subfolders in the
templates to locate all Info.plist files. Use caution when editing and avoid changing any of
the normal formatting information.

Once patched, locate the Library/Application Support/Developer/Shared/Xcode
folder in your home directory. Create a Project Templates folder there and move the Ap-
plication folder from the Desktop into that folder.When you next launch Xcode, it adds a
new User Templates section and lists your version of the Application templates there, as
shown in Figure 2-25.

Selecting a template from User Templates rather than from iPhone OS loads your cus-
tomized version, complete with the patched Info.plist.When you create new projects this
way, you ensure that the application identifier has been preset to match your provisions.

ptg

87Creating Custom Xcode Templates

Figure 2-25 Xcode lets you create new projects from custom User
Templates. These templates are stored in your home library folder in a special

Xcode directory.

Building Other Templates
There’s a lot more you can do with custom templates than just editing a single string.
Think of user templates as a jumping off point for any project development you can think
of.You can add custom images like your company logo or often-used classes.Any materi-
als added to a template become available to Xcode to clone into new projects. If you find
yourself repeating the same customization tasks again and again with Apple’s templates, a
custom template will save you those steps. Custom templates can save you a lot of work.
By carefully going through the project initialization process once, you can build on that
well-executed start for all your projects.

Survey the existing templates. Copy whichever template best matches your goal onto
your desktop.Adapt the folder by editing, trimming, and/or augmenting the files within.
You need to update the project in Xcode to set it up.You might add Distribution and ad
hoc configurations including your ad hoc entitlement file.Avoid setting provisioning pro-
files in theTarget Info window, however. Once a template hard codes a signing identity, it
becomes difficult to switch to other configurations. Perform however many edits you need.

Make sure that the template actually compiles and, if working with iPhone source, that
it runs properly in the simulator. Save your work and then delete the build folder.Also
delete the user-specific files in the xcodeproj subdirectory that contain your username.
(You need to delete these files again should you ever reedit your project.)

ptg

88 Chapter 2 Building Your First Project

Decide on a group name for your new template such as My Custom Templates.This
name refers to the group that owns the template rather than the template itself.This cor-
responds to the Application group used for Apple’s templates. Drag your edited template
into the new group folder. Rename the template folder meaningfully.The name of the
folder corresponds to the name of the template shown in Xcode.

To finish, update the template description in the TemplateInfo.plist in the xcodeproj
folder and, optionally, change the images in the TemplateIcons.icns file. Xcode ships with
an icon editor that lets you paste art into ICNS files if you want. Otherwise, the icon de-
faults to the standard image used by the template you copied.

After following these steps, you’ll have created custom templates that you can use in
Xcode to start new projects.You can share these templates with others by zipping up their
folders. It’s probably best to zip starting at the template group level and then drop them
into Project Templates folders.

One More Thing: Viewing Side-by-Side Code
When building new classes, it helps to open the header file and the method file right next
to each other. Rather than flipping back and forth between two separate windows, Xcode
offers a nifty trick that lets you edit both together.To accomplish this, start by opening the
.m file in a standard editor.

Locate the top-right corner of the edit area, just under the Ungrouped and Project
buttons.There, you see several icons in the corner.The corner is shaped like a lock and
just underneath it is a bifurcated square. Hover your mouse over that square and confirm
that the tool tip says Click to Split the Editor View.

Press the Option key and with the key pressed, click that square.The Option-click
combination creates a vertical split rather than the default horizontal split normally intro-
duced by the button. Once split, notice the new button that appears under the split but-
ton. It’s a merge button, and when you’re ready to do so, clicking it returns the window to
a single unsplit display. For now, leave the display split.

Next, move your mouse up and to the left of the lock corner square.The tool tip for
this button should read Go to Counterpart.This is used to switch between .h and .m
views. Click it. (Alternatively, press Command-Option-Up Arrow.) After doing so, the
screen updates, as shown in Figure 2-26, to display both the .m (at the left) and .h (at the
right) versions of a class definition file in a single editor.This provides you with both items
in a single window, making it simple to refer back and forth.

If you need to, you can resize the window and reapportion the two panes.The resize
bar occurs just to the right of the scrollbar for the left-hand view. It’s hard to see at first,
but when you move your mouse onto the right spot, the cursor updates to the double-
arrowed resizer. Click and drag to perform the resize.

Note
Command-double-click on any class or method to automatically load the associated
header file.

ptg

89Summary

Figure 2-26 Xcode lets you edit header and method class sources in a single window.

Summary
This chapter covered a lot of ground. From start to finish, you saw how to create, com-
pile, and debug Xcode projects.You were introduced to most of the major Xcode com-
ponents that you’ll use on a day-to-day basis, and you read about many of the different
ways you can produce and run iPhone projects. Here are some thoughts to take away
from this chapter.

n Although Xcode provides easy-to-use templates, think of them as a jumping off
point not an endpoint.You can customize and edit projects however you want, and,
as you read in this chapter, you can turn those edited projects into new templates.

n Interface Builder makes it really easy to lay out views.Although technically, you’re
producing the same method calls and property assignments as if you’d designed by
hand, IB’s elegant GUI transforms those design tasks into the visual domain, which
is a welcome place for many developers.

n Learning to navigate through Xcode’s in-program reference documentation is an
essential part of becoming an iPhone developer. No one can keep all that informa-
tion in his or her head.The more you master the documentation interface, the bet-
ter you’ll be at finding the class, method, or property you need to move forward.

n Everything changes. Subscribe to iPhone OS documentation in Xcode and ensure
that your documentation remains as up-to-date as possible.

ptg

90 Chapter 2 Building Your First Project

n Xcode’s built-in debugger and Instruments tools help you fix bugs faster than try-
ing to figure out everything by hand.The tools may seem complex at first but are
well worth mastering for day-to-day development.

n Get to know and love the Organizer pane. It gives you critical feedback for know-
ing which devices are connected and what state they are in.And the other tools, in-
cluding the screenshot utility and the console, just add to its power.

n Configurations help prevent repetitive work. Once set, a configuration lets you
choose how to compile and sign your application with a minimum of further effort.

ptg

3
Objective-C Boot Camp

Most iPhone development centers on Objective-C. It is the standard programming
language for both the iPhone and for Mac OS X. It offers a powerful object-
oriented language that lets you build applications that leverage Apple’s Cocoa

and Cocoa Touch frameworks. In this chapter, you learn basic Objective-C skills that help
you get started with iPhone programming.You learn about interfaces, methods, proper-
ties, memory management, and more.To round things out, this chapter takes you beyond
Objective-C into Cocoa to show you the core classes you’ll use in day-to-day program-
ming and offers you concrete examples of how these classes work.

The Objective-C Programming Language
Objective-C is a strict superset of ANSI C. C is a compiled, procedural programming lan-
guage developed in the early 1970s at AT&T. Objective-C, which was developed by Brad
J. Cox, adds object-oriented features to C, blending C language constructs with concepts
that originated in Smalltalk-80. Smalltalk is one of the earliest and best-known object-
oriented languages, which was developed at Xerox PARC. Cox layered Smalltalk’s object
and message passing system on top of standard C to create his new language.This allowed
programmers to continue using familiar C-language development while accessing object-
based features from within that language. In the late 1980s, Objective-C was adopted as
the primary development language for the NeXTStep operating system by Steve Jobs’s
startup computer company NeXT. NeXTStep became both the spiritual and literal
ancestor of OS X.The current version of Objective-C is 2.0, which was released in
October 2007 along with OS X Leopard.

Object-oriented programming brings features to the table that are missing in standard
C. Objects refer to data structures that are associated with a preset list of function calls.
Every object in Objective-C has instance variables, which are the fields of the data struc-
ture, and methods, which are the function calls the object can execute. Object-oriented
code uses these objects and methods to introduce programming abstractions that increase
code readability and reliability.

ptg

92 Chapter 3 Objective-C Boot Camp

Object-oriented programming lets you build reusable code units that can be decou-
pled from the normal flow of procedural development. Instead of relying on process flow,
object-oriented programs are developed around smart data structures provided by objects
and their methods. Cocoa Touch on the iPhone and Cocoa on Mac OS X offer a massive
library of these smart objects. Objective-C unlocks that library and lets you build on Ap-
ple’s toolbox to create effective, powerful applications with a minimum of effort and code.

Note
The iPhone’s Cocoa Touch class names that start with NS, such as NSString and
NSArray, hearken back to NeXT. NS stands for NeXTStep, the operating system that ran on
NeXT computers.

Classes and Objects
Objects are the heart of object-oriented programming.You define objects by building
classes, which act as object creation templates. In Objective-C, a class definition specifies
how to build new objects that belong to the class. So to create a “widget” object, you de-
fine the Widget class and then use that class to create new objects on demand.

Each class lists its instance variables and methods in a public header file using the stan-
dard C .h convention. For example, you might define a Car object like the one shown in
Listing 3-1.The Car.h header file shown here contains the interface that declares how a
Car object is structured. Note that all classes in Objective-C should be capitalized.

Listing 3-1 Declaring the Car Interface (Car.h)

#import <Foundation/Foundation.h>

@interface Car : NSObject

{

int year;

NSString *make;

NSString *model;

}

- (void) setMake:(NSString *) aMake andModel:(NSString *) aModel

andYear: (int) aYear;

- (void) printCarInfo;

- (int) year;

@end

In Objective-C, the @ symbol is used to indicate certain keywords.The two items shown
here (@interface and @end) delineate the start and end of the class interface definition.
This class definition describes an object with three instance variables: year, make, and
model.These three items are declared between the braces at the start of the interface.

The year instance variable is declared as an integer (using int). Make and model are
strings, specifically instances of NSString. Objective-C uses this object-based class for the
most part rather than the byte-based C strings defined with char *.As you see through-
out this book, NSString offers far more power than C strings.With this class, you can find

ptg

93Classes and Objects

out a string’s length, search for and replace substrings, reverse strings, retrieve file exten-
sions, and more.These features are all built into the base Cocoa Touch object library.

This class definition also declares three public methods.The first is called
setMake:andModel:andYear:.This entire three-part declaration, including the colons, is
the name of that single method.That’s because Objective-C places parameters inside the
method name. In C, you’d use a function like setProperties(char *c1, char *c2,
int i). Objective-C’s approach, although heftier than the C approach, provides much
more clarity and self-documentation.You don’t have to guess what c1, c2, and i mean
because their use is declared directly within the name:

[myCar setMake:c1 andModel:c2 andYear:i];

The three methods are typed as void, void, and int.As in C, these refer to the type of
data returned by the method.The first two do not return data, the third returns an integer.
In C, the equivalent function declaration to the second and third method would be void
printCarInfo() and int year();.

Using Objective-C’s method-name-interspersed-with-arguments approach can feel
odd to new programmers but quickly becomes a much-loved feature.There’s no need to
guess which argument to pass when the method name itself tells you what items go
where. In Objective-C, method names are also interchangeably called selectors.You see this
a lot in iPhone programming, especially when you use calls to performSelector:, which
lets you send messages to objects at runtime.

Notice that this header file uses #import to load headers rather than #include. Im-
porting headers in Objective-C automatically skips files that have already been added.
This lets you add duplicate #import directives to your various source files without any
penalties.

Note
The code for this example, and all the examples in this chapter, is found in the sample code
for this book. See the Preface for details about downloading the book sample code from the
Internet.

Creating Objects
To create an object, you tell Objective-C to allocate the memory needed for the object
and return a pointer to that object. Because Objective-C is an object-oriented language,
its syntax looks a little different from regular C. Instead of just calling functions, you ask an
object to do something.This takes the form of two elements within square brackets, the
object receiving the message followed by the message itself, [object message].

Here, the source code sends the message alloc to the Car class, and then sends the
message init to the newly allocated Car object.This nesting is typical in Objective-C.

Car *myCar = [[Car alloc] init];

The “allocate followed by init” pattern you see here represents the most common way to
instantiate a new object.The class Car performs the alloc method. It allocates a new
block of memory sufficient to store all the instance variables listed in the class definition,

ptg

94 Chapter 3 Objective-C Boot Camp

zeroes out any instance variables, and returns a pointer.The newly allocated block is called
an instance and represents a single object in memory.

Some classes, like views, use specialized initializers such as initWithFrame:.You can
write custom ones like initWithMake: andModel: andYear:.The pattern of allocation
followed by initialization to create new objects holds universally.You create the object in
memory and then you preset any critical instance variables.

Memory Allocation
In this example, the memory allocated is 16 bytes in size. Notice that both make and
model are pointers, as indicated by the asterisk. In Objective-C, object variables point to
the object itself.The pointer is 4 bytes in size. So sizeof(myCar) returns 4.The object
consists of two 4-byte pointers, one integer, plus one additional field that does not derive
from the Car class.

That extra field is from the NSObject class. Notice NSObject at the right of the colon
next to the word Car in the class definition of Listing 3-1. NSObject is the parent class of
Car, and Car inherits all instance variables and methods from this parent.That means that
Car is a type of NSObject and any memory allocation needed by NSObject instances is in-
herited by the Car definition. So that’s where the extra 4 bytes come from.

The final size of the allocated object is 16 bytes in total.That size includes two 4-byte
NSString pointers, one 4-byte int, and one 4-byte allocation inherited from NSObject.
You can easily print out the size of objects using C’s sizeof function.This code uses stan-
dard C printf statements to send text information to the console. printf commands
work just as well in Objective-C as they do in ANSI C.

NSObject *object = [[NSObject alloc] init];

Car *myCar = [[Car alloc] init];

// This returns 4, the size of an object pointer

printf("object pointer: %d\n", sizeof(object));

// This returns 4, the size of an NSObject object

printf("object itself: %d\n", sizeof(*object));

// This returns 4, again the size of an object pointer

printf("myCar pointer: %d\n", sizeof(myCar));

// This returns 16, the size of a Car object

printf("myCar object: %d\n", sizeof(*myCar));

Releasing Memory
In C, you allocate memory with malloc() or a related call and free that memory with
free(). In Objective-C, you allocate memory with alloc and free it with release. (In
Objective-C, you can also allocate memory a few other ways, such as by copying other
objects.)

ptg

95Methods, Messages, and Selectors

[object release];

[myCar release];

As discussed in Chapter 2,“Building Your First Project,” releasing memory is a little more
complicated than in standard C.That’s because Objective-C uses a reference-counted
memory system. Each object in memory has a retain count associated with it.You can see
that retain count by sending retainCount to the object. Every object is created with a re-
tain count of 1. Sending release reduces that retain count by one.When the retain count
for an object reaches zero, it is released into the general memory pool.

Car *myCar = [[Car alloc] init];

// The retain count is 1 after creation

printf("The retain count is %d\n", [myCar retainCount]);

// This reduces the retain count to 0

[myCar release];

// This causes an error. The object has already been freed

printf("Retain count is now %d\n", [myCar retainCount]);

Sending messages to freed objects will crash your application.When the second printf
executes, the retainCount message is sent to the already-freed myCar.This creates a mem-
ory access violation, terminating the program.

The retain count is 1

objc[10754]: FREED(id): message retainCount sent to freed
object=0xd1e520

There is no garbage collection on the iPhone.As a developer, you must manage your ob-
jects. Keep them around for the span of their use and free their memory when you are
finished. Read more about basic memory management strategies later in this chapter.

Methods, Messages, and Selectors
In standard C, you’d perform two function calls to allocate and initialize data. Here is how
that might look, in contrast to Objective-C’s [[Car alloc] init] statement.

Car *myCar = malloc(sizeof(Car));

init(myCar);

Objective-C doesn’t use function_name(argument)syntax. Instead, you send messages to
objects using square brackets. Messages tell the object to perform a method. It is the ob-
ject’s responsibility to implement that method and produce a result.The first item within
the brackets is the receiver of the message, the second item is a method name, and possibly
some arguments to that method that together define the message you want sent. In C, you
might write

printCarInfo(myCar);

ptg

96 Chapter 3 Objective-C Boot Camp

Figure 3-1 Xcode’s Objective-C issues warnings when it finds a
method that does not appear to be implemented by the receiver.

but in Objective-C, you say:

[myCar printCarInfo];

Despite the difference in syntax, methods are basically functions that operate on objects.
They are typed using the same types available in standard C. Unlike function calls,
Objective-C places limits on who can implement and call methods. Methods belong to
classes.And the class interface defines which of these are declared to the outside world.

Dynamic Typing
Objective-C uses dynamic typing in addition to static typing. Static typing restricts a vari-
able declaration to a specific class at compile time.With dynamic typing, the runtime sys-
tem, not the compiler, takes responsibility for asking objects what methods they can
perform and what class they belong to.That means you can choose what messages to send
and which objects to send them to as the program runs.This is a powerful feature, one
that is normally identified with interpreted systems like Lisp.You can choose an object,
programmatically build a message, and send the message to the object all without knowing
which object will be picked and what message will be sent at compile time.

With power, of course, comes responsibility.You can only send messages to objects that
actually implement the method described by that selector (unless that class can handle
messages that don’t have implementations by implementing Objective-C invocation for-
warding, which is discussed at the end of this chapter). Sending printCarInfo to an array
object, for example, causes a runtime error and crashes the program.Arrays do not define
that method. Only objects that implement a given method can respond to the message
properly and execute the code that was requested.

2009-05-08 09:04:31.978 HelloWorld[419:20b] *** -[NSCFArray printCarInfo]:
➥unrecognized selector sent to instance 0xd14e80

2009-05-08 09:04:31.980 HelloWorld[419:20b] *** Terminating app due to uncaught
➥exception 'NSInvalidArgumentException’, reason: '*** -[NSCFArray
➥printCarInfo]: unrecognized selector sent to instance 0xd14e80'

During compilation, Objective-C performs object message checks using static typing.The
array definition in Figure 3-1 is declared statically, telling the compiler that the object in
question is of type (NSArray *).When the compiler finds objects that may not be able to
respond to the requested methods, it issues warnings.

ptg

97Methods, Messages, and Selectors

These warnings do not make the compilation fail, and it’s possible that this code could
run without error if NSArray implemented printCarInfo and did not declare that imple-
mentation in its published interface. Since NSArray does not, in fact, implement this
method, running this code produces the actual runtime crash shown previously.

Objective-C’s dynamic typing means you can point to the same kind of object in sev-
eral different ways.Although array was declared as a statically typed (NSArray *) object,
that object uses the same internal object data structures as an object declared as id.The id
type can point to any object, regardless of class, and is equivalent to (NSObject *).This
following assignment is valid and does not generate any warnings at compile time.

NSArray *array = [NSArray array];

// This assignment is valid

id untypedVariable = array;

To further demonstrate, consider a mutable array.The NSMutableArray class is a subclass
of NSArray.The mutable version offers arrays that you can change and edit. Creating and
typing a mutable array but assigning it to an array pointer compiles without error.Al-
though anotherArray is statically typed as NSArray, creating it in this way produces an
object at runtime that contains all the instance variables and behaviors of the mutable ar-
ray class.

NSArray *anotherArray = [NSMutableArray array];

// This mutable-only method call is valid but

// produces a compile-time warning

[anotherArray addObject:@"Hello World"];

What produces a warning here is not the creation and assignment. It’s the use. Sending
addObject: to anotherArray uses our knowledge that the array is, in fact, mutable de-
spite the fact that it is statically typed as (NSArray *).That’s something the compiler does
not understand.This use generates a compile-time warning, namely “‘NSArray’ may not
respond to ‘-addObject:’”At runtime, however, the code works without error.

While assigning a child class object to a pointer of a parent class generally works at
runtime, it’s far more dangerous to go the other way.A mutable array is a kind of array. It
can receive all the messages that arrays do. Not every array, on the other hand, is mutable.
Sending the addObject: message to a regular array is lethal. Doing so bombs at runtime,
as arrays do not implement that method.

NSArray *standardArray = [NSArray array];

NSMutableArray *mutableArray;

// This line produces a warning

mutableArray = standardArray;

// This will bomb at run-time

[mutableArray addObject:@"Hello World"];

The code seen here produces just one warning, at the line where the standard array object is
assigned to the mutable array pointer, namely “assignment from distinct Objective-C type.”
Parent-to-child assignments do not generate this warning. Child-to-parent assignments do.

ptg

98 Chapter 3 Objective-C Boot Camp

So do assignments between completely unrelated classes. Do not ignore this warning; fix
your code. Otherwise, you’re setting yourself up for a runtime crash. Because Objective-C is
a compiled language that uses dynamic typing, it does not perform many of the runtime
checks that interpreted object-oriented languages do.

Note
In Xcode, you can set the compiler to treat warnings as errors by setting the
GCC_TREAT_WARNINGS_AS_ERRORS flag in the Project Info > Build > User-Defined panel.
Because Objective-C is so dynamic, the compiler cannot catch every problem that might
crash at runtime the way static language compilers can. So pay special attention to warnings
and try to eliminate them.

Inheriting Methods
As with data, objects inherit method implementations as well as instance variables.A Car
is a kind of NSObject, so it can respond to all the messages that an NSObject responds to.
That’s why myCar can be allocated and initialized with alloc and init.These methods
are defined by NSObject.Therefore, they can be used by any instance of Car, which is de-
rived from the NSObject class.

Similarly, NSMutableArray instances are a kind of NSArray.All array methods can be
used by mutable arrays, their child class.You can count the items in the array, pull an ob-
ject out by its index number, and so forth.

A child class may override a parent’s method implementation, but it can’t negate that
the method exists. Child classes always inherit the full behavior and state package of their
parents.

Declaring Methods
As Listing 3-1 showed, a class interface defines the instance variables and methods that a
new class adds to its parent class.This interface is normally placed into a header file,
which is named with a .h extension.The interface from Listing 3-1 declared three meth-
ods, namely

- (void) setMake:(NSString *) aMake andModel:(NSString *) aModel

andYear: (int) aYear;

- (void) printCarInfo;

- (int) year;

These three methods, respectively, return void, void, and int. Notice the dash that starts
the method declaration. It indicates that the methods are implemented by object in-
stances. For example, you call [myCar year] and not [Car year].The latter sends a mes-
sage to the Car class rather than an actual car object.A discussion about class methods
(indicated by “+” rather than “-”) follows later in this section.

As mentioned earlier, methods calls can be complex.The following invocation sends a
method request with three parameters.The parameters are interspersed inside the method

ptg

99Methods, Messages, and Selectors

invocation.The name for the method, that is, its selector, is setMake: andModel:
andYear:.The three colons indicate where parameters should be inserted.The types for
each parameter are specified in the interface after the colons, namely (NSString *),
NSString *), and (int).As this method returns void, the results are not assigned to a
variable.

[myCar setMake:@"Ford" andModel:@"Prefect" andYear:1946];

Implementing Methods
Together, a method file and a header file pair store all the information needed to imple-
ment a class and announce it to the rest of an application.The implementation section of a
class definition provides the code that implements functionality.This source is usually
placed in a .m (m is for “method”) file.

Listing 3-2 shows the implementation for the Car class example. It codes all three
methods declared in the header file from Listing 3-1 and adds a fourth.This extra method
redefines init.The Car version of init sets the make and model of the car to nil, which
is the NULL pointer for Objective-C objects. It also initializes the year of the car to
1901.

The special variable self refers to the object that is implementing the method.That
object is also called the receiver, that is, the object that receives the message.This variable
is made available by the underlying Objective-C runtime system. In this case, self refers to
the current instance of the Car class. Calling [self message] tells Objective-C to send a
message to the object that is currently executing the method.

Several things are notable about the init method seen here. First, the method returns a
value, which is typed to (id).As mentioned earlier in this chapter, the id type is more or
less equivalent to (NSObject *), although it’s theoretically slightly more generic than
that. It can point to any object of any class (including Class objects themselves).You return
results the same way you would in C, using return.The goal of init is to return a prop-
erly initialized version of the receiver via return self.

Second, the method calls [super init].This tells Objective-C to send a message
to a different implementation, namely the one defined in the object’s superclass.The
superclass of Car is NSObject, as shown in Listing 3-1.This call says “please perform
the initialization that is normally done by my parent class before I add my custom
behavior.”

Finally, notice the check for if (!self). In rare instances, memory issues arise. In such
a case, the call to [super init] returns nil. If so, this init method returns before setting
any instance variables. Since a nil object does not point to allocated memory, you cannot
access instance variables within nil.

As for the other methods, they use year, make, and model as if they were locally de-
clared variables.As instance variables, they are defined within the context of the current
object and can be set and read as shown in this example.The UTF8String method that is
sent to the make and model instance variables converts these NSString objects into C
strings, which can be printed using the %s format specifier.

ptg

100 Chapter 3 Objective-C Boot Camp

Note
You can send any message to nil, for example, [nil anyMethod]. The result of doing so is,
in turn, nil. (Or, more accurately, 0 casted as nil.) In other words, there is no effect. This be-
havior lets you nest method invocations with a failsafe should any of the individual methods
fail and return nil. If you were to run out of memory during an allocation with [[Car alloc]
init], the init message would be sent to nil, allowing the entire alloc/init request to
return nil in turn.

Listing 3-2 The Car Class Implementation (Car.m)

#import "Car.h"

@implementation Car

- (id) init

{

self = [super init];

if (!self) return nil;

make = nil;

model = nil;

year = 1901;

return self;

}

- (void) setMake:(NSString *) aMake andModel:(NSString *) aModel

andYear: (int) aYear

{

make = [NSString stringWithString:aMake];

model = [NSString stringWithString:aModel];

year = aYear;

}

- (void) printCarInfo

{

if (!make) return;

if (!model) return;

printf("Car Info\n");

printf("Make: %s\n", [make UTF8String]);

printf("Model: %s\n", [model UTF8String]);

printf("Year: %d\n", year);

}

- (int) year

{

return year;

}

@end

ptg

101Methods, Messages, and Selectors

Class Methods
Class methods are defined using a plus (+) prefix rather than a hyphen (-).They are de-
clared and implemented in the same way as instance methods. For example, you might
add the following method declaration to your interface:

+ (NSString *) motto;

and code it up in your implementation:

+ (NSString *) motto

{

return(@"Ford Prefects are Mostly Harmless");

}

Class methods differ from instance methods in that they generally cannot use state.That is,
they have no access to instance variables because those elements are only created when
objects are allocated from memory.

So why use class methods at all? The answer is threefold. First, class methods produce
results without having to instantiate an actual object.This motto method produces a hard-
coded result that does not depend on access to variables. Convenience methods like this
often have a better place as classes rather than instance methods.

You might imagine a class that handles geometric operations.The class could imple-
ment a conversion between radians and angles without needing an instance, for example,
[GeometryClass convertAngleToRadians:theta];. Simple C functions declared in
header files also provide a good match to this need.

The second reason is that class methods can hide a singleton. Singletons refer to stati-
cally allocated instances.The iPhone SDK is full of these. For example, [UIApplication
sharedApplication] returns a pointer to the singleton object that is your application.
[UIDevice currentDevice] retrieves an object representing the hardware platform
you’re working on.

Combining a class method with a singleton lets you access that static instance anywhere
in your application.You don’t need a pointer to the object or an instance variable that
stores it.The class method pulls that object’s reference for you and returns it on
demand.

Third, class methods tie into memory management schemes. Consider allocating a new
NSArray.You do so via [[NSArray alloc] init], or you can use [NSArray array].
This latter class method returns an array object that has been initialized and set for autore-
lease.As you read about later in this chapter,Apple has provided a standard about class
methods that create objects.They always return those objects to you already autoreleased.
Because of that, this class method pattern is a fundamental part of the standard iPhone
memory management system.

Fast Enumeration
Fast enumeration was introduced in Objective-C 2.0 and offers a simple and elegant way
to enumerate through collections like arrays and sets. It adds a for-loop that iterates

ptg

102 Chapter 3 Objective-C Boot Camp

through the collection using concise for/in syntax.The enumeration is very efficient,
running quickly. It is also safe.Attempts to modify the collection as it’s being enumerated
raise a runtime exception.

NSArray *colors = [NSArray arrayWithObjects:

@"Black", @"Silver", @"Gray", nil];

for (NSString *color in colors)

printf("Consider buying a %s car", [color UTF8String]);

Note
Use caution when using methods like arrayWithObjects: or
dictionaryWithKeysAndValues: as being unnecessarily error-prone. Developers often
use these methods with instance variables without first checking that these values are
non-nil.

Class Hierarchy
In Objective-C, each new class is derived from an already-existing class.The Car class de-
scribed in Listings 3-1 and 3-2 is formed from NSObject, the root class of the Objective-
C class tree. Each subclass adds or modifies state and behavior that it inherits from its
parent, also called its superclass.The Car class adds several instance variables and methods
to the vanilla NSObject it inherits.

Figure 3-2 shows some of the classes found on the iPhone and how they relate to each
other in the class hierarchy. Strings and arrays descend from NSObject as does the
UIResponder class. UIResponder is the ancestor of all onscreen iPhone elements.Views,
labels, text fields, and sliders are children, grandchildren, or other descendants of
UIResponder and NSObject.

Every class other than NSObject descends from other classes. UITextField is a kind of
UIControl, which is in turn a kind of UIView, which is a UIResponder, which is an
NSObject. Building into this object hierarchy is what Objective-C is all about. Child
classes can

n Add new instance variables that are not allocated by their parent, also called the
superclass.The Car class adds three: the make and model strings, and the year
integer.

n Add new methods that are not defined by the parent. Car defines several new meth-
ods, letting you set the values of the instance variables and print out a report about
the car.

n Override methods that the parents have already defined.The Car class’s init
method overrides NSObject’s version.When sent an init message, a car object runs
its version, not NSObject’s.At the same time, the code for init makes sure to call

ptg

103Logging Information

NSArray UIResponder

UIView

NSObject

NSString

UIControl

UISlider

UILabel

UITextField

Figure 3-2 All Cocoa Touch classes are descended from NSObject, the root
of the class hierarchy tree.

Logging Information
Now that you’ve read the basics about classes and objects, it’s important to understand
how to log information about them. In addition to printf, Objective-C offers a funda-
mental logging function called NSLog.This function works like printf and uses a similar
format string, but it outputs to stderr instead of stdout. NSLog also uses an NSString
format string rather than a C string one.

NSStrings are declared differently than C strings.They are prepended with the @ (at)
symbol.A typical NSString looks @“like this”; the equivalent C string looks “like this”,
omitting the @.Whereas C strings refer to a pointer to a string of bytes, NSStrings are
objects.You can manipulate a C string by changing the values stored in each byte.
NSStrings are immutable; you cannot access the bytes to edit them, and the actual string
data is not stored within the object.

// This is 12 bytes of addressable memory

printf("%d\n", sizeof("Hello World"));

NSObject’s init method via [super init]. Referencing a parent’s implementa-
tion, while extending that implementation, is a core part of the Objective-C design
philosophy.

ptg

104 Chapter 3 Objective-C Boot Camp

Table 3-1 Common String Format Specifiers

Specifier Meaning

%@ Objective-C object using the description or descriptionWithLocale:

results

%% The “%” literal character

%d Signed integer (32-bit)

%u Unsigned integer (32-bit)

%f Floating-point (64-bit)

%e Floating-point printed using exponential (scientific) notation (64-bit)

%c Unsigned char (8-bit)

%C Unicode char (16-bit)

%s Null-terminated char array (string, 8-bit)

%S Null-terminated Unicode char array (16-bit)

%p Pointer address using lowercase hex output, with a leading 0x

%x Lowercase unsigned hex (32-bit)

%X Uppercase unsigned hex (32-bit)

// This 4-byte object points to non-addressable memory

NSString *string = @"Hello World";

printf("%d\n", sizeof(*string));

In addition to using the standard C format specifiers, NSLog introduces an object specifier,
%@, which lets you print objects.This allows you to transform

printf("Make: %s\n", [make UTF8String]);

into

NSLog(@"Make: %@", make);

Table 3-1 shows some of the most common format specifiers.This is far from an exhaus-
tive list, so consult Apple’s String Programming Guide for Cocoa for more details.

Notice that NSLog does not require a hard-coded return character. It automatically ap-
pends a new line when used.What’s more it adds a time stamp to every log, so the results
of the NSLog invocation shown previously look something like this:

2009-05-07 14:19:08.792 HelloWorld[11197:20b] Make: Ford

Nearly every object converts itself into a string via the description message. NSLog uses
description to show the contents of objects formatted with %@.This returns an NSString
with a textual description of the receiver object.You can describe objects outside of NSLog
by sending them the same description method.This is particularly handy for use with
printf and fprintf, which cannot otherwise print objects.

ptg

105Properties

fprintf(stderr, "%s\n", [[myCar description] UTF8String]);

Another useful logging function is called CFShow(). It takes one argument, an object, and
prints out a snapshot description of that object to stderr.

CFShow(make);

Like NSLog, CFShow sends description to the objects it displays. Unlike NSLog, however,
CFShow does not clutter your debugging console with time stamps, so it appeals to anyone
who prefers to skip that extra information. CFShow doesn’t require format strings, which
simplifies adding them to code, but they can only be used with objects.You cannot
CFShow an integer or float.

Properties
Properties expose class variables and methods to outside use through what are called
accessor methods, that is, methods that access information. Using properties might sound re-
dundant.After all, the class definition shown in Listing 3-1 already announces public meth-
ods. So why use properties? It turns out that there are advantages to using properties over
hand-built methods, not the least of which are dot notation and memory management.

Dot Notation
Dot notation allows you to access object information without using brackets. Instead of
calling [myCar year] to recover the year instance variable, you use myCar.year.While
this may look as if you’re directly accessing the year instance variable, you’re not. Proper-
ties always invoke methods.These in turn can access an object’s data. So you’re not, strictly
speaking, breaking an object’s encapsulation as properties rely on these methods to bring
data outside the object.

Due to method hiding, properties simplify the look and layout of your code. For exam-
ple, you can access properties to set a table’s cell text via

myTableViewCell.textLabel.text = @"Hello World";

rather than the more cumbersome

[[myTableViewCell textLabel] setText:@"Hello World"];

The property version of the code is more readable and ultimately easier to maintain.

Properties and Memory Management
Properties simplify memory management.You can create properties that automatically re-
tain instance variables for the lifetime of your objects and release them when you set those
variables to nil. Setting a retained property ensures that memory will not be released until
you say so.

The arrayWithObjects: method normally returns an autoreleased object, whose
memory is deallocated at the end of the event loop cycle. (See Chapter 1,“Introducing
the iPhone SDK,” for details about autorelease pools.A deeper discussion about memory

ptg

106 Chapter 3 Objective-C Boot Camp

management follows later in this chapter.) Assigning the array to a retained property
means that the array will stick around indefinitely.

self.colors = [NSArray arrayWithObjects:

@"Gray", @"Silver", @"Black"];

When you’re done using the array and want to release its memory, set the property to nil.
This approach works because Objective-C knows how to synthesize accessor methods,
creating properly managed ways to change the value of an instance variable.You’re not re-
ally setting a variable to nil.You’re actually telling Objective-C to run a method that re-
leases any previously set object and then sets the instance variable to nil.All this happens
behind the scenes. From a coding point of view, it simply looks as if you’re assigning a
variable to nil.

self.colors = nil;

As a rule, do not send release directly to retained properties, that is, [self.colors
release].This does not affect the colors instance variable assignment, which now points
to memory that is likely deallocated.When you next assign an object to the retained prop-
erty, the memory pointed to by self.colors will receive an additional release message, likely
causing a crash due to a double-free exception.

Creating Properties
There are two basic styles of properties, readwrite and readonly. Read-write properties,
which are the default, let you modify the values you access; read-only properties do not.
The two kinds of accessor methods you must provide are called setters and getters.

Setters set information; getters retrieve information.You can define these with arbitrary
method names or you can use the standard Objective-C conventions:The name of the in-
stance variable retrieves the object, while the name prefixed with set, sets it. Objective-C
can even synthesize these methods for you. For example, if you declare a property such as
the Car class’s year in your class interface as such

@property int year;

and then synthesize it in your class implementation with

@synthesize year;

you can read and set the instance variable with no further coding. Objective-C builds two
methods that get the current value (that is, [myCar year]) and sets the current value (that
is, [myCar setYear:1962]) and adds the two dot notation shortcuts:

myCar.year = 1962;

NSLog(@"%d", myCar.year);

To build a read-only property, declare it in your interface using the readonly attribute.
Read-only properties use getters without setters. For example, here’s a property that re-
turns a formatted text string with car information:

@property (readonly) NSString *carInfo;

ptg

107Properties

Although Objective-C can synthesize read-only properties, you can also build the getter
method by hand and add it to your Class implementation.This method returns a descrip-
tion of the car via stringWithFormat:, which uses a format string a la sprintf to create
a new string.

- (NSString *) carInfo

{

if (!self.make) return @"";

if (!self.model) return @"";

return [NSString stringWithFormat:

@"Car Info\nMake: %@nYear: % %d",

self.make, self.model, self.year];

}

This method now becomes available for use via dot notation, for example,
CFShow(myCar.carInfo);.

If you choose to synthesize a getter for a read-only property, you should use care in
your code. Inside your implementation file, make sure you assign the instance variable for
that property without dot notation. Imagine that you declared model as a read-only prop-
erty.You could assign model with

model = @"Prefect";

but not with

self.model = @"Prefect";

The latter use attempts to call setModel:, which is not defined for a read-only property.

Creating Custom Getters and Setters
Although Objective-C automatically builds methods when you @synthesize properties,
you may skip the synthesis.You can create those methods yourself. For example, you could
build methods as simple as these. Notice the capitalization of the second word in the set
method. By convention, Objective-C expects setters to use a method named
setInstance: where the first letter of the instance variable name is capitalized.

-(int) year

{

return year;

}

- (void) setYear: (int) aYear

{

year = aYear;

}

When building your own setters and getters, you might add some basic memory manage-
ment.The following methods retain new items and release previous values.

- (NSString *) model

{

ptg

108 Chapter 3 Objective-C Boot Camp

return model;

}

- (void) setModel: (NSString *) newModel

{

if (newModel != model) {

[model release];

model = [newModel retain];

}

}

Note
In the remote case that newModel is somehow a child of model, calling [model release]
may free the memory of new model. For that reason, a more complete setter method retains
newModel before calling [model release].

Or you could go even further by building more complicated routines that generate side
effects upon assignment and retrieval. For example, you might keep a count of the number
of times the value has been retrieved or changed, or send in-app notifications to other ob-
jects.The Objective-C compiler remains happy so long as it finds, for any property, a get-
ter (typically named the same as the property name) and a setter (usually setName: where
name is the name of the property).What’s more, you can bypass any Objective-C naming
conventions by specifying setter and getter names in the property declaration.This decla-
ration creates a new Boolean property called forSale and declares a custom getter/setter
pair.As always, you add any property declarations to the class interface.

@property (getter=isForSale, setter=setSalable:) BOOL forSale;

Then synthesize the methods as normal in the class implementation.The implementation
is typically stored in the .m file that accompanies the .h header file.

@synthesize forSale;

Using this approach creates both the normal setter and getter via dot notation plus the
two custom methods, isForSale and setSalable:. Oddly, while you can use dot nota-
tion to assign and retrieve forSale, you cannot use the equivalent methods, and you can-
not use the customized setter in dot notation. Here is how the usage breaks down.

Car *myCar = [Car car];

// You can use the synthesized setter and getter of course

[myCar setSalable:YES];

printf("The car %s for sale\n",

myCar.isForSale ? "is" : "is not");

// The normal getter and setter still work in dot notation

myCar.forSale = NO;

ptg

109Properties

printf("The car %s for sale\n",

myCar.forSale ? "is" : "is not");

// But not the method versions.

// These produce run-time errors

// [myCar setForSale:YES];

// printf("The car %s for sale\n",

// [myCar forSale] ? "is" : "is not");

// You cannot use the customized setter via dot notation.

// This produces a compile-time error

// myCar.setSalable = YES;

Property Attributes
In addition to readwrite and readonly attributes, you can specify whether a property is
retained and/or atomic.The default behavior for properties is assign.Assignment acts ex-
actly as if you’d assigned a value to an instance variable.There’s no special retain/release
behavior associated with the property, but by making it a property you expose the variable
outside the class via dot notation.A property that’s declared

@property NSString *make;

uses the assign behavior.
Setting the property’s attribute to retain does two things. First, it retains the passed

object upon assignment. Second, it releases the previous value before a new assignment is
made. Using the retain attribute introduces the memory management advantages dis-
cussed in the previous section.To create a retained property, add the attribute between
parentheses in the declaration:

@property (retain) NSString *make;

A third attribute called copy sends a copy message to the passed object, retains it, and
releases any previous value.

@property (copy) NSString *make;

You can also retain the object as you assign it.

myCar.make = @"Ford";

[myCar.make retain];

When you develop in a multithreaded environment, you want to use atomic methods.
Xcode synthesizes atomic methods to automatically lock objects before they are accessed
or modified and unlock them after.This ensures that setting or retrieving an object’s value
is performed fully regardless of concurrent threads.There is no atomic keyword.All meth-
ods are synthesized atomically by default.You can, however, state the opposite, allowing
Objective-C to create accessors that are nonatomic.

@property (nonatomic, retain) NSString *make;

ptg

110 Chapter 3 Objective-C Boot Camp

Marking your properties nonatomic does speed up access, but you might run into prob-
lems should two competing threads attempt to modify the same property at once.Atomic
properties, with their lock/unlock behavior, ensure that an object update completes from
start to finish before that property is released to another read or change.

Simple Memory Management
Memory management comes down to two simple rules.At creation, every object has a re-
tain count of one.At release, every object has a retain count of zero. It is up to you as a
developer to manage an object’s retention over its lifetime.You should ensure that it moves
from start to finish without being prematurely released and guarantee that it does finally
get released when it is time to do so. Complicating matters is Objective-C’s autorelease
pool. If some objects are autoreleased and others must be released manually, how do you
best control your objects? Here’s a quick and dirty guide to getting your memory man-
agement right.

Creating Objects
Any time you create an object using the alloc/init pattern, you build it with a retain count
of one. It doesn’t matter which class you use or what object you build, alloc/init produces
a +1 count.

id myObject = [[SomeClass alloc] init];

For locally scoped variables, if you do not release the object before the end of a method,
the object leaks.Your reference to that memory goes away, but the memory itself remains
allocated.The retain count remains at +1.

- (void) leakyMethod

{

// This is leaky

NSArray *array = [[NSArray alloc] init];

}

The proper way to use an alloc/init pattern is to create, use, and then release. Releasing
brings the retain count down to 0.When the method ends, the object is deallocated.

- (void) properMethod

{

NSArray *array = [[NSArray alloc] init];

// use the array here

[array release];

}

Autorelease objects do not require an explicit release statement for locally scoped vari-
ables. (In fact, avoid doing so to prevent double-free errors that will crash your program.)
Sending the autorelease message to an object marks it for autorelease.When the auto-
release pool drains at the end of each event loop, it sends release to all the objects it owns.

ptg

111Simple Memory Management

- (void) anotherProperMethod

{

NSArray *array = [[[NSArray alloc] init] autorelease];

// This won’t crash the way release would

printf("Retain count is %d\n", [array retainCount]);

// use the array here

}

By convention, all class object-creation methods return an autoreleased object.The
NSArray class method array returns a newly initialized array that is already set for auto-
release.The object can be used throughout the method, and its release is handled when
the autorelease pool drains.

- (void) yetAnotherProperMethod

{

NSArray *array = [NSArray array];

// use the array here

}

At the end of this method, the autoreleased array can return to the general memory pool.

Creating Autoreleased Objects
As a rule, whenever you ask another method to create an object, it’s good programming
practice to return that object autoreleased. Doing so consistently lets you follow a simple
rule:“If I didn’t allocate it, then it was built and returned to me as an autorelease object.”

- (Car *) fetchACar

{

Car *myCar = [[Car alloc] init];

return [myCar autorelease];

}

This holds especially true for class methods. By convention all class methods that create
new objects return autorelease objects.These are generally referred to as convenience
methods.Any object that you yourself allocate is not set as autorelease unless you specify
it yourself.

// This is not autoreleased

Car *car1 = [[Car alloc] init];

// This is autoreleased

Car *car2 = [[[Car alloc] init] autorelease];

// By convention, this *should* be an autoreleased object

Car *car3 = [Car car];

To create a convenience method at the class level, make sure to define the class with the +
prefix instead of - and return the object after sending autorelease to it.

ptg

112 Chapter 3 Objective-C Boot Camp

+ (Car *) car

{

return [[[Car alloc] init] autorelease];

}

Autorelease Object Lifetime
So how long can you use an autorelease object? What guarantees do you have? The hard
and fast rule is that the object is yours until the next item in the event loop gets
processed.The event loop is triggered by user touches, by button presses, by “time passed”
events, and so forth. In human reckoning these times are impossibly short; in the iPhone’s
processor frame of reference, they’re quite large.As a more general rule, you can assume
that an autoreleased object should persist throughout the duration of your method call.

Once you return from a method, guarantees go out the window.When you need to
use an array beyond the scope of a single method or for extended periods of time (for ex-
ample, you might start a custom run-loop within a method, prolonging how long that
method endures), the rules change.You must retain autorelease objects to increase their
count and prevent them from getting deallocated when the pool drains; when the auto-
release pool calls release on their memory, they’ll maintain a count of at least +1.

Note
Avoid assigning properties to themselves, for example, myCar.colors = myCar.colors.
The release-then-retain behavior of properties may cause the object to deallocate before it
can be reassigned and re-retained.

Retaining Autorelease Objects
You can send retain to autorelease objects just like any other object. Retaining objects
set to autorelease allows them to persist beyond a single method. Once retained, an auto-
release object is just as subject to memory leaks as one that you created using alloc/init.
For example, retaining an object that’s scoped to a local variable might leak, as shown here.

- (void)anotherLeakyMethod

{

// After returning, you lose the local reference to

// array and cannot release.

NSArray *array = [NSArray array];

[array retain];

}

Upon creation, array has a retain count of +1. Sending retain to the object brings that
retain count up to +2.When the method ends and the autorelease pool drains, the object
receives a single release message; the count returns to +1. From there, the object is
stuck. It cannot be deallocated with a +1 count and with no reference left to point to the
object, it cannot be sent the final release message it needs to finish its life cycle.This is
why it’s critical to build references to retained objects.

ptg

113Simple Memory Management

By creating a reference, you can both use a retained object through its lifetime and be
able to release it when you’re done. Set references via an instance variable (preferred) or a
static variable defined within your class implementation. If you want to keep things simple
and reliable, use retained properties built from those instance variables.The next section
shows you how retained properties work and demonstrates why they provide a solution of
choice for developers.

Retained Properties
Retained properties hold onto data that you assign to them and properly relinquish that
data when you set a new value. Because of this, they tie in seamlessly to basic memory man-
agement. Here’s how you create and use retained properties in your iPhone applications.

First, declare your retained property in the class interface by including the retain key-
word between parentheses.

@property (retain) NSArray *colors;

Then synthesize the property methods in your implementation.

@synthesize colors;

When given the @synthesize directive, Objective-C automatically builds routines that
manage the retained property.The routines automatically retain an object when you assign
it to the property.That behavior holds regardless of whether the object is set as auto-
release.When you reassign the property, the previous value is automatically released.

Assigning Values to Retained Properties
When working with retained properties, you need to be aware of two patterns of assign-
ment.These patterns depend on whether you’re assigning an autorelease object. For au-
torelease style objects, use a simple single assignment.This assignment sets the colors
property to the new array and retains it.

myCar.colors = [NSArray arrayWithObjects:

@"Black", @"Silver", @"Gray", nil];

The array is created and returned as an autorelease object with a count of +1.The assign-
ment to the retained colors property brings the count to +2. Once the current event
loop ends, the autorelease pool sends release to the array, and the count drops back to +1.

For normal (nonautorelease) objects, release the object after assigning it. Upon cre-
ation, the retain count for a normally allocated object is +1.Assigning the object to a re-
tained property increases that count to +2. Releasing the object returns the count to +1.

// Non-autorelease object. Retain count is +1 at creation

NSArray *array = [[NSArray alloc]

initWithObjects:@"Black", @"Silver", @"Gray", nil];

// Count rises to +2 via assignment to a retained property

myCar.colors = array;

ptg

114 Chapter 3 Objective-C Boot Camp

// Now release to get that retain count back to +1

[array release];

You often see this pattern of create, assign, release in iPhone development.You might use
it when assigning a newly allocated view to a view controller object. For example:

UIView *mainView = [[UIView alloc] initWithFrame:aFrame];

self.view = mainView;

[mainView release];

These three steps move the object’s retain count from +1 to +2 and back to +1.
A final count of +1 guarantees you that can use an object indefinitely.At the same

time, you’re assured that the object deallocates properly when the property is set to a new
value and release is called on its prior value.That release brings the count down from +1
to 0, and the object automatically deallocates.

Reassigning a Retained Property
When you’re done using a retained property, regardless of the approach used to create that
object, set the property to nil or to another object.This sends a release message to the pre-
viously assigned object.

myCar.colors=nil;

If the colors property had been set to an array, as just shown, that array would automati-
cally be sent a release message. Since each pattern of assignment produced a +1 retained
object, this reassignment would bring that retain count down from +1 to 0.The object’s
life would be over.

Avoiding Assignment Pitfalls
Within a class implementation, it’s handy to use properties to take advantage of this mem-
ory management behavior.To take advantage of this, avoid using instance variables di-
rectly. Direct assignment like this won’t retain the array or release any previous value.This
is a common pitfall for new iPhone developers. Remember the dot notation when access-
ing the instance variables.

colors = [NSArray arrayWithObjects:

@"Black", @"Silver", @"Gray", nil];

This same caution holds true for properties defined as assign. Note the following behav-
ior carefully.Although both

@property NSArray *colors;

and

@property (assign) NSArray *colors;

allow you to use dot notation, assignment via these properties does not retain or release
objects. Assign properties expose the colors instance variable to the outside world, but
they do not provide the same memory management that retain properties do.

ptg

115Simple Memory Management

Note
As a general rule of thumb, Apple recommends you avoid using properties in your init func-
tions. Instead, use instance variables directly.

High Retain Counts
Retain counts that go and stay above +1 do not necessarily mean you’ve done anything
wrong. Consider the following code segment. It creates a view and starts adding it to ar-
rays.This raises the retain count from +1 up to +4.

// On creation, view has a retain count of +1;

UIView *view = [[[UIView alloc] init] autorelease];

printf("Count: %d\n", [view retainCount]);

// Adding it to an array increases that retain count to +2

NSArray *array1 = [NSArray arrayWithObject:view];

printf("Count: %d\n", [view retainCount]);

// Another array, retain count goes to +3

NSArray *array2 = [NSArray arrayWithObject:view];

printf("Count: %d\n", [view retainCount]);

// And another +4

NSArray *array3 = [NSArray arrayWithObject:view];

printf("Count: %d\n", [view retainCount]);

Notice that each array was created using a class convenience method and returns an au-
toreleased object.The view is set as autorelease, too. Some collection classes like NSArray
automatically retain objects when you add them into an array and release them when ei-
ther the object is removed (mutable objects only) or when the collection is released.This
code has no leaks because every one of the four objects is set to properly release itself and
its children when the autorelease pool drains.

When release is sent to the three arrays, each one releases the view, bringing the count
down from +4 to +1.The final release, sent to the object, brings the count from +1 down
to 0, allowing the view to deallocate when this method finishes: no leaks, no further re-
tains, no problems.

Other Ways to Create Objects
You’ve seen how to use alloc to allocate memory. Objective-C offers other ways to build
new objects.You can discover these by browsing class documentation as the methods vary
by class and framework.As a rule of thumb, if you build an object using any method
whose name includes alloc, new, create, or copy, you maintain responsibility for releas-
ing the object. Unlike class convenience methods, methods that include these words gen-
erally do not return autoreleased objects.

ptg

116 Chapter 3 Objective-C Boot Camp

Sending a copy message to an object, for example, duplicates it. Copy returns an object
with a retain count of +1 and no assignment to the autorelease pool. Use copy when you
want to duplicate and make changes to an object while preserving the original. Note that
for the most part, Objective-C produces shallow copies of collections like arrays and dic-
tionaries. It copies the structure of the collection, and maintains the addresses for each
pointer, but does not perform a deep copy of the items stored within.

C-Style Object Allocations
As a superset of C, Objective-C programs for the iPhone often use APIs with C-style
object-creation and management. Core Foundation (CF) is a Cocoa Touch framework
with C-based function calls.When working with CF objects in Objective-C, you build
objects with CFAllocators and often use the CFRelease() function to release object
memory.

There are, however, no simple rules.As the following code shows, you may end up us-
ing free(), CFRelease(), and custom methods like CGContextRelease() all in the same
scope, side-by-side with standard Objective-C class convenience methods like
imageWithCGImage:.The function used to create the context object used here is
CGBitmapContextCreate() and like most Core Foundation function calls, it does not re-
turn an autoreleased object.This code snippet builds a UIImage, the iPhone class that
stores image data.

UIImage *buildImage(int imgsize)

{

// Create context with allocated bits

CGContextRef context =

MyCreateBitmapContext(imgsize, imgsize);

CGImageRef myRef =

CGBitmapContextCreateImage(context);

free(CGBitmapContextGetData(context));

CGContextRelease(context);

UIImage *img = [UIImage imageWithCGImage:myRef];

CFRelease(myRef);

return img;

}

Carbon and Core Foundation
Working with Core Foundation comes up often enough that you should be aware
of its existence and be prepared to encounter its constructs, specifically as regards to its
frameworks. Frameworks are libraries of classes that you can utilize in your application.

Table 3-2 explains the key terms involved.To summarize the issue, early OS X used
a C-based framework called Core Foundation to provide a transitional system for

ptg

117Simple Memory Management

Table 3-2 Key OS X Development Terms

Term Definition

Foundation The core classes for Objective-C programming, offering all the fundamental
data types and services needed for Cocoa and Cocoa Touch. A section at the
end of this chapter introduces some of the most important Foundation
classes you’ll use in your applications.

Core
Foundation

A library of C-based classes that are based on Foundation APIs but that are
implemented in C. Core Foundation uses object-oriented data but is not built
using the Objective-C classes.

Carbon An early set of libraries provided by Apple that use a procedural API. Carbon
offered event handling support, a graphics library, and many more frame-
works. Some Carbon APIs live on through Core Foundation. Carbon was intro-
duced for the Classic Mac OS, first appearing in Mac OS 8.1.

Cocoa Apple’s collection of frameworks, APIs, and runtimes that make up the mod-
ern Mac OS X runtime system. Frameworks are primarily written in Objective-
C although some continue to use C/C++.

Cocoa
Touch

Cocoa’s equivalent for the iPhone OS, where the frameworks are tuned for
the touch-based mobile iPhone user experience. Some iPhone frameworks
such as Core Audio and Open GL are considered to reside outside Cocoa
Touch.

Toll Free
Bridging

A method of Cocoa/Carbon integration. Toll Free Bridging refers to sets of in-
terchangeable data types. For example, Cocoa’s Foundation (NSString *)
object can be used interchangeably with Carbon’s Core Foundation’s
CFStringRef. Bridging connects the C-based Core Foundation with the
Objective-C Foundation world.

Core Foundation technology lives on through Cocoa.You can and will encounter C-style
Core Foundation when programming iPhone applications using Objective-C.The
specifics of Core Foundation programming fall outside the scope of this chapter, however,
and are best explored separately from learning how to program in Objective-C.

Deallocating Objects
The iPhone uses reference-count managed Objective-C. On the iPhone, there’s no
garbage collection and little likelihood there ever will be. Every object cleans up after it-
self. So what does that mean in practical terms? Here’s a quick rundown of how you end
an object’s life, cleaning up its instance variables and preparing it for deallocation.

Instance variables must release retained objects before deallocation.You as the devel-
oper must ensure that those objects return to a retain count of 0 before the parent object

developing applications that could run on both Classic Mac systems as well as Mac OS X.
Although Core Foundation uses object-oriented extensions to C, its functions and con-
structs are all C-based, not Objective-C-based.

ptg

118 Chapter 3 Objective-C Boot Camp

is itself released.To do this, you implement dealloc, a method automatically called by the
runtime system when an object is about to be released. If you use a class with object in-
stance variables (i.e., not just floats, ints, and Bools), you probably need to implement a
deallocation method.The basic dealloc method structure looks like this:

- (void) dealloc

{

// Class-based clean-up

clean up my own instance variables here

// Clean up superclass

[super dealloc]

}

The method you write should work in two stages. First, clean up any instance variables
from your class.Then ask your superclass to perform its cleanup routine.The special super
keyword refers to the superclass of the object that is running the dealloc method. How
you clean up depends on whether your instance variables are automatically retained.

You’ve read about creating objects, building references to those objects, and ensuring
that the objects’ retain counts stay at +1 after creation. Now, you see the final step of the
object’s lifetime, namely reducing that count back to 0 so the objects can be deallocated.

Retained Properties
In the case of retained properties, set those properties to nil using dot notation assignment.
This calls the custom setter method synthesized by Objective-C and releases any prior ob-
ject the property has been set to.Assuming that prior object had a retain count of +1, this
release brings the count to 0.

self.make = nil;

Variables
When using plain (nonproperty) instance variables or assign style properties, send release
at deallocation time. Say, for example, you’ve defined an instance variable called salesman.
It might be set at any time during the lifetime of your object.The assignment of salesman
might look like this:

// release any previous value

[salesman release];

// make the new assignment. Retain count is +1

salesman = [[SomeClass alloc] init];

This assignment style means that salesman could point to an object with a +1 retain count
at any time during the object’s lifetime.Therefore in your dealloc method, you must re-
lease any object currently assigned to salesman, setting the count to 0.

[salesman release];

ptg

119Crafting Singletons

A Sample Deallocation Method
Keeping with an expanded Car class that uses retained properties for make, model, and
colors, and that has a simple instance variable for salesman, the final deallocation method
would look like this.The integer year and the Boolean forSale instance variables are not
objects and do not need to be managed this way.

- (void) dealloc

{

self.make = nil;

self.model = nil;

self.colors = nil;

[salesman release];

[super dealloc];

}

Setting a retain count upper limit proves key to making Objective-C memory manage-
ment work. Few objects should continue to have a retain count greater than +1 after their
creation and assignment. By guaranteeing a limit, your final releases in dealloc are assured
to bring those counts down to 0.

Cleaning Up Other Matters
The dealloc method offers a perfect place to clean up shop. For example, you might
need to dispose of an Audio Toolbox sound or perform other maintenance tasks before
the class is released.These tasks almost always relate to legacy Core Foundation, Core
Graphics, Core Audio, or similar C-style frameworks.

if (snd) AudioServicesDisposeSystemSoundID(snd);

Think of dealloc as your last chance to tidy up loose ends before your object goes away
forever.Whether this involves shutting down open sockets, closing file pointers, or releas-
ing resources, use this method to make sure your code returns state as close to pristine as
possible.

Crafting Singletons
The UIApplication and UIDevice classes let you access information about the currently
running application and the device hardware it is running on.They do so by offering sin-
gletons, that is, a sole instance of a class in the current process. For example,
[UIApplication sharedApplication] returns a singleton that can report information
about the delegate it uses, whether the application supports shake-to-edit features, what
windows are defined by the program, and so forth.

Most singleton objects act as control centers.They coordinate services, provide key in-
formation, and direct external access, among other functionality. If you have a need for
centralized functionality, like a manager that accesses a Web service, a singleton approach
ensures that all parts of your application coordinate with the same central manager.

ptg

120 Chapter 3 Objective-C Boot Camp

Building a singleton takes very little code.You define a static shared instance inside the
class implementation and add a class method pointing to that instance. In this snippet,
which is taken from the tagging example of Chapter 6,“Assembling Views and Anima-
tions,” the instance is built the first time it is requested.

@implementation ViewIndexer

static ViewIndexer *sharedInstance = nil;

+(ViewIndexer *) sharedInstance {

if(!sharedInstance)

sharedInstance = [[self alloc] init];

return sharedInstance;

}

// Class behavior defined here

@end

To use this singleton, call [ViewIndexer sharedInstance].This returns the shared object
and lets you access any behavior that the singleton provides.You can prevent any class
from creating a second instance by overriding allocWithZone:. (For most uses this is
paranoid overkill.) The @synchronized() directive used here prevents this code from be-
ing executed by more than one thread at a time.

+ (id)allocWithZone:(NSZone *)zone

{

@synchronized(self) {

if (sharedInstance == nil) {

sharedInstance = [super allocWithZone:zone];

return sharedInstance;

}

}

return nil;

}

Categories (Extending Classes)
Objective-C’s built-in capability to expand already-existing classes is one of its most pow-
erful features.This behavioral expansion is called a category. Categories extend class func-
tionality without subclassing.You choose a descriptive expansion name, build a header, and
then implement the functionality in a method file. Categories add methods to existing
classes even if you did not define that class in the first place and do not have the source
code for that class.

To build a category, you declare a new interface. Specify the category name (it’s arbi-
trary) within parentheses, as you see here. List any new public methods and properties and
save the header file.This Orientation category expands the UIDevice class, which is the

ptg

121Categories (Extending Classes)

SDK class responsible for reporting device characteristics including orientation, battery
level, and the proximity sensor state.This interface adds a single property to UIDevice, re-
turning a read-only Boolean value.The new isLandscape property reports back whether
the device is currently using a landscape orientation.

@interface UIDevice (Orientation)

@property (nonatomic, readonly) BOOL isLandscape;

@end

You cannot add new instance variables to a category interface as you could when
subclassing.You are instead expanding a class’s behavior, as shown in the source code of
Listing 3-3.The code implements the landscape check by looking at the standard
UIDevice orientation property.

You might use the new property like this.

NSLog(@"The device orientation is%@landscape",

[UIDevice currentDevice].isLandscape ? @" " : @" not ");

Here, the landscape orientation check integrates seamlessly into the SDK-provided
UIDevice class via a property that did not exist prior to expanding the class. Just FYI,
UIKit does offer device orientation macros (UIDeviceOrientationIsPortrait and
UIDeviceOrientationIsLandscape), but you must pass these an orientation value, which
you have to poll from the device.

Note
In addition to adding new behavior to existing classes, categories also let you group related
methods into separate files for classes you build yourself. For large, complex classes, this
helps increase maintainability and simplifies the management of individual source files.
Please note that when you add a category method that duplicates an existing method
signature, the Objective-C runtime uses your implementation and overrides the original.

Listing 3-3 Building an Orientation Category for the UIDevice Class

@interface UIDevice (Orientation)

@property (nonatomic, readonly) BOOL isLandscape;

@end

@implementation UIDevice (Orientation)

- (BOOL) isLandscape

{

return (self.orientation == UIDeviceOrientationLandscapeLeft) ||

(self.orientation == UIDeviceOrientationLandscapeRight);

}

@end

ptg

122 Chapter 3 Objective-C Boot Camp

Protocols
Chapter 1 introduced the notion of delegates. Delegates implement details that cannot be
determined when a class is first defined. For example, a table knows how to display rows
of cells, but it can’t know what to do when a cell is tapped.The meaning of a tapped row
changes with whatever application implements that table.A tap might open another
screen, or send a message to a Web server, or perform any other imaginable result. Delega-
tion lets the table communicate with a smart object that is responsible for handling those
taps but whose behavior is written at a completely separate time from when the table class
itself is created.

Delegation basically provides a language that mediates contact between an object and
its handler.A table tells its delegate “I have been tapped,”“I have scrolled,” and other status
messages.The delegate then decides how to respond to these messages, producing updates
based on its particular application semantics.

Data sources operate the same way, but instead of mediating action responses, data
sources provide data on demand.A table asks its data source,“What information should I
put into cell 1 and cell 2?”The data source responds with the requested information. Like
delegation, data sourcing lets the table place requests to an object that is built to under-
stand those demands.

In Objective-C, both delegation and data sourcing are produced by a system called
protocols. Protocols define a priori how one class can communicate with another.They
contain a list of methods that are defined outside any class. Some of these methods are re-
quired. Others are optional.Any class that implements the required methods is said to
conform to the protocol.

Defining a Protocol
Imagine, if you would, a jack-in-the box toy.This is a small box with a handle.When you
turn the crank, music plays. Sometimes a puppet (called the “jack”) jumps out of the box.
Now imagine implementing that toy (or a rough approximation) in Objective-C.The toy
provides one action, turning the crank, and there are two possible outcomes: the music or
the jack.

Now consider designing a programmatic client for that toy. It could respond to the
outcomes, perhaps, by gradually increasing a boredom count when more music plays or
reacting with surprise when the jack finally bounces out. From an Objective-C point of
view, your client needs to implement two responses: one for music, another for the jack.
Here’s a client protocol you might build.

@protocol JackClient <NSObject>

- (void) musicDidPlay;

- (void) jackDidAppear;

@end

This protocol declares that to be a client of the toy, you must respond to music playing
and the jack jumping out of the box. Listing these methods inside an @protocol container

ptg

123Protocols

defines the protocol.All the methods listed here are required unless you specifically de-
clare them as @optional, as you read about in the next sections.

Incorporating a Protocol
Next, imagine designing a class for the toy itself. It offers one action, turning the crank,
and requires a second object that implements the protocol, in this case called client.This
class interface specifies that the client needs to be some kind of object (id) that conforms
to the JackClient protocol (<JackClient>). Beyond that, the class does not know at de-
sign time what kind of object will provide these services.

@interface JackInTheBox : NSObject

{

id <JackClient> client;

}

- (void) turnTheCrank;

@property (retain) id <JackClient> client;

@end

Adding Callbacks
Callbacks connect the toy class to its client. Since the client must conform to the Jack-
Client protocol, you can send jackDidAppear and musicDidPlay messages to the object
and they will compile without error.The protocol ensures that the client implements
these methods. In this code, the callback method is selected randomly.The music plays ap-
proximately nine out of every ten calls, sending musicDidPlay to the client.

- (void) turnTheCrank

{

// You need a client to respond to the crank

if (!self.client) return;

// Randomly respond to the crank turn

int action = random() % 10;

if (action < 1)

[self.client jackDidAppear];

else

[self.client musicDidPlay];

}

Declaring Optional Callbacks
Protocols include two kinds of callbacks, required and optional. By default, callbacks are
required.A class that conforms to the protocol must implement those methods or they
produce a compiler warning.You can use the @required and @optional keywords to de-
clare a protocol to be of one form or the other.Any methods listed after an @required

ptg

124 Chapter 3 Objective-C Boot Camp

keyword are required; after an @optional keyword, they are optional.Your protocol can
grow complex accordingly.

@protocol JackClient <NSObject>

- (void) musicDidPlay; // required

@required

- (void) jackDidAppear; // also required

@optional

- (void) nothingDidHappen; // optional

@end

In practice, using more than a single @optional keyword is overkill.The same protocol
can be declared more simply.When you don’t use any optional items, skip the keyword
entirely. Notice the <NSObject> declaration here. It’s required to effectively implement
optional protocols. It says that a JackClient object conforms to and will be a kind of
NSObject.

@protocol JackClient <NSObject>

- (void) musicDidPlay;

- (void) jackDidAppear;

@optional

- (void) nothingDidHappen;

@end

Implementing Optional Callbacks
Optional methods let the client choose whether to implement a given protocol method.
They reduce the implementation burden on whoever writes that client but add a little ex-
tra work to the class that hosts the protocol definition.When you are unsure whether a
class does or does not implement a method, you must test before you send a message. For-
tunately, Objective-C and the NSObject class make it easy to do so.

// optional client method

if ([self.client respondsToSelector: @selector(nothingDidHappen)])

[self.client nothingDidHappen];

NSObject provides a respondsToSelector: method, which returns a Boolean YES if
the object implements the method or NO otherwise. By declaring the client with
<NSObject>, you tell the compiler that the client can handle this method, allowing you to
check the client for conformance before sending the message.

Conforming to a Protocol
Classes include protocol conformance in interface declarations.A view controller that im-
plements the JackClient protocol announces it between angle brackets.A class might con-
form to several protocols. Combine these within the brackets, separating protocol names
with commas.

ptg

125Foundation Classes

Figure 3-3 You must implement all required methods to conform to a
protocol. Objective-C warns about incomplete implementations.

@interface TestBedViewController :

UIViewController <JackClient>

{

JackInTheBox *jack;

}

@property (retain) JackInTheBox *jack;

@end

Declaring the JackClient protocol lets you assign the host’s client property.The following
code compiles without error because the class for self was declared in conformance with
JackClient.

self.jack = [JackInTheBox jack];

self.jack.client = self;

Had you omitted the protocol declaration in your interface, this assignment would pro-
duce an error at compile time.

Once you include that protocol between the angle brackets, you must implement all re-
quired methods in your class. Omitting any of them produces the kind of compile-time
warnings shown in Figure 3-3.The compiler tells you which method is missing and what
protocol that method belongs to.

The majority of protocol methods in the iPhone SDK are optional. Both required and
optional methods are detailed exhaustively in the developer documentation. Note that
protocols are documented separately from the classes they support. For example, Xcode
documentation provides three distinct UITableView reference pages: one for the
UITableView class, one for the UITableViewDelegate protocol, and another for the
UITableViewDataSource protocol.

Foundation Classes
If you’re new to Objective-C, there are a few key classes you absolutely need to be famil-
iar with before moving forward.These include strings, numbers, and collections, and they
provide critical application building blocks.The NSString class, for example, provides the
workhorse for nearly all text manipulation in Objective-C. However it, like other funda-
mental classes, is not defined in Objective-C itself. It is part of the Foundation framework,
which offers nearly all the core utility classes you use on a day-to-day basis.

Foundation provides over a dozen kinds of object families and hundreds of object
classes.These range from value objects that store numbers and dates, to strings that store

ptg

126 Chapter 3 Objective-C Boot Camp

character data, and collections that store other objects, to classes that access the file system
and retrieve data from URLs. Foundation is often referred to (slightly inaccurately) as
Cocoa. (Cocoa and its iPhone equivalent Cocoa Touch actually include all the frameworks
for OS X programming.) To master Foundation is to master Objective-C programming,
and thorough coverage of the subject demands an entire book of its own.

As this section cannot offer an exhaustive introduction to Foundation classes, you’re
about to be introduced to a quick and dirty survival overview. Here are the classes you
need to know about and the absolutely rock-core ways to get started using them.You find
extensive code snippets that showcase each of the classes to give you a jumping-off point
if, admittedly, not a mastery of the classes involved.

Strings
Cocoa strings store character data, just as their cousins the (char *) C strings do.They
are, however, objects and not byte arrays. Unlike C, the core NSString class is immutable
in Cocoa.That is, you can use strings to build other strings, but you can’t edit the strings
you already own. String constants are delineated by quote marks and the @ character.
Here is a typical string constant, which is assigned to a string variable.

NSString *myString = @"A string constant";

Building Strings
You can build strings using formats, much as you would using sprintf. If you’re comfort-
able creating printf statements, your knowledge transfers directly to string formats. Use
the %@ format specifier to include objects in your strings. String format specifiers are
thoroughly documented in the Cocoa String Programming Guide, available via Xcode’s
documentation window (Command-Option-?).The most common formats are listed in
Table 3-1.

NSString *myString = [NSString stringWithFormat:

@"The number is %d", 5];

To create new strings, you can append strings together.This call outputs “The number is
522”. It creates a new instance built from other strings.

NSLog(@"%@", [myString stringByAppendingString:@"22"]);

Appending formats provides even more flexibility.You specify the format string and the
components that build up the result.

NSLog(@"%@", [myString stringByAppendingFormat:@"%d", 22]);

Length and Indexed Characters
Every string can report its length (via length) and produce an indexed character on de-
mand (via characterAtIndex:).The two calls shown here output 15 and e, respectively,
based on the previous @“The number is 5” string. Cocoa characters use the unichar
type, which store Unicode-style characters.

ptg

127Foundation Classes

NSLog(@"%d", myString.length);

printf("%c", [myString characterAtIndex:2]);

Converting to and from C Strings
The realities of normal C programming often crop up despite working in Objective-C.
Being able to move back and forth between C strings and Cocoa strings is an important
skill. Convert an NSString to a C string either by sending UTF8String or
cStringUsingEncoding:.These are equivalent, producing the same C-based bytes.

printf("%s\n", [myString UTF8String]);

printf("%s\n", [myString cStringUsingEncoding: NSUTF8StringEncoding]);

You can also go the other way and transform a C string into an NSString by using
stringWithCString: encoding:.The samples here use UTF-8 encoding, but Objective-
C supports a large range of options, including ASCII, Japanese, Latin,Windows-CP1251,
and so forth.

NSLog(@"%@", [NSString stringWithCString:”Hello World”
encoding: NSUTF8StringEncoding]);

Writing Strings to and Reading Strings from Files
Writing to and reading strings from the local file system offers a handy way to save and
retrieve data.This snippet shows how to write a string to a file.

NSString *myString = @"Hello World";

NSError *error;

NSString *path = [NSHomeDirectory()
stringByAppendingPathComponent:@"Documents/file.txt"];

if (![myString writeToFile:path atomically:YES
encoding:NSUTF8StringEncoding error:&error])

{

NSLog(@"Error writing to file: %@", [error localizedDescription]);

return;

}

NSLog(@"String successfully written to file");

The path for the file is NSHomeDirectory(), a function that returns a string with a path
pointing to the application sandbox. Notice the special append method that properly ap-
pends the Documents/file.txt subpath.

In Cocoa, most file access routines offer an atomic option.When you set the atomically
parameter to YES, the iPhone writes the file to a temporary auxiliary and then renames it
into place. Using an atomic write ensures that the file avoids corruption.

The request shown here returns a Boolean, namely YES if the string was written, or
NO if it was not. Should the write request fail, this snippet logs the error using a lan-
guage-localized description. It uses an instance of the NSError class to store that error in-
formation and sends the localizedDescription selector to convert the information into

ptg

128 Chapter 3 Objective-C Boot Camp

a human-readable form.Whenever iPhone methods return errors, use this approach to de-
termine which error was generated.

Reading a string from a file follows a similar form but does not return the same
Boolean result. Instead, check to see whether the returned string is nil, and if so display
the error that was returned.

NSString *inString = [NSString stringWithContentsOfFile:path
encoding:NSUTF8StringEncoding error:&error];

if (!inString)

{

NSLog(@"Error reading from file % %@", [path lastPathComponent],

[error localizedDescription]);

return;

}

NSLog(@"String successfully read from file");

NSLog(@"%@", inString);

Accessing Substrings
Cocoa offers a number of ways to extract substrings from strings. Here’s a quick review of
some typical approaches.As you’d expect, string manipulation is a large part of any flexible
API, and Cocoa offers many more routines and classes to parse and interpret strings than
the few listed here.This quick NSString summary skips any discussion of NSScanner,
NSXMLParser, and so forth.

Converting Strings to Arrays
You can convert a string into an array by separating its components across some repeated
boundary.This sample chops the string into individual words by splitting around spaces.
The spaces are discarded, leaving an array that contains each number word.

NSString *myString = @"One Two Three Four Five Six Seven";

NSArray *wordArray = [myString componentsSeparatedByString: @" "];

NSLog(@"%@", wordArray);

Requesting Indexed Substrings
You can request a substring from the start of a string to a particular index, or from an in-
dex to the end of the string.These two examples return @“One Two” and @“Two Three
Four Five Six Seven”, respectively, using the to and from versions of the indexed substring
request.As with standard C, array and string indices start at 0.

NSString *sub1 = [myString substringToIndex:7];

NSLog(@"%@", sub1);

NSString *sub2 = [myString substringFromIndex:4];

NSLog(@"%@", sub2);

ptg

129Foundation Classes

Generating Substrings from Ranges
Ranges let you specify exactly where your substring should start and stop.This snippet re-
turns @“Tw”, starting at character 4 and extending 2 characters in length. NSRange pro-
vides a structure that defines a section within a series.You use ranges with indexed items
like strings and arrays.

NSRange r;

r.location = 4;

r.length = 2;

NSString *sub3 = [myString substringWithRange:r];

NSLog(@"%@", sub3);

Search and Replace with Strings
With Cocoa, you can easily search a string for a substring. Searches return a range, which
contain both a location and a length.Always check the range location.The location
NSNotFound means the search failed.This returns a range location of 18, with a length of 4.

NSRange searchRange = [myString rangeOfString:@"Five"];

if (searchRange.location != NSNotFound)

NSLog(@"Range location: %d, length: %d", searchRange.location, searchRange.length);

Once you’ve found a range, you can replace a subrange with a new string.The replace-
ment string does not need to be the same length as the original, thus the result string may
be longer or shorter than the string you started with.

NSLog(@"%@", [myString stringByReplacingCharactersInRange:

searchRange withString: @"New String"]);

A more general approach lets you replace all occurrences of a given string.This snippet
produces @“One * Two * Three * Four * Five * Six * Seven” by swapping out each
space for a space-asterisk-space pattern.

NSString *replaced = [myString stringByReplacingOccurrencesOfString:

@" " withString: @" * "];

NSLog(@"%@", replaced);

Changing Case
Cocoa provides three simple methods that change a string’s case. Here, these three examples
produce a string all in uppercase, all in lowercase, and one where every word is capitalized
(“HelloWorld. How DoYou Do?”). Because Cocoa supports case-insensitive comparisons,
you rarely need to apply case conversions when testing strings against each other.

NSString *myString = @"Hello world. How do you do?";

NSLog(@"%@",[myString uppercaseString]);

NSLog(@"%@",[myString lowercaseString]);

NSLog(@"%@",[myString capitalizedString]);

ptg

130 Chapter 3 Objective-C Boot Camp

Testing Strings
The iPhone offers many ways to compare and test strings.The three simplest check for
string equality and match against the string prefix (the characters that start the string) and
suffix (those that end it). More complex comparisons use NSComparisonResult constants
to indicate how items are ordered compared with each other.

NSString *s1 = @"Hello World";

NSString *s2 = @"Hello Mom";

NSLog(@"%@ %@ %@", s1, [s1 isEqualToString:s2] ?

@"equals" : @"differs from", s2);

NSLog(@"%@ %@ %@", s1, [s1 hasPrefix:@"Hello"] ?

@"starts with" : @"does not start with", @"Hello");

NSLog(@"%@ %@ %@", s1, [s1 hasSuffix:@"Hello"] ?

@"ends with" : @"does not end with", @"Hello");

Extracting Numbers from Strings
Convert strings into numbers by using a value method.These examples return 3, 1,
3.141592, and 3.141592, respectively.

NSString *s1 = @"3.141592";

NSLog(@"%d", [s1 intValue]);

NSLog(@"%d", [s1 boolValue]);

NSLog(@"%f", [s1 floatValue]);

NSLog(@"%f", [s1 doubleValue]);

Mutable Strings
The NSMutableString class is a subclass of NSString. It offers you a way to work with
strings whose contents can be modified. Once instantiated, you can append new contents
to the string, allowing you to grow results before returning from a method.This sample
displays “Hello World. The results are in now.”

NSMutableString *myString = [NSMutableString stringWithString:

@"Hello World. "];

[myString appendFormat:@"The results are %@ now.", @"in"];

NSLog(@"%@", myString);

Numbers and Dates
Foundation offers a large family of value classes.Among these are numbers and dates. Un-
like standard C floats, integers, and so forth, these elements are all objects.They can be al-
located and released, and used in collections like arrays, dictionaries, and sets.The
following examples show numbers and dates in action, providing a basic overview of these
classes.

ptg

131Foundation Classes

Working with Numbers
The NSNumber class lets you treat numbers as objects.You can create new NSNumber in-
stances using a variety of convenience methods, namely numberWithInt:,
numberWithFloat:, numberWithBool:, and so forth. Once set, you extract those values
via intValue, floatValue, boolValue, and so on, and use normal C-based math to per-
form your calculations.

You are not limited to extracting the same data type an object was set with.You can set
a float and extract the integer value, for example. Numbers can also convert themselves
into strings.

NSNumber *number = [NSNumber numberWithFloat:3.141592];

NSLog(@"%d", [number intValue]);

NSLog(@"%@", [number stringValue]);

One of the biggest reasons for using NSNumber objects rather than ints, floats, and so forth,
is that you can use them with Cocoa routines and classes. For example, you cannot set a
user default (that is, a preference value) to, say, the integer 23, as in “You have used this
program 23 times.”You can, however, store an object [NSNumber numberWithInt:23] and
later recover the integer value from that object to produce the same user message.

Note
The NSDecimalNumber class provides a handy object-oriented wrapper for base-10 arithmetic.

Working with Dates
As with standard C and time(), NSDate objects use the number of seconds since an epoch,
that is a standardized universal time reference, to represent the current date.The iPhone
epoch was at midnight on January 1, 2001.The standard Unix epoch took place at mid-
night on January 1, 1970.

Each NSTimeInterval represents a span of time in seconds, stored with subsecond
floating-point precision.The following code shows how to create a new date object using
the current time and how to use an interval to reference some time in the future (or past).

// current time

NSDate *date = [NSDate date];

// time 10 seconds from now

date = [NSDate dateWithTimeIntervalSinceNow:10.0f];

You can compare dates by setting or checking the time interval between them.This snip-
pet forces the application to sleep until 5 seconds into the future and then compares the
date to the one stored in date.

// Sleep 5 seconds and check the time interval

[NSThread sleepUntilDate:[NSDate dateWithTimeIntervalSinceNow:5.0f]];

NSLog(@"Slept %f seconds", [[NSDate date] timeIntervalSinceDate:date]);

The standard description method for dates returns a somewhat human-readable string,
showing the current date and time.

ptg

132 Chapter 3 Objective-C Boot Camp

// Show the date

NSLog(@"%@" [date description]);

To convert dates into fully formatted strings rather than just using the default description,
use an instance of NSDateFormatter.You specify the format (for example,YY for two-
digit years, and YYYY for four-digit years) using the object’s date format property.A full
list of format specifiers is offered in the built-in Xcode documentation. In addition to
producing formatted output, this class can also be used to read preformatted dates from
strings, although that is left as an exercise for the reader.

// Produce a formatted string representing the current date

NSDateFormatter *formatter = [[[NSDateFormatter alloc] init]

autorelease];

formatter.dateFormat = @"MM/dd/YY HH:mm:ss";

NSString *timestamp = [formatter stringFromDate:[NSDate date]];

NSLog(@"%@", timestamp);

Timers
When working with time, you may need to request that some action occur in the future.
Cocoa offers an easy-to-use timer that triggers at an interval you specify; use the NSTimer

class.The timer shown here triggers after one second and repeats until the timer is disabled.

[NSTimer scheduledTimerWithTimeInterval: 1.0f target: self
selector: @selector(handleTimer:) userInfo: nil repeats: YES];

Each time the timer activates, it calls its target sending the selector message it was initial-
ized with.The callback method takes one argument (notice the single colon), which is the
timer itself.To disable a timer, send it the invalidate message; this releases the timer ob-
ject and removes it from the current runloop.

- (void) handleTimer: (NSTimer *) timer

{

printf("Timer count: %d\n", count++);

if (count > 3)

{

[timer invalidate];

printf("Timer disabled\n");

}

}

Recovering Information from Index Paths
The NSIndexPath class is used with iPhone tables. It stores the section and row number
for a user selection, that is, when a user taps on the table.When provided with index paths,
you can recover these numbers via the myIndexPath.row and myIndexPath.section

properties. Learn more about this class and its use in Chapter 11,“Creating and Managing
Table Views.”

ptg

133Foundation Classes

Collections
The iPhone primarily uses three kinds of collections: arrays, dictionaries, and sets.Arrays
act like C arrays.They provide an indexed list of objects, which you can recover by speci-
fying which index to look at. Dictionaries, in contrast, store values that you can look up
by keys. For example, you might store a dictionary of ages, where Dad’s age is the
NSNumber 57, and a child’s age is the NSNumber 15. Sets offer an unordered group of
objects and are usually used on the iPhone in connection with recovering user touches
from the screen. Each of these classes offers regular and mutable versions, just as the
NSString class does.

Building and Accessing Arrays
Create arrays using the arrayWithObjects: convenience method, which returns an au-
toreleased array.When calling this method, list any objects you want added to the array
and finish the list with nil. (If you do not include nil in your list, you’ll experience a run-
time crash.) You can add any kind of object to an array, including other arrays and diction-
aries.This sample showcases the creation of a three-item array.

NSArray *array = [NSArray arrayWithObjects:@"One", @"Two", @"Three", nil];

The count property returns the number of objects in an array.Arrays are indexed starting
with 0, up to one less than the count.Attempting to access [array objectAtIndex:
array.count] causes an “index beyond bounds” exception and crashes. So always use care
when retrieving objects, making sure not to cross either the upper or lower boundary for
the array.

NSLog(@"%d", array.count);

NSLog(@"%@", [array objectAtIndex:0]);

Mutable arrays are editable.The mutable form of NSArray is NSMutableArray.With mu-
table arrays, you can add and remove objects at will.This snippet copies the previous array
into a new mutable one and then edits the array by adding one object and removing
another one.This returns an array of [@“One”, @“Two”, @“Four].

NSMutableArray *marray = [NSMutableArray arrayWithArray:array];

[marray addObject:@"Four"];

[marray removeObjectAtIndex:2];

NSLog(@"%@", marray);

Whether or not you’re working with mutable arrays, you can always combine arrays to
form a new version containing the components from each. No checks are done about du-
plicates.This code produces a six-item array including one, two, and three from the origi-
nal array, and one, two, and four, from the mutable array.

NSLog(@"%@", [array arrayByAddingObjectsFromArray:marray]);

ptg

134 Chapter 3 Objective-C Boot Camp

Checking Arrays
You can test whether an array contains an object and recover the index of a given object.
This code searches for the first occurrence of “Four” and returns the index for that object.
The test in the if statement ensures that at least one occurrence exists.

if ([marray containsObject:@"Four"])

NSLog(@"The index is %d",

[marray indexOfObject:@"Four"]);

Converting Arrays into Strings
As with other objects, sending description to an array returns an NSString that de-
scribes an array. In addition, you can use componentsJoinedByString to transform an
NSArray into a string.The following code returns @“One Two Three”.

NSArray *array = [NSArray arrayWithObjects:@"One", @"Two", @"Three", nil];

NSLog(@"%@", [array componentsJoinedByString:@" "]);

Building and Accessing Dictionaries
NSDictionary objects store keys and values, enabling you to look up objects using strings.
The mutable version of dictionaries, NSMutableDictionary, lets you modify these dic-
tionaries by adding and removing elements on demand. In iPhone programming, you use
the mutable class more often the static one, so these examples showcase mutable versions.

Creating Dictionaries
Use the dictionary convenience method to create a new mutable dictionary, as shown
here.This returns a new initialized dictionary that you can start to edit. Populate the dic-
tionary using setObject: forKey:.

NSMutableDictionary *dict = [NSMutableDictionary dictionary];

[dict setObject:@"1" forKey:@"A"];

[dict setObject:@"2" forKey:@"B"];

[dict setObject:@"3" forKey:@"C"];

NSLog(@"%@", [dict description]);

Searching Dictionaries
Searching the dictionary means querying the dictionary by key name. Use objectForKey:
to find the object that matches a given key.When a key is not found, the dictionary returns
nil.This returns @"1" and nil.

NSLog(@"%@", [dict objectForKey:@"A"]);

NSLog(@"%@", [dict objectForKey:@"F"]);

Replacing Objects
When you set a new object for the same key, Cocoa replaces the original object in the
dictionary.This code replaces “3” with “foo” for the key “C”.

ptg

135Foundation Classes

[dict setObject:@"foo" forKey:@"C"];

NSLog(@"%@", [dict objectForKey:@"C"]);

Removing Objects
You can also remove objects from dictionaries.This snippet removes the object associated
with the “B” key. Once removed, both the key and the object no longer appear in the
dictionary.

[dict removeObjectForKey:@"B"];

Listing Keys
Dictionaries can report the number of entries they store plus they can provide an array of
all the keys currently in use.This key list lets you know what keys have already been used.
It lets you test against the list before adding an item to the dictionary, avoiding overwrit-
ing an existing key/object pair.

NSLog(@"The dictionary has %d objects", [dict count]);

NSLog(@"%@", [dict allKeys]);

Accessing Set Objects
Sets store unordered collections of objects.You encounter sets almost exclusively when
working with the iPhone’s multitouch screen.The UIView class receives finger movement
updates that deliver touches as an NSSet.To work with touches, you almost always issue
allObjects and work with the array that gets returned. Once converted, use standard ar-
ray calls to list, query, and iterate through the touches.

Memory Management with Collections
Arrays, sets and dictionaries automatically retain objects when they are added and release
those objects when they are removed from the collection. Releases are also sent when the
collection is deallocated. Collections do not copy objects. Instead, they rely on retain
counts to hold onto objects and use them as needed.

Writing Out Collections to File
Both arrays and dictionaries can store themselves into files using writeToFile:
atomically: methods so long as the types within the collections belong to the set of
NSData, NSDate, NSNumber, NSString, NSArray, and NSDictionary. Pass the path as the
first argument, and a Boolean as the second.As when saving strings, the second argument
determines whether the file is first stored to a temporary auxiliary and then renamed.The
method returns a Boolean value:YES if the file was saved, NO if not. Storing arrays and
dictionaries create standard property lists files.

NSString *path = [NSHomeDirectory()
stringByAppendingPathComponent:@"Documents/ArraySample.txt"];

if ([array writeToFile:path atomically:YES])

NSLog(@"File was written successfully");

ptg

136 Chapter 3 Objective-C Boot Camp

To recover an array or dictionary from file, use the convenience methods
arrayWithContentsOfFile: and dictionaryWithContentsOfFile:. If the
methods return nil, the file could not be read.

NSArray *newArray = [NSArray arrayWithContentsOfFile:path];

NSLog(@"%@", newArray);

Building URLs
NSURL objects point to resources.These resources can refer to both local files and to URLs
on the Web. Create url objects by passing a string to class convenience functions. Separate
functions have been set up to interpret each kind of URL. Once built, however, NSURL
objects are interchangeable. Cocoa does not care if the resource is local or points to an
object only available via the Net.This code demonstrates building URLs of each type,
path, and Web.

NSString *path = [NSHomeDirectory()
stringByAppendingPathComponent:@"Documents/foo.txt"];

NSURL *url1 = [NSURL fileURLWithPath:path];

NSLog(@"%@", url1);

NSString *urlpath = @"http://ericasadun.com";

NSURL *url2 = [NSURL URLWithString:urlpath];

NSLog(@"%d characters read",

[[NSString stringWithContentsOfURL:url2] length]);

Working with NSData
If NSString objects are analogous to zero-terminated C strings, then NSData objects cor-
respond to buffers. NSData provides data objects that store and manage bytes. Often, you
fill NSData with the contents of a file or URL.The data returned can report its length, let-
ting you know how many bytes were retrieved.This snippet retrieves the contents of a
URL and prints the number of bytes that were read.

NSData *data = [NSData dataWithContentsOfURL:url2];

NSLog(@"%d", [data length]);

To access the core byte buffer that underlies an NSData object, use bytes.This returns a
(const void *) pointer to actual data.

As with many other Cocoa objects, you can use the standard NSData version of the
class or its mutable child, NSMutableData. Most Cocoa programs that access the Web, par-
ticularly those that perform asynchronous downloads, pull in a bit of data at a time. For
those cases, NSMutableData objects prove useful.You can keep growing mutable data by
issuing appendData: to add the new information as it is received.

File Management
The iPhone’s file manager is a singleton provided by the NSFileManager class. It can list
the contents of folders to determine what files are found and perform basic file system

ptg

137Foundation Classes

tasks.The following snippet retrieves a file list from two folders. First it looks in the sand-
box’s Documents folder and then inside the application bundle itself.

NSFileManager *fm = [NSFileManager defaultManager];

// List the files in the sandbox Documents folder

NSString *path = [NSHomeDirectory() stringByAppendingPathComponent:@"Documents"];

NSLog(@"%@",[fm directoryContentsAtPath:path]);

// List the files in the application bundle

path = [[NSBundle mainBundle] bundlePath];

NSLog(@"%@",[fm directoryContentsAtPath:path]);

Note the use here of NSBundle. It lets you find the application bundle and pass its path to
the file manager.You can also use NSBundle to retrieve the path for any item included in
your app bundle. (You cannot, however, write to the application bundle at any time.) This
code returns the path to the application’s Default.png image. Note that the file and exten-
sion names are separated and that each is case sensitive.

NSBundle *mb = [NSBundle mainBundle];

NSLog(@"%@", [mb pathForResource:@"Default" ofType:@"png"]);

The file manager offers a full suite of file-specific management. It can move, copy, and re-
move files as well as query the system for file traits and ownership. Here are some exam-
ples of the simpler routines you may use in your applications.

// Create a file

NSString *docspath = [NSHomeDirectory()

stringByAppendingPathComponent:@"Documents"];

NSString *filepath = [NSHomeDirectory()

stringByAppendingPathComponent:@"Documents/testfile"];

NSArray *array = [@"One Two Three" componentsSeparatedByString:@" "];

[array writeToFile:filepath atomically:YES];

NSLog(@"%@", [fm directoryContentsAtPath:docspath]);

// Copy the file

NSString *copypath = [NSHomeDirectory()

stringByAppendingPathComponent:@"Documents/copied"];

if (![fm copyItemAtPath:filepath toPath:copypath error:&error])

{

NSLog(@"Copy Error: %@", [error localizedDescription]);

return;

}

NSLog(@"%@", [fm directoryContentsAtPathdocspath]);

// Move the file

NSString *newpath = [NSHomeDirectory()

stringByAppendingPathComponent:@"Documents/renamed"];

if (![fm moveItemAtPath:filepath toPath:newpath error:&error])

ptg

138 Chapter 3 Objective-C Boot Camp

{

NSLog(@"Move Error: %@", [error localizedDescription]);

return;

}

NSLog(@"%@", [fm directoryContentsAtPath:docspath]);

// Remove a file

if (![fm removeItemAtPath:copypath error:&error])

{

NSLog(@"Remove Error: %@", [error localizedDescription]);

return;

}

NSLog(@"%@", [fm directoryContentsAtPath:docspath]);

Note
As another convenient file trick, use tildes in path names, for example, “~/Library/Prefer-
ences/foo.plist” and apply the NSString method stringByExpandingTildeInPath.

One More Thing: Message Forwarding
Although Objective-C does not provide true multiple-inheritance, it offers a work-
around that lets objects respond to messages that are implemented in other classes. If you
want your object to respond to another class’s messages, you can add message forwarding
to your applications and gain access to that object’s methods.

Normally, sending an unrecognized message produces a runtime error, causing an ap-
plication to crash. But before the crash happens, the iPhone’s runtime system gives each
object a second chance to handle a message. Catching that message lets you redirect it to
an object that understands and can respond to that message.

Consider the Car example used throughout this chapter.The carInfo property intro-
duced midway through these examples returns a string that describes the car’s make,
model, and year. Now imagine if a Car instance could respond to NSString messages by
passing them to that property. Send length to a Car object and instead of crashing, the
object would return the length of the carInfo string. Send stringByAppendingString:
and the object adds that string to the property string. It would be as if the Car class inher-
ited (or at least borrowed) the complete suite of string behavior.

Objective-C provides this functionality through a process called message forwarding.
When you send a message to an object that cannot handle that selector, the selector gets
forwarded to a forwardInvocation: method.The object sent with this message, namely
an NSInvocation instance stores the original selector and arguments that were requested.
You can override forwardInvocation: and send that message on to another object.

ptg

139One More Thing: Message Forwarding

Implementing Message Forwarding
To add message forwarding to your program, you must override two methods, namely,
methodSignatureForSelector: and forwardInvocation:.The former creates a valid
method signature for messages implemented by another class.The latter forwards the se-
lector to an object that actually implements that message.

Building a Method Signature
This first method returns a method signature for the requested selector. For this example,
a Car instance cannot properly create a signature for a selector implemented by another
class, in this case NSString.Adding a check for a malformed signature (i.e., returning nil)
gives this method the opportunity to iterate through each pseudo-inheritance and at-
tempt to build a valid result.This example draws methods from just one other class via
self.carInfo.

- (NSMethodSignature*) methodSignatureForSelector:(SEL)selector

{

// Check if car can handle the message

NSMethodSignature* signature = [super

methodSignatureForSelector:selector];

// If not, can the car info string handle the message?

if (!signature)

signature = [self.carInfo methodSignatureForSelector:selector];

return signature;

}

Forwarding
The second method you need to override is forwardInvocation:.This method only
gets called when an object has been unable to handle a message.This method gives the
object a second chance, allowing it to redirect that message.The method checks to see
whether the self.carInfo string responds to the selector. If it does respond, it tells the
invocation to invoke itself using that object as its receiver.

- (void)forwardInvocation:(NSInvocation *)invocation

{

SEL selector = [invocation selector];

if ([self.carInfo respondsToSelector:selector])

{

printf("[forwarding from %s to %s] ", [[[self class] description]
UTF8String], [[NSString description] UTF8String]);

[invocation invokeWithTarget:self.carInfo];

}

}

ptg

140 Chapter 3 Objective-C Boot Camp

Using Forwarded Messages
Calling nonclass messages like UTF8String and length produces compile-time warnings,
which you can ignore.The code shown in Figure 3-4 causes two compiler warnings.The
code, however, compiles and (more importantly) runs without error.As the figure shows,
you can send a Car instance methods that are defined by the class itself and also those im-
plemented by NSString.

House Cleaning
Although invocation forwarding mimics multiple inheritance, NSObject never confuses
the two. Methods like respondsToSelector: and isKindOfClass: only look at the inher-
itance hierarchy and not at the forwarding change.

A couple of optional methods allow your class to better express its message compli-
ance to other classes. Reimplementing respondsToSelector: and isKindOfClass: lets
other classes query your class. In return, the class announces that it responds to all string
methods (in addition to its own) and that it is a “kind of” string, further emphasizing the
pseudo-multiple inheritance approach.

// Extend selector compliance

- (BOOL)respondsToSelector:(SEL)aSelector

{

// Car class can handle the message

if ([super respondsToSelector:aSelector])

return YES;

// CarInfo string can handle the message

if ([self.carInfo respondsToSelector:aSelector])

return YES;

Figure 3-4 The compiler issues warnings for forwarded methods, but the code
runs without error.

ptg

141Summary

// Otherwise...

return NO;

}

// Allow posing as class

- (BOOL)isKindOfClass:(Class)aClass

{

// Check for Car

if (aClass == [Car class]) return YES;

if ([super isKindOfClass:aClass]) return YES;

// Check for NSString

if ([self.carInfo isKindOfClass:aClass]) return YES;

return NO;

}

Supereasy Forwarding
The method signature/forward invocation pair of methods provides a robust and ap-
proved way to add forwarding to your classes.A simpler approach is also available on the
iPhone, which you can use at your own risk.You can replace both those methods with
this single one, which does all the same work with less coding.

- (id)forwardingTargetForSelector:(SEL)sel

{

if ([self.carInfo respondsToSelector:sel]) return self.carInfo;

return nil;

}

Summary
This chapter provided an abridged, high-octane introduction to Objective-C and
Foundation. In it, you read about the way that Objective-C extends C and provides sup-
port for object-oriented programming.You discovered properties and memory manage-
ment and were subjected to a speedy review of the most important Foundation classes. So
what can you take away from this chapter? Here are a few final thoughts.

n The sample code for this chapter contains all the examples used throughout this in-
troduction.Try testing this material directly in Xcode. Mess around with the mate-
rial, add your own samples, or expand the ones you’ve been given. Hands-on offers
the best way to gain critical skills you need for iPhone development.

ptg

142 Chapter 3 Objective-C Boot Camp

n Learning Objective-C and Cocoa takes more than just a chapter. If you’re serious
about learning iPhone programming, and these concepts are new to you, consider
seeking out single-topic books that are dedicated to introducing these technologies
to developers new to the platform. Consider Aaron Hillegass’s Cocoa Programming
for Mac OS X, 3rd Edition, or Stephen Kochan’s Programming in Objective-C 2.0,
2nd Edition, or Fritz Anderson’s Xcode 3 Unleashed.

n This chapter mentioned Core Foundation and Carbon but did not delve into these
technologies in any depth.You can and will experience C-based APIs on the
iPhone, particularly when you work with the address book, with Quartz 2-D
graphics, and with Core Audio, among other frameworks. Each of these specific
topic areas are documented exhaustively at Apple’s developer Web site, complete
with sample code.A strong grounding in C (and sometimes C++) programming
will help you work through the specific implementation details.

ptg

4
Designing Interfaces

The iPhone SDK helps you craft user interfaces.This chapter introduces the visual
classes you’ll work with and discusses their roles in the interface design process.
You read about controllers that work with these visual classes and discover how

they handle tasks like device reorientation.Then you move on to solutions for laying out
and customizing interfaces.You learn about hybrid solutions that rely both on IB-created
interfaces and Objective-C-centered ones. By the time you finish this chapter, you’ll have
discovered many approaches that you can apply to your own application design.

UIView and UIWindow
Nearly everything that appears on the iPhone’s screen is a child of the UIView class.Views
act like little canvases that you can draw on with colors, pictures, and buttons.You can
drag them around the screen.You can resize them.You can layer them.Views provide the
basic component of user interfaces.

The iPhone rule goes like this: one window, many views. If you keep that idea in mind,
the iPhone interface design scenario simplifies. Metaphorically speaking, UIWindow is the
TV set, and UIViews are the actors on your favorite show.They can move around the
screen, appear, and disappear, and may change the way they look and behave over time.

The TV set, on the other hand, normally stays still. It has a set screen size that doesn’t
change even if the virtual world you see through it is practically unlimited.You may even
own several TVs in the same household (just like you can create several UIWindow in-
stances in the same application), but you can watch just one at a time.

UIViews are user interface building blocks.They provide visual elements that are
shown onscreen and invite user interaction. Every iPhone user interface is built from
UIViews displayed within one UIWindow, which is a specialized kind of UIView.The win-
dow acts a container; it is the root of the display hierarchy. It holds all the visible applica-
tion components within itself.

Beyond UIView and UIWindow, you find a wealth of specialized views, such as
UIImageView and UITextView, that allow you to build your interfaces from predesigned
components.This section provides a rundown of those views.The Interface Builder

ptg

144 Chapter 4 Designing Interfaces

library makes these views available to you, allowing you to place them in your application
interfaces to build your GUIs.

Note
The UI at the beginning of certain classes (like UIView) stands for User Interface.

Views That Display Data
One of the most important things that a view can do is provide a visual representation of
data. In Cocoa Touch, the following classes show information onscreen.

n The UITextView class presents passages of text to your users and/or allows them to
type in their own text using the keyboard.You choose whether to set the view text
as editable.Text views use a single font with a single text size throughout.

n UILabel instances present short, read-only text views.As the name implies, this class
is used to statically label items on your screen.You choose the color, font size, and
font face for your labels by setting view properties.The words “Fahrenheit” and
“Celsius” shown in Figure 4-8, later in the chapter, are created by UILabels.

n UIImageViews show pictures.You load them with UIImage objects, which are in-
stances of an abstract image storing class. Once loaded, you specify the view’s
location and size.The UIImageView automatically scales its contents to fit those
bounds.A special feature of this class allows you to load a sequence of images rather
than a single picture and animate them on demand.

n When you want to display HTML, PDFs, or other advanced Web content, the
UIWebView class provides all the functionality you need. UIWebView instances offer a
powerhouse of display capabilities, allowing you to present nearly any data type sup-
ported by the built-in Safari browser.These views offer simple Web browsing with a
built-in history, essentially giving you a canned, usable Safari-style object you can
insert into your programs. Sometimes developers use UIWebView instances to pres-
ent blocks of stylized text.As a bonus, these support zoom and scroll with no addi-
tional work.

n MKMapViews (MK stands for Map Kit) embed maps into your applications. Users can
view map information and interact with the map contents, much as they would
with the Maps application.This class, which was introduced in the 3.0 SDK, lets you
annotate the map with custom information using the MKAnnotationView and
MKPinAnnotationView classes.

n UIScrollView instances allow you to present content that is larger than the normal
size of an application window. Users can scroll through that content to view it all,
using horizontal and/or vertical scrolling. Scroll views support zooming, so you can
use standard iPhone pinch and spread gestures to resize content.

ptg

145UIView and UIWindow

Views for Making Choices
The iPhone offers two core classes that offer choices to users.The UIAlertView class pro-
duces those blue pop-up windows you’ve seen in many applications.You choose the mes-
sage and customize their buttons to ask users questions. For example, you might ask a user
to confirm or cancel an action in your program. In addition to questions, you can present
information. By offering just one button (typically “Okay”), alert views provide a simple
way to show text to users.

The second choice-based class is UIActionSheet, which offers menus that scroll up
from the bottom of the screen.Action sheets display a message and present buttons for the
user to choose from.Although these sheets look different from alert views, functionally
they perform in a similar manner.As a rule, use action sheets when you have a number of
options to choose from and alert views when you are presenting just two or three choices
at most.

Both these presentations are modal.They require users to make a selection before
proceeding. For this reason, it’s polite to offer a cancel option among the other
choices.

Controls
Controls are onscreen objects that transform user touches into callback triggers.They may
also provide numeric or text values consumed by your application. Controls include but-
tons, switches, and sliders, among others.They correspond closely to the same kinds of
control classes used in desktop programming. Here’s a quick rundown of the major classes
provided by Cocoa Touch and what each control offers:

n UIButton instances provide onscreen buttons. Users can push them to trigger a call-
back via target/action programming.You specify how the button looks, the text it
displays, and how the button triggers.The most typical trigger used is “touch up in-
side,” where the user touch ends inside the button’s bounds. If it seems strange to
trigger with touch up rather than touch down, consider that the de facto standard
on the iPhone allows users to cancel a button press by sliding their finger away from
the button before lifting it.

In Interface Builder, buttons are called Round Rect Buttons. In IB, you also en-
counter buttons that look like views and act like views but are not, in fact, views.
Bar button items (UIBarButtonItem) store the properties of toolbar and navigation
bar buttons but are not buttons themselves.The bars use these descriptions to
build themselves; the actual button views are not generally accessible to you as a
developer.

Note
In Interface Builder, you can search the view library by class name (e.g., UIButton) or by
IB’s description (e.g., round or button).

ptg

146 Chapter 4 Designing Interfaces

n The UISegmentedControl offers a row of equally sized buttons that act like the
old-fashioned radio buttons in a car, namely that only one button can be selected at
a time.You can present these buttons as images or text.An option (called “momen-
tary”) lets you replace the radio-button behavior with a style that prevents the but-
tons from showing which button was last selected.

n In Cocoa Touch, the UISwitch class provides a simple binary control.This class pres-
ents On/Off choices and looks like a standard light switch you’d see on a wall.

n The UISlider class lets users choose a value from a specified range by sliding an in-
dicator along a horizontal bar.The indicator (called the “thumb”) represents the
current setting for the control.The value is set by the thumb’s relative placement.
The iPhone’s onscreen volume slider in the iPod/Music application represents a
typical slider instance.

n Page controls let users move between pages, usually as part of a UIScrollView im-
plementation.The UIPageControl class offers a series of small dots (like the ones
you see on the iPhone’s home page) showing the current page and letting users
navigate to the next or previous pages.

n UITextFields are a kind of control that let you enter text.These fields offer just a
single line for input and are meant to solicit short text items (like usernames and
passwords) from users. Figure 4-8, later in the chapter, includes two text fields.

Tables and Pickers
Tables present a scrolling list of choices.The UITableView class provides the most com-
monly used table style, which you see, for example, in the Contacts,YouTube, and
iPod/Music applications.Tables offer rows of information (provided by the
UITableViewCell class), which users scroll through and can select.

The UIPickerView class offers a kind of table, where users can select choices by scroll-
ing individual wheels.A specialized version of this class is the UIDatePicker, which
comes preloaded with date- and time-specific behavior and is used extensively in the Cal-
endar and Clock applications.

Bars
The iPhone offers four kinds of bar-style views. Bars are compact views (typically shorter
than 50 pixels in height) that extend from one side of the screen to the other.The most
commonly used view is the UINavigationBar (see Figure 4-2, later in the chapter), which
is presented on top of many interfaces to provide navigation state.As a developer, you
almost never work directly with class instances. Instead, the view is generated and man-
aged by UINavigationController instances, which you read about in chapter sections
that follow this one.

Tab bars offer the kinds of choices you see at the bottom of the YouTube and
iPod/Music applications, like Featured, Most Viewed,Albums, and Podcasts. Later in the

ptg

147UIViewControllers

chapter, Figure 4-3 (top) shows a typical UITabBar instance. Search bars (UISearchBar)
add a text-based view meant to be shown on the top navigation bar of a table, as used in
the Contacts application.As with navigation bars, you normally work through
UITabBarControllers and UISearchDisplayControllers instead of building and man-
aging the view directly.

Of all the iPhone bars, only the UIToolbar class is meant for direct use. It provides a
series of buttons similar to segmented controls but with a different look (see Figure 4-3,
bottom).Toolbars are limited to a momentary highlighting style.The role of toolbars is to
provide a vocabulary of actions that act on the current view.The toolbar used in the Mail
application allows you to delete messages or to reply to messages.Toolbars present mono-
chrome images on each button.

If your design ideas include tab bars and toolbars, take the time to read Apple’s Human
Interface Guidelines, available as part of the standard iPhone documentation library.Apple
regularly rejects applications that use bars in a manner inconsistent with these guidelines.

Note
As with bar button Items, navigation items appear in Interface Builder and can be placed in
your projects as you would place views. Like their cousins, navigation items are not views
themselves. They store information about what items go on navigation bars and are used to
build the bar that does appear.

Progress and Activity
Cocoa Touch provides two classes meant to communicate an ongoing activity to the user.
The UIActivityIndicatorView offers a spinning-style wheel, which is shown during an
ongoing task.The wheel tells the user that the task may finish at some point, but it does
not determine when that time will end.When you want to communicate progress to a
user, use the UIProgressView class. Instances offer a bar that fills from left to right, indi-
cating how far a task has progressed.

UIViewControllers
On the iPhone, view controllers centralize certain kinds of view management.They pro-
vide practical utility by linking views into the pragmatic reality of your device.View con-
trollers handle reorientation events such as when users tip the iPhone on its side to
landscape mode and navigation issues such as when users need to move their attention
from view to view.

View controllers aren’t views.They are abstract classes with no visual representation;
only views offer visual canvases. Instead, they help your views live in a larger application
design environment. Do not set a frame the way you would with a normal UIView.
UIViews use initWithFrame:; UIViewControllers use init.

The iPhone SDK offers many view controller classes.These classes range from the
general to the specific. In a way, specialized controllers are both a blessing and a curse. On
the positive side, they introduce enormous functionality, essentially with no additional

ptg

148 Chapter 4 Designing Interfaces

programming burden. On the downside, they’re so specialized that they often hide core
features that developers might prefer to work with.

For example, there’s no simple camera access class.You must work through the
UIImagePickerController class to snap photos.This class with its prebuilt GUI is elegant
and well designed, but it denies developers direct access to the camera and to custom user
interfaces that they might prefer to build.You cannot pull live data from the camera and
store it to a time-lapse database. Instead, your user must shoot the image, agree that the
image is what he or she wanted, and then pass the control back to your application.

Here’s a quick guide to some of the view controllers you’ll encounter while building
your iPhone application interfaces.

UIViewController
UIViewController is the parent class for view controllers and the one you use to manage
your primary views. It’s the workhorse of view controllers.You may spend a large part of
your time customizing this one class.The basic UIViewController class manages each
primary view’s lifetime from start to finish and takes into account the changes that the
view must react to along the way.

For example, UIViewControllers handle reorientation tasks, letting you program for
both landscape and portrait orientation. UIViewControllers decide whether to change
their orientation when a user tilts the iPhone, and specify how that orientation change
occurs.They do this via instance methods like shouldAutorotateToInterface
➥Orientation:.Without a view controller, your interface won’t support automatic ori-
entation updates. Many developers have found it difficult trying to rotate UIViews directly
without the help of a view controller class.

UIViewController instances are responsible for setting up how a view looks and what
subviews it displays. Often they rely on loading that information from .xib files.A variety
of instance methods such as loadView and viewDidLoad let you add behavior while or af-
ter a view sets up.

Reacting to views being displayed or dismissed is another job that view controllers
handle.These are the realities of belonging to a larger application. Methods like
viewDidAppear: and viewWillDisappear: let you finish any bookkeeping associated
with your view management.You might preload data in anticipation of being presented or
clean up memory that won’t be used when the view is not onscreen.

Each of the tasks mentioned here specifies how a view fits into an enveloping applica-
tion and works on a particular device.The UIViewController mediates between views
and these external demands, allowing the view to change itself to meet these needs.

UINavigationController
As the name suggests, navigation controllers allow you to navigate up and down through
tree-based view hierarchies.They create the solid-colored navigation bars that appear at the
top of many standard iPhone applications.You see navigation controllers in use whenever

ptg

149UIViewControllers

you drill through some sort of hierarchy, whether using the Contacts application or the
on-iPhone App Store. Both of these applications are built using navigation controllers.

Navigation controllers let you push new views into place and automatically generate
“back” buttons showing the title of the calling view controller.All navigation controllers
use a “root” view controller to establish the top of their navigation tree, letting those back
buttons lead you back to a primary view. Navigation controllers and their trees are dis-
cussed in greater detail later in this chapter.

Handing off responsibility to a navigation controller lets you focus your design work
on creating individual view controller screens.You don’t have to worry about specific
navigation details other than telling the navigation controller which view to move to
next.The history stack and the navigation buttons are handled for you. Chapter 5,
“Working with View Controllers,” discusses navigation controllers in further detail and
offers recipes for their use.

UITabBarController
Parallel views are like stations on a radio.A tab bar helps users select which
UIViewController to “tune in to,” without there being a specific navigation hierarchy.
You see this best in applications like YouTube and iPod, where users choose whether to
see a “Top 25” list or decide between viewing albums or playlists. Each parallel world op-
erates independently, and each can have its own navigation hierarchy.You build the view
controller or navigation controller that inhabits each tab, and Cocoa Touch handles the
multiple-view details.

For example, when tab bar instances offer more than five view controller choices at a
time, users can customize them through the More > Edit screen.The More > Edit screen
lets users drag their favorite controllers down to the button bar at the bottom of the
screen. No extra programming is involved.You gain editable tabs for free.All you have to
do is request them via the customizableViewControllers property. See Chapter 5 to
read more about implementing tab bar-based applications and setting the images that
adorn each button.

Table Controllers
Table view controllers simplify using tables in your iPhone projects.The
UITableViewController class provides a standard already-connected UITableView in-
stance and automatically sets delegation and data sources to point to itself.All you have to
do is supply those delegate and data source methods to fill up the table with data and re-
act to user taps. UITableViewController is discussed at length in Chapter 11,“Creating
and Managing Table Views.”

The search display controller is a kind of table view but one that offers a built-in
search bar via UISearchBar.With it, you allow users to search data that is provided by an-
other view controller, called its contents controller.As users update the search information,
the contents controller adjusts its data source to include only those items that match the
search query.

ptg

150 Chapter 4 Designing Interfaces

It may seem odd to force another controller to perform that work, but in practice, it
works out very neatly.The contents controller is almost always a table view controller,
which displays the search controller on demand.The search then weeds through the origi-
nal table’s data and shows a subset of that information until the search is dismissed.

The NSFetchedResultsController also provides a kind of table-based controller.Al-
though strictly speaking, not a view controller, this class helps populate a UITableView
with objects fetched from a Core Data store. See Chapter 19,“A Taste of Core Data,” for
an example that shows this class in action.

Address Book Controllers
The Address Book user interface framework (AddressBookUI.framework) provides several
view controllers that let you select a person from your address book, view his or her de-
tails, and add a new person or modify an existing person’s entry.These view controllers tie
into the C-based ABAddressBook framework, which provides functions that query and
update the iPhone’s built-in address book. Chapter 18,“Connecting to the Address Book,”
discusses the Address Book and its UI controllers in greater detail.

UIImagePickerController
This utility controller allows users to select images from onboard albums or to snap a photo
or shoot video using the iPhone camera.With it, you gain full access to most of the organi-
zational features made available to users via the Camera and Photos applications. In truth,
there are not two separate applications.There is just one application that poses as those two
utilities, just as the single controller offers access to both camera and photo selection features.

When selecting pictures,Apple has added an advanced image-selection interface. Users
can navigate up and down the photo album hierarchy until they find the image they want
to use.The picker automatically handles access to the onboard photo album leaving you
little more to do than decide how to use the picture it picks.

The photo/video interface is equally impressive.The controller even lets the users op-
tionally orient and zoom an image before finishing, providing user-defined “edits” on the
picture they snap. Full discussions of this class, including how-to’s for both the selection
and camera versions, appear in Chapter 7,“Working with Images,” and Chapter 15,
“Audio, Video, and MediaKit.”

Mail Composition
The MFMailComposeViewController lets you create mail messages that users can cus-
tomize from directly in your program.Although the iPhone has long supported mailto:
URLs to send mail messages, this new class introduced in the 3.0 SDK offers far more
control over mail contents and attachments.What’s more, users can continue working
within your program without being forced to leave to access the Mail application.

The mail composition controller is simple to use and is used in Chapter 7 to mail pho-
tographs. It is part of the MessageUI framework; the MF prefix apparently stands for Mes-
sage Framework.

ptg

151View Design Geometry

GKPeerPickerController
The GameKit peer picker provides a standard GUI for discovering and connecting to
other iPhones. It offers a slick interface listing other iPhones that are available and can be
linked to.Although this controller is part of GameKit, its technology is readily adaptable to
nongame uses including file transfer, messaging, and so forth.

You can configure the picker to select whether to use Bluetooth or Internet connec-
tions.When presented to the user, only the supported connections appear. Note that users
cannot control that choice themselves using this interface.

Read more about using the peer picker controller in Chapter 12,“Making Connec-
tions with GameKit and Bonjour.”

Media Player Controllers
The Media Player framework offers several controllers that allow you to choose and play
music and movies.The MPMediaPickerController provides a media-selection GUI that
allows users to choose music, podcasts, and audio books.You choose which media to pres-
ent, and you can play back that media via an MPMusicPlayerController instance.

When your user needs to watch a movie or listen to audio, an
MPMoviePlayerController instance does the trick. Just supply it with a path to the media
resource and push the controller into view.The controller provides a Done button for the
user or automatically returns a delegate call when playback finishes.

If you want to read more about picking and playing back media, refer to Chapter 15.

View Design Geometry
The iPhone hardware is not theoretically limited to a 320-by-480 display. Design your ap-
plications as resolution-independently as possible.That having been said, certain facts of
geometry play a role in the design of current generation iPhone applications, particularly
when you need to hand specs to a graphic designer to take to Photoshop.

Here is a rundown of the onscreen elements whose geometry can mostly be counted
on to stay set when building your interfaces.Try not to rely on these sizes where possible,
but rather design around them while keeping their proportions and aspect ratios in
mind.

Keep in mind that future iPhone models and related iPhone OS devices may not use
the same screen size or shape.All the measurements in this section apply specifically to the
first five members of the iPhone OS family, all of which use a 320x480 screen: the first
generation iPhone, the iPhone 3G/3G S, and the various generations of iPod touch.

Status Bar
The status bar at the very top of the iPhone screen shows the time, connectivity, battery
status, and carrier (iPhones) or model (iPods) of the unit.This bar is 20 pixels in height for
normal use. It zooms to 40 pixels high during phone calls or when displaying messages;

ptg

152 Chapter 4 Designing Interfaces

Figure 4-1 The status bar is normally 20 pixels high,
regardless of whether the iPhone is using portrait or

landscape orientation. At times the status bar zooms to
40 pixels in height to indicate ongoing system operations

like a phone call or a paused recording.

note that double-height status bars appear to be a portrait-only feature. Unfortunately the
SDK does not offer any public hooks into the message display system so you can’t display
your own messages.You can see these 40-pixel colorful status displays when you pause a
Voice Memo recording, use Nike+, or tether the iPhone on 3G or later units.

Figure 4-1 shows the status bar for portrait, landscape, and 40-pixel-high message
modes.You can hide the status bar from your users, but doing so at a minimum eliminates
their access to seeing the time and battery information unless you supply that information
elsewhere in your application’s user interface.You can set the status bar to display in gray,
black, or translucent black.The latter allows the view behind it to bleed through to better
coordinate colors with your application.

If you’d rather free up those 20 pixels of screen space for other use, you can hide the status
bar entirely. Use this UIApplication call: [UIApplication sharedApplication]
setStatusBarHidden:YES animated:NO].Alternatively, set the UIStatusBarHidden key
to <true/> in your application Info.plist file.

With the status bar displayed, your application has 320x460 pixels to work with in por-
trait mode, and 480x300 pixels in landscape mode for the standard iPhone.These numbers
change depending on whatever other elements you add into the interface such as naviga-
tion bars, tab bars, and so forth.And as already mentioned, the standard iPhone pixel di-
mensions may change over time as Apple releases new models and new related
touch-based products that run iPhone OS.

The status bar plays a role in both landscape and portrait orientations, adjusting to fit
as needed.To run your application in landscape-only mode, set the status bar orientation
to landscape. Do this even if you plan to hide the status bar (that is, [[UIApplication
sharedApplication] setStatusBarOrientation: UIInterfaceOrientation

LandscapeRight]).Alternatively, set UIInterfaceOrientation in your Info.plist to the
string UIInterfaceOrientationLandscapeLeft or UIInterfaeOrientationLandscapeRight.
These options force windows to display side to side and produce a proper landscape key-
board.

ptg

153View Design Geometry

Note
Use Hardware > Toggle In Call Status Bar to test your interfaces in the simulator using the
40-pixel-high status bar.

Navigation Bars, Toolbars, and Tab Bars
By default, UINavigationBar objects (see Figure 4-2) are 44 pixels in height in portrait
mode and 32 pixels high in landscape.They stretch from one side of the screen to the
other, so their full dimensions are 320x44 pixels and 480x32 pixels.

Figure 4-2 Navigation bars stretch from one side of the
screen to the other. Their height is fixed at 44 pixels for
portrait mode and 32 pixels for landscape on the stan-

dard iPhone. The rarely used prompt feature shown in the
bottom two images zoom the bar to 74 pixels high.

Navigation bars offer a seldom-used “prompt” mode that extends the height by 30 pixels.
In portrait mode, the bar occupies 320x74 pixels and in landscape, 480x74, using a
44 pixel high navigation bar rather than the normal 32 pixel high version.

Note
To add a prompt to a navigation bar, edit the view controller’s navigation item, that is,
self.navigationItem.prompt = @”Please click a button now”;.

Tab bars are 48 pixels high in both orientations, 320x48 pixels and 480x48 pixels.Accord-
ing to Apple, the individual items on tab bars should be designed with a minimum 44x44
hit region to provide sufficient space for users to tap.That corresponds to individual art of
about 30x30 pixels.

Figure 4-3 shows a typical tab bar and its near-cousin class, the toolbar.Toolbars use the
same 44 pixel spacing as navigation bars but, like tab bars, they’re meant to be displayed at
the bottom of the screen.

ptg

154 Chapter 4 Designing Interfaces

Figure 4-4 Both the portrait and landscape keyboards
occupy a large part of the iPhone screen. Design your ap-

plications accordingly.

These two UI elements aren’t generally meant for landscape mode use.You can see this with
both the iPod and YouTube applications.These apps swap out a toolbar-based portrait view for
a completely separate landscape presentation:Coverflow for iPod,movies for YouTube.

Between status bars, navigation bars, tab bars, and toolbars, you need to apply some basic
math to calculate the remaining proportions available to background design.A typical appli-
cation with a navigation bar and status bar leaves a central area of 320x416 for portrait dis-
play and 480x268 for landscape. Using tab bars or toolbars effectively diminishes the available
height by another 48 or 44 pixels and the resulting proportions change accordingly.

Keyboards and Pickers
The standard iPhone keyboard uses 320x216 pixels for landscape presentation and
480x162 for portrait. Figure 4-4 shows the keyboard in its default configuration in both
its orientations.When a text element becomes active in your application, the keyboard
displays over any elements at the bottom of the screen leaving a shortened space at the top
for interaction. Complex keyboard layouts may use even more onscreen room.

Figure 4-3 Tab bars are 48 pixels high for
320x480-pixel iPhone units (top). Toolbars use the

same 44-pixel spacing as navigation bars.

ptg

155Building Interfaces

As a rule, resize your main view when the keyboard displays.When you have several on-
screen elements to edit, a shortened scrolling view works best.This lets your users access
all possible areas by scrolling and won’t leave text fields or text views hidden behind the
keyboard. Change the background view’s frame, shortening it by 216 or 162 pixels, de-
pending on orientation.

Make sure you provide a way for the user to dismiss the keyboard, by pressing the Re-
turn key or tapping a Done button, to make sure you can return to your normal display.
Don’t leave users caught with the keyboard displayed. See Chapter 9,“Building and Using
Controls,” for a discussion about dismissing keyboards for more details.

Note
Both the UIPickerView and UIDatePicker use the same geometry as the standard Key-
board. UISwitches default to 94 by 28 pixels, and UISegmentedControls are typically 44
pixels high in their standard text-based form.

Text Fields
When working with UITextField instances, allocate at least 30 pixels in height.This al-
lows users enough room to enter text using the default font size without clipping.

The UIScreen Class
The UIScreen object acts as a stand-in for the iPhone’s physical screen, which you can ac-
cess via [UIScreen mainScreen].This object maps standard window layout boundaries
into pixel space. It takes into account any toolbars, status bars, and navigation bars in use.

To recover the size of the entire screen, use[[UIScreen mainScreen] bounds].This
returns a rectangle defining the full pixel size of the iPhone’s screen.As mentioned earlier
in this chapter, the iPhone screen may not always be 320x480 pixels in size should Apple
introduce new units.

Another method call returns the central application space. Call [[UIScreen
mainScreen] applicationFrame] to query this value. On a first or second generation
unit, for an application that uses a status bar and a navigation bar, this might return a size
of 320x416 pixels, taking into account the 20-pixel status bar and 44-pixel navigation bar.

Use these numbers to calculate the available space on your iPhone screen and lay out
your application views when not using Interface Builder.

Building Interfaces
There’s more than one way to build an interface.With the iPhone SDK, you can build a
GUI by hand using Objective-C, or you can lay it out visually in Interface Builder.When
coding, you programmatically specify where each element appears onscreen and how it
behaves.With Interface Builder, you lay out those same elements using a visual editor.

ptg

156 Chapter 4 Designing Interfaces

Note
Make sure that you have worked through the Hello World examples in Chapter 2, “Building
Your First Project,” so you have a starting off point for understanding Xcode and Interface
Builder. The samples in this chapter go into greater depth but assume you’ve already
learned some of the basic vocabulary for using these tools.

Create a New Project
Launch Xcode and create a new project. Choose File > New Project > iPhone OS > Ap-
plication > Navigation-based Application and click Choose. Name it HelloWorld and save
it to your Desktop. Once created, a new project window opens in Xcode.This new proj-
ect contains two .xib files, MainWindow.xib and RootViewController.xib, as well as
classes for your application delegate and the root view controller.

Any time you use a navigation-style project, you must assign it a root view controller.
This is the view controller that lives at the top of the navigation tree.All other view con-
trollers branch out from this one.The name of the .xib file and its class reflect this design
necessity.

Both approaches offer benefits.As a developer, it’s up to you to decide how to balance
these benefits.

In the end, both technologies take you to the same place.The code used in Objective-
C corresponds directly to the layout used in Interface Builder, and the callback behavior
set up in Interface Builder produces identical results to those designed in Objective-C.

Yes, the implementation details differ.A hand-built version uses loadView to create the
main view and add its interface elements. In contrast, an xib-based view controller fin-
ishes setting itself up in viewDidLoad after loading the prebuilt interface from a .xib file.
Cocoa Touch supports both these approaches, plus you can use a hybrid approach, loading
.xib files via direct Objective-C commands.

The next few sections show you various ways to use these tools.You walk through a
full IB approach and then a full Xcode one.After, you’ll find two further hybrid solu-
tions.All four of these walk-throughs produce identical end products offering identical
functionality.

Walk-Through: Building a Temperature Converter
with IB
Interface Builder, with its interactive GUI layout tools, helps lay out visual content. It
makes it possible for you to add interactive controls, moving them around the screen by
hand to design custom interfaces.This first example creates a classic Fahrenheit to Celsius
converter using absolutely standard Xcode/IB design templates.The interface is laid out
entirely in Interface Builder with a minimum of coding in Xcode.

ptg

157Walk-Through: Building a Temperature Converter with IB

Note
When you use a single asset in multiple projects, you can add that file without copying. This
maintains a single source version that you can update, and its changes are reflected in each
of the projects that use it. On the downside, if you remove the file from any project, you
might accidentally delete the original, which can affect multiple projects.

Add Media
Before moving forward, you need to add some basic media to the project. Copy the
icon.png and Default.png artwork—they’re in the sample code folder—to the project by
dropping them into the Resources group in the Groups & Files column. Make sure to
check Copy Items into Destination Group’s Folder (If Needed) before clicking Add.

Figure 4-5 The standard MainWindow.xib compo-
nents generated by Xcode’s Navigation Application.

These two items provide the image used for the application icon on the iPhone’s Spring-
Board (icon.png) and the image displayed as the application launches (Default.png). Each
application you build should contain art for these.The roles of these two items are dis-
cussed in further detail in Chapter 1,“Introducing the iPhone SDK.”

Next, add cover320x416.png in the same manner and add it to the Resources group.
This file provides a backsplash image, which you use in this project.The art is sized for a
portrait-style interface that uses a status bar and a navigation bar.

Interface Builder
Locate MainWindow.xib and double-click it to open the file in Interface Builder. Bring
the MainWindow.xib window to the front. It is listed in the Windows menu if you have
trouble finding it. Here, you find five items, as shown in Figure 4-5.The first two, File’s
Owner and First Responder, you saw in Chapter 2.The others, a Hello World application
delegate (labeled Hello World A...), the Window, and the navigation controller (labeled
Navigation Co...) are new.

ptg

158 Chapter 4 Designing Interfaces

Figure 4-6 The Navigation Controller loads its
root view controller from a secondary .xib file.

The identity inspector (Command-4) lets you explore the classes for each object. Click on
each object with the inspector open.The File’s Owner is a UIApplication instance, and
its delegate is the Hello World application delegate.This matches the design pattern previ-
ously discussed in Chapter 1.

The Window is a UIWindow instance.The window provides a full-screen view that
owns all application views once they are added.You will not work with this instance di-
rectly because it has already been set up to show the view contents defined by the naviga-
tion controller.

The role of the navigation controller is a little tricky.That’s because it provides a navi-
gation bar showing an optional title and maybe some buttons while another class provides
the actual interface elements below the bar. Every UINavigationController must be ini-
tialized with a single root view controller.That view controller provides the view that fills
the rest of the screen. Navigation controllers are discussed in greater detail later in this
chapter.

Double-click the navigation controller object and an editor window opens, as shown
in Figure 4-6.As you can see from this screenshot, the MainWindow .xib does not define
the root directly. Instead, it loads that view from RootViewController.xib, the second .xib
file that was created when you built the Navigation Application template.

ptg

159Walk-Through: Building a Temperature Converter with IB

In theory, loading that view controller from a secondary file lets you design compo-
nents orthogonally, designing the view separately from the window and navigation bar. (In
reality, this is not a universally loved feature of Interface Builder.) Open the Attributes
Inspector (Command-1). Here you see the pop-up that lets you choose a .xib to set
as the root view controller. Do not change the selection, as you have no other
UIViewController .xib items to choose from.

Edit the Navigation Bar
Return to the editor shown in Figure 4-6, and make the following changes. First
double-click the middle of the blue bar and type the word “Converter.”This adds a
title to your navigation bar. Second, drag a bar button item from the library (Tools >
Library, Command-Shift-L) onto the right side of the bar. Double-click and change
the word “Item” to “Convert.” Figure 4-7 shows the bar after performing these
actions.

Figure 4-7 You can edit the navigation controller
bar directly and add buttons to it.

Replace the Main View
When using standard templates, sometimes Apple doesn’t quite deliver what you really
need.To see this problem in action, open RootViewController.xib in Interface Builder.
This file includes a File’s Owner, a First Responder, and a Table View. Xcode’s default
Navigation Application project assumes you will use a table view controller, but this walk-
through requires a UIViewController instead. Quit IB.You’re about to replace the table-
based controller with a view-based one.

In Xcode, select RootViewController.xib, RootViewController.h, and RootViewCon-
troller.m. Delete these files by pressing Delete on your keyboard. Choose Also Move to
Trash.This eliminates the table-based defaults you started with.

Choose File > New (Command-N) > iPhone OS > Cocoa Touch Class > UIView-
Controller subclass. Check With XIB for User Interface and click Next. Name the file
RootViewController.m, check Also Create Root View Controller.h, set the location to
your main project folder, and click Finish.This builds a new view-based version of the

ptg

160 Chapter 4 Designing Interfaces

Enable Simulated Elements
Locate the new RootViewController.xib file and double-click it to open it in IB. In
Interface Builder, double-clickView.This opens the view editor, which starts as basically
a blank view, possibly with a status bar. Before going any further, you need to add a
simulated element; this ensures that the design space matches the components that show
onscreen.

Open the attributes inspector (Command-1).The status bar should already be selected
as Gray. If it is not, go ahead and do so.Then choose Top Bar > Navigation Bar.This adds
a basic navigation bar placeholder to the view. Leave the bottom bar unselected.These
simulated elements block off parts of the screen, limiting your design space to the remain-
ing area.

Create an Image Backdrop
Drag an image view into the editor. It automatically zooms to fill all available space in the
view below the navigation bar. Let the image view automatically snap into place and
completely cover that below-bar area.

In the attributes inspector, locate the Image drop-down. Choose cover320x416.png.
This drop-down lists all available art from your Xcode project. (To add more images, drop
them into the project in Xcode.) After selecting the png image, the editor’s image view
updates to show the art you chose.

Remaining in the attributes inspector, check Interaction > User Interaction Enabled.
This is a vital step, allowing users to interact with any subviews.Whenever you use an im-
age backdrop, always be sure to enable interactions.This little “gotcha” frequently snags
developers who forget.

Add Labels and Views
Drag two text fields and two labels into the view from the library. Set up these elements
to roughly match the layout in Figure 4-8.Then double-click the labels and edit the text,
labeling the top one Fahrenheit and the bottom Celsius.

Note
I use navigation controller-based projects often enough that I created my own template
rather than fix up the table-based version each time. Directions for building your own Xcode
user templates appear in Chapter 2.

three RootViewController files you need for the project: the .xib file, the .h header file,
and the .m implementation file.At this point, you may want to drag the new class files
into the Classes group and the new .xib file into the Resources group.

ptg

161Walk-Through: Building a Temperature Converter with IB

It’s important to specify how you want each text field to interact with users.Among other
features, you can choose which keyboard to display, whether a prompt appears in the text
box, whether words are autocorrected, autocapitalized, and so forth.

Select the top text field. In the attributes inspector, choose Text Input Traits > Key-
board > Numbers & Punctuation.This ensures that a numeric keyboard is presented
when the user taps the top field.

Select the bottom field. Uncheck Control > Content > Enabled.The bottom field
shows results and should not be editable by users.

Note
As you add more elements to your Interface Builder view, it becomes difficult to select the
correct one by clicking on it. One handy tip is to Control+Shift+click on any view in an Inter-
face Builder edit window to display a list of all views stacked at that point. You can choose
an item from that list to select it.

Test the Interface
Save your changes and return to Xcode. Choose Project > Set Active SDK > iPhone
Simulator, and then Run > Run to compile the project as-is and run it in the simulator.
While running, make sure that the top field opens a numbers-based keyboard and that the
bottom field cannot be edited.You can click on the Convert button, but it does not do
anything yet. So long as your project can be compiled, you can always check your current
progress in the simulator and/or on a device.

Although you can test an interface directly in Interface Builder (use File > Simulate In-
terface, Command-R), the IB implementation is far less reliable than actual Xcode testing.

Figure 4-8 Lay out your text fields and labels to
match this design.

ptg

162 Chapter 4 Designing Interfaces

Figure 4-9 Use the Library’s Classes pane to add outlets and actions to
your classes.

Add Outlets and an Action
Outlets and actions play important roles in Interface Builder design. Outlets connect inter-
faces to objects; they essentially act as instance variable stand-ins.Actions are methods that
your IB-created interfaces can invoke.They specify target/action pairs, sending callbacks from
control views to objects. For this project you need to create two outlets and one action.

Return to Interface Builder and open the Library > Classes pane.Type RootViewCon-
troller into the search field at the bottom of the pane.Then tap on RootViewController in
the search results and click the Outlets tab.Add two outlets by clicking the + button. Name
them field1 and field2. By default, the outlets are typed to id. Edit each type to change
id to UITextField.Typing limits how outlets can connect to view objects.When typed to
UITextField, the outlets can connect to the two fields you placed in the view but not, for
example, to the labels.

Next, add an action, again using +. Edit the default action name to convert:, making
sure to add the colon. Figure 4-9 shows the Library pane after making these changes.

Interface Builder can generate class files from the action and outlet changes you made.
Save the project, select File’s Owner, and choose File > Write Class Files. Keep the file-
name as RootViewController (no extensions) and save into your main folder, not the
Classes subfolder.When you re-created RootViewController, both the .xib file and the
class files were added to the main project folder. Click Replace to replace those files.
Take note that this action could cause data loss if you’ve already customized the
RootViewController class and then use IB to overwrite those changes.

ptg

163Walk-Through: Building a Temperature Converter with IB

Figure 4-10 Empty circles indicate outlets and
actions that have yet to be connected to real world

objects.

Note
Interface Builder can read class header files from Xcode (File > Read Class Files), or you can
drop header files into your IB document. This lets you add instances of custom classes and
assign objects to those classes with the identity inspector. If your .xib file “forgets” which
class the file owner belongs to (usually indicated by a warning about the view outlet being
connected but no longer defined), just reimport the custom view controller class header.

Inspect the New Class Header
Return to Xcode and open RootViewController.h.The newly generated class interface
includes the outlets and action you defined in IB. Both field1 and field2 are typed, as
you requested, as UITextField instances and they are declared using the IBOutlet key-
word.This keyword specifies that the instance variable will be set to match an IB element
when the view controller loads.The single convert action is typed to IBAction, which is
basically the same as (void).

@interface RootViewController : UIViewController {

IBOutlet UITextField *field1;

IBOutlet UITextField *field2;

}

- (IBAction)convert:(id)sender;

@end

Although you have now defined these two outlets and the action in your
RootViewController class, you have not made any assignments that would connect these
to elements in your view object. It’s time to do so.

Add Your Connections
Return to IB, select File’s Owner, and open the connections inspector (Command-2).
This inspector (shown in Figure 4-10) lists each available outlet and action.The empty
circles on the right show that the three elements you added have not yet been assigned.

ptg

164 Chapter 4 Designing Interfaces

Figure 4-11 Dragging from the bar button item
to the central view allows you to connect the button

action to a method defined by the view’s view
controller.

Drag from the field1 circle to the top text field.Then drag from the field2 circle to the
bottom text field.These connections define the real objects that each IBOutlet refers to.
Save your work.

Open MainWindow.xib. Double-click Navigation Controller to open the editor win-
dow shown in Figure 4-6.While holding down the Control key, drag from the Convert
button to the view in the middle.The Control-drag shortcut creates connections in the
same way as dragging from the circles shown in Figure 4-10.When the central view turns
slightly darker, release the mouse.A Sent Actions pop-up appears, as shown in Figure 4-
11. Select convert:, the only available action currently defined by the RootViewCon-
troller. Save.

Note
Control-click (right-click) objects to open a pop-up showing many of the same details that nor-
mally display in the connections inspector.

It may seem counterintuitive to connect a button’s action to a view, when the actual
method being called is defined by the view’s view controller and not by the view itself. It
may also seem odd to connect a button in one .xib file to an object that’s defined in an-
other.These are, unfortunately, Interface Builder quirks that must be lived with.

ptg

165Walk-Through: Building a Temperature Converter with IB

Figure 4-12 To edit the navigation bar’s tint
color, you must navigate down to items not directly

available in the editor window.

Capture Purple
The design for this project specifies a navigation bar that is tinted to match the art in the
backsplash.To make this happen, you must capture the right shade of purple. Return to
RootViewController.xib and open theView editor, which displays the
cover320x416.png art.

Open the Color Inspector (Font > Show Colors). Click the magnifying glass and drag
it over to the purple bar in the View art and click.This measures the purple from that
view and sets it as the current color for the color inspector.

Close RootViewController.xib and return to MainWindow.xib. In the project win-
dow, locate the view-mode options at the top-left of the window, above the File’s Owner
icon. Click the middle of these three view mode buttons.The window switches from icon
display to a list.

Open the disclosure triangle to the left of Navigation Controller and select Navigation
Bar, as shown in Figure 4-12.

With Navigation Bar selected, open the attributes inspector (Command-1). Make sure the
View from RootViewController.xib is visible onscreen. Drag the purple you sampled
from the top bar of the Colors palette into the tint well of the attributes inspector. Save
the file and close MainWindow.xib.

Defining the Conversion Method
Your project is now fully laid out and wired.The outlets are connected to the text field,
the button to the convert: action.That action, however, does not yet do anything. Re-
turn to Xcode and open RootViewController.m.The method is still just a skeleton that
does nothing.

@implementation RootViewController

- (IBAction) convert: (id) sender {

ptg

166 Chapter 4 Designing Interfaces

}

@end

For this project, the method should recover any text typed into the top field, convert it to
a float value, and then transform it from a Fahrenheit value to a Celsius one.The resulting
value gets placed into the second field.The following method does exactly that.What’s
more, it dismisses the keyboard after performing the conversion by calling
resignFirstResponder.Add this full method to your code, and save.

- (IBAction) convert: (id) sender

{

float invalue = [[field1 text] floatValue];

float outvalue = (invalue - 32.0f) * 5.0f / 9.0f;

[field2 setText:[NSString stringWithFormat:@”%3.2f”, outvalue]];

[field2 resignFirstResponder];

}

Run the Application
Now that you have fully edited your project, once again, run the program with Run >
Run.The program now converts Fahrenheit values into Celsius.Test with values of 32 (0
Celsius), 98.6 (37 Celsius), and 212 (100 Celsius).

Walk-Through: Building a Converter Interface by
Hand
Anything that can be designed in Interface Builder can be implemented directly using
Objective-C and Cocoa Touch.The code in Listing 4-1 duplicates the sample project you
just built. Instead of loading an interface from a .xib file, it manually lays out the elements
in the loadView method.

The code takes the same approach in doing so. First after creating a background view
(corresponding toView in the IB project), it adds an image view on top.The image
view uses the same art (cover320x416.png) and, as in IB, has its userInteractionEnabled
flag set toYES.

Next, it adds two labels and two text fields. It sets the label texts to Fahrenheit and
Celsius, tells the first field to use a numbers and punctuation keyboard, and disables the
second.The locations and sizes for these items use view frames derived from the previous
walk-through.

To finish the layout, the code tints the navigation bar purple and adds a Convert but-
ton.The button uses the same convert: callback as the IB project and calls the same code.

ptg

167Walk-Through: Building a Converter Interface by Hand

Listing 4-1 Code-Based Temperature Converter

#import <UIKit/UIKit.h>

#define COOKBOOK_PURPLE_COLOR [UIColor colorWithRed:0.20392f ➥
green:0.19607f blue:0.61176f alpha:1.0f]

#define BARBUTTON(TITLE, SELECTOR) [[[UIBarButtonItem alloc]➥

initWithTitle:TITLE style:UIBarButtonItemStylePlain target:self action:SELECTOR]➥
autorelease]

@interface HelloWorldController : UIViewController {

UITextField *field1;

UITextField *field2;

}

-(void) convert: (id)sender;

@end

@implementation HelloWorldController

- (void) convert: (id) sender

{

float invalue = [[field1 text] floatValue];

float outvalue = (invalue - 32.0f) * 5.0f / 9.0f;

[field2 setText:[NSString stringWithFormat:@"%3.2f", outvalue]];

[field1 resignFirstResponder];

}

- (void)loadView

{

UIView *contentView = [[UIView alloc] initWithFrame:

[[UIScreen mainScreen] applicationFrame]];

self.view = contentView;

contentView.backgroundColor = [UIColor whiteColor];

[contentView release];

UIImageView *iv = [[UIImageView alloc] initWithImage:

[UIImage imageNamed:@"cover320x416.png"]];

[self.view addSubview:iv];

iv.userInteractionEnabled = YES;

field1 = [[UITextField alloc] initWithFrame:

CGRectMake(185.0, 31.0, 97.0, 31.0)];

field1.borderStyle = UITextBorderStyleRoundedRect;

field1.keyboardType = UIKeyboardTypeNumbersAndPunctuation;

field1.contentVerticalAlignment =

UIControlContentVerticalAlignmentCenter;

field2 = [[UITextField alloc] initWithFrame:

CGRectMake(185.0, 97.0, 97.0, 31.0)];

field2.borderStyle = UITextBorderStyleRoundedRect;

ptg

168 Chapter 4 Designing Interfaces

field2.enabled = NO;

field2.contentVerticalAlignment =

UIControlContentVerticalAlignmentCenter;

UILabel *label1 = [[UILabel alloc] initWithFrame:

CGRectMake(95.0, 34.0, 82.0, 21.0)];

label1.text = @”Fahrenheit”;

label1.textAlignment = UITextAlignmentLeft;

label1.textColor = [UIColor colorWithRed:0.000 green:0.000

blue:0.000 alpha:1.000];

label1.backgroundColor = [UIColor clearColor];

UILabel *label2 = [[UILabel alloc] initWithFrame:CGRectMake(121.0,

102.0, 56.0, 21.0)];

label2.text = @"Celsius";

label2.textAlignment = UITextAlignmentLeft;

label2.textColor = [UIColor colorWithRed:0.000 green:0.000

blue:0.000 alpha:1.000];

label2.backgroundColor = [UIColor clearColor];

[iv addSubview:field1];

[iv addSubview:field2];

[iv addSubview:label1];

[iv addSubview:label2];

[field1 release];

[field2 release];

[label1 release];

[label2 release];

[iv release];

self.title = @"Converter";

self.navigationItem.rightBarButtonItem = BARBUTTON(@"Convert",

@selector(convert:));

self.navigationController.navigationBar.tintColor =

COOKBOOK_PURPLE_COLOR;

}

@end

@interface TestBedAppDelegate : NSObject <UIApplicationDelegate>

@end

@implementation TestBedAppDelegate

- (void)applicationDidFinishLaunching:(UIApplication *)application {

UIWindow *window = [[UIWindow alloc] initWithFrame:

[[UIScreen mainScreen] bounds]];

Listing 4-1 Continued

ptg

169Walk-Through: Creating a Hybrid Converter

UINavigationController *nav = [[UINavigationController alloc]

initWithRootViewController:[[HelloWorldController alloc]

init]];

[window addSubview:nav.view];

[window makeKeyAndVisible];

}

@end

int main(int argc, char *argv[])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

int retVal = UIApplicationMain(argc, argv, nil,

@"TestBedAppDelegate");

[pool release];

return retVal;

}

Putting the Project Together
Building this project means adapting one of Xcode’s built-in templates. Start by selecting
File > New Project (Command-Shift-N) > iPhone OS > Application >Window-based
Application. Click Choose. Name the new project HelloWorld2 and save it to the Desktop.

This template-based project demands a little file bookkeeping. Delete
MainWindow.xib, and choose Also Move to Trash. Next, open HelloWorld-Info.plist. Lo-
cate the line that says “Main nib file base name”. Delete this and save your change.This
removes the project’s dependency on an xib-based interface.

Similarly, locate the Classes group. Delete this group including the two source files
contained within. Choose Also Move to Trash.This removes the code associated with the
original .xib file, leaving you free to introduce your own code.

As with the previous walk-through Copy in the three image files from the sample
code: icon.png, Default.png, and cover320x416.png. Make sure to check Copy Items into
Destination Group’s Folder (If Needed) before clicking Add. Move these files to the Re-
sources group in your project.

To finish, open the main.m file, paste in the code from Listing 4-1 (it’s in the sample code
folder), compile the project and run it in the simulator.What you’ll find is an application that
both looks and acts identical to the IB version. Instead of loading the interface from a .xib
file, this version creates it programmatically in the view controller class implementation.

Walk-Through: Creating a Hybrid Converter
One of the great things about Cocoa Touch is that you don’t have to program entirely by
hand or entirely using Interface Builder.You can leverage IB’s visual layout and combine it
with Xcode-based programming for a better, hybrid solution.This combines the static

Listing 4-1 Continued

ptg

170 Chapter 4 Designing Interfaces

loading of .xib files provided by IB with a more reusable programmatic dynamic loading
approach.You can use one of two approaches. Either create entire IB-centered
UIViewController-based classes or code your own view controller class and load an IB-
designed UIView.This walk-through shows you the former; the next walk-through de-
scribes the latter.

Whenever Xcode finds a .xib file whose name matches a class derived from
UIViewController, it automatically loads that .xib when initializing an instance. For ex-
ample, say you create a new navigation controller and initialize its root view controller as
follows:

UINavigationController *nav = [[UINavigationController alloc]
➥initWithRootViewController:[[RootViewController alloc] init]];

When a file named RootViewController.xib is included in the project, Xcode uses that
.xib to set up the view controller’s view.The actual name of the view controller class does
not matter.What matters is that that name has a matching .xib file.This walk-through uses
this behavior to initialize an interface.

Clean Up a Basic Template
As with the previous project, you need to adapt a built-in template to get started. Select
File > New Project (Command-Shift-N) > iPhone OS > Application >Window-based
Application. Click Choose. Name the new project HelloWorld3 and save it to the Desktop.

Delete MainWindow.xib, and choose Also Move to Trash. Open HelloWorld-Info.plist.
Locate the line that says “Main nib file base name”. Delete this and save your change. In
the project window, locate the Classses group and delete it, including the two source files
contained within. Choose Also Move to Trash.

Finally, copy in the three image files from the sample code: icon.png, Default.png, and
cover320x416.png. Make sure to check Copy Items into Destination Group’s Folder (If
Needed) before clicking Add. Move these files to the Resources group in your project.

Add a New View Controller Class with .xib
In Xcode, choose File > New (Command-N) > iPhone OS > Cocoa Touch Class >
UIViewController subclass. Check With XIB for User Interface and click Next. Name
the file RootViewController.m, check Also Create Root View Controller.h, set the loca-
tion to your main project folder, and click Finish.

The class name is arbitrary. I use RootViewController here because it describes the
role of the view controller, and it matches the name used in the previous walk-throughs.

Design the Interface
As you did with the first walk-through, locate the new RootViewController.xib file and
double-click it to open it in IB. In Interface Builder, double-click View to open the view
editor, and then perform the following steps:

1. With View selected, open the attributes inspector (Command-1), and choose Top
Bar > Navigation Bar.

ptg

171Walk-Through: Creating a Hybrid Converter

2. Drag an image view into the editor. Let it snap to fill the view below the naviga-
tion bar.

3. In the attributes inspector, set the Image drop-down to Choose cover320x416.png.
Also check Interaction > User Interaction Enabled.

4. Drag two text fields and two labels into the view from the library.As before, set up
these elements to roughly match the layout in Figure 4-8.

5. Select the top text field. In the attributes inspector, choose Text Input Traits > Key-
board > Numbers & Punctuation.

6. Select the bottom field. Uncheck Control > Content > Enabled.

7. Open the Library (Command-Shift-L). Search for and select the RootViewCon-
troller class and then click Outlets.Add two outlets by clicking the + button. Name
them field1 and field2. Edit each type to change id to UITextField.

8. Click Actions and add an action, again using +. Edit the default action name to
convert:, making sure to add the colon.

9. Open the connections inspector (Command-2). Drag from the field1 circle to the
top text field.Then drag from the field2 circle to the bottom text field.

10. Save the project with your changes.

11. Select File’s Owner, and choose File > Write Class Files. Keep the file name as
RootViewController (no extensions) and save into your main folder.Agree to re-
place the existing files.

12. Close the RootViewController.xib file and return to Xcode.

Edit the View Controller Implementation
In Xcode, open RootViewController.m and replace the contents of that file with this
code.This code adds the convert: method used in the previous two walk-throughs but
also adds a new method called viewDidLoad.This method is called after the .xib loads
and gives the view controller a chance to finish any initialization details. Here it sets the
title (“Converter”), adds the navigation bar’s bar button item (“convert”), sets its callback
(convert:), and tints the bar purple.

#import "RootViewController.h"

#define COOKBOOK_PURPLE_COLOR [UIColor colorWithRed:0.20392f
➥green:0.19607f blue:0.61176f alpha:1.0f]

#define BARBUTTON(TITLE, SELECTOR) [[[UIBarButtonItem alloc] initWithTitle:TITLE
➥style:UIBarButtonItemStylePlain target:self action:SELECTOR] autorelease]

ptg

172 Chapter 4 Designing Interfaces

@implementation RootViewController

- (IBAction) convert: (id) sender

{

float invalue = [[field1 text] floatValue];

float outvalue = (invalue - 32.0f) * 5.0f / 9.0f;

[field2 setText:[NSString stringWithFormat:@"%3.2f", outvalue]];

[field1 resignFirstResponder];

}

- (void) viewDidLoad

{

self.title = @"Converter";

self.navigationItem.rightBarButtonItem = BARBUTTON(@"Convert",

@selector(convert:));

self.navigationController.navigationBar.tintColor =

COOKBOOK_PURPLE_COLOR;

}

@end

Edit main.m
As a final step edit main.m, replacing its contents with the following.This code sets up
the main window and navigation controller, and assigns a new instance of
RootViewController as the navigation controller’s root view controller.

#import <UIKit/UIKit.h>

#import "RootViewController.h"

@interface HelloWorldAppDelegate : NSObject <UIApplicationDelegate>

@end

@implementation HelloWorldAppDelegate

- (void)applicationDidFinishLaunching:(UIApplication *)application {

UIWindow *window = [[UIWindow alloc] initWithFrame:

[[UIScreen mainScreen] bounds]];

UINavigationController *nav = [[UINavigationController alloc]

initWithRootViewController:[[RootViewController alloc] init]];

[window addSubview:nav.view];

[window makeKeyAndVisible];

}

@end

int main(int argc, char *argv[])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

int retVal = UIApplicationMain(argc, argv, nil,

@"HelloWorldAppDelegate");

ptg

173Walk-Through: Loading .xib Files Directly from Code

[pool release];

return retVal;

}

Run the Application
Now that you have fully edited your project, once again, run the program with Run >
Run.The compiled application loads its interface from the .xib file. Once loaded, it final-
izes the details regarding the navigation bar, its button, its title, and its tint.The applica-
tion’s look and behavior remains identical to those built in the previous walk-throughs.

Walk-Through: Loading .xib Files Directly from Code
Cocoa Touch lets you recover objects from any .xib file by calling loadNibNamed:
owner: options:.This returns an array of objects initialized from the .xib bundle, which
you can then grab and use in your program. In this walk-through, you use this feature to
load an IB-designed interface from an otherwise hand-built application.To get started,
copy the project from the second walk-through, the one built entirely by code.You adapt
this hand-built code to use a xib-designed view.

The view you use is from the first project. Copy the RootViewController.xib file from
that project and add it into your new project folder.This .xib file contains the original lay-
out, with the image view backsplash, the two text fields, and so on. Rename the file to
mainview.xib.This renaming is important because you need to use a .xib file whose name
does not match the name of the primary view controller class. If you forget, the applica-
tion attempts to load that view causing all kinds of runtime misery.

Open the project in Xcode and drop the copied mainview.xib file from the folder into
the project.You can leave the Copy check box checked although it is not needed here; the
file is already in the folder. Click Add.

Clean Up the .xib
Open mainview.xib in Interface Builder. Here you perform a few maintenance tasks that
allow the .xib file to load properly from loadView, and allow you to access subviews that
normally would be assigned to IBOutlet instance variables.

Tagging views assigns numbers to them.All view classes provide a tag field.Tags are in-
tegers that you can utilize to identify view instances.You choose what number to use. Se-
lect the top text field, open the attributes inspector (Command-1), and edit the View >
Tag field to 101. (You may have to scroll down to find this field.) Select the bottom field
and edit its tag field to 102. Once tagged, you can retrieve views from a parent view by
calling viewWithTag:.

Remove any previous connections set up in Interface Builder. Select the File’s Owner
and open the connections inspector (Command-2). Delete all the connections (there are
three) by clicking the small X on each. Save and close the .xib file.This ensures that your
application does not attempt to make any outlet or action connections at compile time.

ptg

174 Chapter 4 Designing Interfaces

Update loadView
Open main.m and replace the loadView method with the following code.This code loads
a view from a .xib file and assigns it as the main view for the view controller.This ap-
proach relies on the fact that there is just one actual view object in that .xib. For this .xib
that is the main UIView that is named View in Interface Builder. Neither the File’s Owner
nor First Responder is a view.

- (void)loadView

{

self.view = [[[NSBundle mainBundle] loadNibNamed:@"mainview"

owner:self options:NULL] lastObject];

field1 = (UITextField *)[self.view viewWithTag:101];

field2 = (UITextField *)[self.view viewWithTag:102];

self.title = @"Converter";

self.navigationItem.rightBarButtonItem = BARBUTTON(@"Convert",
@selector(convert:));

self.navigationController.navigationBar.tintColor =

COOKBOOK_PURPLE_COLOR;

}

More complicated .xib files may include several view objects.When loading views
from .xibs, you may want to use tagging and class confirmation to check which object is
which, ensuring you retrieve the correct object from the returned array.

Note
The order of the items in the .xib file array mirrors the order of the items in Interface
Builder’s project window. Since this .xib contains exactly one top-level item, the code could
just as easily use objectAtIndex:0 as lastObject.

Objects from a .xib file are created with a retain count of 1 and autoreleased.When load-
ing items directly from a .xib file, you must retain any objects from within the returned
array that you need to stick around. Using the self.view setter automatically retains a
view. Be aware that the default memory warning logic for view controllers relies on re-
leasing and setting to nil all views that are not displayed at that moment.This effectively
disposes any .xib files from memory.

Designing for Rotation
On the iPhone, device orientation changes are a fact of life. How you decide your appli-
cation should respond to those changes presents a common design challenge. Do you re-
size onscreen elements, letting them grow and shrink in place like Safari does? Do you
move them to new locations to accommodate the different view proportions? Or do you
present an entirely different view, like the YouTube and iPod/Music apps do? Each of
these choices presents a possible design solution.The one you pick depends on your appli-
cation’s needs and the visual elements in play.

ptg

175Enabling Reorientation

The following sections explore these design approaches.You learn about autosizing and
manual view placement as well as view swapping approaches.Apple has indicated it will
eventually support separate landscape and portrait views in the SDK.At the time of writ-
ing, this functionality has not yet been implemented.

Enabling Reorientation
UIViewController instances decide whether to respond to iPhone orientation by imple-
menting the optional shouldAutorotateToInterfaceOrientation: method.This
method returns eitherYES or NO, depending on whether you want to support autorota-
tion to a given orientation.To allow autorotation to all possible orientations, simply re-
turnYES.

- (BOOL)shouldAutorotateToInterfaceOrientation:

(UIInterfaceOrientation)interfaceOrientation

{

return YES;

}

Possible iPhone orientations passed to this method include

n UIDeviceOrientationUnknown

n UIDeviceOrientationPortrait

n UIDeviceOrientationPortraitUpsideDown

n UIDeviceOrientationLandscapeLeft

n UIDeviceOrientationLandscapeRight

n UIDeviceOrientationFaceUp

n UIDeviceOrientationFaceDown

Of these orientations, only the portrait and landscape varieties influence how a view au-
torotates. If your application is portrait only or landscape only, it might allow flipping be-
tween the two available orientations.This code uses the logical OR symbol “||” to
combine tests into a single return value.

- (BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation) interfaceOrientation

{

return ((interfaceOrientation == UIDeviceOrientationPortrait) ||

(interfaceOrientation ==

UIDeviceOrientationPortraitUpsideDown))

}

When returning YES, the view controller uses several flags to determine how the autoro-
tation takes place. For example, you might want to stretch subviews both horizontally and
vertically.

ptg

176 Chapter 4 Designing Interfaces

Figure 4-13 Interface Builder’s Autosizing pane
sets a view’s autoresizingMask.

contentView.autoresizesSubviews = YES;

contentView.autoresizingMask = (UIViewAutoresizingFlexibleWidth |

UIViewAutoresizingFlexibleHeight);

These flags correspond exactly to settings made available in Interface Builder’s size inspec-
tor (Command-3), which is discussed in the next section.

Autosizing
When you tilt the iPhone on its side in Safari, the browser view adjusts its proportions to
match the new orientation. It does this through autosizing.Autosizing adds rules to a view
telling it how to reshape itself. It can stretch, stay the same size, and/or be pinned a certain
distance from the edge of its parent.These properties can be set by hand in code or in In-
terface Builder’s size inspector (Command-3), which is shown in Figure 4-13.

This pane adjusts a view’s autosizing rules.The control consists of an inner square with
two double-arrowed lines and an outer square with four blunt-ended lines. Each item can
be set or unset via a click.When enabled, they appear in bright red; when disabled they
are dim red in color.

The four outer lines are called struts.They establish a fixed distance between a view and
its parent’s edge. Imagine setting a view at 40 pixels from the top and left of the super-
view. Enabling the top and left struts (as shown in Figure 4-13) fixes that view at that po-
sition. It basically pins the view in place.When you use a right or bottom strut, those
distances are also maintained.The view must either move or resize to stay the same pixel
distance from those sides.

The two inner lines are called springs.They control how a view resizes itself.The sam-
ple shown in Figure 4-13 has its horizontal spring set, allowing the view to resize hori-
zontally in proportion to the parent view’s size.

To allow a view to float, that is, to set it as both unpinned and without automatic resiz-
ing, unset all six struts and springs.This option is only available for subviews.The primary
view defined in Interface Builder must be set with both springs on.

If you prefer to set these traits by hand, the two properties involved are
autoresizesSubviews, a Boolean value that determines whether the view provides sub-
view resizing, and autoresizingMask, an integer composed of the following flags, which
are combined using the bitwise OR operator “|” to produce a value for the property.

ptg

177Autosizing

Figure 4-14 Setting view autosizing in Interface Builder.

n UIViewAutoresizingNone means the view does not resize.
n UIViewAutoresizingFlexibleLeftMargin,
UIViewAutoresizingFlexibleRightMargin,
UIViewAutoresizingFlexibleTopMargin, and
UIViewAutoresizingFlexibleBottomMargin allow a view to resize by expanding
or shrinking in the direction of a given margin without affecting the size of any
items inside.These correspond to the four struts of Interface Builder’s Autosizing
pane (refer to Figure 4-13) but act in the opposite way. In IB, struts fix the margins;
the flags allow flexible resizing along those margins.

n UIViewAutoresizingFlexibleWidth and UIViewAutoresizingFlexibleHeight

control whether a view shrinks or expands along with a view.These correspond di-
rectly with Interface Builder’s springs. Springs allow flexible resizing, as do these flags.

Autosizing Example
Consider the view shown in Figure 4-14. It consists of one main view and three subviews,
namely the title, a white background splash, and a small piece of art.These subviews repre-
sent three typical scenarios you’ll encounter while designing applications.The title wants
to stay in the same place and maintain its size regardless of orientation.The white splash
needs to stretch or shrink to match its parent’s geometry, and the butterfly art should float
within its parent.

ptg

178 Chapter 4 Designing Interfaces

Figure 4-15 This is the landscape version of the view
shown in Figure 4-14 using the described autosizing
choices. Click the arrow at the right of the title bar to

rotate the view in Interface Builder.

The autosizing behavior of each subview is set in the size inspector (Command-3).The
title requires only a single strut at the top.The splash needs to resize while maintaining its
distance from each edge. Setting all six struts and springs (shown in Figure 4-14) produces
this result.The art subview uses the opposite setting, with none of the six struts or springs
in use.

Test the view in its opposite orientation by clicking the small curved arrow at the top-
right of the view editor window. In Figure 4-14, this arrow appears just above the battery
indicator in the simulated status bar. Figure 4-15 shows the landscape version of this view
using these settings. Switching between portrait and landscape presentation helps preview
how your autoresizing choices work.

Note
The iPhone loads the last saved .xib orientation on launch. Make sure to return to the por-
trait view before saving your .xib file.

Evaluating the Autosize Option
Some iPhone classes work well with autosizing. Some do not. Large presentation-based
views provide the best results.Web views and text views autosize well.Their content eas-
ily adapts to the change in view shape.

Small controls, especially text fields, fare more poorly.These views are not naturally
elastic. Moving from landscape to portrait, or portrait to landscape, often leaves either too
much room or not enough room to accommodate the previous layout. For these views
you might place each item in a custom position rather than depend on autosizing.That’s

ptg

179Moving Views

Figure 4-16 Moving views allows you to adjust layouts after orientation changes.

not to say that autosize solutions cannot work for simple layouts just that as a general rule
more complex views with many subviews do not always lend themselves to autosizing.

Image views are another class that doesn’t work well with autosizing. Most pictures
need to maintain their original aspect ratios.A 320x480 image shown originally in por-
trait orientation must shrink to 213x320 for landscape.That leaves you with just 45% of
the portrait size. Consider swapping out art to a landscape-appropriate version rather than
trying to stretch or resize portrait-based originals.

When working with autosizing, always take the keyboard into account. If your main
view does not scroll or provide provisions for moving its views into accessible places, a
keyboard may hide some of the views it’s trying to service.Test your interfaces as you de-
sign them, both with Interface Builder’s flip button and in the simulator, to ensure that all
elements remain well placed and accessible.

Moving Views
If autosizing provides a practically no-work solution to orientation changes, moving
views offers a fix with higher-bookkeeping responsibilities.The idea works like this.
After a view controller finishes its orientation, it calls the delegate method
didRotateFromInterfaceOrientation:.You can implement a method that manually
moves each view into place, producing the kinds of results seen in Figure 4-16.As you
can see, this approach quickly gets tedious, especially when you are dealing with more
than four subviews at a time.

ptg

180 Chapter 4 Designing Interfaces

- (void)didRotateFromInterfaceOrientation:
(UIInterfaceOrientation) fromInterfaceOrientation

{

UIInterfaceOrientation orientation = [[UIDevice currentDevice]

orientation];

UILabel *flabel = (UILabel *) [self.view viewWithTag:11];

UILabel *clabel = (UILabel *) [self.view viewWithTag:12];

UITextField *ffield = (UITextField *) [self.view viewWithTag:101];

UITextField *cfield = (UITextField *) [self.view viewWithTag:102];

switch (orientation)

{

case UIInterfaceOrientationLandscapeLeft:

case UIInterfaceOrientationLandscapeRight:

{

flabel.center = CGPointMake(61,114);

clabel.center = CGPointMake(321, 114);

ffield.center = CGPointMake(184, 116);

cfield.center = CGPointMake(418, 116);

break;

}

case UIInterfaceOrientationPortrait:

case UIInterfaceOrientationPortraitUpsideDown:

{

flabel.center = CGPointMake(113, 121);

clabel.center = CGPointMake(139, 160);

ffield.center = CGPointMake(236, 123);

cfield.center = CGPointMake(236, 162);

break;

}

default:

break;

}

}

The big advantage of this moving-subviews approach over presenting two separate views
is that you maintain access to your original subviews.Any instance variables in your view
controller that point, say, to a text field, continue to do so regardless of where that field is
placed onscreen.The data structure of your view controller remains unchanged and inde-
pendent of location, which is very model-view-controller compliant.

Moving Views by Mimicking Templates
There’s a much simpler way to accomplish the same movement with less work. In Inter-
face Builder, duplicate your primary view twice. Edit those two copies to create landscape
and portrait versions using the same view elements. Since the views were copied from the

ptg

181Moving Views

Figure 4-17 Duplicating views in Interface Builder creates templates for moving
subviews.

original, all the subviews retain their original tags. Figure 4-17 shows what those views
might look like.

This example continues to use your original view and subviews after orientation changes.
(Please note that allSubviews() is defined in Recipe 6-2,“Subview Utility Functions.”)
What you do is use those extra two views as templates to determine where to place each
subview.You move objects into position based on matching the template.This approach
introduces two enormous advantages.You don’t hard-code locations, and you can adjust
the layouts in Interface Builder as needed.

- (void)didRotateFromInterfaceOrientation:
(UIInterfaceOrientation) fromInterfaceOrientation

{

UIView *template = nil;

ptg

182 Chapter 4 Designing Interfaces

switch ([[UIDevice currentDevice] orientation])

{

case UIInterfaceOrientationLandscapeLeft:

case UIInterfaceOrientationLandscapeRight:

{

template = landscapeTemplate;

break;

}

case UIInterfaceOrientationPortrait:

case UIInterfaceOrientationPortraitUpsideDown:

{

template = portraitTemplate;

break;

}

default:

break;

}

if (!template) return;

for (UIView *eachView in allSubviews(template))

{

int tag = eachView.tag;

if (tag < 10) continue;

printf(“About to move view %d\n”, tag);

[self.view viewWithTag:tag].frame = eachView.frame;

}

}

Here are a few points about this approach:

n This code ignores untagged views and tags with a value under 10.Apple rarely tags
views, but when it does so, it uses small numbers like 1, 2, and 3. Make sure to tag
your views starting with numbers from 10 and up.

n This example uses two instance variables (portraitTemplate and
landscapeTemplate) to provide immediate access to the templates.These are de-
fined as IBOutlets in the view controller header file and are connected via Inter-
face Builder.When the .xib loads, these two outlets are automatically set.

n If you decide to edit your portrait layout, do so in your original view in Interface
Builder. Discard the previous Portrait view and replace it with a copy of your ed-
ited View. Reconnect the outlet from the File’s Owner to the new Portrait view.
This ensures that your portrait and primary views remain identical in the .xib file.
Unfortunately, you cannot just use the main view as your portrait template. Once
rotated, it loses all memory of the proper portrait view positions.

ptg

183Swapping Views

Swapping Views
The iPod/Music application does not attempt to restructure its table when you flip the
iPhone into landscape. Instead it displays an entirely different view, namely a Coverflow
presentation of albums.To create your own swap, add two views into your view con-
troller’s .xib, one portrait and one landscape.Assign IBOutlets to each and, to start, set
your view controller’s view property to the portrait version.

In your view controller implementation, make sure to set the autoresizesSubviews
flag for each primary view to NO.This ensures that the view appears exactly as you laid it
out in Interface Builder. (If you want, you can amuse yourself by commenting out those
lines and performing a few flips in the simulator.The results are often startling.)

@implementation HelloWorldViewController

- (void)viewDidLoad

{

self.view.frame = [[UIScreen mainScreen] applicationFrame];

landscapeView.autoresizesSubviews = NO;

portraitView.autoresizesSubviews = NO;

}

When the view rotates to landscape or portrait, switch self.view to point to the proper
view.This code first checks for landscape and then uses else if and checks for portrait
orientations.This guards against matching unknown orientations and face up/face down
ones to the portrait view.

- (BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation) interfaceOrientation

{

if ((interfaceOrientation == UIInterfaceOrientationLandscapeLeft)

|| (interfaceOrientation == UIInterfaceOrientationLandscapeRight))

self.view = landscapeView;

else if ((interfaceOrientation == UIInterfaceOrientationPortrait)

|| (interfaceOrientation == UIInterfaceOrientationPortraitUpsideDown))

self.view = portraitView;

return YES;

}

@end

When run, this code responds to interface changes by reassigning the view controller’s
view property either to the landscape or the portrait version based on the new
orientation.

ptg

184 Chapter 4 Designing Interfaces

Figure 4-18 Shift-Control-click a view to pop up a view-
selection dialog.

One More Thing: A Half Dozen Great Interface
Builder Tips
It never hurts to have a few extra tricks up your sleeve when developing with Interface
Builder and Xcode. Here are six favorite IB tricks that I use on a regular basis:

n Selecting from stacked views—Figure 4-12 showed you how to drill down into
Interface Builder’s object hierarchy to reveal subviews.Another way to find and se-
lect subviews is by Control-Shift-clicking a view.This exposes all the views layered
at that point (see Figure 4-18) and lets you select whichever item you want, regard-
less of whether it is the top view.

n Naming views—Give your views names like the ones used in Figure 4-18 in the
identity inspector (Command-4). Edit the Interface Builder Identity > Name field.

n Pulling in media—Interface Builder’s library offers a Media tab, listing the media
currently available in your Xcode project (see Figure 4-19, left).You can drag art-
work from there and drop it onto a view. Interface Builder automatically creates a
new UIImageView instance, adding the art (as a UIImage) to that view.

n Adding custom guides—Interface Builder offers the same kind of layout guides
used in programs like Photoshop. Use the Layout menu to add horizontal and

ptg

185One More Thing: A Half Dozen Great Interface Builder Tips

a b

Figure 4-19 You can drag media from the Library into your IB projects (left). Custom guides
add attraction points for laying out views (right).

Figure 4-20 Holding the option key while moving the mouse over
views reveals how each view is placed in the view container.

vertical guides.As Figure 4-19 (right) shows, IB provides live position feedback as
you drag the guide into place, offering pixel-precise placement.

n Moving objects—When moving subviews, the arrow keys move you one pixel in
any direction. Hold down the Shift key to move by 5 pixels at a time.

n Show object layout—Hold down the option key and hover the mouse over any
object to reveal the pixel-accurate layout information shown in Figure 4-20.

ptg

186 Chapter 4 Designing Interfaces

Summary
This chapter introduced the basics of iPhone interface design.You discovered not one but
four ways to build interfaces: using Interface Builder, using Xcode, and blending the two
approaches.You saw reorientation in action and learned about different ways to update
your views to live in both portrait and landscape worlds.

Before moving on to the next chapter, here are a few points to consider about laying
out interfaces:

n Interface Builder excels at laying out the content of UIView instances. Use its tools
to connect those instances to the view controllers in your program and use Inter-
face Builder to refine WYSIWYG-style interfaces like the temperature converter
example covered in this chapter.

n Know when Interface Builder isn’t the right solution.When you’re building tab
bars and navigation controllers with minimal window design (such as for table-
based or text-based applications), you don’t especially need IB’s view layout tools.
When skipping IB, make sure to delete the .xib file from your project and remove
the Main NIB Window key from Info.plist.Also edit your main.m file to substitute
the application delegate class name for the fourth UIApplicationMain() argument.
Failing to do so produces an application that shows a black screen and provides no
further interaction.

n Some views work beautifully under multiple orientations. Some do not. Don’t feel
that you must provide a landscape version of your application that exactly matches
either the look or the functionality of the portrait one.

n Always, always save your work in Interface Builder. Until you do so, your project
will not be updated with the current version of your .xib files.

n There’s no “right” way to design and implement portrait and landscape layouts.
Choose the approach that works best for your needs and provides the best experi-
ence for your users.

ptg

5
Working with View Controllers

UIViewControllers handle view management for many iPhone applications. In the
previous chapter you saw how to build view controller-based applications using
Xcode and Interface Builder. Now it’s time to dive into more advanced view

controller-based classes and learn how to apply them to real-world situations. In this
chapter you discover how to build simple menus, create view navigation trees, design tab
bar-based applications, and more.This chapter offers hands-on recipes for working with a
variety of controller classes.

Developing with Navigation Controllers
The UINavigationController class provides all the high-calorie goodness of a
UINavigationBar-based interface with minimal navigation-specific programming. Navi-
gation controllers let users move smoothly between views (or, more accurately, view con-
trollers) using built-in animation.They provide history control for free without any
programming effort. Navigation controllers automatically handle Back button functional-
ity.The titles of each parent view controller appear as Back buttons, letting users “pop the
stack,” so to speak, without any further programming effort.

And if that weren’t enough, the navigation controller also offers a simple menu bar.
You can add buttons—or even more complicated controls—into the bar to build actions
into your application. Between these three features of navigation, history, and menus, nav-
igation controllers build a lot of wow into a simple-to-program package.

The following recipes introduce these core navigation controller features, from build-
ing menus to building a history stack. In these examples, you see how to use the
UINavigationController class to create a variety of novel and useful interfaces.

Setting Up a Navigation Controller
Whether you plan to use a navigation controller to simplify moving between views—its
intended use—or use it as a convenient menu button holder you should understand how
the navigation controller works.At their simplest level, navigation controllers manage
view controller stacks.

ptg

188 Chapter 5 Working with View Controllers

Every navigation controller owns a root view controller.This controller forms the base
of the stack.You can programmatically push other controllers onto the stack.This extends
the navigation breadcrumb trail and automatically builds a Back button each time a new
view controller gets pushed.

Tap one of these Back buttons to pop controllers off the stack. Users can pop back un-
til reaching the root.Then you can go no further.The root is the root, and you cannot
pop beyond that root.

This stack-based design lingers even when you plan to use just one view controller.
You might want to leverage the UINavigationController’s built-in navigation bar to
build a two-button menu, for example.This would disregard any navigational advantage
of the stack.You still need to set that one controller as the root via
initWithRootViewController:.

You can use Interface Builder and Xcode templates to build navigation-based inter-
faces, as introduced in Chapter 4,“Designing Interfaces,” or you can create those same in-
terfaces by hand.The easiest way to do so is by building your navigation controller in the
applicationDidFinishLaunching: method that gets called at the start of your applica-
tion run. Here, you set up the window, create the navigation controller, and assign its root.

- (void)applicationDidFinishLaunching:(UIApplication *)application {

UIWindow *window = [[UIWindow alloc] initWithFrame:

[[UIScreen mainScreen] bounds]];

UINavigationController *nav = [[UINavigationController alloc]

initWithRootViewController:[[HelloWorldController alloc]

init]];

[window addSubview:nav.view];

[window makeKeyAndVisible];

}

This is one of the few places you don’t really have to worry about memory management
and leaky calls.An application delegate’s dealloc method is never called at application
termination, so while you can assign the window and the navigation controller to in-
stance variables and use those variables in a deallocation method, it doesn’t really matter if
you’d rather not do so.

Pushing and Popping View Controllers
Add new items onto the navigation stack by pushing a new controller with
pushViewController: animated:. Send this call to the navigation controller that owns a
UIViewController.This is normally called on self.navigationController.When
pushed, the new controller slides onscreen from the right (assuming you set animated to
YES).A left-pointing Back button appears, leading you one step back on the stack.The
Back button uses the title of the previous view controller.

There are many reasons you’d push a new view.Typically, these involve navigating to
subviews like detail views or drilling down a file structure.You can push controllers onto

ptg

189Developing with Navigation Controllers

the navigation controller stack after your user taps a button, a table item, or a disclosure
accessory.

Perform push requests and navigation bar customization (like setting up a bar’s right-
hand button) inside UIViewController subclasses.As a rule, there’s no reason or need to
ever subclass UINavigationController.And, for the most part, you need never access the
navigation controller directly.The two exceptions to this rule include managing the navi-
gation bar’s buttons and when you change the bar’s look.

You might change a bar style or its tint color by accessing the navigationBar prop-
erty directly.

self.navigationController.navigationBar.barStyle =

UIBarStyleBlackTranslucent;

To add a new button you modify your navigationItem, which provides an abstract class
that describes the content shown on the navigation bar.To remove a button, assign the
item to nil.

self.navigationItem.rightBarButtonItem = [[[UIBarButtonItem alloc]

initWithTitle:@"Action" style:UIBarButtonItemStylePlain target:self

action:@selector(performAction:)] autorelease];

The Navigation Item Class
The objects that populate the navigation bar are put into place using the
UINavigationItem class, which is an abstract class that stores information about those
objects. Navigation item properties include the left and right bar button items, the title
shown on the bar, the view used to show the title, and any Back button used to navigate
back from the current view.

This class basically enables you to attach buttons, text, and other UI objects into three
key locations: the left, the center, and the right of the navigation bar.Typically, this works
out to be a regular button on the right, some text (usually the UIViewController’s title)
in the middle, and a Back-styled button on the left. But you’re not limited to that layout.
You can add custom controls to any of these three locations You can build navigation bars
with search fields, segment controls, toolbars, pictures, and more.

You’ve already seen how to add custom bar button items to the left and right of a nav-
igation item.Adding a custom view to the title is just as simple. Instead of adding a con-
trol, assign a view.This code adds a custom UILabel, but this could be a UIImageView, a
UISwitch, or anything else.

self.navigationItem.titleView = [[[UILabel alloc]

initWithFrame:CGRectMake(0.0f,0.0f, 120.0f, 36.0f)] autorelease];

The simplest way to customize the actual title is to use the title property of the child
view controller rather than the navigation item.

self.title = @"Hello";

ptg

190 Chapter 5 Working with View Controllers

When you want the title to automatically reflect the name of the running application,
here is a little trick you can use.This returns the short display name defined in the
bundle’s Info.plist file.

self.title = [[[NSBundle mainBundle] infoDictionary]

objectForKey:@"CFBundleName"];

Modal Presentation
With normal navigation controllers, you push your way along views, stopping occasion-
ally to pop back to previous views.That approach assumes that you’re drilling your way
up and down a set of data that matches the tree-based view structure you’re using.
Modal presentation offers another way to show a view controller.After sending the
presentModalViewController: animated: message, a new view controller slides up
into the screen and takes control until it’s dismissed with dismissModalViewController
➥Animated:.This enables you to add special-purpose dialogs into your applications that
go beyond alert views.

Typically, modal controllers are used to pick data such as contacts from the Address
Book or photos from the Library, but you can use modal controllers in any setting where
it makes sense to perform a task that lies outside the normal scope of the active view
controller.

You can present a modal dialog in any of three ways, controlled by the
modalTransitionStyle property of the presented view controller.The standard,
UIModalTransitionStyleCoverVertical, slides the modal view up and over the current
view controller.When dismissed it slides back down. UIModalTransitionStyleFlip
➥Horizontal performs a back-to-front flip from right-to-left. It looks as if you’re reveal-
ing the back side of the currently presented view.When dismissed, it flips back left-to-
right.The final style is UIModalTransitionStyleCrossDissolve. It fades the new view
in over the previous one. On dismissal, it fades back to the original view.

Utility Function
Some of the recipes in this book use this showAlert()macro/function combination.This
function acts as a visual version of NSLog(), and it displays a message and information
about where the call originated.This function can be called using the same parameters as
NSLog, complete with format string and arguments. For space considerations, this alert
code is not listed in individual recipes. Invoking the alert code is shown in Figure 5-1,
which follows later in this chapter.

#define showAlert(format, ...) myShowAlert(__LINE__, (char *)__FUNCTION__,
➥format, ##__VA_ARGS__)

// Simple Alert Utility

void myShowAlert(int line, char *functname, id formatstring,...)

ptg

191Utility Function

Figure 5-1 Create a basic two-button menu for
iPhone applications by adding custom buttons to a
UINavigationController-based interface.

{

va_list arglist;

if (!formatstring) return;

va_start(arglist, formatstring);

id outstring = [[[NSString alloc] initWithFormat:formatstring

arguments:arglist] autorelease];

va_end(arglist);

NSString *filename = [[NSString stringWithCString:__FILE__]

lastPathComponent];

NSString *debugInfo = [NSString stringWithFormat:@"%@:%d\n%s",

filename, line, functname];

UIAlertView *av = [[[UIAlertView alloc] initWithTitle:outstring

message:debugInfo delegate:nil

cancelButtonTitle:@"OK"otherButtonTitles:nil] autorelease];

[av show];

}

ptg

192 Chapter 5 Working with View Controllers

Recipe: Building a Simple Two-Item Menu
Although many applications demand serious user interfaces, sometimes you don’t need
complexity.A simple one- or two-button menu can accomplish a lot. Use these steps to
create a hand-built interface for simple utilities:

1. Create a UIViewController subclass that you use to populate your primary inter-
action space.

2. Allocate a navigation controller and assign an instance of your custom view con-
troller to its root view.

3. In the custom view controller, create one or two buttons and add them to the
view’s navigation item.

4. Build the callback routines that get triggered when a user taps a button.

Recipe 5-1 demonstrates these steps. It creates a simple view controller called
TestBedViewController and assigns it as the root view for a UINavigationController.
In the loadView method, two buttons populate the left and right custom slots for the
view’s navigation item.When tapped, these show an alert, indicating which button was
pressed.This recipe is not feature rich, but it provides an easy-to-build two-item menu.
Figure 5-1 shows the interface in action.

This code uses a handy bar button creation macro.When passed a title and a selector,
this macro returns a properly initialized autoreleased bar button item ready to be assigned
to a navigation item.

#define BARBUTTON(TITLE, SELECTOR) [[[UIBarButtonItem alloc] initWithTitle:
➥TITLE style:UIBarButtonItemStylePlain target:self action:SELECTOR] autorelease]

If you’re looking for more complexity than two items can offer, consider having the but-
tons trigger UIActionSheet menus.Action sheets, which are discussed in Chapter 10,
“Alerting Users,” let users select actions from a short list of options (usually between two
and five options, although longer scrolling sheets are possible) and can be seen in use in
the Photos and Mail applications for sharing and filing data.

Note
You can add images instead of text to the UIBarButtonItem instances used in your navi-
gation bar. Use initWithImage: style: target: action: instead of the text-based
initializer.

Recipe 5-1 Creating a Two-Item Menu Using a Navigation Controller

@implementation TestBedViewController

- (void) rightAction: (id) sender

{

showAlert(@"You pressed the right button");

}

ptg

193Recipe: Adding a Segmented Control

Recipe 5-1 Continued

- (void) leftAction: (id) sender

{

showAlert(@"You pressed the left button");

}

- (void) loadView

{

self.view = [[[NSBundle mainBundle] loadNibNamed:@"mainview"

owner:self options:nil] lastObject];

self.navigationItem.rightBarButtonItem =
BARBUTTON(@"Right",@selector (rightAction:));

self.navigationItem.leftBarButtonItem = BARBUTTON(@"Left",selector(leftAction:));

}

@end

@implementation TestBedAppDelegate

- (void)applicationDidFinishLaunching:(UIApplication *)application

{

UIWindow *window = [[UIWindow alloc]

initWithFrame:[[UIScreen mainScreen] bounds]];

UINavigationController *nav = [[UINavigationController alloc]

initWithRootViewController:[[TestBedViewController alloc] init]];

[window addSubview:nav.view];

[window makeKeyAndVisible];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 5 and open the project for this recipe.

Recipe: Adding a Segmented Control
The preceding recipe showed how to use the two available button slots in your navigation
bar to build mini menus. Recipe 5-2 expands on that idea by introducing a six-item
UISegmentedControl and adding it to a navigation bar’s custom title view, as shown in
Figure 5-2.When tapped, each item updates the main view with its number.

The key thing to pay attention to in this recipe is the momentary attribute assigned to
the segmented control.This transforms the interface from a radio button style into an ac-
tual menu of options, where items can be selected independently and more than once. So
after tapping item three, for example, you can tap it again.That’s an important behavior for
menu interaction.

http://github.com/erica/iphone-3.0-cookbook-

ptg

194 Chapter 5 Working with View Controllers

Figure 5-2 Adding a segmented control to the
custom title view allows you to build a multi-item
menu. Notice that no items remain highlighted

even after an action takes place. (In this case, the
One button was pressed.)

Unlike Recipe 5-1, all items in the segmented control trigger the same action (in this
case, segmentAction:). Determine which action to take by querying the control for its
selectedSegmentIndex and use that value to create the needed behavior.This recipe up-
dates a central text label.You might want to choose different options based on the seg-
ment picked.

Note
If you want to test this code with the momentary property disabled, set the
selectedSegmentIndex property to match the initial data displayed. In this case, segment
0 corresponds to the displayed number 1.

Segmented controls use styles to specify how they should display.The sample here, shown in
Figure 5-2, uses a bar style. It is designed for use with bars, as it is in this example.The other
two styles (UISegmentedControlStyleBordered and UISegmentedControlStylePlain)
offer larger, more metallic-looking presentations. Of these three styles, only
UISegmentedControlStyleBar can respond to the tintColor changes used in this recipe.

ptg

195Recipe: Navigating Between View Controllers

Recipe 5-2 Adding a Segmented Control to the Navigation Bar

-(void) segmentAction: (UISegmentedControl *) sender

{

// Update the label with the segment number

UILabel *label = (UILabel *)[self.view viewWithTag:101];

[label setText:[NSString stringWithFormat:

@"%0d", sender.selectedSegmentIndex + 1]];

}

- (void) loadView

{

self.view = [[[NSBundle mainBundle] loadNibNamed:@"mainview"

downer:self options:nil] lastObject];

// Create the segmented control

NSArray *buttonNames = [NSArray arrayWithObjects:@"One", @"Two",

@"Three", @"Four", @"Five", @"Six", nil];

UISegmentedControl* segmentedControl = [[UISegmentedControl alloc]

initWithItems:buttonNames];

segmentedControl.segmentedControlStyle =

UISegmentedControlStyleBar;

segmentedControl.momentary = YES;

@selector(segmentAction:[segmentedControl addTarget:self action:)

forControlEvents:UIControlEventValueChanged];

// Add it to the navigation bar

self.navigationItem.titleView = segmentedControl;

[segmentedControl release];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 5 and open the project for this recipe.

Recipe: Navigating Between View Controllers
In addition to providing menus, navigation controllers do the job they are designed to do:
managing hierarchy as you navigate between views. Recipe 5-3 introduces the navigation
controller as an actual navigation controller, pushing views on the stack.

These views consist of the same number-display stand-ins you’ve seen in earlier
recipes.An instance variable stores the current depth number, which is used to show the
current level and decide whether to display a further push option.The maximum depth
here is 6. In real use, you’d use more meaningful view controllers or contents.This sample
demonstrates things at their simplest level.

The navigation controller automatically creates the Level 2 Back button shown in
Figure 5-3 (left) as an effect of pushing the new Level 3 controller onto the stack.The

http://github.com/erica/iphone-3.0-cookbook-

ptg

196 Chapter 5 Working with View Controllers

Figure 5-3 The navigation controller automatically creates properly labeled
Back buttons. After selecting the Push 4 button in the left interface, the naviga-
tion controller pushes the Level 4 view controller and creates the Level 3 Back

button in the right interface.

rightmost button (Push 4) triggers navigation to the next controller by calling
pushViewController: animated:.When pushed, the next Back button reads Level 3, as
shown in Figure 5-3 (right).

Back buttons pop the controller stack for you.You do not need to program any popping
behavior yourself. Note that Back buttons are automatically created for pushed view con-
trollers but not for the root controller itself, as it is not applicable.

Recipe 5-3 Drilling Through Views with UINavigationController

@interface TestBedViewController : UIViewController

{

int depth;

}

@end

@implementation TestBedViewController

- (id) initWithDepth: (int) theDepth

{

self = [super init];

ptg

197Recipe: Using Creative Popping Options

Recipe 5-3 Continued

if (self) depth = theDepth;

return self;

}

- (void) push

{

TestBedViewController *tbvc = [[[TestBedViewController alloc]

initWithDepth:(depth + 1)] autorelease];

[self.navigationController pushViewController:tbvc animated:YES];

}

- (void) loadView

{

self.view = [[[NSBundle mainBundle] loadNibNamed:@"mainview"

owner:self options:nil] lastObject];

NSString *valueString = [NSString stringWithFormat:@"%d", depth];

NSString *nextString = [NSString stringWithFormat:@"Push %d",

depth + 1];

// set the title

self.title = [@"Level " stringByAppendingString:valueString];

// Set the main label

((UILabel *)[self.view viewWithTag:101]).text = valueString;

// Add the "next" bar button item. Max depth is 6

if (depth < 6) self.navigationItem.rightBarButtonItem =

BARBUTTON(nextString, @selector(push));

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 5 and open the project for this recipe.

Recipe: Using Creative Popping Options
Although you usually want to pop to the previous view controller upon hitting the Back
button, be aware that there are times you want to pop the entire stack instead. For exam-
ple, you might have just given an interactive quiz, or a museum visitor might have finished
his walking tour. For these cases, it makes little sense to move back up a long complex tree
a screen at a time. Instead, use popToRootViewControllerAnimated:.This empties the
stack, popping all view controllers except the root, updating the display accordingly.

To pop back to a specific controller other than the root, use popToViewController:
animated:.This pops the stack until the top view matches the view controller specified.

http://github.com/erica/iphone-3.0-cookbook-

ptg

198 Chapter 5 Working with View Controllers

To pop back just one item, as if the user had tapped the back button, use
popViewControllerAnimated:.

Loading a View Controller Array
You can create and assign an array of UIViewController objects to a UINavigationCon-
troller’s viewControllers property.The array represents the current controller stack.The
top (that is, active) view controller occupies the last position (n -1) in the array; the root
object lives at index 0.

There are various reasons you might want to set the array property. Controller arrays
help restore previous states after quitting and then returning to an application.You might
store a state list to user defaults and then re-create the same array on launch, returning
your user to the same place in the controller hierarchy that he or she left from.

Arrays are also handy when jumping within a conceptual tree. For example, you might
be navigating directories and then need to jump through a symbolic link to somewhere
else. By setting the entire array, you avoid the detail work of popping and then pushing
the stack.

Pushing Momentary Views
Every now and then, I run into developers who want to be able to push UIViewCon-
trollers that do not remain in the navigation controller stack. For example, you might start
at view 1, push on view 2, and then push on view 3 while letting the Back button from
view 3 link back to the first view.

This situation comes up more often than you might imagine.The most common rea-
son is that you’re introducing the action that will take place in the third view with the
second.Typically, the second screen contains instructions, general “read me” content, or a
visual splash.These are meant to display once and then be gone from the user experience
and yet, you want the navigation controller experience to remain as standard as possible.
To make this work, the Back button needs to ignore the second, temporary view.

Recipe 5-4 demonstrates how to do this.When the second view is ready to transition
to the third, the navigation controller goes ahead and performs the push.This creates the
proper animation for the viewer, from view two to view three.Then, without animation,
the code pops the last two views, leaving the stack at view one.To finish, the code per-
forms a delayed animated push, adding view three behind view one, creating the proper
“back” button.

Although the main view animation properly shows a push from view two to view
three, be aware that the navigation bar animation shows a push from root to Level 3.This
should not be enough to get your application booted from the App Store for violating
human interaction guidelines but you might want to use smart interface design to mini-
mize visual discontinuities.

ptg

199Recipe: Presenting a Custom Modal Information View

Recipe 5-4 Pushing Momentary Views

- (void) doPush: (id) nc

{

// With the stack back at view 1, push on view #depth+1

[nc pushViewController:[[TestBedViewController alloc]

initWithDepth:depth+1] animated:YES];

}

- (void) push

{

if (depth < 2)

{

[self.navigationController

pushViewController:[[TestBedViewController alloc]

initWithDepth:depth+1] animated:YES];

return;

}

// Push from current view to view #depth+1, showing the animation

[self.navigationController

pushViewController:[[TestBedViewController alloc]

initWithDepth:depth+1] animated:YES];

// Get ready to push from view #1 to view #depth+1

[self performSelector:@selector(doPush:)

withObject:self.navigationController afterDelay:0.05f];

// Pop off view #depth+1 and then view #depth

[[self.navigationController topViewController] autorelease];

[self.navigationController popViewControllerAnimated:NO];

[[self.navigationController topViewController] autorelease];

[self.navigationController popViewControllerAnimated:NO];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 5 and open the project for this recipe.

Recipe: Presenting a Custom Modal Information
View
Modal view controllers slide onscreen without being part of your standard view controller
stack. Modal views are useful for picking data or presenting information, tasks that might
not match well to your normal hierarchy.Any view controller or navigation controller can
present a modal controller:

http://github.com/erica/iphone-3.0-cookbook-

ptg

200 Chapter 5 Working with View Controllers

Figure 5-4 This modal view is built using
UIViewController with a UINavigationBar.

[self presentModalViewController:[[[InfoViewController alloc] init]

autorelease] animated:YES];

The controller that is presented can be either a view controller or navigation controller.
Either way, it helps to provide a Done button to allow the user to dismiss the controller.
Figure 5-4 shows a modal presentation built around a UIViewController instance.The
navigation bar at the top of the view was added via a UINavigationBar instance, making
this view especially easy to construct in Interface Builder.

Normally, a navigation controller-based view requires two .xib files and extra work, as
shown in the Chapter 4 walk-throughs that built a navigation-based interface. Using the
bar directly avoided the hassle and provided an elegant solution that mimics the normal
look of a UINavigationController presentation.

Recipe 5-5 shows the two key pieces for this presentation.The presentation is done in
the main view controller, with the presentation style set by a segmented control.The
InfoViewController, that is, the class that was presented, handles dismissal. Its Done but-
ton was connected via IB to the doneReading method.This method asks the view con-
troller’s parent to dismiss the modally presented view controller.

ptg

201Recipe: Tab Bars

Recipe 5-5 Presenting and Dismissing a Modal Controller

// Presenting the controller

- (void) info

{

int segment = [(UISegmentedControl *)self.navigationItem.titleView

selectedSegmentIndex];

int styles[3] = {UIModalTransitionStyleCoverVertical,

UIModalTransitionStyleCrossDissolve,

UIModalTransitionStyleFlipHorizontal};

InfoViewController *ivc = [[[InfoViewController alloc] init]

autorelease];

ivc.modalTransitionStyle = styles[segment];

[self presentModalViewController:ivc animated:YES];

}

And...
// Dismissing the controller

- (IBAction) doneReading

{

[[self parentViewController]

dismissModalViewControllerAnimated:YES];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 5 and open the project for this recipe.

Recipe: Tab Bars
The UITabBarController class allows users to move between multiple view controllers
and to customize the bar at the bottom of the screen.This is best seen in the YouTube and
iPod applications. Both offer one-tap access to different views, and both offer a More but-
ton leading to user selection and editing of the bottom bar.

With tab bars, you don’t push views the way you do with navigation bars. Instead, you
assemble a collection of controllers (they can individually be UIViewControllers,
UINavigationControllers, or any other kind of view controllers) and add them into a
tab bar by setting the bar’s viewControllers property. It really is that simple. Cocoa
Touch does all the rest of the work for you. Set allowsCustomizing to YES to enable user
reordering of the bar.

Recipe 5-6 creates 11 simple view controllers of the BrightnessController class.
This class uses a UIView embedded into mainview.xib and sets its background to a speci-
fied gray level, in this case from 0% to 100% in steps of 10%. Figure 5-5 (left) shows the
interface in its default mode, with the first four items and a More button displayed.

http://github.com/erica/iphone-3.0-cookbook-

ptg

202 Chapter 5 Working with View Controllers

Figure 5-5 Tab bar controllers allow users to pick view controllers from a bar
at the bottom of the screen (left side of the figure) and to customize the bar

from a list of available view controllers (right side of the figure).

Notice that this recipe adds those 11 controllers twice.The first time assigns them to the
list of view controllers available to the user:

tbarController.viewControllers = controllers;

The second time specifies that the user can select from the entire list when interactively
customizing the bottom tab bar:

tbarController.customizableViewControllers = controllers;

The second line is optional, the first mandatory.After setting up the view controllers, you
can add all or some to the customizable list. If you don’t, you still can see the extra view
controllers using the More button, but users won’t be able to include them in the main
tab bar on demand.

Tab art appears inverted in color on the More screen.According to Apple, this is the
expected and proper behavior.They have no plans to change this. It does provide an inter-
esting view contrast when your 100% white swatch appears as pure black on that screen.

Note that this recipe uses a convenience class called GraphicsUtilities, which I cre-
ated for this book.This and other goodies are looked at in detail in later chapters.

Reorder these tabs by selecting the More option and then tapping Edit.This opens the
Configure panel shown in Figure 5-5 (right).These 11 view controllers are the options a
user can navigate through and select from.

ptg

203Recipe: Tab Bars

Recipe 5-6 Creating a Tab View Controller

@implementation BrightnessController

- (UIImage*) buildSwatch: (float) tint

{

CGContextRef context = [GraphicsUtilities

newBitmapContextWithWidth:30 andHeight:30];

[GraphicsUtilities addRoundedRect:

CGRectMake(0.0f, 0.0f, 30.0f, 30.0f) toContext:context

withWidth:4.0f andHeight:4.0f];

CGFloat gray[4] = {tint, tint, tint, 1.0f};

CGContextSetFillColor(context, gray);

CGContextFillPath(context);

CGImageRef myRef = CGBitmapContextCreateImage (context);

free(CGBitmapContextGetData(context));

CGContextRelease(context);

UIImage *img = [UIImage imageWithCGImage:myRef];

CFRelease(myRef);

return img;

}

-(BrightnessController *) initWithBrightness: (int) aBrightness

{

self = [super init];

brightness = aBrightness;

self.title = [NSString stringWithFormat:@"%d%%", brightness * 10];

[self.tabBarItem initWithTitle:self.title image:[self

buildSwatch:(((float)brightness) / 10.0f)] tag:0];

return self;

}

- (void) loadView

{

self.view = [[[NSBundle mainBundle] loadNibNamed:@"mainview"

owner:self options:nil] lastObject];

UIView *bigSwatch = [self.view viewWithTag:101];

bigSwatch.backgroundColor = [UIColor colorWithWhite:

(brightness / 10.0f) alpha:1.0f];

}

@end

@interface TestBedAppDelegate : NSObject <UIApplicationDelegate,

UITabBarControllerDelegate>

@end

@implementation TestBedAppDelegate

- (void)applicationDidFinishLaunching:(UIApplication *)application {

NSMutableArray *controllers = [NSMutableArray array];

ptg

204 Chapter 5 Working with View Controllers

Recipe 5-6 Continued

for (int i = 0; i <= 10; i++)

{

BrightnessController *bControl = [[BrightnessController alloc]

initWithBrightness:i];

UINavigationController *nav = [[UINavigationController alloc]

initWithRootViewController:bControl];

nav.navigationBar.barStyle = UIBarStyleBlackTranslucent;

[bControl release];

[controllers addObject:nav];

[nav release];

}

// Create the toolbar and add the view controllers

UITabBarController *tbarController = [[UITabBarController alloc]

init];

tbarController.viewControllers = controllers;

tbarController.customizableViewControllers = controllers;

tbarController.delegate = self;

// Set up the window

UIWindow *window = [[UIWindow alloc] initWithFrame:[[UIScreen

mainScreen] bounds]];

[window addSubview:tbarController.view];

[window makeKeyAndVisible];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 5 and open the project for this recipe.

Recipe: Remembering Tab State
On the iPhone, persistence is golden.When starting or resuming your application from
termination or interruption, always return users to a state that closely matches where they
left off.This lets your users pick up with whatever tasks they were involved with and pro-
vides a user interface that matches the previous session. Recipe 5-7 introduces an example
of doing exactly that.

This recipe stores both the current tab order and the currently selected tab, and does so
whenever those items are updated.When a user launches the application, the code
searches for previous settings and applies them when they are found.

The approach used here depends on two delegate methods.The first, tabBarController:
didEndCustomizingViewControllers: provides the current array of view controllers
after the user has customized them with the More > Edit screen.This code snags their

http://github.com/erica/iphone-3.0-cookbook-

ptg

205Recipe: Remembering Tab State

titles (10%, 20%, and so on) and uses that information to relate a name to each view
controller.

The second delegate method is tabBarController: didSelectViewController:.
The tab bar controller sends this method each time a user selects a new tab. By capturing
the selectedIndex, this code stores the controller number relative to the current array.

Setting these values depends on using the iPhone’s built-in user defaults system,
NSUserDefaults.This preferences system works very much as a large mutable dictionary.
You can set values for keys using setObject: forKey:

[[NSUserDefaults standardUserDefaults] setObject:titles

forKey:@"tabOrder"];

and retrieve them with objectForKey:.

NSArray *titles = [[NSUserDefaults standardUserDefaults]

objectForKey:@"tabOrder"];

Always make sure to synchronize your settings as shown in this code to ensure that the
defaults dictionary matches your changes. If you do not synchronize, the defaults will not
get set until the program terminates. If you do synchronize, your changes are updated im-
mediately.Any other parts of your application that rely on checking these settings will
then be guaranteed to access the latest values.

When the application launches, it checks for previous settings for the last selected tab
order and selected tab. If it finds them, it uses these to set up the tabs and select a tab to
make active. Since the titles contain the information about what brightness value to show,
this code converts the stored title from text to a number and divides that number by ten
to send to the initialization function.

Most applications aren’t based on such a simple numeric system. Should you use titles
to store your tab bar order, make sure you name your view controllers meaningfully and
in a way that lets you match a view controller with the tab ordering.

Note
You could also store an array of the view tags as NSNumbers or, better yet, use the
NSKeyedArchiver class that is introduced in Chapter 8, “Gestures and Touches.” Keyed
archiving lets you rebuild views using state information that you store on termination.

Recipe 5-7 Storing Tab State to User Defaults

@implementation TestBedAppDelegate

- (void)tabBarController:(UITabBarController *)tabBarController
didEndCustomizingViewControllers:(NSArray *)viewControllers changed:(BOOL)changed

{

// Store the titles from the tabs in order

NSMutableArray *titles = [NSMutableArray array];

for (UIViewController *vc in viewControllers) [titles

addObject:vc.title];

[[NSUserDefaults standardUserDefaults] setObject:titles

ptg

206 Chapter 5 Working with View Controllers

Recipe 5-7 Continued

forKey:@”tabOrder”];

[[NSUserDefaults standardUserDefaults] synchronize];

}

- (void)tabBarController:(UITabBarController *)tabBarController

didSelectViewController:(UIViewController *)viewController

{

// Update the currently selected tab number

NSNumber *tabNumber = [NSNumber numberWithInt:[tabBarController

selectedIndex]];

[[NSUserDefaults standardUserDefaults] setObject:tabNumber

forKey:@"selectedTab"];

[[NSUserDefaults standardUserDefaults] synchronize];

}

- (void)applicationDidFinishLaunching:(UIApplication *)application {

NSMutableArray *controllers = [NSMutableArray array];

NSArray *titles = [[NSUserDefaults standardUserDefaults]

objectForKey:@"tabOrder"];

if (titles)

{

// titles retrieved from user defaults

for (NSString *theTitle in titles)

{

BrightnessController *bControl = [[BrightnessController

alloc] initWithBrightness:([theTitle intValue] / 10)];

UINavigationController *nav = [[UINavigationController

alloc] initWithRootViewController:bControl];

nav.navigationBar.barStyle = UIBarStyleBlackTranslucent;

[bControl release];

[controllers addObject:nav];

[nav release];

}

} else {

// generate all new controllers

for (int i = 0; i <= 10; i++)

{

BrightnessController *bControl = [[BrightnessController

alloc] initWithBrightness:i];

UINavigationController *nav = [[UINavigationController

alloc] initWithRootViewController:bControl];

nav.navigationBar.barStyle = UIBarStyleBlackTranslucent;

[bControl release];

ptg

207One More Thing: Interface Builder and Tab Bar Controllers

Recipe 5-7 Continued

[controllers addObject:nav];

[nav release];

}

}

// Create the toolbar and add the view controllers

UITabBarController *tbarController = [[UITabBarController alloc]

init];

tbarController.viewControllers = controllers;

tbarController.customizableViewControllers = controllers;

tbarController.delegate = self;

NSNumber *tabNumber = [[NSUserDefaults standardUserDefaults]

objectForKey:@"selectedTab"];

if (tabNumber)

tbarController.selectedIndex = [tabNumber intValue];

// Set up the window

UIWindow *window = [[UIWindow alloc] initWithFrame:[[UIScreen

mainScreen] bounds]];

[window addSubview:tbarController.view];

[window makeKeyAndVisible];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 5 and open the project for this recipe.

One More Thing: Interface Builder and Tab Bar
Controllers
Xcode offers an easy to customize Tab Bar Application template that gets you started
building tab-bar-based GUIs in Interface Builder.The tab bar controller’s attribute in-
spector lets you add new tabs, as shown in Figure 5-6. Click the + button.The class col-
umn lets you select what kind of view controller you’re working with, namely View
Controller,Table View Controller, Navigation Controller, or Image Picker Controller.

You’ll likely want to create a new view controller class for each tab. Create your class
(and its associated .xib file) in Xcode and then choose the .xib from within Interface
Builder.Tap any of the black tabs in the MainWindow .xib, and tap the gray View presen-
tation. Select the .xib from the attributes inspector (Command-1).The first tab comes
prepopulated with a view (as shown in Figure 5-6), but all the other tabs require a .xib to
be assigned to them.

http://github.com/erica/iphone-3.0-cookbook-

ptg

208 Chapter 5 Working with View Controllers

Figure 5-6 Interface Builder provides tools for laying out tab bar con-
trollers but offers few advantages for building what is essentially a logi-

cal and not a visual class.

To add art to the tabs in IB, drag 20x20 png images from the Library > Media pane onto
each tab button.The Media pane lists the images you have added to your Xcode project.
Design your images using a transparent background and a white foreground.

While Interface Builder offers a friendly way to lay out individual views, you may find
yourself forgoing it for tab bars and navigation bars.These classes provide what can be
argued is more of a logical construct than a visual presentation.After all, you cannot drag
the tab bar or the navigation bar around the screen and any customizations can easily be
done in code.

Further, once you start taking advantage of the delegate callbacks that are leveraged
directly from code, the IB overhead may no longer be worth the trouble. IB works best
with view design. Its support for navigation controllers and tab bar controllers is rela-
tively weak.

Summary
This chapter showed the UIViewController, UINavigationController, and
UITabBarController classes in action.You learned how to use them to handle view pres-
entation and user navigation.With these classes, you discovered how to expand virtual

ptg

209Summary

interaction space and create multipage interfaces as demanded by applications. Before
moving on to the next chapter, here are a few points to consider about view controllers:

n Use navigation trees to build hierarchical interfaces.They work well for looking at
file structures or building a settings tree.When you think “disclosure view” or
“preferences,” consider pushing a new controller onto a navigation stack.

n Don’t be afraid to use conventional UI elements in unconventional ways so long as
you respect the overall Apple human interface guidelines. Parts of this chapter cov-
ered innovative uses for the UINavigationController that didn’t involve any navi-
gation.The tools are there for the using.

n Be persistent. Let your users return to the same GUI state that they last left from.
NSUserDefaults provides a built-in system for storing information between appli-
cation runs. Use these defaults to re-create the prior interface state.

n Interface Builder works best for visual layout. Many developers use it for designing
views but give it a pass when building navigation controllers and tab bar con-
trollers.

ptg

This page intentionally left blank

ptg

6
Assembling Views and

Animations

UIView and its subclasses populate the iPhone’s screen.This chapter introduces views
from the ground up.You learn how to build, inspect, and break down view hierar-
chies and understand how views work together.You discover the role geometry

plays in creating and placing views into your interface, and you read about animating
views so they move and transform onscreen.This chapter covers everything you need to
know to work with views from the lowest levels up.

View Hierarchies
A tree-based hierarchy orders what you see on your iPhone screen. Starting with the
main window, views are laid out in a specifically hierarchical way.All views may have
children, called subviews. Each view, including the window, owns an ordered list of these
subviews.Views might own many subviews; they might own none.Your application deter-
mines how views are laid out and who owns whom.

Subviews display onscreen in order, always from back to front.This works something
like a stack of animation cells—those transparent sheets used to create cartoons. Only the
parts of the sheets that have been painted show through.The clear parts allow any visual
elements behind that sheet to be seen.Views too can have clear and painted parts, and can
be layered to build a complex presentation.

Figure 6-1 shows a little of the layering used in a typical window. Here the window
owns a UINavigationController-based hierarchy.The elements layer together.The win-
dow (represented by the empty, rightmost element) owns a navigation bar, which in turn
owns two subview buttons (one left and one right).The window also owns a table with
its own subviews.These items stack together to build the GUI.

Listing 6-1 shows the actual view hierarchy of the window in Figure 6-1.The tree
starts at the top UIWindow and shows the classes for each of the child views. If you trace
your way down the tree, you can see the navigation bar (at level 2) with its two buttons
(each at level 3) and the table view (level 4) with its two cells (each at level 5). Some of
the items in this listing are private classes, automatically added by the SDK when laying

ptg

212 Chapter 6 Assembling Views and Animations

Figure 6-1 Subview hierarchies combine to build complex GUIs.

The only parts missing from this listing are the dozen or so line separators for the table,
omitted for space considerations. Each separator is actually a UITableViewSeparatorView
instance.They belong to the UITableView and would normally display at a depth of 5.

Listing 6-1 To Do List View Hierarchy

[0] UIWindow

--[1] UILayoutContainerView

----[2] UINavigationTransitionView

------[3] UIViewControllerWrapperView

--------[4] UITableView

----------[5] UITableViewCell

------------[6] UIView

--------------[7] UILabel

------------[6] UIButton

--------------[7] UIImageView

------------[6] UIView

----------[5] UITableViewCell

------------[6] UIView

--------------[7] UILabel

------------[6] UIButton

--------------[7] UIImageView

out views. For example, the UILayoutContainerView is never used directly by develop-
ers. It’s part of the SDK’s UIWindow implementation.

ptg

213Recipe: Recovering a View Hierarchy Tree

Listing 6-1 Continued

------------[6] UIView

----------[5] UIImageView

----------[5] UIImageView

----[2] UINavigationBar

------[3] UINavigationItemView

------[3] UINavigationButton

--------[4] UIImageView

--------[4] UIButtonLabel

------[3] UINavigationButton

--------[4] UIImageView

--------[4] UIButtonLabel

Recipe: Recovering a View Hierarchy Tree
Each view knows both its parent ([aView superview]) and its children ([aView
subviews]). Build a view tree like the one shown in Listing 6-1 by recursively walking
through a view’s subviews. Recipe 6-1 does exactly that. It builds a visual tree by noting
the class of each view and increasing the indentation level every time it moves down from
a parent view to its children.The results are stored into a mutable string and returned
from the calling method.

The code shown in Recipe 6-1 was used to create the tree shown in Listing 6-1.The
same interface and recipe appear as part of the sample code that accompanies this book.
You can use this routine to duplicate the results of Listing 6-1, or you can copy it to other
applications to view their hierarchies.

Recipe 6-1 Extracting a View Hierarchy Tree

// Recursively travel down the view tree, increasing the

// indentation level for children

- (void) dumpView: (UIView *) aView atIndent: (int) indent
into:(NSMutableString *) outstring

{

for (int i = 0; i < indent; i++)

[outstring appendString:@”—”];

[outstring appendFormat:@”[%2d] %@\n”, indent,

[[aView class] description]];

for (UIView *view in [aView subviews])

[self dumpView:view atIndent:indent + 1 into:outstring];

}

// Start the tree recursion at level 0 with the root view

- (NSString *) displayViews: (UIView *) aView

{

NSMutableString *outstring = [[NSMutableString alloc] init];

[self dumpView:aView atIndent:0 into:outstring];

return [outstring autorelease];

}

ptg

214 Chapter 6 Assembling Views and Animations

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 6 and open the project for this recipe.

Recipe: Querying Subviews
Views store arrays of their children. Retrieve this array by calling [aView subviews].
Onscreen, the child views are always drawn after the parent, in the order that they appear
in the subviews array.These views draw in order from back to front, and the subviews
array mirrors that drawing pattern.Views that appear later in the array are drawn after
views that appear earlier.

The subviews method returns just those views that are immediate children of a given
view.At times, you may want to retrieve a more exhaustive list of subviews including the
children’s children. Recipe 6-2 introduces allSubviews(), a simple recursive function
that returns a full list of descendants for any view. Call this function with view.window to
return a complete set of views appearing in the UIWindow that hosts that view.This list
proves useful when you want to search for a particular view, like a specific slider or button.

Although it is not typical, iPhone applications may include several windows, each of
which can contain many views. Recover an exhaustive list of all application views by iter-
ating through each available window.The allApplicationSubviews() function in
Recipe 6-2 does exactly that.A call to [[UIApplication sharedApplication]
windows] returns the array of application windows.The function iterates through these,
adding their subviews to the collection.

In addition to knowing its subviews, each view knows the window it belongs to.The
view’s window property points to the window that owns it. Recipe 6-2 also includes a
simple function called pathToView() that returns an array of superviews, from the win-
dow down to the view in question. It does this by calling superview repeatedly until ar-
riving at that window.

Views can also check their superview ancestry in another way.The
isDescendantOfView: method determines whether a view lives within another view,
even if that view is not its direct superview.This method returns a simple Boolean value.
YES means the view descends from the view passed as a parameter to the method.

Recipe 6-2 Subview Utility Functions

// Return an exhaustive descent of the view's subviews

NSArray *allSubviews(UIView *aView)

{

NSArray *results = [aView subviews];

for (UIView *eachView in [aView subviews])

{

NSArray *riz = allSubviews(eachView);

http://github.com/erica/iphone-3.0-cookbook-

ptg

215Managing Subviews

Recipe 6-2 Continued

if (riz) results = [results arrayByAddingObjectsFromArray:riz];

}

return results;

}

// Return all views throughout the application

NSArray *allApplicationViews()

{

NSArray *results = [[UIApplication sharedApplication] windows];

for (UIWindow *window in [[UIApplication sharedApplication]

windows])

{

NSArray *riz = allSubviews(window);

if (riz) results = [results arrayByAddingObjectsFromArray:

riz];

}

return results;

}

// Return an array of parent views from the window down to the view

NSArray *pathToView(UIView *aView)

{

NSMutableArray *array = [NSMutableArray arrayWithObject:aView];

UIView *view = aView;

UIWindow *window = aView.window;

while (view != window)

{

view = [view superview];

[array insertObject:view atIndex:0];

}

return array;

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 6 and open the project for this recipe.

Managing Subviews
The UIView class offers numerous methods that help build and manage views.These meth-
ods let you add, order, remove, and query the view hierarchy. Since this hierarchy controls
what you see onscreen, updating the way that views relate to each other changes what you
see on the iPhone. Here are some approaches for typical view-management tasks.

http://github.com/erica/iphone-3.0-cookbook-

ptg

216 Chapter 6 Assembling Views and Animations

Adding Subviews
Call [parentView addSubview:child] to add new subviews to a parent. Newly added
subviews are always placed frontmost on your screen; the iPhone adds them on top of any
existing views.To insert a subview into the view hierarchy at a particular location other
than the front, the SDK offers a trio of utility methods:

n insertSubview:atIndex:

n insertSubview:aboveSubview:

n insertSubview:belowSubview:

These methods control where view insertion happens.That insertion can remain relative
to another view, or it can move into a specific index of the subviews array.The above and
below methods add subviews in front of or behind a given child. Insertion pushes other
views forward and does not replace any views that are already there.

Reordering and Removing Subviews
Applications often need to reorder and remove views as users interact with the screen.The
iPhone SDK offers several easy ways to do this, allowing you to change the view order
and contents.

n Use [parentView exchangeSubviewAtIndex:i withSubviewAtIndex:j] to ex-
change the positions of two views.

n Move subviews to the front or back using bringSubviewToFront: and
sendSubviewToBack.

n To remove a subview from its parent, call[childView removeFromSuperview]. If
the child view had been onscreen, it disappears. Removing a child from the super-
view calls a release on the subview, allowing its memory to be freed if its retain
count has returned to zero.

When you reorder, add, or remove views, the screen automatically redraws to show the
new view presentation.

View Callbacks
When the view hierarchy changes, callbacks can be sent to the views in question.The
iPhone SDK offers six callback methods.These callbacks may help your application keep
track of views that are moving and changing parents.

n didAddSubview: is sent to a view after a successful invocation of addSubview: lets
subclasses of UIView perform additional actions when new views are added.

n didMoveToSuperview: informs views that they’ve been re-parented to a new super-
view.The view may want to respond to that new parent in some way.When the
view was removed from its superview, the new parent is nil.

n willMoveToSuperview: is sent before the move occurs.

ptg

217Recipe: Tagging and Retrieving Views

Figure 6-2 Set the tag for any view in Interface
Builder’s attributes inspector.

n didMoveToWindow: provides the callback equivalent of didMoveToSuperview but
when the view moves to a newWindow hierarchy instead of to just a new superview.

n willMoveToWindow: is, again, sent before the move occurs.
n willRemoveSubview: informs the parent view that the child view is about to be

removed.

Recipe: Tagging and Retrieving Views
The iPhone SDK offers a built-in search feature that lets you recover views by tagging
them.Tags are just numbers, usually positive integers, that identify a view.Assign them us-
ing the view’s tag property, for example, myView.tag = 101. In Interface Builder, you can
set a view’s tag in the attributes inspector.As Figure 6-2 shows, you specify the tag in the
View section.

Tags are completely arbitrary.The only “reserved” tag is 0, which is the default property
setting for all newly created views. It’s up to you to decide how you want to tag your
views and which values to use.You can tag any instance that is a child of UIView, includ-
ing windows and controls. So if you have many onscreen buttons and switches, adding tags
helps tell them apart when users trigger them.You can add a simple switch statement to
your callback methods that looks at the tag and determines how to react.

Apple rarely tags subviews.The only instance I have ever found of their view tagging
has been in UIAlertViews where the buttons use tags of 1, 2, and so forth. (I’m half con-
vinced they left this tagging in there as a mistake.) If you worry about conflicting with
Apple tags, start your numbering at 10 or 100, or some other number higher than any
value Apple might use.

Using Tags to Find Views
Tags let you avoid passing user interface elements around your program by making them
directly accessible from any parent view.The viewWithTag: method recovers a tagged
view from a child hierarchy.The search is recursive, so the tagged item need not be an im-
mediate child of the view in question.You can search from the window with [window

ptg

218 Chapter 6 Assembling Views and Animations

viewWithTag:101] and find a view that is several branches down the hierarchy tree.
When more than one view uses the same tag, viewWithTag: returns the first item it finds.

The problem with viewWithTag: is that it returns a UIView object.This means you of-
ten have to cast it to the proper type before you can use it. Say you want to retrieve a label
and set its text.

UILabel *label = (UILabel *)[self.view.window viewWithTag:101];

label.text = @”Hello World”;

It would be far easier to use a call that returned an already typed object and then be able
to use that object right away, as these calls do:

- (IBAction)updateTime:(id)sender

{

// set the label to the current time

[self.view.window labelWithTag:LABEL_TAG].text =

[[NSDate date] description];

}

- (IBAction)updateSwitch:(id)sender

{

// toggle the switch from its current setting

UISwitch *s = [self.view.window switchWithTag:SWITCH_TAG];

[s setOn:!s.isOn];

}

Recipe 6-3 extends the behavior of UIView to introduce a new category,TagExtensions.
This category adds just two typed tag methods, for UILabel and UISwitch.The sample
code for this book extends this to include a full suite of typed tag utilities.The additional
classes were omitted for space considerations; they follow the same pattern of casting from
viewWithTag:.Access the full collection by including the UIView-TagExtensions files in
your projects.

Recipe 6-3 Recovering Tagged Views with Properly Cast Objects

@interface UIView (TagExtensions)

- (UILabel *) labelWithTag: (NSInteger) aTag;

- (UISwitch *) switchWithTag: (NSInteger) aTag;

@end

@implementation UIView (TagExtensions)

- (UILabel *) labelWithTag: (NSInteger) aTag

{

return (UILabel *)[self viewWithTag:aTag];

}

- (UISwitch *) switchWithTag: (NSInteger) aTag

{

ptg

219Recipe: Naming Views

Recipe 6-3 Continued

return (UISwitch *)[self viewWithTag:aTag];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 6 and open the project for this recipe.

Recipe: Naming Views
Although tagging offers a thorough approach to identifying views, some developers may
prefer to work with names rather than numbers. Using names adds an extra level of mean-
ing to your view identification schemes. Instead of referring to “the view with a tag of
101,” a switch named “Ignition Switch” describes its role and adds a level of self-docu-
mentation missing from a plain number.

// Toggle switch

UISwitch *s = [self.view switchNamed:@”Ignition Switch”];

[s setOn:!s.isOn];

It’s relatively easy to design a class that associates strings with view tags.This custom class
needs to store a dictionary that matches names with tags, allowing views to register and
unregister those names. Recipe 6-4 shows how to build that view name manager, which
uses a singleton instance ([ViewIndexer sharedInstance]) to store its tag and name
dictionary.

The class demands unique names. If a view name is already registered, a new registra-
tion request will fail. If a view was already registered under another name, a second regis-
tration request will unregister the first name.There are ways to fool this of course. If you
change a view’s tag and then register it again, the indexer has no way of knowing that the
view had been previously registered. So if you decide to use this approach, set your tags in
Interface Builder or let the registration process automatically tag the view but otherwise
leave the tags be.

If you build your views by hand, register them at the same point you create them and
add them into your overall view hierarchy.When using an IB-defined view, register your
names in viewDidLoad using the tag numbers you set in the attributes inspector.

- (void) viewDidLoad

{

[[self.view viewWithTag:LABEL_TAG] registerName:@”my label”];

[[self.view viewWithTag:SWITCH_TAG] registerName:@”my switch”];

}

Recipe 6-4 hides the view indexer class from public view. It wraps its calls inside a UIView
category for name extensions.This allows you to register, retrieve, and unregister views
without using ViewIndexer directly. For reasons of space, the recipe omits typed name

http://github.com/erica/iphone-3.0-cookbook-

ptg

220 Chapter 6 Assembling Views and Animations

retrievals like labelNamed: and textFieldNamed:, but these are included in the sample
code for the chapter.

Recipe 6-4 Creating a View Name Manager

@interface ViewIndexer : NSObject {

NSMutableDictionary *tagdict;

NSInteger count;

}

@property (nonatomic, retain) NSMutableDictionary *tagdict;

@end

@implementation ViewIndexer

@synthesize tagdict;

static ViewIndexer *sharedInstance = nil;

+(ViewIndexer *) sharedInstance {

if(!sharedInstance) sharedInstance = [[self alloc] init];

return sharedInstance;

}

- (id) init

{

if (!(self = [super init])) return self;

self.tagdict = [NSMutableDictionary dictionary];

count = 10000;

return self;

}

- (void) dealloc

{

self.tagdict = nil;

[super dealloc];

}

// Pull a new number and increase the count

- (NSInteger) pullNumber

{

return count++;

}

// Check to see if name exists in dictionary

- (BOOL) nameExists: (NSString *) aName

{

return [self.tagdict objectForKey:aName] != nil;

}

ptg

221Recipe: Naming Views

Recipe 6-4 Continued

// Pull out first matching name for tag

- (NSString *) nameForTag: (NSInteger) aTag

{

NSNumber *tag = [NSNumber numberWithInt:aTag];

NSArray *names = [self.tagdict allKeysForObject:tag];

if (!names) return nil;

if ([names count] == 0) return nil;

return [names objectAtIndex:0];

}

// Return the tag for a registered name. 0 if not found

- (NSInteger) tagForName: (NSString *)aName

{

NSNumber *tag = [self.tagdict objectForKey:aName];

if (!tag) return 0;

return [tag intValue];

}

// Unregistering reverts tag to 0

- (BOOL) unregisterName: (NSString *) aName forView: (UIView *) aView

{

NSNumber *tag = [self.tagdict objectForKey:aName];

// tag not found

if (!tag) return NO;

// tag does not match registered name

if (aView.tag != [tag intValue]) return NO;

aView.tag = 0;

[self.tagdict removeObjectForKey:aName];

return YES;

}

// Register a new name. Names will not re-register. (Unregister first,

// please). If a view is already registered, it is unregistered and

// re-registered

- (NSInteger) registerName:(NSString *)aName forView: (UIView *) aView

{

// You cannot re-register an existing name

if ([[ViewIndexer sharedInstance] nameExists:aName]) return 0;

// Check to see if the view is named already. If so, unregister.

NSString *currentName = [self nameForTag:aView.tag];

if (currentName) [self unregisterName:currentName forView:aView];

ptg

222 Chapter 6 Assembling Views and Animations

Recipe 6-4 Continued

// Register the existing tag or pull a new tag if aView.tag is 0

if (!aView.tag) aView.tag = [[ViewIndexer sharedInstance]

pullNumber];

[self.tagdict setObject:[NSNumber numberWithInt:aView.tag]

forKey: aName];

return aView.tag;

}

@end

@implementation UIView (NameExtensions)

- (NSInteger) registerName: (NSString *) aName

{

return [[ViewIndexer sharedInstance] registerName: aName

forView: self];

}

- (BOOL) unregisterName: (NSString *) aName

{

return [[ViewIndexer sharedInstance] unregisterName: aName

forView:self];

}

- (UIView *) viewNamed: (NSString *) aName

{

NSInteger tag = [[ViewIndexer sharedInstance] tagForName: aName];

return [self viewWithTag: tag];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 6 and open the project for this recipe.

View Geometry
As you’d expect, geometry plays an important role when working with views. Geometry
defines where each view appears onscreen, what its size is, and how it is oriented.The
UIView class provides two built-in properties that define these aspects.

Every view uses a frame to define its boundaries.The frame specifies the outline of the
view: its location, width, and height. If you change a view’s frame, the view updates to
match the new frame. Use a bigger width and the view stretches. Use a new location and
the view moves.The view’s frame delineates each view’s onscreen outline.View sizes are
not limited to the screen size.A view can be smaller than the screen or larger. It can also
be smaller or larger than its parent.

http://github.com/erica/iphone-3.0-cookbook-

ptg

223View Geometry

Views also use a transform property that sets the view’s orientation and any geometric
transformations that have been applied to it. For example, a view might be stretched or
squashed by applying a transform, or it might be rotated away from vertical.Together the
frame and transform fully define a view’s geometry.

Frames
Frame rectangles use a CGRect structure, which is defined as part of the Core Graphics
framework as its CG prefix suggests.A CGRect is made up of an origin (a CGPoint, x and
y) and a size (a CGSize, width and height).When you create views, you normally allocate
them and initialize them with a frame, for example:

CGRect rect = CGRectMake(0.0f, 0.0f, 320.0f, 416.0f);

myView = [[UIView alloc] initWithFrame: rect];

The CGRectMake function creates a new rectangle using four parameters, the origin’s x
and y locations, the width of the rectangle, and its height. In addition to CGRectMake,
there are several other convenience functions you may want to be aware of that help you
work with rectangles and frames.

n NSStringFromCGRect(aCGRect) converts a CGRect structure to a formatted string.
This function makes it easy to log a view’s frame when you’re debugging.

n CGRectFromString(aString) recovers a rectangle from its string representation. It
proves useful when you’ve stored a view’s frame as a string in user defaults and want
to convert that string back to a CGRect.

n CGRectInset(aRect, xinset, yinset) enables you to create a smaller or larger
rectangle that’s centered on the same point as the source rectangle. Use a positive in-
set for smaller rectangles, negative for larger ones.

n CGRectIntersectsRect(rect1, rect2) lets you know whether rectangle struc-
tures intersect. Use this function to know when two rectangular onscreen objects
overlap.

n CGRectCreateDictionaryRepresentation(aRect) transforms a rectangle structure
into a standard CFDictionaryRef, also known (via the magic of toll-free bridging)
as (NSDictionary *) instances.Transform the dictionary back to a rectangle by us-
ing CGRectMakeWithDictionaryRepresentation(aDict, aRect).

n CGRectZero is a rectangle constant located at (0,0) whose width and height are
zero.You can use this constant when you’re required to create a frame but are still
unsure what that frame size or location will be at the time of creation.

The CGRect structure is made up of two substructures: CGPoint, which defines the rectan-
gle’s origin, and CGSize, which defines its bounds. Points refer to locations defined with x
and y coordinates; sizes have width and height. Use CGPointMake(x, y) to create points.
CGSizeMake(width, height) creates sizes.Although these two structures appear to be
the same (two floating-point values), the iPhone SDK differentiates between them. Points
refer to locations. Sizes refer to extents.You cannot set myFrame.origin to a size.

ptg

224 Chapter 6 Assembling Views and Animations

As with rectangles, you can convert them to and from strings:
NSStringFromCGPoint(), NSStringFromCGSize(), CGSizeFromString(), and
CGPointFromString() perform these functions.You can also transform points and sizes to
and from dictionaries.

Transforms
The iPhone supports standard affine transformations as part of its Core Graphics imple-
mentation.Affine transforms allow points in one coordinate system to transform into an-
other coordinate system.These functions are widely used in both 2D and 3D animations.
The version used in the iPhone SDK uses a 3-by-3 matrix to define UIView transforms,
making it a 2D-only solution.With affine transforms, you can scale, translate, and rotate
your views in real time.You do so by setting the view’s transform property, for example:

float angle = theta * (PI / 100);

CGAffineTransform transform = CGAffineTransformMakeRotation(angle);

myView.transform = transform;

The transform is always applied with respect to the view’s center. So when you apply a
rotation like this, the view rotates around its center. If you need to rotate around another
point, you must first translate the view, then rotate, and then return from that translation.

To revert any changes, set the transform property to the identity transform.This re-
stores the view back to the last settings for its frame.

myView.transform = CGAffineTransformIdentity;

Coordinate Systems
Views live in two worlds.Their frames are defined in the coordinate system of their par-
ents.Their bounds and subviews are defined in their own coordinate system.The iPhone
SDK offers several utilities that allow you move between these coordinate systems so long
as the views involved live within the same UIWindow.To convert a point from another
view into your own coordinate system, use convertPoint: fromView:, for example:

myPoint = [myView convertPoint:somePoint fromView:otherView];

If the original point indicated the location of some object, the new point retains that loca-
tion but gives the coordinates with respect to myView’s origin.To go the other way, use
convertPoint: toView: to transform a point into another view’s coordinate system.
Similarly, convertRect: toView: and convertRect: fromView: work with CGRect
structures rather than CGPoint ones.

Recipe: Working with View Frames
When you change a view’s frame, you update its size (i.e., its width and height) and its lo-
cation. For example, you might move a frame as follows.This code creates a subview lo-
cated at (0,0) and then moves it down 30 pixels to (0,30).

ptg

225Recipe: Working with View Frames

CGRect initialRect = CGRectMake(0.0f, 0.0f, 320.0f, 50.0f);

myView = [[UIView alloc] initWithFrame:initialRect];

[topView addSubview:myView];

myView.frame = CGRectMake(0.0f, 30.0f, 320.0f, 50.0f);

This approach is fairly uncommon.The iPhone SDK does not expect you to move a view
by changing its frame. Instead, it provides you with a way to update a view’s position.The
preferred way to do this is by setting the view’s center. Center is a built-in view property,
which you can access directly:

myView.center = CGPointMake(160.0f, 55.0f);

Although you’d expect the SDK to offer a way to move a view by updating its origin, no
such option exists. It’s easy enough to build your own class extension. Retrieve the view
frame, set the origin to the requested point, and then update the frame with change.This
snippet creates a new origin property letting you retrieve and change the view’s origin.

@interface UIView (ViewFrameGeometry)

@property CGPoint origin;

@end

@implementation UIView (ViewFrameGeometry)

- (CGPoint) origin

{

return self.frame.origin;

}

- (void) setOrigin: (CGPoint) aPoint

{

CGRect newframe = self.frame;

newframe.origin = aPoint;

self.frame = newframe;

}

@end

When you move a view, you don’t need to worry about things such as rectangular sections
that have been exposed or hidden.The iPhone takes care of the redrawing.This lets you
treat your views like tangible objects and delegate rendering issues to Cocoa Touch.

Adjusting Sizes
A view’s frame and bounds control its size. Frames, as you’ve already seen, define the loca-
tion of a view in its parent’s coordinate system. If the frame’s origin is set to (0, 30), the
view appears in the superview flush with the left side of the view and offset 30 pixels
from the top. Bounds define a view within its own coordinate system.That means the ori-
gin for a view’s bounds, that is, myView.bounds, is always (0,0), and its size matches its
normal extent, that is, the frame’s size property.

ptg

226 Chapter 6 Assembling Views and Animations

Change a view’s size onscreen by adjusting either its frame or its bounds. In practical
terms, you’re updating the size component of those structures.As with moving origins, it’s
simple to create your own utility method to do this directly.

- (void) setSize: (CGSize) aSize

{

CGRect newframe = self.frame;

newframe.size = aSize;

self.frame = newframe;

}

When a view’s size changes, the view itself updates live onscreen. Depending how the ele-
ments within the view are defined and the class of the view itself, subviews may shrink to
fit or they may get cropped.There’s no single rule that covers all circumstances. Interface
Builder’s size inspector offers interactive resizing options that define how subviews re-
spond to changes in a superview’s frame. See Chapter 4,“Designing Interfaces,” for more
details about laying out items in Interface Builder.

Sometimes, you need to resize a view before adding it to a new parent. For example,
you might have an image view to place into an alert.To fit that view into place without
changing its aspect ratio, you might use a method like this to ensure that both the height
and width scale appropriately.

- (void) fitInSize: (CGSize) aSize

{

CGFloat scale;

CGRect newframe = self.frame;

if (newframe.size.height > aSize.height)

{

scale = aSize.height / newframe.size.height;

newframe.size.width *= scale;

newframe.size.height *= scale;

}

if (newframe.size.width >= aSize.width)

{

scale = aSize.width / newframe.size.width;

newframe.size.width *= scale;

newframe.size.height *= scale;

}

self.frame = newframe;

}

ptg

227Recipe: Working with View Frames

CGRects and Centers
As you’ve seen, UIViews use CGRect structures composed of an origin and a size to de-
fine their frames.This structure contains no references to a center point.At the same time,
UIViews depend on their center property to update a view’s position when you move a
view to a new point. Unfortunately Core Graphics doesn’t use centers as a primary rec-
tangle concept.As far as centers are concerned, Core Graphics’ built-in utilities are limited
to recovering a rectangle’s midpoint along the X- or Y-axis.

You can bridge this gap by constructing functions that coordinate between the origin-
based CGRect struct and center-based UIView objects.This function retrieves the center
from a rectangle by building a point from the X- and Y- midpoints. It takes one argument,
a rectangle, and returns its center point.

CGPoint CGRectGetCenter(CGRect rect)

{

CGPoint pt;

pt.x = CGRectGetMidX(rect);

pt.y = CGRectGetMidY(rect);

return pt;

}

Moving a rectangle by its center point is another function that may prove helpful, and one
that mimics the way UIViews work. Say you need to move a view to a new position but
need to keep it inside its parent’s frame.To test before you move, you’d use a function like
this to offset the view frame to a new center.You could then test that offset frame against
the parent (use CGRectContainsRect()) and ensure that the view won’t stray outside its
container.

CGRect CGRectMoveToCenter(CGRect rect, CGPoint center)

{

CGRect newrect = CGRectZero;

newrect.origin.x = center.x-CGRectGetMidX(rect);

newrect.origin.y = center.y-CGRectGetMidY(rect);

newrect.size = rect.size;

return newrect;

}

Other Utility Methods
As you’ve seen, it’s convenient to expose a view’s origin and size in parallel to its center,
allowing you to work more natively with Core Graphics calls.You can build on this idea
to expose other properties of the view including its width and height, as well as basic
geometry like its left, right, top, and bottom points.

In some ways, this breaks Apple’s design philosophy.This exposes items that normally
fall into structures without reflecting the structures.At the same time, it can be argued that
these elements are true view properties.They reflect fundamental view characteristics and
deserve to be exposed as properties.

ptg

228 Chapter 6 Assembling Views and Animations

Recipe 6-5 provides a full view frame utility category for UIView, letting you make the
choice of whether to use these properties.

Recipe 6-5 UIView Frame Geometry Category

@interface UIView (ViewFrameGeometry)

@property CGPoint origin;

@property CGSize size;

@property (readonly) CGPoint bottomLeft;

@property (readonly) CGPoint bottomRight;

@property (readonly) CGPoint topRight;

@property CGFloat height;

@property CGFloat width;

@property CGFloat top;

@property CGFloat left;

@property CGFloat bottom;

@property CGFloat right;

- (void) moveBy: (CGPoint) delta;

- (void) scaleBy: (CGFloat) scaleFactor;

- (void) fitInSize: (CGSize) aSize;

@end

@implementation UIView (ViewGeometry)

// Retrieve and set the origin

- (CGPoint) origin

{

return self.frame.origin;

}

- (void) setOrigin: (CGPoint) aPoint

{

CGRect newframe = self.frame;

newframe.origin = aPoint;

self.frame = newframe;

}

// Retrieve and set the size

- (CGSize) size

{

return self.frame.size;

}

- (void) setSize: (CGSize) aSize

{

CGRect newframe = self.frame;

newframe.size = aSize;

self.frame = newframe;

}

ptg

229Recipe: Working with View Frames

Recipe 6-5 Continued

// Query other frame locations

- (CGPoint) bottomRight

{

CGFloat x = self.frame.origin.x + self.frame.size.width;

CGFloat y = self.frame.origin.y + self.frame.size.height;

return CGPointMake(x, y);

}

- (CGPoint) bottomLeft

{

CGFloat x = self.frame.origin.x;

CGFloat y = self.frame.origin.y + self.frame.size.height;

return CGPointMake(x, y);

}

- (CGPoint) topRight

{

CGFloat x = self.frame.origin.x + self.frame.size.width;

CGFloat y = self.frame.origin.y;

return CGPointMake(x, y);

}

// Retrieve and set height, width, top, bottom, left, right

- (CGFloat) height

{

return self.frame.size.height;

}

- (void) setHeight: (CGFloat) newheight

{

CGRect newframe = self.frame;

newframe.size.height = newheight;

self.frame = newframe;

}

- (CGFloat) width

{

return self.frame.size.width;

}

- (void) setWidth: (CGFloat) newwidth

{

CGRect newframe = self.frame;

newframe.size.width = newwidth;

ptg

230 Chapter 6 Assembling Views and Animations

Recipe 6-5 Continued

self.frame = newframe;

}

- (CGFloat) top

{

return self.frame.origin.y;

}

- (void) setTop: (CGFloat) newtop

{

CGRect newframe = self.frame;

newframe.origin.y = newtop;

self.frame = newframe;

}

- (CGFloat) left

{

return self.frame.origin.x;

}

- (void) setLeft: (CGFloat) newleft

{

CGRect newframe = self.frame;

newframe.origin.x = newleft;

self.frame = newframe;

}

- (CGFloat) bottom

{

return self.frame.origin.y + self.frame.size.height;

}

- (void) setBottom: (CGFloat) newbottom

{

CGRect newframe = self.frame;

newframe.origin.y = newbottom - self.frame.size.height;

self.frame = newframe;

}

- (CGFloat) right

{

return self.frame.origin.x + self.frame.size.width;

}

- (void) setRight: (CGFloat) newright

{

CGFloat delta = newright - (self.frame.origin.x + self.frame.size.width);

ptg

231Recipe: Randomly Moving a Bounded View

Recipe 6-5 Continued

CGRect newframe = self.frame;

newframe.origin.x += delta;

self.frame = newframe;

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 6 and open the project for this recipe.

Recipe: Randomly Moving a Bounded View
When you move a view to a random point, you must take into account several things. Of-
ten a view must fit entirely within its parent’s view container so there aren’t parts of the
view clipped off.You may also want to add a boundary to that container so the view does
not quite touch the parent’s edge at any time. Finally, if you’re working with out-of-the-
box SDK versions of the UIView class, you need to work with random centers, not ran-
dom positions, as discussed earlier in this chapter. Just picking a point somewhere in the
parent view fails some or all of these qualifications.

Recipe 6-6 approaches this problem by creating a series of insets. It uses the
UIEdgeInset structure to define the boundaries for the view.This structure contains
four inset values, corresponding to the amount to inset a rectangle at its top, left, bottom,
and right.

typedef struct {

CGFloat top, left, bottom, right;

} UIEdgeInsets;

This method uses the UIEdgeInsetsInsetRect() function to narrow a CGRect rectangle
to create an inner container, which is called innerRect in this method.

It then narrows the container even further. It insets that rectangle by half the child’s
height and width.This leaves enough room around any point in the subrectangle to allow
the placement of the child view, guaranteeing that the view can do so without overlap-
ping the inner bounded rectangle. Select any point in that subrectangle to return a valid
center for the child view.

Recipe 6-6 Randomly Moving a Bounded View

- (CGPoint) randomCenterInView: (UIView *) aView withInsets: (UIEdgeInsets) insets

{

// Move in by the inset amount and then by size of the subview

CGRect innerRect = UIEdgeInsetsInsetRect([aView bounds], insets);

CGRect subRect = CGRectInset(innerRect,

self.frame.size.width / 2.0f, self.frame.size.height / 2.0f);

http://github.com/erica/iphone-3.0-cookbook-

ptg

232 Chapter 6 Assembling Views and Animations

Recipe 6-6 Continued

// Return a random point

float rx = (float)(random() % (int)floor(subRect.size.width));

float ry = (float)(random() % (int)floor(subRect.size.height));

return CGPointMake(rx + subRect.origin.x, ry + subRect.origin.y);

}

- (CGPoint) randomCenterInView: (UIView *) aView

withInset: (float) inset

{

UIEdgeInsets insets = UIEdgeInsetsMake(inset, inset, inset, inset);

return [self randomCenterInView:aView withInsets:insets];

}

- (void) moveToRandomLocationInView: (UIView *) aView {

self.center = [self randomCenterInView:aView withInset:5];

return;

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 6 and open the project for this recipe.

Recipe: Transforming Views
Affine transforms enable you to change an object’s geometry by mapping that object from
one view coordinate system into another.The iPhone SDK fully supports standard affine
2D transforms.With them, you can scale, translate, rotate, and skew your views however
your heart desires and your application demands.

Transforms are defined in Core Graphics and consist of calls such as
CGAffineTransformMakeRotation and CGAffineTransformScale.These build and mod-
ify the 3-by-3 transform matrices. Once built, use UIView’s setTransform call to apply
2D affine transformations to UIView objects.

Recipe 6-7 demonstrates how to build and apply an affine transform of a UIView.To
create the sample, I kept things simple. I build an NSTimer that ticks every 1/30th of a sec-
ond. On ticking, it rotates a view by 1% of pi and scales over a cosine curve. I use the co-
sine’s absolute value for two reasons. It keeps the view visible at all times, and it provides a
nice bounce effect when the scaling changes direction.This produces a rotating bounce
animation.

This is one of those samples that it’s best to build and view as you read through the
code.You are better able to see how the handleTimer: method correlates to the visual ef-
fects you’re looking at.

http://github.com/erica/iphone-3.0-cookbook-

ptg

233Recipe: Transforming Views

Note
This recipe uses the standard C math library, which provides both the cosine function and
the M_PI constant.

Recipe 6-7 Example of an Affine Transform of a UIView

#import <math.h>

#define BARBUTTON(TITLE, SELECTOR) [[[UIBarButtonItem alloc]
➥initWithTitle:TITLE style:UIBarButtonItemStylePlain target:self action:SELECTOR]
➥autorelease]

@interface TestBedViewController : UIViewController

{

NSTimer *timer;

int theta;

}

@end

@implementation TestBedViewController

- (void) move: (NSTimer *) aTimer

{

// Rotate each iteration by 1% of PI

CGFloat angle = theta * (M_PI / 100.0f);

CGAffineTransform transform = CGAffineTransformMakeRotation(angle);

// Theta ranges between 0% and 199% of PI, i.e. between 0 and 2*PI

theta = (theta + 1) % 200;

// For fun, scale by the absolute value of the cosine

float degree = cos(angle);

if (degree < 0.0) degree *= -1.0f;

degree += 0.5f;

// Create add scaling to the rotation transform

CGAffineTransform scaled = CGAffineTransformScale(transform,

degree, degree);

// Apply the affine transform

[[self.view viewWithTag:999] setTransform:scaled];

}

- (void) start: (id) sender

{

// The timer is automatically retained by the runloop

// You can start and stop it without being the owner

// or messing with its retain count.

ptg

234 Chapter 6 Assembling Views and Animations

Recipe 6-7 Continued

timer = [NSTimer scheduledTimerWithTimeInterval:0.03f target:self

@selector(move:selector:) userInfo:nil repeats:YES];

[self move:nil];

self.navigationItem.rightBarButtonItem = BARBUTTON(@”Stop”,

@selector(stop:));

}

- (void) stop: (id) sender

{

[timer invalidate];

timer = nil;

self.navigationItem.rightBarButtonItem = BARBUTTON(@”Start”,

@selector(start:));

}

- (void) viewDidLoad

{

self.navigationItem.rightBarButtonItem = BARBUTTON(@”Start”,

@selector(start:));

UIImageView *imgView = [[UIImageView alloc] initWithImage:[UIImage

imageNamed:@”BflyCircle.png”]];

imgView.tag = 999;

imgView.center = CGPointMake(160.0f, 143.0f);

[self.view addSubview:imgView];

[imgView release];

timer = nil;

theta = 0;

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 6 and open the project for this recipe.

Centering Landscape Views
Use the same affine transform approach to center landscape-oriented views.This snippet
creates a 480-by-320 pixel view, centers it at [160, 240] (using portrait view coordinates),
and then rotates it into place. Half of pi corresponds to 90 degrees, creating a landscape-
right rotation. Centering keeps the entire view onscreen.All subviews, including text
fields, labels, switches, and so on rotate into place along with the parent view.

http://github.com/erica/iphone-3.0-cookbook-

ptg

235Display and Interaction Traits

#define PI 3.141592f

- (void)loadView

{

contentView = [[UIView alloc] initWithFrame:

CGRectMake(0.0f, 0.0f, 480.0f, 320.0f)];

[contentView setCenter:CGPointMake(160.0f, 240.0f)];

[contentView setBackgroundColor:[UIColor blackColor]];

[contentView setTransform:CGAffineTransformMakeRotation(PI/2.0f)];

self.view = contentView;

[contentView release];

}

For the most part, it’s far easier using UIViewControllers to work with reorientation
events than manually rotating and presenting views.Additionally, manual view rotation
does not change the status bar orientation nor the keyboard orientation. Chapter 4 dis-
cusses view controllers and reorientation in depth.

Display and Interaction Traits
In addition to physical screen layout, the UIView class provides properties that control how
your view appears onscreen and whether users can interact with it. Every view uses a
translucency factor (alpha) that ranges between opaque and transparent.Adjust this by is-
suing [myView setAlpha:value], where the alpha values falls between 0.0 (fully transpar-
ent) and 1.0 (fully opaque).This is a great way to hide views and to fade them in and out
onscreen.

You can assign a color to the background of any view. [myView setBackgroundColor:
[UIColor redColor]] colors your view red, for example.This property affects different
view classes in different ways depending on whether those views contain subviews that
block the background. Create a transparent background by setting the view’s background
color to clear (i.e. [UIColor clearColor]).

Every view, however, offers a background color property regardless of whether you can
see the background. Using bright, contrasting background colors is great way to visually
see the true extents of views.When you’re new to iPhone development, coloring in views
offers a concrete sense of what is and is not onscreen and where each component is
located.

The userInteractionEnabled property controls whether users can touch and interact
with a given view. For most views, this property defaults to YES. For UIImageView, it de-
faults to NO, which can cause a lot of grief among beginning developers.They often place
a UIImageView as their backsplash and don’t understand why their switches, text entry
fields, and buttons do not work. Make sure to enable the property for any view that needs
to accept touches, whether for itself or for its subviews, which may include buttons,
switches, pickers, and other controls. If you’re experiencing trouble with items that seem
unresponsive to touch, you should check the userInteractionEnabled property value
for that item and for its parents.

ptg

236 Chapter 6 Assembling Views and Animations

Disable this property for any display-only view you layer over your interaction area.To
show a noninteractive clock via a transparent full-screen view, unset interaction.This al-
lows touches to pass through the view and fall below to the actual interaction area of your
application.

UIView Animations
UIView animation provides one of the odd but lovely perks of working with the iPhone as
a development platform. It enables you to slow down changes when updating views, pro-
ducing smooth animated results that enhance the user experience. Best of all, this all oc-
curs without you having to do much work.

UIView animations are perfect for building a visual bridge between a view’s current and
changed states.With them, you emphasize visual change and create an animation that links
those changes together.Animatable changes include the following:

n Changes in location—Moving a view around the screen
n Changes in size—Updating the view’s frame and bounds
n Changes in stretching—Updating the view’s content stretch regions
n Changes in transparency—Altering the view’s alpha value
n Changes in states—Hidden versus showing
n Changes in view order—Altering which view is in front
n Changes in rotation—Or any other affine transforms that you apply to a view

Building UIView Animation Blocks
UIView animations work as blocks, that is, a complete transaction that progresses at once.
Start the block by issuing beginAnimations:context:. End the block with
commitAnimations. Send these class methods to UIView and not to individual views. In
the block between these two calls, you define the way the animation works and perform
the actual view updates.The animation controls you’ll use are as follows:

n beginAnimations:context—Marks the start of the animation block.
n setAnimationCurve—Defines the way the animation accelerates and deceler-

ates. Use ease-in/ease-out (UIViewAnimationCurveEaseInOut) unless you have
some compelling reason to select another curve.The other curve types are ease in
(accelerate into the animation), linear (no animation acceleration), and ease out (ac-
celerate out of the animation). Ease-in/ease-out provides the most natural-feeling
animation style.

n setAnimationDuration—Specifies the length of the animation, in seconds.
This is really the cool bit.You can stretch out the animation for as long as you need
it to run. Be aware of straining your user’s patience and keep your animations below
a second or two in length.As a point of reference, the keyboard animation, when it
slides on or offscreen, lasts 0.3 seconds.

n commitAnimations—Marks the end of the animation block.

ptg

237Recipe: Fading a View In and Out

Sandwich your actual view change commands after setting up the animation details and
before ending the animation.

CGContextRef context = UIGraphicsGetCurrentContext();

[UIView beginAnimations:nil context:context];

[UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];

[UIView setAnimationDuration:1.0];

// View changes go here

[contentView setAlpha:0.0f];

[UIView commitAnimations];

This snippet shows UIView animations in action by setting an animation curve and the
animation duration (here, one second).The actual change being animated is a transparency
update.The alpha value of the content view goes to zero, turning it invisible. Instead of
the view simply disappearing, this animation block slows down the change and fades it
out of sight. Notice the call to UIGraphicsGetCurrentContext(), which returns the
graphics context at the top of the current view stack.A graphics context provides a virtual
connection between your abstract drawing calls and the actual pixels on your screen (or
within an image).As a rule, you can pass nil for this argument without ill effect in the
latest SDKs.

Animation Callbacks
View animations can notify an optional delegate about state changes, namely that an ani-
mation has started or ended.This proves helpful when you need to catch the end of an
animation to start the next animation in a sequence.To set the delegate, use
setAnimationDelegate:, for example:

[UIView setAnimationDelegate:self];

To set up an end-of-animation callback, supply the selector sent to the delegate.

[UIView setAnimationDidStopSelector:@selector(animationDidStop:finished:context:)];

You see animation callbacks in action later in this chapter in Recipe 6-9, which animates
a view swap.

Recipe: Fading a View In and Out
At times, you want to add information to your screen that overlays your view but does
not of itself do anything. For example, you might show a top scores list or some instruc-
tions or provide a context-sensitive tooltip. Recipe 6-8 demonstrates how to use a UIView
animation block to fade a view into and out of sight.This recipe follows the most basic
animation approach. It creates a surrounding view animation block and then adds the sin-
gle line of code that sets the alpha property.

ptg

238 Chapter 6 Assembling Views and Animations

One thing this recipe does not do is wait for the animation to finish.The change in the
bar button item gets called as soon as the animations are committed, nearly a second be-
fore they end. If you tap the Fade In/Fade Out button quickly (you may want to slow the
animation duration to see this better), you discover that the new animation starts up, re-
placing the old one, creating a visual discontinuity.

To address this, you might want to add a call to UIView with setAnimationBegins

➥FromCurrentState:, setting the argument to YES.This tells the iPhone to use the
current state of the ongoing animation to start the next animation, avoiding that jump.

Recipe 6-8 Animating Transparency Changes to a View’s Alpha Property

@implementation TestBedViewController

- (void) fadeOut: (id) sender

{

CGContextRef context = UIGraphicsGetCurrentContext();

[UIView beginAnimations:nil context:context];

[UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];

[UIView setAnimationDuration:1.0];

[[self.view viewWithTag:999] setAlpha:0.0f];

[UIView commitAnimations];

self.navigationItem.rightBarButtonItem =
BARBUTTON(@”Fade In”,@selector(fadeIn:));

}

- (void) fadeIn: (id) sender

{

CGContextRef context = UIGraphicsGetCurrentContext();

[UIView beginAnimations:nil context:context];

[UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];

[UIView setAnimationDuration:1.0];

[[self.view viewWithTag:999] setAlpha:1.0f];

[UIView commitAnimations];

self.navigationItem.rightBarButtonItem =
BARBUTTON(@”Fade Out”,@selector(fadeOut:));

}

- (void) viewDidLoad

{

self.navigationItem.rightBarButtonItem =
BARBUTTON(@”Fade Out”,@selector(fadeOut:));

}

@end

ptg

239Recipe: Swapping Views

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 6 and open the project for this recipe.

Recipe: Swapping Views
The UIView animation block doesn’t limit you to a single change. Recipe 6-9 combines
size transformations with transparency changes to create a more compelling animation. It
does this by adding several directives at once to the animation block.This recipe performs
five actions at a time. It zooms and fades one view into place while zooming out and fad-
ing away another and then exchanges the two in the subview array list.

Notice how the viewDidLoad method prepares the back object for animation by
shrinking it and making it transparent.When the swap: method first executes, that view
will be ready to appear and zoom to size.

Unlike Recipe 6-8, this recipe does wait for the animation to finish by providing a del-
egate and a simplified callback that ignores the parameters of the default callback
invocation (animationDidStop:finished:context:). This code hides the bar button
after it is pressed and does not return it to view until the animation completes.

Recipe 6-9 Combining Multiple View Changes in Animation Blocks

- (void) animationFinished: (id) sender

{

self.navigationItem.rightBarButtonItem =

BARBUTTON(@"Swap",@selector(swap:));

}

- (void) swap: (id) sender

{

self.navigationItem.rightBarButtonItem = nil;

UIView *frontObject = [[self.view subviews] objectAtIndex:2];

UIView *backObject = [[self.view subviews] objectAtIndex:1];

CGContextRef context = UIGraphicsGetCurrentContext();

[UIView beginAnimations:nil context:context];

[UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];

[UIView setAnimationDuration:1.0];

frontObject.alpha = 0.0f;

backObject.alpha = 1.0f;

frontObject.transform = CGAffineTransformMakeScale(0.25f, 0.25f);

backObject.transform = CGAffineTransformIdentity;

[self.view exchangeSubviewAtIndex:1 withSubviewAtIndex:2];

http://github.com/erica/iphone-3.0-cookbook-

ptg

240 Chapter 6 Assembling Views and Animations

Recipe 6-9 Continued

[UIView setAnimationDelegate:self];

[UIView setAnimationDidStopSelector:@selector(animationFinished:)];

[UIView commitAnimations];

}

- (void) viewDidLoad

{

UIView *backObject = [self.view viewWithTag:998];

backObject.transform = CGAffineTransformMakeScale(0.25f, 0.25f);

backObject.alpha = 0.0f;

self.navigationItem.rightBarButtonItem = BARBUTTON(@”Swap”,@selector(swap:));

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 6 and open the project for this recipe.

Recipe: Flipping Views
Transitions extend UIView animation blocks to add even more visual flair.Two transitions—
UIViewAnimationTransitionFlipFromLeft and UIViewAnimationTransitionFlip

➥FromRight—do just what their names suggest.You can flip views left or flip views right
like the Weather and Stocks applications do. Recipe 6-10 demonstrates how to do this.

First, you add the transition as a block parameter. Use setAnimationTransition: to
assign the transition to the enclosing UIView animation block. Second, rearrange the view
order while inside the block.This is best done with exchangeSubviewAtIndex:
➥withSubviewAtIndex:. Recipe 6-10 creates a simple flip view using these techniques.

What this code does not show you is how to set up your views. UIKit’s flip transition
more or less expects a black background to work with.And the transition needs to be per-
formed on a parent view while exchanging that parent’s two subviews. Figure 6-3 reveals
the view structure used with this recipe.

Here, you see a black and white backdrop, both using the same frame.The white back-
drop contains the two child views, again using identical frames.When the flip occurs, the
white backdrop “turns around,” as shown in Figure 6-4, to reveal the second child view.

Do not confuse the UIView animation blocks with the Core Animation CATransition
class. Unfortunately, you cannot assign a CATransition to your UIView animation.To use
a CATransition, you must apply it to a UIView’s layer, which is discussed next.

http://github.com/erica/iphone-3.0-cookbook-

ptg

241Recipe: Flipping Views

Recipe 6-10 Using Transitions with UIView Animation Blocks

@interface FlipView : UIImageView

@end

@implementation FlipView

- (void) touchesEnded:(NSSet*)touches withEvent:(UIEvent*)event

{

// Start Animation Block

CGContextRef context = UIGraphicsGetCurrentContext();

[UIView beginAnimations:nil context:context];

[UIView setAnimationTransition:

UIViewAnimationTransitionFlipFromLeft

forView:[self superview] cache:YES];

[UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];

[UIView setAnimationDuration:1.0];

// Animations

[[self superview] exchangeSubviewAtIndex:0 withSubviewAtIndex:1];

// Commit Animation Block

[UIView commitAnimations];

}

@end

Figure 6-3 Use two backdrops when building a
flip transition.

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 6 and open the project for this recipe.

http://github.com/erica/iphone-3.0-cookbook-

ptg

242 Chapter 6 Assembling Views and Animations

Figure 6-4 Create a black backdrop when using
flip transition animations.

Recipe: Using Core Animation Transitions
In addition to UIView animations, the iPhone supports Core Animation as part of its
QuartzCore framework.The Core Animation API offers highly flexible animation solu-
tions for your iPhone applications. Specifically, it offers built-in transitions that offer the
same kind of view-to-view changes you’ve been reading about in the previous recipe.

Core Animation Transitions expand your UIView animation vocabulary with just a few
small differences in implementation. CATransitions work on layers rather than on views.
Layers are the Core Animation rendering surfaces associated with each UIView.When
working with Core Animation, you apply CATransitions to a view’s default layer ([myView
layer]) rather than the view itself.

With these transitions, you don’t set your parameters through UIView the way you do
with UIView animation.You create a Core Animation object, set its parameters, and then
add the parameterized transition to the layer.

CATransition *animation = [CATransition animation];

animation.delegate = self;

animation.duration = 1.0f;

animation.timingFunction = UIViewAnimationCurveEaseInOut;

animation.type = kCATransitionMoveIn;

animation.subtype = kCATransitionFromTop;

// Perform some kind of view exchange or removal here

[myView.layer addAnimation:animation forKey:@"move in"];

ptg

243Recipe: Using Core Animation Transitions

Animations use both a type and a subtype.The type specifies the kind of transition used.
The subtype sets its direction.Together the type and subtype tell how the views should act
when you apply the animation to them.

Core Animation Transitions are distinct from the UIViewAnimationTransitions dis-
cussed in previous recipes. Cocoa Touch offers four types of Core Animation transitions,
which are highlighted in Recipe 6-11.These available types include cross fades, pushes
(one view pushes another offscreen), reveals (one view slides off another), and covers (one
view slides onto another).The last three types enable you to specify the direction of mo-
tion for the transition using their subtypes. For obvious reasons, cross fades do not have a
direction and they do not use subtypes.

Because Core Animation is part of the QuartzCore framework, you must add the
Quartz Core framework to your project and import <QuartzCore/QuartzCore.h> into
your code when using these features.

Note
Apple’s Core Animation features 2D and 3D routines built around Objective-C classes. These
classes provide graphics rendering and animation for your iPhone and Macintosh applica-
tions. Core Animation avoids many low-level development details associated with, for exam-
ple, direct OpenGL while retaining the simplicity of working with hierarchical views.

Recipe 6-11 Animating Transitions with Core Animation

- (void) animate: (id) sender

{

// Set up the animation

CATransition *animation = [CATransition animation];

animation.delegate = self;

animation.duration = 1.0f;

animation.timingFunction = UIViewAnimationCurveEaseInOut;

switch ([(UISegmentedControl *)self.navigationItem.titleView

selectedSegmentIndex])

{

case 0:

animation.type = kCATransitionFade;

break;

case 1:

animation.type = kCATransitionMoveIn;

break;

case 2:

animation.type = kCATransitionPush;

break;

ptg

244 Chapter 6 Assembling Views and Animations

Recipe 6-11 Continued

case 3:

animation.type = kCATransitionReveal;

default:

break;

}

if (isLeft)

animation.subtype = kCATransitionFromRight;

else

animation.subtype = kCATransitionFromLeft;

// Perform the animation

UIView *whitebg = [self.view viewWithTag:10];

NSInteger purple = [[whitebg subviews] indexOfObject:[whitebg

viewWithTag:99]];

NSInteger white = [[whitebg subviews] indexOfObject:[whitebg

viewWithTag:100]];

[whitebg exchangeSubviewAtIndex:purple withSubviewAtIndex:white];

[[whitebg layer] addAnimation:animation forKey:@”animation”];

// Allow or disallow user interaction (otherwise you can

// touch “through” the cover view to enable/disable the switch)

if (purple < white)

[self.view viewWithTag:99].userInteractionEnabled = YES;

else

[self.view viewWithTag:99].userInteractionEnabled = NO;

isLeft = !isLeft;

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 6 and open the project for this recipe.

Recipe: General Core Animation Calls
The iPhone provides partial support for Core Animation calls. By partial, I mean that
some standard classes are missing in action, although they’re slowly showing up as the
iPhone SDK evolves. Core Image’s CIFilter is one such class. It’s not included in Cocoa
Touch, although the CALayer and CATransition classes are both filter-aware. If you’re
willing to work through these limits, you can freely use standard Core Animation calls in
your programs.

Recipe 6-12 shows iPhone native Core Animation code based on a sample from Lucas
Newman (http://lucasnewman.com).When run, this method scales down and fades away
the contents of a UIImageView.

http://github.com/erica/iphone-3.0-cookbook-
http://lucasnewman.com

ptg

245Recipe: General Core Animation Calls

This code remains virtually unchanged from the Mac OS X sample it was based on. More
complex Core Animation samples may offer porting challenges, but for simple reflections,
shadows, and transforms, all the functionality you need can be had at the native iPhone level.

Recipe 6-12 Using Standard Core Animation Calls on the iPhone

- (void) action: (id) sender

{

self.navigationItem.rightBarButtonItem = nil;

UIView *theView = [self.view viewWithTag:101];

[CATransaction begin];

[CATransaction setValue: [NSNumber numberWithFloat: 8.0f]

forKey:kCATransactionAnimationDuration];

// scale it down

CABasicAnimation *shrinkAnimation = [CABasicAnimation

animationWithKeyPath:@"transform.scale"];

shrinkAnimation.delegate = self;

shrinkAnimation.timingFunction = [CAMediaTimingFunction

functionWithName:kCAMediaTimingFunctionEaseIn];

shrinkAnimation.toValue = [NSNumber numberWithFloat:0.0];

[[theView layer] addAnimation:shrinkAnimation

forKey:@"shrinkAnimation"];

// fade it out

CABasicAnimation *fadeAnimation = [CABasicAnimation

animationWithKeyPath:@"opacity"];

fadeAnimation.toValue = [NSNumber numberWithFloat:0.0];

fadeAnimation.timingFunction = [CAMediaTimingFunction

functionWithName:kCAMediaTimingFunctionEaseIn];

[[theView layer] addAnimation:fadeAnimation

forKey:@"fadeAnimation"];

// make it jump a couple of times with a keyframe animation

CAKeyframeAnimation *positionAnimation = [CAKeyframeAnimation

animationWithKeyPath:@"position"];

CGMutablePathRef positionPath =

CGAutorelease(CGPathCreateMutable());

CGPathMoveToPoint(positionPath, NULL,

[theView layer].position.x, [theView layer].position.y);

CGPathAddQuadCurveToPoint(positionPath, NULL,

[theView layer].position.x, - [theView layer].position.y,

[theView layer].position.x, [theView layer].position.y);

CGPathAddQuadCurveToPoint(positionPath, NULL,

[theView layer].position.x, - [theView layer].position.y *

1.5, [theView layer].position.x, [theView layer].position.y);

CGPathAddQuadCurveToPoint(positionPath, NULL,

[theView layer].position.x, - [theView layer].position.y *

ptg

246 Chapter 6 Assembling Views and Animations

Recipe 6-12 Continued

2.0, [theView layer].position.x, [theView layer].position.y);

positionAnimation.path = positionPath;

positionAnimation.timingFunction = [CAMediaTimingFunction

functionWithName:kCAMediaTimingFunctionEaseIn];

// Add the animation

[[theView layer] addAnimation:positionAnimation

forKey:@”positionAnimation”];

[CATransaction commit];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 6 and open the project for this recipe.

Curl Transitions
The previous two recipes introduced two important concepts: UIView animation transi-
tions and Core Animation transitions.These approaches allow you to animate the way
your application moves from displaying one view to showing another. In addition to the
two flip transitions, the UIView class supports a pair of curl transitions, namely
UIViewAnimationTransitionCurlUp and UIViewAnimationTransitionCurlDown.These
curl-based transitions offer another way to change views, in this case curling up the view
until the new view gets revealed. Figure 6-5 shows the page curl in action.

Figure 6-5 Using UIView curl animations

http://github.com/erica/iphone-3.0-cookbook-

ptg

247Curl Transitions

You build and apply the animation the same way you did with the built-in flip transition.
Apply the transition to a backdrop that owns the two views you want to animate and
exchange those views.Table 6-1 lists the transitions available on the iPhone.

CGContextRef context = UIGraphicsGetCurrentContext();

[UIView beginAnimations:nil context:context];

[UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];

[UIView setAnimationDuration:1.0];

// Apply the animation to the backdrop

UIView *whiteBackdrop = [self.view viewWithTag:100];n

[UIView setAnimationTransition: UIViewAnimationTransitionCurlUp

forView:whiteBackdrop cache:YES];

// Exchange the two foreground views

NSInteger purple = [[whiteBackdrop subviews]

indexOfObject:[whiteBackdrop viewWithTag:999]];

NSInteger maroon = [[whiteBackdrop subviews]

indexOfObject:[whiteBackdrop viewWithTag:998]];

[whiteBackdrop exchangeSubviewAtIndex:purple

withSubviewAtIndex:maroon];

[UIView commitAnimations];

Table 6-1 Cocoa Touch Transitions

Transition Key Usage

UIViewAnimationTransition

➥FlipFromLeft

UIView transition that flips from left to right,
replacing the old view with the new.

UIViewAnimationTransition

➥FlipFromRight

UIView transition that flips from right to left, hiding
the old view, revealing the new.

UIViewAnimationTransition

➥CurlUp

UIView transition that curls up from the bottom to
reveal the new view.

UIViewAnimationTransition

➥CurlDown

UIView transition where the new view curls down
onto the old view.

kCATransitionFade Core Animation cross fade transition where the new
view fades into place and the old one fades out.

kCATransitionMoveIn Core Animation transition where the new view moves
in over the old view, as if a piece of paper were being
pushed over. Use with up, down, left, and right styles.

kCATransitionPush Core Animation transition where the new view
pushes the old view out of the way. Can be used with
up, down, left, and right styles.

kCATransitionReveal Core Animation transition pulls the old view out of
the way to reveal the new underneath. Works with
up, down, left, and right styles.

ptg

248 Chapter 6 Assembling Views and Animations

Recipe: Bouncing Views as They Appear
Apple often uses two animation blocks one called after another finishes to add bounce
to their animations. For example, they might zoom into a view a bit more than needed
and then use a second animation to bring that enlarged view down to its final size. Us-
ing “bounces” adds a little more life to your animation sequences, adding an extra physi-
cal touch.

When calling one animation after another, be sure that the animations do not overlap.
There are two “standard” ways to create sequential UIView animation blocks without us-
ing CAKeyframeAnimation. (Core Animation keyframe animation is the preferred and
more straightforward approach to doing this and is demonstrated later in this chapter.)

Neither of these is ideal; they create a bit of a programming nightmare, as control needs
to keep moving between methods. Standard solutions include adding a delay so that the
second animation does not start until the first ends (performSelector:withObject:
afterDelay:) and assigning an animation delegate callback (animationDidStop:
finished:context:) or, if you ignore the callback arguments, a simpler method like
animationFinished:) to catch the end of the first animation before starting the second.

From a simple programming point of view, it’s a lot easier to build an animation that
blocks until it finishes. Listing 6-2 does exactly that. It extends the UIView class to intro-
duce a new class method called commitModalAnimations.You call this instead of
commitAnimations. It creates a new runloop, running it until the animation finishes.This
ensures that the commitModalAnimations method does not return control to the calling
method until the animation completes.With this extension, you can place blocks sequen-
tially in your code and need no further work to avoid overlaps.

Listing 6-2 Creating a Modal Animation by Using a Run Loop

@interface UIView (ModalAnimationHelper)

+ (void) commitModalAnimations;

@end

@interface UIViewDelegate : NSObject

{

CFRunLoopRef currentLoop;

}

@end

@implementation UIViewDelegate

-(id) initWithRunLoop: (CFRunLoopRef)runLoop

{

if (self = [super init]) currentLoop = runLoop;

return self;

}

ptg

249Recipe: Bouncing Views as They Appear

Listing 6-2 Continued

-(void) animationFinished: (id) sender

{

CFRunLoopStop(currentLoop);

}

@end

@implementation UIView (ModalAnimationHelper)

+ (void) commitModalAnimations

{

CFRunLoopRef currentLoop = CFRunLoopGetCurrent();

UIViewDelegate *uivdelegate = [[UIViewDelegate alloc]

initWithRunLoop:currentLoop];

[UIView setAnimationDelegate:uivdelegate];

[UIView setAnimationDidStopSelector:@selector(animationFinished:)];

[UIView commitAnimations];

CFRunLoopRun();

[uivdelegate release];

}

@end

This modal approach allows you to create the bounced presentation demonstrated in
Recipe 6-13. Here, each animation block ends with the modal commit.That method’s
runloop prevents the next block from starting until the previous block finishes.

Recipe 6-13 Bouncing Views

- (void) animate: (id) sender

{

// Hide the bar button and show the view

self.navigationItem.rightBarButtonItem = nil;

[self.view viewWithTag:101].alpha = 1.0f;

// Bounce to 115% of the normal size

[UIView beginAnimations:nil context:UIGraphicsGetCurrentContext()];

[UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];

[UIView setAnimationDuration:0.4f];

[self.view viewWithTag:101].transform =

CGAffineTransformMakeScale(1.15f, 1.15f);

[UIView commitModalAnimations];

// Return back to 100%

[UIView beginAnimations:nil context:UIGraphicsGetCurrentContext()];

ptg

250 Chapter 6 Assembling Views and Animations

Recipe 6-13 Continued

[UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];

[UIView setAnimationDuration:0.3f];

[self.view viewWithTag:101].transform =

CGAffineTransformMakeScale(1.0f, 1.0f);

[UIView commitModalAnimations];

// Pause for a second and appreciate the presentation

[NSThread sleepUntilDate:[NSDate

dateWithTimeIntervalSinceNow:1.0f]];

// Slowly zoom back down and hide the view

[UIView beginAnimations:nil context:UIGraphicsGetCurrentContext()];

[UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];

[UIView setAnimationDuration:1.0f];

[self.view viewWithTag:101].transform =

CGAffineTransformMakeScale(0.01f, 0.01f);

[UIView commitModalAnimations];

[self.view viewWithTag:101].alpha = 0.0f;

// Restore the bar button

self.navigationItem.rightBarButtonItem = BARBUTTON(@"Bounce",

@selector(animate:));

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 6 and open the project for this recipe.

Recipe: Image View Animations
In addition to displaying static pictures, the UIImageView class supports built-in anima-
tion.After loading an array of images, you can tell instances to animate them. Recipe 6-14
shows you how.

Start by creating an array populated by individual images loaded from files and assign
this array to the UIImageView instance’s animationImages property. Set the
animationDuration to the total loop time for displaying all the images in the array.
Finally, begin animating by sending the startAnimating message. (There’s a matching
stopAnimating method available for use as well.)

Once you add the animating image view into your interface, you can place it into a
single location, or you can animate it just as you could animate any other UIView instance.

http://github.com/erica/iphone-3.0-cookbook-

ptg

251One More Thing: Adding Reflections to Views

Recipe 6-14 Using UIImageView Animation

NSMutableArray *bflies = [NSMutableArray array];

// Load the butterfly images

for (int i = 1; i <= 17; i++)

[bflies addObject:[UIImage imageWithContentsOfFile:

[[NSBundle mainBundle]

pathForResource: [NSString stringWithFormat:@"bf_%d", i]

ofType:@"png"]]];

// Create the view

UIImageView *butterflyView = [[UIImageView alloc]

initWithFrame:CGRectMake(40.0f, 300.0f, 60.0f, 60.0f)];

// Set the animation cells, and duration

butterflyView.animationImages = bflies;

butterflyView.animationDuration = 0.75f;

[butterflyView startAnimating];

// Add the view to the parent and release

[self.view addSubview:butterflyView];

[butterflyView release];

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 6 and open the project for this recipe.

One More Thing: Adding Reflections to Views
Reflections enhance the reality of onscreen objects.They provide a little extra visual spice
beyond the views-floating-over-a-backsplash, which prevails as the norm. Reflections
aren’t hard to implement, depending on how particular you want the results to be.

The simplest reflections involve nothing more than a flipped copy of the original view
and, perhaps, adjusting the reflection’s alpha levels to offer a more ethereal presentation.
Listing 6-3 shows a basic Core Animation-based reflection that copies the view into a
new layer, flips it via a scale transform, and displaces it a set distance. Figure 6-6 shows this
kind of basic reflection in action.

With this approach, the reflection layer travels with the view.When you move the
view, the reflection moves with it.

Listing 6-3 Creating Reflections

const CGFloat kReflectPercent = -0.25f;

const CGFloat kReflectOpacity = 0.3f;

const CGFloat kReflectDistance = 10.0f;

+ (void) addSimpleReflectionToView: (UIView *) theView

{

http://github.com/erica/iphone-3.0-cookbook-

ptg

252 Chapter 6 Assembling Views and Animations

Figure 6-6 A basic Core Animation reflection
uses scaling, transparency, and a slight vertical

offset.

Listing 6-3 Continued

CALayer *reflectionLayer = [CALayer layer];

reflectionLayer.contents = [theView layer].contents;

reflectionLayer.opacity = kReflectOpacity;

reflectionLayer.frame = CGRectMake(0.0f, 0.0f,

theView.frame.size.width, theView.frame.size.height *

kReflectPercent);

CATransform3D stransform = CATransform3DMakeScale(1.0f, -1.0f,

1.0f);

CATransform3D transform = CATransform3DTranslate(stransform, 0.0f,

-(kReflectDistance + theView.frame.size.height), 0.0f);

reflectionLayer.transform = transform;

reflectionLayer.sublayerTransform = reflectionLayer.transform;

[[theView layer] addSublayer:reflectionLayer];

}

Better Reflections
Although full-size reflections work well in simple interfaces, a better reflection fades away
at its bottom.This provides a slicker, more “Apple-y” presentation. Core Graphics func-
tions allow you to create these flipped, masked reflections shown in Figure 6-7.

ptg

253One More Thing: Adding Reflections to Views

This solution comes admittedly at a slightly higher cost than the basic solution from
Listing 6-3.The faded-reflection solution, which you can see in Listing 6-4, relies on
copying the view contents to a shortened bitmap and applying a gradient-based mask.
These results, which are returned as a UIImage, are added to the original view as a new
UIImageView. Using this subview approach provides another simple solution that allows
the reflection to stick to its parent.

To make this reflection effect work, it’s vital that you disable view clipping. Set the
view’s clipsToView to NO.That ensures the parent view won’t clip away the reflection; it
remains completely viewable, even those parts that fall outside the parent’s bounds.

Listing 6-4 Masking Reflections with Core Graphics

+ (CGImageRef) createGradientImage: (CGSize)size

{

CGFloat colors[] = {0.0, 1.0, 1.0, 1.0};

// Create gradient in gray device color space

CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceGray();

CGContextRef context = CGBitmapContextCreate(nil, size.width,

size.height, 8, 0, colorSpace, kCGImageAlphaNone);

CGGradientRef gradient =

CGGradientCreateWithColorComponents(colorSpace, colors,

Figure 6-7 Masking away the bottom of a re-
flected image creates a more Apple-like reflection.

ptg

254 Chapter 6 Assembling Views and Animations

Listing 6-4 Continued

NULL, 2);

CGColorSpaceRelease(colorSpace);

// Draw the linear gradient

CGPoint p1 = CGPointZero;

CGPoint p2 = CGPointMake(0, size.height);

CGContextDrawLinearGradient(context, gradient, p1, p2,

kCGGradientDrawsAfterEndLocation);

// Return the CGImage

CGImageRef theCGImage = CGBitmapContextCreateImage(context);

CFRelease(gradient);

CGContextRelease(context);

return theCGImage;

}

// Create a shrunken frame for the reflection

+ (UIImage *) reflectionOfView: (UIView *)theView

withPercent: (CGFloat) percent

{

// Retain the width but shrink the height

CGSize size = CGSizeMake(theView.frame.size.width,

theView.frame.size.height * percent);

// Shrink the view

UIGraphicsBeginImageContext(size);

CGContextRef context = UIGraphicsGetCurrentContext();

[theView.layer renderInContext:context];

UIImage *partialimg =

UIGraphicsGetImageFromCurrentImageContext();

UIGraphicsEndImageContext();

// build the mask

CGImageRef mask = [ImageHelper createGradientImage:size];

CGImageRef ref = CGImageCreateWithMask(partialimg.CGImage, mask);

UIImage *theImage = [UIImage imageWithCGImage:ref];

CGImageRelease(ref);

CGImageRelease(mask);

return theImage;

}

const CGFloat kReflectDistance = 10.0f;

+ (void) addReflectionToView: (UIView *) theView

{

theView.clipsToBounds = NO;

ptg

255Summary

Listing 6-4 Continued

UIImageView *reflection = [[UIImageView alloc] initWithImage:

[ImageHelper reflectionOfView:theView withPercent: 0.45f]];

CGRect frame = reflection.frame;

frame.origin = CGPointMake(0.0f, theView.frame.size.height +

kReflectDistance);

reflection.frame = frame;

// add the reflection as a simple subview

[theView addSubview:reflection];

[reflection release];

}

Summary
UIViews provide the onscreen components your users see and interact with.As this chap-
ter showed, even in their most basic form, they offer incredible flexibility and power.You
discovered how to use views to build up elements on a screen, retrieve views by tag or
name, and introduce eye-catching animation. Here’s a collection of thoughts about the
recipes you saw in this chapter that you might want to ponder before moving on:

n When dealing with multiple onscreen views, hierarchy should always remain in
your mind. Use your view hierarchy vocabulary (bringSubviewToFront:,
sendSubviewToBack:, exchangeSubviewAtIndex:withSubviewAtIndex:) to take
charge of your views and always present the proper visual context to your users.

n Don’t let the Core Graphics frame/UIKit center dichotomy stand in your way.
Use functions that help you move between these structures to produce the results
you need.

n Make friends with tags.They provide immediate access to views in the same way
that your program’s symbol table provides access to variables.

n Animate everything.Animations don’t have to be loud, splashy, or bad design.The
iPhone’s strong animation support enables you to add smooth transitions between
user tasks.The essence of the iPhone experience is subtle, smooth transitions. Short,
smooth, focused changes are the iPhone’s bread and butter.

ptg

This page intentionally left blank

ptg

7
Working with Images

On the iPhone, images and views play two distinct roles. Unlike views, images have
no onscreen presence.Although views can use and display images, they are not
themselves images, not even UIImageView objects.This chapter introduces

images, specifically the UIImage class, and teaches you all the basic know-how you need
for working with iPhone images.You learn how to load, store, and modify image data in
your applications.You see how to add images to views and how to convert views into
images.You discover how to process image data to create special effects, how to access
images on a byte-by-byte basis, and how to take photos with your iPhone’s built-in camera.

Recipe: Finding and Loading Images
iPhone images are generally stored in one of four places.These four sources allow you to
access image data and display that data in your programs.These sources include the photo
album, the application bundle, the sandbox, and the Internet:

n Photo album—The iPhone’s photo album contains both a camera roll (for camera-
able units) and photos synced from the user’s computer.Users can request images
from this album using the interactive dialog supplied by the UIImagePicker

➥Controller class.The dialog lets users browse through stored photos and select the
image they want to work with.

n Application bundle—Your application bundle may store images along with your
application executable, Info.plist file, and other resources.You can read these bun-
dle-based images using their local file paths and display them in your application.

n Sandbox—Your application can also write image files into your sandbox and read
them back as needed.The sandbox lets you store files to the Documents, Library,
and tmp folders. Each of these folders is readable by your application, and you can
create new images by supplying a file path.Although parts of the iPhone outside
the sandbox are technically readable,Apple has made it clear that these areas are off-
limits for App Store applications.

n Internet—Your application can download images from the Net using URL
resources to point to web-based files.To make this work, the iPhone needs an active

ptg

258 Chapter 7 Working with Images

web connection, but once connected the data from a remote image is just as acces-
sible as data stored locally.

Reading Image Data
An image’s file location controls how you can read its data.You’d imagine that you could
just use a method like UIImage’s imageWithContentsOfFile: to load all four types. In
reality, you cannot. Photo album pictures and their paths are (at least officially) hidden
from direct application access. Only end users are allowed to browse and choose images,
making the chosen image available to the application. Images also cannot be directly ini-
tialized with URLs, although this is easy to work around. Here’s a roundup that discusses
how to read data from each source type with details on doing so.

Loading Images from the Application Bundle
The UIImage class offers a simple method that loads any image stored in the application
bundle. Call imageNamed: with a filename, including its extension, for example:

myImage = [UIImage imageNamed:@"icon.png"];

This method looks for an image with the supplied name in the top-level folder of the
application bundle. If found, the image loads and is cached by the iPhone system.That
means the image is (theoretically) memory managed by that cache.

In reality, the imageNamed: method cannot be used as freely as that.The image cache
does not, in fact, respond properly to memory warnings and release its objects.This isn’t a
problem for simple applications. It’s not a problem for small images that get reused over
and over within an application. It is a huge problem, however, for large apps that must
carefully allocate and release memory with little room to spare. In response to the built-in
cache issues, many developers have chosen to design their own image caches as demon-
strated in the sample code in Chapter 2,“Building Your First Project.”

Substitute imageWithContentsOfFile: for imageNamed:This method returns an
image loaded from the path supplied as an argument.To retrieve an image path from the
bundle, query the NSBundle class to find the path for a given resource.This snippet loads
icon.png from the top level of the application bundle. Notice how the filename and file
extension are supplied as separate arguments.

NSString *path = [[NSBundle mainBundle]

pathForResource:@"icon" ofType:@"png"];

myImage = [UIImage imageWithContentsOfFile:path];

Note
The iPhone supports the following image types: PNG, JPG, THM, JPEG, TIF, TIFF, GIF, BMP,
BMPF, ICO, CUR, XBM, and PDF.

Loading Images from the Sandbox
By default, each sandbox contains three folders: Documents, Library, and tmp.Application-
generated data such as images normally reside in the Documents folder.This folder does
exactly what the name suggests.You store documents to and access them from this

ptg

Recipe: Finding and Loading Images 259

directory. Apple recommends you keep file data here that is created by or browsed from
your program.

The Library folder stores user defaults and other state information for your program.
The tmp folder provides a place to create transient files on-the-fly. Unlike tmp, files in
Documents and Library are not transient. iTunes backs up all Documents and Library files
whenever the iPhone syncs. In contrast the iPhone discards any tmp files when it reboots.

These directories demonstrate one of the key differences between Macintosh and
iPhone programming.You’re free to use both standard and nonstandard file locations on
the Macintosh.The iPhone with its sandbox is far more structured—rigidly so by Apple’s
dictates; its files appear in better-defined locations. On the Macintosh, locating the Docu-
ments folder usually means searching the user domain.This is the standard way to locate
Documents folders:

NSArray *paths = [NSSearchPathForDirectoriesInDomains(

NSDocumentDirectory, NSUserDomainMask, YES);

return [paths lastObject];

The iPhone is more constrained.You can reliably locate the top sandbox folder by calling
a utility home directory function.The result of NSHomeDirectory() lets you navigate
down one level to Documents with full assurance of reaching the proper destination.The
following function provides a handy way to return a path to the Documents folder.

NSString *documentsFolder()

{

return [NSHomeDirectory()

stringByAppendingPathComponent:@"Documents"];

}

To load your image, append its filename to the returned path and tell UIImage to create a
new image with those contents.This code loads a file named image.png from the top level
of the documents folder and returns a UIImage instance initialized with that data.

path = [documentsFolder() stringByAppendingPathComponent:@"image.png"];

return [UIImage imageWithContentsOfFile:path];

Loading Images from URLs
The UIImage class can load images from NSData instances, but it cannot do so directly
from URL strings or NSURL objects. So supply UIImage with data already downloaded
from a URL.This snippet downloads the latest United States weather map from
weather.com and then creates a new image using the weather data. First, it constructs an
NSURL object, and then creates an NSData instance initialized with the contents of that
URL.The data returned helps build the UIImage instance.

NSURL *url = [NSURL URLWithString:

@"http://image.weather.com/images/maps/current/curwx_600x405.jpg"];

UIImage *img = [UIImage imageWithData:

[NSData dataWithContentsOfURL:url]];

ptg

Chapter 7 Working with Images260

It’s easy enough to write a method that handles this process for you, letting you supply a
URL string to retrieve a UIImage.This method takes one argument, a URL string, and
returns a UIImage built from that resource.

+ (UIImage *) imageFromURLString: (NSString *) urlstring

{

// This call is synchronous and blocking

return [UIImage imageWithData:[NSData

dataWithContentsOfURL:[NSURL URLWithString:urlstring]]];

}

This is a synchronous method, with certain drawbacks. It may fail without feedback and
doesn’t have a built-in time-out. See Chapter 13,“Networking,” for an in-depth discus-
sion about retrieving resources from URLs.

Loading Data from the Photo Album
The UIImagePickerController class helps users select images from the iPhone photo
album. It provides a stand-alone view controller that you present modally.The controller
sends back delegate messages reflecting the image choice made by the user.

Loading Image Files
Recipe 7-1 introduces a class that will be used throughout this chapter, namely
ImageHelper.This helper class provides handy image routines.All routines are imple-
mented as class methods, letting you avoid allocating an actual ImageHelper object. Just
query the class to retrieve the results you need.

ImageHelper’s version of imageNamed: loads files using UIImage’s imageWithContents
➥OfFile: method, avoiding the caching hazards of the native imageNamed: method.The
method searches through the application bundle first, and then if the file is not found,
performs a second search in the sandbox documents folder. Both searches are deep.They
exhaustively descend through all subfolders.The search ends upon finding the first match
or when the completed search is unsuccessful.

Recipe 7-1’s imageFromURLString: method implements an image retrieval request
from a URL as discussed earlier in this section. No checks are done here to test whether
the unit is currently connected to the Internet. If you need to add such checks, use a per-
sistent Wi-Fi flag in Info.plist (see Appendix A,“Info.plist Keys”) or perform a connection
test (see Chapter 13,“Networking”).

Recipe 7-1 Loading Image Files Using ImageHelper

NSString *documentsFolder()

{

// Return the sandbox documents folder

return [NSHomeDirectory()

ptg

Recipe: Finding and Loading Images 261

stringByAppendingPathComponent:@"Documents"];

}

NSString *bundleFolder()

{

// Return the app bundle folder

return [[NSBundle mainBundle] bundlePath];

}

@implementation ImageHelper (Files)

+ (NSString *) pathForItemNamed: (NSString *) fname

inFolder: (NSString *) path

{

// Return a complete path for the named item

NSString *file;

NSDirectoryEnumerator *dirEnum =

[[NSFileManager defaultManager] enumeratorAtPath:path];

while (file = [dirEnum nextObject])

if ([[file lastPathComponent] isEqualToString:fname])

return [path stringByAppendingPathComponent:file];

return nil;

}

// Searches bundle first then documents folder

+ (UIImage *) imageNamed: (NSString *) aName

{

// Return a UIImage for the named item

NSString *path = [ImageHelper pathForItemNamed:aName

inFolder:bundleFolder()];

path = path ? path : [ImageHelper pathForItemNamed:aName

inFolder:documentsFolder()];

if (!path) return nil;

return [UIImage imageWithContentsOfFile:path];

}

+ (UIImage *) imageFromURLString: (NSString *) urlstring

{

// Download the image located at the URL

// This method is blocking

NSURL *url = [NSURL URLWithString:urlstring];

if (!url) return nil;

return [UIImage imageWithData:

[NSData dataWithContentsOfURL: url]];

}

ptg

Chapter 7 Working with Images262

Figure 7-1 Apple supplies several prebuilt
albums, including this trip to Slovenia, for

in-simulator testing.

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 7 and open the project for this recipe.

Recipe: Accessing Photos from the iPhone
Photo Album
The UIImagePickerController class offers a highly specialized interface with relatively
few public methods and some modest quirks. It’s designed to operate solely as a modal
dialog, and it has its own navigation controller built in. If you push it onto an existing
navigation controller-based view scheme, it adds a second navigation bar below the first.
That means that although you can use it with a tab bar and as an independent view sys-
tem, you can’t really push it onto an existing navigation stack and have it look right.

Recipe 7-2 shows the picker in its simplest mode. It enables users to select an image
from any of the onboard albums; this operation is seen in Figure 7-1. Set the picker to use
any of the legal source types.The three kinds of sources follow.

n UIImagePickerControllerSourceTypePhotoLibrary—All images
synced to the iPhone plus any camera roll including pictures snapped by the user

http://github.com/erica/iphone-3.0-cookbook-

ptg

Recipe: Accessing Photos from the iPhone Photo Album 263

n UIImagePickerControllerSourceTypeSavedPhotosAlbum—Also
called the camera roll

n UIImagePickerControllerSourceTypeCamera—Allows users to shoot
pictures with the built-in iPhone camera

Working with the Image Picker
Recipe 7-2 follows a basic work path. Select an album, select an image, display the
selected image, and then repeat.This simple flow works because there’s no image editing
involved.That’s because the picker’s image editing property defaults to NO.This property,
which is allowsImageEditing for SDKs prior to 3.1, and allowsEditing for the 3.1
SDK and later, tells the image picker whether to allow users to frame and stretch an
image.When disabled, any selection (basically any image tap) redirects control to the
UIImagePickerControllerDelegate object via the finished picking image method.

The delegate for an image picker must conform to two protocols, namely
UINavigationControllerDelegate and UIImagePickerControllerDelegate. Be sure to
declare these in the interface for the object you set as the picker delegate.

This recipe includes not one but two callbacks, a 3.x version and a 2.x version. If you
intend to deploy your software to both 2.x and 3.x systems, increasing your user base to
the highest audience possible, your code must respond to callbacks for both OS versions.
That’s because the 2.x callback has been deprecated in 3.0.

Adding 2.x Support
For simple image selection, 2.x support proves trivial.The 2.x callback redirects to the 3.x
one, passing a constructed dictionary with the selected image.As you see in Recipe 7-3,
that callback redirection becomes a little more complicated when the image picker returns
editing information.

The image sent by the delegate method is basically guaranteed to be non-nil, although
you can add a check in the 2.x method before attempting to construct a dictionary.
Should the user cancel, the delegate receives an imagePickerControllerDidCancel:
callback.When users cancel, the picker automatically dismisses and is released.

You can see this, along with the general memory consuming behavior of the image
picker, by running Instruments; the memory levels return down after cancelling.When
you choose to implement this callback (Apple describes it as optional but “expected”),
make sure to dismiss and release the controller manually.

For nontrivial applications, make sure you’ve implemented memory management in
your program and can respond to memory warnings when using the image picker. It’s a
memory hog in any of its basic forms: image picking or camera use.

Adding 3.1 Support
The allowsImageEditing property was deprecated in the 3.1 SDK.At the time of writing
this book, it remains available for use in your applications. It will likely remain so for a
while but not forever. Deprecated methods may disappear without warning in future SDKs.

ptg

Chapter 7 Working with Images264

If you plan to deploy to a mix of firmware, both earlier than 3.1 as well as 3.1 and
later, make sure to check whether your image picker instances respond to
setAllowsImageEditing: and/or setAllowsEditing:. Use the NSObject
respondsToSelector: method to test.

Note
The NSObject utility category at http://github.com/erica addresses this issue by scanning
through a list of selectors until it finds one that an object can respond to. See the sample
code that accompanies the category for examples of use.

Picking Video
Despite its name, the UIImagePickerController is not limited to picking images.You
can configure it to select both images and videos from your onboard media library. See
Chapter 15,“Audio, Video, and MediaKit,” for details on configuring the picker’s media
types.You’ll also read about selecting, recording, and editing video resources.

Recipe 7-2 Simple UIImagePickerController Image Selection

#define SETIMAGE(X) [(UIImageView *)self.view setImage:X];

@interface TestBedViewController : UIViewController
➥<UINavigationControllerDelegate, UIImagePickerControllerDelegate>

@end

@implementation TestBedViewController

// 3.x callback

- (void) imagePickerController:(UIImagePickerController *)picker

didFinishPickingMediaWithInfo:(NSDictionary *)info

{

SETIMAGE([info objectForKey:

@"UIImagePickerControllerOriginalImage"]);

[self dismissModalViewControllerAnimated:YES];

[picker release];

}

// 2.x callback, which redirects to 3.x callback

- (void)imagePickerController:(UIImagePickerController *)picker

didFinishPickingImage:(UIImage *)image

editingInfo:(NSDictionary *)editingInfo

{

NSDictionary *dict = [NSDictionary dictionaryWithObject:image

forKey:@"UIImagePickerControllerOriginalImage"];

[self imagePickerController:picker

didFinishPickingMediaWithInfo:dict];

}

http://github.com/erica

ptg

Recipe: Selecting and Customizing Images from the Camera Roll

// Optional but "expected" dismiss

- (void) imagePickerControllerDidCancel:

(UIImagePickerController *)picker

{

[self dismissModalViewControllerAnimated:YES];

[picker release];

}

// Present the image picker

- (void) pickImage: (id) sender

{

UIImagePickerController *ipc = [[UIImagePickerController alloc]

init];

ipc.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;

ipc.delegate = self;

ipc.allowsImageEditing = NO; // allowsEditing in 3.1

[self presentModalViewController:ipc animated:YES];

}

- (void) viewDidLoad

{

self.navigationItem.rightBarButtonItem = BARBUTTON(@"Pick",

@selector(pickImage));

self.title = @"Image Picker";

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 7 and open the project for this recipe.

Recipe: Selecting and Customizing Images from
the Camera Roll
Recipe 7-3 extends image picker interaction to add user-controlled edits.To enable image
editing in a UIImagePickerController, set the allowsImageEditing (3.0 and earlier) or
allowsEditing (3.1 and later) property to YES.This allows users to scale and position
images after selection, or in the case of camera shots, after snapping a photo.You can see
this editor in action on the iPhone when using the Set Wallpaper feature of Settings.
Figure 7-2 shows the post-selection editor for the 3.x and 2.x firmware.

This window allows users to move and scale the image as desired. Pinching and
unpinching changes the image scale. Dragging resets the image origin.

265

http://github.com/erica/iphone-3.0-cookbook-

ptg

Chapter 7 Working with Images266

Figure 7-2 The interactive image editor allows users to move, scale, and
choose their final presentation. The 3.x editor appears on the left, the 2.x

editor on the right. As the left image shows, the words “Move and Scale” do
not always appear, even when the iPhone is in edit mode.

When the user taps Choose, control moves to the picker delegate, and your program picks
up from there. Something different happens when users tap Cancel. Control returns to the
album view, allowing the user to select another image and start over.

Recovering Image Edit Information
The 3.x callback returns a dictionary containing information about the selected image.
The info dictionary returned by the 3.x firmware contains four keys that provide access to
important dictionary data:

n UIImagePickerControllerMediaType—Defines the kind of media
selected by the user, normally public.image. Media types are defined in the
UTCoreTypes.h header file, which is part of the Mobile Core Services framework
and is new to 3.0. Media types are primarily used for adding items to the system
pasteboard.

n UIImagePickerControllerCropRect—Returns the section of the image
selected by the user. Oddly enough, this returns as an NSRect, a data type equivalent
to CGRect but more normally used on the Macintosh rather than the iPhone.

n UIImagePickerControllerOriginalImage—Stores a UIImage instance
with the original (nonedited) image contents.

ptg

Recipe: Selecting and Customizing Images from the Camera Roll 267

n UIImagePickerControllerEditedImage—Provides the edited version of
the image, containing the portion of the picture selected by the user.The UIImage
returned is small, sized to fit the iPhone screen.

When working with 2.x firmware, the delegate method imagePickerController:

didFinishPickingImage: editingInfo: returns the edited version of the image as its
second argument.This image reflects the scaling and translation specified by the user.
The third argument, the editingInfo dictionary, contains the copy of the original
image and the rectangle that represents the image cropping. Recipe 7-3 provides 2.x
compliance by adding the edited image into the info dictionary and passing that to the
3.x delegate method.

Note
To populate the camera roll on the iPhone simulator, locate the mobile user file system in
~/Library/Application Support/iPhone Simulator/User. Navigate down to Media/DCIM and
copy a 100APPLE folder from a real iPhone to that folder. Make sure to copy both the JPG
images and the small THM thumbnail files.

Recipe 7-3 Allowing Users to Edit Selected Images

- (void)imagePickerController:(UIImagePickerController *)picker

didFinishPickingMediaWithInfo:(NSDictionary *)info

{

CFShow(info); // review the info dictionary

SETIMAGE([info objectForKey:

@"UIImagePickerControllerEditedImage"]);

[self dismissModalViewControllerAnimated:YES];

[picker release];

}

// Provide 2.x compliance

- (void)imagePickerController:(UIImagePickerController *)picker

didFinishPickingImage:(UIImage *)image

editingInfo:(NSDictionary *)editingInfo

{

NSMutableDictionary *dict = [NSMutableDictionary

dictionaryWithDictionary:editingInfo];

[dict setObject:image

forKey:@"UIImagePickerControllerEditedImage"];

[self imagePickerController:picker

didFinishPickingMediaWithInfo:dict];

}

- (void) pickImage: (id) sender

{

ptg

Chapter 7 Working with Images268

// Present the photo library image picker

UIImagePickerController *ipc = [[UIImagePickerController alloc]

init];

ipc.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;

ipc.delegate = self;

ipc.allowsImageEditing = YES; // allowsEditing 3.1 and later

[self presentModalViewController:ipc animated:YES];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 7 and open the project for this recipe.

Recipe: Snapping Photos and Writing Them to
the Photo Album
Recipes 7-2 and 7-3 showed how to select and edit images using the image picker con-
troller. Recipe 7-4 introduces a different mode, snapping photos with the iPhone’s built-in
camera.The image picker lets users shoot a picture and decide whether to use that image.
Because cameras are not available on all iPhone units (specifically, the first generations of
the iPod touch), begin by checking whether the system running the application supports
camera usage.This snippet checks for a camera, limiting access to the “Snap” button.

if ([UIImagePickerController isSourceTypeAvailable:

UIImagePickerControllerSourceTypeCamera])

self.navigationItem.rightBarButtonItem =

BARBUTTON(@"Snap", @selector(snapImage));

else

showAlert(CAMERA_NOT_AVAILABLE_STRING);

As with other modes, you can allow or disallow image editing as part of the photo-capture
process. One feature the camera interaction brings that has no parallel is the Preview
screen.This displays after the user taps the camera icon, which is shown in Figure 7-3.The
Preview screen lets users retake the photo or use the photo as is. On tapping Use (or Use
Photo under 2.x), control passes to the next phase. If you’ve enabled image editing, the
user can do so next. If not, control moves to the standard “did finish picking” method.

The sample code that accompanies this recipe assigns the returned image to the
UIImageView that forms the application background. Notice that just a part of the image
is shown.That’s because the captured picture is much larger than the iPhone screen.
Recipes for resizing a large image follow later in this chapter.

This code also saves the snapped image to the photo album by calling
UIImageWriteToSavedPhotosAlbum().This function can save any image, not just those
from the onboard camera. Its second and third arguments specify a callback target and
selector.The selector must take three arguments itself, as shown in Recipe 7-4; these are

http://github.com/erica/iphone-3.0-cookbook-

ptg

Recipe: Snapping Photos and Writing Them to the Photo Album

Figure 7-3 After pressing the snap button (Camera icon, left), the Preview
screen lets users chose whether to use or retake the image.

an image, an error, and a pointer to context information. Photos snapped from applica-
tions do not contain geotagging information.

Recipe 7-4 Snapping Images with the Onboard Camera

- (void) snapImage: (id) sender

{

// Present the camera interface

UIImagePickerController *ipc = [[UIImagePickerController alloc]

init];

ipc.sourceType = UIImagePickerControllerSourceTypeCamera;

ipc.delegate = self;

ipc.allowsImageEditing = NO; // allowsEditing in 3.1

[self presentModalViewController:ipc animated:YES];

}

- (void)image:(UIImage *)image didFinishSavingWithError:

(NSError *)error contextInfo:(void *)contextInfo;

{

// Handle the end of the image write process

if (!error)

showAlert(@"Image written to photo album");

else

showAlert(@"Error writing to photo album: %@",

269

ptg

Chapter 7 Working with Images270

[error localizedDescription]);

}

- (void) imagePickerController:(UIImagePickerController *)picker

didFinishPickingMediaWithInfo:(NSDictionary *)info

{

// Recover the snapped image

UIImage *image = [info

objectForKey:@"UIImagePickerControllerOriginalImage"];

SETIMAGE(image);

// Save the image to the album

UIImageWriteToSavedPhotosAlbum(image, self,

@selector(imagedidFinishSavingWithError:contextInfo:), nil);

[self dismissModalViewControllerAnimated:YES];

[picker release];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 7 and open the project for this recipe.

Recipe: Saving Pictures to the Documents Folder
Each UIImage can convert itself into JPEG or PNG data.Two built-in UIKit functions
produce the necessary NSData from UIImage instances.These functions are
UIImageJPEGRepresentation() and UIImagePNGRepresentation().The JPEG version
takes two arguments—the image and a compression quality that ranges from 0.0 (lowest
quality, maximum compression) to 1.0 (highest quality, minimum compression).The PNG
version takes one argument—the image.

To write the image to file, use the NSData object that is returned by either function
and call the writeToFile: atomically: method.This stores the image data to a path
that you specify. Setting the second argument to YES ensures that the entire file gets writ-
ten before being placed into that path.This guarantees that you won’t have to handle the
consequences of partial writes.

Recipe 7-5 uses an image picker controller to select items already in the iPhone
library.The code stores whatever item was selected to the application’s Documents folder
in the sandbox.The findUniqueSavePath method defined in the recipe returns a unique
name. It searches until it generates a name that does not match an existing file.The picker
delegate method uses that name to save the image.

At the end of the callback, a list of files is printed to the debugging console.This allows
you to see which items have been created, which is handy when you’re running this
recipe on an iPhone device rather than in the simulator.

File-writing speed varies. On the simulator, it runs very fast. On older, first generation
iPhones, it may proceed far more slowly especially for full-size photos that have been

http://github.com/erica/iphone-3.0-cookbook-

ptg

Recipe: Saving Pictures to the Documents Folder

snapped by the camera. Saving a photo may take up to 5 or 10 seconds, which is a good
time to display an ongoing activity alert like the one used in Recipe 7-11 later in this
chapter.

Recipe 7-5 Saving Images to File

// Return a unique save path in the Documents folder

- (NSString *) findUniqueSavePath

{

int i = 1;

NSString *path;

do {

// iterate until a name does not match an existing file

path = [NSString stringWithFormat:

@"%@/Documents/IMAGE_%04d.PNG", NSHomeDirectory(), i++];

} while ([[NSFileManager defaultManager] fileExistsAtPath:path]);

return path;

}

- (void)imagePickerController:(UIImagePickerController *)picker

didFinishPickingMediaWithInfo:(NSDictionary *)info

{

// Retrieve the selected image

UIImage *image = [info objectForKey:

@"UIImagePickerControllerOriginalImage"];

[self dismissModalViewControllerAnimated:YES];

[picker release];

// Write it to file

[UIImageJPEGRepresentation(image, 1.0f) writeToFile:

[self findUniqueSavePath] atomically:YES];

// Set the background

SETIMAGE(image);

// Show the current contents of the documents folder

CFShow([[NSFileManager defaultManager]

directoryContentsAtPath:[NSHomeDirectory()

stringByAppendingString:@"/Documents"]]);

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 7 and open the project for this recipe.

271

http://github.com/erica/iphone-3.0-cookbook-

ptg

Chapter 7 Working with Images272

Recipe: E-Mailing Pictures
New to the 3.0 SDK, the Message UI framework allows users to compose e-mail directly
within applications.Add this to your applications by setting up and initializing instances of
MFMailComposeViewController. Recipe 7-6 shows you how to set up a composition
view and initialize its contents.

The mail composition controller operates in a similar fashion to the image picker con-
troller.Your primary view controller presents it as a modal controller and waits for results
via a delegate callback. Make sure to declare the MFMailComposeViewController
➥Delegate protocol and implement the single callback that is responsible for dismissing
the controller. Be sure to give the image picker time to finish shutting down before pre-
senting the composition controller.

Set the composition controller’s mostly optional properties to build the message.The
subject and bodies are defined via setSubject: and setMessageBody:.These methods
take strings as their arguments. Creating the attachment requires slightly more work.

To add an attachment, you need to provide all the file components expected by the
mail client. Supply data (via an NSData object), a MIME type (a string), and a filename
(another string). Retrieve the image data using the same UIImageJPEGRepresentation()
function discussed in Recipe 7-5. Like that recipe, this function takes some time, often
several seconds, to work. So expect a delay before the message view appears.

This example uses a MIME type of image/jpeg. If you want to send other data types,
search on the Internet for the proper MIME representations.The receiving e-mail uses the
file name you specify to store the data you send. Use any arbitrary name you like.

Recipe 7-6 Sending Images by E-Mail

- (void)mailComposeController:(MFMailComposeViewController*)controller

didFinishWithResult:(MFMailComposeResult)result

error:(NSError*)error

{

// Dismiss the e-mail controller once the user is done

[self dismissModalViewControllerAnimated:YES];

}

- (void) emailImage: (UIImage *) image

{

// Requires 3.0 or later, set the base SDK accordingly

if ([MFMailComposeViewController canSendMail])

{

// Customize the e-mail

MFMailComposeViewController *mcvc =

[[[MFMailComposeViewController alloc] init] autorelease];

mcvc.mailComposeDelegate = self;

[mcvc setSubject:@"Here’s a great photo!"];

NSString *body = @"<h1>Check this out</h1>\

<p>I selected this image from the\

ptg

Recipe: Capturing Time Lapse Photos 273

<code>UIImagePickerController</code>.</p>";

[mcvc setMessageBody:body isHTML:YES];

[mcvc addAttachmentData:UIImageJPEGRepresentation(image, 1.0f)

mimeType:@"image/jpeg" fileName:@"pickerimage.jpg"];

// Present the e-mail composition controller

[self presentModalViewController:mcvc animated:YES];

}

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 7 and open the project for this recipe.

Recipe: Capturing Time Lapse Photos
There are times that you just want to use the camera to take a quick shot without user
interaction. For example, you might write a utility that does time lapse photography as
you’re biking, or you may want to build an application that builds stop motion animation.
Recipe 7-7 demonstrates how to achieve this by using new 3.1 SDK features with the
camera from the UIImagePickerController.

Two 3.1 API changes enable this kind of capture.The showsCameraControls property
allows you to hide the normal camera GUI, presenting a full-screen camera preview
instead. Set this property to NO.

ipc.showsCameraControls = NO;

To programmatically capture an image rather than depend on user input, call the
takePicture method.This begins the photo acquisition process, just as if a user had
pressed the snap button.When the photo is ready, the picker sends the
imagePickerController:didFinishPickingMediaWithInfo: callback to its delegate.
You cannot capture another picture until after this method is called.

Recipe 7-7 takes a series of three pictures, one after another. It saves each image to the
photo album and then snaps the next shot. Each image is a full-resolution photo, taking
up 2 or 3 megabytes of memory each.You could easily add a timer to space out the pho-
tos for longer delays.

When using the iPhone in a dock to snap photos over a long period of time, make sure
to disable the UIApplication’s idle timer as follows.This code ensures that the device will
not sleep even though a user has not interacted with it for a while.

[UIApplication sharedApplication].idleTimerDisabled = YES;

Note
Consider combining Recipe 7-7’s time-lapse photography with Recipe 13-11’s Twitpic
uploader to create a security camera system with a spare iPhone.

http://github.com/erica/iphone-3.0-cookbook-

ptg

Chapter 7 Working with Images274

Recipe 7-7 Time Lapse Photos

@implementation TestBedViewController

- (void)image:(UIImage *)image

didFinishSavingWithError:(NSError *)error

contextInfo:(void *)contextInfo;

{

// Respond to the file save results

if (!error)

NSLog(@"Image written to photo album");

else

NSLog(@"Error writing to photo album: %@",

[error localizedDescription]);

// Take three photos and then stop

if (count++ == 3)

{

[self dismissModalViewControllerAnimated:YES];

[ipc release];

ipc = nil;

}

else [ipc takePicture];

}

- (void) imagePickerController:(UIImagePickerController *)picker

didFinishPickingMediaWithInfo:(NSDictionary *)info

{

// Save snapped image to photo album

UIImage *image = [info objectForKey:

@"UIImagePickerControllerOriginalImage"];

UIImageWriteToSavedPhotosAlbum(image, self,

@selector(imagedidFinishSavingWithError:contextInfo:), nil);

}

- (void) snapImage: (id) sender

{

count = 0; // will take a total of 3 snaps

// initialize the image picker

ipc = [[UIImagePickerController alloc] init];

ipc.sourceType = UIImagePickerControllerSourceTypeCamera;

ipc.delegate = self;

ipc.allowsEditing = NO;

ipc.showsCameraControls = NO;

[self presentModalViewController:ipc animated:YES];

ptg

Recipe: Using a Custom Camera Overlay 275

// Wait for camera set up and then snap a picture

[NSTimer scheduledTimerWithTimeInterval:2.0f target:ipc

selector:@selector(takePicture) userInfo:nil repeats:NO];

}

- (void) viewDidLoad

{

if ([UIImagePickerController isSourceTypeAvailable:

UIImagePickerControllerSourceTypeCamera])

self.navigationItem.rightBarButtonItem =

BARBUTTON(@"Snap", @selector(snapImage));

else

showAlert(@"This demo relies on camera access.");

self.title = @"Image Picker";

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 7 and open the project for this recipe.

Recipe: Using a Custom Camera Overlay
With the 3.1 firmware, you can now add custom overlays to the camera interface. Use this
feature to create a GUI that floats over the live camera preview.You can add buttons and
other user interface controls to snap photographs and dismiss the controller. Figure 7-4
shows a rudimentary overlay with two buttons: one for snapping a photo, the other (the
small circled “X”) for dismissing the image picker controller.

The light gray bar behind the Snap button was added in Interface Builder when laying
out the overlay. In Figure 7-4, this bar sits partway in the image area and partway in the
black control area, which is left blank for your use.

Set the overlay by assigning a view to the picker’s cameraOverlayView property and
hide the normal controls.When you present the picker, the custom overlay, not the built-
in one, appears.

Another 3.1 feature, the cameraViewTransform property, provides a way to change
how the camera view is shown. Recipe 7-8 uses this property to spin the preview while
an image is being saved. In normal use, this property comes in handy for videoconferenc-
ing should Apple ever release a front-mounted iPhone or (more likely) iPod camera.

Recipe 7-8 highlights these two features and demonstrates how to use them in your
iPhone applications.

http://github.com/erica/iphone-3.0-cookbook-

ptg

Chapter 7 Working with Images276

Figure 7-4 Snapping photos with a custom
image picker overlay.

Recipe 7-8 Custom Camera Overlays and Transforms

@implementation TestBedViewController

- (void)image:(UIImage *)image didFinishSavingWithError:

(NSError *)error contextInfo:(void *)contextInfo;

{

// Respond to the file save success

if (!error)

NSLog(@"Image written to photo album");

else

NSLog(@"Error writing to photo album: %@",

[error localizedDescription]);

// Restore the picker controller standards

overlay.alpha = 1.0f;

[timer invalidate];

ipc.cameraViewTransform = CGAffineTransformIdentity;

}

- (void) imagePickerController:(UIImagePickerController *)picker

didFinishPickingMediaWithInfo:(NSDictionary *)info

{

// Retrieve and save the image

UIImage *image = [info objectForKey:

@"UIImagePickerControllerOriginalImage"];

UIImageWriteToSavedPhotosAlbum(image, self,

ptg

Recipe: Using a Custom Camera Overlay 277

@selector(imagedidFinishSavingWithError:contextInfo:), nil);

}

- (void) rotate

{

// Rotate the camera view

ipc.cameraViewTransform =

CGAffineTransformMakeRotation(2.0f*M_PI*((float)count/100.0f));

count = (count + 10) % 100;

}

- (void) snap: (id) sender

{

// Prepare to snap a photo

overlay.alpha = 0.0f;

[ipc takePicture];

count = 0;

timer = [NSTimer scheduledTimerWithTimeInterval:0.1f

target:self selector:@selector(rotate) userInfo:nil

repeats:YES];

}

- (void) dismiss: (id) sender

{

// Dismiss the image picker interface

[self dismissModalViewControllerAnimated:YES];

[ipc release];

ipc = nil;

}

- (void) takePics: (id) sender

{

// Create and present the image picker interface

ipc = [[UIImagePickerController alloc] init];

ipc.sourceType = UIImagePickerControllerSourceTypeCamera;

ipc.delegate = self;

ipc.allowsEditing = NO;

ipc.showsCameraControls = NO;

ipc.cameraOverlayView = overlay;

[self presentModalViewController:ipc animated:YES];

}

- (void) viewDidLoad

{

if ([UIImagePickerController

isSourceTypeAvailable:

UIImagePickerControllerSourceTypeCamera])

self.navigationItem.rightBarButtonItem =

BARBUTTON(@"Camera", @selector(takePics));

ptg

Chapter 7 Working with Images278

else

showAlert(@"This demo relies on camera access.");

self.title = @"Image Picker";

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 7 and open the project for this recipe.

Recipe: Displaying Images in a Scrollable View
Image display is all about memory.Treat large and small image display as separate prob-
lems.The UIWebView class easily handles memory-intense data.You might load a larger
image into a web view using a method like this.This approach works well with bulky
PDF images. UIWebViews offer a complete package of image presentation including built-
in scrolling and resizing.

- (void) loadImageIntoWebView: (NSString *) path

{

// Automatically fit the image to the view

self.webView.scalesPageToFit = YES;

// Load the image by creating a request

NSURL *fileURL = [NSURL fileURLWithPath:path];

NSURLRequest *request = [NSURLRequest requestWithURL:fileURL];

[self.webView loadRequest:request];

}

With smaller images, say less than half a megabyte in size when compressed, you can load
them directly to UIImageViews and add them to your interface.Apple recommends that
UIImage images never exceed 1024-by-1024 pixels due to memory concerns.

The problem with basic image views is that they are static. Unlike web views, they do
not respond to user scrolls and pinches. Embedding into a UIScrollView solves this prob-
lem. Scroll views provide those user interactions, allowing users to manipulate any image
placed on the scroll view surface.

Recipe 7-9 demonstrates how to do this. It adds a scroll view to the interface and a
weather map to the scroll view, as shown in Figure 7-5.Then it calculates a pair of mini-
mum values based on the core size of the image, namely the least degree of zoom that
allows the image to be fully seen in the scroll view. It assigns this value to the scroll view’s
minimumZoomScale.The maximum scale is set, arbitrarily to three times the image size.
These settings allow full user interaction with the image while limiting that interaction to
a reasonable scope.

The delegate method shown in the recipe identifies which view responds to zooming.
For this recipe, that corresponds to the single image view placed onto the scroll view.

http://github.com/erica/iphone-3.0-cookbook-

ptg

Recipe: Displaying Images in a Scrollable View

Figure 7-5 This live weather map is downloaded
from a World Wide Web URL and layered onto a
scroll view that allows users to scale and pan

through the image.

Scroll views do not automatically know anything about any subviews you add to them.
Defining this delegate method binds the zoom to your image.

Note
As with other views, you can set a UIImageView’s properties in Interface Builder. IB’s
inspectors enable you to change the view’s alpha setting, size, location, and so forth.
There’s one quirk though. When you use an image view as your primary view, IB balks at
adding subviews. If you run into this problem, create another view as your main view, and
edit your image view as needed. After, delete the main view. Control-drag from your applica-
tion delegate and assign the edited image view to the view outlet.

Recipe 7-9 Embedding an Image onto a Scroller

@implementation TestBedViewController

@synthesize weathermap;

- (UIView *)viewForZoomingInScrollView:(UIScrollView *)scrollView

{

return [self.view viewWithTag:201];

}

- (void) viewDidLoad

279

ptg

Chapter 7 Working with Images280

{

// Create the scroll view and set its content size and delegate

UIScrollView *sv = [[[UIScrollView alloc]

initWithFrame:CGRectMake(0.0f, 0.0f, 320.0f, 284.0f)]

autorelease];

sv.contentSize = self.weathermap.size;

sv.delegate = self;

// Create an image view and add it to the scroll view

self.weathermap = URLIMAGE(MAP_URL);

UIImageView *iv = [[[UIImageView alloc]

initWithImage:self.weathermap] autorelease];

iv.userInteractionEnabled = YES;

iv.tag = 201;

// Calculate and set the zoom scale values

float minzoomx = sv.frame.size.width/self.weathermap.size.width;

float minzoomy = sv.frame.size.height/self.weathermap.size.height;

sv.minimumZoomScale = MIN(minzoomx, minzoomy);

sv.maximumZoomScale = 3.0f;

// Add in the subviews

[sv addSubview:iv];

[self.view addSubview:sv];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 7 and open the project for this recipe.

Recipe: Creating a Multiimage Paged Scroll
Scroll views aren’t just about zooming.The UIScrollView’s paging property allows you to
place images (or other views, for that matter) in a scroll view and move through them one
view-width at a time.The key lies in ensuring that each image loaded exactly matches the
width of the scroll view frame for horizontal presentations or its height for vertical ones.

Set the pagingEnabled property to YES.This allows users to flick their way from one
image to another. Recipe 7-10 demonstrates how to do this.What this recipe offers is a
page-by-page presentation of several image views.You can use this same approach to pres-
ent views that aren’t just images.

http://github.com/erica/iphone-3.0-cookbook-

ptg

Recipe: Creating New Images from Scratch

Note
Adding zooming to a paged view presents a more difficult problem than the simple scrolling
shown here. It’s a problem that has been solved ably and extensively by Joe Hewitt, devel-
oper of the iPhone Facebook application. His open source three20 project (http://github.
com/joehewitt/three20) offers photo-album style interactions including image zooming from
within a paged scroller. The repository provides a wide range of useful and beautiful view util-
ity classes.

Recipe 7-10 Creating a Paged Image Presentation

- (void) viewDidLoad

{

// Create the scroll view and set its content size and delegate

UIScrollView *sv = [[[UIScrollView alloc]

initWithFrame:CGRectMake(0.0f, 0.0f, 320.0f, BASEHEIGHT)]

autorelease];

sv.contentSize = CGSizeMake(NPAGES * 320.0f, sv.frame.size.height);

sv.pagingEnabled = YES;

sv.delegate = self;

// Load in all the pages

for (int i = 0; i < NPAGES; i++)

{

NSString *filename = [NSString stringWithFormat:@"image%d.png",

i+1];

UIImageView *iv = [[UIImageView alloc] initWithImage:

[UIImage imageNamed:filename]];

iv.frame = CGRectMake(i * 320.0f, 0.0f, 320.0f, BASEHEIGHT);

[sv addSubview:iv];

[iv release];

}

[self.view addSubview:sv];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 7 and open the project for this recipe.

Recipe: Creating New Images from Scratch
In addition to loading images from files and from the Web, Cocoa Touch allows you to
create new images on-the-fly.This blends UIKit functions with standard Quartz 2D
graphics to build new UIImage instances.

281

http://github.com/joehewitt/three20
http://github.com/joehewitt/three20
http://github.com/erica/iphone-3.0-cookbook-

ptg

Chapter 7 Working with Images282

So why would build new images from scratch? The answers are many.You might create
a thumbnail by shrinking a full-size picture into a new image.You could programmatically
lay out a labeled game piece.You might generate a semitransparent backsplash for custom
alert views.You can also add effects to existing images like the reflection discussed in
Chapter 6,“Assembling Views and Animations,” or you might just want to customize an
image in some other way. Each of these examples builds a new image in code, whether
that image is based on another or built entirely from new elements.

Cocoa Touch provides a simple way to build new images.As this code shows, you
just create a new image context, draw to it, and then transform the context into a
UIImage object.

UIGraphicsBeginImageContext(CGSizeMake(40.0f, 40.0f));

CGContextRef context = UIGraphicsGetCurrentContext();

// Draw to the context here

UIImage *theImage = UIGraphicsGetImageFromCurrentImageContext();

UIGraphicsEndImageContext();

The drawing commands you use may consist of a combination of UIKit calls (like
drawAtPoint: and drawInRect:) and Core Graphics Quartz calls like the ones used in
Recipe 7-11. Recipe 7-11 builds new image views and populates them with images
drawn from scratch.As Figure 7-6 shows, these images are circles with random colors,
labeled with a number.These numbers are drawn directly into the image; they are not
added with a separate UILabel.

Recipe 7-11 Creating UIImage Instances from Scratch

// Draw centered text into the context

void centerText(CGContextRef context, NSString *fontname,

float textsize, NSString *text, CGPoint point, UIColor *color)

{

CGContextSaveGState(context);

CGContextSelectFont(context, [fontname UTF8String], 24.0f,

kCGEncodingMacRoman);

// Retrieve the text width without actually drawing anything

CGContextSaveGState(context);

CGContextSetTextDrawingMode(context, kCGTextInvisible);

CGContextShowTextAtPoint(context, 0.0f, 0.0f, [text UTF8String],

text.length);

CGPoint endpoint = CGContextGetTextPosition(context);

CFShow(NSStringFromCGPoint(endpoint));

CGContextRestoreGState(context);

ptg

Recipe: Creating New Images from Scratch 283

// Query for size to recover height. Width is less reliable

CGSize stringSize = [text sizeWithFont:

[UIFont fontWithName:fontname size:textsize]];

// Draw the text

CGContextSetShouldAntialias(context, true);

CGContextSetTextDrawingMode(context, kCGTextFill);

CGContextSetFillColorWithColor(context, [color CGColor]);

CGContextSetTextMatrix (context,

CGAffineTransformMake(1, 0, 0, -1, 0, 0));

CGContextShowTextAtPoint(context, point.x - endpoint.x / 2.0f,

point.y + stringSize.height / 3.0f, [text UTF8String],

text.length);

CGContextRestoreGState(context);

}

- (UIImage *) createImageWithColor: (UIColor *) color

{

// Create a new 40x40 image context

UIGraphicsBeginImageContext(CGSizeMake(40.0f, 40.0f));

CGContextRef context = UIGraphicsGetCurrentContext();

// Create a filled circle

CGContextSetFillColorWithColor(context, [color CGColor]);

CGContextAddEllipseInRect(context,

CGRectMake(0.0f, 0.0f, 40.0f, 40.0f));

CGContextFillPath(context);

CGContextClip(context);

// Label with a number

CGContextSetFillColorWithColor(context,

[[UIColor whiteColor] CGColor]);

NSString *numstring = [NSString stringWithFormat:@"%d", count++];

centerText(context, @"Georgia", 18.0f, numstring,

CGPointMake(20.0f, 20.0f), [UIColor whiteColor]);

// Outline the circle with a slight (2-pixel) inset

CGContextSetStrokeColorWithColor(context,

[[UIColor whiteColor] CGColor]);

CGContextAddEllipseInRect(context,

CGRectMake(2.0f, 2.0f, 36.0f, 36.0f));

CGContextStrokePath(context);

// Return the new image

UIImage *theImage = UIGraphicsGetImageFromCurrentImageContext();

UIGraphicsEndImageContext();

return theImage;

}

ptg

Chapter 7 Working with Images284

- (void) add: (id) sender

{

// Create a random color

CGFloat red = (random() % 128) / 256.0f;

CGFloat green = (random() % 128) / 256.0f;

CGFloat blue = (random() % 128) / 256.0f;

UIColor *color = [UIColor colorWithRed:red green:green

blue:blue alpha:1.0f];

// Request the new image and place it into a UIImageView

UIImage *newimage = [self createImageWithColor:color];

UIImageView *newview = [[UIImageView alloc]

initWithImage:newimage];

// Randomly position the image view

newview.center = [newview randomCenterInView:

[self.view viewWithTag:101] withInset:0];

[[self.view viewWithTag:101] addSubview:newview];

[newview release];

}

Figure 7-6 Each circle represents an image cre-
ated entirely with Core Graphics/Quartz calls.

ptg

Recipe: Building Thumbnails from Images 285

Figure 7-7 These screenshots represent three ways to create image
thumbnails. Fitting (left) preserves original aspect ratios, padding the image
as needed with extra space. Centering (center) uses the original image pix-
els, cropping from the center out. Filling (right) ensures that every available

pixel is filled, cropping only those portions that fall outside the frame.

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 7 and open the project for this recipe.

Recipe: Building Thumbnails from Images
Thumbnails play an important role in any application that uses images. Often you need to
resize an image to fit into a smaller space. Sure, you can load up a UIImageView with the
fully leaded original and resize its frame, but you can save a lot of memory by redrawing
that image into fewer bytes Thumbnails can use one of three approaches, which are
demonstrated in Figure 7-7.You can

n Resize the image while retaining its proportions. Depending on the image’s aspect
ratio, you’ll need to either letterbox or pillarbox some extra area, matting the image
with transparent pixels.

n Punch out part of the image to match the available space.The example in Figure 7-7
chooses a centered subimage and crops any elements that fall outside the pixel area.

n Fill the image by matching the height and width to the available space. Every pixel
gets used, but the image will get cropped, either horizontally or vertically.This cor-
responds to the full-screen film presentation shown on nonwidescreen TVs, which
tend to lose details at either side of the movie.

http://github.com/erica/iphone-3.0-cookbook-

ptg

Chapter 7 Working with Images286

Recipe 7-12 shows how to create these three thumbnail effects.The methods in this code
allow you to pass an image and a size.They return a new thumbnail respectively using the
fit, center, or fill technique.

Recipe 7-12 Creating Thumbnails

// Calculate a size that fits in another size while retaining its

// original proportions

+ (CGSize) fitSize: (CGSize)thisSize inSize: (CGSize) aSize

{

CGFloat scale;

CGSize newsize = thisSize;

if (newsize.height && (newsize.height > aSize.height))

{

scale = aSize.height / newsize.height;

newsize.width *= scale;

newsize.height *= scale;

}

if (newsize.width && (newsize.width >= aSize.width))

{

scale = aSize.width / newsize.width;

newsize.width *= scale;

newsize.height *= scale;

}

return newsize;

}

// Proportionately resize, completely fit in view, no cropping

+ (UIImage *) image: (UIImage *) image fitInSize: (CGSize) viewsize

{

// calculate the fitted size

CGSize size = [ImageHelper fitSize:image.size inSize:viewsize];

UIGraphicsBeginImageContext(viewsize);

// Calculate any matting needed for image spacing

float dwidth = (viewsize.width - size.width) / 2.0f;

float dheight = (viewsize.height - size.height) / 2.0f;

CGRect rect = CGRectMake(dwidth, dheight, size.width, size.height);

[image drawInRect:rect];

UIImage *newimg = UIGraphicsGetImageFromCurrentImageContext();

UIGraphicsEndImageContext();

ptg

Recipe: Building Thumbnails from Images 287

return newimg;

}

// No resize, may crop

+ (UIImage *) image: (UIImage *) image centerInSize: (CGSize) viewsize

{

CGSize size = image.size;

UIGraphicsBeginImageContext(viewsize);

// Calculate the offset to ensure that the image center is set

// to the view center

float dwidth = (viewsize.width - size.width) / 2.0f;

float dheight = (viewsize.height - size.height) / 2.0f;

CGRect rect = CGRectMake(dwidth, dheight, size.width, size.height);

[image drawInRect:rect];

UIImage *newimg = UIGraphicsGetImageFromCurrentImageContext();

UIGraphicsEndImageContext();

return newimg;

}

// Fill every view pixel with no black borders,

// resize and crop if needed

+ (UIImage *) image: (UIImage *) image fillSize: (CGSize) viewsize

{

CGSize size = image.size;

// Choose the scale factor that requires the least scaling

CGFloat scalex = viewsize.width / size.width;

CGFloat scaley = viewsize.height / size.height;

CGFloat scale = MAX(scalex, scaley);

UIGraphicsBeginImageContext(viewsize);

CGFloat width = size.width * scale;

CGFloat height = size.height * scale;

// Center the scaled image

float dwidth = ((viewsize.width - width) / 2.0f);

float dheight = ((viewsize.height - height) / 2.0f);

ptg

Chapter 7 Working with Images288

CGRect rect = CGRectMake(dwidth, dheight,

size.width * scale,

size.height * scale);

[image drawInRect:rect];

UIImage *newimg = UIGraphicsGetImageFromCurrentImageContext();

UIGraphicsEndImageContext();

return newimg;

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 7 and open the project for this recipe.

Fixing Photo Orientation
Any photo snapped with a digital camera may be tagged with an intrinsic orientation; this
orientation reflects how the camera was held during shooting. For example, if the user
positioned the camera to the left or right to snap a landscape picture, the EXIF metadata
stored with that image may contain an orientation property.The UIImage class reads in
this metadata along with the image and uses it to set its imageOrientation property.

Cocoa Touch handles eight kinds of UIImageOrientation values.These correspond to
up, down, left, right plus four more values that provide mirrored versions of the same ori-
entation.These orientations are

n UIImageOrientationUp

n UIImageOrientationLeft

n UIImageOrientationRight

n UIImageOrientationDown

n UIImageOrientationUpMirrored

n UIImageOrientationLeftMirrored

n UIImageOrientationRightMirrored

n UIImageOrientationDownMirrored

Mirrored images are typically captured when using webcams.The webcam software
reverses the image automatically; mirrored images feel more natural when looking at a live
webcam feed of yourself.

This issue can be important when loading images from files in byte order, without
regard to orientation.That means a picture snapped with some alternate orientation may
load sideways, upside down, or mirrored into a bitmap. Fixing image orientation allows
you to ensure that the displayed image matches the photographer’s perception.

http://github.com/erica/iphone-3.0-cookbook-

ptg

Fixing Photo Orientation

Listing 7-1 demonstrates how to return an unrotated version of any UIImage. It works
by recovering the imageOrientation property and drawing the image into a graphics
context that has been transformed to match the original camera properties. For the most
part you won’t need to use this approach unless you’re dealing directly with bits.The
UIImageView class automatically handles most image orientation issues for you.

Listing 7-1 Unrotating UIImage Instances

// Orientation convenience macros

#define MIRRORED ((image.imageOrientation ==

UIImageOrientationUpMirrored) || (image.imageOrientation ==

UIImageOrientationLeftMirrored) || (image.imageOrientation ==

UIImageOrientationRightMirrored) || (image.imageOrientation ==

UIImageOrientationDownMirrored))

#define ROTATED90 ((image.imageOrientation ==

UIImageOrientationLeft) || (image.imageOrientation ==

UIImageOrientationLeftMirrored) || (image.imageOrientation ==

UIImageOrientationRight) || (image.imageOrientation ==

UIImageOrientationRightMirrored))

// Return an unrotated version of the image

+ (UIImage *) doUnrotateImage: (UIImage *) image

{

CGSize size = image.size;

if (ROTATED90) size = CGSizeMake(image.size.height,

image.size.width);

UIGraphicsBeginImageContext(size);

CGContextRef context = UIGraphicsGetCurrentContext();

CGAffineTransform transform = CGAffineTransformIdentity;

// Rotate as needed

switch(image.imageOrientation)

{

case UIImageOrientationLeft:

case UIImageOrientationRightMirrored:

transform = CGAffineTransformRotate(transform,

M_PI / 2.0f);

transform = CGAffineTransformTranslate(transform,

0.0f, -size.width);

size = CGSizeMake(size.height, size.width);

CGContextConcatCTM(context, transform);

break;

case UIImageOrientationRight:

case UIImageOrientationLeftMirrored:

transform = CGAffineTransformRotate(transform,

-M_PI / 2.0f);

289

ptg

Chapter 7 Working with Images290

transform = CGAffineTransformTranslate(transform,

-size.height, 0.0f);

size = CGSizeMake(size.height, size.width);

CGContextConcatCTM(context, transform);

break;

case UIImageOrientationDown:

case UIImageOrientationDownMirrored:

transform = CGAffineTransformRotate(transform, M_PI);

transform = CGAffineTransformTranslate(transform,

-size.width, -size.height);

CGContextConcatCTM(context, transform);

break;

default:

break;

}

if (MIRRORED)

{

// de-mirror

transform = CGAffineTransformMakeTranslation(size.width, 0.0f);

transform = CGAffineTransformScale(transform, -1.0f, 1.0f);

CGContextConcatCTM(context, transform);

}

// Draw the image into the transformed context and return the image

[image drawAtPoint:CGPointMake(0.0f, 0.0f)];

UIImage *newimg = UIGraphicsGetImageFromCurrentImageContext();

UIGraphicsEndImageContext();

return newimg;

}

Adding Test Images
It’s simple enough to a snap a set of test pictures using the four main orientations (left,
right, up, down) using your built-in iPhone camera.Add them to the simulator by copying
them to your home Library/Application Support/iPhone Simulator/User/Media/
DCIM/100APPLE/ folder.You’ll need to create the DCIM/100APPLE subfolder.

Taking Screenshots
As Listing 7-2 demonstrates, you can draw views into image contexts and transform
those contexts into UIImage instances.This code works by using Core Graphic’s
renderInContext call for CALayer instances. It produces a screenshot not only of the
view but all the views that view owns.

ptg

Recipe: Working Directly with Bitmaps 291

There are, of course, limits.You cannot screenshot the entire window (the status bar
will be missing in action) and you cannot screenshot videos or the camera previews.
OpenGLES views may also not be captured.

Listing 7-2 Screenshotting a View

+ (UIImage *) imageFromView: (UIView *) theView

{

// Draw a view’s contents into an image context

UIGraphicsBeginImageContext(theView.frame.size);

CGContextRef context = UIGraphicsGetCurrentContext();

[theView.layer renderInContext:context];

UIImage *theImage = UIGraphicsGetImageFromCurrentImageContext();

UIGraphicsEndImageContext();

return theImage;

}

Recipe: Working Directly with Bitmaps
Although Cocoa Touch provides excellent resolution-independence tools for working
with many images, there are times you need to reach down to the bits that underlie a pic-
ture and access data on a bit-by-bit basis. For example, you might apply edge detection or
blurring routines.These functions calculate their results by convolving matrices against
actual byte values.

Figure 7-8 shows the result of Canny Edge Detection on an iPhone image.The Canny
operator in its most basic form is one of the first algorithms taught in image processing
classes.The version used to produce the image shown here uses a hardwired 3x3 mask.

Drawing into a Bitmap Context
To get started with image processing, draw an image into a bitmap context and then
retrieve bytes as a char * buffer.This code does exactly that, retrieving the bits from the
context once the image has been drawn.

+ (unsigned char *) bitmapFromImage: (UIImage *) image

{

// Create bitmap data for the given image

CGContextRef context = CreateARGBBitmapContext(image.size);

if (context == NULL) return NULL;

CGRect rect = CGRectMake(0.0f, 0.0f,

image.size.width, image.size.height);

CGContextDrawImage(context, rect, image.CGImage);

unsigned char *data = CGBitmapContextGetData (context);

CGContextRelease(context);

return data;

}

ptg

Chapter 7 Working with Images292

Figure 7-8 Applying edge detection to an image produces a result that out-
lines areas where byte values experience the greatest changes.

This routine relies on a special bitmap context that allocates memory for the bitmap data.
Here is the function that creates that context. It produces an ARGB bitmap context using
an Alpha-Red-Green-Blue representation, one byte per channel, 256 levels per unsigned
byte.

CGContextRef CreateARGBBitmapContext (CGSize size)

{

// Create the new color space

CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();

if (colorSpace == NULL)

{

fprintf(stderr, "Error allocating color space\n");

return NULL;

}

// Allocate memory for the bitmap data

void *bitmapData = malloc(size.width * size.height * 4);

if (bitmapData == NULL)

{

fprintf (stderr, "Error: Memory not allocated!");

CGColorSpaceRelease(colorSpace);

return NULL;

}

ptg

Recipe: Working Directly with Bitmaps 293

// Build an 8-bit per channel context

CGContextRef context = CGBitmapContextCreate (bitmapData,

size.width, size.height, 8, size.width * 4, colorSpace,

kCGImageAlphaPremultipliedFirst);

CGColorSpaceRelease(colorSpace);

if (context == NULL)

{

fprintf (stderr, "Error: Context not created!");

free (bitmapData);

return NULL;

}

return context;

}

Once the image bytes are available, you can access them directly.The following functions
return offsets for any point (x,y) inside an ARGB bitmap using width w.The height is not
needed for these calculations; the width of each row allows you to determine a two-
dimensional point in what is really a one-dimensional buffer. Notice how the data is
interleaved. Each 4-byte sequence contains a level for alpha, red, green, and then blue.
Each byte ranges from 0 (0%) to 255 (100%). Convert to a float and divide by 255.0 to
retrieve the ARGB value.

NSUInteger alphaOffset(NSUInteger x, NSUInteger y, NSUInteger w)

{return y * w * 4 + x * 4 + 0;}

NSUInteger redOffset(NSUInteger x, NSUInteger y, NSUInteger w)

{return y * w * 4 + x * 4 + 1;}

NSUInteger greenOffset(NSUInteger x, NSUInteger y, NSUInteger w)

{return y * w * 4 + x * 4 + 2;}

NSUInteger blueOffset(NSUInteger x, NSUInteger y, NSUInteger w)

{return y * w * 4 + x * 4 + 3;}

Applying Image Processing
It’s relatively easy then to convolve an image by recovering its bytes and applying some
image-processing algorithm.This routine uses the basic Canny edge detection mentioned
earlier. It calculates both the vertical and horizontal edge results for each color channel,
and then scales the sum of those two results into a single value that falls within [0, 255].
The output alpha value preserves the original level.

+ (UIImage *) convolveImageWithEdgeDetection: (UIImage *) image

{

// Dimensions

int theheight = (int) image.size.height;

int thewidth = (int) image.size.width;

ptg

Chapter 7 Working with Images294

// Get input and create output bits

unsigned char *inbits = (unsigned char *)[ImageHelper

bitmapFromImage:image];

unsigned char *outbits = (unsigned char *)malloc(theheight *

thewidth * 4);

int radius = 1;

// Iterate through each available pixel (leaving a radius-sized

// boundary)

for (int y = radius; y < (theheight - radius); y++)

for (int x = radius; x < (thewidth - radius); x++)

{

int sumr1 = 0, sumr2 = 0;

int sumg1 = 0, sumg2 = 0;

int sumb1 = 0, sumb2 = 0;

// Basic Canny Edge Detection

int matrix1[9] = {-1, 0, 1, -2, 0, 2, -1, 0, 1};

int matrix2[9] = {-1, -2, -1, 0, 0, 0, 1, 2, 1};

int offset = 0;

for (int j = -radius; j <= radius; j++)

for (int i = -radius; i <= radius; i++)

{

sumr1 += inbits[redOffset(x+i, y+j, thewidth)] *

matrix1[offset];

sumr2 += inbits[redOffset(x+i, y+j, thewidth)] *

matrix2[offset];

sumg1 += inbits[greenOffset(x+i, y+j, thewidth)] *

matrix1[offset];

sumg2 += inbits[greenOffset(x+i, y+j, thewidth)] *

matrix2[offset];

sumb1 += inbits[blueOffset(x+i, y+j, thewidth)] *

matrix1[offset];

sumb2 += inbits[blueOffset(x+i, y+j, thewidth)] *

matrix2[offset];

offset++;

}

// Assign the outbits

int sumr = MIN(((ABS(sumr1) + ABS(sumr2)) / 2), 255);

int sumg = MIN(((ABS(sumg1) + ABS(sumg2)) / 2), 255);

int sumb = MIN(((ABS(sumb1) + ABS(sumb2)) / 2), 255);

ptg

Recipe: Working Directly with Bitmaps 295

outbits[redOffset(x, y, thewidth)] = (unsigned char) sumr;

outbits[greenOffset(x, y, thewidth)] = (unsigned char)

sumg;

outbits[blueOffset(x, y, thewidth)] = (unsigned char) sumb;

outbits[alphaOffset(x, y, thewidth)] =

(unsigned char) inbits[alphaOffset(x, y, thewidth)];

}

// Release the original bitmap. imageWithBits frees outbits

free(inbits);

return [ImageHelper imageWithBits:outbits withSize:image.size];

}

Image Processing Realities
The iPhone is not a number-crunching powerhouse. Routines like these may slow down
applications significantly. Use them judiciously. Recipe 7-13 demonstrates how to balance
image-processing demands with iPhone limitations. It follows three main rules of iPhone
implementation:

n Provide meaningful feedback to the user when dealing with unavoidable delays.
n Perform processor-heavy functionality on a secondary thread.
n Only ever perform GUI updates on the main thread.

The flow for this solution is shown in Figure 7-9.A “Please Wait” Heads Up Display
(HUD) appears with a spinning activity indicator. It remains in view until a separate pro-
cessing thread finishes:

This indicator cannot display properly when all the processing happens in the main
thread. Heavy processing blocks GUI updates, causing the UIAlertView that the HUD is
based on to delay its appearance until after the processing finishes.That counters the “pro-
vide meaningful feedback” directive so important to iPhone application development.
That’s why a two-thread approach is so important.

The process routine was designed to run on its own thread. It provides a separate
NSAutorelease pool and is spawned by the did-finish-picking method.Although it works
with image contexts, nothing in the method actually changes any GUI elements. Its job is
to redraw an image into a 320-by-416-pixel space and then perform Canny edge detec-
tion on that image.

When the thread finishes its heavy lifting, it calls a finish method on the main thread.
That method cleans up the GUI by dismissing the HUD, adding a Swap button, and set-
ting the displayed image.

Recipe 7-13 Providing an iPhone-Friendly GUI for Image Processing

@implementation TestBedViewController

@synthesize original;

@synthesize processed;

ptg

Chapter 7 Working with Images296

#define SETIMAGE(X) [UIImageView*)self.view setImage:X];

// Allow user to swap between original and processed image

- (void) swap

{

// SETIMAGE works with 2.2 and later

if ([(UIImageView *)self.view image] == self.original)

SETIMAGE(self.processed)

else

SETIMAGE(self.original);

}

// Handle main thread GUI cleanup

- (void) finish

{

SETIMAGE(self.processed);

self.navigationItem.leftBarButtonItem = BARBUTTON(@"Swap",

@selector(swap));

[ModalHUD dismiss];

}

// Perform calculation-heavy processing on a second thread

- (void) process

{

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

CGSize coreSize = CGSizeMake(320.0f, 416.0f);

// Scale image

UIGraphicsBeginImageContext(coreSize);

[self.original drawInRect:[ImageHelper frameSize:self.original.size

inSize:coreSize]];

UIImage *newimg = UIGraphicsGetImageFromCurrentImageContext();

UIGraphicsEndImageContext();

self.original = newimg;

// Calculate edge detection image

self.processed = [ImageHelper convolveImageWithEdgeDetection:

self.original];

// Clean up on the main thread

[self performSelectorOnMainThread:@selector(finish) withObject:nil

waitUntilDone:NO];

[pool release];

}

ptg

Recipe: Working Directly with Bitmaps 297

// Display the HUD and start the processing thread

- (void)imagePickerController:(UIImagePickerController *)picker

didFinishPickingMediaWithInfo:(NSDictionary *)info

{

[ModalHUD showHUD:@"Processing\nPlease wait."];

self.original = [info objectForKey:

@"UIImagePickerControllerOriginalImage"];

[self dismissModalViewControllerAnimated:YES];

[picker release];

[NSThread detachNewThreadSelector:@selector(process)

toTarget:self withObject:nil];

}

// Provide 2.x compliance

- (void)imagePickerController:(UIImagePickerController *)picker

didFinishPickingImage:(UIImage *)image

editingInfo:(NSDictionary *)editingInfo

{

NSDictionary *dict = [NSDictionary dictionaryWithObject:image

forKey:@"UIImagePickerControllerOriginalImage"];

[self imagePickerController:picker

didFinishPickingMediaWithInfo:dict];

}

// Allow user to pick a new image to work on

- (void) pickImage: (id) sender

{

UIImagePickerController *ipc = [[UIImagePickerController alloc]

init];

ipc.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;

ipc.delegate = self;

ipc.allowsImageEditing = NO; // .allowsEditing in 3.1

[self presentModalViewController:ipc animated:YES];

}

// Initialize title and bar button

- (void) viewDidLoad

{

self.navigationController.navigationBar.tintColor =

COOKBOOK_PURPLE_COLOR;

self.navigationItem.rightBarButtonItem = BARBUTTON(@"Pick",

@selector(pickImage));

self.title = @"Edge Detection";

}

@end

ptg

Chapter 7 Working with Images298

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 7 and open the project for this recipe.

One More Thing: Going Grayscale
As Recipe 7-12 suggests, you can easily create a grayscale version of any image, not just
black and white masks. Listing 7-3 provides a general utility method that produces an
image drawn into a grayscale color space. Unlike the CreateMaskImage() function you
just saw, this method does not need to match the UIImage coordinate system with the
Quartz one, so it does not flip the context. It simply draws the image into the context
and returns the grayscale version.

Combine this function with the screenshot renderInContext: functionality described
earlier in this chapter and you can create an “inactive” backsplash that copies the current
GUI. Use this to provide a visual context that moves a user’s focus onto an ongoing oper-
ation such as a file download.This provides a creative alternative to the normal screen-
darkening overlay.

Listing 7-3 Returning the Grayscale Version of an Image

+ (UIImage *) grayscaleImage: (UIImage *) image

{

CGSize size = image.size;

CGRect rect = CGRectMake(0.0f, 0.0f, image.size.width,

image.size.height);

User selects “Pick.” Main View Controller
pushes Image Picker.

User selects Image.
Application receives Media

Picked Callback.

When the thread finishes,
it calls GUI cleanup on the

main thread.

HUD blocks user input as
processing progresses.

Callback recovers image.
It displays “Please Wait”

HUD and spawns
processing thread.

Cleanup routine sets
“Swap” button, shows the

edge image, and dismisses
the HUD.

Figure 7-9 Using two threads allows a “Please Wait” Heads Up Display (HUD) to block user
input until the image processing finishes.

http://github.com/erica/iphone-3.0-cookbook-

ptg

Summary 299

// Create a mono/gray color space

CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceGray();

CGContextRef context = CGBitmapContextCreate(nil, size.width,

size.height, 8, 0, colorSpace, kCGImageAlphaNone);

CGColorSpaceRelease(colorSpace);

// Draw the image into the grayscale context

CGContextDrawImage(context, rect, [image CGImage]);

CGImageRef grayscale = CGBitmapContextCreateImage(context);

CGContextRelease(context);

// Recover the image

UIImage *img = [UIImage imageWithCGImage:grayscale];

CFRelease(grayscale);

return img;

}

Summary
This chapter introduced many ways to handle images, including picking, reading, modify-
ing, and saving.You saw recipes that showed you how to use the iPhone’s built-in editor
selection process and how to snap images with the camera.You also read about adding
images to the UIScrollView class and how to send pictures as e-mail attachments. Before
moving on from this chapter, here are some thoughts about the recipes you saw here:

n The built-in image picker is a memory hog. Develop your code around that basic
fact of life.

n Always provide user feedback when working with long processing delays. Most
image manipulation is slow.The simulator always outperforms the iPhone so test
your applications on the device as well as the simulator and provide a mechanism
like the HUD display used in this chapter that lets users know that ongoing opera-
tions may take some time.

n Sending image e-mail attachments from in-program is a great new 3.0 feature.
Make sure that you check that e-mail is available on your device before attempting
to use the controller and be aware that sending images can be very, very slow.

n Paged scrollers offer a handy GUI foundation. Use them for showing multiple
images or for presenting multiscreened, scrollable interfaces.

n Thumbnails use far less memory than loading all images at once. Consider precom-
puting icon versions of your pictures in addition to using the thumbnail-sizing rou-
tines shown in this chapter.

ptg

This page intentionally left blank

ptg

8
Gestures and Touches

The touch represents the heart of iPhone interaction; it provides the most important
way that users communicate their intent to an application.Touches are not limited
to button presses and keyboard interaction.You can design and build applications

that work directly with users’ taps and other gestures.This chapter introduces direct
manipulation interfaces that go far beyond prebuilt controls.You see how to create views
that users can drag around the screen.You also discover how to distinguish and interpret
gestures and how to work with the iPhone’s built-in multitouch sensors. By the time you
finish reading this chapter, you’ll have read about many different ways you can implement
gesture control in your own applications.

Touches
Cocoa Touch implements direct manipulation in the simplest way possible. It sends touch
events to the view you’re working with.As an iPhone developer, you tell the view how to
respond to each touch.

Touches convey information: where the touch took place (both the current and previ-
ous location), what phase of the touch was used (essentially mouse down, mouse moved,
mouse up in the desktop application world, corresponding to finger or touch down,
moved, and up in the direct manipulation world), a tap count (for example, single-
tap/double-tap), and when the touch took place (through a time stamp).Touches and
their information are stored in UITouch objects. Each object represents a single touch
event.Your applications receive these in the view class, which is where you need to
process and respond to them.

This may seem counterintuitive.You probably expect to separate the way an interface
looks (its view) from the way it responds to touches (its controller). In the iPhone world,
direct touch interaction follows a fairly primitive design pattern, offering little or no
Model-View-Controller design orthogonality.The rule for this is that you program in the
UIView class and not in the UIViewController class.This is an important point.Trying to
implement low-level gesture control in the wrong class has tripped up many new iPhone
developers.

ptg

302 Chapter 8 Gestures and Touches

When working with low-level touch interaction, gesture interpretation and visual dis-
play become tightly intertwined.There are benefits to this organization.View controllers
can own multiple views, all of which can use touches differently. If the view controller
handled all touches directly, its response routines would have to choose between responses
appropriate for each view.The code would quickly become complicated. Keeping that
programming at the view level simplifies each implementation.As a second benefit, pro-
gramming at the view level makes it possible for you to create custom user interface
objects that are completely self-contained.

In the following sections and recipes, you discover how touches work, how you can
incorporate them into your apps, and how you connect what a user sees with how that
user interacts with the screen.

Phases
Touches have life cycles. Each touch can pass through any of five phases that represent the
progress of the touch within an interface.These phases are as follows:

n UITouchPhaseBegan—Starts when users touch the screen.
n UITouchPhaseMoved—Means a touch has moved on the screen.
n UITouchPhaseStationary—Indicates that a touch remains on the screen

surface but that there has not been any movement since the previous event.
n UITouchPhaseEnded—Gets triggered when the touch is pulled away from the

screen.
n UITouchPhaseCancelled—Occurs when the iPhone OS system stops track-

ing a particular touch.This usually occurs due to a system interruption, such as
when the application is no longer active or the view is removed from the window.

Taken as a whole, these five phases form the interaction language for a touch event.They
describe all the possible ways that a touch can progress or fail to progress within an inter-
face and provide the basis for control for that interface. It’s up to you as the developer to
interpret those phases and provide reactions to them.You do that by implementing a
series of view methods.

Touches and View Methods
All members and children of the UIResponder class, including UIView, respond to
touches. Each class decides whether and how to respond.When choosing to do so, they
implement customized behavior when a user touches one or more fingers down in a
view or window.

Predefined callback methods handle the start, movement, and release of touches from
the screen. Corresponding to the phases you’ve already seen, the methods involved are as
follows. Notice that UITouchPhaseStationary does not generate a callback.

ptg

303Touches

n touchesBegan:withEvent:—Gets called at the starting phase of the event,
as the user starts touching the screen.

n touchesMoved:withEvent:—Handles the movement of the fingers over
time.

n touchesEnded:withEvent:—Concludes the touch process, where the fin-
ger or fingers are released. It provides an opportune time to clean up any work that
was handled during the movement sequence.

n touchesCancelled:WithEvent:—Called when Cocoa Touch must
respond to a system interruption of the ongoing touch event.

Each of these is a UIResponder method, typically implemented in a UIView subclass.All
views inherit basic nonfunctional versions of the methods.When you want to add touch
behavior to your application, you override these methods and add a custom version that
provides the responses your application needs.

The recipes in this chapter implement some but not all of these methods. For real-
world deployment, you may want to add a touches cancelled event to handle the case of
incoming phone calls, which cancels an ongoing touch sequence.Apple recommends
overriding all four methods in UIView subclasses as a best practice.

Note
Views have a mode called exclusive touch that prevents touches from being delivered to
other views. When enabled, this property blocks other views from receiving touch events.
The primary view handles all touch events exclusively.

Touching Views
When dealing with many onscreen views, the iPhone automatically decides which view
the user touched and passes any touch events to the proper view for you.This helps you
write concrete direct manipulation interfaces where users touch, drag, and interact with
onscreen objects.

Just because a touch is passed to a view doesn’t mean that a view has to respond. Each
view can choose whether to handle a touch or to let that touch fall through to views
beneath it.As you see in the recipes that follow, you can use clever response strategies to
decide when your view should respond, particularly when you’re using irregular art with
partial transparency.

Multitouch
The iPhone supports both single and multitouch interfaces. For single touch GUIs, you
handle just one touch at any time.This relieves you of any responsibility of trying to
determine which touch you were tracking.The one touch you receive is the only one you
need to work with.You look at its data, respond to it, and wait for the next event.

ptg

304 Chapter 8 Gestures and Touches

When working with multitouch, that is, when you respond to multiple onscreen
touches at once, you receive an entire set of touches. It is up to you to order and respond
to that set.You can track each touch separately and see how it changes over time, provid-
ing a richer set of possible user interaction. Recipes for both single touch and multitouch
interaction follow in this chapter.

Recipe: Adding a Simple Direct Manipulation
Interface
The design focus moves from the UIViewController to the UIView when you work with
direct manipulation.The view, or more precisely the UIResponder, forms the heart of
direct manipulation development. Create touch-based interfaces by customizing methods
that derive from the UIResponder class.

Recipe 8-1 centers on touches in action.This example creates a child of UIImageView
called DragView and adds touch responsiveness to the class. Being an image view, it’s
important to enable user interaction, that is, set setUserInteractionEnabled to YES.This
property affects all the view’s children as well as the view itself.

The recipe works by updating a view’s center to match the movement of an onscreen
touch.When a user first touches any DragView, the object stores the start location as an
offset from the view’s origin.As the user drags, the view moves along with the finger—
always maintaining the same origin offset so that the movement feels natural. Movement
occurs by updating the object’s center. Recipe 8-1 calculates x- and y-offsets and adjusts
the view center by those offsets after each touch movement.

Upon being touched, the view pops to the front.That’s due to a call in the
touchesMoved:withEvent: method.The code tells the superview that owns the
DragView to bring that view to the front.This allows the active element to always appear
foremost in the interface.

This recipe does not implement touches-ended or touches-cancelled methods. Its
interests lie only in the movement of onscreen objects.When the user stops interacting
with the screen, the class has no further work to do.

Recipe 8-1 Creating a Draggable View

@interface DragView : UIImageView

{

CGPoint startLocation;

}

@end

@implementation DragView

- (id) initWithImage: (UIImage *) anImage

{

if (self = [super initWithImage:anImage])

self.userInteractionEnabled = YES;

ptg

305Recipe: Constraining Movement

return self;

}

- (void) touchesBegan:(NSSet*)touches withEvent:(UIEvent*)event

{

// Calculate and store offset, and pop view into front if needed

CGPoint pt = [[touches anyObject] locationInView:self];

startLocation = pt;

[[self superview] bringSubviewToFront:self];

}

- (void) touchesMoved:(NSSet*)touches withEvent:(UIEvent*)event

{

// Calculate offset

CGPoint pt = [[touches anyObject] locationInView:self];

float dx = pt.x - startLocation.x;

float dy = pt.y - startLocation.y;

CGPoint newcenter = CGPointMake(self.center.x + dx,

self.center.y + dy);

// Set new location

self.center = newcenter;

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 8 and open the project for this recipe.

Recipe: Constraining Movement
The problem with the simple approach of Recipe 8-1 is that it’s entirely possible to drag a
view offscreen to the point where the user cannot see or easily recover it.That recipe uses
completely unconstrained movement.There is no check to test whether the object
remains in view and is touchable. Recipe 8-2 fixes this problem by constraining a view’s
movement to within its parent.

It achieves this by limiting movement in each direction, splitting its checks into sepa-
rate x and y constraints.This two-check approach allows the view to continue to move
even when one direction has passed its maximum. If the view has hit the rightmost edge
of its parent, for example, it can still move up and down.

Figure 8-1 shows this interface.The flowers are constrained into the black rectangle in
the center of the interface and cannot be dragged off-view.The code is general and can
adapt to parent bounds and child views of any size.

http://github.com/erica/iphone-3.0-cookbook-

ptg

306 Chapter 8 Gestures and Touches

Figure 8-1 The movement of these flowers is
bounded into the black rectangle.

Recipe 8-2 Bounded Movement

- (void) touchesMoved:(NSSet*)touches withEvent:(UIEvent*)event

{

// Calculate offset

CGPoint pt = [[touches anyObject] locationInView:self];

float dx = pt.x - startLocation.x;

float dy = pt.y - startLocation.y;

CGPoint newcenter = CGPointMake(self.center.x + dx,

self.center.y + dy);

// Constrain movement into parent bounds

float halfx = CGRectGetMidX(self.bounds);

newcenter.x = MAX(halfx, newcenter.x);

newcenter.x = MIN(self.superview.bounds.size.width - halfx,

newcenter.x);

float halfy = CGRectGetMidY(self.bounds);

newcenter.y = MAX(halfy, newcenter.y);

newcenter.y = MIN(self.superview.bounds.size.height - halfy,

newcenter.y);

ptg

307Recipe: Testing Touches

Figure 8-2 The application should ignore touches to the gray areas that sur-
round each circle (left). The actual interface (right) uses zero alpha values to

hide the parts of the view that are not used.

// Set new location

self.center = newcenter;

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 8 and open the project for this recipe.

Recipe: Testing Touches
Most onscreen view elements for direct manipulation interfaces are not rectangular.This
complicates touch detection because parts of the actual view rectangle may not corre-
spond to actual touch points. Figure 8-2 shows the problem in action.The screenshot on
the right shows the interface with its touch-based subviews.The shot on the left shows
the actual view bounds for each subview.The light gray areas around each onscreen circle
fall within the bounds, but touches to those areas should not “hit” the view in question.

The iPhone senses user taps throughout the entire view frame.This includes the undrawn
area such as the corners of the frame outside the actual circles of Figure 8-2 just as much
as the primary presentation.That means that unless you add some sort of hit test, users

http://github.com/erica/iphone-3.0-cookbook-

ptg

308 Chapter 8 Gestures and Touches

may attempt to tap through to a view that’s “obscured” by the clear portion of the UIView
frame.

Visualize your actual view bounds by setting a view’s background color, for example:

dragger.backgroundColor = [UIColor lightGrayColor];

This adds the backsplashes shown in Figure 8-2 (left) without affecting the actual
onscreen art. In this case, the art consists of a centered circle with a transparent back-
ground. Unless you add some sort of test, all taps to any portion of this frame are captured
by the view in question. Enabling background colors offers a convenient debugging aid to
visualize the true extent of each view; don’t forget to comment out the background color
assignment in production code.

Recipe 8-3 adds a simple hit test to the views, determining whether touches fall
within the circle.This test overrides the standard UIView pointInside:withEvent:
method.This method returns either YES (the point falls inside the view) or NO (it does
not).The test here uses basic geometry, checking whether the touch lies within the circle’s
radius.You can provide any test that works with your onscreen views.As you see in
Recipe 8-4, that test can be expanded for much finer control.

Recipe 8-3 Providing a Circular Hit Test

- (BOOL) pointInside:(CGPoint)point withEvent:(UIEvent *)event

{

CGPoint pt;

float HALFSIDE = SIDELENGTH / 2.0f;

// normalize with centered origin

pt.x = (point.x - HALFSIDE) / HALFSIDE;

pt.y = (point.y - HALFSIDE) / HALFSIDE;

// x^2 + y^2 = radius

float xsquared = pt.x * pt.x;

float ysquared = pt.y * pt.y;

// If the radius <= 1, the point is within the clipped circle

if ((xsquared + ysquared) <= 1.0) return YES;

return NO;

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 8 and open the project for this recipe.

http://github.com/erica/iphone-3.0-cookbook-

ptg

Recipe: Testing Against a Bitmap

Recipe: Testing Against a Bitmap
Unfortunately, most views don’t fall into the simple geometries that make the hit test from
Recipe 8-3 so straightforward.The flowers shown in Figure 8-1, for example, offer irregu-
lar boundaries and varied transparencies. For complicated art, it helps to test touches
against a bitmap. Bitmaps provide byte-by-byte information about the contents of an
image-based view, allowing you to test whether a touch hits a solid portion of the image
or should pass through to any views below.

Recipe 8-4 extracts an image bitmap from a UIImageView. It assumes that the image
used provides a pixel-by-pixel representation of the view in question.When you distort
that view (normally by resizing a frame or applying a transform), update the math accord-
ingly. Keeping the art at a 1:1 proportion to the actual view pixels simplifies lookup.You
can recover the pixel in question, test its alpha level, and determine whether the touch has
hit a solid portion of the view.

This example uses a cutoff of 85.That corresponds to a minimum alpha level of 33%
(that is, 85 / 255).The pointInside: method considers any pixel with an alpha level
below 33% to be transparent.This is arbitrary. Use any level (or other test for that matter)
that works with the demands of your actual GUI.

Recipe 8-4 Testing Touches Against Bitmap Alpha Levels

// Return the offset for the alpha pixel at (x,y) for RGBA

// 4-bytes-per-pixel bitmap data

NSUInteger alphaOffset(NSUInteger x, NSUInteger y, NSUInteger w)

{return y * w * 4 + x * 4;}

// Return the bitmap from a provided image

unsigned char *getBitmapFromImage (UIImage *image)

{

CGColorSpaceRef colorSpace = CGColorSpaceCreateDeviceRGB();

if (colorSpace == NULL)

{

fprintf(stderr, "Error allocating color space\n");

return NULL;

}

CGSize size = image.size;

void *bitmapData = malloc(size.width * size.height * 4);

if (bitmapData == NULL)

{

fprintf (stderr, "Error: Memory not allocated!");

CGColorSpaceRelease(colorSpace);

return NULL;

}

309

ptg

Chapter 8 Gestures and Touches310

CGContextRef context = CGBitmapContextCreate (bitmapData,

size.width, size.height, 8, size.width * 4, colorSpace,

kCGImageAlphaPremultipliedFirst);

CGColorSpaceRelease(colorSpace);

if (context == NULL)

{

fprintf (stderr, "Error: Context not created!");

free (bitmapData);

return NULL;

}

CGRect rect = CGRectMake(0.0f, 0.0f, size.width, size.height);

CGContextDrawImage(context, rect, image.CGImage);

unsigned char *data = CGBitmapContextGetData(context);

CGContextRelease(context);

return data;

}

@interface DragView : UIImageView

{

CGPoint startLocation;

unsigned char *bytes;

}

@end

@implementation DragView

- (id) initWithImage: (UIImage *) anImage

{

if (self = [super initWithImage:anImage])

{

self.userInteractionEnabled = YES;

bytes = getBitmapFromImage(anImage);

}

return self;

}

- (void) dealloc

{

free(bytes);

[super dealloc];

}

// Does the point hit the view?

- (BOOL) pointInside:(CGPoint)point withEvent:(UIEvent *)event

{

if (!CGRectContainsPoint(self.bounds, point)) return NO;

ptg

Recipe: Adding Persistence to Direct Manipulation Interfaces 311

return (bytes[alphaOffset(point.x, point.y,

self.image.size.width)] > 85);

}

- (void) touchesBegan:(NSSet*)touches withEvent:(UIEvent*)event

{

// Calculate and store offset, and pop view into front if needed

CGPoint pt = [[touches anyObject] locationInView:self];

startLocation = pt;

[[self superview] bringSubviewToFront:self];

}

- (void) touchesMoved:(NSSet*)touches withEvent:(UIEvent*)event

{

// Calculate offset

CGPoint pt = [[touches anyObject] locationInView:self];

float dx = pt.x - startLocation.x;

float dy = pt.y - startLocation.y;

CGPoint newcenter = CGPointMake(self.center.x + dx,

self.center.y + dy);

// Bound movement into parent bounds

float halfx = CGRectGetMidX(self.bounds);

newcenter.x = MAX(halfx, newcenter.x);

newcenter.x = MIN(self.superview.bounds.size.width - halfx, newcenter.x);

float halfy = CGRectGetMidY(self.bounds);

newcenter.y = MAX(halfy, newcenter.y);

newcenter.y = MIN(self.superview.bounds.size.height - halfy, newcenter.y);

// Set new location

self.center = newcenter;

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 8 and open the project for this recipe.

Recipe: Adding Persistence to Direct
Manipulation Interfaces
Persistence represents a key iPhone design touch point.After users leave a program,Apple
strongly recommends that they return to a state that matches as closely to where they left
off as possible.Adding persistence to a direct manipulation interface, in the simplest

http://github.com/erica/iphone-3.0-cookbook-

ptg

Chapter 8 Gestures and Touches312

approach, involves storing a representation of the onscreen data when an application
terminates and restoring that state on startup.

Storing State
Every view knows its position because you can query its frame or center.This enables you
to easily recover and store positions for each onscreen flower.The flower type (green,
pink, or blue) is another matter. For each view to report its current flower, the DragView
class must store that value, too.Adding a string instance variable enables the view to return
the image name used. Extending the DragView interface lets you do that.

@interface DragView : UIImageView

{

CGPoint startLocation;

NSString *whichFlower;

}

@property (retain) NSString *whichFlower;

@end

Adding this extra property lets the view controller that owns the flowers store both a list
of colors and a list of locations to its defaults file. Here, a simple loop collects both values
from each draggable view and then stores them.

- (void) updateDefaults

{

NSMutableArray *colors = [[NSMutableArray alloc] init];

NSMutableArray *locs = [[NSMutableArray alloc] init];

for (DragView *dv in [[self.view viewWithTag:201] subviews])

{

[colors addObject:dv.whichFlower];

[locs addObject:NSStringFromCGRect(dv.frame)];

}

[[NSUserDefaults standardUserDefaults] setObject:colors

forKey:@"colors"];

[[NSUserDefaults standardUserDefaults] setObject:locs

forKey:@"locs"];

[[NSUserDefaults standardUserDefaults] synchronize];

[colors release];

[locs release];

}

Defaults, as you can see, work like a dictionary. Just assign an object to a key and the
iPhone updates the preferences file associated with your application ID. Defaults are stored
in Library/Preferences inside your application’s sandbox. Calling the synchronize function
updates those defaults immediately instead of waiting for the program to terminate.

ptg

Recipe: Adding Persistence to Direct Manipulation Interfaces 313

The NSStringFromCGRect() function provides a tight way to store frame information
as a string.To recover the rectangle, issue CGRectFromString(). Each call takes one argu-
ment: a CGRect in the first case, an NSString object in the second.The UIKit framework
provides functions that translate points and sizes as well as rectangles to and from strings.

This updateDefaults method, which saves the current state to disk, should be called
in the application delegate’s applicationWillTerminate: method, just before the pro-
gram ends.The defaults are stored to reflect the final application state.

- (void) applicationWillTerminate: (UIApplication *) application

{

[self.tbvc updateDefaults]; // update the defaults on quit

}

Recovering State
To bring views back to life, re-create them in either the loadView or viewDidLoad meth-
ods of your view controller. (Persistence awareness can also reside in the view controller’s
init method if you’re not working with actual views.) Your methods should find any pre-
vious state information and update the interface to match that state.

When querying user defaults, Recipe 8-5 checks whether state data is unavailable (for
example, the value returned is nil).When state data goes missing, the method creates ran-
dom flowers at random points.

Note
When working with large data sources, you may want to initialize and populate your saved
object array in the UIViewController’s init method, and then draw them in loadView or
viewDidLoad. Where possible, use threading when working with many objects to avoid too
much processing on the main thread. This can make the program laggy or unresponsive by
blocking GUI updates.

Recipe 8-5 Checking for Previous State

- (void) loadFlowersInView: (UIView *) backdrop

{

// Attempt to read in previous colors and locations

NSMutableArray *colors = [[NSUserDefaults standardUserDefaults]

objectForKey:@"colors"];

NSMutableArray *locs = [[NSUserDefaults standardUserDefaults]

objectForKey:@"locs"];

// Add the flowers to random points on the screen

for (int i = 0; i < MAXFLOWERS; i++)

{

NSString *whichFlower = [[NSArray

arrayWithObjects:@"blueFlower.png", @"pinkFlower.png",

@"orangeFlower.png", nil] objectAtIndex:(random() % 3)];

ptg

Chapter 8 Gestures and Touches314

if (colors && ([colors count] == MAXFLOWERS)) whichFlower =

[colors objectAtIndex:i];

DragView *dragger = [[DragView alloc] initWithImage:[UIImage

imageNamed:whichFlower]];

dragger.center = randomPoint();

dragger.userInteractionEnabled = YES;

dragger.whichFlower = whichFlower;

if (locs && ([locs count] == MAXFLOWERS)) dragger.frame =

CGRectFromString([locs objectAtIndex:i]);

[backdrop addSubview:dragger];

[dragger release];

}

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 8 and open the project for this recipe.

Recipe: Persistence Through Archiving
Recipe 8-5 created persistence via the user defaults system. It stored descriptions of the
onscreen views and built those views from the recovered description. Recipe 8-6 takes
things to the next level. Instead of storing descriptions, it archives the objects themselves,
or at least as much of the objects as is necessary to reconstruct them at launch time.

Two classes—NSKeyedArchiver and NSKeyedUnarchiver—provide an elegant solution
for archiving objects into a file for later retrieval.These archive classes provide an object
persistence API that allows you to restore objects between successive application sessions.
The example you’re about to see uses the simplest archiving approach. It stores a single
root object, which in this case is an array of DragViews, that is, the flowers.

To create an archivable object class, you must define a pair of methods.The first,
encodeWithCoder:, stores any information needed to rebuild the object. In this case, that
is the view’s frame and its flower. Both are stored as NSString objects.The second
method, initWithCoder:, recovers that information and initializes objects using saved
information. Here are the two methods defined for the DragView class, allowing objects of
this class to be encoded and retrieved from an archive.

- (void) encodeWithCoder: (NSCoder *)coder

{

[coder encodeCGRect:self.frame forKey:@"viewFrame"];

[coder encodeObject:self.whichFlower forKey:@"flowerType"];

}

http://github.com/erica/iphone-3.0-cookbook-

ptg

- (id) initWithCoder: (NSCoder *)coder

{

[super initWithFrame:CGRectZero];

self.frame = [coder decodeCGRectForKey:@"viewFrame"];

self.whichFlower = [coder decodeObjectForKey:@"flowerType"];

self.image = [UIImage imageNamed:self.whichFlower];

self.userInteractionEnabled = YES;

return self;

}

Each element is stored with a key name. Keys let you recover stored data in any order.
Special UIKit extensions to the NSCoder class add storage methods for points, sizes, rec-
tangles, affine transforms, and edge insets.This example takes advantage of the rectangle
method for encoding and decoding the view frame.

Data is saved to an actual file.You supply an archive path to that file.This example
stores its data in the Documents folder in the sandbox in a file called flowers.archive.

#define DATAPATH [NSString stringWithFormat:

@"%@/Documents/flowers.archive", NSHomeDirectory()]

So for this direct manipulation interface, how do you actually perform the archiving and
unarchiving? Recipe 8-6 shows the exact calls, which in this case are implemented in the
view controller. Here are two custom methods that collect the DragViews and archive
them to the file, and that retrieve the views from the file.

Notice that the latter method returns a Boolean value.This indicates whether the
views could be read in correctly. On fail, a fallback method generates a new set of sub-
views. It’s assumed that either the data was corrupted or that this is the first time running
the application. Either way, the application generates new data to populate the backdrop.

Recipe 8-6 Archiving Interfaces

- (void) archiveInterface

{

NSArray *flowers = [[self.view viewWithTag:201] subviews];

[NSKeyedArchiver archiveRootObject:flowers toFile:DATAPATH];

}

- (BOOL) unarchiveInterfaceInView: (UIView *) backdrop

{

NSArray *flowers = [NSKeyedUnarchiver

unarchiveObjectWithFile:DATAPATH];

if (!flowers) return NO;

for (UIView *aView in flowers)

[backdrop addSubview:aView];

return YES;

}

315Recipe: Persistence Through Archiving

ptg

Chapter 8 Gestures and Touches316

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 8 and open the project for this recipe.

Recipe: Adding Undo Support
Undo support provides another important component of direct manipulation interfaces.
For a simple GUI, this involves little more than returning each object to a previous
onscreen position. Cocoa Touch offers the NSUndoManager class to provide a way to
reverse user actions.

Creating an Undo Manager
Define your undo manager in the most central location possible.You want to use just one
instance of this class for each primary view controller, sharing it with any child views in
your interface.The viewDidLoad or loadView methods provide a good place to allocate a
new undo manager.

// Initialize the undo manager for this application

self.undoManager = [[NSUndoManager alloc] init];

[self.undoManager setLevelsOfUndo:999];

[self.undoManager release];

The manager can store an arbitrary number of undo actions.You specify how deep that
stack goes. Each action can be complex, involving groups of undo activities, or the action
can be simple as in the example shown here.These undos do one thing: move a view to a
previous location.

Child-View Undo Support
All children of the UIResponder class can find the nearest undo manager in the responder
chain.This means that if you add DragView instances to a view whose view controller has
an undo manager, each DragView automatically knows about that manager through its
undoManager property.This is enormously convenient as you can add undo support in
your main view controller, and all your child views basically pick up that support for free.

Working with Navigation Bars
When working with the navigation bar in any way, child views should store a pointer to
their view controller.A pointer to their view controller lets the children coordinate with
any navigation controller bar button items.You only want an Undo button to appear
when items are available on the undo stack.

@interface DragView : UIImageView

{

CGPoint startLocation;

NSString *whichFlower;

UIViewController *viewController;

http://github.com/erica/iphone-3.0-cookbook-

ptg

Recipe: Adding Undo Support 317

}

@property (retain) NSString *whichFlower;

@property (assign) UIViewController *viewController;

@end

Upon adding an undo item to the manager, you may want to display an Undo button as
this example does.The Undo button calls the manager’s undo method, which in turn uses
the target, action, and object set stored at the top of the undo stack to perform the actual
reversion.When the undo manager has no more undos to perform, the Undo button
should hide.

- (void) checkUndoAndUpdateNavBar

{

while ([self.undoManager isUndoing]);

// Don’t show the undo button if the undo stack is empty

if (!self.undoManager.canUndo)

self.navigationItem.leftBarButtonItem = nil;

else

self.navigationItem.leftBarButtonItem =

BARBUTTON(@"Undo", @selector(undo));

}

- (void) undo

{

[self.undoManager undo];

}

Notice that this method waits for the undo manager to finish any ongoing undo actions
before proceeding to update the navigation bar.

Registering Undos
Here is the simplest call to register an undo. It stores the object location at the start of a
touch sequence, specifying that upon undo, the object should reset its position to this start
location.This call is made from the child view, and not from the view controller.This
approach tells the undo manager how to reset an object to its previous attributes.

[self.undoManager registerUndoWithTarget:self

selector:@selector(resetPosition)

object:NSStringFromCGPoint(self.center)];

An alternative, preferred approach uses an invocation instead of a target and selector.The
invocation records a message for reverting state, that is, it stores a way that it can jump
back to the previous state. Perform this preparation before you change the object’s state.

[[self.undoManager prepareWithInvocationTarget:self] setPosition:self.center];

With invocations, you can use a method with any number of arguments and argument
types.This invocation simplifies adding redo support, which is why it is preferred.

ptg

Chapter 8 Gestures and Touches318

There are several ways to approach the undo registration process in a direct manipula-
tion interface. Placing a call to a setter/unsetter method from the touchesBegan:
➥withEvent: provides the easiest solution, as shown in Recipe 8-7.

Be aware that if users touch an object and release without moving it, undo results may
be imperceptible.You may want to add a check into the touches ended routine to make
sure that an object was actually moved. If not, remove the last item from the undo stack by
issuing undo.

Recipe 8-7 lists the actual undo code.The setPosition: method provides both a set
and reset solution for the undo manager. Upon registration, it stores the position of a view
into the undo stack. Upon undo, it animates the view back to that position, providing a
visual connection between the new value and the old.Although redo support is not used
in this recipe (see Recipe 8-8), the setPosition: method is redo compliant.When called
by the undo manager, the repeat prepareWithInvocationTarget: call gets added to the
redo stack.

The delayed selector in this method, checkUndoAndUpdateNavBar:, triggers after the
animation has completed.This allows the setPosition: method to finish before any
checks are made against the undo stack.

The stack will not decrease its count until after the registered method returns. If you
call the method directly, the Undo button on the navigation controller will not dismiss
even though there are no further undos to perform.The while loop that checks for
isUndoing would never clear and setPosition: would never return.

Recipe 8-7 Creating a Custom Undo Routine

- (void) setPosition: (CGPoint) pos

{

[[self.undoManager prepareWithInvocationTarget:self]

setPosition:self.center];

[self.viewController

performSelector:@selector(checkUndoAndUpdateNavBar)

withObject:nil afterDelay:0.2f];

[UIView beginAnimations:@"" context:nil];

[UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];

[UIView setAnimationDuration:0.1f];

self.center = pos; // animate

[UIView commitAnimations];

}

- (void) touchesBegan:(NSSet*)touches withEvent:(UIEvent*)event

{

[self setPosition:self.center];

ptg

Recipe: Adding Shake-Controlled Undo Support 319

Figure 8-3 Shake-to-undo provides an undo/redo
menu for users.

// Calculate and store offset, and pop view into front if needed

CGPoint pt = [[touches anyObject] locationInView:self];

startLocation = pt;

[[self superview] bringSubviewToFront:self];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 8 and open the project for this recipe.

Recipe: Adding Shake-Controlled Undo Support
New to the 3.0 SDK, shake-to-undo support offers a whimsical feature that automatically
produces an undo/redo menu.When users shake the phone, this menu appears, connected
to the current undo manager.The menu allows users to undo the previous action or redo
an action that has been undone. Figure 8-3 shows the shake-to-undo menu.

Shake-to-edit is a clever concept, but it’s not entirely practical in application.Training
your users to shake the phone rather than press an Undo button presents a real-world

http://github.com/erica/iphone-3.0-cookbook-

ptg

Chapter 8 Gestures and Touches320

hurdle. Even trained, it’s a pain to keep shaking the phone to process a series of undo
events. If you plan to include this feature in your applications, consider using it to enhance
and extend an existing undo setup rather than replace it.

Adding support for shake-to-edit takes just a few steps. Here is an item-by-item list of
the changes you make to offer this feature in your application.

Add an Action Name for Undo and Redo
Action names provide the word or words that appear after “Undo” and “Redo,” as shown
in Figure 8-3. Here, the action name is set to “movement.”The undo menu option is
therefore Undo Movement. Extend the setPosition: method to provide this name by
adding this line right after you prepare the invocation target.

if (![self.undoManager isUndoing])

[self.undoManager setActionName:@"movement"];

Provide Shake-To-Edit Support
Locate the applicationDidFinishLaunching: method of your application delegate. In
that method add this line. Setting the applicationSupportsShakeToEdit property
explicitly adds shake-to-edit support to the application as a whole.

application.applicationSupportsShakeToEdit = YES;

Force First Responder
For a view controller to handle undo/redo, it must always be first responder. Since each
application may be handling several undo manager clients, the application must match
each undo manager to a particular view controller. Only the first responder receives
undo/redo calls.

As the undo manager typically lives inside a UIViewController instance, make sure to
add the routines from Recipe 8-8 to your view controller.These ensure that it becomes
first responder whenever it appears onscreen and that its undo manager is used.

Recipe 8-8 Providing Shake-to-Edit Support by Becoming First Responder

- (BOOL)canBecomeFirstResponder {

return YES;

}

- (void)viewDidAppear:(BOOL)animated {

[super viewDidAppear:animated];

[self becomeFirstResponder];

}

ptg

Recipe: Drawing Onscreen 321

Figure 8-4 A simple painting tool for the iPhone
requires little more than collecting touches along a
path and painting that path with Quartz 2D calls.

- (void)viewWillDisappear:(BOOL)animated {

[super viewWillDisappear:animated];

[self resignFirstResponder];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 8 and open the project for this recipe.

Recipe: Drawing Onscreen
As with gestures, the UIView hosts the realm of direct onscreen drawing. Its drawRect:
method offers a low-level way to draw content directly, letting you create and display arbi-
trary elements using Quartz 2D calls.These two elements can join together to build con-
crete, manipulatable interfaces.

Recipe 8-9 combines gestures with drawRect to create touch-based painting.As a user
touches the screen, the TouchView class collects a series of points.At each touch move-
ment, the touchesMoved:withEvent: method calls setNeedsDisplay.This, in turn, trig-
gers a call to drawRect:, where the view draws a series of line segments from those points
to create a visual onscreen path. Figure 8-4 shows the interface with a user-created path.

http://github.com/erica/iphone-3.0-cookbook-

ptg

Chapter 8 Gestures and Touches322

Recipe 8-9 Touch-Based Painting in a UIView

@interface TouchView : UIView

{

NSMutableArray *points;

}

@property (retain) NSMutableArray *points;

@end

@implementation TouchView

@synthesize points;

- (BOOL) isMultipleTouchEnabled {return NO;}

// Start new array

- (void) touchesBegan:(NSSet *) touches withEvent:(UIEvent *) event

{

self.points = [NSMutableArray array];

CGPoint pt = [[touches anyObject] locationInView:self];

[self.points addObject:[NSValue valueWithCGPoint:pt]];

}

// Add each point to array

- (void) touchesMoved:(NSSet *) touches withEvent:(UIEvent *) event

{

CGPoint pt = [[touches anyObject] locationInView:self];

[self.points addObject:[NSValue valueWithCGPoint:pt]];

[self setNeedsDisplay];

}

// Draw all points

- (void) drawRect: (CGRect) rect

{

if (!self.points) return;

if (self.points.count < 2) return;

[[UIColor whiteColor] set];

CGContextSetLineWidth(context, 4.0f);

CGContextRef context = UIGraphicsGetCurrentContext();

for (int i = 0; i < (self.points.count - 1); i++)

{

CGPoint pt1 = POINT(i);

CGPoint pt2 = POINT(i+1);

CGContextMoveToPoint(context, pt1.x, pt1.y);

ptg

Recipe: Calculating Lines 323

CGContextAddLineToPoint(context, pt2.x, pt2.y);

CGContextStrokePath(context);

}

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 8 and open the project for this recipe.

Recipe: Calculating Lines
When user input relies primarily on touches, applied geometry can help interpret those
gestures. In this recipe and the next, computational solutions filter user input to create
simpler data sets that are more application appropriate. Recipe 8-10 collects the same
touch array that was shown in Recipe 8-9.When the gesture finishes, that is, at touch-up,
this code analyzes that array and creates a minimized set of line segments to match the
freeform points.

A reduced point set accomplishes two things. First, it creates a straighter, better-looking
presentation.The right image in Figure 8-5 is much cleaner than the one on the left. Sec-
ond, it produces a set of points that are better matched to interpretation.The six-point
line segments shown in Figure 8-5 on the right are far easier to analyze than the more
than 50 points on the left.

The extra line segments are due to a slight finger squiggle at the top-right of the trian-
gle. Converting a freeform gesture into meaningful user intent can be a significantly hard
problem.Although it’s obvious to a human that the user meant to draw a triangle, compu-
tational algorithms are never perfect.When you need to interpret gestures, a certain
amount of hand waving accommodation is necessary.

Recipe 8-10 works by analyzing sets of three points at a time. For each triplet, it cen-
ters the first and third points around the origin of the second. It then takes the dot prod-
uct of the vectors to the first and third points.The dot product returns a value that is the
cosine of the angle between the two vectors. If those points are collinear, that is, the
angle between them is roughly 180 degrees (give or take), the algorithm discards the
middle point.

The cosine of 180 degrees is -1.This code discards all points where the vector cosine
falls below -0.75. Increasing the tolerance (by raising the cosine check, say to -0.6 or -0.5)
produces flatter results but may also discard intentional direction changes from users. If
your goal is to check for triangles, squares, and other simple polygons, the tolerance can be
quite robust.To produce “prettier” line drawings, use a tighter tolerance to retain user-pro-
vided detail.

http://github.com/erica/iphone-3.0-cookbook-

ptg

Chapter 8 Gestures and Touches324

Figure 8-5 Computational solutions can manage user input. Here, a line
detection algorithm reduces the number of input points by converting user

intent into a better geometric representation.

Recipe 8-10 Creating Line Segments from Freeform Gestures

// Return dot product of two vectors normalized

float dotproduct (CGPoint v1, CGPoint v2)

{

float dot = (v1.x * v2.x) + (v1.y * v2.y);

float a = ABS(sqrt(v1.x * v1.x + v1.y * v1.y));

float b = ABS(sqrt(v2.x * v2.x + v2.y * v2.y));

dot /= (a * b);

return dot;

}

// remove all intermediate points that are approximately colinear

- (void) touchesEnded:(NSSet *) touches withEvent:(UIEvent *) event

{

if (!self.points) return;

if (self.points.count < 3) return;

// Create the filtered array

NSMutableArray *newpoints = [NSMutableArray array];

[newpoints addObject:[self.points objectAtIndex:0]];

CGPoint p1 = POINT(0);

ptg

Recipe: Detecting Circles 325

// Add only those points that are inflections

for (int i = 1; i < (self.points.count - 1); i++)

{

CGPoint p2 = POINT(i);

CGPoint p3 = POINT(i+1);

// Cast vectors around p2 origin

CGPoint v1 = CGPointMake(p1.x - p2.x, p1.y - p2.y);

CGPoint v2 = CGPointMake(p3.x - p2.x, p3.y - p2.y);

float dot = dotproduct(v1, v2);

// Colinear items need to be as close as possible

// to 180 degrees

if (dot < -0.75f) continue;

p1 = p2;

[newpoints addObject:[self.points objectAtIndex:i]];

}

// Add final point

if ([newpoints lastObject] != [self.points lastObject])

[newpoints addObject:[self.points lastObject]];

// Report initial and final point counts

NSLog(@"%@",[NSString stringWithFormat@"%d points to %d points",

self.points.count, newpoints.count]);

// Update with the filtered points and draw

self.points = newpoints;

[self setNeedsDisplay];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 8 and open the project for this recipe.

Recipe: Detecting Circles
In a direct manipulation interface like the iPhone, you’d imagine that most people could
get by just pointing to items onscreen.And yet, circle detection remains one of the most
requested gestures. Developers like having people circle items onscreen with their fingers.
In the spirit of providing solutions that readers have requested, Recipe 8-11 offers a rela-
tively simple circle detector, which is shown in Figure 8-6.

In this implementation, detection uses a two-step test. First, there’s a convergence test.
The circle must start and end close enough together that the points are somehow related.
A fair amount of leeway is needed because when you don’t provide direct visual feedback,

http://github.com/erica/iphone-3.0-cookbook-

ptg

Chapter 8 Gestures and Touches326

Figure 8-6 The dot and the outer ellipse show
the key features of the detected circle.

users tend to undershoot or overshoot where they began.The pixel distance used here is a
generous 60 pixels, approximately a third of the view size.

The second test looks at movement around a central point. It adds up the arcs traveled,
which should equal 360 degrees in a perfect circle.This sample allows any movement that
falls within 45 degrees of that number.

Upon passing the two tests, the algorithm produces a least bounding rectangle and
centers that rectangle on the geometric mean of the points from the original gesture.This
result is assigned to the circle instance variable. It’s not a perfect detection system (you can
try to fool it when testing the sample code), but it’s robust enough to provide reasonably
good circle checks for many iPhone applications.

Recipe 8-11 Detecting Circles

// At the end of touches, determine whether a circle was drawn

- (void) touchesEnded:(NSSet *) touches withEvent:(UIEvent *) event

{

if (!self.points) return;

if (self.points.count < 3) return;

// Test 1: The start and end points must be between

// 60 pixels of each other

CGRect tcircle;

if (distance(POINT(0), POINT(self.points.count - 1)) < 60.0f)

ptg

Recipe: Detecting Multitouch 327

tcircle = [self centeredRectangle];

// Test 2: Count the distance traveled in degrees. Must fall

// within 45 degrees of 2 PI

CGPoint center = CGPointMake(CGRectGetMidX(tcircle),

CGRectGetMidY(tcircle));

float distance = ABS(acos(dotproduct(centerPoint(POINT(0), center),

centerPoint(POINT(1), center))));

for (int i = 1; i < (self.points.count - 1); i++)

distance += ABS(acos(dotproduct(centerPoint(POINT(i), center),

centerPoint(POINT(i+1), center))));

if ((ABS(distance - 2 * M_PI) < (M_PI / 4.0f))) circle = tcircle;

[self setNeedsDisplay];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 8 and open the project for this recipe.

Recipe: Detecting Multitouch
Enabling multitouch interaction in your UIViews lets the iPhone recover and respond to
more than one finger touch at a time. Set the UIView property multipleTouchEnabled to
YES or override isMultipleTouchEnabled for your view.When multitouch is enabled,
each touch callback returns an entire set of touches.When that set’s count exceeds one,
you know you’re dealing with multitouch.

In theory, the iPhone could support an arbitrary number of touches. On the iPhone,
multitouch is limited to five finger touches at a time. Even five at a time goes beyond
what most developers need.There aren’t many meaningful gestures you can make with
five fingers at once.This particularly holds true when you grasp the iPhone with one hand
and touch with the other.

Touches are not grouped. If, for example, you touch the screen with two fingers from
each hand, there’s no way to determine which touches belong to which hand.The touch
order is arbitrary.Although grouped touches retain the same finger order for the lifetime
of a single touch event (down, move, up), the order may change the next time your user
touches the screen.When you need to distinguish touches from each other, build a touch
dictionary indexed by the touch objects.

Perhaps it’s a comfort to know that if you need to, the extra finger support has been
built in. Unfortunately, when you are using three or more touches at a time, the screen has
a pronounced tendency to lose track of one or more of those fingers. It’s hard to program-
matically track smooth gestures when you go beyond two finger touches.

Recipe 8-12 adds multitouch to a UIView (via the isMultipleToucheEnabled
method) and draws lines between each touch location onscreen.When you limit your

http://github.com/erica/iphone-3.0-cookbook-

ptg

Chapter 8 Gestures and Touches328

input to two touches, it produces a reasonably steady response, maintaining a line between
those two fingers.Add a third touch to the screen and the lines start to flicker.That’s
because the iPhone does not steadily detect all the touches.

Unfortunately, multitouch detection is not nearly as stable and dependable as single
touch interaction.You see that in this recipe and see an even more pronounced example
in Recipe 8-13.While multitouch is available and, admittedly, an exciting technology, its
limits mean you should use it cautiously and with heavy testing before deployment to
real-world applications.

Recipe 8-12 Adding Basic Multitouch

@implementation TouchView

@synthesize points;

- (BOOL) isMultipleTouchEnabled {return YES;}

- (void) touchesBegan:(NSSet *) touches withEvent: (UIEvent *) event

{

self.points = [touches allObjects];

[self setNeedsDisplay];

}

- (void) touchesMoved:(NSSet *) touches withEvent: (UIEvent *) event

{

self.points = [touches allObjects];

[self setNeedsDisplay];

}

- (void) drawRect: (CGRect) rect

{

if (!self.points) return;

if (self.points.count < 2) return;

CGContextRef context = UIGraphicsGetCurrentContext();

CGContextSetLineWidth(context, 4.0f);

[[UIColor redColor] set];

// Draw lines between each point

CGPoint pt1 = POINT(0);

CGContextMoveToPoint(context, pt1.x, pt1.y);

for (int i = 1; i < self.points.count; i++)

{

pt1 = POINT(i % self.points.count);

CGPoint pt2 = POINT((i + 1) % self.points.count);

CGContextAddLineToPoint(context, pt2.x, pt2.y);

}

ptg

Recipe: Gesture Distinction 329

CGContextStrokePath(context);

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 8 and open the project for this recipe.

Note
Apple provides many Core Graphics/Quartz 2D resources on its developer Web site.
Although many of these forums, mailing lists, and source code samples are not iPhone spe-
cific, they offer an invaluable resource for expanding your iPhone Core Graphics knowledge.

Recipe: Gesture Distinction
Standard Apple iPhone applications support a variety of gestures that have become a basic
language for touch interaction. Users can tap, double-tap, swipe, and drag the screen, and
Apple applications interpret those gestures accordingly. Unfortunately,Apple does not
offer a public API that performs the heavy lifting.You need to interpret your own ges-
tures. Recipe 8-13 offers a gesture detection system that waits for user input and then
evaluates that input.

Distinguishing gestures is not trivial, particularly when you add multitouch into the
equation.As Recipe 8-12 demonstrated, iPhone touch sensors are less reliable in multi-
touch mode.A two-touch drag, for example, might flip back and forth between detecting
two fingers and one.

The solution in Recipe 8-13 for working with this inconsistency is twofold. First, the
code tries to find the most immediate solution for matching input to a known gesture as
quickly as possible.When matched, it sets a “finished” flag so the first gesture matched
wins. Second, this code may invalidate a match should user input continue beyond a rea-
sonable limit. For example, taps are short; a tap should not involve 20 or 30 UITouch
instances. Here are the gestures that Recipe 8-13 handles, and how it interprets them:

n Swipes—Swipes are short, single-touch gestures that move in a single cardinal
direction: up, down, left, or right.They cannot move too far off course from that
primary direction.The code here checks for touches that travel at least 16 pixels in
X or Y, without straying more than 8 pixels in another direction.

n Pinches—To pinch or unpinch, a user must move two fingers together or apart in a
single movement.That gesture must compress or expand by at least 8 pixels to regis-
ter with this code.

n Taps—Although a tap should ideally represent a single touch to the screen, extra
callbacks may register. Recipe 8-13 uses a point limit of 3 for single-touch taps, and
10 for double-touch taps.And yes, that high tolerance is needed. Empirical testing

http://github.com/erica/iphone-3.0-cookbook-

ptg

Chapter 8 Gestures and Touches330

set the levels used in this recipe. Users touched one or two fingers to the screen at
once, and the code counted the UITouch instances produced.

n Double-taps—Each touch object provides a tap count, letting you check whether
users tapped once or twice. However, a double-tap is not counted until a single-tap
has already been processed.When looking to distinguish between single- and
double-taps, be aware of this behavior.

n Drags—For the purpose of this example, a drag refers to any single-touch event
that is not a tap, a double-tap, or a swipe.

Recipe 8-13 Interpreting Gestures

@interface TouchView : UIView

{

BOOL multitouch;

BOOL finished;

CGPoint startPoint;

NSUInteger touchtype;

NSUInteger pointCount;

UIViewController *vc;

}

@property (assign) UIViewController *vc;

@end

@implementation TouchView

@synthesize vc;

#define SWIPE_DRAG_MIN 16

#define DRAGLIMIT_MAX 8

#define POINT_TOLERANCE 16

#define MIN_PINCH 8

- (BOOL) isMultipleTouchEnabled {return YES;}

- (void) touchesBegan:(NSSet *) touches withEvent: (UIEvent *) event

{

finished = NO;

startPoint = [[touches anyObject] locationInView:self];

multitouch = (touches.count > 1);

pointCount = 1;

}

- (void) touchesMoved:(NSSet *) touches withEvent: (UIEvent *) event

{

pointCount++;

if (finished) return;

ptg

Recipe: Gesture Distinction 331

// Handle multitouch

if (touches.count > 1)

{

// get touches

UITouch *touch1 = [[touches allObjects] objectAtIndex:0];

UITouch *touch2 = [[touches allObjects] objectAtIndex:1];

// find current and previous points

CGPoint cpoint1 = [touch1 locationInView:self];

CGPoint ppoint1 = [touch1 previousLocationInView:self];

CGPoint cpoint2 = [touch2 locationInView:self];

CGPoint ppoint2 = [touch2 previousLocationInView:self];

// calculate distances between the points

CGFloat cdist = distance(cpoint1, cpoint2);

CGFloat pdist = distance(ppoint1, ppoint2);

multitouch = YES;

// The pinch has to exceed a minimum distance to trigger

if (ABS(cdist - pdist) < MIN_PINCH) return;

if (cdist < pdist)

touchtype = UITouchPinchIn;

else

touchtype = UITouchPinchOut;

finished = YES;

return;

}

else

{

// Check single touch for swipe

CGPoint cpoint = [[touches anyObject] locationInView:self];

float dx = DX(cpoint, startPoint);

float dy = DY(cpoint, startPoint);

multitouch = NO;

finished = YES;

if ((dx > SWIPE_DRAG_MIN) && (ABS(dy) < DRAGLIMIT_MAX))

touchtype = UITouchSwipeLeft;

else if ((-dx > SWIPE_DRAG_MIN) && (ABS(dy) < DRAGLIMIT_MAX))

touchtype = UITouchSwipeRight;

else if ((dy > SWIPE_DRAG_MIN) && (ABS(dx) < DRAGLIMIT_MAX))

touchtype = UITouchSwipeUp;

else if ((-dy > SWIPE_DRAG_MIN) && (ABS(dx) < DRAGLIMIT_MAX))

touchtype = UITouchSwipeDown;

ptg

Chapter 8 Gestures and Touches332

else

finished = NO;

}

}

- (void) touchesEnded:(NSSet *) touches withEvent: (UIEvent *) event

{

// was not detected as a swipe

if (!finished && !multitouch)

{

// tap or double tap

if (pointCount < 3)

{

if ([[touches anyObject] tapCount] == 1)

touchtype = UITouchTap;

else

touchtype = UITouchDoubleTap;

}

else

touchtype = UITouchDrag;

}

// did points exceeded proper swipe?

if (finished && !multitouch)

{

if (pointCount > POINT_TOLERANCE) touchtype = UITouchDrag;

}

// Is this properly a tap/double tap?

if (multitouch || (touches.count > 1))

{

// tolerance is *very* high

if (pointCount < 10)

{

if ([[touches anyObject] tapCount] == 1)

touchtype = UITouchMultitouchTap;

else

touchtype = UITouchMultitouchDoubleTap;

}

}

NSString *whichItem = nil;

if (touchtype == UITouchUnknown)

whichItem = @"Unknown";

else if (touchtype == UITouchTap)

whichItem = @"Tap";

else if (touchtype == UITouchDoubleTap)

ptg

One More Thing: Interactive Resize and Rotation 333

whichItem = @"Double Tap";

else if (touchtype == UITouchDrag)

whichItem = @"Drag";

else if (touchtype == UITouchMultitouchTap)

whichItem = @"Multitouch Tap";

else if (touchtype == UITouchMultitouchDoubleTap)

whichItem = @"Multitouch Double Tap";

else if (touchtype == UITouchSwipeLeft)

whichItem = @"Swipe Left";

else if (touchtype == UITouchSwipeRight)

whichItem = @"Swipe Right";

else if (touchtype == UITouchSwipeUp)

whichItem = @"Swipe Up";

else if (touchtype == UITouchSwipeDown)

whichItem = @"Swipe Down";

else if (touchtype == UITouchPinchIn)

whichItem = @"Pinch In";

else if (touchtype == UITouchPinchOut)

whichItem = @"Pinch Out";

[self.vc performSelector:@selector(updateStatewithPoints:)

withObject:whichItem

withObject:[NSNumber numberWithInt:pointCount]];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 8 and open the project for this recipe.

One More Thing: Interactive Resize and Rotation
As the recipes in this chapter have shown, if you’re willing to bring math to the table, the
iPhone can respond in powerful ways. Listing 8-1 demonstrates that power by combining
the DragView class shown throughout this chapter with Apple sample code.This code
creates a touchable, interactive view that responds to single and double touches by trans-
lating, rotating, and zooming.

This implementation, whose features are due to Apple and whose mistakes are down
solely to me, stores a set of points at the beginning of each touch. It then creates incre-
mental affine transforms based on touch progress, comparing the touch locations to their
starting positions and updating the view transform in real time.

It’s a complicated way to approach direct manipulation, but the results are outstanding.
This class responds directly to user interaction to match the view to its touches.

http://github.com/erica/iphone-3.0-cookbook-

ptg

Chapter 8 Gestures and Touches334

Listing 8-1 Resizing and Rotating Views

@implementation DragView

// Prepare the drag view

- (id) initWithImage: (UIImage *) anImage

{

if (self = [super initWithImage:anImage])

{

self.userInteractionEnabled = YES;

self.multipleTouchEnabled = YES;

self.exclusiveTouch = NO;

originalSize = anImage.size;

originalTransform = CGAffineTransformIdentity;

touchBeginPoints = CFDictionaryCreateMutable(NULL, 0,

NULL, NULL);

}

return self;

}

// Create an incremental transform matching the current touch set

- (CGAffineTransform)incrementalTransformWithTouches:(NSSet *)touches

{

// Sort the touches by their memory addresses

NSArray *sortedTouches = [[touches allObjects]

sortedArrayUsingSelector:@selector(compareAddress)];

NSInteger numTouches = [sortedTouches count];

// If there are no touches, simply return identify transform.

if (numTouches == 0) return CGAffineTransformIdentity;

// Handle single touch as a translation

if (numTouches == 1) {

UITouch *touch = [sortedTouches objectAtIndex:0];

CGPoint beginPoint = *(CGPoint *)

CFDictionaryGetValue(touchBeginPoints, touch);

CGPoint currentPoint = [touch locationInView:self.superview];

return CGAffineTransformMakeTranslation(currentPoint.x –

beginPoint.x, currentPoint.y - beginPoint.y);

}

// If two or more touches, go with the first two

UITouch *touch1 = [sortedTouches objectAtIndex:0];

UITouch *touch2 = [sortedTouches objectAtIndex:1];

CGPoint beginPoint1 = *(CGPoint *)

CFDictionaryGetValue(touchBeginPoints, touch1);

ptg

One More Thing: Interactive Resize and Rotation 335

CGPoint currentPoint1 = [touch1 locationInView:self.superview];

CGPoint beginPoint2 = *(CGPoint *)

CFDictionaryGetValue(touchBeginPoints, touch2);

CGPoint currentPoint2 = [touch2 locationInView:self.superview];

double layerX = self.center.x;

double layerY = self.center.y;

double x1 = beginPoint1.x - layerX;

double y1 = beginPoint1.y - layerY;

double x2 = beginPoint2.x - layerX;

double y2 = beginPoint2.y - layerY;

double x3 = currentPoint1.x - layerX;

double y3 = currentPoint1.y - layerY;

double x4 = currentPoint2.x - layerX;

double y4 = currentPoint2.y - layerY;

// Solve the system:

// [a b t1, -b a t2, 0 0 1] * [x1, y1, 1] = [x3, y3, 1]

// [a b t1, -b a t2, 0 0 1] * [x2, y2, 1] = [x4, y4, 1]

double D = (y1-y2)*(y1-y2) + (x1-x2)*(x1-x2);

if (D < 0.1) {

return CGAffineTransformMakeTranslation(x3-x1, y3-y1);

}

double a = (y1-y2)*(y3-y4) + (x1-x2)*(x3-x4);

double b = (y1-y2)*(x3-x4) - (x1-x2)*(y3-y4);

double tx = (y1*x2 - x1*y2)*(y4-y3) - (x1*x2 + y1*y2)*(x3+x4) +

x3*(y2*y2 + x2*x2) + x4*(y1*y1 + x1*x1);

double ty = (x1*x2 + y1*y2)*(-y4-y3) + (y1*x2 - x1*y2)*(x3-x4) +

y3*(y2*y2 + x2*x2) + y4*(y1*y1 + x1*x1);

return CGAffineTransformMake(a/D, -b/D, b/D, a/D, tx/D, ty/D);

}

// Cache where each touch started

- (void)cacheBeginPointForTouches:(NSSet *)touches

{

for (UITouch *touch in touches) {

CGPoint *point = (CGPoint *)

CFDictionaryGetValue(touchBeginPoints, touch);

if (point == NULL) {

point = (CGPoint *)malloc(sizeof(CGPoint));

CFDictionarySetValue(touchBeginPoints, touch, point);

}

ptg

Chapter 8 Gestures and Touches336

*point = [touch locationInView:self.superview];

}

}

// Clear out touches from the cache

- (void)removeTouchesFromCache:(NSSet *)touches

{

for (UITouch *touch in touches) {

CGPoint *point = (CGPoint *)

CFDictionaryGetValue(touchBeginPoints, touch);

if (point != NULL) {

free((void *)CFDictionaryGetValue(touchBeginPoints,

touch));

CFDictionaryRemoveValue(touchBeginPoints, touch);

}

}

}

// Limit zoom to a max and min value

- (void) setConstrainedTransform: (CGAffineTransform) aTransform

{

self.transform = aTransform;

CGAffineTransform concat;

CGSize asize = self.frame.size;

if (asize.width > MAXZOOM * originalSize.width)

{

concat = CGAffineTransformConcat(self.transform,

CGAffineTransformMakeScale((MAXZOOM * originalSize.width /

asize.width), 1.0f));

self.transform = concat;

}

else if (asize.width < MINZOOM * originalSize.width)

{

concat = CGAffineTransformConcat(self.transform,

CGAffineTransformMakeScale((MINZOOM * originalSize.width /

asize.width), 1.0f));

self.transform = concat;

}

if (asize.height > MAXZOOM * originalSize.height)

{

concat = CGAffineTransformConcat(self.transform,

CGAffineTransformMakeScale(1.0f, (MAXZOOM *

originalSize.height / asize.height)));

self.transform = concat;

}

ptg

One More Thing: Interactive Resize and Rotation 337

else if (asize.height < MINZOOM * originalSize.height)

{

concat = CGAffineTransformConcat(self.transform,

CGAffineTransformMakeScale(1.0f, (MINZOOM *

originalSize.height / asize.height)));

self.transform = concat;

}

}

// Apply touches to create transform

- (void)updateOriginalTransformForTouches:(NSSet *)touches

{

if ([touches count] > 0) {

CGAffineTransform incrementalTransform = [self

incrementalTransformWithTouches:touches];

[self setConstrainedTransform:

CGAffineTransformConcat(originalTransform,

incrementalTransform)];

originalTransform = self.transform;

}

}

// At start, store the touch begin points and set an original transform

- (void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event

{

[[self superview] bringSubviewToFront:self];

NSMutableSet *currentTouches = [[[event touchesForView:self]

mutableCopy] autorelease];

[currentTouches minusSet:touches];

if ([currentTouches count] > 0) {

[self updateOriginalTransformForTouches:currentTouches];

[self cacheBeginPointForTouches:currentTouches];

}

[self cacheBeginPointForTouches:touches];

}

// During movement, update the transform to match the touches

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event

{

CGAffineTransform incrementalTransform = [self

incrementalTransformWithTouches:[event touchesForView:self]];

[self setConstrainedTransform:

CGAffineTransformConcat(originalTransform,

incrementalTransform)];

}

ptg

Chapter 8 Gestures and Touches338

// Finish by removing touches, handling double-tap requests

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event

{

[self updateOriginalTransformForTouches:[event

touchesForView:self]];

[self removeTouchesFromCache:touches];

for (UITouch *touch in touches) {

if (touch.tapCount >= 2) {

[self.superview bringSubviewToFront:self];

}

}

NSMutableSet *remainingTouches = [[[event touchesForView:self]

mutableCopy] autorelease];

[remainingTouches minusSet:touches];

[self cacheBeginPointForTouches:remainingTouches];

}

// Redirect cancel to ended

- (void)touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event

{

[self touchesEnded:touches withEvent:event];

}

- (void)dealloc {

if (touchBeginPoints) CFRelease(touchBeginPoints);

[super dealloc];

}

@end

Summary
UIViews provide the onscreen components your users see. Gestures give views the ability
to interact with those users via the UITouch class.As this chapter has shown, even in their
most basic form, touch-based interfaces offer easy-to-implement flexibility and power.
You discovered how to move views around the screen and how to bound that movement.
You read about testing touches to see whether views should or should not respond to
them. Several recipes covered both persistence and undo support for direct manipulation
interfaces.You saw how to “paint” on a view and how to process user touches to interpret

ptg

Summary 339

and respond to gestures. Here’s a collection of thoughts about the recipes in this chapter
that you might want to ponder before moving on:

n Be concrete.The iPhone has a perfectly good touch screen.Why not let your users
drag items around the screen with their fingers? It adds to the reality and the plat-
form’s interactive nature.

n Users typically have five fingers per hand. Don’t limit yourself to a one-finger inter-
face when it makes sense to expand your interaction into multitouch territory.

n A solid grounding in Quartz graphics and Core Animation will be your friend.
Using drawRect:, you can build any kind of custom UIView presentation you’d
like, including text, Bézier curves, scribbles, and so forth.

n Explore! This chapter only touched lightly on the ways you can use direct manipu-
lation in your applications. Use this material as a jumping-off point to explore the
full vocabulary of the UITouch class.

ptg

This page intentionally left blank

ptg

9
Building and Using Controls

The UIControl class provides the basis for many iPhone interactive elements,
including buttons, text fields, sliders, and switches.These onscreen objects have
more in common than their ancestor class. Controls all use similar layout and tar-

get-action approaches.This chapter introduces controls and their use.You discover how to
build and customize controls in a variety of ways. From the prosaic to the obscure, this
chapter introduces a range of control recipes you can reuse in your programs.

The UIControl Class
On the iPhone, controls refer to a library of prebuilt onscreen objects designed for user
interaction. Controls include buttons and text fields, sliders and switches, along with other
Apple-supplied objects.A control’s role is to transform user interactions into callbacks.
Users touch and manipulate controls and in doing so communicate with your application.

The UIControl class lies at the root of the control class tree.All controls define a visual
interface and implement ways to dispatch messages when users interact with that inter-
face. Controls send those messages using target-action.When you define a new onscreen
control, you tell it who receives messages, what messages to send, and when to send those
messages.

Kinds of Controls
The members of the UIControl family include buttons, segmented controls, switches,
sliders, page controls, and text fields. Each of these controls can be found in Interface
Builder’s Object Library (Tools > Library > Objects) in the Inputs & Values section, as
shown in Figure 9-1. Control objects correspond to Inputs.The label, progress indicator,
and activity indicator represent the Values.

Control Events
Controls respond primarily to three kinds of events: those based on touch, those based on
value, and those based on edits.Table 9-1 lists the full range of event types available to
controls.

ptg

Table 9-1 UIControl Event Types

Event Type Use

UIControlEvent

TouchDown

Touch A touch down event anywhere within a con-
trol’s bounds.

UIControlEvent

TouchUpInside

Touch A touch up event anywhere within a control’s
bounds. This is the most common event type
used for buttons.

UIControlEvent

TouchUpOutside

Touch A touch up event that falls strictly outside a
control’s bounds.

UIControlEvent

TouchDragEnter

UIControlEvent

TouchDragExit

Touch Events corresponding to drags that cross into
or out from the control’s bounds.

UIControlEvent

TouchDragInside

UIControlEvent

TouchDragOutside

Touch Drag events limited to inside the control
bounds or to just outside the control bounds.

Figure 9-1 Interface Builder groups controls
together in the Inputs & Values section of the

Object Library.

342 Chapter 9 Building and Using Controls

ptg

For the most part, Event types break down along the following lines. Buttons use touch
events; the single UIControlEventTouchUpInside event accounts for nearly all button
interaction.Value events (i.e., UIControlEventValueChanged) correspond to user-
initiated adjustments to segmented controls, switches, sliders, and page controls.When

343The UIControl Class

Table 9-1 Continued

Event Type Use

UIControlEvent

TouchDownRepeat

Touch A repeated touch down event with a tapCount
above 1, i.e., a double-tap.

UIControlEvent

TouchCancel

Touch A system event that cancels the current touch.
See Chapter 8, “Gestures and Touches,” for
more details about touch phases and life
cycles.

UIControlEvent

AllTouchEvents

Touch A mask that corresponds to all the touch
events listed above, used to catch any touch
event.

UIControlEvent

ValueChanged

Value A user-initiated event that changes the value
of a control such as moving a slider’s thumb
or toggling a switch.

UIControlEvent

EditingDidBegin

UIControlEvent

EditingDidEnd

Editing Touches inside or outside a UITextField. A
touch inside begins the editing session. A
touch outside ends it.

UIControlEvent

EditingChanged

Editing An editing change to the contents of the
UITextField contents.

UIControlEvent

EditingDidEndOn

Exit

Editing An event that ends an editing session but not
necessarily a touch outside its bounds.

UIControlEvent

AllEditingEvents

Editing A mask of all editing events.

UIControlEvent

Application

Reserved

Application Application-specific event range (rarely if ever
used).

UIControlEvent

SystemReserved

System System-specific event range (rarely if ever
used).

UIControlEvent

AllEvents

Touch, Value,
Editing,
Application,
System

A mask of all touch, value, editing, application,
and system events.

ptg

344 Chapter 9 Building and Using Controls

Figure 9-2 The iPhone SDK offers five precooked
button types, which you can access in Interface

Builder or build directly into your applications. From
left to right, these are the Detail Disclosure button,
the Info Light and Info Dark buttons, the Contact

Add button, and the Rounded Rectangle.

users switch, slide, or tap those objects, the control value changes. UITextField objects
trigger editing events. Users cause these events by tapping into (or out from) the text
field, or by changing the text field contents.

As with all iPhone GUI elements, you can lay out controls in Interface Builder or
build them directly in Xcode.This chapter discusses IB approaches but focuses more
intently on code-based solutions. IB layout, once mastered, remains pretty much the same
regardless of the item involved.You place an object into the interface, customize it with
inspectors, and connect it to other IB objects.

Buttons
UIButton instances provide simple onscreen buttons. Users can tap them to trigger a call-
back via target-action programming.You specify how the button looks, what art it uses,
and what text it displays.

The iPhone offers two ways to build buttons.You can use a precooked button type or
build a custom button from scratch.The current iPhone SDK offers the following pre-
cooked types.As you can see, the buttons available are not general purpose.They were
added to the SDK primarily for Apple’s convenience, not yours. Nonetheless, you can use
these in your programs as needed. Figure 9-2 shows each button.

n Detail Disclosure—This is the same round, blue circle with the chevron you see
when you add a detail disclosure accessory to table cells. Detail disclosures are used
in tables to lead to a screen that shows details about the currently selected cell.

n Info Light and Info Dark—These two buttons offer a small circled i like you see
on a Macintosh’s Dashboard widget and are meant to provide access to an informa-
tion or settings screen.These are used in the Weather and Stocks application to flip
the view from one side to the other.

n Contact Add—This round, blue circle has a white + in its center and can be seen
in the Mail application for adding new recipients to a mail message.

n Rounded Rectangle—This button provides a simple onscreen rounded rectangle
that surrounds the button text. In its default state it is not an especially attractive

ptg

345Adding Buttons in Interface Builder

button (that is, it’s not very “Apple” looking), but it is simple to program and use in
your applications.

To use a precooked button in code, allocate it, set its frame, and add a target. Don’t worry
about adding custom art or creating the overall look of the button.The SDK takes care of
all that. For example, here’s how to build a simple rounded rectangle button. Note that
buttonWithType: returns an autoreleased object.

UIButton *button = [UIButton buttonWithType:UIButtonTypeRoundedRect];

[button setFrame:CGRectMake(0.0f, 0.0f, 80.0f, 30.0f)];

[button setCenter:CGPointMake(160.0f, 208.0f)];

[button setTitle:@"Beep" forState:UIControlStateNormal];

[button addTarget:self action:@selector(playSound)

forControlEvents:UIControlEventTouchUpInside];

[contentView addSubview:button];

To build one of the other standard button types, omit the title line. Rounded rectangles is
the only precooked button type that uses a title.

Most buttons use the “touch up inside” trigger, where the user touch ends inside the
button’s bounds. iPhone UI standards allow users to cancel button presses by pulling their
fingers off a button before releasing the finger from the screen.The
UIControlEventTouchUpInside event choice mirrors that standard.

When using a precooked button, you must conform to Apple’s Human Interface
Guidelines on how those buttons can be used.Adding a detail disclosure, for example, to
lead to an information page can get your application rejected from the App Store. It
might seem a proper extrapolation of the button’s role, but if it does not meet the exact
wording of how Apple expects the button to be used, it may not pass review.To avoid
potential issues, you may want to use rounded rectangle and custom buttons wherever
possible.

Adding Buttons in Interface Builder
Buttons appear in the Interface Builder library as Rounded Rect Button objects.To use
them, drag them into your interface.You can then change them to another button type
via the Attribute Inspector (Command-1).A button-type pop-up appears at the top of
the inspector, as shown in Figure 9-3. Use this pop-up menu to select the button type.

If your button uses text (such as the word “Button” in Figure 9-2), you can enter that
text in the Title field.The Image and Background pull-downs let you choose a primary
and background image for the button.

Each button provides four configuration settings, which can be seen in Figure 9-3
(right).The four button states are default (the button in its normal state), highlighted
(when a user is currently touching the button), selected (an “on” version of the button for
buttons that support toggled states), and disabled (when the button is unavailable for user
interaction).

ptg

346 Chapter 9 Building and Using Controls

Figure 9-3 Choose your button type from the Type pop-up in the
attributes inspector (left). Changes in the Button section apply to the

current configuration (right).

Changes in the Button Attributes > Button > Configuration section (i.e., the darkened
rectangle below the configuration pop-up) apply to the currently selected configuration.
You might, for example, use a different button text color for a button in its default state
versus its disabled state.

To preview each state, locate the three check boxes in Button Attributes > Control >
Content.The Highlighted, Selected, and Enabled options let you set the button state.
After previewing, and before you compile, make sure you returned the button to the
actual state it needs to be in when you first run the application.

Art
Apart from the precooked button types (disclosure, info, and add contact), you’ll likely
want to create buttons using custom art. Figure 9-4 shows a variety of buttons built
around the Rounded Rect and Custom button classes.

Figure 9-4 shows that when working with Rounded Rect buttons, you are not limited
to just text (Button A).You can add an image along with text (Button B), use an image
instead of text (Button F), or even replace the background rounded rectangle style with
custom art (Button E), although this latter case does not make a lot of sense in the day-
to-day design process.

Custom buttons have no built-in look.You can make buttons with any size you like
(Buttons C and G) and add text (Button D) using the attributes inspector.What Figure 9-4
does not show is that these three buttons also represent other custom design decisions.

Button D uses the same art from Button B. Being a custom button, its text is centered
and not displayed on a rounded backsplash. Beyond that, there’s no big difference
between the B layout and the D layout.The button relies on the default highlighting pro-
vided by Interface Builder and the UIButton class.

Button C represents a button created for highlighting on touch. Its relatively small size
allows it to work with Button Attributes > Button > Shows Touch On Highlight.When
touched, the button reveals a glowing halo.This halo is approximately 55-by-55 pixels in
size. Buttons larger than about 40-by-40 pixels cannot effectively use this visual pop.

ptg

347Adding Buttons in Interface Builder

Figure 9-4 These examples show a variety of
custom art options for both Rounded Rect Buttons

and Custom Buttons.

What can’t be seen in this static screenshot is that Button G was built to display an alter-
nate image when pushed. Setting a second image in Button Attributes > Button > High-
lighted State Configuration lets a button change its look on touch. For Button G, that
image shows the same button but pushed into an indented position.

Connecting Buttons to Actions
When you Control-drag (right-drag) from a button to an IB object like the File’s Owner
view controller, IB presents a pop-up menu of actions to choose from.These actions are
polled from the target object’s available IBActions. Connecting to an action creates a
target-action pair for the button’s touch up inside event.

Alternatively, as Figure 9-5 shows, you can Control-click (right-click) the button, scroll
down to Touch Up Inside, and drag from the unfilled dot to the target you want to con-
nect to.The same pop-up menu appears with its list of available actions. Select the one
you want to use to finish defining the target-action callback.

Buttons That Are Not Buttons
In Interface Builder, you also encounter buttons that look like views and act like views
but are not, in fact, views. Bar button items (UIBarButtonItem) store the properties of
toolbar and navigation bar buttons but are not buttons themselves. See Chapter 5,“Work-
ing with View Controllers,” for more information about using bar button items.

ptg

Figure 9-5 Control-clicking (right-clicking) a UIControl in Interface Builder
reveals a table of events that you can connect to a target. Available actions

appear in a pop-up menu after dragging out the connection.

Building Custom Buttons in Xcode
When using the UIButtonTypeCustom style, you supply all button art.The number of
images depends on how you want the button to work. For a simple pushbutton, you
might add a single background image and vary the label color to highlight when the but-
ton is pushed. For a toggle-style button, you might use four images: for the “off ” state in a
normal presentation, the “off ” state when highlighted (that is, pressed), and two more for
the “on” state.You choose and design the interaction details.

Recipe 9-1 builds a button that toggles on and off, demonstrating the detail that goes
into building custom buttons.When tapped, the button switches its art from green (on) to
red (off), or from red to green.This allows your (noncolorblind) users to instantly identify
a current state.The displayed text reinforces the state setting. Figure 9-6 (left) shows the
button created by this recipe.

The UIImage stretchable image calls in this recipe play an important role in button
creation. Stretchable images enable you to create buttons of arbitrary width, turning cir-
cular art into lozenge-shaped buttons.You specify the caps at either end (that is, the art
that should not be stretched). In this case, the cap is 110 pixels wide. If you were to
change the button width from the 300 pixels used in this recipe to 220, the button loses
the middle stretch, as shown in Figure 9-6 (right).

348 Chapter 9 Building and Using Controls

ptg
Figure 9-6 Use UIImage stretching to resize art for arbitrary button widths.

Set the left cap width to specify where the stretching can take place.

Note
The UIView contentStretch property provides view-specific stretching. The rectangle
stored in the property defines the portion of the view that can be stretched. The rectangle
values are normalized between 0.0 and 1.0, so to make only the middle portion of a view
stretchable, you might set that rectangle to (0.25, 0.25, 0.5, 0.5). Using a contentStretch
property lets a view maintain the kind of crisp borders seen in Figure 9-6.

Recipe 9-1 Building a UIButton That Toggles On and Off

- (void) toggleButton: (UIButton *) button

{

if (isOn = !isOn)

{

[button setTitle:@"On" forState:UIControlStateNormal];

[button setTitle:@"On" forState:UIControlStateHighlighted];

[button setBackgroundImage:baseGreen

forState:UIControlStateNormal];

[button setBackgroundImage:altGreen

forState:UIControlStateHighlighted];

}

else

{

[button setTitle:@"Off" forState:UIControlStateNormal];

[button setTitle:@"Off" forState:UIControlStateHighlighted];

349Building Custom Buttons in Xcode

ptg

350 Chapter 9 Building and Using Controls

[button setBackgroundImage:baseRed

forState:UIControlStateNormal];

[button setBackgroundImage:altRed

forState:UIControlStateHighlighted];

}

}

- (void) viewDidLoad

{

self.title = @"Toggle Button";

baseGreen = [[[UIImage imageNamed:@"green.png"]

stretchableImageWithLeftCapWidth:110.0f topCapHeight:0.0f]

retain];

baseRed = [[[UIImage imageNamed:@"red.png"]

stretchableImageWithLeftCapWidth:110.0f topCapHeight:0.0f]

retain];

altGreen = [[[UIImage imageNamed:@"green2.png"]

stretchableImageWithLeftCapWidth:110.0f topCapHeight:0.0f]

retain];

altGreen = [[[UIImage imageNamed:@"red2.png"]

stretchableImageWithLeftCapWidth:110.0f topCapHeight:0.0f]

retain];

// Create a button sized to our art

UIButton *button = [UIButton buttonWithType:UIButtonTypeCustom];

button.frame = CGRectMake(0.0f, 0.0f, 300.0f, 233.0f);

button.center = CGPointMake(160.0f, 140.0f);

// Set up the button alignment properties

button.contentVerticalAlignment =

UIControlContentVerticalAlignmentCenter;

button.contentHorizontalAlignment =

UIControlContentHorizontalAlignmentCenter;

// Set the font and color

[button setTitleColor:[UIColor whiteColor]

forState:UIControlStateNormal];

[button setTitleColor:[UIColor lightGrayColor]

forState:UIControlStateHighlighted];

button.titleLabel.font = [UIFont boldSystemFontOfSize:24.0f];

// Add action

[button addTarget:self action:@selector(toggleButton)

forControlEvents: UIControlEventTouchUpInside];

ptg

351Adding Animated Elements to Buttons

// For tracking the two states

isOn = NO;

[self toggleButton:button];

// Place the button into the view. The button is autoreleased.

[self.view addSubview:button];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 9 and open the project for this recipe.

Multiline Button Text
New to the 3.0 SDK, UIButtons now offer access to their title label via the titleLabel
property. By exposing this property, the SDK allows you to modify the title attributes
directly, including its font and line break mode. Here, the font is set to a very large value
(basically ensuring that the text needs to wrap to display correctly) and used with word
wrap and centered alignment.

button.titleLabel.font = [UIFont boldSystemFontOfSize:36.0f];

[button setTitle:@"Lorem Ipsum Dolor Sit" forState:

UIControlStateNormal];

button.titleLabel.textAlignment = UITextAlignmentCenter;

button.titleLabel.lineBreakMode = UILineBreakModeWordWrap;

Be aware that the default label stretches from one end of your button to the other.This
means that text may extend farther out than you might otherwise want, possibly beyond
the edges of your button art.To fix this problem, you can force carriage returns in word
wrap mode by embedding new line literals (i.e., \n) into the text.This allows you to con-
trol how much text appears on each line of the button title.

Adding Animated Elements to Buttons
When working with buttons, you can creatively layer art in front of or behind them. Use
the standard UIView hierarchy to do this, making sure to disable user interaction for any
view that might otherwise obscure your button (setUserInteractionEnabled:NO).
Figure 9-7 shows what happens when you combine semitranslucent button art with an

http://github.com/erica/iphone-3.0-cookbook-

ptg

Figure 9-7 Combine semitranslucent button art
with animated UIImageViews to build eye-catching
UI elements. In this concept, the butterfly flaps

“within” the button.

animated UIImageView behind it.The image view contents “leak” through to the viewer,
enabling you to add live animation elements to the button.

352 Chapter 9 Building and Using Controls

Recipe: Animating Button Responses
There’s more to UIControl instances than frames and target-action.All controls inherit
from the UIView class.This means you can use UIView animation blocks when working
with controls just as you would with standard views. Recipe 9-2 builds a toggle switch
that flips around using UIViewAnimationTransitionFlipFromLeft to spin the button
while changing states.

Unlike Recipe 9-1, this code doesn’t switch art. Instead, it switches buttons.There are
two: an on button and an off button, both of which rest on a clear UIView backdrop. Giv-
ing the two buttons a see-through parent enables you to apply the flip to just those but-
tons without involving the rest of the user interface. Skip the clear background, and you
end up spinning the entire window—not a good UI choice.

As this recipe uses the same semitranslucent art as the previous recipes, it’s important
that only one button appears onscreen at any time.To make this happen, the current but-
ton hides (sets its alpha value to 0.0) while in the animation block.The button with the
opposite state takes its place. Figure 9-8 shows the flipping button in midflip.

ptg
Figure 9-8 Use UIView animation blocks to flip

between control states. Here, a button twirls
around to move between Off and On.

353Recipe: Animating Button Responses

Recipe 9-2 Adding UIView Animation Blocks to Controls

- (IBAction) flip: (UIButton *) button

{

// Hide the view that’s going away

[self.view viewWithTag:BUTTON1].alpha = 1.0f;

[self.view viewWithTag:BUTTON2].alpha = 1.0f;

[button setAlpha:0.0f];

// Decide which animation to use

UIViewAnimationTransition trans;

trans = (button.tag == BUTTON1) ?

UIViewAnimationTransitionFlipFromLeft :

UIViewAnimationTransitionFlipFromRight;

// Animate the flip

[UIView beginAnimations:nil context:NULL];

[UIView setAnimationDuration:1.0f];

[UIView setAnimationTransition:trans forView:[self.view

viewWithTag:CLEARVIEW] cache:YES];

[[self.view viewWithTag:CLEARVIEW] exchangeSubviewAtIndex:0

withSubviewAtIndex:1];

ptg

354 Chapter 9 Building and Using Controls

[UIView commitAnimations];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 9 and open the project for this recipe.

Recipe: Working with Switches
The UISwitch object offers a simple ON/OFF toggle that lets users choose a Boolean
value.The switch object contains a single (settable) value property, called on.This returns
either YES or NO, depending on current state of the control.You can programmatically
update a switch’s value by changing the property value directly or calling
setOn:animated:, which offers a way to animate the change.

Interface Builder offers relatively few options for working with switches.You can
enable it and set its initial value, but beyond that there’s not much to customize. Switches
produce a value-changed event when a user adjusts them. Recipe 9-3 uses that behavior
to trigger an IBAction callback.When the switch updates, it enables or disables an associ-
ated button.

As with all IB work, make sure you’ve defined your outlets and actions in the Library
> Classes pane before you make your connections.The switch should trigger on Value
Changed and send the doSwitch: action to the File’s Owner, that is, the main view con-
troller.The controller then sets the enabled property for the button. Unfortunately, you
cannot connect the switch directly to the button inside IB to tie the switch value to the
button’s enabled property. If you are a longtime IB user, you will recall that there was a
time when such connections were allowed.

This recipe builds on the modal animations introduced in Chapter 6,“Assembling
Views and Animations,” and the control animation shown in Recipe 9-2.When the
switch activates, it calls one or more animation requests that transform the button into its
active or inactive state.

Note
Do not name UISwitch instances as switch. Recall that switch is a reserved C word; it
is used for conditional statements. This simple oversight has tripped up many iPhone
developers.

Recipe 9-3 Using a Switch State to Enable/Disable a Guarded Button

@implementation TestBedViewController

- (void) expand: (NSNumber *) aFactor

{

// Cause the button to zoom to the given factor

dangerButton.transform =

http://github.com/erica/iphone-3.0-cookbook-

ptg

355Recipe: Working with Switches

CGAffineTransformMakeScale(aFactor.intValue, aFactor.intValue);

}

- (void) rotate

{

// Rotate the button by 90 degrees

dangerButton.transform =

CGAffineTransformRotate(dangerButton.transform, M_PI_2);

}

- (void) updateAlpha: (NSNumber *) level

{

// Set the button’s transparency to the given level

dangerButton.alpha = level.floatValue;

}

- (IBAction) doSwitch: (UISwitch *) aSwitch

{

dangerButton.enabled = aSwitch.isOn;

// Adjust button alpha level to match the enabled/disabled state

NSNumber *aLevel = NUMBER((dangerButton.enabled) ? 1.0f : 0.25f);

[UIView modalAnimationWithTarget:self

selector:@selector(updateAlpha)

object:aLevel duration:0.3f];

dangerButton.transform = CGAffineTransformIdentity;

if (!dangerButton.enabled) return;

// When the switch enables the button, add a little animation to

// introduce the change

[UIView modalAnimationWithTarget:self

selector:@selector(expand)

object:NUMBER(2.0f) duration:0.3f];

[UIView modalAnimationWithTarget:self

selector:@selector(expand)

object:NUMBER(1.0f) duration:0.3f];

for (int i = 0; i < 4; i++)

[UIView modalAnimationWithTarget:self

selector:@selector(rotate)

object:nil duration:0.3f];

}

- (void) boom

{

// Display a "Boom" alert, as the consequence of tapping

// the danger button

ptg

356 Chapter 9 Building and Using Controls

UIAlertView *av = [[[UIAlertView alloc] initWithTitle:@"Boom"

message:nil delegate:nil

cancelButtonTitle:@"OK"otherButtonTitlesnil] autorelease];

[av show];

}

- (void) viewDidLoad

{

// Initialize the danger button as semi-transparent

dangerButton.alpha = 0.25f;

[dangerButton addTarget:self action:@selector(boom)

forControlEvents:UIControlEventTouchUpInside];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 9 and open the project for this recipe.

Recipe: Adding Custom Slider Thumbs
UISlider instances provide a control allowing users to choose a value by sliding a knob
(called its “thumb”) between its left and right extent.You’ll have seen UISliders in the
iPod/Music application, where the class is used to control volume.

Slider values default to 0.0 for the minimum and 1.0 for the maximum, although you
can easily customize this in the Interface Builder attributes inspector or by setting the
minimumValue and maximumValue properties. If you want to stylize the ends of the control,
you can add in a related pair of images (minimumValueImage and maximumValueImage)
that reinforce those settings. For example, you might show a snowman on one end and a
steaming cup of tea on the other for a slider that controls temperature settings.

The slider’s continuous property controls whether a slider continually sends value
updates as a user drags the thumb.When set to NO (the default is YES), the slider only sends
an action event when the user releases the thumb.

Customizing UISlider
In addition to setting minimum and maximum images, the UISlider class lets you
directly update its thumb component.You can set a thumb to whatever image you like by
calling setThumbImage:forState:. Recipe 9-4 takes advantage of this option to dynami-
cally build thumb images on the fly, as shown in Figure 9-9.The indicator bubble appears
above the user’s finger as part of the custom-built thumb.This bubble provides instant

http://github.com/erica/iphone-3.0-cookbook-

ptg

357Recipe: Adding Custom Slider Thumbs

Figure 9-9 Core Graphics/Quartz calls enable
this slider’s thumb image to dim or brighten based

on the current slider value. The text inside the
thumb bubbles mirrors that value.

feedback both textually (the number inside the bubble) and graphically (the shade of the
bubble reflects the slider value, moving from black to white as the user drags).

This kind of dynamically built feedback could be based on any kind of data.You might
grab values from onboard sensors or make calls out to the Internet just as easily as you use
the user’s finger movement with a slider. No matter what live update scheme you use,
dynamic updates are certainly graphics intensive—but it’s not as expensive as you might
fear.The Core Graphics calls are fast, and the memory requirements for the thumb-sized
images are minimal.

This particular recipe assigns two thumb images to the slider.The bubble appears only
when the slider is in use, for its UIControlStateHighlighted. In its normal state, namely
UIControlStateNormal, only the smaller rectangular thumb appears. Users can tap on the
thumb to review the current setting.The context-specific feedback bubble mimics the let-
ter highlights on the standard iPhone keyboard.

To accommodate these changes in art, the slider updates its frame at the start and end
of each gesture. On being touched (UIControlEventTouchDown), the frame expands by
sixty pixels in height to the thumbFrame.This extra space provides enough room to show
the expanded thumb during interaction.

ptg

358 Chapter 9 Building and Using Controls

When the finger is removed from the screen (UIControlEventTouchUpInside or
UIControlEventTouchUpOutside), the slider returns to its previous dimensions, the
baseFrame.This restores space to other onscreen objects, ensuring that the slider will not
activate unless a user directly touches it.

Adding Efficiency
This recipe stores a previous value for the slider to minimize the overall computational
burden on the iPhone. It updates the thumb with a new custom image when the slider
has changed by at least 0.1, or 10% in value.You can omit this check, if you want, and run
the recipe with full live updating.When tested, this provided reasonably fast updates, even
on a first generation iPod touch unit. It also avoids any issues at the ends of the slider,
namely when the thumb gets caught at 0.9 and won’t update properly to 1.0. In this
recipe, a hard-coded workaround for values above 0.98 handles that particular situation by
forcing updates.

Recipe 9-4 Building Dynamic Slider Thumbs

@implementation TestBedViewController

// Draw centered text into the context

void centerText(CGContextRef context,

NSString *fontname, float textsize,

NSString *text, CGPoint point, UIColor *color)

{

CGContextSaveGState(context);

CGContextSelectFont(context, [fontname UTF8String], textsize,

kCGEncodingMacRoman);

// Retrieve the text width without actually drawing anything

CGContextSaveGState(context);

CGContextSetTextDrawingMode(context, kCGTextInvisible);

CGContextShowTextAtPoint(context, 0.0f, 0.0f, [text UTF8String],

text.length);

CGPoint endpoint = CGContextGetTextPosition(context);

CGContextRestoreGState(context);

// Query for size to recover height. Width is less reliable

CGSize stringSize = [text sizeWithFont:[UIFont

fontWithName:fontname size:textsize]];

// Draw the text

[color setFill];

CGContextSetShouldAntialias(context, true);

CGContextSetTextDrawingMode(context, kCGTextFill);

CGContextSetTextMatrix (context, CGAffineTransformMake(1, 0, 0, -1,

0, 0));

ptg

359Recipe: Adding Custom Slider Thumbs

CGContextShowTextAtPoint(context, point.x - endpoint.x / 2.0f,

point.y + stringSize.height / 4.0f, [text UTF8String],

text.length);

CGContextRestoreGState(context);

}

// Create a thumb image using a grayscale/numeric level

- (UIImage *) createImageWithLevel: (float) aLevel

{

UIGraphicsBeginImageContext(CGSizeMake(40.0f, 100.0f));

CGContextRef context = UIGraphicsGetCurrentContext();

float INSET_AMT = 1.5f;

// Create a filled rect for the thumb

[[UIColor darkGrayColor] setFill];

CGContextAddRect(context, CGRectMake(INSET_AMT, 40.0f + INSET_AMT,

40.0f - 2.0f * INSET_AMT, 20.0f - 2.0f * INSET_AMT));

CGContextFillPath(context);

// Outline the thumb

[[UIColor whiteColor] setStroke];

CGContextSetLineWidth(context, 2.0f);

CGContextAddRect(context, CGRectMake(2.0f * INSET_AMT,

40.0f + 2.0f * INSET_AMT, 40.0f - 4.0f * INSET_AMT,

20.0f - 4.0f * INSET_AMT));

CGContextStrokePath(context);

// Create a filled ellipse for the indicator

[[UIColor colorWithWhite:aLevel alpha:1.0f] setFill];

CGContextAddEllipseInRect(context, CGRectMake(0.0f, 0.0f, 40.0f,

40.0f));

CGContextFillPath(context);

// Label with a number

NSString *numstring = [NSString stringWithFormat:@"%0.1f", aLevel];

UIColor *textColor = (aLevel > 0.5f) ? [UIColor blackColor] :

[UIColor whiteColor];

centerText(context, @"Georgia", 20.0f, numstring,

CGPointMake(20.0f, 20.0f), textColor);

// Outline the indicator circle

[[UIColor grayColor] setStroke];

CGContextSetLineWidth(context, 3.0f);

CGContextAddEllipseInRect(context, CGRectMake(INSET_AMT, INSET_AMT,

40.0f - 2.0f * INSET_AMT, 40.0f - 2.0f * INSET_AMT));

CGContextStrokePath(context);

ptg

360 Chapter 9 Building and Using Controls

// Build and return the image

UIImage *theImage = UIGraphicsGetImageFromCurrentImageContext();

UIGraphicsEndImageContext();

return theImage;

}

// Return a base thumb image without the bubble

UIImage *createSimpleThumb()

{

float INSET_AMT = 1.5f;

UIGraphicsBeginImageContext(CGSizeMake(40.0f, 100.0f));

CGContextRef context = UIGraphicsGetCurrentContext();

// Create a filled rect for the thumb

[[UIColor darkGrayColor] setFill];

CGContextAddRect(context, CGRectMake(INSET_AMT, 40.0f + INSET_AMT,

40.0f - 2.0f * INSET_AMT, 20.0f - 2.0f * INSET_AMT));

CGContextFillPath(context);

// Outline the thumb

[[UIColor whiteColor] setStroke];

CGContextSetLineWidth(context, 2.0f);

CGContextAddRect(context, CGRectMake(2.0f * INSET_AMT,

40.0f + 2.0f * INSET_AMT, 40.0f - 4.0f * INSET_AMT,

20.0f - 4.0f * INSET_AMT));

CGContextStrokePath(context);

UIImage *theImage = UIGraphicsGetImageFromCurrentImageContext();

UIGraphicsEndImageContext();

return theImage;

}

// Update the thumb images as needed

- (void) updateThumb: (UISlider *) aSlider

{

// Only update the thumb when registering significant changes

if ((aSlider.value < 0.98) &&

(ABS(aSlider.value - previousValue) < 0.1f)) return;

// create a new custom thumb image and use for highlighted state

UIImage *customimg = [self createImageWithLevel:aSlider.value];

[aSlider setThumbImage: simpleThumbImage forState:

UIControlStateNormal];

[aSlider setThumbImage: customimg forState:

UIControlStateHighlighted];

previousValue = aSlider.value;

ptg

361Recipe: Adding Custom Slider Thumbs

}

// Expand the slider to accommodate the bigger thumb

- (void) startDrag: (UISlider *) aSlider

{

aSlider.frame = thumbFrame;

aSlider.center = CGPointMake(160.0f, 140.0f);

}

// At release, shrink the frame back to normal

- (void) endDrag: (UISlider *) aSlider

{

aSlider.frame = baseFrame;

aSlider.center = CGPointMake(160.0f, 140.0f);

}

- (void) viewDidLoad

{

self.title = @"Custom Slider";

// Initialize slider settings

previousValue = -99.0f;

simpleThumbImage = [createSimpleThumb() retain];

thumbFrame = CGRectMake(0.0f, 0.0f, 280.0f, 100.0f);

baseFrame = CGRectMake(0.0f, 0.0f, 280.0f, 40.0f);

// Create slider

UISlider *slider = [[UISlider alloc] initWithFrame:baseFrame];

slider.center = CGPointMake(160.0f, 140.0f);

slider.value = 0.0f;

// Create the callbacks for touch, move, and release

[slider addTarget:self action:@selector(startDrag)

forControlEvents:UIControlEventTouchDown];

[slider addTarget:self action:@selector(updateThumb)

forControlEvents:UIControlEventValueChanged];

[slider addTarget:self action:@selector(endDrag)

forControlEvents:UIControlEventTouchUpInside |

UIControlEventTouchUpOutside];

// Present the slider

[self.view addSubview:slider];

[self performSelector:@selector(updateThumb) withObject:slider

afterDelay:0.1f];

}

@end

ptg

362 Chapter 9 Building and Using Controls

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 9 and open the project for this recipe.

Recipe: Creating a Twice-Tappable Segmented
Control
The UISegmentedControl class presents a multiple button interface, where users can
choose one choice out of a group.The control provides two styles of use. In its normal
radio-button style mode, a button once selected remains selected. Users can tap on other
buttons, but they cannot generate a new event by re-tapping their existing choice.The
alternative momentary style lets users tap on each button as many times as desired but
stores no state about a currently selected item. It provides no highlights to indicate the
most recent selection.

Recipe 9-5 builds a hybrid approach. It allows users to see their currently selected
option and to reselect that choice if needed.This is not the way segmented controls nor-
mally work.There are times, though, that you want to generate a new result on reselection
(as in momentary mode) while visually showing the most recent selection (as in radio
button mode).

Unfortunately,“obvious” solutions to create this desired behavior don’t work.You
cannot add target-action pairs that detect UIControlEventTouchUpInside.
UIControlEventValueChanged is the only control event generated by
UISegmentedControl instances. (You can easily test this yourself by adding a target-action
pair for touch events.)

Here is where subclassing comes in to play. It’s relatively simple to create a new class
based on UISegmentedControl that does respond to that second tap. Recipe 9-5 defines
that class. Its code works by detecting when a touch has occurred, operating independ-
ently of the segmented control’s internal touch handlers that are subclassed from
UIControl.

Segment switches remain unaffected; they’ll continue to update and switch back and
forth as users tap them. Unlike the parent class, here touches on an already-touched seg-
ment continue to do something. In this case, they request that the object’s delegate pro-
duce the performSegmentAction method.

Don’t add target-action pairs to your segmented controllers the way you’d normally
do. Since all touch down events are detected, target-actions for value-changed events
would add a second callback and trigger twice whenever you switched segments. Instead,
implement the delegate callback and let object delegation handle the updates.

http://github.com/erica/iphone-3.0-cookbook-

ptg

363Recipe: Subclassing UIControl

Recipe 9-5 Creating a Segmented Control Subclass That Responds to a Second Tap

@class DoubleTapSegmentedControl;

@protocol DoubleTapSegmentedControlDelegate <NSObject>

- (void) performSegmentAction: (DoubleTapSegmentedControl *) aDTSC;

@end

@interface DoubleTapSegmentedControl : UISegmentedControl

{

id <DoubleTapSegmentedControlDelegate> delegate;

}

@property (nonatomic, retain) id delegate;

@end

@implementation DoubleTapSegmentedControl

@synthesize delegate;

- (void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event

{

[super touchesBegan:touches withEvent:event];

if (self.delegate)

[self.delegate performSegmentAction:self];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 9 and open the project for this recipe.

Recipe: Subclassing UIControl
Apple provides several prebuilt controls that you can use directly in your applications. But
you don’t have to limit yourself to Apple-supplied items. Recipe 9-6 demonstrates how to
subclass UIControl and build new controls.This example creates a touch wheel, like the
ones used on older model iPods.

Touch wheels provide an infinitely scrollable input. Users can rotate their finger clock-
wise or counterclockwise, and the object’s value increases or decreases accordingly. Each
complete turn around the wheel, that is, a traversal of 360 degrees, corresponds to a value
change of 1.0. Clockwise changes are positive; counterclockwise changes are negative.The
value accumulates on each touch, although it can be reset; simply assign the control’s
value property back to 0.0.This property is not a standard part of UIControl instances
even though many controls use values.

This recipe computes user changes by casting out vectors from the control’s center.The
code adds differences in the angle as the finger moves, updating the current value accord-
ingly. For example, three spins around the touch wheel adds or subtracts 3 to the current
value, depending on the direction of movement.

http://github.com/erica/iphone-3.0-cookbook-

ptg

364 Chapter 9 Building and Using Controls

Tracking Touches
UIControl instances use an embedded method set to work with touches.These methods
allow the control to track touches throughout their interaction with the control object:

n beginTrackingWithTouch:withEvent:—Gets called when a touch
enters a control’s bounds.

n continueTrackingWithTouch:withEvent:—Follows the touch with
repeated calls as the touch remains within the control bounds.

n endTrackingWithTouch:withEvent:—Handles the last touch for the
event.

n cancelTrackingWithEvent:—Manages a touch cancellation.

Add your custom control logic by implementing any or all of these methods in a
UIControl subclass. Recipe 9-6 uses the begin and continue versions to locate the user
touch and track it until the touch is lifted or otherwise leaves the control.

Dispatching Events
Controls use target-action pairs to communicate changes triggered by events.When you
build a new control, you must decide what kind of events your object will generate and
add code to trigger those events.

Add a dispatch message to your custom control by calling sendActionsFor
➥ControlEvents:.This method lets you send an event, in this case UIControlEvent
➥ValueChanged to the specified target. Controls transmit these updates by messaging the
UIApplication singleton.As Apple notes, the application acts as the centralized dispatch
point for all messages.

Note
The basic wheel defined in Recipe 9-6 tracks touch rotation but does little else. The original
iPod scroll wheel offered five click points: in the center circle and at the four cardinal points
of the wheel. Adding click support and the associated button-like event support (for
UIControlEventTouchUpInside) are left as an exercise for the reader.

Recipe 9-6 Building a Touch Wheel Control

@implementation ScrollWheel

@synthesize value;

@synthesize theta;

- (id) initWithFrame: (CGRect) aFrame

{

if (self = [super initWithFrame:aFrame])

{

// This control uses a fixed 200x200 sized frame

self.frame = CGRectMake(0.0f, 0.0f, 200.0f, 200.0f);

ptg

365Recipe: Subclassing UIControl

self.center = CGPointMake(CGRectGetMidX(aFrame),

CGRectGetMidY(aFrame));

// Add the touchwheel art

UIImageView *iv = [[UIImageView alloc] initWithImage:[UIImage

imageNamed:@"wheel.png"]];

[self addSubview:iv];

[iv release];

}

return self;

}

- (id) init

{

return [self initWithFrame:CGRectZero];

}

+ (id) scrollWheel

{

return [[[self alloc] init] autorelease];

}

- (BOOL)beginTrackingWithTouch:(UITouch *)touch

withEvent:(UIEvent *)event

{

CGPoint p = [touch locationInView:self];

CGPoint cp = CGPointMake(self.bounds.size.width / 2.0f,

self.bounds.size.height / 2.0f);

// self.value = 0.0f; // Uncomment for separate event values

// First touch must touch the gray part of the wheel

if (!pointInsideRadius(p, cp.x, cp)) return NO;

if (pointInsideRadius(p, 30.0f, cp)) return NO;

// Set the initial angle

self.theta = getangle([touch locationInView:self], cp);

return YES;

}

- (BOOL)continueTrackingWithTouch:(UITouch *)touch

withEvent:(UIEvent *)event

{

CGPoint p = [touch locationInView:self];

CGPoint cp = CGPointMake(self.bounds.size.width / 2.0f,

self.bounds.size.height / 2.0f);

ptg

366 Chapter 9 Building and Using Controls

// falls outside too far, with boundary of 50 pixels.

// Inside strokes treated as touched

if (!pointInsideRadius(p, cp.x + 50.0f, cp)) return NO;

float newtheta = getangle([touch locationInView:self], cp);

float dtheta = newtheta - self.theta;

// correct for edge conditions

int ntimes = 0;

while ((ABS(dtheta) > 300.0f) && (ntimes++ < 4))

if (dtheta > 0.0f) dtheta -= 360.0f; else dtheta += 360.0f;

// Update current values

self.value -= dtheta / 360.0f;

self.theta = newtheta;

// Send value changed alert

[self sendActionsForControlEvents:UIControlEventValueChanged];

return YES;

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 9 and open the project for this recipe.

Recipe: Dismissing a UITextField Keyboard
The most commonly asked question about the UITextField control is,“How do I dismiss
the keyboard?”There’s no built-in way to automatically detect this.When users finish
editing the contents of a UITextField, the keyboard should go away.

Fortunately, it takes little work to respond to the end of edits. By watching for the
Return key, you can resign first-responder status.This moves the keyboard out of sight, as
Recipe 9-7 shows. Here are a few key points about doing this:

n Optionally, set the Return key type to UIReturnKeyDone.You can do this in Inter-
face Builder’s Attribute Inspector or by assignment to the text field’s returnKeyType
property. Using a “Done”-style Return key tells the user how to finish editing.
Figure 9-10 shows a keyboard using the Done key style.

n Be the delegate.You must set the text field’s delegate property to your view con-
troller in code. Interface Builder does not provide a way to make that assignment

http://github.com/erica/iphone-3.0-cookbook-

ptg

367Recipe: Dismissing a UITextField Keyboard

Figure 9-10 Setting the name of the Return key to Done (left) tells
your user how to finish editing the field. Specify this directly in code
or use Interface Builder’s text field attributes inspector (right) to cus-

tomize the way the text field looks and acts.

graphically. Make sure your view controller implements the UITextFieldDelegate
protocol.

n Implement textFieldShouldReturn:.This method catches all Return key
presses—no matter how they are named. Use the method to resign first responder.
This hides the keyboard until the user touches another text field or text view.

Note
You can also use textFieldShouldReturn: to perform an action when the Return key is
pressed as well as dismissing the keyboard.

Your code needs to handle each of these points to create a smooth interaction process for
your UITextField instances.

Text Trait Properties
Text fields implement the UITextInputTraits protocol.This protocol provides seven
properties that you can set to define the way the field handles text input.Those traits are
as follows:

n autocapitalizationType—Defines the text autocapitalization style.Available
styles use sentence capitalization (UITextAutocapitalizationTypeSentences), word

ptg

368 Chapter 9 Building and Using Controls

capitalization (UITextAutocapitalizationTypeWords), all caps
(UITextAutocapitalizationTypeAllCharacters), and no capitalization
(UITextAutocapitalizationTypeNone).Avoid capitalizing when working with
account name entry. Use word capitalization for proper names and street address entry.

n autocorrectionType—Specifies whether the text is subject to the iPhone’s
autocorrect feature like the bubble shown in Figure 9-10.When enabled (set to
UITextAutocorrectionTypeYes), the iPhone suggests replacement words to the user.

n enablesReturnKeyAutomatically—Helps control whether the Return
key is disabled when there’s no text in an entry field or view. If you set this prop-
erty to YES, the Return key becomes enabled after the user types in at least one
character.

n keyboardAppearance—Provides two keyboard presentation styles: the default
style and a style meant to be used with an alert panel.

n keyboardType—Lets you choose the keyboard that first appears when a user
interacts with a field or text view.The available keyboard types are
UIKeyboardTypeDefault, UIKeyboardTypeASCIICapable,
UIKeyboardTypeNumbersAndPunctuation, UIKeyboardTypeURL,
UIKeyboardTypeNumberPad, UIKeyboardTypePhonePad,
UIKeyboardTypeNamePhonePad, and UIKeyboardTypeEmailAddress. Each key-
board has its advantages and disadvantages in terms of the mix of characters it pres-
ents.The Email keyboard, for example, is meant to help enter addresses and includes
the @ symbol, along with text.

n returnKeyType—Specifies the text shown on the keyboard’s Return key.You
can choose from the default (“Return”), Go, Google, Join, Next, Route, Search,
Send,Yahoo, Done, and Emergency Call.

n secureTextEntry—Toggles a text hiding feature meant to provide more secure
text entry.When enabled, you can see the last character typed, but all other charac-
ters are shown as a series of dots. Switch this feature for password text fields.

Other Text Field Properties
In addition to the standard text traits, text fields offer several other properties that control
how the field is presented.The placeholder text is shown in light gray when the text
field is empty, providing a user prompt. Use the placeholder to provide usage hints like
“User Name” or “E-mail address.”

Text fields allow you to control the type of borderStyle displayed around the text
area.You can choose from a simple line, a bezel, and a rounded rectangle presentation.
These are best seen in Interface Builder, where the attributes inspector lets you toggle
between each style.

The text field clear button appears as an X in the right side of the entry area. Set the
clearButtonMode to specify if and when this button appears: always, never, when editing,
or unless editing is ongoing.

ptg

369Recipe: Dismissing a UITextField Keyboard

Recipe 9-7 Using the Done Key to Dismiss a Text Field Keyboard

@interface TestBedViewController : UIViewController <UITextFieldDelegate>

@end

@implementation TestBedViewController

- (BOOL)textFieldShouldReturn:(UITextField *)textField

{

[textField resignFirstResponder];

return YES;

}

- (void) viewDidLoad

{

self.title = @"Keyboard Dismissal";

// Customize text field from Interface Builder

UITextField *tf = (UITextField *)[self.view viewWithTag:101];

tf.delegate = self;

// Create a text field by hand

tf = [[UITextField alloc] initWithFrame:CGRectMake(0.0f, 0.0f,

100.0f, 30.0f)];

tf.center = CGPointMake(160.0f, 120.0f);

tf.borderStyle = UITextBorderStyleRoundedRect;

tf.autocorrectionType = UITextAutocorrectionTypeNo;

tf.placeholder = @"Name";

tf.returnKeyType = UIReturnKeyDone;

tf.clearButtonMode = UITextFieldViewModeWhileEditing;

tf.delegate = self;

[self.view addSubview:tf];

[tf release];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 9 and open the project for this recipe.

http://github.com/erica/iphone-3.0-cookbook-

ptg

370 Chapter 9 Building and Using Controls

Figure 9-11 Add a Done key to the navigation
bar when users start interacting with a text view.
This offers users an obvious way to finish editing

and dismiss the keyboard.

Recipe: Dismissing UITextView Keyboards
When dismissing keyboards, UITextView instances require a slightly different approach
than UITextField ones. Users should be able to tap Return in the text view, adding car-
riage returns without dismissing the keyboard. Instead, add a Done button to the general
interface when the text view becomes active, as shown in Figure 9-11. Use this key to
resign first-responder status when the user finishes his or her edits.

To sense text view activity, your view controller must implement the UITextView
➥Delegate protocol, and it must be set as the text view’s delegate.The textView
➥DidBeginEditing: delegate method triggers whenever a user taps the view. Detecting
this enables you to either add or enable the Done button. Users can then tap on Done
after they’ve finished editing.The Done button offers an obvious way to finish editing and
dismiss the keyboard.

Recipe 9-8 demonstrates how to add the navigation item button in the delegate
method call and how to remove it when the user is done editing. Reveal the Done button
when the view becomes active. Hide it when resigning the view’s first-responder status.

ptg

371Recipe: Building a Better Text Editor

Recipe 9-8 Adding a Done Button to Active UITextView Sessions

@interface TestBedViewController : UIViewController <UITextViewDelegate>

@end

@implementation TestBedViewController

// Reveal a Done button when editing starts

- (void) textViewDidBeginEditing: (UITextView *) textView

{

self.navigationItem.rightBarButtonItem = BARBUTTON(@"Done",

@selector(doneEditing));

}

// Remove the Done button and dismiss the keyboard

- (void) doneEditing: (id) sender

{

[self.view resignFirstResponder];

self.navigationItem.rightBarButtonItem = nil;

}

- (void) viewDidLoad

{

[(UITextView *)self.view setDelegate:self];

[(UITextView *)self.view setFont:[UIFont systemFontOfSize:16.0f]];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 9 and open the project for this recipe.

Recipe: Building a Better Text Editor
Recipe 9-8 showed how to catch user interactions within a text view. Recipe 9-9 expands
upon this notion to add a number of critical features that make a better text editor.These
features are easy to implement in your own programs.

First, the view controller adds undo support. Users can shake the iPhone to load the
undo/redo editor that was first introduced in Chapter 8. UITextView objects ship in an
undo-ready state.They provide built-in support that works hand-in-hand with select, cut,
copy, and paste.The undo manager understands these actions, so possible user messages
might include “Undo Paste,”“Redo Cut,” and so forth.All the view controller needs to
do is instantiate an undo manager; it leaves the rest of the work to the built-in objects.

Second, the view uses persistence. It archives its contents to file in the
performArchive method.The application delegate calls this method right before the
application is due to quit.

http://github.com/erica/iphone-3.0-cookbook-

ptg

372 Chapter 9 Building and Using Controls

- (void) applicationWillTerminate: (UIApplication *) application

{

// update the defaults on quit by calling

// the test bed view controller’s archive method

[self.tbvc performArchive];

}

On launch, any data in that file is read in to initialize the text view instance.
Finally, the text view automatically updates its size when the keyboard appears.This

ensures that the keyboard does not hide any part of the text.That’s especially important
when you want to edit the end of a long text entry. By shrinking the text view so it
appears fully above the keyboard, users can access every part of the text.

To make this happen, Recipe 9-9 listens for two standard notifications that are sent
when the keyboard is about to show or hide.The code adds observers that can respond to
the keyboard state and adjust the text view height to match the keyboard presentation.

Recipe 9-9 Adding Undo Support, Persistence, and Autoresizing to Text Views

@interface TestBedViewController : UIViewController <UITextViewDelegate>

{

NSUndoManager *undoManager;

IBOutlet UITextView *textView;

}

@property (retain) NSUndoManager *undoManager;

@end

@implementation TestBedViewController

@synthesize undoManager;

- (void) performArchive

{

[[textView text] writeToFile:DATAPATH atomically:YES

encoding:NSUTF8StringEncoding error:nil];

}

// Reveal a Done button when editing starts

- (void) textViewDidBeginEditing: (UITextView *) aTextView

{

self.navigationItem.rightBarButtonItem = BARBUTTON(@"Done",

@selector(doneEditing));

}

// Remove the Done button and dismiss the keyboard

- (void) doneEditing: (id) sender

{

[textView resignFirstResponder];

self.navigationItem.rightBarButtonItem = nil;

ptg

373Recipe: Building a Better Text Editor

}

// Prepare to resize for keyboard. Courtesy of August Joki

- (void)keyboardWillShow:(NSNotification *)notification

{

NSDictionary *userInfo = [notification userInfo];

CGRect bounds;

[(NSValue *)[userInfo objectForKey:UIKeyboardBoundsUserInfoKey]

getValue:&bounds];

// Resize text view

CGRect aFrame = textView.frame;

aFrame.size.height -= bounds.size.height;

textView.frame = aFrame;

}

// Expand textview on keyboard dismissal.

- (void)keyboardWillHide:(NSNotification *)notification

{

// Resize text view

CGRect aFrame = CGRectMake(0.0f, 0.0f, 320.0f, 416.0f);

textView.frame = aFrame;

}

- (void) viewDidLoad

{

// Initialize text view

textView.delegate = self;

textView.font = [UIFont systemFontOfSize:16.0f];

textView.text = [NSString stringWithContentsOfFile:DATAPATH];

// Prepare undo manager

[[UIApplication sharedApplication]

setApplicationSupportsShakeToEdit:YES];

self.undoManager = [[NSUndoManager alloc] init];

[self.undoManager setLevelsOfUndo:99];

[self.undoManager release];

// Listen for keyboard

[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(keyboardWillShow)

name:UIKeyboardWillShowNotification object:nil];

[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(keyboardWillHide)

name:UIKeyboardWillHideNotification object:nil];

}

ptg

374 Chapter 9 Building and Using Controls

- (void) dealloc

{

// Clean up

[[NSNotificationCenter defaultCenter] removeObserver:self];

self.undoManager = nil;

[super dealloc];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 9 and open the project for this recipe.

Recipe: Text Entry Filtering
At times you want to ensure that a user enters only a certain subset of characters. For
example, you might want to create a numeric-only text field that does not handle letters.
Although you can use predicates to test the final entry against a regular expression (the
NSPredicate class’s MATCH operator supports regex values), for filtered data it’s easier to
check each new character as it’s typed against a legal set.

A UITextField delegate can catch those characters as they are typed and decide
whether to add the character to the active text field.The optional textField:
➥shouldChangeCharactersInRange:replacementString: delegate method returns
either YES, allowing the newly typed character(s) or NO, disallowing it or them. In practice,
this works on a character-by-character basis being called after each user keyboard tap.
However, with 3.0’s new pasteboard support, the replacement string could theoretically be
longer when text is pasted to a text field.

Recipe 9-10 works by looking for any disallowed characters within the new string.
When it finds them, it rejects the entry leaving the text field unedited. So a paste of mixed
allowed and disallowed text would be rejected entirely.

This recipe considers four scenarios: alphabetic text entry only, numeric, numeric with
an allowed decimal point, and a mix of alphanumeric characters.You can adapt this exam-
ple to any set of legal characters you want.

The third entry type, numbers with a decimal point, uses a little trick to ensure that
only one decimal point gets typed. Once it finds a period character in the associated text
field, it switches the characters it accepts from a set with the period to a set without it.Yes,
you can sneak your way around this using paste, although it’s unlikely that users will resort
to doing so.

Recipe 9-10 Filtering User Text Entry

#define ALPHA @"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz "

#define NUMBERS @"0123456789"

#define ALPHANUM \

http://github.com/erica/iphone-3.0-cookbook-

ptg

375Recipe: Text Entry Filtering

@"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789 "

#define NUMBERSPERIOD @"0123456789."

@implementation TestBedViewController

- (BOOL)textField:(UITextField *)textField

shouldChangeCharactersInRange:(NSRange)range

replacementString:(NSString *)string

{

NSCharacterSet *cs;

switch (SEGMENT)

{

case 0:

cs = [[NSCharacterSet characterSetWithCharactersInString:

ALPHA] invertedSet];

break;

case 1:

cs = [[NSCharacterSet characterSetWithCharactersInString:

NUMBERS] invertedSet];

break;

case 2:

cs = [[NSCharacterSet characterSetWithCharactersInString:

NUMBERS] invertedSet];

if ([textField.text rangeOfString:@"."].location ==

NSNotFound)

cs = [[NSCharacterSet

characterSetWithCharactersInString:NUMBERSPERIOD]

invertedSet];

break;

case 3:

cs = [[NSCharacterSet characterSetWithCharactersInString:

ALPHANUM] invertedSet];

break;

default:

break;

}

NSString *filtered = [[string componentsSeparatedByCharactersInSet:

cs] componentsJoinedByString:@""];

BOOL basicTest = [string isEqualToString:filtered];

return basicTest;

}

- (void) segmentChanged: (UISegmentedControl *) seg

{

[(UITextField *)[self.view viewWithTag:101] setText:@""];

}

ptg

376 Chapter 9 Building and Using Controls

- (void) viewDidLoad

{

// Text field defined in interface builder

[(UITextField *)[self.view viewWithTag:101] setDelegate:self];

// Add segmented control with entry options

UISegmentedControl *seg = [[UISegmentedControl alloc]

initWithItems:[@"ABC 123 2.3 A2C"

componentsSeparatedByString:@" "]];

seg.segmentedControlStyle = UISegmentedControlStyleBar;

seg.selectedSegmentIndex = 0;

[seg addTarget:self action:@selector(segmentChanged)

forControlEvents:UIControlEventValueChanged];

self.navigationItem.titleView = seg;

[seg release];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 9 and open the project for this recipe.

Recipe: Adding a Page Indicator Control
The UIPageControl class provides a line of dots that indicates which item of a multipage
view is currently displayed.The dots at the bottom of the SpringBoard home page present
an example of this kind of control in action. Sadly, the UIPageControl class is a disap-
pointment in action.The UIPageControl class is awkward to handle, hard to tap, and will
generally annoy your users. So when using it, make sure you add alternative navigation
options so that the page control acts more as an indicator and less as a control.

Figure 9-12 shows a page control with three pages.Taps to the left or right of the
bright-colored current page indicator trigger UIControlEventValueChanged events,
launching whatever method you set as the control’s action.You can query the control for
its new value by calling currentPage and set the available page count by adjusting the
numberOfPages property. SpringBoard limits the number of dots representing pages to
nine, but your application can use a higher number, particularly in landscape mode.

Recipe 9-11 uses a UIScrollView instance to display three pages of images. Users can
scroll through the pictures using swipes, and the page indicator updates to reflect the cur-
rent page shown. Similarly, users can tap on the page control and the scroller animates the
selected page into place.This two-way relationship is built by adding a target-action call-
back to the page control and a delegate callback to the scroller. Each callback updates the
other object, providing a tight coupling between the two.

http://github.com/erica/iphone-3.0-cookbook-

ptg

377Recipe: Adding a Page Indicator Control

Figure 9-12 The UIPageControl class offers
an interactive indicator for multipage presenta-
tions. Taps to the left or right of the active dot

enable users to select new pages. At least they do
in theory. The page control is hard to tap, requires
excessive user precision, and offers poor response

performance.

Recipe 9-11 Using the UIPageControl Indicator

@implementation TestBedViewController

- (void) pageTurn: (UIPageControl *) aPageControl

{

// Update the scroller to match the page turn

int whichPage = aPageControl.currentPage;

[UIView beginAnimations:nil context:NULL];

[UIView setAnimationDuration:0.3f];

[UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];

sv.contentOffset = CGPointMake(320.0f * whichPage, 0.0f);

[UIView commitAnimations];

}

- (void) scrollViewDidScroll: (UIScrollView *) aScrollView

{

ptg

378 Chapter 9 Building and Using Controls

// Update the page control to match the scroller

CGPoint offset = aScrollView.contentOffset;

pageControl.currentPage = offset.x / 320.0f;

}

- (void) viewDidLoad

{

// Create the scroll view and set its content size and delegate

sv = [[UIScrollView alloc] initWithFrame:

CGRectMake(0.0f, 0.0f, 320.0f, BASEHEIGHT)];

sv.contentSize = CGSizeMake(NPAGES * 320.0f, sv.frame.size.height);

sv.pagingEnabled = YES;

sv.delegate = self;

[sv release];

// Load in all the pages

for (int i = 0; i < NPAGES; i++)

{

NSString *filename = [NSString stringWithFormat:

@"image%d.png", i+1];

UIImageView *iv = [[UIImageView alloc] initWithImage:[UIImage

imageNamed:filename]];

iv.frame = CGRectMake(i * 320.0f, 0.0f, 320.0f, BASEHEIGHT);

[sv addSubview:iv];

[iv release];

}

[self.view addSubview:sv];

// Initialize the page control, which was added in IB

pageControl.numberOfPages = 3;

pageControl.currentPage = 0;

[pageControl addTarget:self action:@selector(pageTurn)

forControlEvents:UIControlEventValueChanged];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 9 and open the project for this recipe.

http://github.com/erica/iphone-3.0-cookbook-

ptg

379Recipe: Creating a Customizable Paged Scroller

Figure 9-13 The + and - buttons let users add
and remove paged views from the scroller. Deletion

requires an extra step as a confirm button ani-
mates into place.

Recipe: Creating a Customizable Paged Scroller
Recipe 9-11 introduced a basic paged scroller but didn’t add any dynamic interaction to
the equation.That sample started and ended with three pages. In real life, page controls are
far more useful when you can add and delete pages on the fly. Recipe 9-12 does exactly
that. It adds buttons that build and remove views for the UIScrollView.

This approach uses not two but four separate controls to produce the add-and-remove
interface of Figure 9-13.The four buttons include an add button built using the standard
Contacts Add button style, a delete button that mimics that style, a confirm button that
looks like an “X,” which is built to fit over the delete button, and a full-screen, completely
clear cancel button.

The buttons work like this. So long as there are fewer than eight buttons, the user can tap
Add to create a new view in the UIScrollView. On add, the number of pages for the page
control updates, and the new view scrolls into place.There’s also a check for the current
page count; when that page count hits the maximum, the code disables the add button.The
eight-page limit is arbitrary.You can adjust the code for a larger or smaller number.

Upon tapping Delete, a confirm button animates into place and the invisible cancel
button is enabled, covering the rest of the screen. If the user taps Confirm, the page

ptg

380 Chapter 9 Building and Using Controls

deletes.A tap anywhere else causes the action to cancel, hiding the confirm button with-
out performing a page deletion.

This confirm/cancel approach mirrors Apple’s delete-with-caution policy that’s seen in
table edits and in other user interfaces. It takes two taps to delete a page and the user can
cancel out without penalty.This prevents accidental page deletion and provides a safe exit
route should the user decide not to continue.

Recipe 9-12 Adding and Deleting Pages On the Fly

@implementation TestBedViewController

- (void) pageTurn: (UIPageControl *) aPageControl

{

// Update the page control and animate the new page into place

int whichPage = aPageControl.currentPage;

[UIView beginAnimations:nil context:NULL];

[UIView setAnimationDuration:0.3f];

[UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];

sv.contentOffset = CGPointMake(320.0f * whichPage, 0.0f);

[UIView commitAnimations];

}

- (void) scrollViewDidScroll: (UIScrollView *) aScrollView

{

// Mirror user scrolls on the page control

CGPoint offset = aScrollView.contentOffset;

pageControl.currentPage = offset.x / 320.0f;

}

- (UIColor *)randomColor

{

// Return a random color

float red = (64 + (random() % 191)) / 256.0f;

float green = (64 + (random() % 191)) / 256.0f;

float blue = (64 + (random() % 191)) / 256.0f;

return [UIColor colorWithRed:red green:green blue:blue alpha:1.0f];

}

- (void) addPage

{

// All new pages are added to the end of the scroll view

pageControl.numberOfPages = pageControl.numberOfPages + 1;

pageControl.currentPage = pageControl.numberOfPages - 1;

// Increase the scroll view size and add the new page

sv.contentSize = CGSizeMake(pageControl.numberOfPages * 320.0f,

BASEHEIGHT);

ptg

381Recipe: Creating a Customizable Paged Scroller

UIView *aView = [[UIView alloc] initWithFrame:

CGRectMake(pageControl.currentPage * 320.0f, 0.0f, 320.0f,

BASEHEIGHT)];

aView.backgroundColor = [self randomColor];

[sv addSubview:aView];

[aView release];

}

- (void) requestAdd: (UIButton *) button

{

// Add the page and update the buttons as needed

[self addPage];

addButton.enabled = (pageControl.numberOfPages < 8) ? YES : NO;

deleteButton.enabled = YES;

[self pageTurn:pageControl];

}

- (void) deletePage

{

// Always delete the currently displayed page

int whichPage = pageControl.currentPage;

pageControl.numberOfPages = pageControl.numberOfPages - 1;

// Remove the view in question

NSMutableArray *properViews = [NSMutableArray array];

for (UIView *view in sv.subviews)

if ([[[view class] description] isEqualToString:@"UIView"] &&

(view.frame.size.width == 320.0f))

[properViews addObject:view];

[UIView beginAnimations:nil context:NULL];

[UIView setAnimationDuration:0.3f];

[UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];

UIView *whichView = [properViews objectAtIndex:whichPage];

// Move other pages into place

for (int i = whichPage + 1; i < [properViews count]; i++)

{

UIView *aView = [properViews objectAtIndex:i];

CGRect frame = aView.frame;

frame.origin.x = frame.origin.x - 320.0f;

aView.frame = frame;

}

[UIView commitAnimations];

ptg

382 Chapter 9 Building and Using Controls

// Remove the page after the animation finishes

[whichView performSelector:@selector(removeFromSuperview)

withObject:nil afterDelay:0.3f];

sv.contentSize = CGSizeMake(sv.contentSize.width - 320.0f,

BASEHEIGHT);

}

// Animate the confirm button away and hide cancel

- (void) hideConfirmAndCancel

{

cancelButton.enabled = NO;

[UIView beginAnimations:nil context:NULL];

[UIView setAnimationDuration:0.3f];

[UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];

confirmButton.center = CGPointMake(deleteButton.center.x + 100.0f,

deleteButton.center.y);

[UIView commitAnimations];

}

// Perform delete on confirm and update the buttons

- (void) confirmDelete: (UIButton *) button

{

[self deletePage];

addButton.enabled = YES;

deleteButton.enabled = (pageControl.numberOfPages > 1) ? YES : NO;

[self pageTurn:pageControl];

[self hideConfirmAndCancel];

}

// On cancel, simply hide confirm and cancel

- (void) cancelDelete: (UIButton *) button

{

[self hideConfirmAndCancel];

}

// Respond to a delete request by showing the confirmation button

- (void) requestDelete: (UIButton *) button

{

// Bring forth the cancel and confirm buttons

[cancelButton.superview bringSubviewToFront:cancelButton];

[confirmButton.superview bringSubviewToFront:confirmButton];

cancelButton.enabled = YES;

// Animate the confirm button into place

confirmButton.center = CGPointMake(deleteButton.center.x + 100.0f,

ptg

383Recipe: Creating a Customizable Paged Scroller

deleteButton.center.y);

[UIView beginAnimations:nil context:NULL];

[UIView setAnimationDuration:0.3f];

[UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];

confirmButton.center = deleteButton.center;

[UIView commitAnimations];

}

- (void) viewDidLoad

{

// Create the scroll view and set its content size and delegate

sv = [[UIScrollView alloc] initWithFrame:CGRectMake(0.0f, 0.0f,

320.0f, BASEHEIGHT)];

sv.contentSize = CGSizeZero;

sv.pagingEnabled = YES;

sv.delegate = self;

[self.view addSubview:sv];

[sv release];

pageControl.numberOfPages = 0;

[pageControl addTarget:self action:@selector(pageTurn)

forControlEvents:UIControlEventValueChanged];

// Load in all the pages

for (int i = 0; i < INITPAGES; i++) [self addPage];

pageControl.currentPage = 0;

// Move the confirm button off screen

confirmButton.center = CGPointMake(deleteButton.center.x + 100.0f,

deleteButton.center.y);

// Set up the target-action pairs for all the buttons

[addButton addTarget:self action:@selector(requestAdd)

forControlEvents:UIControlEventTouchUpInside];

[cancelButton addTarget:self action:@selector(cancelDelete)

forControlEvents:UIControlEventTouchUpInside];

[deleteButton addTarget:self action:@selector(requestDelete)

forControlEvents:UIControlEventTouchUpInside];

[confirmButton addTarget:self action:@selector(confirmDelete)

forControlEvents:UIControlEventTouchUpInside];

}

@end

ptg

384 Chapter 9 Building and Using Controls

Figure 9-14 Adding bar button items in Interface Builder can be a
complex process.

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 9 and open the project for this recipe.

Building a Toolbar
You can build toolbars in Interface Builder and in Xcode, but when push comes to shove,
it’s often a lot easier in Xcode.That’s because the IB user interface for adding and cus-
tomizing a toolbar’s bar button items is pretty dreadful.You need to keep switching
between palettes and inspectors, and things quickly get messy.

After dragging a toolbar into an IB view, you must add and then customize each bar
button item. Drag in one bar button item for each element you plan to add.Toolbar ele-
ments include both view items like buttons and spacers that lie between those buttons, as
shown in Figure 9-14 (left).

Once added, the bar button item attributes inspector (Command-1) shown in Figure 9-14
(right) lets you choose which kind of item each bar button represents. Use the Custom
style to create custom text- and image-based items. Otherwise, pick from the list of
system-defined icons.These include icons for playing media, accessing the camera, editing
a list, and more.

http://github.com/erica/iphone-3.0-cookbook-

ptg

385Building a Toolbar

When using a system item, make sure your application uses that item in a manner that
complies with Apple’s Human Interface Guidelines.App Store reviewers take a dim view
of “creative” icon interpretations.

On a similar note, avoid creating your own buttons that look like any Apple products
or trademarks.Apps have been rejected for using icons that look like the iPhone and
Apple’s logo.

Building Toolbars in Xcode
It’s easy to define and lay out toolbars in Xcode provided that you’ve supplied yourself
with a few handy macro definitions.The following macros return proper bar button items
for the four available styles of items.

#define BARBUTTON(TITLE, SELECTOR) [[[UIBarButtonItem alloc] initWithTitle:TITLE
➥style:UIBarButtonItemStylePlain target:self action:SELECTOR] autorelease]

#define IMGBARBUTTON(IMAGE, SELECTOR) [[[UIBarButtonItem alloc]
➥initWithImage:IMAGE style:UIBarButtonItemStylePlain target:self action:SELECTOR]
➥autorelease]

#define SYSBARBUTTON(ITEM, SELECTOR) [[[UIBarButtonItem alloc]
➥initWithBarButtonSystemItem:ITEM target:self action:SELECTOR] autorelease]

#define CUSTOMBARBUTTON(VIEW) [[[UIBarButtonItem alloc] initWithCustomView:VIEW]
➥autorelease]

Those styles are text items, image items, system items, and custom view items. Each of these
macros provides an autoreleased UIBarButtonItem that can be placed into a UIToolbar.
Recipe 9-13 demonstrates these macros in action, showing how to add each style including
spacers.You can even add a custom view to your toolbars, as Recipe 9-13 does. It inserts a
UISwitch instance as one of the bar button items, as shown in Figure 9-15.

The fixed space bar button item represents the only instance where you need to move
beyond these handy macros.You must set the item’s width property to define how much
space the item occupies.

Recipe 9-13 Creating Toolbars in Xcode

@implementation TestBedViewController

- (void) action

{

// no action actually happens

}

- (void) viewDidLoad

{

UIToolbar *tb = [[UIToolbar alloc] initWithFrame:

CGRectMake(0.0f, 0.0f, 320.0f, 44.0f)];

tb.center = CGPointMake(160.0f, 200.0f);

NSMutableArray *tbitems = [NSMutableArray array];

ptg

386 Chapter 9 Building and Using Controls

Figure 9-15 Custom toolbar items can include
views like this switch.

// Set up the items for the toolbar

[tbitems addObject:BARBUTTON(@"Title", @selector(action))];

[tbitems addObject:SYSBARBUTTON(UIBarButtonSystemItemAdd,

@selector(action))];

[tbitems addObject:IMGBARBUTTON([UIImage

imageNamed:@"TBUmbrella.png"], @selector(action))];

[tbitems addObject:CUSTOMBARBUTTON([[[UISwitch alloc] init]

autorelease])];

[tbitems addObject:SYSBARBUTTON(UIBarButtonSystemItemFlexibleSpace,

nil)];

[tbitems addObject:IMGBARBUTTON([UIImage

imageNamed:@"TBPuzzle.png"], @selector(action))];

// Add fixed 20 pixel width

UIBarButtonItem *bbi = [[[UIBarButtonItem alloc]

initWithBarButtonSystemItem:UIBarButtonSystemItemFixedSpace

target:nil action:nil] autorelease];

bbi.width = 20.0f;

[tbitems addObject:bbi];

tb.items = tbitems;

[self.view addSubview:tb];

[tb release];

}

@end

ptg

387One More Thing: Smart Labels

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 9 and open the project for this recipe.

Toolbar Tips
When working with toolbars, here are a few tricks of the trade that might come in handy:

n Fixed spaces can have widths—Of all UIBarButtonItems, only
UIBarButtonSystemItemFixedSpace items can be assigned a width. So create the
spacer item, set its width, and only then add it to your items array.

n Use a single flexible space for left or right alignment—Adding a single
UIBarButtonSystemItemFlexibleSpace at the start of an items list right-aligns all
the remaining items.Adding one to the end, left-aligns. Use two, one at the start and
one at the end, to create center alignments.

n Take missing items into account—When hiding bar button items due to con-
text, don’t just use flexible spacing to get rid of the item. Instead, replace the item
with a fixed-width space that matches the item’s original size.That preserves the
layout and leaves all the other icons in the same position both before and after the
item disappears.

One More Thing: Smart Labels
Unfortunately, the built-in UILabel class isn’t very smart when it comes to providing
clickable elements like phone numbers and Web addresses.That’s where the UITextView
class can step in.Text views offer a new 3.0 property called dataDetectorTypes, which
specifies which data types get converted to clickable URLs.The available types are phone
numbers (UIDataDetectorTypePhoneNumber) and links (UIDataDetectorTypesLink).To
enable all types, choose the all flag (UIDataDetectorTypeAll) as used here.

- (void) viewDidLoad

{

UITextView *tv = (UITextView *)[self.view viewWithTag:101];

tv.dataDetectorTypes = UIDataDetectorTypeAll;

}

You also find individual check boxes for links and phone numbers in the Interface Builder
text view attributes inspector.

When replacing UILabel instances with UITextView instances make sure to disable
scrolling. Set the view’s editable property to NO, either in code or in Interface Builder.
Use carriage return constants (\n) to provide line breaks and carefully consider your text
alignment choices. Figure 9-16 shows a UITextView stepping in and acting like a label
while offering automatic URL creation.

http://github.com/erica/iphone-3.0-cookbook-

ptg

388 Chapter 9 Building and Using Controls

Figure 9-16 This “label” is actually a text view
with its data detectors enabled.

When working with embedded URLs be aware that links take users to the requested
resource without any further confirmation. In contrast, telephone numbers require user
confirmation before dialing.

Note
Ever need to work with fonts outside those supplied with Cocoa Touch? A an open source
iPhone project called FontLabel (http://github.com/zynga/FontLabel), developed by iPhone
guru Kevin Ballard, uses the Core Graphics CGFont class to bypass the iPhone’s UIFont
limitations. FontLabel is in active development at the time this book was written, with regular
updates.

Summary
This chapter introduced many ways to interact with and get the most from the controls
in your applications. Before you move on to the next chapter, here are a few thoughts for
you to ponder:

n Just because an item belongs to the UIControl class doesn’t mean you can’t treat it
like a UIView. Give it subviews, resize it, animate it, move it around the screen, or
tag it for later.

http://github.com/zynga/FontLabel

ptg

389Summary

n Core Graphics and Quartz 2D let you build visual elements as needed. Combine
the comfort of the SDK classes with a little real-time wow to add punch to your
presentation.

n If the iPhone SDK hasn’t delivered the control you need, consider adapting an
existing control or building a new control from scratch.

n Apple provides top-notch examples of user interface excellence. Consider mimick-
ing their examples when creating new interaction styles like the confirm button
used in this chapter to safeguard a delete action.

n Interface Builder doesn’t always provide the best solution for creating interfaces.
With toolbars, you may save time in Xcode rather than customizing each element
by hand in IB.

ptg

This page intentionally left blank

ptg

10
Alerting Users

At times, you need to grab your user’s attention. New messages might arrive or the
system status might change.You might want to tell your user that there’s going to
be a wait before anything more happens—or that the wait is over and it’s time

to come back and pay attention.The iPhone offers many ways to provide that heads-up
to the user: from alerts and progress bars to audio pings. In this chapter, you discover how
to build these indications into your applications and expand your user-alert vocabulary.
You see real-life examples that showcase these classes and discover how to make sure your
user pays attention at the right time.

Talking Directly to Your User Through Alerts
Alerts speak to your user. Members of the UIAlertView and UIActionSheet classes pop
up or scroll in above other views to deliver their messages.These lightweight classes add
two-way dialog to your apps.Alerts visually “speak” to users and can prompt them to
reply.You present your alert onscreen, get user acknowledgment, and then dismiss the
alert to move on with other tasks.

If you think that alerts are nothing more than messages with an attached OK button,
think again.Alert objects provide incredible versatility.With alert sheets, you can actually
build menus, text input, queries, and more. In this chapter’s recipes, you see how to create
a wide range of useful alerts that you can use in your own programs.

Building Simple Alerts
To create alert sheets, allocate a UIAlertView object. Initialize it with a title and a button
array.The title is an NSString, and the button array includes NSStrings, where each string
represents a single button that should be shown.

The method snippet shown here creates and displays the simplest alert scenario. It
shows a message with a single OK button.The alert is autoreleased, avoiding any require-
ments for a delegate and callbacks.When you use non-autorelease alerts, make sure a del-
egate takes responsibility for releasing the alert after a user taps a button.

- (void) showAlert: (NSString *) theMessage

{

ptg

392 Chapter 10 Alerting Users

UIAlertView *av = [[[UIAlertView alloc] initWithTitle:@"Title"

message:theMessage delegate:nil

cancelButtonTitle:@"OK" otherButtonTitles:nil] autorelease];

[av show];

}

To add more buttons, introduce them as parameters to otherButtonTitles:. Make sure
you end your list of buttons with nil.This argument takes an arbitrary number of param-
eters.Adding nil tells the method where your list finishes.

The following snippet creates an alert with three buttons (Cancel, Option, and OK).
Since this code does not declare a delegate, there’s no way to recover the alert and deter-
mine which of the three buttons was pushed.The alert displays until a user tap and then it
automatically dismisses without any further effect.

- (void) showAlert: (NSString *) theMessage

{

UIAlertView *av = [[[UIAlertView alloc] initWithTitle:@"Title"

message:theMessage delegate:nil cancelButtonTitle:@"Cancel"

otherButtonTitles: @"Option", @"OK", nil] autorelease];

[av show];

}

When working with alerts, space is often at a premium.Adding more than two buttons
causes the alert to display in multiline mode. Figure 10-1 shows a pair of alerts depicting
both two-button (side-by-side display) and three-button (line-by-line display) presenta-
tions. Limit the number of alert buttons you add at any time to no more than three or
four. Fewer buttons work better; one or two is ideal. If you need to use more buttons,
consider using action sheet objects, which are discussed later in this chapter, rather than
alert views.

UIAlertView objects provide no visual “default” button highlights.The only highlight-
ing is for the Cancel button, as you can see in Figure 10-1.As a rule, Cancel buttons
appear at the bottom or left of alerts.

Alert Delegates
Alerts use delegates to recover user choices. Unless you have some compelling reason to
do otherwise, set the delegate to your primary (active) UIViewController object.The
delegate implements the UIAlertViewDelegate protocol. UIAlertView instances require
this delegate support to respond to button taps, at a minimum.

Delegate methods enable you to customize your responses when different buttons are
pressed.As you’ve already seen, you can omit that delegate support if all you need to do is
show some message with an OK button.

After the user has seen and interacted with your alert, they raise the following delegate
method call: alertView:clickedButtonAtIndex:. This call indicates which button was
pressed with its second argument. Button numbering begins with zero.The Cancel but-
ton, when defined, is always button 0. Even though it appears at the left in some views

ptg

393Talking Directly to Your User Through Alerts

Figure 10-1 Alerts work best with one or two buttons (left). Alerts with
more than two buttons stack the buttons as a list, producing a less elegant

presentation (right).

and the bottom at others, its button numbering remains the same.This is not true for
action sheet objects, which are discussed later in this chapter.

Here is a simple example of an alert presentation and callback, which prints out the
selected button number to the debugging console:

@interface TestBedViewController : UIViewController <UIAlertViewDelegate>

@end

@implementation TestBedViewController

- (void) alertView:(UIAlertView *) alertView

clickedButtonAtIndex: (int) index

{

printf("User selected button %d\n", index);

[alertView release];

}

- (void) showAlert: (NSString *) message

{

UIAlertView *av = [[UIAlertView alloc] initWithTitle:@"Title"

message:message delegate:self cancelButtonTitle:@"Cancel"

otherButtonTitles:@"One", @"Two", @"Three", nil];

av.tag = MAIN_ALERT;

ptg

394 Chapter 10 Alerting Users

[av show];

}

@end

When working with many alerts at once, tag your objects.Tags help you identify which
alert produced a given callback. Unlike controls that use target-action pairs, all alerts
trigger the same methods.Adding an alert-tag-based switch statement lets you differenti-
ate your responses to each alert.

Note
Notice that this snippet does not use an autorelease alert. The object is released in the
callback.

Displaying the Alert
As you’ve seen, the show method is used to tell your alert to appear onscreen.When
shown, the alert works in a modal fashion.That is, it dims the screen behind it and blocks
user interaction with your application behind the modal window.This modal interaction
continues until your user acknowledges the alert through a button tap, typically by select-
ing OK or Cancel.

After creating the alert sheet, you may customize the alert by updating its message
property.That’s the optional text that appears below the alert title and above its buttons.
As you see in recipes later in this chapter, you can also change the alert’s frame and add
subviews.

Alert Classes
In early releases of the iPhone firmware, UIActionSheet and UIAlertView were imple-
mented by the same class, UIAlertView.This one class provided both pop-up alert and
menu functionality.Then Apple replaced alert sheets with UIModalView and subclassed
these new objects from that base class.

Later,Apple removed UIModalView, and in new versions of the SDK, UIActionSheet
and UIAlertView are no longer derived from that class. (They both descend from
UIView.) Like their predecessors, they remain siblings in their behavior and use similar
underlying technology to present themselves onscreen.

This history presents an important lesson.Although Apple stands behind its APIs and
published methods, you cannot depend on the underlying classes to remain stable.The
iPhone is a rapidly evolving platform.

Recipe: No-Button Alerts
When you want to display an asynchronous message without involving user interaction,
you can create a UIAlertView instance without buttons.You can build this alert and show
it just as you would a normal buttoned version. No-button alerts provide an excellent way
to throw up a “Please Wait” message, as shown in Figure 10-2.

ptg

395Recipe: No-Button Alerts

Figure 10-2 Removing buttons from an alert lets
you create heads-up displays about ongoing

actions.

No-button alerts present a special challenge because they do not properly call back to a
delegate method.They do not autodismiss, even when tapped. Instead, you must manually
dismiss the alert when you are done displaying it. Call
dismissWithClickedButtonIndex:animated: to do so.

Recipe 10-1 adds a UIActivityIndicator instance below the alert title.This creates
the progress wheel you see at the bottom of the alert in Figure 10-2.This provides visual
feedback to the user that some activity or process is ongoing that prevents user interac-
tion. In Recipe 10-1 that “activity” is simply a three-second wait. In real applications,
you’d use this kind of alert more meaningfully.

Once an alert is created, it works like any other view and you can add subviews and
otherwise update its look. Unfortunately, Interface Builder does not offer alert views in its
library so all customization must be done in code, as shown here. Recipe 10-1 builds the
subview and adds it to the alert after first presenting the alert with show. Showing the alert
allows it to build a real onscreen view that you can modify and customize.

Be aware that alerts display in a separate window.The view is not part of your main
window’s hierarchy.Another thing to note is that removing buttons can create an imbal-
ance in the overall presentation geometry.The space that the buttons normally occupy
does not go away. In Recipe 10-1, that space is used for the activity indicator.When just
using text, adding a carriage return (@"\n") to the start of your message helps balance the
bottom where buttons normally go with the spacing at the top.

ptg

396 Chapter 10 Alerting Users

Recipe 10-1 Displaying and Dismissing a No-Button Alert

- (void) performDismiss

{

[baseAlert dismissWithClickedButtonIndex:0 animated:NO];

}

- (void) action: (UIBarButtonItem *) item

{

baseAlert = [[[UIAlertView alloc] initWithTitle:@"Please Wait"

message:nil delegate:self cancelButtonTitle:nil

otherButtonTitles: nil] autorelease];

[baseAlert show];

// Create and add the activity indicator

UIActivityIndicatorView *aiv = [[UIActivityIndicatorView alloc]

initWithActivityIndicatorStyle:

UIActivityIndicatorViewStyleWhiteLarge];

aiv.center = CGPointMake(baseAlert.bounds.size.width / 2.0f,

baseAlert.bounds.size.height - 40.0f);

[aiv startAnimating];

[baseAlert addSubview:aiv];

[aiv release];

// Auto dismiss after 3 seconds for this example

[self performSelector:@selector(performDismiss) withObject:nil

afterDelay:3.0f];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 10 and open the project for this recipe.

Recipe: Creating Modal Alerts with Run Loops
The indirect nature of the alert, namely its delegate callback approach, can produce
unnecessarily complex code. It’s relatively easy to build a custom class that directly returns
a button choice value. Consider the following code. It requests an answer from the alert
shown in Figure 10-3 (left) and then uses the answer that the class method returns.

- (void) confirm: (id) sender

{

NSUInteger answer = [ModalAlert confirm:@"Are you sure?"];

[self showAlert:[NSString stringWithFormat:@"You %@ confirm",

answer ? @"did" : @"did not"]];

}

http://github.com/erica/iphone-3.0-cookbook-

ptg

397Recipe: Creating Modal Alerts with Run Loops

Figure 10-3 These modal alerts return immediate answers because they
are built using their own run loops.

To create an alert that returns an immediate result requires a bit of ingenuity.The
ModalAlert class in Recipe 10-2 introduces a second run loop. It creates the alert as you’d
normally do but after presentation, the code calls CFRunLoopRun().This makes the
method sit and wait until the user finishes interacting with the alert.The method goes no
further as the run loop runs.

It’s up to the custom modal alert delegate class (ModalAlertDelegate) to cancel that
run loop on a button click and return the value of the selected item.When the user fin-
ishes interacting, the calling method can finally proceed past the run loop.

This ModalAlert class offers two class methods that display the Cancel/OK and
Yes/No styles shown in Figure 10-3.These return either 0 or 1, or 1 and 0, respectively.
(Cancel and No are the 0-value choices.)

This recipe could easily be generalized for other button counts and titles.When you’re
unsure of how many buttons you need to work with, it helps to pass an array to custom
classes.The UIAlertView addButtonWithTitle: method lets you avoid the variadic dec-
laration (that is, the initialization call that uses a series of arguments separated by commas
and that ends with a nil argument) to add buttons from an array, for example:

ModalAlertDelegate *madelegate = [[ModalAlertDelegate alloc]

initWithRunLoop:currentLoop];

UIAlertView *alertView = [[UIAlertView alloc] initWithTitle:question

message:nil delegate:madelegate cancelButtonTitle:cancelTitle

otherButtonTitles:nil];

for (int i = 1; i < buttons.count; i++) [alertView

ptg

398 Chapter 10 Alerting Users

addButtonWithTitle:[buttons objectAtIndex:i]];

[alertView show];

Be aware that while you can run one alert after another using this method that sometimes
the calls may crowd each other. Leave enough time for the previous alert to disappear
before presenting the next. Should an alert fail to show onscreen, it’s probably due to this
overlap issue. In such a case, use a delayed selector to call the next alert request.A tenth of
a second offers plenty of time to allow the new alert to show.

Recipe 10-2 Creating Alerts That Return Immediate Results

@interface ModalAlertDelegate : NSObject <UIAlertViewDelegate>

{

CFRunLoopRef currentLoop;

NSUInteger index;

}

@property (readonly) NSUInteger index;

@end

@implementation ModalAlertDelegate

@synthesize index;

// Initialize with the supplied run loop

-(id) initWithRunLoop: (CFRunLoopRef)runLoop

{

if (self = [super init]) currentLoop = runLoop;

return self;

}

// User pressed button. Retrieve results

-(void) alertView: (UIAlertView*)aView clickedButtonAtIndex: (NSInteger)anIndex

{

index = anIndex;

CFRunLoopStop(currentLoop);

}

@end

@implementation ModalAlert

+(NSUInteger) queryWith: (NSString *)question

button1: (NSString *)button1 button2: (NSString *)button2

{

CFRunLoopRef currentLoop = CFRunLoopGetCurrent();

// Create Alert

ModalAlertDelegate *madelegate = [[ModalAlertDelegate alloc]

initWithRunLoop:currentLoop];

UIAlertView *alertView = [[UIAlertView alloc]

ptg

399Recipe: Soliciting Text Input from the User

initWithTitle:question message:nil delegate:madelegate

cancelButtonTitle:button1 otherButtonTitles:button2, nil];

[alertView show];

// Wait for response

CFRunLoopRun();

// Retrieve answer

NSUInteger answer = madelegate.index;

[alertView release];

[madelegate release];

return answer;

}

// Ask a Yes-No question

+ (BOOL) ask: (NSString *) question

{

return ([ModalAlert queryWith:question

button1: @"Yes" button2: @"No"] == 0);

}

// Ask a Cancel-OK question

+ (BOOL) confirm: (NSString *) statement

{

return [ModalAlert queryWith:statement

button1: @"Cancel" button2: @"OK"];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 10 and open the project for this recipe.

Recipe: Soliciting Text Input from the User
Alert views provide an especially simple way to prompt your user for text. Instances take
hold of the screen, focusing the user on providing an answer before moving forward with
those results.As with Recipe 10-2, it helps to retrieve an answer directly without having
to deal with delegate callbacks. For example, the following code snippet requests the user’s
name and then uses that string immediately.

-(void) action: (UIBarButtonItem *) item

{

NSString *answer = [ModalAlert ask:@"What is your name?"

withTextPrompt:@"Name"];

http://github.com/erica/iphone-3.0-cookbook-

ptg

400 Chapter 10 Alerting Users

[self showAlert:[NSString stringWithFormat:

@"Nice to meet you, %@.", answer]];

}

To make this happen you can use the same run loop approach and the same ModalAlert

and ModalAlertDelegate classes from Recipe 10-2 with a few slight alterations.
Recipe 10-3 builds an alert, adds a text field to it, and displays it. Unfortunately, the

normal onscreen alert position precludes using a keyboard with that text field.The key-
board would partially block the alert.You can work around this issue by moving the alert
into place to allow the keyboard to appear beneath it.

This method animates the text field above the space normally occupied by the key-
board so the keyboard will not block it.This approach uses hard-coded values for the alert
center.A better approach would query the keyboard for its bounds to calculate how much
to move.

// Move alert into place to allow keyboard to appear

- (void) moveAlert: (UIAlertView *) alertView

{

CGContextRef context = UIGraphicsGetCurrentContext();

[UIView beginAnimations:nil context:context];

[UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];

[UIView setAnimationDuration:0.25f];

if (![self isLandscape])

alertView.center = CGPointMake(160.0f, 180.0f);

else

alertView.center = CGPointMake(240.0f, 90.0f);

[UIView commitAnimations];

[[alertView viewWithTag:TEXT_FIELD_TAG] becomeFirstResponder];

}

The preceding code, which is called from Recipe 10-3, animates the alert out of the way
and sets the text field as first responder. Doing so calls out the keyboard, showing both the
alert and keyboard at once, as shown in Figure 10-4.

Note
A console message regarding “wait_fences: failed to receive reply” usually indicates that a
child view is rendered before its parent. You can avoid this message by removing custom
views from an alert in the alertView:clickedButtonAtIndex: method.

Recipe 10-3 Building a Modal Text Query Alert

+(NSString *) textQueryWith: (NSString *)question

prompt: (NSString *)prompt button1: (NSString *)button1

button2:(NSString *) button2

{

// Create alert

CFRunLoopRef currentLoop = CFRunLoopGetCurrent();

ptg

401Recipe: Soliciting Text Input from the User

ModalAlertDelegate *madelegate = [[ModalAlertDelegate alloc]

initWithRunLoop:currentLoop];

UIAlertView *alertView = [[UIAlertView alloc]

initWithTitle:question message:@"\n" delegate:madelegate

cancelButtonTitle:button1 otherButtonTitles:button2, nil];

// Build text field

UITextField *tf = [[UITextField alloc]

initWithFrame:CGRectMake(0.0f, 0.0f, 260.0f, 30.0f)];

tf.borderStyle = UITextBorderStyleRoundedRect;

tf.tag = TEXT_FIELD_TAG;

tf.placeholder = prompt;

tf.clearButtonMode = UITextFieldViewModeWhileEditing;

tf.keyboardType = UIKeyboardTypeAlphabet;

tf.keyboardAppearance = UIKeyboardAppearanceAlert;

tf.autocapitalizationType = UITextAutocapitalizationTypeWords;

tf.autocorrectionType = UITextAutocorrectionTypeNo;

tf.contentVerticalAlignment =

UIControlContentVerticalAlignmentCenter;

// Show alert and wait for it to finish displaying

[alertView show];

while (CGRectEqualToRect(alertView.bounds, CGRectZero));

// Find the center for the text field and add it

CGRect bounds = alertView.bounds;

tf.center = CGPointMake(bounds.size.width / 2.0f,

bounds.size.height / 2.0f - 10.0f);

[alertView addSubview:tf];

[tf release];

// Set the field to first responder and move it into place

[madelegate performSelector:@selector(moveAlert)

withObject:alertView afterDelay: 0.7f];

// Start the run loop

CFRunLoopRun();

// Retrieve the user choices

NSUInteger index = madelegate.index;

NSString *answer = [[madelegate.text copy] autorelease];

if (index == 0) answer = nil; // assumes cancel in position 0

[alertView release];

[madelegate release];

return answer;

}

ptg

402 Chapter 10 Alerting Users

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 10 and open the project for this recipe.

Recipe: Using Variadic Arguments with Alert Views
Methods that can take a variable number of arguments are called variadic.They are
declared using ellipses after the last parameter. Both NSLog and printf are variadic.You
can supply them with a format string along with any number of arguments.

Since most alerts center on text, it’s handy to build methods that create alerts using for-
mat strings. Recipe 10-4 creates the say: method that collects the arguments passed to it
and builds a string with them.The string is then passed to an autoreleased alert view, pro-
viding a handy instant display.

The say: method does not parse or otherwise analyze its parameters. Instead, it grabs
the first argument, uses that as the format string, and passes the remaining items to the
NSString initWithFormat:arguments: method.This builds a string, which is then passed
to a one-button alert view as its title.

Figure 10-4 Using careful space management
and omitting the title and body text, you can add
several text entry fields to a UIAlertView at once.

You probably want to limit your UIAlertViews to one
or two text fields.

http://github.com/erica/iphone-3.0-cookbook-

ptg

403Recipe: Presenting Simple Menus

Defining your own utility methods with variadic arguments lets you skip several steps
where you have to build a string with a format and then call a method.With say: you
can combine this into a single call, as follows:

[self say:@"I am so happy to meet you, %@", yourName];

Note
You must import <stdarg.h> to use the variadic argument calls shown in Recipe 10-4.

Recipe 10-4 Using a Variadic Method for UIAlertView Creation

- (void) say: (id)formatstring,...

{

va_list arglist;

va_start(arglist, formatstring);

id statement = [[NSString alloc] initWithFormat:formatstring

arguments:arglist];

va_end(arglist);

UIAlertView *av = [[[UIAlertView alloc] initWithTitle:statement

message:nil delegate:self cancelButtonTitle:@"Okay"

otherButtonTitles:nil] autorelease];

[av show];

[statement release];

}

-(void) action: (UIBarButtonItem *) item

{

NSDateFormatter *formatter = [[[NSDateFormatter alloc] init]

autorelease];

formatter.dateFormat = @"MM/dd/YY HH:mm:ss";

NSString *timestamp = [formatter stringFromDate:[NSDate date]];

[self say:@"At the chime, the time will be %@", timestamp];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 10 and open the project for this recipe.

Recipe: Presenting Simple Menus
When it comes to menus, UIActionSheet instances supply the iPhone answer.They slide
choices, basically a list of buttons representing possible actions, onto the screen and wait
for the user to respond.Action sheets are different from pop-ups. Pop-ups stand apart from
the interface and are better used for demanding attention. Menus slide into a view and

http://github.com/erica/iphone-3.0-cookbook-

ptg

404 Chapter 10 Alerting Users

Figure 10-5 Use showInView: to create simple menu presentations.
The menu slides in from the bottom of the view. Although the Delete File

menu button appears gray here (left), it is red on your iPhone and indicates
permanent actions with possible negative consequences to your users.

Adding many menu items produces the scrolling list on the right.

better integrate with ongoing application work. Cocoa Touch supplies two ways to pres-
ent menus:

n showInView—Presenting your sheet in a view is pretty much the ideal way to
use menus and is the method used here.This method slides the menu up from the
exact bottom of the view (see Figure 10-5).

n showFromToolBar: and showFromTabBar—When working with toolbars,
tab bars, or any other kinds of bars that provide those horizontally grouped buttons
that you see at the bottom of many applications, these methods align the menu with
the top of the bar and slide it out exactly where it should be.

Recipe 10-5 shows how to initialize and present a simple UIActionSheet instance. Its ini-
tialization method introduces a concept missing from UIAlertView: the destructive but-
ton. Colored in red, a destructive button indicates an action from which there is no
return, such as permanently deleting a file (see Figure 10-5). Its bright red color warns the
user about the choice. Use this option sparingly.

Action sheet values are returned in button order. In the Figure 10-5 example, the
Delete button is number 0 and the Cancel button is number 3.This behavior contradicts
alert view values, where the Cancel button returns 0.

ptg

405Recipe: Displaying Text in Action Sheets

Scrolling Menus
As a rough rule of thumb, you can fit a maximum of about seven buttons (including Can-
cel) into a portrait orientation and about four buttons into landscape. Going beyond this
number in iPhone OS 3.0 and later triggers the scrolling presentation shown in Figure
10-5 (right). Notice that the Cancel button is presented below the list. Its numbering
remains consistent with shorter menu presentations.The Cancel button is always num-
bered after any previous buttons.As Figure 10-5 demonstrates, this presentation falls low
on the aesthetics scale and should be avoided where possible.

Note
You can use the same second run loop approach shown in Recipe 10-2 to retrieve results
with action sheets as you can with alert views.

Recipe 10-5 Displaying Simple Menus

- (void)actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex

{

[actionSheet release];

[self say:@"User Pressed Button %d\n", buttonIndex + 1];

}

-(void) action: (UIBarButtonItem *) item

{

UIActionSheet *menu = [[UIActionSheet alloc] initWithTitle:

@"File Management" delegate:self cancelButtonTitle:@"Cancel"

destructiveButtonTitle:@"Delete File"

otherButtonTitles:@"Rename File", @"Email File", nil];

[menu showInView:self.view];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 10 and open the project for this recipe.

Recipe: Displaying Text in Action Sheets
Action sheets offer many of the same text presentation features as alert views, but they do
so with a much bigger canvas. Recipe 10-6 demonstrates how to display a text message
using a UIActionSheet object.This code builds off Recipe 10-4 but adapts that method
to an action sheet presentation.

Recipe 10-6 Presenting Text in Action Sheets

- (void) show: (id)formatstring,...

{

http://github.com/erica/iphone-3.0-cookbook-

ptg

406 Chapter 10 Alerting Users

va_list arglist;

va_start(arglist, formatstring);

id statement = [[NSString alloc] initWithFormat:formatstring

arguments:arglist];

va_end(arglist);

UIActionSheet *actionSheet = [[[UIActionSheet alloc]

initWithTitle:statement delegate:nil cancelButtonTitle:nil

destructiveButtonTitle:nil otherButtonTitles:@"OK", nil]

autorelease];

[actionSheet showInView:self.view];

[statement release];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 10 and open the project for this recipe.

“Please Wait”: Showing Progress to Your User
Waiting is an intrinsic part of the computing experience and will remain so for the fore-
seeable future. It’s your job as a developer to communicate that fact to your users. Cocoa
Touch provides classes that tell your user to wait for a process to complete.These progress
indicators come in two forms: as a spinning wheel that persists for the duration of its pres-
entation and as a bar that fills from left to right as your process moves forward from start
to end.The classes that provide these indications are as follows:

n UIActivityIndicatorView—A progress indicator offers a spinning circle
that tells your user to wait without providing specific information about its degree
of completion.The iPhone activity indicator is small, but its live animation catches
the user’s eye and is best suited for quick disruptions in a normal application.
Recipe 10-1 showed a simple alert that embedded an activity indicator.

n UIProgressView—This view presents a progress bar.The bar provides concrete
feedback as to how much work has been done and how much remains while occu-
pying a relatively small onscreen space. It presents as a thin, horizontal rectangle that
fills itself from left to right as progress takes place.This classic user interface element
works best for long delays, where users want to know to what degree the job has
finished.

Be aware of blocking. Both of these classes must be used on your main thread, as is the
rule with GUI objects. Computationally heavy code can keep views from displaying in
real time. Should you need to display asynchronous feedback, use threading.The edge-
detection discussed in Recipe 7-11 in Chapter 7,“Working with Images,” provides a good
example. It uses a UIActivityIndicatorView on the main thread and performs its com-
putation on a second thread.

http://github.com/erica/iphone-3.0-cookbook-

ptg

407Recipe: Building a UIProgressView

Using UIActivityIndicatorView
UIActivityIndicatorView instances offer lightweight views that display a standard rotat-
ing progress wheel, as shown previously in Figure 10-2.The keyword to keep in mind
when working with these views is small.All activity indicators are tiny and do not look
right when zoomed past their natural size.

The iPhone offers several different styles of the UIActivityIndicatorView class.
UIActivityIndicatorViewStyleWhite and UIActivityIndicatorViewStyleGray are
20x20 pixels in size.The white version looks best against a black background, and the gray
looks best against white. It’s a thin, sharp style.

Take care when choosing whether to use white or gray.An all-white presentation does
not show at all against a white backdrop. Unfortunately, UIActivityIndicatorView
➥StyleWhiteLarge is available only for use on dark backgrounds. It provides the largest,
clearest indicator at 37x37 pixels in size.

UIActivityIndicatorView *aiv = [[UIActivityIndicatorView alloc]

initWithActivityIndicatorStyle:

UIActivityIndicatorViewStyleWhiteLarge];

You need not center indicators on the screen. Place them wherever they work best for
you.As a clear-backed view, the indicator blends over whatever backdrop view lies behind
it.The predominant color of that backdrop helps select which style of indicator to use.

For general use, just add the activity indicator as a subview to the window, view, tool-
bar, or navigation bar you want to overlay as shown previously in Recipe 10-1.Allocate
the indicator and initialize it with a frame, preferably centered within whatever parent
view you’re using.

Start the indicator in action by sending startAnimating.To stop, call stopAnimating.
Cocoa Touch takes care of the rest, hiding the view when not in use.

Recipe: Building a UIProgressView
Progress views enable your users to follow task progress as it happens rather than just say-
ing “Please wait.”They present bars that fill from left to right.The bars indicate the degree
to which a task has finished. Progress bars work best for long waits where providing state
feedback enables your users to retain the feel of control.

To create a progress view, allocate it and set its frame.To use the bar, issue
setProgress:.This takes one argument, a floating-point number that ranges between
0.0 (no progress) and 1.0 (finished). Progress view bars come in two styles: basic white or
light gray.The setStyle: method chooses the kind you prefer, either
UIProgressViewStyleDefault or UIProgressViewStyleBar.

Unlike the other kinds of progress indicators, it’s completely up to you to show and
hide the progress bar’s view.There’s no setVisible: method.Adding progress bars to
action sheets simplifies both bringing them onto the screen and dismissing them.Another
advantage is that when alert sheets display, the rest of the screen dims.This forces a modal
presentation as your task progresses. Users cannot interact with the GUI until you dismiss

ptg

408 Chapter 10 Alerting Users

Figure 10-6 Use UIProgressView instances
to track progress over an extended delay. Adding
them to a UIActionSheet simplifies their pres-

entation and dismissal.

the alert. Recipe 10-7 shows a UIActionSheet/UIProgressView sample that produces
the display shown in Figure 10-6. Several line feeds in the action sheet’s title keep the
progress bar from obscuring the title text.

Recipe 10-7 Presenting Progress on an Action Sheet

@interface TestBedViewController : UIViewController <UIActionSheetDelegate>

{

float amountDone;

UIProgressView *progressView;

UIActionSheet *actionSheet;

}

@property (retain) UIActionSheet *actionSheet;

@end

@implementation TestBedViewController

@synthesize actionSheet;

// This callback fakes progress via setProgress:

- (void) incrementBar: (id) timer

{

ptg

409Recipe: Building Custom Overlays

amountDone += 1.0f;

[progressView setProgress: (amountDone / 20.0)];

if (amountDone > 20.0)

{

[self.actionSheet dismissWithClickedButtonIndex:0

animated:YES];

self.actionSheet = nil;

[timer invalidate];

}

}

// Load the progress bar onto an action sheet backing

-(void) action: (UIBarButtonItem *) item

{

amountDone = 0.0f;

self.actionSheet = [[[UIActionSheet alloc]

initWithTitle:@"Downloading data. Please Wait\n\n\n"

delegate:nil cancelButtonTitle:nil destructiveButtonTitle: nil

otherButtonTitles: nil] autorelease];

progressView = [[UIProgressView alloc]

initWithFrame:CGRectMake(0.0f, 40.0f, 220.0f, 90.0f)];

[progressView setProgressViewStyle: UIProgressViewStyleDefault];

[actionSheet addSubview:progressView];

[progressView release];

// Create the demonstration updates

[progressView setProgress:(amountDone = 0.0f)];

[NSTimer scheduledTimerWithTimeInterval: 0.5 target: self

selector:@selector(incrementBar) userInfo: nil repeats: YES];

[actionSheet showInView:self.view];

progressView.center = CGPointMake(actionSheet.center.x,

progressView.center.y);

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 10 and open the project for this recipe.

Recipe: Building Custom Overlays
Although UIAlertView and UIActionSheet provide excellent modal progress indicators,
you can also roll your own completely from scratch. Recipe 10-8 uses a simple tinted
UIView overlay with a UIActivityIndicatorView to present the modal “in-progress”
feedback shown in Figure 10-7.

http://github.com/erica/iphone-3.0-cookbook-

ptg

410 Chapter 10 Alerting Users

Figure 10-7 Custom views provide handy modal
alerts without using prebuilt Apple classes.

This view was laid out in Interface Builder and connected to a custom class property
called overlay.The view occupies the entire screen size so no simulated screen elements
were enabled. Using the entire screen lets the overlay fit over the navigation bar.That’s
because the overlay view must be added to the application window and not, as you might
think, to the main UIViewController’s view.That view only occupies the space under the
navigation bar, allowing access to any buttons and other control items in the bar.

To restrict any user touches with the screen, the overlay sets its userInteraction
➥Enabled property to YES.This catches any touch events, preventing them from reaching
the normal GUI below the alert, creating a modal presentation where interaction cannot
continue until the alert has finished.

This example uses a portrait-only presentation.As the view does not belong to a view
controller, it cannot and will not update itself during iPhone orientation changes. If you
need to work with a landscape/portrait aware system, you can catch that value before
showing the overlay as demonstrated in the upcoming Recipe 10-10.

Recipe 10-8 Presenting and Hiding a Custom Alert Overlay

- (void) finish

{

[(UIActivityIndicatorView *)[self.overlay viewWithTag:202]

stopAnimating];

[self.overlay removeFromSuperview];

ptg

411Recipe: Tappable Overlays

}

- (void) action: (id) sender

{

// Add the subview

[self.view.window addSubview:self.overlay];

// Start the activity indicator

[(UIActivityIndicatorView *)[self.overlay viewWithTag:202]

startAnimating];

// Call the finish method, on delay

[self performSelector:@selector(finish) withObject:nil

afterDelay:3.0f];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 10 and open the project for this recipe.

Recipe: Tappable Overlays
Use custom overlays to present information as well as to establish modal sequences.
Recipe 10-9 creates a custom class called TappableOverlay.When tapped, this view
removes itself from the screen.This behavior makes it particularly suitable for showing
information in a way normally reserved for the UIAlertView class.

To use this class, create a view instance in Interface Builder.Add as many subviews and
design elements as needed. Use File > Read Class Files to import the TappableOverlay.h
header file.Then change the view class from UIView to TappableOverlay using the Iden-
tity Inspector (Command-4) and save the project.

To present the view, add it to the window just as Recipe 10-8 did.

- (void) action: (id) sender

{

// Add the overlay

[self.view.window addSubview:self.overlay];

}

No further programming is needed.The view waits for a user tap and when one is
received, it removes itself from the window.

Figure 10-8 shows a simple example of this kind of overlay; it displays “Tap to Con-
tinue.” It’s easy to see how you can extend this concept to show any kind of pertinent
information, creating a custom alternative to the UIAlertView class.As with Recipe 10-8,
this example does not use any orientation awareness.

http://github.com/erica/iphone-3.0-cookbook-

ptg

412 Chapter 10 Alerting Users

Figure 10-8 This simple overlay dismisses itself
on receiving a user touch.

Recipe 10-9 Building a Custom Dismissible Alert View That Responds to User Taps

@interface TappableOverlay : UIView

@end

@implementation TappableOverlay

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event

{

// Remove this view when it is touched

[self removeFromSuperview];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 10 and open the project for this recipe.

Recipe: Orientable Scroll-Down Alerts
You can extend the modal concepts introduced in Recipe 10-8 to create a noninteractive
overlay that acts as a backdrop for a scroll-down alert. In Recipe 10-10, that overlay hosts
a view with an embedded button as shown in Figure 10-9.This view is presented and

http://github.com/erica/iphone-3.0-cookbook-

ptg

413Recipe: Orientable Scroll-Down Alerts

Figure 10-9 This modally presented message
scrolls down into view and is dismissed by tapping

the OKAY button.

dismissed via a pair of simple UIView animation blocks; the OKAY button triggers the
dismiss: method that scrolls the view offscreen.

The message view was created in Interface Builder as a standard UIView. It’s added to the
overlay as a subview in the viewDidLoad method. Rather than adding and removing the
overlay from the main window, as Recipe 10-8 did, this recipe uses the overlay’s alpha
property to hide and show itself.

Unlike the previous two recipes, this recipe does pay attention to screen orientation. It
adapts its size and presentation to match the current iPhone orientation. It accomplishes
this in two ways. First, it applies an affine transform to the overlay when the orientation
changes. Second, it adjusts the overlay and message view frames before presentation,
matching the shape of the current window.

Although this example scrolls in from the top of the screen, it’s trivial to adapt the
math to have it scroll in from the sides (use the x origin rather than the y origin) or bot-
tom (add 320 or 480 to the view height).Alternatively, you might center the view and
animate its size so that it pops rather than slides into view.

Recipe 10-10 Creating an Orientable Scroll-Down Overlay

- (void) dismiss: (id) sender

{

ptg

414 Chapter 10 Alerting Users

// Animate the message view away

[UIView beginAnimations:nil context:NULL];

[UIView setAnimationDuration:0.3f];

[UIView setAnimationCurve:UIViewAnimationCurveLinear];

mvframe.origin = CGPointMake(0.0f, -300.0f);

self.messageView.frame = mvframe;

[UIView commitAnimations];

// Hide the overlay

[self.overlay performSelector:@selector(setAlpha) withObject:nil

afterDelay:0.3f];

}

- (void) action: (id) sender

{

// Adjust the overlay sizes based on the screen orientation

self.overlay.frame = self.view.window.frame;

mvframe.size.width = UIDeviceOrientationIsPortrait([[UIDevice

currentDevice] orientation]) ? 320.0f : 480.0f;

mvframe.origin = CGPointMake(0.0f, -mvframe.size.height);

self.messageView.frame = mvframe;

// Show the overlay

if (!self.overlay.superview)

[self.view.window addSubview:self.overlay];

self.overlay.alpha = 1.0f;

// Animate the message view into place

[UIView beginAnimations:nil context:NULL];

[UIView setAnimationDuration:0.3f];

[UIView setAnimationCurve:UIViewAnimationCurveLinear];

mvframe.origin = CGPointMake(0.0f, 20.0f);

self.messageView.frame = mvframe;

[UIView commitAnimations];

}

- (void) viewDidLoad

{

self.navigationItem.rightBarButtonItem = BARBUTTON(@"Action",

@selector(action));

// Initialize the overlay and message view

self.overlay.alpha = 0.0f;

[self.overlay addSubview:self.messageView];

mvframe = messageView.frame;

mvframe.origin = CGPointMake(0.0f, -300.0f);

self.messageView.frame = mvframe;

ptg

415Recipe: Using the Network Activity Indicator

Figure 10-10 The network activity indicator is
controlled by a UIApplication property.

}

- (BOOL)shouldAutorotateToInterfaceOrientation:

(UIInterfaceOrientation)interfaceOrientation

{

// Apply overlay transforms based on the orientation

if (interfaceOrientation ==

UIInterfaceOrientationPortraitUpsideDown)

self.overlay.transform = CGAffineTransformMakeRotation(M_PI);

else if (interfaceOrientation ==

UIInterfaceOrientationLandscapeLeft)

self.overlay.transform = CGAffineTransformMakeRotation(-M_PI /

2.0f);

else if (interfaceOrientation ==

UIInterfaceOrientationLandscapeRight)

self.overlay.transform = CGAffineTransformMakeRotation(M_PI /

2.0f);

else

self.overlay.transform = CGAffineTransformIdentity;

return YES;

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 10 and open the project for this recipe.

Recipe: Using the Network Activity Indicator
When your application accesses the Internet from behind the scenes, it’s polite to let your
user know what’s going on. Rather than create a full-screen alert, Cocoa Touch provides a
simple application property that controls a spinning network activity indicator in the sta-
tus bar. Figure 10-10 shows this indicator in action, to the right of the WiFi indicator and
to the left of the current time display.

Recipe 10-11 demonstrates how to access this property, doing little more than toggling
the indicator on or off. In real-world use, you’ll likely perform your network activities on
a secondary thread. Make sure you perform this property change on the main thread so
the GUI can properly update itself.

http://github.com/erica/iphone-3.0-cookbook-

ptg

416 Chapter 10 Alerting Users

Figure 10-11 The segmented control in Recipe 10-12 updates the applica-
tion badge number.

Recipe 10-11 Accessing the Status Bar’s Network Activity Indicator

- (void) action: (id) sender

{

// Toggle the network activity indicator

UIApplication *app = [UIApplication sharedApplication];

app.networkActivityIndicatorVisible =

!app.networkActivityIndicatorVisible;

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 10 and open the project for this recipe.

Recipe: Badging Applications
If you’ve used the iPhone or iPod touch for any time, you’ve likely seen the small, red
badges that appear over applications on the home screen.These might indicate the num-
ber of missed phone calls or unread e-mails that have accumulated since the user last
opened Phone or Mail.

To set an application badge from within the program itself, set the applicationIcon
➥BadgeNumber property to an integer.To hide badges, set applicationIconBadgeNumber
to 0 (the number zero). Recipe 10-12 demonstrates how to read and set an application
badge. It matches the value of its segmented control to the most recently used badge
number.When users change the segmented control setting, it updates the badge accord-
ingly. Figure 10-11 shows this in action, displaying the interface within the application and
the badge number it generates.

Recipe 10-12 Reading and Updating Application Badges

@implementation TestBedViewController

- (void) updateBadge: (UISegmentedControl *) seg

{

// Set the badge number to the selected segment index

[UIApplication sharedApplication].applicationIconBadgeNumber =

seg.selectedSegmentIndex;

http://github.com/erica/iphone-3.0-cookbook-

ptg

417Recipe: Simple Audio Alerts

}

- (void) viewDidLoad

{

// Create the segment control for selecting the badge number

UISegmentedControl *seg = [[UISegmentedControl alloc]

initWithItems:[@"0 1 2 3 4 5" componentsSeparatedByString:

@" "]];

seg.segmentedControlStyle = UISegmentedControlStyleBar;

seg.selectedSegmentIndex = MIN([UIApplication

sharedApplication].applicationIconBadgeNumber, 5);

[seg addTarget:self action:@selector(updateBadge)

forControlEvents:UIControlEventValueChanged];

self.navigationItem.titleView = seg;

[seg release];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 10 and open the project for this recipe.

Recipe: Simple Audio Alerts
Audio alerts “speak” directly to your users.They produce instant feedback—assuming
users are not hearing impaired. Fortunately,Apple built basic sound playback into the
Cocoa Touch SDK through System Audio services.This works very much like system
audio on a Macintosh.

The alternatives include using Audio Queue calls or AVAudioPlayer.Audio Queue
playback is expensive to program and involves much more complexity than simple alert
sounds need. In contrast, you can load and play system audio with just a few lines of code.
AVAudioPlayer also has its drawbacks. It interferes with iPod audio. In contrast, System
Audio can perform a sound without interrupting any music that’s currently playing,
although that may admittedly not be the result you’re looking for, as alerts can get lost in
the music.

Alert sounds work best when kept short, preferably 30 seconds or shorter according to
Apple. System Audio plays PCM and IMA audio only.That means limiting your sounds to
AIFF,WAV, and CAF formats.

System Sounds
To build a system sound, call AudioServicesCreateSystemSoundID with a file URL
pointing to the sound file.This call returns an initialized system sound object, which you
can then play at will. Just call AudioServicesPlaySystemSound with the sound object.
That single call does all the work.

http://github.com/erica/iphone-3.0-cookbook-

ptg

418 Chapter 10 Alerting Users

AudioServicesPlaySystemSound(mySound);

The default implementation of system sounds allows them to be controlled by the Sound
Effects preference in Settings.When effects are disabled, the sound will not play.To over-
ride this preference and always play the sound, you can set a property flag as such.

// Identify it as a non UI Sound

AudioServicesCreateSystemSoundID(baseURL, &mysound);

AudioServicesPropertyID flag = 0; // 0 means always play

AudioServicesSetProperty(kAudioServicesPropertyIsUISound,

sizeof(SystemSoundID), &mysound,

sizeof(AudioServicesPropertyID), &flag);

When iPod audio is playing, the system sound generally plays back at the same volume, so
users may miss your alert. Consider using vibration in addition to or in place of music.You
can check the current playback state by testing as follows. Make sure you include
<MediaPlayer/MediaPlayer.h> and link to the MediaPlayer framework.

if ([MPMusicPlayerController iPodMusicPlayer].playbackState ==

MPMusicPlaybackStatePlaying)

Add an optional system sound completion callback to notify your program when a sound
finishes playing by calling AudioServicesAddSystemSoundCompletion. Unless you use
short sounds that are chained one after another, this is a step you can generally skip.

Clean up your sounds by calling AudioServicesDisposeSystemSoundID with the
sound in question.This frees the sound object and all its associated resources.

Note
To use these system sound services, make sure to include
AudioToolbox/AudioServices.h in your code and link to the Audio Toolbox framework.

Vibration
As with audio sounds, vibration immediately grabs a user’s attention.What’s more, vibra-
tion works for nearly all users, including those who are hearing or visually impaired.
Using the same System Audio services, you can vibrate as well as play a sound.All you
need is the following one-line call to accomplish it, as used in Recipe 10-13:

AudioServicesPlaySystemSound (kSystemSoundID_Vibrate);

You cannot vary the vibration parameters. Each call produces a short one- to two-second
buzz. On platforms without vibration support (like the iPod touch), this call does
nothing—but will not produce an error.

Alerts
Audio Services provides a vibration/sound mashup called an alert sound, which is invoked
as follows.

AudioServicesPlayAlertSound(mySound);

ptg

419Recipe: Simple Audio Alerts

This call, which is also demonstrated in Recipe 10-13, plays the requested sound and, pos-
sibly, vibrates or plays a second alert. On iPhones, when the user has set Settings > Sound >
Ring >Vibrate to ON, it vibrates the phone. Second generation and later iPod touch units
play the sound sans vibration (which is unavailable on those units) through the onboard
speaker. First generation iPod touches play a short alert melody in place of the sound on
the device speaker while playing the requested audio through to the headphones.

Delays
The first time you play back a system sound on the iPhone, you may encounter delays.
You may want to play a silent sound on application initialization to avoid a delay on sub-
sequent playback.

Note
When testing on iPhones, make sure you have not enabled the silent ringer switch on the
left side of the unit. This oversight has tripped up many iPhone developers. If your alert
sounds must always play, consider using the AVAudioPlayer class, which is discussed in
Chapter 15, “Audio, Video, and MediaKit.”

Recipe 10-13 Playing Sounds, Alerts, and Vibrations Using Audio Services

@implementation TestBedViewController

- (void) playSound

{

if ([MPMusicPlayerController iPodMusicPlayer].playbackState ==

MPMusicPlaybackStatePlaying)

AudioServicesPlayAlertSound(mysound);

else

AudioServicesPlaySystemSound(mysound);

}

- (void) vibrate

{

AudioServicesPlaySystemSound (kSystemSoundID_Vibrate);

}

- (void) viewDidLoad

{

// create the sound

NSString *sndpath = [[NSBundle mainBundle]

pathForResource:@"basicsound" ofType:@"wav"];

CFURLRef baseURL = (CFURLRef)[NSURL fileURLWithPath:sndpath];

// Identify it as not a UI Sound

AudioServicesCreateSystemSoundID(baseURL, &mysound);

AudioServicesPropertyID flag = 0; // 0 means always play

AudioServicesSetProperty(kAudioServicesPropertyIsUISound,

ptg

420 Chapter 10 Alerting Users

sizeof(SystemSoundID), &mysound,

sizeof(AudioServicesPropertyID), &flag);

self.navigationItem.rightBarButtonItem = BARBUTTON(@"Sound",

@selector(playSound));

self.navigationItem.leftBarButtonItem = BARBUTTON(@"Vibrate",

@selector(vibrate));

}

-(void) dealloc

{

// Clean up

if (mysound) AudioServicesDisposeSystemSoundID(mysound);

[super dealloc];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 10 and open the project for this recipe.

One More Thing: Showing the Volume Alert
The iPhone offers a built-in alert that you can display to allow users to adjust the system
volume. Figure 10-12 shows this alert, which consists of a slider and a Done button.
Invoke this alert by issuing the following Media Player function.

- (void) action

{

// Show the Media Player volume settings alert

MPVolumeSettingsAlertShow();

}

Test whether this alert is visible by issuing MPVolumeSettingsAlertIsVisible().This
returns a Boolean value reflecting whether the alert is already onscreen. Hide the alert
with MPVolumeSettingsAlertHide(), which dismisses the alert regardless of whether the
user taps Done. For these functions to work, you must link to the MediaPlayer framework
and import the media player headers.

http://github.com/erica/iphone-3.0-cookbook-

ptg

421Summary

Figure 10-12 The Media Player class’s utility vol-
ume alert panel.

Summary
This chapter introduced ways to interact directly with your user.You learned how to
build alerts—visual, auditory, and tactile—that grab your user’s attention and can request
immediate feedback. Use these examples to enhance the interactive appeal of your pro-
grams and leverage some unique iPhone-only features. Here are a few thoughts to carry
away from this chapter:

n Whenever any task will take a noticeable amount of time, be courteous to your
user and display some kind of progress feedback.The iPhone offers many ways to
do this, from heads-up displays to status bar indicators and beyond.You may need to
divert the non-GUI elements of your task to new thread to avoid blocking.

n Alerts take users into the moment.They’re designed to elicit responses while com-
municating information.And, as you saw in this chapter, they’re almost insanely
customizable. It’s possible to build entire applications around the simple
UIAlertView.

n Don’t be afraid of the run loop.A modal response from an alert or action sheet lets
you poll users for immediate choices without being dependent on asynchronous
callbacks.

ptg

422 Chapter 10 Alerting Users

n If blue colored system-supplied features do not match your application design
needs, skip them.You can easily build your own alerts and menus using UIView
instances and animation.

n Audio feedback including beeps and vibration can enhance your programs and
make your interaction richer. Using system sound calls means that your sounds play
nicely with iPod functionality and won’t ruin the ongoing listening experience.At
the same time, don’t be obnoxious. Use alert sounds sparingly and meaningfully to
avoid annoying your users.

ptg

11
Creating and Managing

TableViews

Tables provide a scrolling list-based interaction class that works particularly well on a
small, cramped device. Many if not most apps that ship natively with the iPhone and
iPod touch center on tables, including Contacts, Settings, iPod,YouTube, Stocks, and

Weather.The iPhone’s limited screen size makes tables, with their scrolling and individual
item selection, an ideal way to deliver information and content in simple, easy-to-
manipulate form. In this chapter, you discover how iPhone tables work, what kinds of
tables are available to you as a developer, and how you can use table features in your own
programs.

Introducing UITableView and
UITableViewController
The standard iPhone table consists of a simple scrolling list of individual cells, providing a
manipulatable data index. Users may scroll or flick their way up and down until they find
an item they want to interact with.Then, they can work with that item independently of
other rows. On the iPhone, tables are ubiquitous. Nearly every standard software package
uses them, and they form the core of many third-party applications, too. In this section,
you discover how tables function and what elements you need to bring together to create
your own.

The iPhone SDK supports several kinds of tables, many of which are implemented as
flavors of the UITableView class. In addition to the standard scrolling list of cells, which
provides the most generic table implementation, you can create several specialized tables.
These include the kind of tables you see in the Preferences application, with their blue-
gray background and rounded cell edges; tables with sections and an index like the ones
used in the Contacts application; and related classes of wheeled tables, like those used to
set appointment dates and alarms. No matter what type of table you use, they all work in
the same general way.They contain cells provided from a data source and respond to user
interactions by calling well-defined delegate methods.

ptg

424 Chapter 11 Creating and Managing Table Views

The UITableViewController class derives from the UIViewController class. Like its
parent class, it helps you build onscreen presentations with minimal programming and
maximum convenience.The UITableViewController class greatly simplifies the process
of creating a UITableView, reducing or eliminating the repetitive steps required for work-
ing directly with table instances. UITableViewController handles the fussy details for the
table view layout and provides table-specific convenience by adding a local tableView
instance variable and automatic table protocol support for delegates and data sources.

Creating the Table
To implement tables, you must define three key elements: how the table is laid out, the
kinds of things that are used to fill the table, and how the table reacts to user interaction.
Specify these elements by adding descriptions and methods to your application.You cre-
ate the visual layout when building your views, you define a data source that feeds table
cells on demand, and you implement delegate methods that respond to user interactions
such as row-selection changes.

Laying Out the View
UITableViews instances are, as the name suggests, views.They present interactive tables
on the iPhone screen.The UITableView class inherits from the UIScrollView class.This
inheritance provides the up and down scrolling capabilities used by the table. Like other
views, UITableView instances define their boundaries through frames, and they can be
children or parents of other views.To create a table view, you allocate it, initialize it with a
frame just like any other view, and then add all the bookkeeping details by assigning data
source and delegate objects.

UITableViewControllers take care of the layout work for you.The
UITableViewController class creates a standard UIViewController and populates it
with a single UITableView, setting its frame to allow for any navigation bars or toolbars.
You may access that table view via the tableView instance variable.

One important note:When subclassing UITableViewController, if you define a
loadView method, be sure to call its superclass’s implementation—that is:

- (void) loadView

{

[super loadView];

...the rest of your method...

}

Doing this ensures that the table view is properly set up, while letting you add
custom features in the subclass such as navigation item buttons. If you create your
UITableViewController using Interface Builder, you do not have to add
any special calls to loadView.

ptg

425Introducing UITableView and UITableViewController

Assigning a Data Source
UITableView instances rely on an external source to feed either new or existing table
cells on demand.This external source is called a data source and refers to the object whose
responsibility it is to return a cell to a table’s query.

Data sources provide table cells based on an index path. Index paths, objects of the
NSIndexPath class, describe the path through a data tree to a particular node, namely
their section and their row.Although many simple tables only use one section, tables can
use sections to split data into logical groups.A UITableView instance uses index paths to
specify a section and the row within that section.

It’s the data source’s job to connect that path to a concrete UITableViewCell instance
and return that cell on demand.You can create an index path by supplying the section
and row:

myIndexPath = [NSIndexPath indexPathForRow:5 inSection:0];

Recover those values by using the row and section properties of the index path object.
The iPhone SDK provides a built-in mechanism for reusing table cells.When cells

scroll off the table and out of view, the table can cache them into a reuse queue.You can
tag cells for reuse and then pop them off that queue as needed.This saves memory and
provides a fast, efficient way to feed cells when users scroll quickly through long lists
onscreen. Recipe 11-8 looks at cell reuse in more detail.

You’re not limited to single cell types either.The following snippet chooses which of
two kinds of cells to request from the reusable cell queue. Default cells provide a single
label; subtitle cells add a second.The identifier is arbitrary, as defined by the developer.

UITableViewCell *cell;

UITableViewCellStyle style;

NSString *identifier;

if (item.notes)

{

style = UITableViewCellStyleSubtitle;

identifier = @"notescell";

}

else

{

style = UITableViewCellStyleDefault;

identifier = @"basecell";

}

cell = [aTableView dequeueReusableCellWithIdentifier:identifier];

if (!cell)

cell = [[[UITableViewCell alloc] initWithStyle:style

reuseIdentifier:identifier] autorelease];

ptg

426 Chapter 11 Creating and Managing Table Views

Use the table’s dataSource property to assign an object to a table as its data source.That
object must implement the UITableViewDataSource protocol. Most typically, the
UITableViewController that owns the table view acts as the data source for that view.
When working with UITableViewController subclasses, you need not declare the pro-
tocol as the parent class implicitly supports that protocol and automatically assigns the
controller as the data source.

After assigning a data source, load your table up with its cells by implementing the
tableView:cellForRowAtIndexPath: method. On calling the table’s reloadData
method, the table starts querying its data source to load the actual onscreen cells into your
table.You can also call reloadData at any time to force the table to reload its contents.

Assigning a Delegate
Like many other Cocoa Touch interaction objects, UITableView instances use delegates to
respond to user interactions and implement a meaningful response.Your table’s delegate
can respond to events like the table scrolling or row selection changes. Delegation tells the
table to hand off responsibility for reacting to these interactions to the object you specify,
typically the UITableViewController object that owns the table view.

If you’re working directly with a UITableView, use the standard setDelegate:
method to set your table’s delegate.The delegate must implement the UITableViewDelegate
protocol.When classes implement a delegate protocol, you add a declaration within the
class header file. See Chapter 3,“Objective-C Boot Camp,” for an explanation of declar-
ing protocols.

When working with UITableViewController, omit the setDelegate: method and
protocol assignment.That class automatically handles this.A full set of delegate methods is
listed in the Apple SDK documentation, and the most basic ones are discussed in this
chapter.

Note
UITableView instances provide notifications in addition to delegate method calls. Notifica-
tions enable different threads of your application to communicate with each other by broad-
casting updates via the default NSNotificationCenter. You can subscribe your
application to these notifications using standard NSNotificationCenter observers to find
out when the table states change. With the 3.0 SDK, the only official table notification is
UITableViewSelectionDidChangeNotification.

Recipe: Implementing a Very Basic Table
The UITableViewController class embeds a UITableView into a UIViewController
object that manages its table view.This view is accessed via the tableView property.These
controllers automatically set the data source and delegate methods for the table view to
itself. So it’s really a plug-and-play situation. For a really basic table, all you need to bring
to the table are some data and a few data source functions that feed cells and report the
number of rows and sections.

ptg

427Recipe: Implementing a Very Basic Table

Figure 11-1 It’s easy to fill a UITableView
with cells based on any array of strings. This table

presents the font family list from the UIFont
class. When tapped, the chosen item updates the

font on the navigation bar at the top.

Populating a Table
Pretty much any array of strings can be used to set up and populate a table. Recipe 11-1
leverages the UIFont class’s capability to list available system fonts, that is, a handy list of
strings.A call to [UIFont familyNames] returns an array populated with those font
names.This recipe creates a basic table based on those font names.

Figure 11-1 shows the interface produced by this code, as run on the iPhone simulator.
Be aware that running this application on the simulator produces an artificially long set of
fonts.That’s because the list is based on the available fonts from the Macintosh running
the SDK rather than the fonts on the iPhone itself.

Data Source Methods
To display a table, every table data source must implement three core methods.These
methods define how the table is structured and provide contents for the table:

n numberOfSectionsInTableView—Tables can display their data in sections
or as a single list. For simple tables, return 1.This indicates that the entire table should
be presented as one single list. For sectioned lists, return a value of 2 or higher.

ptg

428 Chapter 11 Creating and Managing Table Views

n tableView:numberOfRowsInSection—This method returns the number
of rows for each section.When working with simple lists, return the number of
rows for the entire table here. For more complex lists, you’ll want to provide a way
to report back per section. Section ordering starts with 0.

n tableView: cellForRowAtIndexPath:—This method returns a cell to
the calling table. Use the index path’s row and section properties to determine
which cell to provide and make sure to take advantage of reusable cells where possi-
ble to minimize memory overhead.

Reusing Cells
One of the ways the iPhone conserves memory is by reusing cells.You can assign an iden-
tifier string to each cell.This specifies what kind of cell it is, and when that cell scrolls off-
screen allows that cell to be recovered for reuse. Use different IDs for different kinds of
cells. For simple tables, a single identifier does the job. In the case of Recipe 11-1, it is
@"BaseCell".The strings are arbitrary. Define them the way you want, but when using
multiple cell types keep the names meaningful.The discussion for Recipe 11-8, which fol-
lows later in this chapter, explores cell reuse.

Before allocating a new cell, always check whether a reusable cell is available. If your
table returns nil from a request to dequeueReusableCellWithIdentifier:, you need to
allocate a new cell.

If the method returns a cell, update that cell with the information that’s meaningful for
the current row and section indices.You do not need to add cells to the reuse queue.
Cocoa Touch handles all those details for you.

Font Table Sample
Recipe 11-1 demonstrates how to build a simple list-based table. It creates a table and fills
that table with all available font families.When tapped, the view controller assigns that
font to the label in the navigation bar at the top of the screen and prints a list of available
fonts for that family out to the debugger console.This behavior is defined in the
tableView:didSelectRowAtIndexPath: delegate method, which is called when a user
taps a row.

Using the UITableViewController as a delegate is a good choice because the table’s
user interactions affect its views. If you’d rather use another delegate, call setDelegate:
with that object to override the standard UITableViewController settings.

Apple made several big changes in table view cells between the 2.x and 3.x SDKs.
Prior to 3.0, you could set a cell’s text and image properties directly. Starting with the 3.0
SDK,Apple introduced the textLabel, detailLabel, and imageView properties. Each
property now points to an actual UI object (two UILabels and a UIImageView), offering
direct access to each object.

ptg

429Recipe: Implementing a Very Basic Table

Note
Tables enable you to set the color for the selected cell by choosing between a blue or gray
overlay. Set the selectionStyle property to either UITableViewCellSelection
➥StyleBlue or UITableViewCellSelectionStyleGray. If you’d rather not show a selec-
tion, use UITableViewCellSelectionStyleNone. The cell can still be selected, but the
overlay color will not display.

Recipe 11-1 Building a Basic Table

#define MAINLABEL ((UILabel *)self.navigationItem.titleView)

@interface TableListViewController : UITableViewController

@end

@implementation TableListViewController

- (NSInteger)numberOfSectionsInTableView:(UITableView *)aTableView

{

// One section in this simple table

return 1;

}

- (NSInteger)tableView:(UITableView *)aTableView

numberOfRowsInSection:(NSInteger)section

{

// Number of rows in use

return [UIFont familyNames].count;

}

- (UITableViewCell *)tableView:(UITableView *)tView

cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

// Attempt to dequeue a cell. If this is not possible, create one

UITableViewCellStyle style = UITableViewCellStyleDefault;

UITableViewCell *cell = [tView

dequeueReusableCellWithIdentifier:@"BaseCell"];

if (!cell)

cell = [[[UITableViewCell alloc] initWithStyle:style

reuseIdentifier:@"BaseCell"] autorelease];

// Set the cell text

cell.textLabel.text = [[UIFont familyNames]

objectAtIndex:indexPath.row];

return cell;

}

- (void)tableView:(UITableView *)tableView

ptg

430 Chapter 11 Creating and Managing Table Views

didSelectRowAtIndexPath:(NSIndexPath *)indexPath

{

// React to cell selection by updating the title view text

NSString *font = [[UIFont familyNames]

objectAtIndex:indexPath.row];

[MAINLABEL setText:font];

[MAINLABEL setFont:[UIFont fontWithName:font size:18.0f]];

}

- (void) loadView

{

// Add a custom label to the navigation bar’s title view

[super loadView];

self.navigationItem.titleView = [[[UILabel alloc]

initWithFrame:CGRectMake(0.0f, 0.0f, 200.0f, 30.0f)]

autorelease];

[MAINLABEL setBackgroundColor:[UIColor clearColor]];

[MAINLABEL setTextColor:[UIColor whiteColor]];

[MAINLABEL setTextAlignment:UITextAlignmentCenter];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 11 and open the project for this recipe.

Recipe: Changing a Table’s Background Color
To use a color for your table’s background other than white, use the table view’s
backgroundColor property, as demonstrated in Recipe 11-2. Individual cells inherit this
color, producing a table whose components all show that color. Make sure that you
choose a cell text color that compliments any table background color. For a dark purple
background, as defined and used in this recipe, a strong white contrasts nicely.

Unfortunately, you cannot change individual cell backgrounds directly.That is to say,
you can, by setting the cell’s backgroundColor property, but nearly all the color change
will happen behind label views.The labels block the cell’s background, obscuring it from
view.You will see few, if any, changes to the cell. Set the table style to
UITableViewStyleGrouped for the most (i.e.,“not much”) background visibility.

Recipe 11-2 Changing the Background Color for a Table

- (void)applicationDidFinishLaunching:(UIApplication *)application

{

// Create Table View Controller and set its background color

http://github.com/erica/iphone-3.0-cookbook-

ptg

431Recipe: Changing a Table’s Background Color

TableListViewController *tlvc = [[TableListViewController alloc]

init];

tlvc.tableView.backgroundColor = COOKBOOK_PURPLE_COLOR;

// Initialize Navigation Controller

UINavigationController *nav = [[UINavigationController alloc]

initWithRootViewController:tlvc];

nav.navigationBar.tintColor = COOKBOOK_PURPLE_COLOR;

// Create main window

UIWindow *window = [[UIWindow alloc] initWithFrame:[[UIScreen

mainScreen] bounds]];

[window addSubview:nav.view];

[window makeKeyAndVisible];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 11 and open the project for this recipe.

Updating the Background Color to Reflect the Degree of Scrolling
Because UITableViews are a subclass of the UIScrollView class, you can adapt your table
background color to the degree that a user has scrolled down the table. For example, you
might lighten or darken the background color. Use the percentage of distance as a multi-
plication factor for the color components used to tint the background.

In their default state, all UITableViewController instances are automatically set as
UIScrollView delegates. No further work is needed before adding the following
UIScrollViewDelegate method to your UITableViewController implementation.The
following code calculates background color saturation from the current table offset.

- (void) scrollViewDidScroll: (UIScrollView *) sv

{

float percent = sv.contentOffset.y / sv.contentSize.height;

percent = 0.5 + (MAX(MIN(1.0f, percent), 0.0f) / 2.0f);

self.tableView.backgroundColor = [UIColor

colorWithRed:percent * 0.20392 green:percent * 0.19607

blue:percent * 0.61176 alpha: 1.0f];

}

Here are a few things to note about background color updates. First, if you don’t enable
bouncing (i.e., allowing the table to bounce past the content edges and then move back),
decrease the divisor by the height of the table. Second, make sure you set your initial
colors when setting up your table. Otherwise, the color will “jump” the first time the user

http://github.com/erica/iphone-3.0-cookbook-

ptg

432 Chapter 11 Creating and Managing Table Views

Figure 11-2 Combine a clear table background
color with a backsplash to create a table that

scrolls over an image.

touches the table. Finally, although this approach is not computationally overwhelming,
it does require constant screen updates and should be avoided for processor-heavy
applications.

Recipe: Creating a Table Image Backsplash
Recipe 11-3 expands the background color idea presented in Recipe 11-2 to create a
table view with an image backdrop. Instead of coloring the background to a solid hue, this
recipe uses a clear color with an alpha level of 0. By adding the backdrop to the applica-
tion window before adding the table view, the image bleeds through the table, as shown in
Figure 11-2.

The table scrolls over the image, which remains static behind it. Keep the imagery relevant
(for example, a corporate logo) and desaturated or otherwise lightened enough that it will
not interfere with the table’s text presentation. Use a text color that contrasts well with the
background image.

Recipe 11-3 Scrolling a Table over a Static Image

- (void)applicationDidFinishLaunching:(UIApplication *)application

{

ptg

433Recipe: Exploring Cell Types

// Create Table View Controller with a clear background

TableListViewController *tlvc = [[TableListViewController alloc]

init];

tlvc.tableView.backgroundColor = [UIColor clearColor];

// Initialize Navigation Controller

UINavigationController *nav = [[UINavigationController alloc]

initWithRootViewController:tlvc];

nav.navigationBar.tintColor = COOKBOOK_PURPLE_COLOR;

// Load in the backsplash image into a view

UIImageView *iv = [[[UIImageView alloc] initWithImage:[UIImage

imageNamed:@"Backsplash.png"]] autorelease];

// Create main window

UIWindow *window = [[UIWindow alloc] initWithFrame:[[UIScreen

mainScreen] bounds]];

[window addSubview:iv];

[window addSubview:nav.view];

[window makeKeyAndVisible];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 11 and open the project for this recipe.

Recipe: Exploring Cell Types
The iPhone offers four kinds of base table view cells.These types, which are shown in
Figure 11-3, provide basic utilitarian cell implementations. Each of these cell styles is new
to the 3.0 SDK (although the default style was used in 2.x, it has a new style name con-
stant) and represents a new way of creating and interacting with table cells.

Before 3.0, you assigned a cell’s text directly. Now cells provide both a textLabel and
a detailTextLabel property, which offer access to the labels themselves.With direct
label access, you can set each label’s text traits as desired. Here is a round-up of the four
new styles:

n UITableViewCellStyleDefault—This cell offers a single left-aligned text
label and an optional image.When images are used, the label is pushed to the right,
decreasing the amount of space available for text.You can access and modify the
detailTextLabel, but it is not shown onscreen.

n UITableViewCellStyleSubtitle—This cell, which is used in the iPod
application, pushes the standard text label up a bit to make way for the smaller detail
label beneath it.The detail label displays in gray. Like the default cell, the subtitle cell
offers an optional image.

http://github.com/erica/iphone-3.0-cookbook-

ptg

434 Chapter 11 Creating and Managing Table Views

Figure 11-3 Cocoa Touch provides four standard
cell types, some of which support optional images.

n UITableViewCellStyleValue1—This cell style, seen in the Settings appli-
cation, offers a large black primary label on the left side of the cell and a slightly
smaller, blue subtitle detail label to its right.This cell does not support images.

n UITableViewCellStyleValue2—The Phone/Contacts application uses this
kind of cell, which consists of a small blue primary label on the left and a small
black subtitle detail label to its right.The small width of the primary label means
that most text will be cut off by an ellipsis.This cell does not support images.

Recipe 11-4 shows the code that created the cells of Figure 11-3. It labels each cell with
the type in use and uses that same text as the reuse identifier. Images are added to all cells
past the first four, demonstrating that only the default and subtitle presentations support
image display.

Recipe 11-4 Creating Various Table Cell Styles

- (UITableViewCell *)tableView:(UITableView *)tView

cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

UITableViewCellStyle style;

NSString *cellType;

// Choose the cell style and tag

switch (indexPath.row % 4)

ptg

435Recipe: Building Custom Cells in Interface Builder

{

case 0:

style = UITableViewCellStyleDefault;

cellType = @"Default Style";

break;

case 1:

style = UITableViewCellStyleSubtitle;

cellType = @"Subtitle Style";

break;

case 2:

style = UITableViewCellStyleValue1;

cellType = @"Value1 Style";

break;

case 3:

style = UITableViewCellStyleValue2;

cellType = @"Value2 Style";

break;

}

// Dequeue a cell if possible, if not, create one.

UITableViewCell *cell = [tView

dequeueReusableCellWithIdentifier:cellType];

if (!cell)

cell = [[[UITableViewCell alloc] initWithStyle:style

reuseIdentifier:cellType] autorelease];

// Add images to all cells after the first four

if (indexPath.row > 3)

cell.imageView.image = [UIImage imageNamed:@"icon.png"];

// Set the cell text.

cell.textLabel.text = cellType;

cell.detailTextLabel.text = @"Subtitle text";

return cell;

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 11 and open the project for this recipe.

Recipe: Building Custom Cells in Interface Builder
Interface Builder makes it easy to create custom UITableViewCell instances without
subclassing.You can build your cells directly in IB and load them in your code, which is
exactly what Recipe 11-5 does.The big problem about using IB is that your custom

http://github.com/erica/iphone-3.0-cookbook-

ptg

436 Chapter 11 Creating and Managing Table Views

Figure 11-4 When working with cells created in Interface Builder, custom
art, like that shown on the left, gets covered over by built-in cell content as

shown on the right.

elements are going to get covered by any cell content, as demonstrated by Figure 11-4.
You may be aiming for the layout in the left image, but you usually end up with the lay-
out in the right.

That’s because assigning a cell’s label’s properties cause the cell to create that label view
(plus any other necessary supporting views for that label) after the Interface Builder cell
has been loaded.Those extra views are placed on top of the cell, hiding your custom art
or any other IB elements you’ve placed into the cell.

You might consider iterating through a cell’s subviews, setting their background color
to clear, but Apple frowns on view spelunking.There’s a simple, SDK-friendly way to
work around this. Figure 11-5 (top) shows a basic UITableViewCell in Interface Builder,
and Figure 11-5 (middle) shows that same cell overlaid with the custom art from this
recipe.This is the content that the cell needs to present without being covered over like
Figure 11-4.

The trick to preserving the cell art is to avoid using the cell’s built-in label and
detailLabel properties. Instead, add a custom label (as shown in Figure 11-5, bottom)
and use that label instead of the built-in ones.The label view is tagged (in this case with
101) and recovered from the cell by using that tagging.You can set the tag in Interface
Builder’s attributes inspector.The following macro uses that tag to access the custom label.

#define TEXTLABEL ((UILabel *)[cell viewWithTag:101])

ptg

437Recipe: Building Custom Cells in Interface Builder

Figure 11-5 The top image shows a default cell created in Interface
Builder without any content. The middle image shows that same cell after
adding custom art to the cell. Adding a custom text label (bottom image)

helps create a properly labeled cell like the one shown in Figure 11-4 (left).

Figure 11-6 Cells built with custom labels in
Interface Builder remain able to work with all stan-
dard editing tasks including shifting to accommo-
date the display of delete and delete confirmation

buttons.

When you need to use more than one label, for example for a subtitle, add another in
Interface Builder and tag it with a different number.

Tables built with this approach are fully compliant with all table features.As Figure 11-6
shows, you can use standard editing with custom cells, and they will update, indent, and
otherwise behave like any other table cells. If the label and image provided don’t fit your
purpose, build your own views and add them as cell subviews.

ptg

438 Chapter 11 Creating and Managing Table Views

Tips for Creating Custom Cells
When building custom table view cells in Interface Builder, keep the following tips in mind:

n Create the new xib by choosing File > New File > User Interface > Empty XIB in
Xcode. Name the file meaningfully, for example, BaseCell.xib, and save it.

n Open the empty xib file in Interface Builder and drag a UITableViewCell into
your project window.

n Customize the cell contents by adding art and other interface items. Be aware that
text-editing based classes such as UITextField and UITextView do not work well in
table view cells unless you take special care.

n When adding custom items, try to clear enough space (about 40 pixels) on the right
side of the cell to allow the cell to shift right when entering edit mode. Otherwise,
those items will be cut off.

n Set the reuse identifier (e.g.,“BaseCell”), in the cell’s attributes inspector (Com-
mand-1).The identifier field lies near the top of the inspector.

n You can set the cell’s image and selected image using the inspector, but in real life,
these are usually generated based on live data.You’ll probably want to handle any
image setting (via the image and selectedImage properties) in code. Make sure
that the images you send are properly sized. See the recipes about creating thumb-
nail versions of images in Chapter 7,“Working with Images.”

n You cannot pick a cell style in Interface Builder, and you cannot change a cell style
once you’ve loaded the nib. If you need to use a cell style other than the default,
build your cell in code.

n Use any cell height you need and then set the table’s rowHeight property to match.
n Although Interface Builder offers a separator option in the cell’s attributes inspector,

you’ll want to use the table view’s separatorStyle and separatorColor properties
instead.

Recipe 11-5 Using Custom Cells Built in Interface Builder

- (UITableViewCell *)tableView:(UITableView *)tView

cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

// Attempt to dequeue a cell. If that’s not possible, load it.

UITableViewCell *cell = [tView

dequeueReusableCellWithIdentifier:@"BaseCell"];

if (!cell)

cell = [[[NSBundle mainBundle] loadNibNamed:@"BaseCell"

owner:self options:nil] lastObject];

// Set the cell text

[TEXTLABEL setText:

[[UIFont familyNames] objectAtIndex:indexPath.row]];

ptg

439Recipe: Alternating Cell Colors

return cell;

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 11 and open the project for this recipe.

Adding in Custom Selection Traits
When users select cells, Cocoa Touch provides you several ways to emphasize the cell’s
selection. Customize a cell’s selection behavior by updating any of three traits.You can
change the image it shows, the color of its font, and the cell’s background.These are set
via the selectedImage, selectedTextColor, and selectedBackgroundView properties.

The selected image replaces any image you have added to a cell (via the image prop-
erty, as shown in Recipe 11-4) when the user selects the cell.The selected version should
use the same size as the original so the cell layout remains stable. For example, you might
want to replace an “empty” image, that is, a spaceholder, with an arrow, chevron, or finger
pointing into the cell that has been selected.

The selected text color property is officially deprecated despite the fact that it is still
used in Interface Builder.The Apple documents suggest using the new textLabel prop-
erty but do not provide an easy way to hook into that object for selection/deselection
updates. Until Apple addresses the issue, you can use the workaround shown in the follow-
ing snippet, which avoids compile-time deprecation warnings:

cell.selectedBackgroundView = [[[UIImageView alloc]

initWithImage:[UIImage imageNamed:@"cellart.png"]] autorelease];

// This is deprecated but it still works and is used in IB

[cell performSelector:@selector(setSelectedTextColor)

withObject:COOKBOOK_PURPLE_COLOR];

The selectedBackgroundView property works exactly as you’d want the regular
backgroundView property to work but does not (refer to Figure 11-4).When a cell is
selected, the selected background appears behind the text, providing a perfect blend
between art and text.

Recipe: Alternating Cell Colors
Although blue and white cell alternation is a common and highly requested table feature,
Apple did not include that option in its iPhone SDK.The custom cell techniques shown
previously in Recipe 11-5 let you import a cell designed in Interface Builder. Recipe 11-
6 builds the alternating white/blue cell structure shown in Figure 11-7 by working with
not one but two custom cell xibs.

http://github.com/erica/iphone-3.0-cookbook-

ptg

440 Chapter 11 Creating and Managing Table Views

Figure 11-7 Use custom cells to create alternat-
ing blue and white cells.

A simple even/odd check (row % 2) specifies whether to load a blue or white cell.
Because this table uses just one section, it simplifies the math considerably. Blue/white
alternating cells work best for nongrouped, nonsectioned tables both visually and pro-
grammatically.

Notice how this recipe uses cell identifiers to reuse already loaded cells as needed.The
xibs use the same identifiers as their filenames, considerably simplifying this code. New
blue or white cells are not created if existing ones can be consumed from the reuse queue.

Be aware that although this cell style works with edits, both deletion and reordering,
you’ll want to reload the table after each user change to keep the blue/white/blue/white
ordering.As the user drags an item into place, it will retain its original coloring, possibly
causing a visual discontinuity until the edit finishes. For reordering, issue that reload com-
mand using a delayed selector of at least a quarter to half a second.

Recipe 11-6 Building a Table with Alternately Colored Cells

- (UITableViewCell *)tableView:(UITableView *)tView

cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

// Choose the cell kind

NSString *identifier = (indexPath.row % 2) ?

@"WhiteCell" : @"BlueCell";

ptg

441Recipe: Building a Custom Cell with Built-In Controls

// Attempt to dequeue. Load if that’s not possible.

UITableViewCell *cell = [tView dequeueReusableCellWithIdentifier:

identifier];

if (!cell)

cell = [[[NSBundle mainBundle] loadNibNamed:identifier

owner:self options:nil] lastObject];

// Set the cell text

[(UILabel *)[cell viewWithTag:101] setText:

[[UIFont familyNames] objectAtIndex:indexPath.row]];

return cell;

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 11 and open the project for this recipe.

Recipe: Building a Custom Cell with Built-In
Controls
When using Interface Builder to design a custom cell, you’re not limited to background
art and labels. It’s easy enough to add buttons or other controls that act in cell-native ways.
Recipe 11-7 manages the cells shown in Figure 11-8.These cells include a main text
label, which is used to display a font name; a subtitle label, which presents a standard
phrase using that font; and a family button that displays a list of all members of a given
font family via an alert.

Rather than use a custom UITableViewCell as Recipe 11-6 did, Recipe 11-7 creates a
subclass. CustomCell introduces three outlets.These include the button and the two
labels.And it adds an action, buttonPress:, which is called for touch-up-inside events.
The connections between the IBOutlets, IBAction, and their targets are all made directly
in Interface Builder.

To make this recipe work, you must create a UITableViewCell instance. Import the
class header for CustomCell (select File > Read Class Files) and then use the Identity
Inspector (Tools > Identity Inspector, Command-4) to change that instance’s class from
UITableViewCell to CustomCell. Once that’s done, you can wire up the outlets and
button callback connections using Interface Builder’s drag-to-connect features.

http://github.com/erica/iphone-3.0-cookbook-

ptg

442 Chapter 11 Creating and Managing Table Views

Figure 11-8 The button added in Interface Builder for this custom cell
(top) launches an alert with a list of font families (bottom). Each button is

tied to its own cell and works whether or not the cell is selected.

Recipe 11-7 Creating an Embedded Cell Control Callback

@interface CustomCell : UITableViewCell {

IBOutlet UIButton *button;

IBOutlet UILabel *primaryLabel;

IBOutlet UILabel *secondaryLabel;

}

@property (assign) UIButton *button;

@property (assign) UILabel *primaryLabel;

@property (assign) UILabel *secondaryLabel;

- (IBAction) buttonPress: (UIButton *) aButton;

@end

@implementation CustomCell

@synthesize button;

@synthesize primaryLabel;

@synthesize secondaryLabel;

- (IBAction) buttonPress: (UIButton *) aButton

ptg

443Recipe: Remembering Control State for Custom Cells

{

NSString *fontName = self.primaryLabel.text;

NSArray *fonts = [UIFont fontNamesForFamilyName:fontName];

UIAlertView *av = [[[UIAlertView alloc] initWithTitle:fontName

message:[fonts componentsJoinedByString:@", "] delegate:nil

cancelButtonTitle:@"OK" otherButtonTitles:nil] autorelease];

[av show];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 11 and open the project for this recipe.

Recipe: Remembering Control State for Custom
Cells
Cells have no “memory” to speak of.They do not know how an application last used
them.They are views and nothing more.That means if you reuse cells without tying those
cells to some sort of data model, you can end up with unexpected and unintentional
results.This is a natural consequence of the Model-View-Controller design paradigm.

Consider the following scenario. Say you created a series of cells each of which owned
a toggle switch. Users can interact with that switch and change its value.A cell that scrolls
offscreen, landing on the reuse queue, could therefore show an already-toggled state for a
table element that user hasn’t yet touched.

Figure 11-9 demonstrates this problem.The cell used for Item A was reused for Item
L, presenting an OFF setting, even though the user has never interacted with Item L. It’s
the cell that retains the setting, not the logical item. Don’t depend on cells to retain state
that way.

To fix this problem, check your cell state against a stored model.This keeps the view
consistent with your application semantics. Recipe 11-8 uses a custom dictionary to asso-
ciate cell state with the cell item.There are other ways to approach this problem, but this
simple example provides a taste of the model/view balance needed by a data source
whose views present state information.

Since the state is stored in the table view controller, each cell needs to be able to “call
home” so to speak when its switch updates its state.The custom tableViewController
property that is set here provides that back link, and the customSwitch property accesses
the current user-set state.

http://github.com/erica/iphone-3.0-cookbook-

ptg

444 Chapter 11 Creating and Managing Table Views

Figure 11-9 The cell used to present Item A (left) is reused to present
Item L (right) while retaining its previous switch setting.

Recipe 11-8 Using Stored State to Refresh a Reused Table Cell

- (UITableViewCell *)tableView:(UITableView *)tView

cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

// Dequeue a cell if possible

CustomCell *cell = (CustomCell *)[tView

dequeueReusableCellWithIdentifier:@"BaseCell"];

if (!cell)

cell = [[[NSBundle mainBundle] loadNibNamed:@"BaseCell"

owner:self options:nil] lastObject];

// Determine the key and state based on the row

NSString *key = [ALPHA objectAtIndex:indexPath.row];

cell.customLabel.text = key;

cell.tableViewController = self;

if (self.switchStates)

{

NSNumber *state;

if (state = [self.switchStates objectForKey:key])

cell.customSwitch.on = [state boolValue];

else

{

cell.customSwitch.on = YES;

ptg

445Recipe: Remembering Control State for Custom Cells

[self.switchStates setObject:[NSNumber numberWithBool:YES]

forKey:key];

}

}

return (UITableViewCell *)cell;

}

- (void) updateSwitch:(UISwitch *) aSwitch forItem: (NSString *) anItem

{

// The switch sends this callback when its value changes

if (self.switchStates)

[self.switchStates setObject:[NSNumber

numberWithBool:aSwitch.on] forKey: anItem];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 11 and open the project for this recipe.

Visualizing Cell Reuse
Recipe 11-8 helps fix problems with cell/model discrepancies.The following code snippet
visualizes exactly how your cells are getting reused.This implementation tags each new
cell on creation, letting you track how each cell is used and reused in the lifetime of a very
large table. In this case, the table is about a million items long. I encourage you to test this
snippet out (a full version is included in the sample code for this book) and energetically
scroll through the list in both directions.You’ll see that with a jerky enough interaction
style you can really mix up your cell ordering.You’ll also discover that even for a million
item table, you’ll max out at about 11 table cells total.

@implementation TableListViewController

- (NSInteger)numberOfSectionsInTableView:(UITableView *)aTableView

{

return 1;

}

- (NSInteger)tableView:(UITableView *)aTableView

numberOfRowsInSection:(NSInteger)section

{

return 999999; // lots

}

- (UITableViewCell *)tableView:(UITableView *)tView

cellForRowAtIndexPath:(NSIndexPath *)indexPath

http://github.com/erica/iphone-3.0-cookbook-

ptg

446 Chapter 11 Creating and Managing Table Views

{

UITableViewCellStyle style = UITableViewCellStyleDefault;

UITableViewCell *cell = [tView

dequeueReusableCellWithIdentifier:@"BaseCell"];

// Create a new cell with a unique number whenever

// a cell cannot be dequeued

if (!cell)

{

cell = [[[UITableViewCell alloc] initWithStyle:style

reuseIdentifier:@"BaseCell"] autorelease];

cell.textLabel.text = [NSString stringWithFormat:

@"Cell %d", ++count];

}

return cell;

}

@end

Each cell implements the prepareForReuse method, which is invoked before a cell can
be returned from the table view’s dequeue request.You can subclass UITableViewCell and
override this method to reset content before reusing a cell.

Recipe: Creating Checked Table Cells
Accessory views expand normal UITableViewCell functionality.The most common
accessories are the Delete buttons and drag bars for reordering, but you can also add check
marks to create interactive one-of-n or n-of-n selections.With these kinds of selections,
you can ask your users to pick what they want to have for dinner or choose which items
they want to update.This kind of radio button/check box behavior provides a richness of
table interaction. Recipe 11-9 demonstrates how to create this kind of table.

Figure 11-10 shows checks in an interface, a standard UITableView with accessorized
cells. Check marks appear next to selected items.When tapped, the checks toggle on or
off. Like Recipe 11-8, this recipe uses a shared dictionary to track which logical items are
checked, avoiding inconsistency issues that arise from cell reuse.

Checked items use the UITableViewCellAccessoryCheckmark accessory type.
Unchecked items use the UITableViewCellAccessoryNone variation.You set these by
assigning the cell’s accessoryType property.

Note that it’s the cell that’s being checked here, not the logical item associated with the
cell (although that logical item’s value is updated in the shared stateDictionary).
Reused cells remain checked or unchecked at next use so you must always set the acces-
sory to match the state dictionary when dequeuing a cell. Recipe 11-8 discussed preserv-
ing cell state.

ptg

447Recipe: Creating Checked Table Cells

Figure 11-10 Check mark accessories offer a
convenient way of making one-of-n or n-of-n selec-

tions from a list.

Recipe 11-9 Using Accessory Check Marks with Cells

- (UITableViewCell *)tableView:(UITableView *)tView

cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

// Retrieve or create a cell

UITableViewCellStyle style = UITableViewCellStyleDefault;

UITableViewCell *cell = [tView

dequeueReusableCellWithIdentifier:@"BaseCell"];

if (!cell) cell = [[[UITableViewCell alloc] initWithStyle:style

reuseIdentifier:@"BaseCell"] autorelease];

// Set cell label

NSString *key = [@"Row " stringByAppendingString:[ALPHA

objectAtIndex:indexPath.row]];

cell.textLabel.text = key;

// Set cell checkmark

NSNumber *checked = [self.stateDictionary objectForKey:key];

if (!checked) [self.stateDictionary setObject:(checked = [NSNumber

numberWithBool:NO]) forKey:key];

cell.accessoryType = checked.boolValue ?

ptg

448 Chapter 11 Creating and Managing Table Views

UITableViewCellAccessoryCheckmark :

UITableViewCellAccessoryNone;

return cell;

}

- (void)tableView:(UITableView *)tableView

didSelectRowAtIndexPath:(NSIndexPath *)indexPath

{

// Recover the cell and key

UITableViewCell *cell = [self.tableView

cellForRowAtIndexPath:indexPath];

NSString *key = cell.textLabel.text;

// Created an inverted value and store it

BOOL isChecked = !([[self.stateDictionary objectForKey:key]

boolValue]);

NSNumber *checked = [NSNumber numberWithBool:isChecked];

[self.stateDictionary setObject:checked forKey:key];

// Update the cell accessory checkmark

cell.accessoryType = isChecked ? UITableViewCellAccessoryCheckmark

: UITableViewCellAccessoryNone;

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 11 and open the project for this recipe.

Recipe: Removing Selection Highlights from Cells
There are times when working with tables that you need to avoid retaining a cell state.This
happens when you want users to be able to interact with the table and touch cells, but you
don’t want to maintain that selected state after the user has finished the interaction. Cocoa
Touch offers two approaches for tables that need to deny persistent cell selection.

For the first approach you can set a cell’s selectionStyle property to
UITableViewCellSelectionStyleNone.This disables the blue or gray overlays that dis-
play on the selected cell, like the one shown in Figure 11-10 for Row F. The cell is
still selected but will not highlight on selection in any way. If selecting your cell produces
some kind of side effect other than presenting information, this is not the best way to
approach things. Instead, consider the following.

The second approach allows the cell to highlight but removes that highlight after the
interaction completes.You do that by telling the table to deselect the cell in question. In
Recipe 11-10, each user selection triggers a delayed deselection (the custom deselect:
method defined in the recipe) after a half a second. This method calls the table view’s

http://github.com/erica/iphone-3.0-cookbook-

ptg

449Recipe: Working with Disclosure Accessories

deselectRowAtIndexPath:animated: method, which fades away the current selection.
Using this approach offers both the highlight that confirms a user action and the state-free
display that hides any current selection from the user.

Recipe 11-10 Deselecting a Table Row

// Perform the deselection

- (void) deselect: (id) sender

{

[self.tableView deselectRowAtIndexPath:[self.tableView

indexPathForSelectedRow] animated:YES];

}

// Respond to user selection

- (void)tableView:(UITableView *)tableView

didSelectRowAtIndexPath:(NSIndexPath *)newIndexPath

{

printf("User selected row %d\n", [newIndexPath row] + 1);

[self performSelector:@selector(deselect) withObject:nil

afterDelay:0.5f];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 11 and open the project for this recipe.

Recipe: Working with Disclosure Accessories
Disclosures refer to those small, blue or gray, right-facing chevrons found on the right of
table cells. Disclosures help you to link from a cell to a view that supports that cell. In the
Contacts list and Calendar applications, these chevrons connect to screens that help you to
customize contact information and set appointments. Figure 11-11 shows a table view
example where each cell displays a disclosure control, showing the two available types.

The blue and gray chevrons have two roles.The blue
UITableViewCellAccessoryDetailDisclosureButton versions are actual buttons.They
respond to touches and are supposed to indicate that the button leads to a full interactive
detail view.The gray UITableViewCellAccessoryDisclosureIndicator does not track
touches and should lead your users to a further options view, specifically options about
that choice.

You see these two accessories in play in the Settings application. In the Wi-Fi Net-
works screen, the detail disclosures lead to specific details about each WiFi network: its IP
address, subnet mask, router, DNS and so forth.The disclosure indicator for “Other”
enables you to add a new network by scrolling up a screen for entering network informa-
tion.A new network then appears with its own detail disclosure.

http://github.com/erica/iphone-3.0-cookbook-

ptg

450 Chapter 11 Creating and Managing Table Views

Figure 11-11 The right-pointing chevrons indi-
cate disclosure controls, allowing you to link individ-

ual table items to another view.

You also find disclosure indicators whenever one screen leads to a related submenu.
When working with submenus, stick to the simple gray chevron.The rule of thumb is
this: Submenus use gray chevrons, and object customization uses blue ones. Respond to
cell selection for gray chevrons and to accessory button taps for blue chevrons.

Recipe 11-11 demonstrates how to use disclosure buttons (the blue accessories)
in your applications.This code sets the accessoryType for each cell to
UITableViewCellAccessoryDetailDisclosureButton. Importantly, it also sets
editingAccessoryType to UITableViewCellAccessoryNone.When your delete or
reorder controls appear, your disclosure chevron will hide, enabling your users full
control over their edits without accidentally popping over to a new view.

To handle user taps on the disclosure, the tableView:accessoryButtonTappedForRow
➥WithIndexPath: method enables you to determine the row that was tapped and imple-
ment some appropriate response.This sample merely pushes a new UIViewController
that displays a stock image. In real life, you’d move to a view that explains more about the
selected item and enables you to choose from additional options.

Gray disclosures use a different approach.As these accessories are not buttons, they
respond to cell selection rather than the accessory button tap.Add your logic to
tableView:didSelectRowAtIndexPath: to push the disclosure view onto your naviga-
tion stack or by presenting a modal view controller.

ptg

451Recipe: Deleting Cells

Recipe 11-11 Working with Disclosure Buttons to Push New “Detail” Views

- (UITableViewCell *)tableView:(UITableView *)tView

cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

// Retrieve or create a cell

UITableViewCellStyle style = UITableViewCellStyleDefault;

UITableViewCell *cell = [tView

dequeueReusableCellWithIdentifier:@"BaseCell"];

if (!cell) cell = [[[UITableViewCell alloc] initWithStyle:style

reuseIdentifier:@"BaseCell"] autorelease];

// Set cell label

NSString *key = [@"Row " stringByAppendingString:[ALPHA

objectAtIndex:indexPath.row]];

cell.textLabel.text = key;

cell.accessoryType =

UITableViewCellAccessoryDetailDisclosureButton;

cell.editingAccessoryType = UITableViewCellAccessoryNone;

return cell;

}

// Respond to accessory button taps

-(void)tableView:(UITableView *)tableView

accessoryButtonTappedForRowWithIndexPath:(NSIndexPath *)indexPath

{

[[self navigationController] pushViewController:[ImageController

newController] animated:YES];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 11 and open the project for this recipe.

Recipe: Deleting Cells
In day-to-day use, every iPhone user quickly becomes familiar with the small, red circles
that let them delete cells from tables. Many users also pick up on basic swipe-to-delete
functionality. Interactive deletion represents one of the iPhone’s best-designed features.
Recipe 11-12 introduces a table that responds meaningfully to cell deletion. In this sam-
ple, users may create new cells by tapping an Add button and may remove cells either by
swiping or entering edit mode and using the red remove controls (see Figure 11-12).

http://github.com/erica/iphone-3.0-cookbook-

ptg

452 Chapter 11 Creating and Managing Table Views

Figure 11-12 Red remove controls allow your
users to interactively delete items from a table.

Displaying Remove Controls
The 3.0 SDK makes it especially easy to implement remove controls used in your pro-
gram.When you want to edit cells, call [self.tableView setEditing:YES
animated:YES].This call updates the table’s editing property and displays the remove
controls shown in Figure 11-12.

Whenever possible, add animations to your iPhone user interfaces to lead your users
from one state to the next, so they’re prepared for the mode changes that happen
onscreen. In the uncommon case you have some reason you’d rather not animate the
change, you can pass NO instead of YES.

Recipe 11-12 uses a single method called enterEditMode.When a user taps the navi-
gation bar’s Edit button, the application calls this method. It removes the current item
selection, calls the setBarButtonItems method that swaps out the title from Edit to
Done, and enables the table’s editing property.

Dismissing Remove Controls
When users complete their edits and want to return to normal table display, proceed in
reverse. Dismiss the controls ([self.tableView setEditing:NO animated:YES]) and
update the navigation bar button items back to their original state. Recipe 11-12 checks
whether any items remain, hiding the Edit button if none do.

ptg

453Recipe: Deleting Cells

Handling Delete Requests
On row deletion, the table communicates with your application by issuing a
tableView:commitEditingStyle:forRowAtIndexPath: callback.A table delete removes
an item from the visual table but does not alter the underlying data. Unless you manage
the item removal from your data source, the “deleted” item will reappear on the next table
refresh.This method offers the place for you to update your data source and respond to
the row deletion that the user just performed.

Here is where you actually delete the item from the data structure that supplies the
data source methods (in this recipe, through an NSMutableArray of item titles) and handle
any real-world action such as deleting files that occur as a consequence. In this sample
code, the cell goes away, but there’s no real-world consequence for the deletion.The sam-
ple is not based on a real-life model. Instead, the title list just loses that particular num-
bered cell title.

Notice that both adding and deleting items are handled by the same method,
updateItemAtIndexPath:withString:.This may seem like an odd way to handle
requests, as it involves an extra method and extra steps.This approach provides a foundation
for undo support, which is discussed in Recipe 11-14. Using the NSUndoManager with a
single update method provides unified undo and redo support for these two operations.

Swiping Cells
Swiping provides a clean method for removing items from your UITableView instances.
You don’t have to do anything to enable swipes.The table takes care of everything, so long
as you provide the commit editing style method.

To swipe, users drag swiftly from the left to the right side of the cell.The rectangular
delete confirmation appears to the right of the cell, but the cells do not display the round
remove controls on the left.

After users swipe and confirm, the tableView:commitEditingStyle:
➥forRowAtIndexPath: method handles data updates just as if the deletion had
occurred in edit mode.

Adding Cells
Recipe 11-12 introduces an add button using the system bar button item that displays as a
plus sign. (See the top-left corner of Figure 11-12.) This button lets users add new table
cells.To accomplish this, an addItem: method appends a new cell title at the end of the
items array and then tells the table to update the data source using reloadData.This lets
the normal table mechanism check the data and re-create the table view using the
updated data source.

Recipe 11-12 Deleting Cells On-the-Fly

@implementation TableListViewController

@synthesize count;

@synthesize items;

ptg

454 Chapter 11 Creating and Managing Table Views

- (NSInteger)numberOfSectionsInTableView:(UITableView *)aTableView

{

return 1;

}

- (NSInteger)tableView:(UITableView *)aTableView

numberOfRowsInSection:(NSInteger)section

{

return self.items.count;

}

- (void) setBarButtonItems

{

// Always display the add (+) button

self.navigationItem.leftBarButtonItem =

SYSBARBUTTON(UIBarButtonSystemItemAdd, @selector(addItem));

// When editing, display the done button

// When not editing, only display edit when items exist

if (self.tableView.isEditing)

self.navigationItem.rightBarButtonItem =

SYSBARBUTTON(UIBarButtonSystemItemDone,

@selector(leaveEditMode));

else

self.navigationItem.rightBarButtonItem = self.items.count ?

SYSBARBUTTON(UIBarButtonSystemItemEdit,

@selector(enterEditMode)) : nil;

}

- (UITableViewCell *)tableView:(UITableView *)tView

cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

// Return a dequeued cell or create a new one

UITableViewCellStyle style = UITableViewCellStyleDefault;

UITableViewCell *cell = [tView

dequeueReusableCellWithIdentifier:@"BaseCell"];

if (!cell)

cell = [[[UITableViewCell alloc] initWithStyle:style

reuseIdentifier:@"BaseCell"] autorelease];

cell.textLabel.text = [items objectAtIndex:indexPath.row];

return cell;

}

- (void) updateItemAtIndexPath: (NSIndexPath *) indexPath

withString: (NSString *) string

{

// You cannot insert a nil item. Passing nil is a delete request.

ptg

455Recipe: Deleting Cells

if (!string)

[self.items removeObjectAtIndex:indexPath.row];

else

[self.items insertObject:string atIndex:indexPath.row];

[self.tableView reloadData];

[self setBarButtonItems];

}

- (void) addItem: (id) sender

{

// add a new item

NSIndexPath *newPath = [NSIndexPath

indexPathForRow:self.items.count inSection:0];

NSString *newTitle = [NSString stringWithFormat:@"Item %d",

count++];

[self updateItemAtIndexPath:newPath withString:newTitle];

}

- (void)tableView:(UITableView *)aTableView

commitEditingStyle:(UITableViewCellEditingStyle)editingStyle

forRowAtIndexPath:(NSIndexPath *)indexPath

{

// delete item

[self updateItemAtIndexPath:indexPath withString:nil];

}

-(void)enterEditMode

{

[self.tableView deselectRowAtIndexPath:[self.tableView

indexPathForSelectedRow] animated:YES];

[self.tableView setEditing:YES animated:YES];

[self setBarButtonItems];

}

-(void)leaveEditMode

{

[self.tableView setEditing:NO animated:YES];

[self setBarButtonItems];

}

- (void) loadView

{

[super loadView];

count = 1;

ptg

456 Chapter 11 Creating and Managing Table Views

Figure 11-13 Reorder controls appear at the
right of each cell during edit mode. They appear as
three stacked gray lines. This screen shot shows

Item 1 being dragged into place below Item 5.

Recipe: Reordering Cells
You empower your users when you allow them to directly reorder the cells of a table.
Figure 11-13 shows a table displaying the reorder control’s stacked gray lines. Users can
apply this interaction to sort to-do items by priority or choose which songs should go
first in a playlist.The iPhone ships with built-in table reordering support that’s easy to add
to your applications. Recipe 11-13 shows how. Just add a single table delegate method.

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 11 and open the project for this recipe.

self.items = [NSMutableArray array];

[self setBarButtonItems];

}

@end

http://github.com/erica/iphone-3.0-cookbook-

ptg

457Recipe: Adding Undo Support to a Table

It’s important that your internal data model match the changes your user makes to the
view. Implement the tableView:moveRowAtIndexPath:toIndexPath method to syn-
chronize your data source with the onscreen changes, as you do when committing edits
for cell deletion.This data source method provides the opportunity to update your data
source. For this example, move the object corresponding to the cell’s title to an updated
location in the items mutable array.

To enable cell reordering, you must include this method in some form.When this
method is not found, the table does not show the reorder handles when entering edit mode.

Recipe 11-13 Reordering Table Cells

-(void) tableView: (UITableView *) tableView

moveRowAtIndexPath: (NSIndexPath *) oldPath

toIndexPath:(NSIndexPath *) newPath

{

// Change the data order in response to a user interaction

NSString *title = [[self.items objectAtIndex:oldPath.row] retain];

[self.items removeObjectAtIndex:oldPath.row];

[self.items insertObject:title atIndex:newPath.row];

[title release];

[self setBarButtonItems];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 11 and open the project for this recipe.

Recipe: Adding Undo Support to a Table
As introduced in Chapter 8,“Gestures and Touches,” the NSUndoManager class provides
undo and redo support for Cocoa Touch objects.Working with tables uses the same
basic approach.You start by creating and initializing an undo manager for the table view
controller.

self.undoManager = [[[NSUndoManager alloc] init] autorelease];

[self.undoManager setLevelsOfUndo:999];

Use common sense when setting the levels of undo. Recall that each undo retains the
objects that are supplied as arguments. If you’re working with small strings, as in this
example, feel free to use a very high number.The memory overhead is minimal.When
working with larger objects, limit your levels further.Three or ten undo levels, or some
other small number, may be plenty for your needs.

http://github.com/erica/iphone-3.0-cookbook-

ptg

458 Chapter 11 Creating and Managing Table Views

Supporting Shake-to-Edit
If you plan to support shake-to-edit undo, declare that in your application delegate or in
your view controller.

[[UIApplication sharedApplication]

setApplicationSupportsShakeToEdit:YES];

You will also have to provide a way for your controller to assume first responder status
whenever it appears onscreen.The following methods support this behavior.

- (BOOL)canBecomeFirstResponder {

return YES;

}

// Become first responder whenever the view appears

- (void)viewDidAppear:(BOOL)animated {

[super viewDidAppear:animated];

[self becomeFirstResponder];

}

// Resign first responder whenever the view disappears

- (void)viewWillDisappear:(BOOL)animated {

[super viewWillDisappear:animated];

[self resignFirstResponder];

}

Should you use shake-to-edit with tables? Recall that each use requires the user to
remember that the feature exists, which many users are not trained to use.Then, they must
shake the phone, wait for an alert to appear, and select an item.That’s a lot of effort, and
when dealing with multiple undos or redos at a time, possibly a deal killer. Displaying
Undo and Redo buttons onscreen, as Recipe 11-14 does, can minimize user dissatisfac-
tion and provide an obvious way to move forward and back through an edit history.

Adding Undo and Redo Buttons
Cocoa touch provides two system bar button items for Undo and Redo support.The fol-
lowing code adapts the setBarButtonItems method from Recipe 11-12 and adds a cus-
tom toolbar to the navigation bar.The Undo and Redo buttons only show when the
undo manager can support those actions.The bar is padded with flexible spacers at each
end, and a fixed space item takes the place of each button when the undo/redo actions are
not available.

- (void) setBarButtonItems

{

// Add an "Add" button

self.navigationItem.leftBarButtonItem =

SYSBARBUTTON(UIBarButtonSystemItemAdd, @selector(addItem));

ptg

459Recipe: Adding Undo Support to a Table

// Show either "Edit" or "Done"

if (self.tableView.isEditing)

self.navigationItem.rightBarButtonItem =

SYSBARBUTTON(UIBarButtonSystemItemDone,

@selector(leaveEditMode));

else

self.navigationItem.rightBarButtonItem = self.items.count ?

SYSBARBUTTON(UIBarButtonSystemItemEdit,

@selector(enterEditMode)) : nil;

// Create a new bar item array

NSMutableArray *barItems = [NSMutableArray array];

UIBarButtonItem *spacer =

SYSBARBUTTON(UIBarButtonSystemItemFixedSpace, nil);

spacer.width = 64;

// Add spacer

[barItems

addObject:SYSBARBUTTON(UIBarButtonSystemItemFlexibleSpace,

nil)];

// Add Undo button if the undo manager can undo

if ([self.undoManager canUndo])

[barItems addObject:SYSBARBUTTON(UIBarButtonSystemItemUndo,

@selector(undo))];

else

[barItems addObject:spacer];

// Add spacer

[barItems

addObject:SYSBARBUTTON(UIBarButtonSystemItemFlexibleSpace,

nil)];

// Add Redo button if the undo manager can redo

if ([self.undoManager canRedo])

[barItems addObject:SYSBARBUTTON(UIBarButtonSystemItemRedo,

@selector(redo))];

else

[barItems addObject:spacer];

// Add spacer

[barItems

addObject:SYSBARBUTTON(UIBarButtonSystemItemFlexibleSpace,

nil)];

ptg

460 Chapter 11 Creating and Managing Table Views

// Create the toolbar

UIToolbar *tb = [[[UIToolbar alloc] initWithFrame:

CGRectMake(0.0f, 0.0f, 200.0f, 48.0f)] autorelease];

tb.barStyle = UIBarStyleBlack;

tb.tintColor = COOKBOOK_PURPLE_COLOR;

[tb setItems:barItems animated:YES];

self.navigationItem.titleView = tb;

}

Performing Undo and Redo
The actual undo and redo commands are trivial.The core work for providing table-based
undo support resides in preparing the undo manager, and not, as you see, in executing the
commands. Chapter 19,“A Taste of Core Data,” offers another, simpler approach to
undo/redo management.

- (void) undo: (id) sender

{

// Undo the first item in the undo stack

[self.undoManager undo];

[self setBarButtonItems];

}

- (void) redo: (id) sender

{

// Redo the first item in the redo stack

[self.undoManager redo];

[self setBarButtonItems];

}

Preparing Table Undo Operations
Recipe 11-14 shows the four critical methods that provide undo support for table opera-
tions.These include the methods that handle add and delete operations and the unified
item update method that they call, plus the method that handles reorder operations.

As mentioned earlier in this chapter, the utility of providing a secondary method for
add and delete lets those operations work together for undo support. Here, the item
update method prepares the undo invocation for adding an item that is about to be
deleted or for deleting an item that’s about to be added.This combination creates a single
focal point for the undo manager to work with.

The reordering method that moves rows into new paths offers an even easier solution.
It swaps the old and new index paths and uses that invocation for the undo manager.
There are two caveats about the move operations you need to be aware of.

First, you must check for no-move reordering.The check for oldPath.row ==
newPath.row ensures that these moves-that-aren’t-really-moves will not be pushed onto
the undo stack.When working with normal (non-undo) reordering, this is a step you can
ignore because these “non-swaps” provide no effect on the responsiveness of the user

ptg

461Recipe: Adding Undo Support to a Table

interface.When working with undo stacks, they introduce trouble. Users do not know
why the undo operation they just requested did not work even though the application did
perform an “undo,” by swapping an item with itself.Avoid the confusion and don’t add
these items to the undo stack.

Second, table views cannot be reloaded until after a move operation completes.
Because the user is responsible for interacting with the cells and pulling them into a new
position, you don’t normally need to reload the table from the move method. In fact,
doing so usually produces an infinite loop and an inevitable application crash.

When you work with the undo manager, the table still needs some way to update itself
to match the updated model.You need to reload that table so the cells reflect the data after
the undo operation.Adding a delayed selector, as used in this recipe, lets the move method
complete before calling the reload. Doing this lets interactive table reordering complete
without crashing and provides a vital way for the table to update after undo and redo calls.

Recipe 11-14 Preparing Undo Items for Table Operations

- (void) updateItemAtIndexPath: (NSIndexPath *) indexPath

withString: (NSString *) string

{

// Swap string to nil or vice versa for undo

NSString *undoString = string ? nil : [self.items

objectAtIndex:indexPath.row];

[[self.undoManager prepareWithInvocationTarget:self]

updateItemAtIndexPath:indexPath withString:undoString];

// You cannot insert a nil item. Passing nil is a delete request.

if (!string)

[self.items removeObjectAtIndex:indexPath.row];

else

[self.items insertObject:string atIndex:indexPath.row];

[self.tableView reloadData];

[self setBarButtonItems];

}

- (void) addItem: (id) sender

{

// Add a new item based on the current count

NSIndexPath *newPath = [NSIndexPath

indexPathForRow:self.items.count inSection:0];

NSString *newTitle = [NSString stringWithFormat:@"Item %d",

count++];

[self updateItemAtIndexPath:newPath withString:newTitle];

}

- (void)tableView:(UITableView *)aTableView

commitEditingStyle:(UITableViewCellEditingStyle)editingStyle

forRowAtIndexPath:(NSIndexPath *)indexPath

ptg

462 Chapter 11 Creating and Managing Table Views

{

// Delete item

[self updateItemAtIndexPath:indexPath withString:nil];

}

-(void) tableView: (UITableView *) tableView

moveRowAtIndexPath: (NSIndexPath *) oldPath

toIndexPath:(NSIndexPath *) newPath

{

// Catch any self-moves and ignore

if (oldPath.row == newPath.row) return;

// prepare an undo for the row swap

[[self.undoManager prepareWithInvocationTarget:self]

tableView:self.tableView moveRowAtIndexPath:newPath

toIndexPath:oldPath];

// Perform the swap

NSString *item = [[self.items objectAtIndex:oldPath.row] retain];

[self.items removeObjectAtIndex:oldPath.row];

[self.items insertObject:item atIndex:newPath.row];

[item release];

// Update the bar button items and reload the data

[self setBarButtonItems];

[self.tableView performSelector:@selector(reloadData)

withObject:nil afterDelay:0.25f];

}

Recipe: Sorting Tables
A table is its data source in every meaningful sense.When you sort the information that
powers a table and then reload its data, you end up with a sorted table. Recipe 11-15
introduces a table view controller method that applies sorting on demand.

The three sorts used in this recipe are ascending alphabetically, descending alphabeti-
cally, and by string length.To provide the latter two requires an extension of the
NSString class.This simple class category adds a reversed comparison and a string length
comparison.

Recipe 11-15 shows only a part of the implementation, demonstrating how the data
model responds to the different sort types.As the user taps the segmented control, the

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 11 and open the project for this recipe.

http://github.com/erica/iphone-3.0-cookbook-

ptg

463Recipe: Sorting Tables

items array replaces itself with a version using the selected sort. See Chapter 19 for Core
Data approaches that use sorting while fetching results from a persistent data store.

Recipe 11-15 Sorting a UITableView

@implementation NSString (sortingExtension)

- (NSComparisonResult) reverseCompare: (NSString *) aString

{

// Invert a normal case insensitive comparison

return -1 * [self caseInsensitiveCompare:aString];

}

- (NSComparisonResult) lengthCompare: (NSString *) aString

{

// Return an ordering based on string length

if (self.length == aString.length) return NSOrderedSame;

if (self.length > aString.length) return NSOrderedDescending;

return NSOrderedAscending;

}

@end

@implementation TableListViewController

- (void) updateSort: (UISegmentedControl *) seg

{

// Apply the currently selected sort to the table items

if (seg.selectedSegmentIndex == 0)

self.items = [self.items sortedArrayUsingSelector:

@selector(caseInsensitiveCompare)];

else if (seg.selectedSegmentIndex == 1)

self.items = [self.items sortedArrayUsingSelector:

@selector(reverseCompare)];

else if (seg.selectedSegmentIndex == 2)

self.items = [self.items sortedArrayUsingSelector:

@selector(lengthCompare)];

[self.tableView reloadData];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 11 and open the project for this recipe.

http://github.com/erica/iphone-3.0-cookbook-

ptg

464 Chapter 11 Creating and Managing Table Views

Recipe: Searching Through a Table
New to the 3.0 SDK, built-in search allow users to filter a table’s contents in real time.
This searching uses two important classes, the previously existing UISearchBar class and
the new UISearchDisplayController class.Together, these mimic the kind of search
behavior offered in the Contacts application, where a search bar can be found at the head
of the table.

To find the search bar, you must scroll all the way to the top of the table, as shown in
Figure 11-14 (left).The search bar does not initially appear in the navigation bar. Once
users tap in the search box, the view shifts and the search bar moves up to the navigation
bar area, as shown in Figure 11-14 (right). It remains there until the user taps Cancel,
returning the user to the unfiltered table display.

Figure 11-14 The user must scroll to the top of the table to initiate a
search. The Search bar appears as the first item in the table in its header

view. (Left) Once the user taps within the search bar and makes it active, the
search bar jumps into the navigation bar and presents a filtered list of items

based on the search criteria (Right).

Building the Search Display Controller
Search display controllers help manage the display of data owned by another controller, in
this case a standard UITableViewController.The search display controller presents a sub-
set of that data, usually by filtering that data source through a predicate.

ptg

465Recipe: Searching Through a Table

Initialize a search display controller by providing it with a search bar and a contents
controller.As you can see here, the search display controller uses a standard search bar,
which is created programmatically in the following snippet. Pass the main
UITableViewController instance you’re defining these items within as the contents
controller.

Set up the search bar’s text trait features as you would normally do but do not set a
delegate.The search bar works with the search display controller without explicit delega-
tion on your part.

When setting up the search display controller, make sure you set both its search results
data source and delegate as shown here.These point back to the primary table view con-
troller subclass, which is where you’ll adjust your normal data source and delegate meth-
ods to comply with the searchable table.

// Create a search bar

self.searchBar = [[[UISearchBar alloc] initWithFrame:

CGRectMake(0.0f, 0.0f, 320.0f, 44.0f)] autorelease];

self.searchBar.tintColor = COOKBOOK_PURPLE_COLOR;

self.searchBar.autocorrectionType = UITextAutocorrectionTypeNo;

self.searchBar.autocapitalizationType =

UITextAutocapitalizationTypeNone;

self.searchBar.keyboardType = UIKeyboardTypeAlphabet;

self.tableView.tableHeaderView = self.searchBar;

// Create the search display controller

self.searchDC = [[[UISearchDisplayController alloc]

initWithSearchBar:self.searchBar contentsController:self]

autorelease];

self.searchDC.searchResultsDataSource = self;

self.searchDC.searchResultsDelegate = self;

Building the Searchable Data Source Methods
The number of items displayed in the table changes as users search.You must report the
correct number of rows for each.To detect whether the table view controller or the search
display controller is currently in charge, compare the table view parameter against the
built-in tableView property. If it is the same, you’re dealing with the normal table view. If
it differs, that means the search display controller is in charge and is using its own table
view.Adjust the row count accordingly.

- (NSInteger)tableView:(UITableView *)aTableView

numberOfRowsInSection:(NSInteger)section

{

// Return the cell count for the normal table

if (aTableView == self.tableView)

return self.crayonColors.allKeys.count;

ptg

466 Chapter 11 Creating and Managing Table Views

// Return the cell count for the search table

NSPredicate *predicate = [NSPredicate predicateWithFormat:

@"SELF contains[cd] %@", self.searchBar.text];

self.filteredArray = [self.crayonColors.allKeys

filteredArrayUsingPredicate:predicate];

return self.filteredArray.count;

}

Use a predicate to report the count of items that match the text in the search box. Predi-
cates provide an extremely simple way to filter an array and return only those items that
match a search string.The predicate used here performs a case insensitive contains
match. Each string that contains the text in the search field returns a positive match,
allowing that string to remain part of the filtered array.Alternatively, you might want to
use beginswith to avoid matching items that do not start with that text.

Predicates go well beyond the simple string matching shown here.You can use them
with all kinds of complex objects including Core Data objects to provide sophisticated
filtering for your table displays.

Filtering goes beyond row count reporting.You need to filter source data to populate
and return cell instances.The following method again checks the current table view to
return cells that match either the default keys or the filtered set.

- (UITableViewCell *)tableView:(UITableView *)aTableView

cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

// Dequeue or create a cell

UITableViewCellStyle style = UITableViewCellStyleDefault;

UITableViewCell *cell = [aTableView

dequeueReusableCellWithIdentifier:@"BaseCell"];

if (!cell) cell = [[[UITableViewCell alloc] initWithStyle:style

reuseIdentifier:@"BaseCell"] autorelease];

// Retrieve the crayon and its color

NSArray *keyCollection = (aTableView == self.tableView) ?

DEFAULTKEYS : FILTEREDKEYS;

NSString *crayon = [keyCollection objectAtIndex:indexPath.row];

cell.textLabel.text = crayon;

if (![crayon hasPrefix:@"White"])

cell.textLabel.textColor = [self.crayonColors

objectForKey:crayon];

else

cell.textLabel.textColor = [UIColor blackColor];

return cell;

}

ptg

467Recipe: Working with Sections

Delegate Methods
Search awareness is not limited to data sources.As Recipe 11-16 shows, determining the
context of a user tap is critical for providing the correct response in delegate methods.As
with the previous data source methods, this delegate method compares the table view
parameter sent with the callback to the built-in parameter. Based on this result, it chooses
how to act, which in this case involves coloring both the search bar and the navigation bar
with the currently selected color.

Recipe 11-16 Comparing Table Views to Produce the Correct Responses to User Input

// Respond to user selections by updating tint colors

- (void)tableView:(UITableView *)aTableView

didSelectRowAtIndexPath:(NSIndexPath *)indexPath

{

NSArray *keyCollection = (aTableView == self.tableView) ?

DEFAULTKEYS : FILTEREDKEYS;

NSString *crayon = [keyCollection objectAtIndex:indexPath.row];

self.navigationController.navigationBar.tintColor =

[self.crayonColors objectForKey:crayon];

self.searchBar.tintColor = [self.crayonColors objectForKey:crayon];

}

Recipe: Working with Sections
Many iPhone applications use sections as well as rows. Sections provide another level of
structure to lists, grouping items together into logical units.The most commonly used sec-
tion scheme is the alphabet, although you are certainly not limited to organizing your data
this way.You can use any section scheme that makes sense for your application.

Figure 11-15 shows a table that uses sections to display grouped names. Each section
presents a separate header (i.e.,“Crayon names starting with...”), and an index on the right
offers quick access to each of the sections. Notice that there are no sections listed for K,
Q, X, and Z in that index.This recipe eliminates empty sections from the index.

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 11 and open the project for this recipe.

http://github.com/erica/iphone-3.0-cookbook-

ptg

468 Chapter 11 Creating and Managing Table Views

Creating a Section-Based Data Structure
When working with groups and sections, think two dimensionally. Section arrays let you
store and access the members of data in a section-by-section structure. Implement this
approach by creating an array of arrays.The section array stores one array for each sec-
tion, which in turn contains the titles for each cell.This snippet creates the section arrays
and then populates them by looking at the location of each item’s first letter within the
alphabet.

// Create the section array

self.sectionArray = [NSMutableArray array];

for (int i = 0; i < 26; i++) [self.sectionArray

addObject:[NSMutableArray array]];

// Populate the arrays by starting character

for (NSString *string in rawCrayons)

{

NSUInteger firstLetter = [ALPHA rangeOfString:[string

substringToIndex:1]].location;

if (firstLetter != NSNotFound) [[self.sectionArray

objectAtIndex:firstLetter] addObject:CRAYON_NAME(string)];

}

Figure 11-15 Sectioned tables let you present
both headers and an index to better find informa-

tion as quickly as possible.

ptg

469Recipe: Working with Sections

To work, this particular implementation relies on two things: first, that the words are
already sorted—each subsection adds the words in the order they’re found in the array;
and second, that the sections match the words. Entries that start with punctuation or
numbers won’t work with this loop.You can trivially add an “other” section to take care of
these cases, which this (simple) sample omits.

Although, as mentioned, alphabetic sections are useful and probably the most common
grouping, you can use any kind of grouping structure you like. For example, you might
group people by departments, gems by grades, or appointments by date. No matter what
kind of grouping you choose, an array of arrays provides the table view data source that
best matches sectioned tables.

Counting Sections and Rows
Sectioned tables require customizing two key data source methods:

n numberOfSectionsInTableView—This method specifies how many sec-
tions appear in your table, establishing the number of groups to display.When using
a section array, as recommended here, return the number of items in the section
array—that is, self.sectionArray.count. If the number of items is known in
advance (26 in this case), you can hard code that amount.

n tableView:numberOfRowsInSection—This method is called with a sec-
tion number. Specify how many rows appear in that section.With the recom-
mended data structure, just return the count of items at the nth subarray:
[[self.sectionArray objectAtIndex: sectionNumber] count].

Notice that these methods extend the searchable table introduced in Recipe 11-16.As
Figure 11-14 shows, sectioned tables and their indices are compatible with searching.The
small search icon at the top of the index brings users back to the search bar at the top of
the table. In this example, the search results are flat—that is, not sectioned—which is why
the number of sections result returns 1 instead of 26.

- (NSInteger)numberOfSectionsInTableView:(UITableView *)aTableView

{

// Section count for the normal table

if (aTableView == self.tableView) return 26;

// Section count for the search table

return 1;

}

- (NSInteger)tableView:(UITableView *)aTableView

numberOfRowsInSection:(NSInteger)section

{

// Cell count for the normal table

if (aTableView == self.tableView) return [[self.sectionArray

objectAtIndex:section] count];

ptg

470 Chapter 11 Creating and Managing Table Views

// Cell count for the search table

NSPredicate *predicate = [NSPredicate predicateWithFormat:@"SELF

contains[cd] %@", self.searchBar.text];

self.filteredArray = [self.crayonColors.allKeys

filteredArrayUsingPredicate:predicate];

return self.filteredArray.count;

}

Returning Cells
Sectioned tables use both row and section information to find cell data. Earlier recipes in
this chapter used a flat array with a row number index.Tables with sections must use the
entire index path to locate both the section and row index for the data populating a cell.

- (UITableViewCell *)tableView:(UITableView *)aTableView

cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

// Dequeue or create a cell

UITableViewCellStyle style = UITableViewCellStyleDefault;

UITableViewCell *cell = [aTableView

dequeueReusableCellWithIdentifier:@"BaseCell"];

if (!cell) cell = [[[UITableViewCell alloc] initWithStyle:style

reuseIdentifier:@"BaseCell"] autorelease];

NSString *crayon;

// Retrieve the crayon and its color

if (aTableView == self.tableView)

crayon = [[self.sectionArray objectAtIndex:indexPath.section]

objectAtIndex:indexPath.row];

else

crayon = [FILTEREDKEYS objectAtIndex:indexPath.row];

// Set the cell text and color it

cell.textLabel.text = crayon;

if (![crayon hasPrefix:@"White"])

cell.textLabel.textColor = [self.crayonColors

objectForKey:crayon];

else

cell.textLabel.textColor = [UIColor blackColor];

return cell;

}

Creating Header Titles
It takes very little work to add section headers to your grouped table.The optional
tableView:titleForHeaderInSection: method supplies the titles for each section. It’s

ptg

471Recipe: Working with Sections

passed an integer. In return, you supply a title. If your table does not contain any items in a
given section or when you’re only working with one section (i.e., for the search table),
return nil.

- (NSString *)tableView:(UITableView *)aTableView

titleForHeaderInSection:(NSInteger)section

{

// Normal Table

if (aTableView == self.tableView)

{

// Empty Sections

if ([[self.sectionArray objectAtIndex:section] count] == 0)

return nil;

// Populated Sections

return [NSString stringWithFormat:

@"Crayon names starting with ‘%@’",

[[ALPHA substringFromIndex:section] substringToIndex:1]];

}

else

// Search Table

return nil;

}

Creating a Section Index
Tables that implement sectionIndexTitlesForTableView: present the kind of index
view that appears on the right of Figure 11-14.This method is called when the table view
is created, and the array that is returned determines what items are displayed onscreen.
Return nil to skip an index, as is done here for the search table.Apple recommends only
adding section indices to plain table views, that is, table views created using the default
plain style of UITableViewStylePlain. See Figure 11-15 for an (mildly unfortunate)
example of a grouped table with a section index.

- (NSArray *)sectionIndexTitlesForTableView:(UITableView *)aTableView

{

if (aTableView == self.tableView) // Regular table

{

NSMutableArray *indices = [NSMutableArray

arrayWithObject:UITableViewIndexSearch];

for (int i = 0; i < 26; i++)

if ([[self.sectionArray objectAtIndex:i] count])

[indices addObject:[[ALPHA substringFromIndex:i]

substringToIndex:1]];

return indices;

}

else return nil; // Search table

}

ptg

472 Chapter 11 Creating and Managing Table Views

The first item added to this index is the UITableViewIndexSearch constant.This adds the
small magnifying glass icon that indicates that the table supports searches and provides a
quick jump to the beginning of the list.

Although this example uses single-letter titles, you are certainly not limited to those
items.You can use words or, if you’re willing to work out the Unicode equivalents, pic-
tures including emoji items (available to iPhone users in Japan) that are part of the iPhone
character library.

[indices addObject:@"\ue057"];

Handling Section Mismatches
Indices move users along the table based on the user touch offset.As mentioned earlier in
this section, this particular table does not display sections for K, Q, X, and Z.These missing
letters can cause a mismatch between a user selection and the results displayed by the table.

To remedy this, implement the optional tableView:sectionForSectionIndexTitle:
method.This method’s role is to connect a section index title (i.e., the one returned by
the sectionIndexTitlesForTableView: method) with a section number.This overrides
any order mismatches and provides an exact one-to-one match between a user index
selection and the section displayed.

- (NSInteger)tableView:(UITableView *)tableView

sectionForSectionIndexTitle:(NSString *)title

atIndex:(NSInteger)index

{

if (title == UITableViewIndexSearch)

{

// Handle the jump to the search bar

[self.tableView scrollRectToVisible:self.searchBar.frame

animated:NO];

return -1;

}

// Return the section for a letter

return [ALPHA rangeOfString:title].location;

}

The scrollRectToVisible:animated: call used here manually moves the search bar into
place when a user taps on the magnifying glass. Otherwise, users would have to scroll back
from section 0, which is the section associated with the letter A.

Delegation with Sections
As with data source methods, the trick to implementing delegate methods in a data source
table involves using the index path section and row properties.These properties provide
the double access needed to find the correct section array and then the item within that
array for this example. Recipe 11-17 shows how to update the search and navigation bars
by recovering the color associated with a user tap on a section-based table.

ptg

473Recipe: Creating Grouped Tables

Recipe 11-17 Responding to User Touches in a Section-Based Table

// Respond to user selections by updating tint colors

- (void)tableView:(UITableView *)aTableView

didSelectRowAtIndexPath:(NSIndexPath *)indexPath

{

// Determine which crayon was selected

NSString *crayon;

if (aTableView == self.tableView)

crayon = [[self.sectionArray objectAtIndex:indexPath.section]

objectAtIndex:indexPath.row];

else

crayon = [FILTEREDKEYS objectAtIndex:indexPath.row];

// Update the tint color for the navigation and search bars

self.navigationController.navigationBar.tintColor =

[self.crayonColors objectForKey:crayon];

self.searchBar.tintColor = [self.crayonColors objectForKey:crayon];

}

Recipe: Creating Grouped Tables
On the iPhone, tables come in two formats: grouped tables and plain table lists.You’ve
already seen the latter demonstrated.The recipes earlier in this chapter focused on creat-
ing them.The Settings application on the iPhone offers grouped lists in action.These lists
display on a blue-gray background, and each subsection appears within a slightly rounded
rectangle. Figure 11-15 shows the grouped list built by Recipe 11-18.

To change styles, requires nothing more than initializing the table view controller with
a different style.You can do this explicitly when creating a new instance, that is:

myTableViewController = [[UITableViewController alloc]

initWithStyle:UITableViewStyleGrouped];

Or you can use the approach of Recipe 11-18. By overriding the init method, you
ensure that new instances of this subclass produce a grouped style table.

Recipe 11-18 Overriding the Table View Controller’s init Method to Create a Grouped Style

- (TableListViewController *) init

{

// Set the grouped style

self = [super initWithStyle:UITableViewStyleGrouped];

return self;

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 11 and open the project for this recipe.

http://github.com/erica/iphone-3.0-cookbook-

ptg

474 Chapter 11 Creating and Managing Table Views

Recipe: Customizing Headers and Footers
Sectioned table views are extremely customizable.You’ve read about using the
tableHeaderView property to accommodate a UISearchBar search field.This, and the
related tableFooterView property can be assigned to any type of view, each with its own
subviews. So you might add in labels, text fields, buttons, and other controls to extend the
table’s features.

Headers and footers do not stop with the full table. Each section offers a customizable
header and footer view as well.You can alter heights or swap elements out for custom
views. In Figure 11-17, the left image uses a larger than normal height, and is created by
implementing the optional tableView:heightForHeaderInSection: method.The right-
hand image represents the use of custom views.The solid-colored header view, with its

Figure 11-16 Grouped tables provide an alternate table presentation to
standard table lists (left). Apple recommends against using a section index
with grouped tables. As you can see, the index cuts across the cell bound-

aries (right).

Apple recommends against using a section index like the one shown in Figure 11-16
(right).The index crosses over the right side of the grouped cell, creating an unnecessarily
cluttered presentation.

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 11 and open the project for this recipe.

http://github.com/erica/iphone-3.0-cookbook-

ptg

475Recipe: Customizing Headers and Footers

Figure 11-17 Table view delegate methods allow you to set the height and
view of section headers and footers.

label and button subviews, is loaded from a xib file and returned via the optional
tableView:viewForHeaderInSection: method. Corresponding methods exist for footers
as well as headers.

Recipe 11-19 shows these methods in use.The custom header is set at 70 pixels high
and is loaded from a xib file. Its label is set and the button connected to a simple flip
animation callback.This provides a trivial demonstration of a feature that is intrinsically
much more powerful and more extensible than this simple example can express.

Recipe 11-19 Providing Custom Section Header Views

// Report the height for each section header

- (CGFloat)tableView:(UITableView *)tableView

heightForHeaderInSection:(NSInteger)section

{

return 70.0f;

}

// The button is just for demonstration purposes

// It calls this flip animation

- (void) flip: (UIButton *) button

{

[UIView beginAnimations:nil context:nil];

[UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];

ptg

476 Chapter 11 Creating and Managing Table Views

[UIView setAnimationDuration:1.0];

[UIView setAnimationTransition:

UIViewAnimationTransitionFlipFromRight forView:self.view

cache:YES];

[UIView commitAnimations];

}

// Return the title for each section

- (NSString *)tableView:(UITableView *)aTableView

titleForHeaderInSection:(NSInteger)section

{

if (aTableView == self.tableView)

{

if ([[self.sectionArray objectAtIndex:section] count] == 0)

return nil;

return [NSString stringWithFormat:@"Crayon names starting with

‘%@’", [[ALPHA substringFromIndex:section]

substringToIndex:1]];

}

else return nil;

}

- (UIView *)tableView:(UITableView *)tableView

viewForHeaderInSection:(NSInteger)section

{

// The nib contains a single object, the header view

UIView *hView = [[[NSBundle mainBundle] loadNibNamed:@"HeaderView"

owner:self options:nil] lastObject];

UILabel *label = (UILabel *)[hView viewWithTag:101];

label.text = [self tableView:self.tableView

titleForHeaderInSection:section];

UIButton *button = (UIButton *)[hView viewWithTag:102];

[button addTarget:self action:@selector(flip)

forControlEvents:UIControlEventTouchUpInside];

return hView;

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 11 and open the project for this recipe.

http://github.com/erica/iphone-3.0-cookbook-

ptg

477Recipe: Creating a Group Table with Many Cell Types and Heights

Recipe: Creating a Group Table with Many Cell
Types and Heights
If alphabetic section list tables are the M. C. Eschers of the iPhone table world, with each
section block precisely fitting into the negative spaces provided by other sections in the
list, then freeform group tables are the Marc Chagalls. Every bit is drawn as a freeform
handcrafted work of art.

It’s relatively easy to create all the tables you’ve seen so far in this chapter once you’ve
mastered the knack. Perfecting the group table (usually called preferences table by iPhone
devotees because that’s the kind of table used in the Settings application) remains an illu-
sion. Building group tables is all about the collage.They’re all about handcrafting a look,
piece by piece.

Tools like Interface Builder allow you to create any number of custom table cells, each
with its own contents and height. It’s up to you to programmatically put all that material
together and create a table out of them.You’re responsible for delivering the right kind of
cells and for reporting the individual heights for each cell style, and in real-world imple-
mentations, responding to cell interaction with a meaningful result.

When you’ve got the basics under control, the preferences table becomes a project you
can mold and shape. Figure 11-18 shows a simple preferences table that consists of two
groups: a series of switches and a block with text (and a subtitle cell that’s currently off-
screen). Recipe 11-20 demonstrates the work that goes into providing even such a little
creation.

Figure 11-18 Preferences tables must be laid
out by hand, with each row and group specified

through your data source methods.

ptg

478 Chapter 11 Creating and Managing Table Views

Unfortunately, adding new items or updating old ones requires a lot of fine detail work.
That work isn’t centralized in any way.You must review each of the data source methods
and update with your new or refined items.

Creating Grouped Preferences Tables
There’s nothing special involved in terms of laying out a new UITableViewController
for a preferences table.You allocate it.You initialize it with the grouped table style.That’s
pretty much the end of it. It’s the data source and delegate methods that provide the chal-
lenge. Here are the methods you’ll need to define:

n numberOfSectionsInTableView:—All preferences tables contain groups of
items. Each group is visually contained in a rounded rectangle. Return the number
of groups you’ll be defining as an integer.

n tableView: titleForHeaderInSection:—Add the titles for each sec-
tion into this optional method. Return an NSString with the requested section
name. Recipe 11-20 does not use titles.

n tableView: numberOfRowsInSection:—Each section may contain any
number of cells. Have this method return an integer indicating the number of rows
(that is, cells) for that group.

n tableView: heightForRowAtIndexPath:—Tables that use flexible row
heights cost more in terms of computational intensity. If you need to use variable
heights (Recipe 11-20 does so), implement this optional method to specify what
those heights will be. Return the value by section and by row.

n tableView: cellForRowAtIndexPath:—This is the standard cell-for-
row method you’ve seen throughout this chapter.What sets it apart is its implemen-
tation. Instead of using one kind of cell, Recipe 11-20 builds different kinds of
reusable cells (with different reuse tags) for each cell type.As this recipe shows,
things become much more complicated when using several cell types. Make sure
you manage your reuse queue carefully.This recipe provides a trivial cell set, but
real-world examples can grow more complicated.

n tableView: didSelectRowAtIndexPath:—You provide case-by-case
reactions to cell selection in this optional delegate method depending on the cell
type selected.

Note
The open-source llamasettings project at Google Code (http://llamasettings.googlecode.
com) automatically produces grouped tables from property lists meant for iPhone settings
bundles. It allows you to bring settings into your application without forcing your user to
leave the app. The project can be freely added to commercial iPhone SDK applications with-
out licensing fees.

http://llamasettings.googlecode.com
http://llamasettings.googlecode.com

ptg

479Recipe: Creating a Group Table with Many Cell Types and Heights

Recipe 11-20 Building a Multiheight Complex Grouped Table

- (NSInteger)numberOfSectionsInTableView:

(UITableView *)aTableView

{

// Example table uses two sections

return 2;

}

- (NSInteger)tableView:(UITableView *)aTableView

numberOfRowsInSection:(NSInteger)section

{

// First section has 4 cells, the second has 2

if (section == 0) return 4;

else if (section == 1) return 2;

return 0;

}

- (UITableViewCell *)tableView:(UITableView *)tView

cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

UITableViewCell *cell;

if (indexPath.section == 0)

{

// Load a simple cell with a switch and label

cell = [tView dequeueReusableCellWithIdentifier:@"SwitchCell"];

if (!cell)

cell = [[[NSBundle mainBundle] loadNibNamed:@"switchcell"

owner:self options:nil] lastObject];

[(UILabel *)[cell viewWithTag:101] setText:[NSString

stringWithFormat:@"Switch %d\n", indexPath.row + 1]];

}

else if (indexPath.section == 1)

{

// First item is a big blog of text

if (indexPath.row == 0)

{

cell = [tView dequeueReusableCellWithIdentifier:

@"LibertyCell"];

if (!cell)

cell = [[[NSBundle mainBundle] loadNibNamed:

@"libertycell" owner:self options:nil] lastObject];

}

// Second item is a standard subtitle cell

else if (indexPath.row == 1)

{

cell = [[[UITableViewCell alloc]

initWithStyle:UITableViewCellStyleSubtitle

ptg

480 Chapter 11 Creating and Managing Table Views

reuseIdentifier:@"SubtitleCell"] autorelease];

cell.textLabel.text = @"Hello World";

cell.detailTextLabel.text = @"Subtitle World";

}

}

return cell;

}

// Reporting heights for each row can be computationally

// expensive and produce a performance hit

- (CGFloat)tableView:(UITableView *)tableView

heightForRowAtIndexPath:(NSIndexPath *)indexPath

{

// Determine the cell height based on section and row

if (indexPath.section == 0) return 80.0f;

if (indexPath.section == 1)

{

if (indexPath.row == 0) return 340.0f;

if (indexPath.row == 1) return 40.0f;

}

return 0.0f;

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 11 and open the project for this recipe.

Recipe: Building a Multiwheel Table
Sometimes you’d like your users to pick from long lists or from several lists at once.That’s
where UIPickerView instances really excel. UIPickerView objects produce tables offering
individually scrolling “wheels,” as shown in Figure 11-19. Users interact with one or more
wheels to build their selection.

These tables, although superficially similar to standard UITableView instances, use dis-
tinct data and delegate protocols.

n There is no UIPickerViewController class—UIPickerView instances act as sub-
views to other views.They are not intended to be the central focus of an application
view.You can build a UIPickerView instance onto another view like the action
sheet shown in Figure 11-18.

n Picker views use numbers not objects—Components, that is to say the wheels,
are indexed by numbers and not by NSIndexPath instances. It’s a slightly more
informal class than the UITableView.

http://github.com/erica/iphone-3.0-cookbook-

ptg

481Recipe: Building a Multiwheel Table

Figure 11-19 UIPickerView instances enable
users to select from independently scrolling

wheels.

n The view height for pickers is static—You can’t resize pickers the way you
would a standard UITableView just by manipulating its frame. Portrait pickers are
320-by-216 pixels in size; landscape pickers are 480-by-162.Any other frame sizes
look distorted or clipped.These are the same dimensions used by the standard
iPhone keyboard.

You can supply either titles or views via the data source. Picker views can handle
both approaches.

Creating the UIPickerView
Use any frame size for your UIPickerView as long as your height is 216 pixels and your
width is 320 pixels (portrait), or your height is 162 pixels and your width is 480 pixels
(landscape).That being said, you can float the table wherever you need it on the screen.

When creating the picker, remember two key points. First, you want to enable the
selection indicator.That is the blue bar that floats over the selected items. So set
showsSelectionIndicator to YES. If you add the picker in Interface Builder, this is
already set as the default.

Second, don’t forget to assign the delegate and data source.Without this support, you
cannot add data to the view, define its features, or respond to selection changes.Your pri-
mary view controller should implement the UIPickerViewDelegate and
UIPickerViewDataSource protocols.

ptg

482 Chapter 11 Creating and Managing Table Views

Implement three key data source methods for your UIPickerView to make it function
properly at a minimum level.These methods are as follows:

n numberOfComponentsInPickerView—Return an integer, the number of
columns.

n pickerView: numberOfRowsInComponent:—Return an integer, the
maximum number of rows per wheel.These numbers do not need to be identical.
You can have one wheel with many rows and another with very few.

n pickerView:titleForRow:forComponent—This method specifies the
text used to label a row on a given component. Return an NSString. (Returning a
view instead of a string is covered in the next section.)

In addition to these data source methods, you might want to supply one further delegate
method.This method responds to user interactions via wheel selection:

n pickerView:didSelectRow:inComponent—Add any application-specific
behavior to this method. If needed, you can query the pickerView to return the
selectedRowInComponent: for any of the wheels in your view.

Recipe 11-21 creates the basic picker wheel shown in Figure 11-18. It presents a “lock”
picker, allowing users to enter a combination. Embedding the picker onto a
UIAlertSheet instance allows the picker to slide in and out of view.

Recipe 11-21 Using a UIPickerView for Multicolumn Selection

@interface TestBedViewController : UIViewController <UIPickerViewDelegate,
➥UIPickerViewDataSource, UIActionSheetDelegate>

@end

@implementation TestBedViewController

- (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)pickerView

{

// Picker has three wheels

return 3;

}

- (NSInteger)pickerView:(UIPickerView *)pickerView

numberOfRowsInComponent:(NSInteger)component

{

// Each wheel has 20 rows

return 20;

}

- (NSString *)pickerView:(UIPickerView *)pickerView

titleForRow:(NSInteger)row forComponent:(NSInteger)component

{

// Each cell has a number and either R (for Right) or L (for Left)

return [NSString stringWithFormat:@"%@-%d",

ptg

483Recipe: Building a Multiwheel Table

component == 1 ? @"R" : @"L", row];

}

- (void)actionSheet:(UIActionSheet *)actionSheet

clickedButtonAtIndex:(NSInteger)buttonIndex

{

// Show the current combination

UIPickerView *pickerView = (UIPickerView *)[actionSheet

viewWithTag:101];

self.title = [NSString stringWithFormat:@"L%d-R%d-L%d",

[pickerView selectedRowInComponent:0],

[pickerView selectedRowInComponent:1],

[pickerView selectedRowInComponent:2]];

[actionSheet release];

}

- (void) action: (id) sender

{

// Create enough space to place the picker

NSString *title = UIDeviceOrientationIsLandscape([UIDevice

currentDevice].orientation) ?

@"\n\n\n\n\n\n\n\n\n" :

@"\n\n\n\n\n\n\n\n\n\n\n\n" ;

// Build the action sheet and present it

UIActionSheet *actionSheet = [[UIActionSheet alloc]

initWithTitle:title delegate:self

cancelButtonTitle:nil

destructiveButtonTitle:nil

otherButtonTitles:@"Set Combo", nil];

[actionSheet showInView:self.view];

// Once the sheet has been presented, add the picker subview

UIPickerView *pickerView = [[[UIPickerView alloc] init]

autorelease];

pickerView.tag = 101;

pickerView.delegate = self;

pickerView.dataSource = self;

pickerView.showsSelectionIndicator = YES;

[actionSheet addSubview:pickerView];

}

- (BOOL)shouldAutorotateToInterfaceOrientation:

(UIInterfaceOrientation)interfaceOrientation

{

// Allow landscape and portrait presentations

ptg

484 Chapter 11 Creating and Managing Table Views

Recipe: Using a View-Based Picker
Picker views work just as well with views as they do with titles. Figure 11-20 shows a
picker view that displays card suits.These images are returned by the pickerView:
➥viewForRow:forComponent:reusingView: data source method.You can use any kind of
view you like, including labels, sliders, buttons, and so forth.The example in Recipe 11-22
uses a simple UIImageView, setting its image to one of the four suits.

return YES;

}

- (void) viewDidLoad

{

self.navigationItem.rightBarButtonItem = BARBUTTON(@"Action",

@selector(action));

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 11 and open the project for this recipe.

Figure 11-20 This UIPickerView presents a
series of card suit images, allowing users to pick a

combination of three items.

http://github.com/erica/iphone-3.0-cookbook-

ptg

485Recipe: Using a View-Based Picker

Picker views use a basic view reuse scheme, caching the views supplied to it for possible
reuse.When the final parameter for this callback method is not nil, you can reuse that
view by updating its settings or contents. Recipe 11-22 checks for the view and, only
when it is not found, allocates a new image view.

The height need not match the actual view. Implement pickerView:rowHeightFor
➥Component: to set the row height used by each component. Recipe 11-22 uses a row
height of 120 pixels, providing plenty of room for each image and laying the groundwork
for the illusion that the picker could be continuous rather than having a start and ending
point as Recipe 11-21 did.

Notice the high number of components, namely one million.The reason for this high
number lies in a desire to emulate real cylinders. Normally, picker views have a first ele-
ment and a last, and that’s where they end.This recipe takes another approach, asking “what
if the components were actual cylinders, so the last element was connected to the first?”

To emulate this, the picker uses a far higher number of components than any user will
ever be able to access. It initializes the picker to the middle of that number by calling
selectRow:inComponent:Animated:. Each component “row” is derived by the modulo
of the actual reported row and the number of individual elements to display, in this case %
4.While the code knows that the picker actually has a million rows per wheel, the user
experience offers a cylindrical wheel of just four rows.

Recipe 11-22 Creating the Illusion of a Repeating Cylinder

- (NSInteger)pickerView:(UIPickerView *)pickerView

numberOfRowsInComponent:(NSInteger)component

{

// Return an insanely high number for the rows per wheel

return 1000000;

}

- (CGFloat)pickerView:(UIPickerView *)pickerView

rowHeightForComponent:(NSInteger)component

{

// Produce a row height to match the art

return 120.0f;

}

- (UIView *)pickerView:(UIPickerView *)pickerView

viewForRow:(NSInteger)row forComponent:(NSInteger)component

reusingView:(UIView *)view

{

// Create a new view where needed, adding the art

UIImageView *imageView;

imageView = view ? (UIImageView *) view : [[UIImageView alloc]

initWithFrame:CGRectMake(0.0f, 0.0f, 60.0f, 60.0f)];

NSArray *names = [NSArray arrayWithObjects:@"club.png",

@"diamond.png", @"heart.png", @"spade.png", nil];

ptg

486 Chapter 11 Creating and Managing Table Views

imageView.image = [UIImage imageNamed:

[names objectAtIndex:(row % 4)]];

return imageView;

}

- (void)actionSheet:(UIActionSheet *)actionSheet

clickedButtonAtIndex:(NSInteger)buttonIndex

{

// Set the title to match the current wheel selections

UIPickerView *pickerView = (UIPickerView *)[actionSheet

viewWithTag:101];

NSArray *names = [NSArray arrayWithObjects:

@"C", @"D", @"H", @"S", nil];

self.title = [NSString stringWithFormat:@"%@•%

[names objectAtIndex:([pickerView

selectedRowInComponent:0] % 4)],

[names objectAtIndex:([pickerView

selectedRowInComponent:1] % 4)],

[names objectAtIndex:([pickerView

selectedRowInComponent:2] % 4)]];

[actionSheet release];

}

- (void) action: (id) sender

{

// Create enough space for the picker

NSString *title = UIDeviceOrientationIsLandscape([UIDevice

currentDevice].orientation) ?

@"\n\n\n\n\n\n\n\n\n" :

@"\n\n\n\n\n\n\n\n\n\n\n\n" ;

// Build and present the action sheet

UIActionSheet *actionSheet = [[UIActionSheet alloc]

initWithTitle:title delegate:self

cancelButtonTitle:nil destructiveButtonTitle:nil

otherButtonTitles:@"Set Combo", nil];

[actionSheet showInView:self.view];

// Add the picker view once the sheet is displayed

UIPickerView *pickerView = [[[UIPickerView alloc] init]

autorelease];

pickerView.tag = 101;

pickerView.delegate = self;

pickerView.dataSource = self;

pickerView.showsSelectionIndicator = YES;

[actionSheet addSubview:pickerView];

ptg

487Recipe: Using the UIDatePicker

Recipe: Using the UIDatePicker
When you want to ask your user to enter date information,Apple supplies a tidy subclass
of UIPickerView to handle several kinds of time entry. Figure 11-21 shows the four built-
in styles of UIDatePickers that you can choose from.These include selecting a time,
selecting a date, selecting a combination of the two, and a countdown timer. Recipe 11-23
demonstrates all of these styles.

Creating the Date Picker
Lay out a date picker exactly as you would a UIPickerView.The geometry is identical.
After that, things get much, much easier.You need not set a delegate or define data source
methods.You do not have to declare any protocols. Just assign a date picker mode. Choose
from UIDatePickerModeTime, UIDatePickerModeDate, UIDatePickerModeDateAndTime,
and UIDatePickerModeCountDownTimer.

Optionally, add a target for when the selection changes (UIControlEventValueChanged)
and create the callback method for the target-action pair.

Here are a few properties you’ll want to take advantage of in the UIDatePicker class:

n date—Set the date property to initialize the picker or to retrieve the information
set by the user as he or she manipulates the wheels.

n maximumDate and minimumDate—These properties set the bounds for date
and time picking.Assign each one a standard NSDate.With these, you can constrain
your user to pick a date from next year rather than just enter a date and then check
whether it falls within an accepted time frame.

n minuteInterval—Sometimes you want to use 5-, 10-, 15-, or 30-minute
intervals on your selections, such as for applications used to set appointments. Use
the minuteInterval property to specify that value.Whatever number you pass, it
has to be evenly divisible into 60.

n countDownDuration—Use this property to set the maximum available value
for a countdown timer.You can go as high as 23 hours and 59 minutes (that is,
86,399 seconds).

// Pick a random item in the middle of the table

[pickerView selectRow:50000 + (random() % 4) inComponent:0

animated:YES];

[pickerView selectRow:50000 + (random() % 4) inComponent:1

animated:YES];

[pickerView selectRow:50000 + (random() % 4) inComponent:2

animated:YES];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 11 and open the project for this recipe.

http://github.com/erica/iphone-3.0-cookbook-

ptg

488 Chapter 11 Creating and Managing Table Views

Recipe 11-23 Using the UIDatePicker to Select Dates and Times

@implementation TestBedViewController

- (void)actionSheet:(UIActionSheet *)actionSheet

clickedButtonAtIndex:(NSInteger)buttonIndex

{

// Recover the picker

UIDatePicker *datePicker = (UIDatePicker *)[actionSheet

viewWithTag:101];

// Set the date format based on the selected segment

NSDateFormatter *formatter = [[[NSDateFormatter alloc] init]

autorelease];

switch ([(UISegmentedControl *)self.navigationItem.titleView

selectedSegmentIndex])

Figure 11-21 The iPhone offers four stock date
picker models. Use the datePickerMode property to
select the picker you want to use in your application.

ptg

489Recipe: Using the UIDatePicker

{

case 0: // time picker

formatter.dateFormat = @"h:mm a";

break;

case 1: // date picker

formatter.dateFormat = @"dd MMMM yyyy";

break;

case 2: // date-time picker

formatter.dateFormat = @"MM/dd/YY h:mm a";

break;

case 3: // countdown picker

formatter.dateFormat = @"HH:mm";

break;

default:

break;

}

// Create a timestamp and display it

NSString *timestamp = [formatter stringFromDate:datePicker.date];

[(UILabel *)[self.view viewWithTag:103] setText:timestamp];

[actionSheet release];

}

- (void) action: (id) sender

{

// Allow space for either a portrait or landscape presentation

NSString *title = UIDeviceOrientationIsLandscape(

[UIDevice currentDevice].orientation) ?

@"\n\n\n\n\n\n\n\n\n" : @"\n\n\n\n\n\n\n\n\n\n\n\n" ;

// Build the action sheet and present it

UIActionSheet *actionSheet = [[UIActionSheet alloc]

initWithTitle:title delegate:self

cancelButtonTitle:nil destructiveButtonTitle:nil

otherButtonTitles:@"Set", nil];

[actionSheet showInView:self.view];

// Create and add the date picker

UIDatePicker *datePicker = [[[UIDatePicker alloc] init]

autorelease];

datePicker.tag = 101;

datePicker.datePickerMode =

[(UISegmentedControl *)self.navigationItem.titleView

selectedSegmentIndex];

[actionSheet addSubview:datePicker];

}

ptg

490 Chapter 11 Creating and Managing Table Views

Table 11-1 Default Format Codes for the NSDateFormatter Class

Type Code Notes

Day of month d 1 to 31, no leading zeros

dd 01 to 31, uses leading zeros

Month M

L

1 to 12, numeric month value, no leading zeros

MM

LL

01 to 12, numeric month value, leading zeros

MMM

LLL

Jan to Dec, three letter month abbreviation

- (void) viewDidLoad

{

self.navigationItem.rightBarButtonItem = BARBUTTON(@"Action",

@selector(action));

// Create a segmented control to choose the date style

UISegmentedControl *seg = [[[UISegmentedControl alloc]

initWithItems:[@"Time Date DT Count"

componentsSeparatedByString:@" "]] autorelease];

seg.segmentedControlStyle = UISegmentedControlStyleBar;

seg.selectedSegmentIndex = 0;

self.navigationItem.titleView = seg;

}

@end

One More Thing: Formatting Dates
Although the NSDateFormatter class has evolved a great deal from its early days and now
offers highly customizable elements that can be localized for various calendars and cul-
tures, it helps to have a quick reference on hand for the most common date and time for-
mats.Table 11-1 provides that reference, listing the most commonly used default codes.
These codes are like the ones used in Recipe 11-23 to format the results from the date
picker’s date property for the midscreen label. Listing 11-1 uses the formats from Table
11-1 to create an NSString utility that converts a string into a date using a format of
Month-Date-Year, for example, @”05-22-1934”.

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 11 and open the project for this recipe.

http://github.com/erica/iphone-3.0-cookbook-

ptg

491One More Thing: Formatting Dates

Table 11-1 Continued

Type Code Notes

MMMM

LLLL

January to December, full month name

Year y
u

e.g., 2009, four-digit year

yy e.g., 09, two-digit year

Hour h
K

1 to 12, no leading zeros

hh

KK

01 to 12, leading zeros

H
k

0 to 23, 24-hour clock, no leading zeros

HH

kk

00 to 23, 24-hour clock, leading zeros

Minutes m 0 to 59, no leading zeros

mm 00 to 59, leading zeros

Seconds s 0 to 59, no leading zeros

ss 0 to 59, leading zeros

AM/PM a

Day of Week ccc

EEE

Sun through Sat, three letter abbreviations

cccc

EEEE

Sunday through Saturday, full names

c
e

0-7 Ordinal day of week

cc

ee

00-07 Ordinal day of week

Week of Month F 1-5, no leading zeros

FF 01-05, leading zeros

Day of Year D 1-366, no leading zeros

DD 01-366, one leading zero

DDD 001-366, two leading zeros

Week of Year w 1-52, no leading zeros

ww 01-51, one leading zero

Millisecond of Day A 0- 86399999, no padding

ptg

492 Chapter 11 Creating and Managing Table Views

Table 11-1 Continued

Type Code Notes

Astronomical Julian
Day Number

g Number of days since 1 January 4713 BCE

Era G BC, AD—Christian year notation

GGGG Before Christ, Anno Domini—Christian year
notation

Quarter q
Q

1-4, quarter of year

qq

QQ

01-04, 1 leading zero

qqq

QQQ

Q1, Q2, Q3, Q4

qqqq

QQQQ

1st quarter, 2nd quarter, 3rd quarter, 4th quarter

Time Zone v 2-letter time zone, e.g., MT

V
z

3-letter time zone, e.g., MDT

vv

VV

ZZZZ

RFC 822 Time zone offset from Greenwich Mean
Time, e.g., GMT-06:00

vvvv Time zone name, e.g., Mountain Time

VVVV Time zone location, e.g., United States (Denver)

zzzz Full time zone name, e.g., Mountain Daylight
Time

Z GMT offset, e.g., -0600

Other characters :

-

/

Colon, hyphen, slash

Listing 11-1 Using Date Formats to Convert a String to a Date

@implementation (NSString-DateUtility)

- (NSDate *) date

{

// Return a date from a string

NSDateFormatter *formatter =

ptg

493Summary

[[[NSDateFormatter alloc] init] autorelease];

formatter.dateFormat = @"MM-dd-yyyy";

NSDate *date = [formatter dateFromString:aString];

return date;

}

@end

Summary
This chapter introduced iPhone tables from the simple to the complex.You saw all the
basic iPhone table features, from simple tables to edits to reordering and undo.You also
learned about a variety of advanced elements, from custom xib-based cells, to indexed
alphabetic listings, to picker views.The skills covered in this chapter enable you to build a
wealth of table-based applications for the iPhone and iPod touch. Here are some key
points to take away from this chapter:

n When it comes to understanding tables, make sure you know the difference
between data sources and delegate methods. Data sources fill up your tables with
meaningful cells. Delegate methods respond to user interactions.

n UITableViewControllers simplify applications built around a central
UITableView. Do not hesitate to use UITableView instances directly, however, if
your application requires it. Just make sure to explicitly support the
UITableViewDelegate and UITableViewDataSource protocols.

n Index controls provide a great way to navigate quickly through large ordered lists.
Take advantage of their power when working with tables that would otherwise
become unnavigable. Stylistically, it’s best to avoid index controls when working
with grouped tables.

n Date pickers are highly specialized and very good at what they do: soliciting your
users for dates and times. Picker views provide a less-specialized solution but
require more work on your end to bring them to life.

n This chapter introduced the NSPredicate class.This class provides flexible and pow-
erful solutions that extend well beyond tables and are explored further in Chapter
18,“Connecting to the Address Book,” and Chapter 19,“ATaste of Core Data.”

n As complicated and annoying as preferences tables are to program, they are a highly
requested feature when it comes to iPhone programming.They allow you to com-
bine many kinds of interactive input on a good-looking and easy-to-use scrolling
page.When you’ve conquered all the fussy aspects, they become a powerful tool in
your programming arsenal.

ptg

This page intentionally left blank

ptg

12
Making Connections with

GameKit and Bonjour

This chapter introduces GameKit, the simplest way to connect two iPhone devices.
GameKit is Apple’s new ad hoc networking solution for peer-to-peer connectivity.
It’s built on a technology called Bonjour that offers simple, no-configuration com-

munications between devices.With GameKit and Bonjour, you can build games and utili-
ties that move information back and forth between iPhones or between an iPhone and a
desktop system. In this chapter, you discover how to use GameKit to build connected
applications.You expand GameKit communications to create a cooperative drawing sys-
tem that transmits both user touches and a selected color.You see how to add GameKit
Voice to your applications for walkie-talkie-style voice chats.And you learn some basic
Bonjour programming that goes beyond GameKit limitations, allowing you to expand
your iPhone communications to the desktop.

Recipe: Creating Basic GameKit Services
GameKit provides peer-to-peer connectivity between iPhone and iPod touch devices.
New to the 3.0 SDK, this framework helps you create interconnected applications that
exchange live data in real time.

In its default implementation, GameKit works by creating and managing an ad hoc
Bluetooth network that lets devices find each other, establish a connection, and transmit
data through that connection. Starting with the iPhone 3.1 firmware, GameKit also
allows you to find, connect, and transmit to devices on the same WiFi network. Using
Bluetooth is a fast and reliable approach to interdevice communications. Unfortunately,
Bluetooth communication using GameKit is not supported for first generation iPhones
and iPod touches. GameKit offers an online (WiFi- or Internet-based) mode as well as
the Bluetooth mode, but at the time of writing this book it’s basically a “bring your own
technology to the table” option.

Although, as the name suggests, you can build games with GameKit, you can do far
more.You can create applications to support collaborative layout, picture sharing, chats,
and more. So long as the same application exists on both devices, you can establish

ptg

496 Chapter 12 Making Connections with GameKit and Bonjour

GameKit communications either with (3.1 firmware or later) or without a shared WiFi
network.

GameKit Bluetooth Limitations
All you need is proximity. GameKit’s Bluetooth-based applications are limited to about 10
meters, or 30 feet. So think of your audience including people riding together on a train
or in a car, in a convention hall’s meeting room, or working in the same office.Within
that range, your application can easily establish a peer-to-peer connection.

GameKit offers excellent performance for short, tight blips of information.Apple rec-
ommends that GameKit transmissions be limited to 1,000 bytes and under.Although
GameKit can handle larger blobs, up to 95 Kilobytes at a time, it’s not meant for use as
general device-to-device data transfer.Try to send too much data at once and you will
receive transmission errors.

If you must transfer large files, you need to break those files into manageable chunks.
Make sure you use standard handshaking and packet checksumming techniques to ensure
the reliability of your data.

Device Limitations
GameKit’s Bluetooth networking is not for every iPhone and iPod touch. It works with
the 3G iPhone and later models and with the second generation iPod touch and later
models.You cannot deploy a GameKit Bluetooth application to first generation iPhones
and iPod touch units. Plus, GameKit Bluetooth is only partially supported on the Simula-
tor.That is, you can discover nearby devices, but you cannot actually connect to them.

As of the 3.1 SDK,Apple added support for the peer-peer key in the Info.plist
UIRequiredDeviceCapabilities entry.This key indicates that your application requires
peer-to-peer connectivity over Bluetooth. For firmware earlier than 3.1, you can specify
required device features like telephony and microphone, but there’s no key available to
describe a Bluetooth networking prerequisite.

Make it very clear in your marketing materials which devices you do and do not sup-
port, especially if your application centers on nearby iPhone connectivity. Users cannot
use GameKit Bluetooth features on noncompliant devices.When attempting to do so,
they’ll receive a message like the one shown in Figure 12-1, which displays a Bluetooth
logo and says,“Not supported on this iPhone” (or iPod).

This is why you should strongly consider offering an “online mode” fallback.The same
interface that moves you to the Bluetooth-powered “nearby mode” provides a unified
GUI allowing users to access other networking options. Recipe 12-8 demonstrates this
second connection layer toward the end of this chapter.

Sessions
GameKit’s peer-to-peer connections are built using Bonjour networking. Bonjour, which
is Apple’s trade name for zero configuration networking, allows devices to advertise and
discover network services. Built into Mac OS X since version 10.2, Bonjour offers these
features without calling attention to itself. For example, Bonjour powers the features that

ptg

497Recipe: Creating Basic GameKit Services

Figure 12-1 GameKit features are not univer-
sally available to all iPhone and iPod touch devices.
The first generation iPhone and iPod touch units do
not support GameKit Bluetooth connections. Avoid

this error by specifying the peer-peer device
requirement in your application’s Info.plist file.

let users find shared music for iTunes or connect to wireless printers without requiring
custom configuration.These services automatically appear when they become available
and disappear when they’re not. It’s a powerful OS feature.

GameKit provides that same Bonjour power without having to build the often com-
plicated Bonjour callbacks for registering and detecting services.With GameKit, you
request a connection using a “peer picker” controller and then manage a “session” once
the connection has been established.

GameKit’s session objects provide a single focus point for data transfer management.
Each session uses a unique name, which you choose, to advertise itself.When an applica-
tion looks for another device to connect to, it uses this name to identify compatible
services.

If you use a Bonjour browsing service to look for that name, you’ll fail.Apple encodes
the service name. For example, a service called “MacBTClient Sample” becomes the
“_11d7n7p5tob54j._udp.” Bonjour service. GameKit automatically transforms the name
you supply so it knows how to find matching services.

Unfortunately, there’s no Mac OS X or Windows API available to let you build
services from a desktop system that would let you hook into GameKit.Apple’s name

ptg

498 Chapter 12 Making Connections with GameKit and Bonjour

encryption more or less guarantees that standard Bonjour communications will not work
with iPhone-based GameKit applications.

You read about bypassing this limitation later in this chapter by working directly with
Bonjour.

Servers, Clients, Peers
GameKit offers three session modes; applications can act as servers, clients, and peers.
Servers advertise a service and initialize a session, allowing clients to search for and con-
nect to them.This is the kind of behavior that a smart printer uses, letting clients find and
use its capabilities. It’s handy for devices that provide a fixed functionality but it’s not the
best choice for most iPhone applications, especially games.

Peers work as both servers and clients.They advertise and search simultaneously. Once
a peer selects a service, its client/server role is hidden both from the user and from the
developer.This makes the peer approach very easy to develop for iPhones.You don’t
have to build separate client and server applications. One peer-based application does all
the work.

The Peer Connection Process
The peer picking process is handled by a class called GKPeerPickerController. It pro-
vides a built-in series of interactive alert dialogs that automate the task of advertising
device availability and selecting a peer. Using this class is not mandatory.You can bypass it
and create a custom class to search for and connect to peers. For simple connections,
however, the GKPeerPickerController class offers a ready-to-use interface that sidesteps
the need for detecting and negotiating with peers.

To use the peer picker, you allocate it, set a delegate (which must implement the
GKPeerPickerControllerDelegate protocol), and show it. For targets earlier than the
3.1 SDK, avoid using autorelease with the picker. Instead, wait for a delegate callback and
release it there, ensuring that you will not run into unexplained application crashes when
the dismissal animation fails.This issue was fixed in the 3.1 firmware.With 3.1 or later,
you can choose to release in the callback (3.0 compatible) or use autorelease (3.1-or-later
compatible).

As mentioned, GameKit supports two kinds of connections: nearby (via Bluetooth)
and online (via the Internet and WiFi).The code in this chapter’s first few recipes exclu-
sively uses a nearby connection; an online recipe appears toward the end of this chapter.
The Internet-style approach is less friendly and minimally documented at the time of
writing this book. In contrast, the nearby Bluetooth style is friendly, easy-to-use, and
ready for inclusion in your applications.

Displaying the Peer Picker
The following code allocates and shows a new peer picker controller, setting its connec-
tion style to Nearby.This skips an optional interaction step (discussed later in this chapter)

ptg

499Recipe: Creating Basic GameKit Services

Figure 12-2 This is the first screen presented to
the user for peer-to-peer Bluetooth connections.

where a user selects between Online and Nearby modes.When presented, it shows the
interface in Figure 12-2.You do not have to use a peer picker to establish GameKit ses-
sions.The iPhone SDK now lets you create your own custom interfaces to work with the
underlying GameKit connections.A sample that demonstrates how to do so has been
added to the sample code that accompanies this chapter.

// Create and present a new peer picker

GKPeerPickerController *picker = [[[GKPeerPickerController alloc]

init];

picker.delegate = self;

picker.connectionTypesMask = GKPeerPickerConnectionTypeNearby;

[picker show];

When your mask includes the online type as well (GKPeerPickerConnectionTypeOnline),
the picker first asks the user which kind of connection to use before moving on to either
the nearby connection interface of Figure 12-2 or to a custom online interface that you
must build yourself.

Pressing Cancel
Users may cancel out of the peer picker alert.When they do so, the delegate receives a
peerPickerControllerDidCancel: callback. If you display a “connect” button in your
application, make sure to restore it at this point so the user can try again.

ptg

Creating the Session Object
As the picker delegate, you must supply a session object on request. Sessions, which pro-
vide an abstract class that creates and manages a data socket between devices, belong to
the GKSession class and must be initialized with a session identifier.This is the unique
string used to create the Bonjour service and link together two iPhone devices (peers)
both advertising the same service. By setting the display name to nil, the session uses the
built-in device name.

- (GKSession *)peerPickerController:(GKPeerPickerController *)picker

sessionForConnectionType:(GKPeerPickerConnectionType)type

{

// Create a new session if one does not already exist

if (!self.session) {

self.session = [[[GKSession alloc] initWithSessionID:

(self.sessionID ? self.sessionID : @"Sample Session")

displayName:nil sessionMode:GKSessionModePeer]

autorelease];

self.session.delegate = self;

}

return self.session;

}

Although this is an optional method, you’ll usually want to implement it so you can set
your session ID and mode. Upon detecting another iPhone or iPod with the same adver-
tised service ID, the peer picker displays the peer as a compatible match, as shown in
Figure 12-3.

Waiting for the peer picker list can take a few seconds or up to a few minutes. During
development, you usually need to allow your Bonjour network stack to clear out any pre-
vious sessions when you iterate on the code.That’s what typically causes the longer
delays.Apple recommends always debugging from a clean restart. If debugging delays get
frustrating enough, make sure to reboot.

In normal use, connection delays usually hover around 45 seconds at a maximum.
Warn your users to be patient. In Figure 12-3, Binky is the device name for a second
iPhone running the same application.When the user taps the name Binky, this iPhone
automatically goes into client mode, and Binky goes into server mode.

Client and Server Modes
When a device changes into client mode, it stops advertising its service.The Choose an
iPhone or iPod Touch dialog shown previously in Figure 12-3 changes on the server unit.
The client’s peer name dims to dark gray and the words “is not available” appear under-
neath.A few seconds later (and this can actually run up to a minute, so again warn your
users about delays), both units update their peer picker display.

Figure 12-4 shows the server and client peer pickers during this process.The client
waits as the server receives the connection request (left). On the server, the host user must

500 Chapter 12 Making Connections with GameKit and Bonjour

ptg
Figure 12-3 The peer picker lists all devices that

can act as peers.

Figure 12-4 Upon choosing a partner, the client goes into wait mode (left)
as the server decides whether to accept or decline the connection (middle).
Should the server decline, the client receives a notice to that effect (right).

501Recipe: Creating Basic GameKit Services

accept or decline the connection (middle). Should they decline, an updated peer picker
notifies the client (right). If they accept, both delegates receive a new callback.

ptg

The delegate callback lets the new peers dismiss the peer picker and to set their data
received handler. Make sure to release the picker at this time.

- (void)peerPickerController:(GKPeerPickerController *)picker

didConnectPeer:(NSString *)peerID

toSession: (GKSession *) session

{

// Dismiss and release the picker, then set the data handler

[picker dismiss];

[picker release];

[self.session setDataReceiveHandler:self withContext:nil];

}

Sending and Receiving Data
The data handler (in this case, self) must implement the receiveData:fromPeer:
➥inSession:context: method.The data sent to this method uses an NSData object;
there are no hooks or handles for partial data receipt and processing.As the data arrives as
a single chunk, keep your data bursts short (under 1,000 bytes) and to the point for highly
interactive applications.

- (void) receiveData:(NSData *)data fromPeer:(NSString *)peer

inSession: (GKSession *)session context:(void *)context

{

// handle data here

}

Send data via the session object.You can send in reliable mode or unreliable mode. Reli-
able mode uses error checking and retrying until the data is properly sent.All items are
guaranteed to arrive in the order they are sent, using TCP transmission.With unreliable
mode, data is sent once using UDP transmission, with no retry, Data may arrive out of
order. Use reliable mode (GKSendDataReliable) when you must guarantee correct deliv-
ery and unreliable mode for short bursts of data that must arrive nearly instantaneously.

- (void) sendDataToPeers: (NSData *) data

{

// Send the data, checking for success or failure

NSError *error;

BOOL didSend = [self.session sendDataToAllPeers:data

withDataMode:GKSendDataReliable error:&error];

if (!didSend)

NSLog(@"Error sending data to peers: %@",

[error localizedDescription]);

}

As a rule, the one error you’ll encounter here results from queuing too much data in reli-
able mode.This produces a “buffer full” error.

502 Chapter 12 Making Connections with GameKit and Bonjour

ptg

503Recipe: Creating Basic GameKit Services

State Changes
The following session delegate callback lets you know when a peer’s state has changed.
The two states you want to look for are connected, that is, when the connection finally
happens after the peer picker has been dismissed, and disconnected, when the other user
quits the application, manually disconnects, or moves out of range.

- (void)session:(GKSession *)session peer:(NSString *)peerID

didChangeState:(GKPeerConnectionState)state

{

/* STATES:

GKPeerStateAvailable, = 0,

GKPeerStateUnavailable, = 1,

GKPeerStateConnected, = 2,

GKPeerStateDisconnected, = 3,

GKPeerStateConnecting = 4 */

if (state == GKPeerStateConnected)

{

// handle connected state

}

if (state == GKPeerStateDisconnected)

{

// handle disconnection

}

}

To force a session to disconnect, use the disconnectFromAllPeers method.

- (void) disconnect

{

// Disconnect and then reset the session property

[self.session disconnectFromAllPeers];

self.session = nil;

}

Creating a GameKit Helper
Recipe 12-1 bundles the entire peer process into a simplified helper class.This class hides
most of the GameKit details connection and data transfer details, while providing a
demonstration of how to use these features. More importantly, it breaks down how you
might look at the GameKit process, with its two key details: connection and data.

Connecting
Any GameKit client you write must respond appropriately to the current connection
state.You need to be able to establish that connection and respond when it goes live or

ptg

when it drops.This class provides both connect and disconnect requests. For the most
part, monitoring connections involves toggling a state Boolean (isConnected) and updat-
ing any buttons that control a connect/disconnect toggle.

To simplify these updates, the class allows you to assign a view controller (via the
viewController property) and automatically updates the right-hand navigation item
button.The button starts off as Connect, and when tapped disappears until the user can-
cels or a connection is fully established.After connecting, the button updates to Discon-
nect and provides a callback to the helper’s disconnect method.

Handling Data
By providing the connection state details for you, you can use this GameKitHelper class
to create simple GameKit-enabled applications.The data handling, however, remains in
your hands. Consider the following snippet. It shows the entire implementation for a chat
application view controller, demonstrating the data transfer methods for this app.

@implementation TestBedViewController

- (void)textViewDidChange:(UITextView *)textView

{

// Perform updates only when connected

if (![GameKitHelper sharedInstance].isConnected) return;

NSString *text = sendView.text;

// Check for empty text. If so, send special clear request

if (!text || (text.length == 0)) text = @"xyzzyclear";

NSData *textData = [text dataUsingEncoding:NSUTF8StringEncoding];

[GameKitHelper sendData:textData];

}

-(void) receivedData: (NSData *) data

{

NSString *text = [[[NSString alloc] initWithData:data

encoding:NSUTF8StringEncoding] autorelease];

// Check for clear request when updating text

receiveView.text = [text isEqualToString:@"xyzzyclear"] ?

@"" : text;

}

- (void) clear

{

// Handle a clear request

sendView.text = @"";

}

- (void) viewDidLoad

504 Chapter 12 Making Connections with GameKit and Bonjour

ptg

{

self.navigationItem.leftBarButtonItem = BARBUTTON(@"Clear",

@selector(clear));

// Initialize the helper

[GameKitHelper sharedInstance].sessionID = @"Typing Together";

[GameKitHelper sharedInstance].dataDelegate = self;

[GameKitHelper assignViewController:self];

// Present the keyboard

[sendView becomeFirstResponder];

}

@end

As you can see, this application monitors a “send” text view, and when it changes (as the
user types), sends the contents of that view through GameKit to a peer.At the same time,
it waits for data, and when it receives it, updates the received text view to show what the
peered user has typed.A Clear button erases the “send” view text.

This application demonstrates the second half of the GameKit problem, handling
data. Recipe 12-1’s helper class creates a data delegate protocol, which is subscribed to
by this text chat view controller. Data is passed along through the custom
receivedData: delegate method, allowing the received text view to update with text
typed on the peer device.

Similarly, the text view delegate method textViewDidChange: passes on responsibility
for transmitting the actual text to the GameKitHelper class, calling the sendData:
method to convey the data to connected peers.

Note
Recipe 12-1 does not address the issue of out-of-order packet receipt. See Apple’s GKTank
sample code for an example of network packet handling. Apple’s code looks for the last
packet time and the packet ID to ensure that packets are handled in the proper sequence.

505Recipe: Creating Basic GameKit Services

The Helper Class
Recipe 12-1 contains the implementation for the GameKitHelper class.The associated
sample code for this recipe shows the class in action, creating the text chat application dis-
cussed previously.This class was designed for reuse and can easily be decoupled from the
text chat and repurposed, as you see in the next recipe.

Recipe 12-1 GameKitHelper Class

@implementation GameKitHelper

@synthesize dataDelegate;

@synthesize viewController;

@synthesize sessionID;

@synthesize session;

@synthesize isConnected;

ptg

// Macro helps check and then send selectors for data

// delegate callbacks

#define DO_DATA_CALLBACK(X, Y) if (self.dataDelegate && \

[self.dataDelegate respondsToSelector:@selector(X)]) \

[self.dataDelegate performSelector:@selector(X) withObject:Y];

#pragma mark Shared Instance

static GameKitHelper *sharedInstance = nil;

+ (GameKitHelper *) sharedInstance

{

if(!sharedInstance) sharedInstance = [[self alloc] init];

return sharedInstance;

}

#pragma mark Data Sharing

// Send data to all connected peers

- (void) sendDataToPeers: (NSData *) data

{

NSError *error;

BOOL didSend = [self.session sendDataToAllPeers: data

withDataMode:GKSendDataReliable error:&error];

if (!didSend)

DO_DATA_CALLBACK(sentData:,

(didSend ? nil : [error localizedDescription]));

}

// Redirect data receipt to the data delegate

- (void) receiveData:(NSData *)data fromPeer:(NSString *)peer

inSession: (GKSession *)session context:(void *)context

{

DO_DATA_CALLBACK(receivedData:, data);

}

#pragma mark Connections

// Start a new connection by presenting a peer picker

- (void) startConnection

{

if (!self.isConnected)

{

GKPeerPickerController *picker = [[GKPeerPickerController

alloc] init];

picker.delegate = self;

picker.connectionTypesMask = GKPeerPickerConnectionTypeNearby;

506 Chapter 12 Making Connections with GameKit and Bonjour

ptg

507Recipe: Creating Basic GameKit Services

[picker show];

if (self.viewController)

self.viewController.navigationItem.rightBarButtonItem =

nil;

}

}

// Dismiss the peer picker on cancel

- (void) peerPickerControllerDidCancel:

(GKPeerPickerController *)picker

{

[picker release];

if (self.viewController)

self.viewController.navigationItem.rightBarButtonItem =

BARBUTTON(@"Connect", @selector(startConnection));

}

// Upon a successful connection, set up the data handler

- (void)peerPickerController:(GKPeerPickerController *)picker

didConnectPeer:(NSString *)peerID

toSession: (GKSession *) session

{

[picker dismiss];

[picker release];

isConnected = YES;

[self.session setDataReceiveHandler:self withContext:nil];

DO_DATA_CALLBACK(connectionEstablished, nil);

}

// Provide the session information including id and mode

- (GKSession *)peerPickerController:(GKPeerPickerController *)picker

sessionForConnectionType:(GKPeerPickerConnectionType)type

{

if (!self.session) {

self.session = [[GKSession alloc] initWithSessionID:

(self.sessionID ? self.sessionID : @"Sample Session")

displayName:nil sessionMode:GKSessionModePeer];

self.session.delegate = self;

}

return self.session;

}

#pragma mark Session Handling

// Disconnect the current session

- (void) disconnect

{

ptg

[self.session disconnectFromAllPeers];

self.session = nil;

}

// Detect when the other peer has changed its state

- (void)session:(GKSession *)session peer:(NSString *)peerID

didChangeState:(GKPeerConnectionState)state

{

if (state == GKPeerStateConnected)

{

if (self.viewController)

self.viewController.navigationItem.rightBarButtonItem =

BARBUTTON(@"Disconnect", @selector(disconnect));

}

if (state == GKPeerStateDisconnected)

{

self.isConnected = NO;

showAlert(@"Lost connection with peer. You are no longer \

connected to another device.");

[self disconnect];

if (self.viewController)

self.viewController.navigationItem.rightBarButtonItem =

BARBUTTON(@"Connect", @selector(startConnection));

}

}

// Utility method for setting up the view controller

- (void) assignViewController: (UIViewController *) aViewController

{

self.viewController = aViewController;

self.viewController.navigationItem.rightBarButtonItem =

BARBUTTON(@"Connect", @selector(startConnection));

}

#pragma mark Class utility methods

// These class methods redirect to instance methods.

// They’re here for convenience only

+ (void) connect

{

[[self sharedInstance] startConnection];

}

+ (void) disconnect

{

[[self sharedInstance] disconnect];

508 Chapter 12 Making Connections with GameKit and Bonjour

ptg

509Recipe: Peeking Behind the Scenes

}

+ (void) sendData: (NSData *) data

{

[[self sharedInstance] sendDataToPeers:data];

}

+ (void) assignViewController: (UIViewController *) aViewController

{

[[self sharedInstance] assignViewController:aViewController];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 12 and open the project for this recipe.

Recipe: Peeking Behind the Scenes
At the time of writing, GameKit logs its status information as it runs, mostly by NSLog
calls introduced by Apple’s engineers.You can track this information at the debug console,
or you can use the following trick to redirect it to a file (the messages will not output to
the console) and then display it in-application with a text view. Recipe 12-2 uses a stan-
dard C freopen() call to redirect stderr data, which is what NSLog() produces, to a file.
It then sets up an NSTimer instance to monitor that file, and when the file contents
change, it updates the text view with that output.You can use this redirection approach
with GameKit or with any other application that produces console output of some kind.

Take note of the way this recipe updates the content offset for the text view. It ensures
that the text at the bottom of the view is always displayed after an update. It does this by
setting the offset to one page height shorter than the full content size.

Recipe 12-2 Monitoring GameKit

@implementation TestBedViewController

@synthesize textView;

- (void) listenForStderr: (NSTimer *) timer;

{

// Monitor the stderr output for new information

NSString *contents = [NSString

stringWithContentsOfFile:STDERR_OUT];

contents = [contents stringByReplacingOccurrencesOfString:@"\n"

withString:@"\n\n"];

if ([contents isEqualToString:self.textView.text]) return;

[self.textView setText:contents];

self.textView.contentOffset = CGPointMake(0.0f,

http://github.com/erica/iphone-3.0-cookbook-

ptg

510 Chapter 12 Making Connections with GameKit and Bonjour

MAX(self.textView.contentSize.height -

self.textView.frame.size.height, 0.0f));

}

- (void) viewDidLoad

{

// Establish the GameKit session

[GameKitHelper sharedInstance].sessionID = @"Peeking at GameKit";

[GameKitHelper assignViewController:self];

// Redirect stderr output to file

freopen([STDERR_OUT fileSystemRepresentation], "w", stderr);

[NSTimer scheduledTimerWithTimeInterval:1.0f target:self

selector:@selector(listenForStderr) userInfo:nil repeats:YES];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 12 and open the project for this recipe.

Recipe: Sending Complex Data Through GameKit
Sending simple strings back and forth through GameKit a la Recipe 12-1 gets you only so
far. Soon, you’ll need to move forward to more complex objects and data. Property lists
offer a good way to transmit custom objects.That’s because property lists are easily serial-
ized to and from NSData objects.

Property lists provide a helpful abstract data type.A property list object can point to
data (NSData), strings (NSString), arrays (NSArray), dictionaries (NSDictionary), dates
(NSDate), and numbers (NSNumber).When working with collection objects (i.e., arrays and
dictionaries) all members and keys must be property list objects as well, that is, data,
strings, numbers, and dates as well as embedded arrays and dictionaries.

While that seems limiting, you can transform most structures and objects to and from
strings. For example, you can use the built-in NSStringFromCGPoint() or
NSStringFromClass() functions, or you can create your own.The following pair of
methods extend the UIColor class, providing functionality needed to send color informa-
tion across a GameKit connection as strings.

@implementation UIColor (utilities)

- (NSString *) stringFromColor

{

// Recover the color space and store RGB or monochrome color

const CGFloat *c = CGColorGetComponents(self.CGColor);

CGColorSpaceModel csm =

CGColorSpaceGetModel(CGColorGetColorSpace(self.CGColor));

http://github.com/erica/iphone-3.0-cookbook-

ptg

511Recipe: Sending Complex Data Through GameKit

return (csm == kCGColorSpaceModelRGB) ?

[NSString stringWithFormat:@"%0.2f %0.2f %0.2f %0.2f",

c[0], c[1], c[2], c[3]] :

[NSString stringWithFormat:@"%0.2f %0.2f %0.2f %0.2f",

c[0], c[0], c[0], c[1]];

}

+ (UIColor *) colorWithString: (NSString *) colorString

{

// Read a color back from a string

const CGFloat c[4];

sscanf([colorString cStringUsingEncoding:NSUTF8StringEncoding],

"%f %f %f %f", &c[0], &c[1], &c[2], &c[3]);

return [UIColor colorWithRed:c[0] green:c[1] blue:c[2] alpha:c[3]];

}

@end

Once in property list form, you can serialize your data and send it as a single chunk. On
receipt, the deserialized data is ready to use. Recipe 12-3 shows the transmit and
receivedData: methods that handle this.This code comes from a sample that stores a
series of drawing points (a la Recipe 8-9) along with the color used to draw them in an
NSDictionary object.You can use the NSKeyedArchiver and NSKeyedUnarchiver classes
as well as the NSPropertyListSerialization class shown here.

By storing both the points and colors as strings, this data can easily be converted into a
form better suited for transmission via GameKit.The source code for this chapter shows
these methods in action, demonstrating the full collaborative drawing tool that leverages
property list transfers.

Recipe 12-3 Serializing and Deserializing Property Lists

- (void) transmit

{

if (![GameKitHelper sharedInstance].isConnected) return;

NSString *errorString;

// Send a copy of the local points to the peer

// by serializing the property list into data

NSData *plistdata = [NSPropertyListSerialization

dataFromPropertyList:self.points

format:NSPropertyListXMLFormat_v1_0

errorDescription:&errorString];

if (plistdata)

[GameKitHelper sendData:plistdata];

else

CFShow(errorString);

}

ptg

512 Chapter 12 Making Connections with GameKit and Bonjour

- (void) receivedData: (NSData *) thedata

{

// Deserialize the data back into a property list

CFStringRef errorString;

CFPropertyListRef plist =

CFPropertyListCreateFromXMLData(kCFAllocatorDefault,

(CFDataRef)thedata, kCFPropertyListMutableContainers,

&errorString);

if (!plist)

{

CFShow(errorString);

return;

}

// Assign the received data to foreignPoints

self.foreignPoints = (NSArray *)plist;

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 12 and open the project for this recipe.

Recipe: GameKit Voice Chat
GameKit’s In-Game Voice service lets applications create a walkie-talkie-style voice chan-
nel connecting two devices together.You can use this service with iPhones, taking advan-
tage of their built-in speaker and microphone, or with second generation or later iPod
touch units by adding an external microphone.The standard iPhone earbuds with their
built-in mic work very well with iPod touches, routing the audio into the earbuds and
picking up voice input through the microphone.

GameKit as Middleman
The GameKitHelper class introduced in Recipe 12-1 provides all the normal functionality
for GameKit connections.To adapt this code for Voice Chat, you need to think of the
GameKit communications as a voice chat middleman. GameKit handles the data through-
put, both receipt and delivery.

The voice additions, provided by the GKVoiceChatService class, sit outside normal
GameKit. Chat services connect into the iPhone’s audio playback and recording system, so
Voice Chat can listen to and play back audio.Voice Chat then sends its data through
GameKit and plays back the data it receives from GameKit. Figure 12-5 shows this separa-
tion of responsibilities.

Unfortunately, you cannot use the GameKit Voice Chat service over a connection
other than Bluetooth. GKVoice expects a GKSession with GKPeers in order to transmit

http://github.com/erica/iphone-3.0-cookbook-

ptg

513Recipe: GameKit Voice Chat

AV Play and Record
(microphone, speaker)

Device

Voice
Chat

GameKit

AV Play and Record
(microphone, speaker)

Device

Voice
Chat

GameKit

G
A

M
E

K
IT

 C
O

M
M

U
N

IC
A

T
IO

N
S

Figure 12-5 Voice Chat adds a layer outside normal GameKit communications to enable
live peer-to-peer audio.

its data. If you need to use voice transmission for another connection style, you’ll have to
write that layer yourself.

Implementing Voice Chat
When working with voice, there’s no difference in the way you get started.You display a
peer picker and negotiate the connection, as you would normally do with GameKit.The
difference arrives once the peer connects.You need to establish the voice chat and redirect
the data to and from that service.

Upon connecting to the new peer, set up the voice chat basics.The peer connection
method in Recipe 12-4 activates a play-and-record audio session, sets the default chat
service client, and starts a new voice chat with that peer. By setting the client property,
you ensure that your class receives the voice chat callbacks needed for negotiating data.

Your primary class must declare the GKVoiceChatClient protocol to do this.When the
chat service gathers data through the microphone, it triggers the voiceChatService:
➥sendData:toParticipantID: callback. Here, you can redirect voice data to your nor-
mal GameKit session. For a voice-only connection, just send along the data.When your
application handles both voice and other data, build a dictionary and tag the data with a
key such as @"voice" or When your class receives data through the normal
receiveData:fromPeer:inSession:context: callback, the same approaches apply.

ptg

514 Chapter 12 Making Connections with GameKit and Bonjour

For voice only, use receivedData:fromParticipantID: to send the data off to the chat
service.Voice Chat allows you to mix game audio with in-game voice. For voice-data
hybrid applications, deserialize the data, determine whether the packet included voice or
regular data, and redirect that data to the appropriate recipient.

Recipe 12-4 Adding In-Game Voice Chat Services

- (void)voiceChatService:(GKVoiceChatService *)voiceChatService

sendData:(NSData *)data toParticipantID:(NSString *)participantID

{

// Send the next burst of data to peers

[self.session sendData: data toPeers:[NSArray arrayWithObject:

participantID] withDataMode: GKSendDataReliable error: nil];

}

- (void) receiveData:(NSData *)data fromPeer:(NSString *)peer inSession:
(GKSession *)session context:(void *)context

{

// Redirect any voice data to the voice chat service

[[GKVoiceChatService defaultVoiceChatService]

receivedData:data fromParticipantID:peer];

}

- (NSString *)participantID

{

// provide the session’s participant ID for the chat

return self.session.peerID;

}

- (void)peerPickerController:(GKPeerPickerController *)picker

didConnectPeer:(NSString *)peerID toSession: (GKSession *) session{

// Upon connection, close the picker and set the data handler

[picker dismiss];

[picker release];

isConnected = YES;

[self.session setDataReceiveHandler:self withContext:nil];

// Start the audio session

NSError *error;

AVAudioSession *audioSession = [AVAudioSession sharedInstance];

if (![audioSession setCategory:AVAudioSessionCategoryPlayAndRecord

error:&error])

{

NSLog(@"Error setting the AV play/record category: %@", [error

localizedDescription]);

ptg

515Recipe: Using Bonjour to Create an iPhone Server

showAlert(@"Could not establish an Audio Connection. Sorry!");

return;

}

if (![audioSession setActive: YES error: &error])

{

NSLog(@"Error activating the audio session: %@", [error

localizedDescription]);

showAlert(@"Could not establish an Audio Connection. Sorry!");

return;

}

// Set the voice chat client and start voice chat

[GKVoiceChatService defaultVoiceChatService].client = self;

if (![[GKVoiceChatService defaultVoiceChatService]

startVoiceChatWithParticipantID: peerID error: &error])

{

showAlert(@"Could not start voice chat. Sorry!");

NSLog(@"Error starting voice chat");

}

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 12 and open the project for this recipe.

Recipe: Using Bonjour to Create an iPhone Server
Although GameKit is built around Bonjour, sometimes you’ll want to use Bonjour
directly. For example, you might build an iPhone service that connects to a Macintosh-
based client. (Bonjour has been ported to both Windows and Linux, but those platforms
fall outside the scope of this book.)

Apple has provided bounteous quantities of Bonjour sample code, and Recipe 12-5
takes advantage of this material.The recipe uses Apple’s ready-supplied TCPServer and
TCPConnection classes to broadcast a Bonjour service and respond to external connections.

This code is built around the basic image-picking sample from Recipe 7-1. Instead of
just selecting an image, this recipe serves that image out via a Bonjour data connection.

The handshake process starts by establishing a new TCPServer and setting its delegate.
The viewDidLoad method starts the service using the current run loop and announces a
"PictureThrow" service.When an external client connects, the server:didOpenConnection:
callback accepts the connection and sets its TCPConnection delegate.The difference
between the server delegate and the connection delegate is that the server is responsible
for listening for new connections, and the connection is responsible for sending and
receiving data.

http://github.com/erica/iphone-3.0-cookbook-

ptg

516 Chapter 12 Making Connections with GameKit and Bonjour

Figure 12-6 Emulating GameKit, Recipe 12-5
allows the user to decide whether to accept or

reject a remote connection.

As with GameKit, the user decides whether to accept a new connection.The
server:shouldAcceptConnectionFromAddress: connection delegate method returns a
Boolean value, allowing or denying the connection. Figure 12-6 shows the dialog dis-
played by Recipe 12-5 when a new connection is proposed.

After accepting the connection, the connection delegate receives a connectionDidOpen:
callback. Here, the application finally sends the data to the client and then closes the con-
nection with invalidate.This allows the client to implement a push-to-request-data but-
ton. Each press of that button initializes a new connection, and thus a new data request.

The data sent is the currently selected image.The user can update this image choice by
clicking Choose Image (using a standard image picker) or Camera (to snap a photo).

As you can see, the code in this recipe is far more concerned with handling the image
selection choices than the simple hooks into the Bonjour service. Just a few methods and
callbacks provide a complete suite of data server connectivity.

Note
The code for Apple’s classes has been included with the sample that accompanies this
chapter.

ptg

517Recipe: Using Bonjour to Create an iPhone Server

Recipe 12-5 Providing a Bonjour Service

@interface TestBedViewController : UIViewController

<UINavigationControllerDelegate, UIImagePickerControllerDelegate,

TCPServerDelegate, TCPConnectionDelegate>

{

UIImage *image;

TCPServer *server;

}

@property (retain) UIImage *image;

@property (retain) TCPServer *server;

@end

@implementation TestBedViewController

@synthesize image;

@synthesize server;

- (void) baseButtons

{

// Allow user to pick or snap an image

self.navigationItem.leftBarButtonItem = BARBUTTON(@"Choose Image",

@selector(pickImage));

if ([UIImagePickerController

isSourceTypeAvailable:UIImagePickerControllerSourceTypeCamera])

self.navigationItem.rightBarButtonItem = BARBUTTON(@"Camera",

@selector(snapImage));

}

- (void)imagePickerController:(UIImagePickerController *)picker

didFinishPickingMediaWithInfo:(NSDictionary *)info

{

// Show the selected image and dismiss the picker

self.image = [info objectForKey:

@"UIImagePickerControllerOriginalImage"];

[(UIImageView *)[self.view viewWithTag:101] setImage:self.image];

[self dismissModalViewControllerAnimated:YES];

[picker release];

[self baseButtons];

}

- (void) imagePickerControllerDidCancel:

(UIImagePickerController *)picker

{

// On cancel, dismiss the picker

[self dismissModalViewControllerAnimated:YES];

[picker release];

[self baseButtons];

ptg

518 Chapter 12 Making Connections with GameKit and Bonjour

}

- (void) requestImageOfType: (NSString *) type

{

// Show the picker using either the camera or photo picker

// depending on which button the user pressed

UIImagePickerController *ipc = [[UIImagePickerController alloc]

init];

ipc.sourceType = [type isEqualToString:@"Camera"] ?

UIImagePickerControllerSourceTypeCamera :

UIImagePickerControllerSourceTypePhotoLibrary;

ipc.delegate = self;

ipc.allowsImageEditing = NO;

[self presentModalViewController:ipc animated:YES];

}

- (void) pickImage: (id) sender

{

// Start a picking session from the photo library

self.navigationItem.leftBarButtonItem = nil;

self.navigationItem.rightBarButtonItem = nil;

[self performSelector:@selector(requestImageOfType)

withObject:@"Library" afterDelay:0.5f];

}

- (void) snapImage: (id) sender

{

// Start a camera session

self.navigationItem.leftBarButtonItem = nil;

self.navigationItem.rightBarButtonItem = nil;

[self performSelector:@selector(requestImageOfType)

withObject:@"Camera" afterDelay:0.5f];

}

- (NSString *) hostname

{

// Produce the host name for the iPhone

char baseHostName[255];

int success = gethostname(baseHostName, 255);

if (success != 0) return nil;

baseHostName[255] = '\0';

return [NSString stringWithCString:baseHostName];

}

- (BOOL) server:(TCPServer*)server

shouldAcceptConnectionFromAddress:(const struct sockaddr*)address

{

ptg

519Recipe: Using Bonjour to Create an iPhone Server

// Allow user to deny requests. To accept all connections

// replace this with "return YES;"

return [ModalAlert ask:@"Accept remote connection?"];

}

- (void) connectionDidOpen:(TCPConnection*)connection

{

// On opening the connection, send the current image

// data to the client

printf("Connection did open\n");

if ([connection sendData:

UIImageJPEGRepresentation(self.image, 0.75f)])

printf("Data sent\n");

[connection invalidate];

}

- (void) server:(TCPServer*)server

didOpenConnection:(TCPServerConnection*)connection

{

// Set the connection’s delegate, to receive the open

// callback when ready

[connection setDelegate:self];

}

- (void) viewDidLoad

{

// Check for a WiFi connection before proceeding

NetReachability *nr = [[NetReachability alloc]

initWithDefaultRoute:YES];

if (![nr isReachable] || ([nr isReachable] && [nr isUsingCell]))

{

[ModalAlert performSelector:@selector(say) withObject:

@"This application requires WiFi. Please enable WiFi in\

Settings and run this application again." afterDelay:0.5f];

return;

}

// Create a server instance, providing the Bonjour service

self.server = [[[TCPServer alloc] initWithPort:0] autorelease];

[self.server setDelegate:self];

[self.server startUsingRunLoop:[NSRunLoop currentRunLoop]];

[self.server enableBonjourWithDomain:@"local"

applicationProtocol:@"PictureThrow" name:[self hostname]];

// Set the default buttons and image

[self baseButtons];

self.image = [UIImage imageNamed:@"cover320x416.png"];

ptg

520 Chapter 12 Making Connections with GameKit and Bonjour

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 12 and open the project for this recipe.

Recipe: Creating a Mac Client for an iPhone
Bonjour Service
Apple’s Bonjour sample code works with both iPhone and Macintosh applications with
just a few changes needed. Notably, you need to drop any reference to the CFNetwork
framework, replacing that with the AppKit framework for Mac. Recipe 12-6 provides a
Macintosh client to demonstrate how to use the client side of the Bonjour sample code.
This meshes with the server from Recipe 12-5.

There’s nothing intrinsically specific about the roles and the platforms chosen.A Mac
could just as easily provide a service and an iPhone its client. Since an iPhone/iPhone
client/server pair is best implemented with GameKit, this recipe demonstrates how to
cross platforms and use Bonjour for mobile desktop communication.

Because this is an iPhone book and not a Macintosh development book, Recipe 12-6
limits itself to the methods specific to the Bonjour communications. If you want to see
how the rest of the application is built (and, especially, how to rectify the UIImage data
into a properly oriented NSImage), please refer to the sample code that accompanies this
book.Also refer to Recipe 12-8, which implements both server and client for iPhone.
Figure 12-7 shows the Macintosh client application, as it was used to capture the screen-
shot used in Figure 12-6.

A Bonjour client begins by browsing for services. Since the service on the iPhone is
provided by Bonjour and not GameKit, its name is known in advance of compilation
and testing, namely @"PictureThrow".This is the same name used in Recipe 12-5 by the
server.

The NSNetServiceBrowser class provides the ability to find a given service type. Its
delegate receives a netServiceBrowser:didFindService:moreComing: callback when a
match appears.The delegate can then stop the browser and begin to resolve the service.

Resolving a service transforms a service name into an actual IP address.The same
TCPConnection class used in Recipe 12-5 allows the Bonjour client to request data from
the server. Its connection:didReceiveData: callback delivers that data.

Connections can close for three reasons. First, the data transferred over successfully and
the host service closed it deliberately. Second, the user may have denied the connection.
Third, the application might have lost its connection by quitting or moving out of range.
The same connectionDidClose: callback must handle all three cases.

http://github.com/erica/iphone-3.0-cookbook-

ptg

521Recipe: Creating a Mac Client for an iPhone Bonjour Service

Figure 12-7 The Macintosh Bonjour client shown here was
used with the iPhone Bonjour server from Recipe 12-5 to cap-

ture some of the screenshots used to illustrate this book.

In this recipe, this callback sets a Boolean value for success.When the connection closes,
the connectionDidClose: callback method checks that value. If the data transfer did not
succeed, the user is told that the connection was denied or lost.

Recipe 12-6 Providing a Bonjour Client

// Receive the image and update the interface

- (void) connection:(TCPConnection*)connection

didReceiveData:(NSData*)data;

{

// Upon receiving the image, update the image view

success = YES;

self.imageData = data;

NSImage *image = [self imageFromData:data];

[imageView setImage:image];

// You can now save or catch another image

[saveItem setEnabled:YES];

[button setEnabled:YES];

[progress stopAnimation:nil];

ptg

522 Chapter 12 Making Connections with GameKit and Bonjour

// Update status

ANNOUNCE(@"Recived JPEG image (%d bytes).\n\nUse File > Save\

to save the received image to disk.", data.length);

}

// If there was no success, apologize and restore UI

- (void) connectionDidClose:(TCPConnection*)connection

{

// Failed or completed connection. Check for success.

if (success) return;

ANNOUNCE(@"Connection denied or lost. Sorry.");

// For a failed connection, prepare for the next catch

self.imageData = nil;

[saveItem setEnabled:NO];

[imageView setImage:nil];

[button setEnabled:YES];

[progress stopAnimation:nil];

}

// Upon resolving address, create a connection to that address

// and request data

- (void)netServiceDidResolveAddress:(NSNetService *)netService

{

// Gather the addresses and attempt to create a connection

NSArray* addresses = [netService addresses];

if (addresses && [addresses count]) {

struct sockaddr* address = (struct sockaddr*)[[addresses

objectAtIndex:0] bytes];

TCPConnection *connection = [[TCPConnection alloc]

initWithRemoteAddress:address];

[connection setDelegate:self];

[statusText setTitleWithMnemonic:@"Requesting data..."];

[progress startAnimation:nil];

[netService release];

[connection receiveData];

}

}

// Complain when resolve fails

- (void)netService:(NSNetService *)sender didNotResolve:

(NSDictionary *)errorDict {

[statusText setTitleWithMnemonic:

@"Error resolving service. Sorry."];

}

ptg

523Recipe: Working Around Real-World GameKit Limitations

// Upon finding a service, stop the browser and resolve

- (void)netServiceBrowser:(NSNetServiceBrowser *)netServiceBrowser

didFindService:(NSNetService *)netService

moreComing:(BOOL)moreServicesComing

{

[self.browser stop];

self.browser = nil;

[statusText setTitleWithMnemonic:@"Resolving service."];

[[netService retain] setDelegate:self];

[netService resolveWithTimeout:0.0f];

}

// Begin a catch request, start the service browser, and update UI

- (IBAction) catchPlease: (id) sender

{

success = NO;

[self.statusText setTitleWithMnemonic:@"Scanning for service"];

// Create a new service browser

self.browser = [[[NSNetServiceBrowser alloc] init] autorelease];

[self.browser setDelegate:self];

NSString *type = [TCPConnection

bonjourTypeFromIdentifier:@"PictureThrow"];

[self.browser searchForServicesOfType:type inDomain:@"local"];

// Disable and reset the interactive features while waiting

[button setEnabled:NO];

self.imageData = nil;

[saveItem setEnabled:NO];

[imageView setImage:nil];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 12 and open the project for this recipe.

Recipe: Working Around Real-World GameKit
Limitations
Although GameKit is built on Bonjour, it isn’t meant to provide the same kind of general
use data transfer capabilities displayed in the previous two Bonjour-only recipes. GameKit
Bluetooth prefers small data packets, preferably under 1,000 bytes each. GKSession objects
cannot send data over 95 kilobytes.When you try, the sendDataToAllPeers:error:
method fails, returning a Boolean value of NO.

http://github.com/erica/iphone-3.0-cookbook-

ptg

524 Chapter 12 Making Connections with GameKit and Bonjour

Recipe 12-7 addresses this problem by checking for data length before queuing any
send requests. Short data can be shared; long data is denied.To provide a test bed, this
recipe works with the iPhone’s built-in pasteboard.

In the real world, you’d likely split up long data items into short bursts and send them
using reliable transfer. Reliable transmission ensures that data arrives and does so in the
same order that it was sent.You can implement checksumming and other standard net-
work approaches to ensure your data arrives properly. (You might alternatively consider
programming a custom Bonjour WiFi service or using Internet server connections for
more intense data transfer needs.)

This recipe provides a jumping off point for testing file size elements in the GameKit
world.You are welcome to expand this code to explore file decomposition and recon-
struction on your own.

Using the iPhone Pasteboard
Pasteboards, also known as clipboards, provide a central OS feature for sharing data across
applications. Users can copy data to the pasteboard in one application, switch tasks, and
then paste that data into another application. Cut/copy/paste features appear in most
operating systems and are new to the iPhone, having debuted in the 3.0 firmware.

The UIPasteboard class offers access to a shared iPhone pasteboard and its contents.As
with Macs and Windows-based computers, you can use the pasteboard to share data
within an application or between applications. In addition to the general shared system
pasteboard, the iPhone offers both a name finding pasteboard and application-specific
pasteboards to better ensure data privacy.This snippet returns the general system paste-
board, which is appropriate for most general copy/paste use.

UIPasteboard *pb = [UIPasteboard generalPasteboard];

Storing Data
Pasteboards can store one or more entries at a time. Each has an associated type, using the
Uniform Type Identifier (UTI) to specify what kind of data is stored. For example, you
might find public.text (and more specifically public.utf8-plain-text), public.url,
and public.jpeg among common data types used on the iPhone.The dictionary that
stores the type and the data is called an item, and you can retrieve an array of all available
items via the pasteboard’s items property.

Query a pasteboard for its available types by sending it the pasteboardTypes message.
This returns an array of types currently stored on the pasteboard.

NSArray *types = [pb pasteboardTypes];

Pasteboards are specialized for several data types.These are colors, images, strings, and
URLs.The UIPasteboard class provides specialized getters and setters to simplify han-
dling these items. Because Recipe 12-7 provides a general pasting tool, only strings are
demonstrated with a specialized call, that is, setString.

ptg

525Recipe: Working Around Real-World GameKit Limitations

Retrieving Data
Retrieve data using dataForPasteboardType:.This returns the data from the first
item whose type matches the one sent as the parameter.Any other matching items in the
pasteboard are ignored. Should you need to retrieve all matching data, recover an
itemSetWithPasteboardTypes: and then iterate through the set to retrieve each
dictionary. Recover the data type for each item from the single dictionary key and the
data from its value.

UIPasteboard offers two approaches for pasting to the pasteboard. Use
setValueForPasteboardType: for Property List objects. (See the discussion earlier in this
chapter about these objects.) For general data, use setData:forPasteboardType: as is
used in this recipe.When pasteboards are changed, they issue a UIPasteboardChanged
➥Notification, which you can listen into via a default NSNotificationCenter observer.

Responsible Pasteboarding
Recipe 12-7 provides several checks before sending, retrieving, and copying pasteboard
data. Users must confirm that they intend to share data of a given type.When receiving
data, they must authorize the application to copy the data to the general system paste-
board.This approach ensures that proactive user effort must take place before performing
these actions.

Recipe 12-7 Sharing the iPhone Pasteboard over GameKit

@implementation TestBedViewController

- (void) sharePasteboard

{

// Construct a dictionary of the pasteboard type and data

NSMutableDictionary *md = [NSMutableDictionary dictionary];

UIPasteboard *pb = [UIPasteboard generalPasteboard];

NSString *type = [[pb pasteboardTypes] lastObject];

NSData *data = [pb dataForPasteboardType:type];

[md setObject:type forKey:@"type"];

[md setObject:data forKey:@"data"];

// Deny any requests that are too big

if (data.length > (95000))

{

[ModalAlert say:@"Too much data in pasteboard (%0.2f \

Kilobytes). GameKit can only send up to approx 90 \

Kilobytes at a time.", ((float) data.length) / 1000.0f];

return;

}

ptg

526 Chapter 12 Making Connections with GameKit and Bonjour

// User must confirm share

NSString *confirmString = [NSString stringWithFormat:

@"Share %d bytes of type %@?", data.length, type];

if (![ModalAlert ask:confirmString]) return;

// Serialize and send the data

NSString *errorString;

NSData *plistdata = [NSPropertyListSerialization

dataFromPropertyList:md format:NSPropertyListXMLFormat_v1_0

errorDescription:&errorString];

if (plistdata)

[GameKitHelper sendData:plistdata];

else

CFShow(errorString);

}

- (void) sentData:(NSString *) errorString

{

// Check to see if there was a problem sending data

if (errorString)

{

[ModalAlert say:@"Error sending data: %@", errorString];

return;

}

[ModalAlert say:@"Pasteboard data successfully queued for\

transmission."];

}

// On establishing the connection, allow the user to share the pasteboard

- (void) connectionEstablished

{

UIPasteboard *pb = [UIPasteboard generalPasteboard];

NSArray *types = [pb pasteboardTypes];

if (types.count == 0) return;

self.navigationItem.leftBarButtonItem = BARBUTTON(

@"Share Pasteboard", @selector(sharePasteboard));

}

// Hide the share option when the connection is lost

- (void) connectionLost

{

self.navigationItem.leftBarButtonItem = nil;

}

ptg

527Recipe: Working Around Real-World GameKit Limitations

-(void) receivedData: (NSData *) data

{

// Deserialize the transmission

CFStringRef errorString;

NSDictionary *dict =

(NSDictionary *) CFPropertyListCreateFromXMLData(

kCFAllocatorDefault, (CFDataRef)data,

kCFPropertyListMutableContainers, &errorString);

if (!dict)

{

CFShow(errorString);

return;

}

// Retrieve the type and data

NSString *type = [dict objectForKey:@"type"];

NSData *sentdata = [dict objectForKey:@"data"];

if (!type || !sentdata) return;

// Do not copy to pasteboard unless the user permits

NSString *message = [NSString stringWithFormat:

@"Received %d bytes of type %@. Copy to pasteboard?",

sentdata.length, type];

if (![ModalAlert ask:message]) return;

// Perform the pasteboard copy

UIPasteboard *pb = [UIPasteboard generalPasteboard];

if ([type isEqualToString:@"public.text"])

{

NSString *string = [[[NSString alloc] initWithData:sentdata

encoding:NSUTF8StringEncoding] autorelease];

[pb setString:string];

}

else [pb setData:sentdata forPasteboardType:type];

}

- (void) viewDidLoad

{

// Set up the helper

[GameKitHelper sharedInstance].sessionID = @"Pasteboard Share";

[GameKitHelper sharedInstance].dataDelegate = self;

[GameKitHelper assignViewController:self];

}

@end

ptg

528 Chapter 12 Making Connections with GameKit and Bonjour

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 12 and open the project for this recipe.

Recipe: iPhone to iPhone Gaming Via
BonjourHelper
If you’re willing to forgo GameKit’s Bluetooth and work with WiFi, you can duplicate
many of GameKit’s features on all iPhones including the older first generation units.
Recipe 12-8 introduces BonjourHelper. It was designed to mimic GameKitHelper from
Recipe 12-1.That recipe established its connection by setting a session identifier, a data
delegate, and assigning a view controller.

[GameKitHelper sharedInstance].sessionID = @"Typing Together";

[GameKitHelper sharedInstance].dataDelegate = self;

[GameKitHelper assignViewController:self];

Substituting BonjourHelper for GameKitHelper requires very few programming changes.
It uses the same initialization steps, and the data delegate receives an identical set of call-
backs.You do need to omit the space in the session ID, a step that isn’t needed in
GameKit. GameKit encrypts its session IDs to produce a guaranteed no-space proper
Bonjour identifier. BonjourHelper’s plain-text approach means spaces are off-limits. Limit
your session ID names to simple alphanumeric text with 14 characters or fewer. Refer to
RFC 2782 service types (http://www.dns-sd.org/ServiceTypes.html) for details.The
BonjourHelper code transforms the session ID into a standard Bonjour identifier (i.e.,
_typingtogether._tcp.).

[BonjourHelper sharedInstance].sessionID = @"TypingTogether";

[BonjourHelper sharedInstance].dataDelegate = self;

[BonjourHelper assignViewController:self];

That’s not to say that the functionality and implementation are identical.With
BonjourHelper, both units must be on the same network.You lose the pretty GameKit
peer connection controller sequence shown in Figures 12-2, 12-3, and 12-4. Instead,
BonjourHelper provides a simple alert, as shown in Figure 12-8. Beyond that,
BonjourHelper basically provides the same peer-to-peer connectivity and data flow as
GameKit.

Registering Bonjour Names and Ports
You should register any Bonjour names you plan to use for commercial release with the
DNS Service Discovery organization. Registration ensures that your service names and
protocols will not overlap or conflict with any other vendor.A list of currently registered
services is maintained at http://www.dns-sd.org/ServiceTypes.html.

These names must conform to the RFC 2782 standard. Submit your protocol name
to srv_type_request@dns-sd.org. Include the up-to-14-character name of the Bonjour

http://www.dns-sd.org/ServiceTypes.html
http://www.dns-sd.org/ServiceTypes.html
http://github.com/erica/iphone-3.0-cookbook-

ptg

529Recipe: iPhone to iPhone Gaming Via BonjourHelper

Figure 12-8 The custom BonjourHelper class
provides a simpler connection interface than

GameKit.

service, a longer descriptive name, the contact information (name and e-mail address) of
the person registering the service, and an information page URL. Specify the transporta-
tion protocol (i.e., _tcp or _udp) and a list of any TXT record keys used. (An example that
uses and displays TXT data follows at the end of this chapter.)

It may take some time for the volunteers at the dns-sd.org site to process and respond
to your query. Delays on the order of weeks are not uncommon.You may need to resub-
mit, so keep a copy of all your information.

If you plan to use a fixed port (most Bonjour implementations randomly pick a port at
runtime to use), you’ll want to submit an application for a registered port number with
IANA, the Internet Assigned Numbers Authority, as well. IANA provides a central reposi-
tory for port registrations and will, at some time, be merged with the dns-sd registry.
IANA often takes a year or longer to finish registering new protocol port numbers.

Note
Apple maintains a list of official OS X Bonjour service types in its Technical Q&A QA1312
document, which you can find at http://developer.apple.com/mac/library/qa/qa2001/
qa1312.html.

http://developer.apple.com/mac/library/qa/qa2001/qa1312.html
http://developer.apple.com/mac/library/qa/qa2001/qa1312.html

ptg

530 Chapter 12 Making Connections with GameKit and Bonjour

Duplex Connection
For simplicity, BonjourHelper works by establishing a duplex connection. Each device
provides both a client and a host.This avoids any issues about trying to get two peers to
negotiate with each other and assume the proper server and client roles without both of
them ending up as client or server at the same time.

When resolving addresses, the helper ensures that the unit will not connect to itself. It
demands a unique IP address that doesn’t match the local one. If the incoming address
does match, it just continues looking.The host needs no such checks; outgoing client con-
nections are limited to foreign addresses.

When the helper has established an outgoing connection and accepted an incoming
one, it stops looking for any further peers and considers itself fully connected.The helper
updates the Connect/Disconnect button if a view controller has been set.

Reading Data
Unlike Recipe 12-6, Recipe 12-8 cannot use a simple read loop, that is, request data, read
it, and repeat. Reading data is blocking.A read loop prevents an application from handling
its server duties at the same time as its client duties.

Instead, this class uses the nonblocking hasDataAvailable check before asking for
new data.A delayed selector adds a natural interval into the poll allowing each host time
to update and prepare new data before being barraged by a new request.

Closing Connections
Connections can break in several ways. Users can quit an application, they can press the
Disconnect button in the sample, or they can move out of range of the connection.
BonjourHelper checks for disconnects exclusively from the server point of view.This
simplifies its implementation, assuming that a lost client equates to a lost host and avoids
the issue of multiple user notifications, i.e.,“Lost connection to server” and “Lost connec-
tion to client” for both ends of the duplex connection.

Note
For space considerations, this listing of Recipe 12-8 omits a number of basic IP utilities,
including stringFromAddress:, addressFromString:address:, and localIPAddress.
These methods are included in the sample code that accompanies this chapter and are dis-
cussed further in Chapter 13, “Networking.”

Recipe 12-8 BonjourHelper Provides GameKit-like Connectivity over WiFi

#define DO_DATA_CALLBACK(X, Y) if (sharedInstance.dataDelegate && \

[sharedInstance.dataDelegate respondsToSelector:@selector(X)]) \

[sharedInstance.dataDelegate performSelector:@selector(X) \

withObject:Y];

#define BARBUTTON(TITLE, SELECTOR) [[[UIBarButtonItem alloc] \

initWithTitle:TITLE style:UIBarButtonItemStylePlain \

target:[BonjourHelper class] action:SELECTOR] autorelease]

ptg

531Recipe: iPhone to iPhone Gaming Via BonjourHelper

@implementation BonjourHelper

@synthesize server;

@synthesize browser;

@synthesize inConnection;

@synthesize outConnection;

@synthesize dataDelegate;

@synthesize viewController;

@synthesize sessionID;

@synthesize isConnected;

@synthesize hud;

static BonjourHelper *sharedInstance = nil;

BOOL inConnected;

BOOL outConnected;

+ (BonjourHelper *) sharedInstance

{

if(!sharedInstance) sharedInstance = [[self alloc] init];

return sharedInstance;

}

#pragma mark Class utilities

+ (void) assignViewController: (UIViewController *) aViewController

{

// By assigning the optional view controller, this class

// takes charge of the connect/disconnect button

sharedInstance.viewController = aViewController;

if (sharedInstance.viewController)

sharedInstance.viewController.navigationItem.rightBarButtonItem

= BARBUTTON(@"Connect", @selector(connect));

}

#pragma mark Handshaking

- (void) updateStatus

{

// Must be connected to continue

if (!(self.inConnection && self.outConnection) ||

!(inConnected && outConnected))

{

self.isConnected = NO;

return;

}

// Send callback, dismiss HUD, update bar button

ptg

532 Chapter 12 Making Connections with GameKit and Bonjour

self.isConnected = YES;

DO_DATA_CALLBACK(connectionEstablished, nil);

[self.hud dismissWithClickedButtonIndex:1 animated:YES];

if (self.viewController)

self.viewController.navigationItem.rightBarButtonItem =

BARBUTTON(@"Disconnect", @selector(disconnect));

}

// Upon resolving address, create a connection to that address

// and request data

- (void)netServiceDidResolveAddress:(NSNetService *)netService

{

NSArray* addresses = [netService addresses];

if (addresses && addresses.count)

{

for (int i = 0; i < addresses.count; i++)

{

// The IP utility implementations can be found in

// the sample code that accompanies this chapter.

// They are omitted here for space considerations.

struct sockaddr* address =

(struct sockaddr*)[[addresses objectAtIndex:i] bytes];

NSString *addressString =

[BonjourHelper stringFromAddress:address];

if (!addressString) continue;

if ([addressString hasPrefix:

[BonjourHelper localIPAddress]])

{

printf("Will not resolve with self. \

Continuing to browse.\n");

continue;

}

printf("Found a matching external service\n");

printf("My address: %s\n",

[[BonjourHelper localIPAddress] UTF8String]);

printf("Remote address: %s\n", [addressString UTF8String]);

// Stop browsing for services

[self.browser stop];

[netService release];

// Create an outbound connection to this new service

self.outConnection = [[[TCPConnection alloc]

initWithRemoteAddress:address] autorelease];

[self.outConnection setDelegate:self];

[self performSelector:@selector(checkForData)];

ptg

533Recipe: iPhone to iPhone Gaming Via BonjourHelper

[self updateStatus];

return;

}

}

[netService stop];

}

- (void)netServiceBrowser:(NSNetServiceBrowser *)netServiceBrowser

didFindService:(NSNetService *)netService

moreComing:(BOOL)moreServicesComing

{

// start to resolve the service that was found

[[netService retain] setDelegate:self];

[netService resolveWithTimeout:0.0f];

}

+ (void) startBrowsingForServices

{

// look for matching Bonjour services. The double-retain was

// added for security. You can almost certainly discard it.

sharedInstance.browser =

[[[NSNetServiceBrowser alloc] init] retain];

[sharedInstance.browser setDelegate:sharedInstance];

NSString *type = [TCPConnection

bonjourTypeFromIdentifier:sharedInstance.sessionID];

[sharedInstance.browser searchForServicesOfType:type

inDomain:@"local"];

}

+ (void) publish

{

// Publish service to peers

sharedInstance.server =

[[[TCPServer alloc] initWithPort:0] autorelease];

[sharedInstance.server setDelegate:sharedInstance];

[sharedInstance.server startUsingRunLoop:

[NSRunLoop currentRunLoop]];

[sharedInstance.server enableBonjourWithDomain:@"local"

applicationProtocol:sharedInstance.sessionID

name:[self localHostname]];

}

+ (void) initConnections

{

ptg

534 Chapter 12 Making Connections with GameKit and Bonjour

// Return to base unconnected state

[sharedInstance.browser stop];

[sharedInstance.server stop];

sharedInstance.inConnection = nil;

sharedInstance.outConnection = nil;

sharedInstance.isConnected = NO;

inConnected = NO;

outConnected = NO;

}

- (void)alertView:(UIAlertView *)alertView

clickedButtonAtIndex:(NSInteger)buttonIndex

{

// Handle user request to cancel connecting

if (buttonIndex) return;

[BonjourHelper disconnect];

}

+ (void) connect

{

if (sharedInstance.viewController)

sharedInstance.viewController.navigationItem.rightBarButtonItem

= nil;

if (!sharedInstance.sessionID)

sharedInstance.sessionID = @"Sample Session";

// Create activity view with cancel button

sharedInstance.hud = [[[UIAlertView alloc]

initWithTitle:

@"Searching for connection peer on your local network"

message:@"\n\n" delegate:sharedInstance

cancelButtonTitle:@"Cancel" otherButtonTitles:nil]

autorelease];

[sharedInstance.hud show];

// Add the progress wheel

UIActivityIndicatorView *aiv = [[[UIActivityIndicatorView alloc]

initWithActivityIndicatorStyle:

UIActivityIndicatorViewStyleWhiteLarge] autorelease];

[aiv startAnimating];

aiv.center = CGPointMake(

sharedInstance.hud.bounds.size.width / 2.0f,

sharedInstance.hud.bounds.size.height/2.0f);

[sharedInstance.hud addSubview:aiv];

// Prepare for duplex connection

[self initConnections];

ptg

535Recipe: iPhone to iPhone Gaming Via BonjourHelper

[self startBrowsingForServices];

[self publish];

}

+ (void) disconnect

{

// disable current connections

[sharedInstance.inConnection invalidate];

[sharedInstance.outConnection invalidate];

[self initConnections];

// stop server

[sharedInstance.server stop];

[sharedInstance updateStatus];

// reset

[sharedInstance.hud dismissWithClickedButtonIndex:1 animated:YES];

if (sharedInstance.viewController)

sharedInstance.viewController.navigationItem.rightBarButtonItem

= BARBUTTON(@"Connect", @selector(connect));

}

#pragma mark Data Handling

- (void) checkForData

{

// Perform a blocking receive only when data is available

if (!self.outConnection) return;

if ([self.outConnection hasDataAvailable])

[self.outConnection receiveData];

[self performSelector:@selector(checkForData)

withObject:self afterDelay:0.1f];

}

+ (void) sendData: (NSData *) data

{

if (!sharedInstance.outConnection) return;

BOOL success = [sharedInstance.outConnection sendData:data];

if (success) {

DO_DATA_CALLBACK(sentData:, nil); }

else {

DO_DATA_CALLBACK(sentData:, @"Data could not be sent.");}

}

- (void) connection:(TCPConnection*)connection

didReceiveData:(NSData*)data;

{

ptg

536 Chapter 12 Making Connections with GameKit and Bonjour

// Redirect data callback

DO_DATA_CALLBACK(receivedData:, data);

}

#pragma mark Connection Handlers

- (BOOL) server:(TCPServer*)server

shouldAcceptConnectionFromAddress:(const struct sockaddr*)address

{

// Accept connections only while not connected

return !self.isConnected;

}

- (void) connectionDidFailOpening:(TCPConnection*)connection

{

// Handled a fail open

if (!connection) return;

NSString *addressString = [BonjourHelper

stringFromAddress:connection.remoteSocketAddress];

[BonjourHelper disconnect];

if (addressString)

[ModalAlert say:@"Error while opening %@ connection (from %@).\

Wait a few seconds or relaunch before trying to connect\n

again.", (connection == self.inConnection) ? @"incoming" :

@"outgoing", addressString];

else

printf("Failed to open connection from unknown address\n");

}

- (void) server:(TCPServer*)server

didCloseConnection:(TCPServerConnection*)connection

{

// Handle a newly closed connection

if (!connection) return;

NSString *addressString = [BonjourHelper

stringFromAddress:connection.remoteSocketAddress];

if (!addressString) return;

BOOL wasConnected = self.isConnected;

[BonjourHelper disconnect];

printf("Lost connection from %s\n", [addressString UTF8String]);

if (wasConnected)

[ModalAlert say:@"Disconnected from peer (%@). You are no \

longer connected to another device.", addressString];

ptg

537Creating an “Online” GameKit Connection

else

[ModalAlert say:@"Peer was lost before full connection could \

be established."];

}

- (void) server:(TCPServer*)server

didOpenConnection:(TCPServerConnection*)connection

{

// Set the connection but wait for it to fully open

self.inConnection = connection;

[self updateStatus];

[connection setDelegate:self];

}

- (void) connectionDidOpen: (TCPConnection *) connection

{

// Fully opened connection

printf("Connection did open: %s\n", (connection ==

self.inConnection) ? "incoming" : "outgoing");

if (connection == self.inConnection) inConnected = YES;

if (connection == self.outConnection) outConnected = YES;

[self updateStatus];

}

- (void) connectionDidClose: (TCPConnection *)connection

{

// Closed connection

printf("Connection did close: %s\n", (connection ==

self.inConnection) ? "incoming" : "outgoing");

if (connection == self.inConnection) inConnected = NO;

if (connection == self.outConnection) outConnected = NO;

[self updateStatus];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 12 and open the project for this recipe.

Creating an “Online” GameKit Connection
In the GameKit world,“online” currently means any valid connection style other than
Bluetooth.You might use a local WLAN network to connect to another device on the
same network or connect through WWAN (i.e., the cellular service) or WiFi to a remote
Internet-based host. GameKit takes you only so far as the dialog shown in Figure 12-9. By

http://github.com/erica/iphone-3.0-cookbook-

ptg

538 Chapter 12 Making Connections with GameKit and Bonjour

Figure 12-9 The Online GameKit connection
means “bring your own networking.” (Please note
that the Send button shown on the keyboard here

is a standard Return key. In this recipe, data is
sent as it is typed.)

selecting Online, your user depends on you to create a custom connection to another
device or service.

You create this two-item dialog by supplying the online option to the peer picker mask.
In all other ways, there’s no change in how you create and present a standard GameKit
peer picker controller.

- (void) startConnection

{

if (!self.isConnected)

{

GKPeerPickerController *picker = [[GKPeerPickerController

alloc] init];

picker.delegate = self;

picker.connectionTypesMask = GKPeerPickerConnectionTypeNearby |

GKPeerPickerConnectionTypeOnline;

[picker show];

if (self.viewController)

self.viewController.navigationItem.rightBarButtonItem =

ptg

539Creating an “Online” GameKit Connection

nil;

}

}

Catch the user selection in the peerPickerController:didSelectConnectionType:
callback.You can assume that if the user selected Nearby that all the handshaking dialogs
are taken care of for you. Should the user select Online, however, it’s up to you to move
things to the next step.You need to dismiss the picker and display the next stage of the
connection task. Here, control passes away from the peer picker. BonjourHelper from
Recipe 12-8 is initialized, and its connection begun. Instead of the gray peer picker dia-
log, BonjourHelper’s standard blue alert appears.

- (void)peerPickerController:(GKPeerPickerController *)picker

didSelectConnectionType:(GKPeerPickerConnectionType)type

{

if(type == GKPeerPickerConnectionTypeOnline)

{

[picker dismiss];

[picker release];

[BonjourHelper sharedInstance].sessionID = self.sessionID;

[BonjourHelper sharedInstance].viewController =

self.viewController;

[BonjourHelper sharedInstance].dataDelegate =

self.dataDelegate;

[BonjourHelper connect];

}

}

As Recipe 12-9 demonstrates, almost no changes are needed from the BonjourHelper
side of things.The Connect button on the navigation bar must point back to GameKit’s
connect method, not to BonjourHelper’s.This ensures that users can finish a Bonjour
connection and then move on to a Bluetooth one without restarting the application.

Recipe 12-9 Updating the Macro Code to Use GameKit’s Version of Connect

#define GBARBUTTON(TITLE, SELECTOR) [[[UIBarButtonItem alloc] \
initWithTitle:TITLE style:UIBarButtonItemStylePlain \

target:[GameKitHelper class] action:SELECTOR] autorelease]

if (sharedInstance.viewController)

sharedInstance.viewController.navigationItem.rightBarButtonItem =

GBARBUTTON(@"Connect", @selector(connect));

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 12 and open the project for this recipe.

http://github.com/erica/iphone-3.0-cookbook-

ptg

540 Chapter 12 Making Connections with GameKit and Bonjour

Figure 12-10 The iPhone can scan for and
detect all local Bonjour services. If you are familiar
with the built-in protocols, you can develop applica-

tions that communicate with those services.

Additionally, you might think the Info.plist file needs a UIRequiresPersistentWiFi key
set to the Boolean value of true.Avoid doing this. Instead, check for WiFi only when you
are ready to attempt to create a WiFi connection, i.e., when the user clicks Online.
GameKit Bluetooth connections don’t need persistent WiFi although standard Bonjour
ones do. Don’t require your users to connect to a (possibly nonexistent) WiFi service
when Bluetooth is sufficient for Nearby gaming.

One More Thing: Scanning for Services
The NSNetServiceBrowser class is not limited to a single predefined service.You can
adapt the browser code to search for all available services that an iPhone can communi-
cate with. Recipe 12-10 extends the service browsing and resolution samples used in this
chapter to find all active Bonjour service providers, displaying them as a list, as shown in
Figure 12-10.Tapping on a list cell moves to a service detail page.

This recipe works by using DNS-based service discovery by searching for
_services._dns-sd._udp.This returns a list of records with service types.A second
round of service discovery, iterating through this list, produces the actual services shown
in Figure 12-10.

ptg

541One More Thing: Scanning for Services

As each service is found, it is resolved to produce a list of service IP addresses and its
TXT record data solicited (via startMonitoring) for further service details.When test-
ing this recipe, try viewing the data for an attached printer service (such as the Brother
HL-5040 shown in Figure 12-10) to produce a particularly detailed set of service info.

Beyond the TXT callback, which was not used in previous recipes, the methods shown
in this recipe mirror their earlier uses in the chapter.

Recipe 12-10 Bonjour Scanner

- (void)netServiceDidResolveAddress:(NSNetService *)netService

{

NSMutableDictionary *md = [self dictionaryForService:netService];

if (!md) return;

NSArray* addresses = [netService addresses];

if ([addresses count] > 0)

{

// Iterate through each of the addresses

NSMutableArray *naddresses = [NSMutableArray array];

for (int i = 0; i < addresses.count; i++)

{

struct sockaddr* address =

(struct sockaddr*)[[addresses objectAtIndex:i] bytes];

NSString *addressString = [self stringFromAddress:address];

if (!addressString) continue;

[naddresses addObject:addressString];

}

[md setObject:naddresses forKey:@"addresses"];

}

[netService release];

}

- (void)netService:(NSNetService *)netService

didUpdateTXTRecordData:(NSData *)data

{

// Retrieve the TXT Record data

NSDictionary *dict = [NSNetService

dictionaryFromTXTRecordData:data];

NSMutableDictionary *md = [self dictionaryForService:netService];

if (!md) return;

if ([[dict allKeys] count] == 0) return;

[md setObject:[dict description] forKey:@"other"];

}

ptg

542 Chapter 12 Making Connections with GameKit and Bonjour

- (void) netServiceBrowser:(NSNetServiceBrowser *) netServiceBrowser

didFindService:(NSNetService *) netService

moreComing:(BOOL) moreServicesComing

{

// Look for the service type items vs actual services

if (![netService hostName] && [[netService name] hasPrefix:@"_"])

[self.services addObject:[netService name]];

else

{

// It is an actual service, so create an info dictionary

NSMutableDictionary *md = [NSMutableDictionary dictionary];

[md setObject:[netService type] forKey:@"type"];

[md setObject:[netService name] forKey:@"name"];

[md setObject:[netService domain] forKey:@"domain"];

[netService startMonitoring];

[[netService retain] setDelegate:self];

[netService resolveWithTimeout:0.0f];

[self.results addObject:md];

[self.tableView reloadData];

}

if (!moreServicesComing)

{

// Finish scanning

[self.browser stop];

self.title = @"Services";

// Iterate through any remaining services

if ([self.services count] > 0)

{

NSString *type = [self.services objectAtIndex:0];

[self.services removeObject:type];

type = [type stringByAppendingString:@"._tcp."];

[self.browser searchForServicesOfType:type inDomain:@""];

}

else

self.navigationItem.rightBarButtonItem =

BARBUTTON(@"Rescan", @selector(scan));

}

}

- (void)netServiceBrowser:(NSNetServiceBrowser *)netServiceBrowser

didNotSearch:(NSDictionary *)errorInfo

{

ptg

543Summary

// Report any search errors

NSLog (@"Error %@", errorInfo);

}

- (void) scan: (UIBarButtonItem *) bbi

{

// Disable interface during scan

self.navigationItem.rightBarButtonItem = nil;

self.title = @"Scanning...";

// Provide a list for services yet to scan

self.services = [NSMutableArray array];

// Provide a list for fully scanned services

self.results = [NSMutableArray array];

// Start scanning. You can almost surely discard the double-retain

self.browser = [[[NSNetServiceBrowser alloc] init] retain];

[self.browser setDelegate:self];

[self.browser searchForServicesOfType:

@"_services._dns-sd._udp." inDomain:@""];

}

Summary
GameKit offers an exciting new player in the iPhone development arena. Its easy-to-use
ad hoc Bluetooth connections make it simple for you to deliver applications that commu-
nicate outside traditional networks. In this chapter, you saw how to build those connec-
tions and produce real-time data transfers that allow games and other applications to
coordinate information between separate devices.You also saw examples of iPhone and
Mac-based Bonjour applications that don’t rely on GameKit’s proprietary connections
and examples of GameKit’s “bring your own technology” Online connections. Here are a
few last minute thoughts on these technologies:

n Although Apple has not yet delivered GameKit for Macintosh, it’s probably on their
to-do list. GameKit is an exciting new technology and it’s sure to grow.

n Although a full Internet-based GameKit connection fell outside the scope of this
chapter, I expect to see great things from connected games developers.With propri-
etary networking, users will be able to connect iPhones together to play no matter
where players are located, nearby and online. It’s a real handheld gaming revolution
from the point of view of you, the developer, and probably the user as well.

ptg

n When working with Voice Chat, remember that nearby users may produce sound
loops creating feedback distortion unless they use headsets. Plus, people sitting 10
feet apart from each other can easily talk without the use of technology.

n Bonjour runs natively on Windows. Do a Google search for mDNSResponder for
details.

544 Chapter 12 Making Connections with GameKit and Bonjour

ptg

13
Networking

As an Internet-connected device, the iPhone is particularly well suited to retrieving
remote data and subscribing to Web-based services.Apple has lavished the platform
with a solid grounding in all kinds of network computing and its supporting tech-

nologies.The iPhone SDK handles sockets, password keychains, XML processing, and
more.This chapter surveys common techniques for network computing, offering recipes
that simplify day-to-day tasks.You read about checking the network status, monitoring
that status for changes, and testing site reachability.You also learn how to download
resources asynchronously and how to respond to authentication challenges. By the time
you finish this chapter, you’ll have discovered how to build an FTP client, a custom
iPhone-based Web browser, and more.

Recipe: Checking Your Network Status
Networked applications need a live connection to communicate with the Internet or
other nearby devices.Applications should know whether that connection exists before
reaching out to send or retrieve data. Checking the network status lets the application
communicate with users and explain why certain functions might be disabled.

Apple has and will reject applications that do not check the network status before pro-
viding download options to the user.Apple reviewers are trained to check whether you
properly notify the user, especially in the case of network errors.Always verify your net-
work status and alert the user accordingly.

Apple also rejects applications based on “excessive data usage.” If you plan to stream
large quantities of data in your application, such as voice or data, you’ll need to test for
the current connection type. Provide lower quality data streams for users on a cell net-
work connection and higher quality data for users with Wi-Fi connections.Apple has lit-
tle tolerance for applications that place high demands on cell network data.

The iPhone can currently test for the following configuration states: some (i.e., any
kind of) network connection available,Wi-Fi available, and cell service available.There are
no APIs that allow the iPhone to test for Bluetooth connectivity at this time (although
you can limit your application to run only on Bluetooth-enabled devices), nor can you
check to see whether a user is roaming before offering data access.

ptg

546 Chapter 13 Networking

The System Configuration framework offers many networking aware functions.
Among these, SCNetworkReachabilityCreateWithAddress checks whether an IP
address is reachable. Recipe 13-1 shows a simple example of this test in action.

It provides a basic detector that determines whether your device has outgoing connec-
tivity, which it defines as having both access and a live connection.This method, based on
Apple sample code, returns YES when the network is available and NO otherwise.The flags
used here indicate both that the network is reachable (kSCNetworkFlagsReachable) and
that no further connection is required (kSCNetworkFlagsConnectionRequired). Other
flags you may use are as follows:

n kSCNetworkReachabilityFlagsIsWWAN—Tests whether your user is
using the carrier’s network or local Wi-Fi.When available, the network can be
reached via EDGE, GPRS, or another cell connection.That means you might want
to use lightweight versions of your resources (for example, smaller versions of
images) due to the connection’s constricted bandwidth.

n kSCNetworkReachabilityFlagsIsDirect—Tells you whether the net-
work traffic goes through a gateway or arrives directly.

To confirm that connectivity code works, it is best evaluated on an iPhone. iPhones pro-
vide both cell and Wi-Fi support allowing you to confirm that the network remains
reachable when using a WWAN connection.Test out this code by toggling Wi-Fi and air-
plane mode off and on in the iPhone’s Setting app. Be aware that there’s sometimes a
slight delay when checking for network reachability, so design your applications accord-
ingly. Let the user know what your code is up to during the check.

Recipe 13-1 Testing a Network Connection

- (BOOL) connectedToNetwork

{

// Create zero addy

struct sockaddr_in zeroAddress;

bzero(&zeroAddress, sizeof(zeroAddress));

zeroAddress.sin_len = sizeof(zeroAddress);

zeroAddress.sin_family = AF_INET;

// Recover reachability flags

SCNetworkReachabilityRef defaultRouteReachability =

SCNetworkReachabilityCreateWithAddress(NULL,

(struct sockaddr *)&zeroAddress);

SCNetworkReachabilityFlags flags;

BOOL didRetrieveFlags =

SCNetworkReachabilityGetFlags(

defaultRouteReachability, &flags);

CFRelease(defaultRouteReachability);

ptg

547Recipe: Extending the UIDevice Class for Reachability

if (!didRetrieveFlags)

{

printf("Could not recover network flags\n");

return NO;

}

BOOL isReachable = flags & kSCNetworkFlagsReachable;

BOOL needsConnection = flags & kSCNetworkFlagsConnectionRequired;

return (isReachable && !needsConnection) ? YES : NO;

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 13 and open the project for this recipe.

Recipe: Extending the UIDevice Class for
Reachability
The UIDevice class provides information about the current device in use, such as its bat-
tery state, model, orientation, and so forth.Adding reachability seems like a natural exten-
sion for a class whose purpose is to report device state. Recipe 13-2 defines a UIDevice
category called Reachability. It hides calls to the System Configuration framework and
provides a simple way to check on the current network state.You can ask if the network is
active, and whether it is using cell service or Wi-Fi.

Most connectivity checking solutions assume that a connected device, whose connec-
tion is not provided by WWAN cell service, has Wi-Fi connectivity.This is an assumption
that may not continue to hold true should Apple open up Bluetooth services to the SDK.
Recipe 13-2 uses a direct Wi-Fi checking solution developed by Matt Brown, a software
developer and a fan of the first edition of this book. It applies low-level (but SDK-
friendly) calls to retrieve the local Wi-Fi IP address. If one is found, the class returns a pos-
itive result for Wi-Fi.

Note that this class uses a slightly different network check than Recipe 13-1, again one
inspired by Apple sample code. Use the ignoresAdHocWiFi Boolean to limit network
checks.When enabled, the recipe won’t return a success on detecting an ad hoc Wi-Fi
connection.

Recipe 13-2 Extending UIDevice for Reachability

@implementation UIDevice (Reachability)

SCNetworkConnectionFlags connectionFlags;

// Matt Brown’s get WiFi IP addy solution

+ (NSString *) localWiFiIPAddress

{

http://github.com/erica/iphone-3.0-cookbook-

ptg

548 Chapter 13 Networking

BOOL success;

struct ifaddrs * addrs;

const struct ifaddrs * cursor;

success = getifaddrs(&addrs) == 0;

if (success) {

cursor = addrs;

while (cursor != NULL) {

// the second test keeps from picking up

// the loopback address

if (cursor->ifa_addr->sa_family == AF_INET &&

(cursor->ifa_flags & IFF_LOOPBACK) == 0)

{

NSString *name = [NSString stringWithUTF8String:

cursor->ifa_name];

if ([name isEqualToString:@"en0"]) // Wi-Fi adapter

return [NSString stringWithUTF8String:

inet_ntoa(((struct sockaddr_in *)

cursor->ifa_addr)->sin_addr)];

}

cursor = cursor->ifa_next;

}

freeifaddrs(addrs);

}

return nil;

}

#pragma mark Checking Connections

+ (void) pingReachabilityInternal

{

BOOL ignoresAdHocWiFi = NO; // thanks to Apple

struct sockaddr_in ipAddress;

bzero(&ipAddress, sizeof(ipAddress));

ipAddress.sin_len = sizeof(ipAddress);

ipAddress.sin_family = AF_INET;

ipAddress.sin_addr.s_addr = htonl(

ignoresAdHocWiFi ? INADDR_ANY : IN_LINKLOCALNETNUM);

// Recover reachability flags

SCNetworkReachabilityRef defaultRouteReachability =

SCNetworkReachabilityCreateWithAddress(

kCFAllocatorDefault, (struct sockaddr *)&ipAddress);

BOOL didRetrieveFlags = SCNetworkReachabilityGetFlags(

defaultRouteReachability, &connectionFlags);

CFRelease(defaultRouteReachability);

if (!didRetrieveFlags)

ptg

549Recipe: Scanning for Connectivity Changes

printf("Error. Could not recover flags\n");

}

+ (BOOL) networkAvailable

{

[self pingReachabilityInternal];

BOOL isReachable = ((connectionFlags &

kSCNetworkFlagsReachable) != 0);

BOOL needsConnection = ((connectionFlags &

kSCNetworkFlagsConnectionRequired) != 0);

return (isReachable && !needsConnection) ? YES : NO;

}

+ (BOOL) activeWWAN

{

if (![self networkAvailable]) return NO;

return ((connectionFlags &

kSCNetworkReachabilityFlagsIsWWAN) != 0);

}

+ (BOOL) activeWLAN

{

return ([UIDevice localWiFiIPAddress] != nil);

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 13 and open the project for this recipe.

Recipe: Scanning for Connectivity Changes
Connectivity state may change while an application is running. Checking once at applica-
tion launch usually isn’t enough for an application that depends on data connections
throughout its lifetime.You may want to alert the user that a network connection was
lost—or could finally be established.

Recipe 13-3 addresses this challenge by using another UIDevice category to monitor
reachability. It provides a pair of methods that allow you to schedule and unschedule
reachability watchers, observers who must be notified when the connectivity state
changes. It builds a callback that messages a watcher object when that state changes.The
monitor is scheduled on the current run loop and runs asynchronously. Upon detecting a
change, the callback function triggers.

Recipe 13-3’s callback function redirects itself to a specific delegate method,
reachabilityChanged, which must be implemented by an object that conforms to the
ReachabilityWatcher protocol.That watcher object can then query UIDevice (via the
Reachability category) for the current flags and network state.

http://github.com/erica/iphone-3.0-cookbook-

ptg

550 Chapter 13 Networking

The method that schedules the watcher assigns the delegate as its parameter.

- (void) reachabilityChanged

{

[self showAlert:@"Reachability has changed."];

}

- (void) viewDidLoad

{

[UIDevice scheduleReachabilityWatcher:self];

}

Your application will generally receive one callback at a time for each kind of state
change, that is, when the cellular data connection is established or released, or when Wi-Fi
is established or lost.Your user’s connectivity settings (especially remembering and logging
in to known Wi-Fi networks) will affect the kind and number of callbacks you may have
to handle.

Be sure to inform your user when connectivity changes as well as update your inter-
face to mirror the current state.You might want to disable buttons or menu items that
depend on network access when that access disappears. Providing an alert of some kind
lets the user know why the GUI has updated.

Recipe 13-3 Monitoring Connectivity Changes

// Reachability Watcher Protocol defines callback

@protocol ReachabilityWatcher <NSObject>

- (void) reachabilityChanged;

@end

// Schedule or unscheduled watchers via this category

@interface UIDevice (ReachabilityCallback)

+ (BOOL) scheduleReachabilityWatcher: (id) watcher;

+ (void) unscheduleReachabilityWatcher;

@end

@implementation UIDevice (ReachabilityCallback)

SCNetworkConnectionFlags connectionFlags;

SCNetworkReachabilityRef reachability;

#pragma mark Checking Connections

// Update the reachability flags

+ (void) pingReachabilityInternal

{

if (!reachability)

{

BOOL ignoresAdHocWiFi = NO;

struct sockaddr_in ipAddress;

bzero(&ipAddress, sizeof(ipAddress));

ptg

551Recipe: Scanning for Connectivity Changes

ipAddress.sin_len = sizeof(ipAddress);

ipAddress.sin_family = AF_INET;

ipAddress.sin_addr.s_addr =

htonl(ignoresAdHocWiFi ? INADDR_ANY : IN_LINKLOCALNETNUM);

reachability = SCNetworkReachabilityCreateWithAddress(

kCFAllocatorDefault, (struct sockaddr *)&ipAddress);

CFRetain(reachability);

}

// Recover reachability flags

BOOL didRetrieveFlags = SCNetworkReachabilityGetFlags(reachability,

&connectionFlags);

if (!didRetrieveFlags)

NSLog(@"Error. Could not recover reachability flags");

}

#pragma mark Monitoring reachability

// Actual callback redirects to delegate. Info parameter is

// defined by the passed context when setting up the callback

static void ReachabilityCallback(SCNetworkReachabilityRef target,

SCNetworkConnectionFlags flags, void* info)

{

NSAutoreleasePool *pool = [NSAutoreleasePool new];

[(id)info performSelector:@selector(reachabilityChanged)];

[pool release];

}

// Schedule a watcher

+ (BOOL) scheduleReachabilityWatcher: (id) watcher

{

// Must conform to protocol

if (![watcher conformsToProtocol:@protocol(ReachabilityWatcher)])

{

NSLog(@"Watcher doesn’t conform to protocol.");

return NO;

}

[self pingReachabilityInternal];

// Here’s where the watcher is set for the info parameter

SCNetworkReachabilityContext context =

{0, watcher, NULL, NULL, NULL};

// Set the callback

if(SCNetworkReachabilitySetCallback(reachability,

ReachabilityCallback, &context))

{

ptg

552 Chapter 13 Networking

if(!SCNetworkReachabilityScheduleWithRunLoop(reachability,

CFRunLoopGetCurrent(), kCFRunLoopCommonModes))

{

NSLog(@"Error Could not schedule reachability");

SCNetworkReachabilitySetCallback(reachability, NULL, NULL);

return NO;

}

}

else

{

NSLog(@"Error Could not set reachability callback");

return NO;

}

return YES;

}

+ (void) unscheduleReachabilityWatcher

{

// disable callback

SCNetworkReachabilitySetCallback(reachability, NULL, NULL);

// remove from runloop

if (SCNetworkReachabilityUnscheduleFromRunLoop(reachability,

CFRunLoopGetCurrent(), kCFRunLoopCommonModes))

NSLog(@"Unscheduled reachability");

else

NSLog(@"Error Could not unschedule reachability");

CFRelease(reachability);

reachability = nil;

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 13 and open the project for this recipe.

Recipe: Recovering IP and Host Information
In the day-to-day world of iPhone network programming, certain tasks come up over and
over again, particularly those dealing with recovering the local iPhone IP address informa-
tion and working with address structures. Recipe 13-4 provides a handful of utilities, sev-
eral based on Apple sample code, that help you manage these tasks.

http://github.com/erica/iphone-3.0-cookbook-

ptg

553Recipe: Recovering IP and Host Information

As with Recipes 13-2 and 13-3, these methods are wrapped into the UIDevice class as
a category extension.They are, again, all implemented as class methods as their utility is
not tied to any particular object instance.The methods in this recipe are as follows.

n A pair of methods (stringFromAddress: and addressFromString:) helps you
convert address structures to and from string representations.The BonjourHelper
recipes in Chapter 12,“Making Connections with GameKit and Bonjour,” used
these methods extensively.They integrate well with the NSNetService class, allow-
ing you to convert sockaddr structures into NSString instances and back.

n The hostname method returns the host name for the current device.This method
observes a small iPhone quirk.The simulator normally appends the .local domain
to the current host name.The iPhone does not.This routine forces the host name
into Mac-style compliance. Be aware that hostname, as well as some of the follow-
ing methods, may fail on certain releases of the iPhone simulator, particularly in
Snow Leopard (versus Leopard). It continues to work properly, at the time this
book was written, on the iPhone device.

n Use getIPAddressForHost: to look up an address for a given host name.The sam-
ple code that accompanies this chapter uses this routine to retrieve IP addresses for
www.google.com and www.amazon.com.These calls are blocking, and they take a
certain amount of time to return (especially for nonexistent hosts). Use them judi-
ciously, preferably on a secondary thread or via an NSOperationQueue.

[self doLog:@" Google IP Addy: %@", [UIDevice

getIPAddressForHost:@"www.google.com"]];

[self doLog:@" Amazon IP Addy: %@", [UIDevice

getIPAddressForHost:@"www.amazon.com"]];

n The localIPAddress method looks up the host’s address and returns it as a string.
Like getIPAddressForHost:, this method uses gethostbyname() to convert a host
name into an IP address.

n A final method, whatismyipdotcom, helps move past a local LAN to determine a
cable, DSL, or similar IP address. It sends out a call to the whatismyip.com Web site,
which returns the connection IP address.This method is run synchronously, so it
blocks.You should always make sure that you are connected to the network before
attempting to call this method.

Recipe 13-4 IP and Host Utilities

@implementation UIDevice (IP)

// Produce a string representation of an IP address

+ (NSString *) stringFromAddress: (const struct sockaddr *) address

{

if(address && address->sa_family == AF_INET) {

const struct sockaddr_in* sin = (struct sockaddr_in*) address;

www.google.com
www.amazon.com

ptg

554 Chapter 13 Networking

return [NSString stringWithFormat:@"%@%d", [NSString

stringWithUTF8String:inet_ntoa(sin->sin_addr)],

ntohs(sin->sin_port)];

}

return nil;

}

// Produce an address from an NSString

+ (BOOL)addressFromString:(NSString *)IPAddress

address:(struct sockaddr_in *)address

{

if (!IPAddress || ![IPAddress length]) return NO;

memset((char *) address, sizeof(struct sockaddr_in), 0);

address->sin_family = AF_INET;

address->sin_len = sizeof(struct sockaddr_in);

int conversionResult = inet_aton([IPAddress UTF8String],

&address->sin_addr);

if (conversionResult == 0) return NO;

return YES;

}

// Return the current host name

+ (NSString *) hostname

{

char baseHostName[255];

int success = gethostname(baseHostName, 255);

if (success != 0) return nil;

baseHostName[255] = '\0';

#if !TARGET_IPHONE_SIMULATOR

return [NSString stringWithFormat:@"%s.local", baseHostName];

#else

return [NSString stringWithFormat:@"%s", baseHostName];

#endif

}

// Return an IP address (string form) for a given host

+ (NSString *) getIPAddressForHost: (NSString *) theHost

{

struct hostent *host = gethostbyname([theHost UTF8String]);

if (!host) {herror("resolv"); return NULL; }

struct in_addr **list = (struct in_addr **)host->h_addr_list;

NSString *addressString = [NSString

ptg

555Recipe: Checking Site Availability

stringWithCString:inet_ntoa(*list[0])

encoding:NSUTF8StringEncoding];

return addressString;

}

// Return the local IP address

+ (NSString *) localIPAddress

{

struct hostent *host = gethostbyname([[self hostname] UTF8String]);

if (!host) {herror("resolv"); return nil;}

struct in_addr **list = (struct in_addr **)host->h_addr_list;

return [NSString stringWithCString:inet_ntoa(*list[0])

encoding:NSUTF8StringEncoding];

}

// Query http://whatismyip.com for IP address

+ (NSString *) whatismyipdotcom

{

// This call is blocking, so use judiciously

NSError *error;

NSURL *ipURL = [NSURL URLWithString:

@"http://www.whatismyip.com/automation/n09230945.asp"];

NSString *ip = [NSString stringWithContentsOfURL:ipURL

encoding:NSUTF8StringEncoding error:&error];

return ip ? ip : [error localizedDescription];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 13 and open the project for this recipe.

Recipe: Checking Site Availability
After recovering a site’s IP address, use the SCNetworkReachabilityCreateWithAddress()
function to check its availability. Pass a sockaddr record populated with the site’s IP
address, and then check for the kSCNetworkFlagsReachable flag when the function
returns. Recipe 13-5 shows the site checking the hostAvailable: method. It returns YES
or NO.

This kind of check is synchronous and will block interaction until the method returns.
Recipe 13-5 uses the UIApplication network activity indicator, but in real-world use,
you may want to run these tests on a second thread and provide some kind of feedback
during the wait. (Recipes shown later in this chapter use the NSOperation and

http://github.com/erica/iphone-3.0-cookbook-

ptg

556 Chapter 13 Networking

NSOperationQueue objects to facilitate easy threading.) During testing, this recipe took
approximately 30 seconds to run all six tests, including the “notverylikely.com” test, which
was included to force a lookup failure.

Recipe 13-5 Checking Site Reachability

- (BOOL) hostAvailable: (NSString *) theHost

{

// Recover address string for host

NSString *addressString = [self getIPAddressForHost:theHost];

if (!addressString)

{

printf("Error recovering IP address from host name\n");

return NO;

}

// Convert to an address

struct sockaddr_in address;

BOOL gotAddress = [self addressFromString:addressString

address:&address];

if (!gotAddress)

{

printf("Error recovering sockaddr address from %s\n",

[addressString UTF8String]);

return NO;

}

// Check reachability flags

SCNetworkReachabilityRef defaultRouteReachability =

SCNetworkReachabilityCreateWithAddress(NULL,

(struct sockaddr *)&address);

SCNetworkReachabilityFlags flags;

BOOL didRetrieveFlags =

SCNetworkReachabilityGetFlags(defaultRouteReachability,

&flags);

CFRelease(defaultRouteReachability);

if (!didRetrieveFlags)

{

printf("Error. Could not recover flags\n");

return NO;

}

ptg

557Recipe: Synchronous Downloads

BOOL isReachable = flags & kSCNetworkFlagsReachable;

return isReachable ? YES : NO;;

}

#define CHECK(SITE) [self doLog:@"• %@ : %@", SITE, \

[self hostAvailable:SITE] ? @"available" : @"not available"];

- (void) action: (UIBarButtonItem *) bbi

{

[[UIApplication sharedApplication]

setNetworkActivityIndicatorVisible:YES];

self.log = [NSMutableString string];

CHECK(@"www.google.com");

CHECK(@"www.ericasadun.com");

CHECK(@"www.notverylikely.com");

CHECK(@"192.168.0.108");

CHECK(@"pearson.com");

CHECK(@"www.pearson.com");

[[UIApplication sharedApplication]

setNetworkActivityIndicatorVisible:NO];

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 13 and open the project for this recipe.

Recipe: Synchronous Downloads
Synchronous downloads allow you to request data from the Internet, wait until that data is
received, and then move on to the next step in your application. For example, Recipe 7-1
from Chapter 7,“Working with Images,” used synchronous downloads to initialize an
image with the contents retrieved from a URL address. Here is the call that was used.
Notice that this snippet is both synchronous and blocking.You will not return from this
method until all the data is received.

+ (UIImage *) imageFromURLString: (NSString *) urlstring

{

// This is a blocking call

return [UIImage imageWithData:[NSData

dataWithContentsOfURL:[NSURL URLWithString:urlstring]]];

}

The NSURLConnection class provides a more general download approach than class-
specific URL initialization. It provides both synchronous and asynchronous downloads,
the latter provided by a series of delegate callbacks. Recipe 13-6 focuses on the simpler,
synchronous approach. It begins by creating an NSMutableURLRequest with the URL of
choice.That request is sent synchronously using the NSURLConnection class.

http://github.com/erica/iphone-3.0-cookbook-

ptg

558 Chapter 13 Networking

NSMutableURLRequest *theRequest =

[NSMutableURLRequest requestWithURL:url];

NSData* result = [NSURLConnection sendSynchronousRequest:

theRequest returningResponse:&response error:&error];

This call blocks until the request fails (returning nil, and an error is produced) or the data
finishes downloading.

Recipe 13-6 performs the synchronous request in a second thread.To accommodate
this, the doLog: method, which provides updates through the download process, has been
modified for thread safety. Instead of updating the text view directly, the method performs
the setText: selector on the main (GUI-safe) thread.

[textView performSelectorOnMainThread:

@selector(setText) withObject:self.log waitUntilDone:NO];

This example allows testing with three predefined URLs.There’s one that downloads a
short (3MB) movie, another using a larger (23MB) movie, and a final fake URL to test
errors.The movies are sourced from the Internet Archive (archive.org), which provides a
wealth of public domain data.

Some Internet providers produce a valid Web page, even when given a completely
bogus URL.The data returned in the response parameter helps you determine when this
happens.This parameter points to an NSURLResponse object. It stores information about
the data returned by the URL connection.These parameters include expected content
length and a suggested filename. Should the expected content length be less than zero,
that’s a good clue that the provider has returned data that does not match up to your
expected request.

[self doLog:@"Response expects %d bytes",

[response expectedContentLength]];

As you can see in Recipe 13-6, trying to integrate large downloads into the main applica-
tion GUI gets messy and slow, even with a secondary thread. Recipe 13-7 addresses both
these issues by using a more streamlined special-purpose class to handle the download.

Recipe 13-6 Synchronous Downloads

- (void) doLog: (NSString *) formatstring, ...

{

// Logging utility method

va_list arglist;

if (!formatstring) return;

va_start(arglist, formatstring);

NSString *outstring = [[[NSString alloc]

initWithFormat:formatstring arguments:arglist]

autorelease];

va_end(arglist);

[self.log appendString:outstring];

ptg

559Recipe: Synchronous Downloads

[self.log appendString:@"\n"];

[textView performSelectorOnMainThread:

@selector(setText) withObject:self.log waitUntilDone:NO];

}

// Data URL resources

#define SMALL_URL @"http://www.archive.org/download/Drive-\

inSaveFreeTv/Drive-in—SaveFreeTv_512kb.mp4"

#define BIG_URL @"http://www.archive.org/download/\

BettyBoopCartoons/Betty_Boop_More_Pep_1936_512kb.mp4"

#define FAKE_URL @"http://www.idontbelievethisisvalid.com"

// Retrieve data from the net

- (void) getData: (NSNumber *) which

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

self.log = [NSMutableString string];

[self doLog:@"Download data now...\n"];

NSDate *date = [NSDate date];

// Determine which resource to download

NSArray *urlArray = [NSArray arrayWithObjects:

SMALL_URL, BIG_URL, FAKE_URL, nil];

NSURL *url = [NSURL URLWithString:

[urlArray objectAtIndex:[which intValue]]];

// prepare request and start download

NSMutableURLRequest *theRequest =

[NSMutableURLRequest requestWithURL:url];

NSURLResponse *response;

NSError *error;

NSData* result = [NSURLConnection

sendSynchronousRequest:theRequest

returningResponse:&response error:&error];

// On finish, show the response parameters

[self doLog:@"Response expects %d bytes",

[response expectedContentLength]];

[self doLog:@"Response suggested file name: %@",

[response suggestedFilename]];

// Check for errors or save data

if (!result)

[self doLog:@"Error downloading data: %@.",

[error localizedDescription]];

else if ([response expectedContentLength] < 0)

[self doLog:@"Error with download. Carrier redirect?"];

ptg

560 Chapter 13 Networking

else

{

[self doLog:@"Download succeeded."];

[self doLog:@"Read %d bytes", result.length];

[self doLog:@"Elapsed time: %0.2f seconds.",

-1.0f * [date timeIntervalSinceNow]];

[result writeToFile:DEST_PATH automatically: YES];

[self doLog:@"Data written to file."];

}

// Clean up after download

[self performSelectorOnMainThread:

@selector(finishedGettingData)

withObject:nil waitUntilDone:NO];

[pool release];

}

- (void) action: (UIBarButtonItem *) bbi

{

// start download in a new thread

NSNumber *which = [NSNumber numberWithInt:

[(UISegmentedControl *)self.navigationItem.titleView

selectedSegmentIndex]];

self.navigationItem.rightBarButtonItem = nil;

[NSThread detachNewThreadSelector:@selector(getData)

toTarget:self withObject:which];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 13 and open the project for this recipe.

Recipe: Asynchronous Downloads
Asynchronous downloads allow your application to download data in the background.
This keeps your code from blocking while waiting for a download to finish. For example,
you might use asynchronous downloads with table views, presenting placeholder images
while downloading thumbnails from a service like YouTube. Recipe 13-7 looks at an
asynchronous way to use NSURLConnections. It builds a helper class called
DownloadHelper that hides the details involved in downloading data. It works in the fol-
lowing fashion. Instead of sending a synchronous request, it initializes the connection and
assigns a delegate.

NSURLConnection *theConnection = [[NSURLConnection alloc]

initWithRequest:theRequest delegate:sharedInstance];

http://github.com/erica/iphone-3.0-cookbook-

ptg

561Recipe: Asynchronous Downloads

When setting up a connection this way, the data starts to download asynchronously, but it
does not yet allow the GUI to update without blocking.To accomplish that, you must
schedule the connection on the current run loop. Make sure to unschedule the connec-
tion when the download finishes.A download may finish either by retrieving all the
requested data or failing with an error.

[self.urlconnection scheduleInRunLoop:[NSRunLoop currentRunLoop]

forMode:NSRunLoopCommonModes];

Delegate methods help you track download life cycle.You receive updates when new data
is available, when the data has finished downloading, or if the download fails.To support
these callbacks, the DownloadHelper class defines several key properties:

n A URL string property points to the requested resource. It’s used to initialize the
URL request that begins the download process (requestWithURL:).

n The response property keeps track of the expected content length and the filename
for the downloaded object.This response is returned in the
connection:didReceiveResponse: delegate callback.

n A data property stores the data received during the download. It’s is an instance of
the NSMutableData class.When new data arrives (connection:didReceiveData:),
the helper appends it to the end of any existing data.

n A delegate property points to the client object.The delegate, which must imple-
ment the DownloadHelperDelegate protocol, is updated with optional callbacks as
the download progresses.This external delegate is distinct from the internal delegate
used with the NSURLConnection object. External callbacks occur
when the download succeeds (connection:didFinishLoading:),
fails (connection:didFailWithError:),
when the filename becomes known (connection:didReceiveResponse:),
and as each chunk of data arrives (connection:didReceiveData:). By passing a
percentage with the optional dataDownloadAtPercent: callback, the data
consumer can update a progress view to show the user how far a download has
progressed.

n The urlconnection property stores the current NSURLConnection object. It is kept
on hand to allow the DownloadHelper class’s cancel method to halt an ongoing
download, that is, [sharedInstance.urlconnection cancel].

The client starts the download by assigning a DownloadHelper delegate (presumably itself)
and requesting a download as follows.This helper class provides an extremely simple
developer interface as shown here.

[DownloadHelper sharedInstance].delegate = self;

[DownloadHelper download:urlString];

Although all the DownloadHelper delegate methods are optional, at a minimum, the dele-
gate should implement didReceiveData:, which is called with the fully downloaded data.

ptg

562 Chapter 13 Networking

Note
Recipe 13-7 assumes that you are assured an expected content length from the
data provider. When the server side returns a response using chunked data (i.e.,
Transfer-Encoding:chunked), the content length is not specified in the response.
Recipe 13-7 does not work with chunked data as it tests for content length and fails if
the expected length is unknown (i.e., NSURLResponseUnknownLength).

Recipe 13-7 Download Helper

@implementation DownloadHelper

@synthesize response;

@synthesize data;

@synthesize delegate;

@synthesize urlString;

@synthesize urlconnection;

@synthesize isDownloading;

- (void) start

{

// Transform the url string to a url

NSURL *url = [NSURL URLWithString:self.urlString];

if (!url)

{

NSString *reason = [NSString stringWithFormat:

@"Could not create URL from string %@", self.urlString];

DELEGATE_CALLBACK(dataDownloadFailed:, reason);

return;

}

// Create the request

NSMutableURLRequest *theRequest = [NSMutableURLRequest

requestWithURL:url];

if (!theRequest)

{

NSString *reason = [NSString stringWithFormat:

@"Could not create URL request from string %@",

self.urlString];

DELEGATE_CALLBACK(dataDownloadFailed:, reason);

return;

}

// Create the connection

self.urlconnection = [[NSURLConnection alloc]

initWithRequest:theRequest delegate:self];

if (!self.urlconnection)

{

ptg

563Recipe: Asynchronous Downloads

NSString *reason = [NSString stringWithFormat:

@"URL connection failed for string %@", self.urlString];

DELEGATE_CALLBACK(dataDownloadFailed:, reason);

return;

}

self.isDownloading = YES;

// Create the new data object

self.data = [NSMutableData data];

self.response = nil;

[self.urlconnection scheduleInRunLoop:

[NSRunLoop currentRunLoop] forMode:NSRunLoopCommonModes];

}

- (void) cleanup

{

// Clean up properties

self.data = nil;

self.response = nil;

self.urlconnection = nil;

self.urlString = nil;

self.isDownloading = NO;

}

- (void)connection:(NSURLConnection *)connection

didReceiveResponse:(NSURLResponse *)aResponse

{

// store the response information

self.response = aResponse;

// Check for bad connection

if ([aResponse expectedContentLength] < 0)

{

NSString *reason = [NSString stringWithFormat:

@"Invalid URL [%@]", self.urlString];

DELEGATE_CALLBACK(dataDownloadFailed:, reason);

[connection cancel];

[self cleanup];

return;

}

if ([aResponse suggestedFilename])

DELEGATE_CALLBACK(didReceiveFilename:,

[aResponse suggestedFilename]);

ptg

564 Chapter 13 Networking

}

- (void)connection:(NSURLConnection *)connection

didReceiveData:(NSData *)theData

{

// append the new data and update the delegate

[self.data appendData:theData];

// This assumes that you are assured an expected content length

if (self.response)

{

float expectedLength = [self.response expectedContentLength];

float currentLength = self.data.length;

float percent = currentLength / expectedLength;

DELEGATE_CALLBACK(dataDownloadAtPercent:, NUMBER(percent));

}

}

- (void)connectionDidFinishLoading:(NSURLConnection *)connection

{

// finished downloading the data, cleaning up

self.response = nil;

// Delegate is responsible for releasing data

if (self.delegate)

{

NSData *theData = [self.data retain];

DELEGATE_CALLBACK(didReceiveData:, theData);

}

[self.urlconnection unscheduleFromRunLoop:[NSRunLoop

currentRunLoop] forMode:NSRunLoopCommonModes];

[self cleanup];

}

- (void)connection:(NSURLConnection *)connection

didFailWithError:(NSError *)error

{

self.isDownloading = NO;

NSLog(@"Error Failed connection, %@",

[error localizedDescription]);

DELEGATE_CALLBACK(dataDownloadFailed:, @"Failed Connection");

[self cleanup];

}

ptg

565Recipe: Handling Authentication Challenges

+ (DownloadHelper *) sharedInstance

{

if(!sharedInstance) sharedInstance = [[self alloc] init];

return sharedInstance;

}

+ (void) download:(NSString *) aURLString

{

// start a new download

if (sharedInstance.isDownloading)

{

NSLog(@"Error Cannot start new download yet.");

return;

}

sharedInstance.urlString = aURLString;

[sharedInstance start];

}

+ (void) cancel

{

if (sharedInstance.isDownloading)

[sharedInstance.urlconnection cancel];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 13 and open the project for this recipe.

Recipe: Handling Authentication Challenges
Some Web sites are protected with usernames and passwords. NSURLConnection lets you
access these sites by responding to authentication challenges. Recipe 13-8 extends
DownloadHelper for challenges.To comply, it creates a new NSURLCredential object and
initializes it with a username and password. It passes this object to the challenge sender,
who then decides whether to accept it.

To test authentication, connect to http://ericasadun.com/Private, which was set up for
use with this recipe.This test folder uses the username PrivateAccess and password
tuR7!mZ#eh. Here are the calls needed to set up DownloadHelper to respond to an
authentication challenge.

NSString *urlString = @"http://ericasadun.com/Private/";

[DownloadHelper sharedInstance].username = @"PrivateAccess";

[DownloadHelper sharedInstance].password = @"tuR7!mZ#eh";

http://github.com/erica/iphone-3.0-cookbook-
http://ericasadun.com/Private

ptg

566 Chapter 13 Networking

[DownloadHelper sharedInstance].delegate = self;

[DownloadHelper download:urlString];

To test an unauthorized connection—that is, you will be refused—set the username and
password to nil or to nonsense strings.When set to nil, the challenge will be sent a nil
credential, producing an immediate failure.With nonsense strings, the challenge will fail
after the sender rejects the credentials.

Recipe 13-8 Authentication with NSURLCredential Instances

- (void)connection:(NSURLConnection *)connection

didReceiveAuthenticationChallenge:

(NSURLAuthenticationChallenge *)challenge

{

if (!username || !password)

{

[[challenge sender] useCredential:nil

forAuthenticationChallenge:challenge];

return;

}

NSURLCredential *cred = [[[NSURLCredential alloc]

initWithUser:username password:password

persistence:NSURLCredentialPersistenceNone] autorelease];

[[challenge sender] useCredential:cred

forAuthenticationChallenge:challenge];

}

- (void)connection:(NSURLConnection *)connection

didCancelAuthenticationChallenge:

(NSURLAuthenticationChallenge *)challenge

{

NSLog(@"Challenge cancelled");

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 13 and open the project for this recipe.

Recipe: Using the Keychain to Store Sensitive
Data
The iPhone keychain lets you store user credentials securely.“Secure” password text fields
that save their data to regular files are not particularly secure.Although the text is obscured
onscreen, files, including preferences files, use clear text when written to disk.You can
encrypt that data yourself, but then you subject your application to a variety of export

http://github.com/erica/iphone-3.0-cookbook-

ptg

567Recipe: Using the Keychain to Store Sensitive Data

issues.With the keychain,Apple provides a built-in highly secure password service that
takes care of the work for you.

Keychain Wrapper
The keychain uses the Security framework.This framework is available exclusively for the
device.You cannot program for or test the keychain on the simulator.When you add the
framework to your project, you must deploy to the device.

Programming the keychain is complex. Fortunately,Apple provides a simple
KeychainItemWrapper class that handles most basic keychain work for you.To use the
wrapper, you create an instance and initialize it with an identifier and access group. Create
a unique identifier for each login pair you will use.This allows you to add credentials for
each kind of account being used.

self.wrapper = [[KeychainItemWrapper alloc]

initWithIdentifier:@"Twitter" accessGroup:nil];

Unless you need to use your keychain across more than one application, set the access
group to nil. (Recipe 13-12, which follows later in this chapter, demonstrates how to use
cross-application keychains.)

To write items into the keychain, use the predefined account and data keys to store the
username and password as you would to update a dictionary.The wrapper automatically
updates the keychain without any further work needed to confirm the storage.

[self.wrapper setObject:uname forKey:(id)kSecAttrAccount];

[self.wrapper setObject:pword forKey:(id)kSecValueData];

When you’re ready to retrieve the data, use objectForKey:.

uname = [self.wrapper objectForKey:(id)kSecAttrAccount];

pword = [self.wrapper objectForKey:(id)kSecValueData];

Recipe 13-9 introduces a modal SettingsViewController class that loads a username
and password into its text fields when it is presented and saves any changes when it is dis-
missed. It takes advantage of the keychain wrapper to do this.

Pay attention to the bar button approach used in this recipe.At first, the button shows
“Back” until a text field is interacted with. Once a user starts editing, two new buttons
appear: Save and Cancel.This context sensitivity presents more meaningful button choices
than a simple Done button.

Keychain Persistence
Keychain data persists even after deinstalling your application.Apple’s developer relations
writes,“Keychain items created by any application will be persistent across uninstalls
because of the mere fact that the keychain store isn’t located inside of the application bun-
dle and there is no facility by which the system can be notified of when something is
uninstalled to then also uninstall all associated keychain items. It is also a policy issue

ptg

568 Chapter 13 Networking

between the trade-offs of losing sensitive passwords through malicious uninstalling and
keeping sensitive passwords intact and potentially secured away for the user(s).”

This behavior allows you to use the keychain to maintain persistent iPhone informa-
tion.You might keep track of user registration or limit demo mode usage.The persist-
ence means that nothing short of a firmware reinstall (without a backup restore) will
wipe the data.

Recipe 13-9 Accessing the iPhone Keychain Via a Modal Settings View

@implementation SettingsViewController

@synthesize username;

@synthesize password;

@synthesize wrapper;

- (void)textFieldDidBeginEditing:(UITextField *)textField

{

// On edit, allow user to save or cancel

self.navigationItem.rightBarButtonItem =

BARBUTTON(@"Save", @selector(dismiss));

self.navigationItem.leftBarButtonItem =

BARBUTTON(@"Cancel", @selector(dismissCancel));

}

- (void) dismiss: (id) sender

{

// Recover data, save it, and dismiss

NSString *uname = [username text];

NSString *pword = [password text];

if (uname) [self.wrapper setObject:uname

forKey:(id)kSecAttrAccount];

if (pword) [self.wrapper setObject:pword

forKey:(id)kSecValueData];

[self.parentViewController dismissModalViewControllerAnimated:YES];

}

- (void) dismissCancel: (id) sender

{

// Dismiss but do not save

[self.parentViewController dismissModalViewControllerAnimated:YES];

}

- (void) viewDidLoad

{

self.navigationItem.leftBarButtonItem =

BARBUTTON(@"Back", @selector(dismissCancel));

ptg

569Recipe: Uploading Via POST

// Identifier refers to upcoming recipes that build on this example

self.wrapper = [[KeychainItemWrapper alloc]

initWithIdentifier:@"Twitter" accessGroup:nil];

[self.wrapper release];

// Retrieve any saved user name and password

NSString *uname = [self.wrapper objectForKey:(id)kSecAttrAccount];

NSString *pword = [self.wrapper objectForKey:(id)kSecValueData];

if (uname) username.text = uname;

if (pword) password.text = pword;

username.delegate = self;

password.delegate = self;

}

- (void) dealloc

{

username = nil;

password = nil;

self.wrapper = nil;

[super dealloc];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 13 and open the project for this recipe.

Recipe: Uploading Via POST
NSURLRequest instances are a lot more flexible than the recipes in this chapter so far have
demonstrated. Recipe 13-10 builds a request that sends data to the Twitter social network-
ing service. It does this by creating an HTTP-style POST request and populating it with a
message.

[urlRequest setHTTPMethod:@"POST"];

[urlRequest setHTTPBody:

[body dataUsingEncoding:NSUTF8StringEncoding]];

[urlRequest setValue:@"application/x-www-form-urlencoded"

forHTTPHeaderField:@"Content-Type"];

The URL request allows you to set header fields, a body, and more. It basically provides an
Internet-savvy class that is well suited for communicating with online services.

For this example, the username and password are sent as part of the URL, that is,

http://username:password@twitter.com/statuses/update.xml

http://github.com/erica/iphone-3.0-cookbook-

ptg

570 Chapter 13 Networking

That is not normally the case for many services (as you see in Recipe 13-11). Because of
this approach,Twitter provides a good example of the simplest kind of POST-based API.

NSOperationQueue
This example uses a synchronous request to perform the upload, which can take up to a
minute or so to process.To avoid blocking GUI updates, the entire submission process is
embedded into an NSOperation subclass, TwitterOperation. Operations encapsulate
code and data for a single task, allowing you to run that task asynchronously.

Using NSOperation objects lets you submit them to an asynchronous
NSOperationQueue. Operation queues manage the execution of individual operations.
Each operation is prioritized and placed into the queue, where it is executed in priority
order. By submitting an operation to a queue, you can introduce GUI elements (such as
an activity indicator view or progress bar) whose presentation will not be blocked by the
execution of the operation.

TwitterOperation *operation = [[[TwitterOperation alloc] init]

autorelease];

operation.delegate = self;

operation.theText = text;

NSOperationQueue *queue = [[[NSOperationQueue alloc] init]

autorelease];

[queue addOperation:operation];

Since this operation runs asynchronously, the main view controller needs some way to
know when the upload completes. During the upload, the GUI for this example is dis-
abled and a UIActivityIndicatorView displayed. For this example, a delegate callback
method (doneTweeting:) is sent from the operation.This callback lets the main GUI
know when to restore itself to its normal interactive mode.

Whenever you subclass NSOperation, make sure to implement a main method.This
method is called when the operation executes.When main returns, the operation finishes.

Recipe 13-10 Tweeting Via POST

@implementation TwitterOperation

@synthesize wrapper;

@synthesize theText;

@synthesize delegate;

#define NOTIFY_AND_LEAVE(X) {[self cleanup:X]; return;}

- (void) cleanup: (NSString *) output

{

// Clean up after success or failure

self.theText = nil;

self.wrapper = nil;

ptg

571Recipe: Uploading Via POST

if (self.delegate && [self.delegate

respondsToSelector:@selector(doneTweeting)])

[self.delegate doneTweeting:output];

}

- (void) main

{

if (!theText || ![theText length])

NOTIFY_AND_LEAVE(@"You cannot tweet an empty message.");

// Retrieve user credentials

self.wrapper = [[KeychainItemWrapper alloc]

initWithIdentifier:@"Twitter" accessGroup:nil];

[self.wrapper release];

NSString *uname = [self.wrapper objectForKey:(id)kSecAttrAccount];

NSString *pword = [self.wrapper objectForKey:(id)kSecValueData];

if (!uname || !pword || (!uname.length) || (!pword.length))

NOTIFY_AND_LEAVE(@"Please enter your account credentials");

// Process user credentials

NSString *unpwraw = [NSString stringWithFormat:@"%@%@",

uname, pword];

NSString *unpw = ENCODE(unpwraw);

NSString *theTweet = ENCODE(theText);

NSString *body = [NSString stringWithFormat:

@"source=iTweet&status=%@", theTweet];

// Establish the Twitter API request

NSString *baseurl = [NSString stringWithFormat:

@"http://%@@twitter.com/statuses/update.xml", unpw];

NSURL *url = [NSURL URLWithString:baseurl];

NSMutableURLRequest *urlRequest =

[NSMutableURLRequest requestWithURL:url];

if (!urlRequest)

NOTIFY_AND_LEAVE(@"Error creating the URL Request");

[urlRequest setHTTPMethod: @"POST"];

[urlRequest setHTTPBody:

[body dataUsingEncoding:NSUTF8StringEncoding]];

[urlRequest setValue:@"application/x-www-form-urlencoded"

forHTTPHeaderField:@"Content-Type"];

NSLog(@"Contacting Twitter. This can take a minute or so...");

// Place the request and wait for a response

NSError *error;

ptg

572 Chapter 13 Networking

NSURLResponse *response;

NSData *tw_result = [NSURLConnection

sendSynchronousRequest:urlRequest returningResponse:&response

error:&error];

NSString *tw_output = [NSString stringWithFormat:

@"Submission error: %@", [error localizedDescription]];

if (!tw_result) NOTIFY_AND_LEAVE(tw_output);

// Clean up and notify the delegate

[self cleanup:[[[NSString alloc] initWithData:tw_result

encoding:NSUTF8StringEncoding] autorelease]];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 13 and open the project for this recipe.

Recipe: Uploading Data
Recipe 13-10 used a simple URL encoded form to submit data. Recipe 13-11 moves that
up a notch to create a full multipart form data submission.This recipe allows you to
upload images to the TwitPic.com service using your user’s Twitter credentials.The Twit-
Pic API is accessed at http://twitpic.com/api/uploadAndPost. It requires a username, pass-
word, and binary image data.

The challenge for Recipe 13-11 is to create a properly formatted body that can be
used by the TwitPic service. It implements a method that generates form data from a dic-
tionary of keys and values. For the purposes of this example, the objects in that dictionary
are limited to strings and images.You can extend this approach for other data types by
changing the content type string with different MIME types.

Recipe 13-11 Uploading Images to TwitPic

#define NOTIFY_AND_LEAVE(X) {[self cleanup:X]; return;}

#define DATA(X) [X dataUsingEncoding:NSUTF8StringEncoding]

#define IMAGE_CONTENT @"Content-Disposition: form-data; name=\"%@\";\

filename=\"image.jpg\"\r\nContent-Type: image/jpeg\r\n\r\n"

#define STRING_CONTENT @"Content-Disposition: form-data; \

name=\"%@\"\r\n\r\n"

#define MULTIPART @"multipart/form-data; boundary=------------\

0x0x0x0x0x0x0x0x"

@implementation TwitPicOperation

@synthesize wrapper;

http://github.com/erica/iphone-3.0-cookbook-
http://twitpic.com/api/uploadAndPost

ptg

573Recipe: Uploading Data

@synthesize theImage;

@synthesize delegate;

- (void) cleanup: (NSString *) output

{

self.theImage = nil;

self.wrapper = nil;

if (self.delegate &&

[self.delegate respondsToSelector:@selector(doneTweeting)])

[self.delegate doneTweeting:output];

}

- (NSData*)generateFormDataFromPostDictionary:(NSDictionary*)dict

{

// Set the boundary

NSString *boundary = @"------------0x0x0x0x0x0x0x0x";

// Establish a key dictionary

NSArray* keys = [dict allKeys];

// Establish the output data

NSMutableData* result = [NSMutableData data];

for (int i = 0; i < [keys count]; i++)

{

// Retrieve the next key

id value = [dict valueForKey: [keys objectAtIndex:i]];

// Add the separator data

[result appendData:[[NSString stringWithFormat:@"—%@\r\n",

boundary] dataUsingEncoding:NSUTF8StringEncoding]];

if ([value isKindOfClass:[NSData class]])

{

// handle image data

NSString *formstring =

[NSString stringWithFormat:IMAGE_CONTENT,

[keys objectAtIndex:i]];

[result appendData: DATA(formstring)];

[result appendData:value];

}

else

{

// all non-image fields assumed to be strings

NSString *formstring =

[NSString stringWithFormat:STRING_CONTENT,

[keys objectAtIndex:i]];

ptg

574 Chapter 13 Networking

[result appendData: DATA(formstring)];

[result appendData:DATA(value)];

}

// End the part

NSString *formstring = @"\r\n";

[result appendData:DATA(formstring)];

}

// All data added, so append another boundary

NSString *formstring =[NSString stringWithFormat:@"--%@--\r\n",

boundary];

[result appendData:DATA(formstring)];

return result;

}

- (void) main

{

if (!self.theImage)

NOTIFY_AND_LEAVE(@"Please set image before uploading.");

// Use Twitter credentials for TwitPic

self.wrapper = [[KeychainItemWrapper alloc]

initWithIdentifier:@"Twitter" accessGroup:nil];

[self.wrapper release];

NSString *uname = [self.wrapper objectForKey:(id)kSecAttrAccount];

NSString *pword = [self.wrapper objectForKey:(id)kSecValueData];

if (!uname || !pword || (!uname.length) || (!pword.length))

NOTIFY_AND_LEAVE(@"Please enter your account credentials.");

NSMutableDictionary* post_dict =

[[NSMutableDictionary alloc] init];

[post_dict setObject:uname forKey:@"username"];

[post_dict setObject:pword forKey:@"password"];

[post_dict setObject:@"Posted from iTweet" forKey:@"message"];

[post_dict setObject:UIImageJPEGRepresentation(self.theImage,

0.75f) forKey:@"media"];

// Create the post data from the post dictionary

NSData *postData = [self

generateFormDataFromPostDictionary:post_dict];

[post_dict release];

// Establish the API request.

NSString *baseurl = @"http://twitpic.com/api/uploadAndPost";

ptg

575Recipe: Sharing Keychains Between Applications

NSURL *url = [NSURL URLWithString:baseurl];

NSMutableURLRequest *urlRequest = [NSMutableURLRequest

requestWithURL:url];

if (!urlRequest)

NOTIFY_AND_LEAVE(@"Error creating the URL Request");

[urlRequest setHTTPMethod: @"POST"];

[urlRequest setValue:MULTIPART forHTTPHeaderField:

@"Content-Type"];

[urlRequest setHTTPBody:postData];

// Submit & retrieve results

NSError *error;

NSURLResponse *response;

NSLog(@"Contacting TwitPic....");

NSData* result = [NSURLConnection sendSynchronousRequest:

urlRequest returningResponse:&response error:&error];

if (!result)

{

[self cleanup:[NSString stringWithFormat:

@"Submission error: %@", [error localizedDescription]]];

return;

}

// Return results

NSString *outstring = [[[NSString alloc] initWithData:result

encoding:NSUTF8StringEncoding] autorelease];

[self cleanup: outstring];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 13 and open the project for this recipe.

Recipe: Sharing Keychains Between Applications
Unfortunately, sharing keychains is not as simple as assigning a group name.There are sev-
eral hurdles you need to pass through to work with a keychain that’s valid across applica-
tions.As you can see from Recipe 13-12, there’s not a lot to be done from the application
end. Most of the work is done setting things up in Xcode. Here’s a step-by-step walk-
through of the process:

1. Locate your Application Identifier.

http://github.com/erica/iphone-3.0-cookbook-

ptg

576 Chapter 13 Networking

a. In Xcode, open the Organizer (select Window > Organizer) and click on
IPHONE DEVELOPMENT > Provisioning Profiles. Select your standard
wildcard development provision, or if you’re ready to distribute your applica-
tion, your standard wildcard distribution provision.The application identifier
(“App Identifier”) appears in the profile overview.

b. This identifier should be the same for both provisions, assuming you’ve fol-
lowed the com.yourcompany.* naming convention.A ten-character prefix
should appear right before your identifier. Copy the entire identifier. For me,
that identifier is Y93A4XLA79.com.sadun.*.

2. Set your keychain access group.

In your application, update all your wrapper initializations to use the following access
group. Substitute GenericKeychainSuite for the final asterisk in the identifier, but
otherwise use the identifier you copied from the provision listing, that is, don’t use
Y93A4XLA79.That identifier is assigned to com.sadun, not to your company.

The phrase GenericKeychainSuite is arbitrary.You can use another suite name if
desired, but adapt the rest of these instructions accordingly if you do so.

3. Create a new entitlement.

In Xcode, choose File > New File > Code Signing > Entitlements and click Next.
Name the new entitlement KeychainEntitlement.plist (again, this is an arbitrary
name) and click Finish. Xcode adds the new file to your active project.

4. Edit the entitlement.

Delete the get-task-allow entry in your new property list.Then add a new item
called keychain-access-groups. Use this phrase exactly. Set its type to Array.Add one
item; the name is “Item 1” by default. Set the string value of this item to your access
group name, for example,Y93A4XLA79.com.sadun.GenericKeychainSuite.Again,
make sure you use your own company and your own provisioning identity. Save the
file and close it.

5. Update the target.

a. In the Project window, select Groups & Files > Targets >
YourApplicationName. Click the blue Info button at the top of the Project
window. Open the Build tab.

b. When the Build Tab is displayed, scroll down to find the Code Signing >
Code Signing Entitlements section. Double-click to open the entitlements
editor.Type KeychainEntitlement.plist into the text field and click OK.This
filename must match the actual property list you edited in the previous step.

c. Close the target window when you are done.

ptg

577Recipe: Converting XML into Trees

After following these steps, you will have updated your project to allow you to share the
same keychain across multiple applications.To test, copy your project, change the applica-
tion identifier in the Info.plist file, and run it on your iPhone.The new application should
have equal access to the data.When deployed, users can update credentials for popular
services in one of your applications, and they’ll be ready for use in all your apps.

Note
The same entitlement and access group can be used for multiple login items within the
same or separate applications. Just use different identifiers for each login item.

Recipe 13-12 Wrapper Initialization for Keychain Sharing

self.wrapper = [[KeychainItemWrapper alloc]

initWithIdentifier:@"SharedTwitter"

accessGroup:@"Y93A4XLA79.com.sadun.GenericKeychainSuite"];

[self.wrapper release];

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 13 and open the project for this recipe.

Recipe: Converting XML into Trees
The NSXMLParser class provided in the iPhone SDK scans through XML, creating call-
backs as new elements are processed and finished (i.e., using the typical logic of a SAX
parser).The class is terrific for when you’re downloading simple data feeds and want to
scrape just a bit or two of relevant information. It’s not so great when you’re doing pro-
duction-type work that relies on error checking, status information, and back-and-forth
handshaking.

Tree data structures offer a better way to represent XML data.They allow you to create
search paths through the data, so you can find just the data you’re looking for.You can
retrieve all “entries,” search for a success value, and so forth.Trees convert text-based XML
back into a multidimensional structure.

To bridge the gap between NSXMLParser and tree-based parse results, you can use an
NSXMLParser-based helper class to return more standard tree-based data.This requires a
simple tree node like the kind shown here.This node uses double linking to access its par-
ent and its children allowing two-way traversal in a tree.

@interface TreeNode : NSObject

{

TreeNode *parent;

NSMutableArray *children;

NSString *key;

NSString *leafvalue;

}

http://github.com/erica/iphone-3.0-cookbook-

ptg

578 Chapter 13 Networking

@property (retain) TreeNode *parent;

@property (retain) NSMutableArray *children;

@property (retain) NSString *key;

@property (retain) NSString *leafvalue;

@end

Building a Parse Tree
Recipe 13-13 introduces the XMLParser class. Its job is to build a parse tree as the
NSXMLParser class works its way through XML source.The three standard NSXML routines
(start element, finish element, and found characters) perform a recursive depth-first
descent through the tree.

The class adds new nodes when reaching new elements (parser:didStartElement:
➥qualifiedName:attributes:) and adds leaf values when encountering text
(parser:foundCharacters:). Because XML allows siblings at the same tree depth, this
code uses a stack to keep track of the current path to the tree root. Siblings always pop
back to the same parent in parser:didEndElement:, so they are added at the proper
level.

After finishing the XML scan, the parseXMLFile: method returns the root node.

Recipe 13-13 The XMLParser Helper Class

@implementation XMLParser

// Parser returns the tree root. You have to go down

// one node to the real results

- (TreeNode *) parse: (NSXMLParser *) parser

{

stack = [NSMutableArray array];

TreeNode *root = [TreeNode treeNode];

root.parent = nil;

root.leafvalue = nil;

root.children = [NSMutableArray array];

[stack addObject:root];

[parser setDelegate:self];

[parser parse];

[parser release];

// pop down to real root

TreeNode *realroot = [[root children] lastObject];

root.children = nil;

root.parent = nil;

ptg

579Recipe: Converting XML into Trees

root.leafvalue = nil;

root.key = nil;

realroot.parent = nil;

return realroot;

}

// Descend to a new element

- (void)parser:(NSXMLParser *)parser

didStartElement:(NSString *)elementName

namespaceURI:(NSString *)namespaceURI

qualifiedName:(NSString *)qName

attributes:(NSDictionary *)attributeDict

{

if (qName) elementName = qName;

TreeNode *leaf = [TreeNode treeNode];

leaf.parent = [stack lastObject];

[(NSMutableArray *)[[stack lastObject] children] addObject:leaf];

leaf.key = [NSString stringWithString:elementName];

leaf.leafvalue = nil;

leaf.children = [NSMutableArray array];

[stack addObject:leaf];

}

// Pop after finishing element

- (void)parser:(NSXMLParser *)parser

didEndElement:(NSString *)elementName

namespaceURI:(NSString *)namespaceURI

qualifiedName:(NSString *)qName

{

[stack removeLastObject];

}

// Reached a leaf

- (void)parser:(NSXMLParser *)parser foundCharacters:(NSString *)string

{

if (![[stack lastObject] leafvalue])

{

[[stack lastObject] setLeafvalue:[NSString

stringWithString:string]];

return;

}

ptg

580 Chapter 13 Networking

[[stack lastObject] setLeafvalue:

[NSString stringWithFormat:@"%@%

[[stack lastObject] leafvalue], string]];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 13 and open the project for this recipe.

Using the Tree Results
Listing 13-1 demonstrates an XML parse-tree consumer that works with the data
returned from Recipe 13-13.This example presents a series of table view controllers that
drill down from the root of the tree until the leaves.Whenever leaves are encountered,
their values are displayed in an alert. Subtrees lead to additional view controller screens.

This example uses the TreeNode class trivially.The only items of interest are the leaf
values and the child nodes.The class can do far more, including returning leaves and
objects that match a given key.This functionality lets you retrieve information without
knowing the exact path to a child node as long as you know what the node is called, such
as “entry” or “published.”These two names are in fact used by Twitter’s API.The TreeNode
search facility is demonstrated further in Recipe 16-3 in Chapter 16,“Push Notifications,”
which uses this to retrieve individual tweets and the time they were published.

Listing 13-1 Browsing the Parse Tree

@implementation TreeBrowserController

@synthesize root;

// Each instance of this controller has a separate root, as

// descending through the tree produces new roots.

- (id) initWithRoot:(TreeNode *) newRoot

{

if (self = [super init])

{

self.root = newRoot;

if (newRoot.key) self.title = newRoot.key;

}

return self;

}

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView

{

return 1;

}

http://github.com/erica/iphone-3.0-cookbook-

ptg

581Recipe: Converting XML into Trees

// The number of rows equals the number of children for a node

- (NSInteger)tableView:(UITableView *)tableView

numberOfRowsInSection:(NSInteger)section

{

return [self.root.children count];

}

// Color code the cells that can be navigated through

- (UITableViewCell *)tableView:(UITableView *)tableView

cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

UITableViewCell *cell = [tableView

dequeueReusableCellWithIdentifier:@"generic"];

if (!cell) cell = [[[UITableViewCell alloc]

initWithFrame:CGRectZero reuseIdentifier:@"generic"]

autorelease];

TreeNode *child = [[self.root children]

objectAtIndex:[indexPath row]];

// Set text

if (child.hasLeafValue)

cell.textLabel.text = [NSString stringWithFormat:@"%@%@",

child.key, child.leafvalue];

else

cell.textLabel.text = child.key;

// Set color

if (child.isLeaf)

cell.textLabel.textColor = [UIColor darkGrayColor];

else

cell.textLabel.textColor = [UIColor blackColor];

return cell;

}

// On selection, either push a new controller or show the leaf value

- (void)tableView:(UITableView *)tableView

didSelectRowAtIndexPath:(NSIndexPath *)indexPath

{

TreeNode *child =

[self.root.children objectAtIndex:[indexPath row]];

if (child.isLeaf)

{

showAlert(@"%

return;

}

TreeBrowserController *tbc = [[[TreeBrowserController alloc]

ptg

582 Chapter 13 Networking

initWithRoot:child] autorelease];

[self.navigationController pushViewController:tbc animated:YES];

}

// These controllers are ephemeral and need dealloc

- (void) dealloc

{

self.root = nil;

[super dealloc];

}

@end

Tearing Down a Tree
The XML parser code used in this recipe builds a two-way linked object tree. Parents own
their children, and children own their parents.To properly dispose of this memory when
you are done using it, make sure you tear down the tree to remove these links so each
node’s retain count can go down to zero.

The following TreeNode method should be issued to the root of the tree in use, just
before you release the root. Do not tear down the tree until you’re ready for the entire
structure to be deallocated.

- (void) teardown

{

for (TreeNode *node in [[self.children copy] autorelease])

[node teardown];

[self.parent.children removeObject:self];

self.parent = nil;

}

Recipe: Building a Simple Web-Based Server
A Web server provides one of the cleanest ways to serve data off your phone to another
computer.You don’t need special client software.Any browser can list and access Web-
based files. Best of all, a Web server requires just a few key routines.You must establish the
service, creating a loop that listens for a request (startServer), and then pass those
requests onto a handler (handleWebRequest:) that responds with the requested data.
Recipe 13-14 shows a WebHelper class that handles establishing and controlling a Web
service.

The loop routine uses low-level socket programming to establish a listening port and
catch client requests.When the client issues a GET command, the server intercepts that
request and passes it to the Web request handler.The handler decomposes it, typically to
find the name of the desired data file.The default version of the WebHelper class shown
here assumes that you will add your own handler method via a category (rather than a

ptg

583Recipe: Building a Simple Web-Based Server

subclass).This recipe produces a single, simple feedback page regardless of the GET request
received.You might want to expand this class to provide file access or access to services
from your application.An example file service category is included with this chapter’s
sample code.

Recipe 13-14 Serving iPhone Files Through a Web Service

@implementation WebHelper

@synthesize cwd;

@synthesize isServing;

@synthesize delegate;

@synthesize chosenPort;

static WebHelper *sharedInstance = nil;

+ (WebHelper *) sharedInstance

{

if(!sharedInstance) sharedInstance = [[self alloc] init];

return sharedInstance;

}

- (NSString *) getRequest: (int) fd

{

// Read the request and transform to an NSString

static char buffer[BUFSIZE+1];

int len = read(fd, buffer, BUFSIZE);

buffer[len] = ‘\0’;

return [NSString stringWithCString:buffer

encoding:NSUTF8StringEncoding];

}

// Serve files to GET requests

- (void) handleWebRequest:(int) fd

{

// recover request

NSString *request = [self getRequest:fd];

// Create a category and implement this meaningfully

// This is just a placeholder.

NSMutableString *outcontent = [NSMutableString string];

[outcontent appendString:

@"HTTP/1.0 200 OK\r\nContent-Type: text/html\r\n\r\n"];

[outcontent appendString:

@"<html><h3>Notice</h3>"];

[outcontent appendString:

@"<p>Please add a WebHelper category that responds "];

ptg

584 Chapter 13 Networking

[outcontent appendString:

@"to the following request:</p>"];

[outcontent appendFormat:@"<pre>%

write (fd, [outcontent UTF8String], [outcontent length]);

close(fd);

}

// Listen for external requests

- (void) listenForRequests

{

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

static struct sockaddr_in cli_addr;

socklen_t length = sizeof(cli_addr);

// Read data forever, or until the isServing property

// is set to NO, or until encountering a socket accept error

while (1 > 0) {

if (!self.isServing) return;

if ((socketfd = accept(listenfd,

(struct sockaddr *)&cli_addr, &length)) < 0)

{

self.isServing = NO;

DO_CALLBACK(serviceWasLost, nil);

return;

}

// Hand off responsibility for reading the socket data

// and replying to it

[self handleWebRequest:socketfd];

}

[pool release];

}

// Begin serving data; private method called by startService

- (void) startServer

{

static struct sockaddr_in serv_addr;

// Set up socket

if((listenfd = socket(AF_INET, SOCK_STREAM,0)) < 0)

{

self.isServing = NO;

DO_CALLBACK(serviceCouldNotBeEstablished, nil);

return;

ptg

585Recipe: Building a Simple Web-Based Server

}

// Serve to a random port

serv_addr.sin_family = AF_INET;

serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);

serv_addr.sin_port = 0;

// Bind

if(bind(listenfd, (struct sockaddr *)&serv_addr,

sizeof(serv_addr)) <0)

{

self.isServing = NO;

DO_CALLBACK(serviceCouldNotBeEstablished, nil);

return;

}

// Find out what port number was chosen.

int namelen = sizeof(serv_addr);

if (getsockname(listenfd, (struct sockaddr *)&serv_addr,

(void *) &namelen) < 0)

{

close(listenfd);

self.isServing = NO;

DO_CALLBACK(serviceCouldNotBeEstablished, nil);

return;

}

chosenPort = ntohs(serv_addr.sin_port);

// Listen

if(listen(listenfd, 64) < 0)

{

self.isServing = NO;

DO_CALLBACK(serviceCouldNotBeEstablished, nil);

return;

}

DO_CALLBACK(serviceWasEstablished, nil);

[NSThread detachNewThreadSelector:

@selector(listenForRequests) toTarget:self withObject:NULL];

}

- (void) startService

{

if (self.isServing) return; // already listening

[self startServer];

self.isServing = YES;

ptg

586 Chapter 13 Networking

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 13 and open the project for this recipe.

One More Thing: FTPHelper
The File Transfer Protocol is especially nice to use because it’s standard across so many
platforms.Apple’s Core Foundation FTP sample code is easy to work with, if you’re will-
ing to overlook a bit of inelegant coding.You can find the source at http://developer.
apple.com/samplecode/CFFTPSample.There’s little you have to do to get the upload and
download functionality working. Once you have a user’s name, password, and host infor-
mation stored, FTP data transfer can be easily automated.

At the request of any number of readers, I have included an FTPHelper class with the
sample code for this chapter. It is not an elegant solution by any stretch of the imagina-
tion, but it offers enough functionality to provide a jumping-off point for anyone who
wants to use FTP access from an application.You probably shouldn’t deploy code based
on this helper to App Store without a lot of testing and tweaking, but you can learn about
how FTP access basically works.

The FTPHelper class provides access to file upload, download, and directory lists.
Here’s how you set up the delegate for all three operations.

[FTPHelper sharedInstance].delegate = self;

[FTPHelper sharedInstance].uname = BASE_USERNAME;

[FTPHelper sharedInstance].pword = BASE_PASSWORD;

[FTPHelper sharedInstance].urlString = BASE_URL;

// Listing

[FTPHelper list:BASE_URL];

// Download

[FTPHelper download:FILE_TO_MOVE];

// Upload

[FTPHelper upload:FILE_TO_MOVE];

Use simple string constants for the username and password.The base URL path does
not point to a specific resource. Instead, you give it a general ftp address like
@“ftp://MySystem.local”, @“ftp://somehost.com”, or even @“ftp://somehost.com/ftp/
UploadArea”. Make sure you use the ftp:// prefix.

When uploading and downloading, specify the filename as a separate parameter. In the
current implementation, all files move into and out from the main Documents folder in
the sandbox.

http://github.com/erica/iphone-3.0-cookbook-
http://developer.apple.com/samplecode/CFFTPSample
http://developer.apple.com/samplecode/CFFTPSample

ptg

587One More Thing: FTPHelper

Listing 13-2 shows the interface for the FTPHelper class and the protocol for its dele-
gate. It provides its functionality via simple class methods.

Listing 13-2 FTPHelper

@protocol FTPHelperDelegate <NSObject>

@optional

// Successes

- (void) receivedListing: (NSDictionary *) listing;

- (void) downloadFinished;

- (void) dataUploadFinished: (NSNumber *) bytes;

- (void) progressAtPercent: (NSNumber *) aPercent;

// Failures

- (void) listingFailed;

- (void) dataDownloadFailed: (NSString *) reason;

- (void) dataUploadFailed: (NSString *) reason;

- (void) credentialsMissing;

@end

@interface FTPHelper : NSObject

{

NSString *urlString;

id <FTPHelperDelegate> delegate;

NSString *uname;

NSString *pword;

NSMutableArray *fileListings;

NSString *filePath;

}

@property (retain) NSString *urlString;

@property (retain) id delegate;

@property (retain) NSString *uname;

@property (retain) NSString *pword;

@property (retain) NSMutableArray *fileListings;

@property (retain) NSString *filePath; // valid after download

+ (FTPHelper *) sharedInstance;

+ (void) download:(NSString *) anItem;

+ (void) upload: (NSString *) anItem;

+ (void) list: (NSString *) aURLString;

+ (NSString *) textForDirectoryListing: (CFDictionaryRef) dictionary;

@end

ptg

588 Chapter 13 Networking

Summary
This chapter introduced a wide range network supporting technologies.You saw how to
check for network connectivity, work with keychains for secure authentication chal-
lenges, upload and download data via NSURLConnection, via FTP, and more. Here are a
few thoughts to take away with you before leaving this chapter:

n Most of Apple’s networking support is provided through very low-level C-based
routines. If you can find a friendly Objective-C wrapper to simplify your program-
ming work, consider using it.The only drawback occurs when you specifically need
tight networking control at the most basic level of your application.

n There was not space in this chapter to discuss more detailed authentication schemes
for data APIs. If you need access to OAuth, for example, search for existing Cocoa
implementations.A number are available in open source repositories, and they are
easily ported to Cocoa Touch. If you need to work with simpler data checksum,
digest, and encoding routines, point your browser to http://www.cocoadev.com/
index.pl?NSDataCategory.This extremely handy NSData category offers md5, sha1,
and base32 solutions, among others.

n Many data services provide simple to use APIs such as Twitter and TwitPic.These
APIs are often more limited than the fully authorized developer APIs, which typi-
cally require developer credentials and advanced authorization.At the same time,
they often offer simple solutions to the tasks you actually need to perform, espe-
cially if you’re not writing a full client specific to a given service.

n Sharing keychains across applications is tied to the provision that signed them.You
can share user login items between your own applications but not with other devel-
opers. Make sure you take care when creating and using keychain entitlement files
to follow every step of the process.This avoids a lot of frustration when trying to
produce a successful compilation.

n Even when Apple provides Objective-C wrappers, as they do with NSXMLParser,
it’s not always the class you wanted or hoped for.Adapting classes is a big part of the
iPhone programming experience.This chapter introduced many custom classes that
simplify access to core Cocoa Touch objects.

http://www.cocoadev.com/index.pl?NSDataCategory
http://www.cocoadev.com/index.pl?NSDataCategory

ptg

14
Device Capabilities

Each iPhone device represents a meld of unique, shared, momentary, and persistent
properties.These properties include the device’s current physical orientation, its
model name, its battery state, and its access to onboard hardware.This chapter looks

at the device from its build configuration to its active onboard sensors. It provides recipes
that return a variety of information items about the unit in use.You read about testing for
hardware prerequisites at runtime and specifying those prerequisites in the application’s
Info.plist file.You discover how to solicit sensor feedback and subscribe to notifications to
create callbacks when those sensor states change.This chapter covers the hardware, file
system, and sensors available on the iPhone device and helps you programmatically take
advantage of those features.

Recipe: Accessing Core Device Information
The UIDevice class enables you to recover key device-specific values, including the
iPhone or iPod touch model being used, the device name, and the OS name and version.
As Recipe 14-1 shows, it’s a one-stop solution for pulling out certain system details. Each
method is an instance method, which is called using the UIDevice singleton, via
[UIDevice currentDevice].

The information you can retrieve from UIDevice includes these items:

n System name—This returns the name of the operating system currently in use.
For current generations of iPhones, there is only one OS that runs on the platform:
iPhone OS.

n System version—This value lists the firmware version currently installed on the
unit, for example, 2.2.1, 3.0, 3.1, and so on.

n Unique identifier—The iPhone unique identifier provides a hexadecimal num-
ber that is guaranteed to be unique for each iPhone or iPod touch.According to
Apple, the iPhone produces this identifier by applying an internal hash to several
hardware specifiers, including the device serial number.The iPhone’s unique
identifier is used to register devices at the iPhone portal for provisioning, including
Ad Hoc distribution.

ptg

590 Chapter 14 Device Capabilities

n Model—The iPhone model returns a string that describes its platform, namely
iPhone and iPod touch. Should the iPhone OS be extended to new devices, addi-
tional strings will describe those models.

n Name—This string presents the iPhone name assigned by the user in iTunes such
as “Joe’s iPhone” or “Binky.”This name is also used to create the local host name for
the device. See Chapter 13,“Networking,” for more details about host name
retrieval.

Recipe 14-1 Using the UIDevice Class

- (void) action: (UIBarButtonItem *) bbi

{

[self doLog:@"System Name: %@",

[[UIDevice currentDevice] systemName]];

[self doLog:@"System Version: %@",

[[UIDevice currentDevice] systemVersion]];

[self doLog:@"Unique ID: %@",

[[UIDevice currentDevice] uniqueIdentifier]];

[self doLog:@"Model %@", [[UIDevice currentDevice] model]];

[self doLog:@"Name %@", [[UIDevice currentDevice] name]];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 14 and open the project for this recipe.

Adding Device Capability Restrictions
When you submit 3.0 applications to iTunes, you no longer specify which platforms your
application is compatible with. Instead, you tell iTunes what device features your applica-
tion needs.

Each iPhone and iPod touch provides a unique feature set. Some devices offer cameras
and GPS capabilities. Others don’t. Some support OpenGL ES 2.0. Others are limited to
OpenGL ES 1.1. Starting in firmware 3.0, you can specify what features are needed to run
your application on a device.

When you include the UIRequiredDeviceCapabilities key in your Info.plist file,
iTunes limits application installation to devices that offer the required capabilities. Provide
this list as an array of strings, whose possible values are detailed in Table 14-1. Only
include those features that your application requires. If your application can provide
workarounds, do not add the restriction.

http://github.com/erica/iphone-3.0-cookbook-

ptg

591Adding Device Capability Restrictions

Table 14-1 Required Device Capabilities

Key Use

telephony Application requires the Phone application or uses tel:// URLs.

sms Application requires Messages application or uses sms:// URLs.

still-camera Application uses camera mode for the image picker controller.

auto-focus-
camera

Application requires extra focus capabilities for macro photography or
especially sharp images for in-image data detection.

video-camera Application uses video mode for the image picker controller.

wifi Application requires local 802.11-based network access.

accelerometer Application requires accelerometer-specific feedback beyond simple
UIViewController orientation events.

location-
services

Application uses Core Location.

gps Application uses Core Location and requires the additional accuracy of
GPS positioning.

magnetometer Application uses Core Location and requires heading-related events,
i.e., the direction of travel. (The magnetometer is the built-in compass.)

microphone Application uses either built-in microphones or (approved) accessories
that provide a microphone.

opengles-1 Application uses OpenGL ES 1.1.

opengles-2 Application uses OpenGL ES 2.0.

armv6 Application is compiled only for the armv6 instruction set (3.1 or later).

armv7 Application is compiled only for the armv7 instruction set (3.1 or later).

peer-peer Application uses GameKit peer-to-peer connectivity over Bluetooth (3.1
or later).

For example, consider an application that offers an option for taking pictures when run on
a camera-ready device. If the application otherwise works on iPod touch units, do not
include the still-camera restriction. Instead, use check for camera capability from within
the application and present the camera option when appropriate.Adding a still-camera
restriction eliminates all first, second, and third generation iPod owners from your poten-
tial customer pool.

Adding Device Requirements
To add device requirements to the Info.plist file open it in the Xcode editor. Select the
last row (usually Application Requires iPhone Environment) and press Return.A new
item appears, already set for editing. Enter “Req”, and Xcode auto completes to
“Required device capabilities”.This is the “human readable” form of the

ptg

592 Chapter 14 Device Capabilities

Figure 14-1 Adding required device capabilities to the Info.plist file in
Xcode.

UIRequiredDeviceCapabilities key.You can view the normal key name by right-
clicking (Ctrl-clicking) any item in the key list and choosing Show Raw Keys/Values.

Xcode automatically sets the item type to an array and adds a new Item 1. Edit the
value to your first required capability.To add more items, select any item and press
Return. Xcode inserts a new key-value pair. Figure 14-1 shows the editor in action.

Recipe: Recovering Additional Device Information
Both sysctl() and sysctlbyname() allow you to retrieve system information.These
standard UNIX functions query the operating system about hardware and OS details.You
can get a sense of the kind of scope on offer by glancing at the /usr/include/sys/sysctl.h
include file on the Macintosh.There you find an exhaustive list of constants that can be
used as parameters to these functions.

These constants allow you to check for core information like the system’s CPU fre-
quency, the amount of available memory, and more. Recipe 14-2 demonstrates this. It
introduces a UIDevice category that gathers system information and returns it via a series
of method calls.

You might wonder why this category includes a platform method, when the standard
UIDevice class returns device models on demand.The answer lies in distinguishing differ-
ent types of iPhones and iPod touch units.

An iPhone 3GS’s model is simply “iPhone,” as is the model of an iPhone 3G and the
original iPhone. In contrast, this recipe returns a platform value of “iPhone2,1” for the
3GS.This allows you to programmatically differentiate the unit from a first generation
iPhone (“iPhone1,1”) or iPhone 3G (“iPhone1,2”).

Each model offers distinct built-in capabilities. Knowing exactly which iPhone you’re
dealing with helps you determine whether that unit supports features like accessibility,
GPS, and magnetometers.

ptg

593Recipe: Recovering Additional Device Information

Recipe 14-2 Accessing Device Information Through sysctl() and sysctlbyname()

@implementation UIDevice (Hardware)

+ (NSString *) getSysInfoByName:(char *)typeSpecifier

{

// Recover sysctl information by name

size_t size;

sysctlbyname(typeSpecifier, NULL, &size, NULL, 0);

char *answer = malloc(size);

sysctlbyname(typeSpecifier, answer, &size, NULL, 0);

NSString *results = [NSString stringWithCString:answer

encoding: NSUTF8StringEncoding];

free(answer);

return results;

}

- (NSString *) platform

{

return [UIDevice getSysInfoByName:"hw.machine"];

}

+ (NSUInteger) getSysInfo: (uint) typeSpecifier

{

size_t size = sizeof(int);

int results;

int mib[2] = {CTL_HW, typeSpecifier};

sysctl(mib, 2, &results, &size, NULL, 0);

return (NSUInteger) results;

}

- (NSUInteger) cpuFrequency

{

return [UIDevice getSysInfo:HW_CPU_FREQ];

}

- (NSUInteger) busFrequency

{

return [UIDevice getSysInfo:HW_BUS_FREQ];

}

- (NSUInteger) totalMemory

{

return [UIDevice getSysInfo:HW_PHYSMEM];

}

- (NSUInteger) userMemory

{

ptg

594 Chapter 14 Device Capabilities

return [UIDevice getSysInfo:HW_USERMEM];

}

- (NSUInteger) maxSocketBufferSize

{

return [UIDevice getSysInfo:KIPC_MAXSOCKBUF];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 14 and open the project for this recipe.

Recipe: Monitoring the iPhone Battery State
The 3.0 and later API allows you to keep track of the iPhone’s battery level and charge
state.The level is a floating-point value that ranges between 1.0 (fully charged) and 0.0
(fully discharged). It provides an approximate discharge level that you can use to query
before performing operations that put unusual strain on the device.

For example, you might want to caution your user about performing a large series of
convolutions and suggest that the user plug in to a power source.You retrieve the battery
level via this UIDevice call.The value returned is produced in 5% increments.

NSLog(@"Battery level: %0.2f%",

[[UIDevice currentDevice] batteryLevel] * 100);

The iPhone charge state has four possible values.The unit can be charging (i.e., connected
to a power source), full, unplugged, and a catchall “unknown.” Recover the state using the
UIDevice batteryState property.

NSArray *stateArray = [NSArray arrayWithObjects:

@"Battery state is unknown",

@"Battery is not plugged into a charging source",

@"Battery is charging",

@"Battery state is full", nil];

NSLog(@"Battery state: %@",

[stateArray objectAtIndex:

[[UIDevice currentDevice] batteryState]]);

Don’t think of these choices as persistent states. Instead, think of them as momentary
reflections of what is actually happening to the device.They are not flags.They are not
or’ed together to form a general battery description. Instead, these values reflect the most
recent state change.

Recipe 14-3 monitors state changes.When it detects that the battery state has
changed, only then does it check to see what that state change indicated. In this way, you

http://github.com/erica/iphone-3.0-cookbook-

ptg

595Recipe: Monitoring the iPhone Battery State

can catch momentary events, such as when the battery finally recharges fully, when the
user has plugged in to a power source to recharge, and when the user disconnects from
that power source.

To start monitoring, set the batteryMonitoringEnabled property to YES. During
monitoring, the UIDevice class produces notifications when the battery state or level
changes. Recipe 14-3 subscribes to both notifications. Please note that you can also check
these values directly, without waiting for notifications.Apple provides no guarantees about
the frequency of level change updates, but as you can tell by testing this recipe, they arrive
in a fairly regular fashion.

Recipe 14-3 Monitoring the iPhone Battery

- (void) checkBattery: (id) sender

{

NSArray *stateArray = [NSArray arrayWithObjects:

@"Battery state is Unknown",

@"Battery is unplugged",

@"Battery is charging",

@"Battery state is full", nil];

NSLog(@"Battery level: %0.2f%",

[[UIDevice currentDevice] batteryLevel] * 100);

NSLog(@"Battery state: %@", [stateArray

objectAtIndex:[[UIDevice currentDevice] batteryState]]);

}

- (void) viewDidLoad

{

// Enable battery monitoring

[[UIDevice currentDevice] setBatteryMonitoringEnabled:YES];

// Add observers for battery state and level changes

[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(checkBattery)

name:UIDeviceBatteryStateDidChangeNotification

object:nil];

[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(checkBattery)

name:UIDeviceBatteryLevelDidChangeNotification

object:nil];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 14 and open the project for this recipe.

http://github.com/erica/iphone-3.0-cookbook-

ptg

596 Chapter 14 Device Capabilities

Recipe: Enabling and Disabling the Proximity
Sensor
Unless you have some pressing reason to hold an iPhone against body parts (or vice
versa), enabling the proximity sensor accomplishes little.When enabled, it has one primary
task. It detects whether there’s a large object right in front of it. If so, it switches the screen
off and sends off a general notification. Move the blocking object away and the screen
switches back on.This prevents you from pressing buttons or dialing the phone with your
ear when you are on a call. Some poorly designed protective cases keep the iPhone’s prox-
imity sensors from working properly.

The Google Mobile application on App Store used this feature to start a voice record-
ing session.When you held the phone up to your head it would record your query, send-
ing it off to be interpreted when moved away from your head.The developers didn’t mind
that the screen blanked as the voice recording interface did not depend on a visual GUI to
operate.

Recipe 14-4 demonstrates how to work with proximity sensing on the iPhone. It uses
the UIDevice class to toggle proximity monitoring and subscribes to UIDeviceProximity
➥StateDidChangeNotification to catch state changes.The two states are on and off.
When the UIDevice proximityState property returns YES, the proximity sensor has been
activated.

Note
Prior to the 3.0 firmware, proximity used to be controlled by the UIApplication class. This
approach is now deprecated. Also be aware that setProximityState: is documented, but
the method is actually nonexistent. Proximity state is a read-only property.

Recipe 14-4 Enabling Proximity Sensing

- (void) toggle: (id) sender

{

// Determine the current proximity monitoring and toggle it

BOOL isIt = [UIDevice currentDevice].proximityMonitoringEnabled;

[UIDevice currentDevice].proximityMonitoringEnabled = !isIt;

NSString *title = isIt ? @"Enable" : @"Disable";

self.navigationItem.rightBarButtonItem =

BARBUTTON(title, @selector(toggle));

NSLog(@"You have %@ the Proximity sensor.",

isIt ? @"disabled" : @"enabled");

}

- (void) stateChange: (NSNotificationCenter *) notification

{

// Log the notifications

NSLog(@"The proximity sensor %@",

[UIDevice currentDevice].proximityState ?

ptg

597Recipe: Using Acceleration to Locate “Up”

@"will now blank the screen" :

@"will now restore the screen");

}

- (void) viewDidLoad

{

self.navigationItem.rightBarButtonItem =

BARBUTTON(@"Enable", @selector(toggle));

// Add proximity state observer

[[NSNotificationCenter defaultCenter]

addObserver:self selector:@selector(stateChange)

name:@"UIDeviceProximityStateDidChangeNotification"

object:nil];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 14 and open the project for this recipe.

Recipe: Using Acceleration to Locate “Up”
The iPhone provides three onboard sensors that measure acceleration along the iPhone’s
perpendicular axis; that is, left/right (X), up/down (Y), and front/back (Z).These values
indicate the forces affecting the iPhone, from both gravity and user movement.You can
get some really neat force feedback by swinging the iPhone around your head (centripetal
force) or dropping it from a tall building (freefall). Unfortunately, you might not be able to
recover that data after your iPhone becomes an expensive bit of scrap metal.

To subscribe an object to iPhone accelerometer updates, set it as delegate.The object
set as the delegate must implement the UIAccelerometerDelegate protocol.

[[UIAccelerometer sharedAccelerometer] setDelegate:self]

Once assigned, your delegate receives accelerometer:didAccelerate: messages, which
you can track and respond to. Normally, you assign the delegate as your primary view
controller, but you can also do so with a custom helper class.

The UIAcceleration object sent to the delegate method returns floating-point values
for the X,Y, and Z axes. Each value ranges from -1.0 to 1.0.

float x = [acceleration x];

float y = [acceleration y];

float z = [acceleration z];

Recipe 14-5 uses these values to help determine the “up” direction. It calculates the arct-
angent between the X and Y acceleration vectors, returning the up-offset angle.As new
acceleration messages are received, the recipe rotates a UIImageView with its picture of an

http://github.com/erica/iphone-3.0-cookbook-

ptg

598 Chapter 14 Device Capabilities

Figure 14-2 A little math recovers the “up”
direction by performing an arctan function using the

x and y force vectors. In this sample, the arrow
always points up, no matter how the user reorients

the iPhone.

arrow, which you can see in Figure 14-2, to point up.The real-time response to user
actions ensures that the arrow continues pointing upward, no matter how the user reori-
ents the phone.

Recipe 14-5 Catching Acceleration Events

- (void)accelerometer:(UIAccelerometer *)accelerometer

didAccelerate:(UIAcceleration *)acceleration

{

// Determine up from the x and y acceleration components

float xx = -[acceleration x];

float yy = [acceleration y];

float angle = atan2(yy, xx);

[self.arrow setTransform:

CGAffineTransformMakeRotation(angle)];

}

ptg

599Recipe: Using Acceleration to Move Onscreen Objects

- (void) viewDidLoad

{

// Init the delegate to start catching accelerometer events

[[UIAccelerometer sharedAccelerometer] setDelegate:self];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 14 and open the project for this recipe.

Recipe: Using Acceleration to Move Onscreen
Objects
With a bit of clever programming, the iPhone’s onboard accelerometer can make objects
“move” around the screen, responding in real time to the way the user tilts the phone.
Recipe 14-6 builds an animated butterfly that users can slide across the screen.

The secret to making this work lies in adding what I call a “physics timer” to the pro-
gram. Instead of responding directly to changes in acceleration, the way Recipe 14-5 did,
the accelerometer callback does nothing more than measure the current forces. It’s up to
the timer routine to apply those forces to the butterfly over time by changing its frame.

n As long as the direction of force remains the same, the butterfly accelerates. Its
velocity increases, scaled according to the degree of acceleration force in the X or Y
direction.

n The tick routine, called by the timer, moves the butterfly by adding the velocity
vector to the butterfly’s origin.

n The butterfly’s range is bounded. So when it hits an edge, it stops moving in that
direction.This keeps the butterfly onscreen at all times.The slightly odd nested if
structure in the tick method checks for boundary conditions. For example, if the
butterfly hits a vertical edge, it can still move horizontally.

Recipe 14-6 Sliding an Onscreen Object Based on Accelerometer Feedback

- (void)accelerometer:(UIAccelerometer *)accelerometer

didAccelerate:(UIAcceleration *)acceleration

{

// extract the acceleration components

float xx = -[acceleration x];

float yy = [acceleration y];

// Has the direction changed?

float accelDirX = SIGN(xvelocity) * -1.0f;

float newDirX = SIGN(xx);

float accelDirY = SIGN(yvelocity) * -1.0f;

float newDirY = SIGN(yy);

http://github.com/erica/iphone-3.0-cookbook-

ptg

600 Chapter 14 Device Capabilities

// Accelerate. To increase viscosity lower the additive value

if (accelDirX == newDirX)

xaccel = (abs(xaccel) + 0.85f) * SIGN(xaccel);

if (accelDirY == newDirY)

yaccel = (abs(yaccel) + 0.85f) * SIGN(yaccel);

// Apply acceleration changes to the current velocity

xvelocity = -xaccel * xx;

yvelocity = -yaccel * yy;

}

- (CGRect) offsetButterflyBy: (float) dx and: (float) dy

{

CGRect rect = [self.butterfly frame];

rect.origin.x += dx;

rect.origin.y += dy;

return rect;

}

- (void) tick

{

// Move the butterfly according to the current velocity vector

CGRect rect;

// free movement

if (CGRectContainsRect(self.view.bounds,

rect = [self offsetButterflyBy:xvelocity and:yvelocity]));

// vertical edge

else if (CGRectContainsRect(self.view.bounds,

rect = [self offsetButterflyBy:xvelocity and:0.0f]));

// horizontal edge

else if (CGRectContainsRect(self.view.bounds,

rect = [self offsetButterflyBy:0.0f and:yvelocity]));

// corner

else return;

[butterfly setFrame:rect];

}

- (void) initButterfly

{

// Load the animation cells

NSMutableArray *bflies = [NSMutableArray array];

ptg

601Recipe: Detecting Device Orientation

for (int i = 1; i <= 17; i++)

[bflies addObject:[UIImage imageNamed:

[NSString stringWithFormat:@"bf_%d.png", i]]];

// Create the butterfly, begin the animation

self.butterfly = [[[UIImageView alloc] initWithFrame:

CGRectMake(0.0f, 0.0f, 150.0f, 76.5f)] autorelease];

[self.butterfly setAnimationImages:bflies];

self.butterfly.animationDuration = 0.75f;

[self.butterfly startAnimating];

self.butterfly.center = CGPointMake(160.0f, 100.0f);

[self.view addSubview:butterfly];

// Set the butterfly’s initial speed and acceleration

xaccel = 2.0f;

yaccel = 2.0f;

xvelocity = 0.0f;

yvelocity = 0.0f;

// Activate the accelerometer

[[UIAccelerometer sharedAccelerometer] setDelegate:self];

// Start the physics timer

[NSTimer scheduledTimerWithTimeInterval: 0.03f

target: self selector: @selector(tick)

userInfo: nil repeats: YES];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 14 and open the project for this recipe.

Recipe: Detecting Device Orientation
The iPhone orientation refers to the way that a user is holding the device. Query the
device orientation at any time by retrieving [UIDevice currentDevice].orientation.
This property returns a device orientation number.This number is equal to one of the
following orientation states.

typedef enum {

UIDeviceOrientationUnknown,

UIDeviceOrientationPortrait,

UIDeviceOrientationPortraitUpsideDown,

UIDeviceOrientationLandscapeLeft,

UIDeviceOrientationLandscapeRight,

UIDeviceOrientationFaceUp,

http://github.com/erica/iphone-3.0-cookbook-

ptg

602 Chapter 14 Device Capabilities

UIDeviceOrientationFaceDown

} UIDeviceOrientation;

The portrait and landscape orientations are self-explanatory.The face up/face down
orientations refer to an iPhone sitting on a flat surface, with the face facing up or down.
These orientations are computed by the SDK using the onboard accelerometer and math
calculus that is similar to the one presented in the previous recipe.

Usually, the most important thing to know about the current orientation is whether it
is portrait or landscape.To help determine this,Apple offers two built-in helper macros.
You pass an orientation to these macros, which are shown in the following code snippet.
Each macro returns a Boolean value, YES or NO, respectively indicating portrait or land-
scape compliance, as shown here.

- (BOOL) shouldAutorotateToInterfaceOrientation:

(UIInterfaceOrientation) anOrientation

{

printf("Is Portrait?: %s\n",

UIDeviceOrientationIsPortrait(anOrientation)

? "Yes" : "No");

printf("Is Landscape?: %s\n",

UIDeviceOrientationIsLandscape(anOrientation)

? "Yes" : "No");

return YES;

}

When you want to determine the orientation outside the “should autorotate” callback for
the view controller, the code becomes a little tedious and repetitious. Recipe 14-7 creates
an Orientation category for the UIDevice class, providing isLandscape and isPortrait

properties. In addition, the recipe creates an orientationString property that returns a
text-based description of the current orientation.

Note
At the time of writing, the iPhone does not report a proper orientation when first launched. It
updates the orientation only after the iPhone has been moved into a new position. An appli-
cation launched in portrait orientation will not read as “portrait” until the user moves the
device out of and then back into the proper orientation. This bug exists on the simulator as
well as on the iPhone device and is easily tested with Recipe 14-7. For a workaround, con-
sider using the angular orientation recovered from Recipe 14-5. This bug does not affect
proper interface display via the UIViewController class.

Recipe 14-7 A UIDevice Orientation Category

@implementation UIDevice (Orientation)

- (BOOL) isLandscape

{

return (self.orientation == UIDeviceOrientationLandscapeLeft)

|| (self.orientation == UIDeviceOrientationLandscapeRight);

}

ptg

603Recipe: Detecting Shakes Using Motion Events

- (BOOL) isPortrait

{

return (self.orientation == UIDeviceOrientationPortrait)

|| (self.orientation == UIDeviceOrientationPortraitUpsideDown);

}

- (NSString *) orientationString

{

switch ([[UIDevice currentDevice] orientation])

{

case UIDeviceOrientationUnknown: return @"Unknown";

case UIDeviceOrientationPortrait: return @"Portrait";

case UIDeviceOrientationPortraitUpsideDown:

return @"Portrait Upside Down";

case UIDeviceOrientationLandscapeLeft:

return @"Landscape Left";

case UIDeviceOrientationLandscapeRight:

return @"Landscape Right";

case UIDeviceOrientationFaceUp: return @"Face Up";

case UIDeviceOrientationFaceDown: return @"Face Down";

default: break;

}

return nil;

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 14 and open the project for this recipe.

Recipe: Detecting Shakes Using Motion Events
When the iPhone detects a motion event, it passes that event to the current first respon-
der, the primary object in the responder chain. Responders are objects that can handle
events.All views and windows are responders and so is the application object.

The responder chain provides a hierarchy of objects, all of which can respond to
events.When an object toward the start of the chain receives an event, that event does not
get passed further down.The object handles it. If it cannot, that event can move on to the
next responder.

Objects often become first responder by declaring themselves to be so, via
becomeFirstResponder. In this snippet, a UIViewController ensures that it becomes first
responder whenever its view appears onscreen. Upon disappearing, it resigns the first
responder position.

http://github.com/erica/iphone-3.0-cookbook-

ptg

604 Chapter 14 Device Capabilities

- (BOOL)canBecomeFirstResponder {

return YES;

}

// Become first responder whenever the view appears

- (void)viewDidAppear:(BOOL)animated {

[super viewDidAppear:animated];

[self becomeFirstResponder];

}

// Resign first responder whenever the view disappears

- (void)viewWillDisappear:(BOOL)animated {

[super viewWillDisappear:animated];

[self resignFirstResponder];

}

First responders receive all touch and motion events. The motion callbacks mirror the
touch ones discussed in Chapter 8,“Gestures and Touches.” They are

n motionBegan:withEvent:—This callback indicates the start of a motion
event.At the time of writing this book, there was only one kind of motion event
recognized: a shake.This may not hold true for the future, so you might want to
check the motion type in your code.

n motionEnded:withEvent:—The first responder receives this callback at the
end of the motion event.

n motionCancelled:withEvent:—As with touches, motions can be can-
celled by incoming phone calls and other system events.Apple recommends that
you implement all three motion event callbacks (and, similarly, all four touch event
callbacks) in production code.

Recipe 14-8 shows a pair of motion callback examples. If you test this out on a device,
you’ll notice several things. First, the began- and ended-events happen almost simultane-
ously from a user perspective. Playing sounds for both types is overkill. Second, there is a
bias toward side-to-side shake detection.The iPhone is better at detecting side-to-side
shakes than front-to-back or up-down versions. Finally,Apple’s motion implementation
uses a slight lockout approach.You cannot generate a new motion event until a second or
so after the previous one was processed.This is the same lockout used by Shake to Shuffle
and Shake to Undo events.

Recipe 14-8 Catching Motion Events in the First Responder

- (void)motionBegan:(UIEventSubtype)motion

withEvent:(UIEvent *)event {

// Play a sound whenever a shake motion starts

if (motion != UIEventSubtypeMotionShake) return;

[self playSound:startSound];

}

ptg

605Recipe: Detecting Shakes Directly from the Accelerometer

- (void)motionEnded:(UIEventSubtype)motion withEvent:(UIEvent *)event

{

// Play a sound whenever a shake motion ends

if (motion != UIEventSubtypeMotionShake) return;

[self playSound:endSound];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 14 and open the project for this recipe.

Recipe: Detecting Shakes Directly from the
Accelerometer
Recipe 14-9 mimics the Apple motion detection system while avoiding the need for the
event consumer to be the first responder. It’s built on two key parameters: a sensitivity
level that provides a threshold that must be met before a shake is acknowledged and a
lockout time that limits how often a new shake can be generated.

This AccelerometerHelper class stores a triplet of acceleration values. Each value rep-
resents a force vector in 3D space. Each successive pair of that triplet can be analyzed to
determine the angle between the two vectors. In this example, the angles between the first
two items and the second two help determine when a shake happens.This code looks for
a pair whose second angle exceeds the first angle. If the angular movement has increased
enough between the two (i.e., an acceleration of angular velocity, basically a “jerk”), a
shake is detected.

The helper generates no delegate callbacks until a second hurdle is passed.A lockout
prevents any new callbacks until a certain amount of time expires.This is implemented by
storing a trigger time for the last shake event.All shakes that occur before the lockout
time expires are ignored. New shakes can be generated after.

Apple’s built-in shake detection is calculated with more complex accelerometer data
analysis. It analyzes and looks for oscillation in approximately eight to ten consecutive data
points, according to a technical expert informed on this topic. Recipe 14-9 provides a less
complicated approach, demonstrating how to work with raw acceleration data to provide
a computed result from those values.

Recipe 14-9 Detecting Shakes with the Accelerometer Helper

@implementation AccelerometerHelper

- (id) init

{

if (!(self = [super init])) return self;

self.triggerTime = [NSDate date];

http://github.com/erica/iphone-3.0-cookbook-

ptg

606 Chapter 14 Device Capabilities

// Current force vector

cx = UNDEFINED_VALUE;

cy = UNDEFINED_VALUE;

cz = UNDEFINED_VALUE;

// Last force vector

lx = UNDEFINED_VALUE;

ly = UNDEFINED_VALUE;

lz = UNDEFINED_VALUE;

// Previous force vector

px = UNDEFINED_VALUE;

py = UNDEFINED_VALUE;

pz = UNDEFINED_VALUE;

self.sensitivity = 0.5f;

self.lockout = 0.5f;

// Start the accelerometer going

[[UIAccelerometer sharedAccelerometer] setDelegate:self];

return self;

}

- (void) setX: (float) aValue

{

px = lx;

lx = cx;

cx = aValue;

}

- (void) setY: (float) aValue

{

py = ly;

ly = cy;

cy = aValue;

}

- (void) setZ: (float) aValue

{

pz = lz;

lz = cz;

cz = aValue;

}

ptg

607Recipe: Detecting Shakes Directly from the Accelerometer

- (float) dAngle

{

if (cx == UNDEFINED_VALUE) return UNDEFINED_VALUE;

if (lx == UNDEFINED_VALUE) return UNDEFINED_VALUE;

if (px == UNDEFINED_VALUE) return UNDEFINED_VALUE;

// Calculate the dot product of the first pair

float dot1 = cx * lx + cy * ly + cz * lz;

float a = ABS(sqrt(cx * cx + cy * cy + cz * cz));

float b = ABS(sqrt(lx * lx + ly * ly + lz * lz));

dot1 /= (a * b);

// Calculate the dot product of the second pair

float dot2 = lx * px + ly * py + lz * pz;

a = ABS(sqrt(px * px + py * py + pz * pz));

dot2 /= a * b;

// Return the difference between the vector angles

return acos(dot2) - acos(dot1);

}

- (BOOL) checkTrigger

{

if (lx == UNDEFINED_VALUE) return NO;

// Check to see if the new data can be triggered

if ([[NSDate date] timeIntervalSinceDate:self.triggerTime]

< self.lockout) return NO;

// Get the current angular change

float change = [self dAngle];

// If we have not yet gathered two samples, return NO

if (change == UNDEFINED_VALUE) return NO;

// Does the dot product exceed the trigger?

if (change > self.sensitivity)

{

self.triggerTime = [NSDate date];

return YES;

}

else return NO;

}

- (void)accelerometer:(UIAccelerometer *)accelerometer

didAccelerate:(UIAcceleration *)acceleration

{

// Adapt values for a standard coordinate system

ptg

608 Chapter 14 Device Capabilities

[self setX:-[acceleration x]];

[self setY:[acceleration y]];

[self setZ:[acceleration z]];

// All accelerometer events

if (self.delegate &&

[self.delegate respondsToSelector:@selector(ping)])

[self.delegate performSelector:@selector(ping)];

// All shake events

if ([self checkTrigger] && self.delegate &&

[self.delegate respondsToSelector:@selector(shake)])

{

[self.delegate performSelector:@selector(shake)];

}

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 14 and open the project for this recipe.

One More Thing: Checking for Available Disk
Space
The NSFileManager class allows you to determine both how much space is free on the
iPhone, plus how much space is provided on the device as a whole. Listing 14-1 demon-
strates how to check for these values and show the results using a friendly comma-
formatted string.The values returned represent the free space in bytes.

Listing 14-1 Recovering File System Size and File System Free Size

- (NSString *) commasForNumber: (long long) num

{

// Produce a properly formatted number string

// Alternatively use NSNumberFormatter

if (num < 1000) return [NSString stringWithFormat:@"%d", num];

return [[self commasForNumber:num/1000]

stringByAppendingFormat:@",%03d", (num % 1000)];

}

- (void) action: (UIBarButtonItem *) bbi

{

NSFileManager *fm = [NSFileManager defaultManager];

http://github.com/erica/iphone-3.0-cookbook-

ptg

609Summary

NSDictionary *fattributes =

[fm fileSystemAttributesAtPath:NSHomeDirectory()];

NSLog(@"System space: %@",

[self commasForNumber:[[fattributes

objectForKey:NSFileSystemSize] longLongValue]]);

NSLog(@"System free space: %@",

[self commasForNumber:[[fattributes

objectForKey:NSFileSystemFreeSize] longLongValue]]);

}

Summary
This chapter introduced core ways to interact with an iPhone device.You saw how to
recover device info, check the battery state, and subscribe to proximity events.You discov-
ered the accelerometer and saw it in use through several examples, from the simple “find-
ing up” to the more complex shake detection algorithm.You learned how to differentiate
the iPod touch from the iPhone and determine which model you’re working with. Here
are a few parting thoughts about the recipes you just encountered:

n The iPhone’s accelerometer provides a novel way to complement its touch-based
interface. Use acceleration data to expand user interactions beyond the “touch
here” basics and to introduce tilt-aware feedback.

n Low-level calls can be SDK friendly.They don’t depend on Apple APIs that may
change based on the current firmware release. UNIX system calls may seem daunt-
ing, but many are fully supported by the iPhone.

n Remember device limitations.You may want to check for free disk space before
performing file-intensive work and for battery charge before running the CPU at
full steam.

n When submitting to iTunes, remember that 3.0 and later applications no longer
specify which device to use. Instead, use your Info.plist file to determine which
device capabilities are required. iTunes uses this list of required capabilities to deter-
mine whether an application can be downloaded to a given device and run prop-
erly on that device.

ptg

This page intentionally left blank

ptg

15
Audio,Video, and MediaKit

The iPhone is a media master; its built-in iPod features expertly handle both audio
and video.The iPhone SDK exposes that functionality to developers.A rich suite of
classes simplifies media handling via playback, search, and recording.This chapter

introduces recipes that use those classes, presenting media to your users and letting your
users interact with that media.You see how to build audio and video viewers as well as
audio and video recorders.You discover how to browse the iPod library and how to
choose what items to play.The recipes you’re about to encounter provide step-by-step
demonstrations showing how to add these media-rich features to your own apps.

Recipe: Playing Audio with AVAudioPlayer
As its name suggests, the AVAudioPlayer class plays back audio data. It provides a simple-
to-use class that offers numerous features, several of which are highlighted in Figure 15-1.
With this class, you can load audio, play it, pause it, stop it, monitor average and peak lev-
els, adjust the playback volume, and set and detect the current playback time.All these
features are available with little associated development cost.As you are about to see, the
AVAudioPlayer class provides a solid API.

Initializing an Audio Player
The audio playback features provided by AVAudioPlayer take little effort to implement
in your code.Apple has provided an uncomplicated class that’s streamlined for loading and
playing files.

To begin, create your player and initialize it, either with data or with the contents of a
local URL.This snippet uses a file URL to point to an audio file. It reports any error
involved in creating and setting up the player.You can also initialize a player with data
that’s already stored in memory using initWithData:error:.That’s handy for when
you’ve already read data into memory (such as during an audio chat) rather than reading
from a file stored on the device.

self.player = [[AVAudioPlayer alloc] initWithContentsOfURL:

[NSURL fileURLWithPath:self.path] error:&error];

ptg

612 Chapter 15 Audio, Video, and MediaKit

Figure 15-1 The features highlighted in this
screenshot were built with a single class,

AVAudioPlayer. This class provides time moni-
toring (in the title bar center), sound levels (average

and peak), scrubbing and volume sliders, and
play/pause control (at the right of the title bar).

if (!self.player)

{

NSLog(@"Error %@", [error localizedDescription]);

return;

}

Once you’ve initialized the player, prepare it for playback. Calling prepareToPlay ensures
that when you are ready to play the audio, that playback starts as quickly as possible.The
call preloads the player’s buffers and initializes the audio playback hardware.

[self.player prepareToPlay];

Pause playback at any time by calling pause. Pausing does not affect the player’s
currentTime property.You can resume playback from that point by calling play again.

Halt playback entirely with stop. Stopping playback undoes the buffered setup you
initially established with prepareToPlay. It does not, however, set the current time back
to 0.0; you can pick up from where you left off by calling play again, just as you would
with pause.You may experience starting delays as the player reloads its buffers.

ptg

613Recipe: Playing Audio with AVAudioPlayer

Monitoring Audio Levels
When you intend to monitor audio levels, start by setting the meteringEnabled property.
Enabling metering lets you check levels as you play back or record audio.

self.player.meteringEnabled = YES;

The AVAudioPlayer class provides feedback for average and peak power, which you can
retrieve on a per-channel basis. Query the player for the number of available channels
(via the numberOfChannels property) and then request each power level by supplying a
channel index.A mono signal uses channel 0, as does the left channel for a stereo
recording.

In addition to enabling metering as a whole, you need to call updateMeters each time
you want to test your levels; this AV player method updates the current meter levels. Once
you’ve done so, use the peakPowerForChannel: and averagePowerForChannel: meth-
ods to read those levels. Recipe 15-7, later in this chapter, shows the details of what’s
likely going on under the hood in the player when it requests those power levels.You can
see that code request the meter levels and then extract either the peak or average power.
The AVAudioPlayer class hides those details, simplifying access to these values.

The AVAudioPlayer measures power in Decibels, which is supplied in floating-point
format. Decibels use a logarithmic scale to measure sound intensity. Power values range
from 0 dB at the highest to some negative value representing less-than-maximum power.
The lower the number (and they are all negative), the weaker the signal will be.

int channels = self.player.numberOfChannels;

[self.player updateMeters];

for (int i = 0; i < channels; i++)

{

// Log the peak and average power

NSLog(@"%d %0.2f %0.2f",

[self.player peakPowerForChannel:i],

[self.player averagePowerForChannel:i];

}

To query the audio player gain (i.e., its “volume”), use the volume property.This property
also returns a floating-point number, here between 0.0 and 1.0, and applies specifically to
the player volume rather than the system audio volume.You can set this property as well
as read it.This snippet can be used with a target-action pair to update the volume when
the user manipulates an onscreen volume slider.

- (void) setVolume: (id) sender

{

// Set the audio player gain to the current slider value

if (self.player) self.player.volume = volumeSlider.value;

}

ptg

614 Chapter 15 Audio, Video, and MediaKit

Playback Progress and Scrubbing
Two properties, currentTime and duration, monitor the playback progress of your
audio.To find the current playback percentage, divide the current time by the total audio
duration.

progress = self.player.currentTime / self.player.duration;

When you want to scrub your audio, that is, let your user select the current playback
position within the audio track, make sure to pause playback.The AVAudioPlayer class is
not built to provide audio-based scrubbing hints. Instead, wait until the scrubbing finishes
to begin playback at the new location.

Make sure to implement at least two target-action pairs if you base your scrubber on a
standard UISlider. For the first target-action item, mask UIControlEventTouchDown
with UIControlEventValueChanged.These event types allow you to catch the start of a
user scrub and whenever the value changes. Respond to these events by pausing the
audio player and provide some visual feedback for the newly selected time.

- (void) scrub: (id) sender

{

// Pause the player

[self.player pause];

// Calculate the new current time

self.player.currentTime = scrubber.value * self.player.duration;

// Update the title with the current time

self.title = [NSString stringWithFormat:@"%@ of %@",

[self formatTime:self.player.currentTime],

[self formatTime:self.player.duration]];

}

For the second target-action pair, this mask of three values—UIControlEventTouchUp

➥Inside | UIControlEventTouchUpOutside | UIControlEventCancel—allows you
to catch release events and touch interruptions. Upon release, you want to start playing at
the new time set by the user’s scrubbing.

- (void) scrubbingDone: (id) sender

{

// resume playback here

}

Catching the End of Playback
Detect the end of playback by setting the player’s delegate and catching the
audioPlayerDidFinishPlaying:successfully: delegate callback.That method is a
great place to clean up any details like reverting the pause button back to a play button.
Apple provides several system bar button items specifically for media playback.They are

ptg

615Recipe: Playing Audio with AVAudioPlayer

n UIBarButtonSystemItemPlay

n UIBarButtonSystemItemPause

n UIBarButtonSystemItemRewind

n UIBarButtonSystemItemFastForward

The rewind and fast forward buttons provide the double-arrowed icons that are normally
used to move playback to a previous or next item in a playback queue.You could also use
them to revert to the start of a track or progress to its end. Unfortunately, the Stop system
item is an X, used for stopping an ongoing load operation and not the standard filled
square used on many consumer devices for stopping playback or a recording.

Recipe 15-1 puts all these pieces together to create the unified interface you saw in
Figure 15-1. Here, the user can select audio, start playing it back, pause it, adjust its vol-
ume, scrub, and so forth.

The XMAX approach you see here is a bit of a hack. It uses an arbitrary maximum
value to estimate the dynamic range of the input levels. Unlike direct Audio Queue calls
(that return a float value between 0.0 and 1.0), the decibel levels here have to be approxi-
mated to set a progress view value for live feedback. Feel free to adjust the XMAX values
to best fit your tests during development.

Recipe 15-1 Playing Back Audio with AVAudioPlayer

- (void) updateMeters

{

// Retrieve the meter data and update the on-screen display

[self.player updateMeters];

float avg = [self.player averagePowerForChannel:0];

float peak = [self.player peakPowerForChannel:0];

meter1.progress = (XMAX + avg) / XMAX;

meter2.progress = (XMAX + peak) / XMAX;

// Show current progress and update the scrubber

self.title = [NSString stringWithFormat:@"%@ of %@",

[self formatTime:self.player.currentTime],

[self formatTime:self.player.duration]];

scrubber.value = (self.player.currentTime / self.player.duration);

}

- (void) pause: (id) sender

{

// Pause playback, update the play/pause button

if (self.player) [self.player pause];

self.navigationItem.rightBarButtonItem =

SYSBARBUTTON(UIBarButtonSystemItemPlay, self,

@selector(play));

ptg

616 Chapter 15 Audio, Video, and MediaKit

// Disable meters, invalidate the monitor timer

meter1.progress = 0.0f;

meter2.progress = 0.0f;

[timer invalidate];

// Disable the volume slider

volumeSlider.enabled = NO;

// Disable the scrubber

scrubber.enabled = NO;

}

- (void) play: (id) sender

{

// Start or resume playback

if (self.player) [self.player play];

// Update and enable the volume slider

volumeSlider.value = self.player.volume;

volumeSlider.enabled = YES;

// Update the play/pause button

self.navigationItem.rightBarButtonItem =

SYSBARBUTTON(UIBarButtonSystemItemPause, self,

@selector(pause));

// Start monitoring the levels

timer = [NSTimer scheduledTimerWithTimeInterval:0.1f

target:self selector:@selector(updateMeters)

userInfo:nil repeats:YES];

// Enable the scrubber during playback

scrubber.enabled = YES;

}

- (void) setVolume: (id) sender

{

// Respond to user changes to the user volume

if (self.player) self.player.volume = volumeSlider.value;

}

- (void) scrubbingDone: (id) sender

{

// Start playing at the scrubbed location

[self play:nil];

}

ptg

617Recipe: Playing Audio with AVAudioPlayer

- (void) scrub: (id) sender

{

// Pause the player

[self.player pause];

// Calculate the new current time

self.player.currentTime = scrubber.value * self.player.duration;

// Update the title, nav bar

self.title = [NSString stringWithFormat:

@"%@ of %@", [self formatTime:self.player.currentTime],

[self formatTime:self.player.duration]];

self.navigationItem.rightBarButtonItem =

SYSBARBUTTON(UIBarButtonSystemItemPlay, self,

@selector(play));

}

- (BOOL) prepAudio

{

// Check that audio file exists

NSError *error;

if (![[NSFileManager defaultManager]

fileExistsAtPath:self.path]) return NO;

// Initialize the player

self.player = [[AVAudioPlayer alloc] initWithContentsOfURL:

[NSURL fileURLWithPath:self.path] error:&error];

if (!self.player)

{

NSLog(@"Error %@", [error localizedDescription]);

return NO;

}

// Prepare the player, meters, etc

[self.player prepareToPlay];

self.player.meteringEnabled = YES;

meter1.progress = 0.0f;

meter2.progress = 0.0f;

self.player.delegate = self;

scrubber.enabled = NO;

// Set the play/pause button

self.navigationItem.rightBarButtonItem =

SYSBARBUTTON(UIBarButtonSystemItemPlay, self,

@selector(play));

ptg

618 Chapter 15 Audio, Video, and MediaKit

return YES;

}

- (void)audioPlayerDidFinishPlaying:(AVAudioPlayer *)player
successfully:(BOOL)flag

{

// At the end of play, stop the GUI

self.navigationItem.rightBarButtonItem = nil;

scrubber.value = 0.0f;

scrubber.enabled = NO;

volumeSlider.enabled = NO;

// Prepare for a re-play

[self prepAudio];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 15 and open the project for this recipe.

Recipe: Looping Audio
Loops help present ambient background audio.You can use a loop to play an audio snip-
pet several times or play it continuously. Recipe 15-2 demonstrates an audio loop that
plays only during the presentation of a particular video controller, providing an aural
backdrop for that controller.

You set the number of times an audio plays before the playback ends.A high number
(like 999999) essentially provides for an unlimited number of loops. For example, a 4-
second loop would take more than 1,000 hours to play back fully with a loop number
that high.

// Prepare the player and set the loops

[self.player prepareToPlay];

[self.player setNumberOfLoops:999999];

Recipe 15-2 uses looped audio for its primary view controller.Whenever its view is
onscreen the loop plays in the background. Hopefully you choose a loop that’s unobtru-
sive, that sets the mood for your application, and that smoothly transitions from the end of
playback to the beginning.

This recipe uses a fading effect to introduce and hide the audio. It fades the loop into
hearing when the view appears and fades it out when the view disappears. It accomplishes
this with a simple approach.A loop iterates through volume levels, from 0.0 to 1.0 on
appearing, and 1.0 down to 0.0 on disappearing.A call to NSThread’s built-in sleep

http://github.com/erica/iphone-3.0-cookbook-

ptg

619Recipe: Looping Audio

functionality adds the time delays (a tenth of a second between each volume change)
without affecting the audio playback.

Recipe 15-2 Creating Ambient Audio Through Looping

@implementation TestBedViewController

@synthesize player;

- (BOOL) prepAudio

{

// Check for audio file

NSError *error;

NSString *path = [[NSBundle mainBundle]

pathForResource:@"loop" ofType:@"mp3"];

if (![[NSFileManager defaultManager] fileExistsAtPath:path])

return NO;

// Initialize the player

self.player = [[AVAudioPlayer alloc] initWithContentsOfURL:

[NSURL fileURLWithPath:path] error:&error];

if (!self.player)

{

NSLog(@"Error %@", [error localizedDescription]);

return NO;

}

// Prepare the player and set the loops to, basically, unlimited

[self.player prepareToPlay];

[self.player setNumberOfLoops:999999];

return YES;

}

- (void) viewDidAppear: (BOOL) animated

{

// Start playing at no-volume

self.player.volume = 0.0f;

[self.player play];

// Fade in the audio over a second

for (int i = 1; i <= 10; i++)

{

self.player.volume = i / 10.0f;

[NSThread sleepUntilDate:

[NSDate dateWithTimeIntervalSinceNow:0.1f]];

}

ptg

620 Chapter 15 Audio, Video, and MediaKit

// Add the push button

self.navigationItem.rightBarButtonItem =

BARBUTTON(@"Push", @selector(push));

}

- (void) viewWillDisappear: (BOOL) animated

{

// Fade out the audio over a second

for (int i = 9; i >= 0; i--)

{

self.player.volume = i / 10.0f;

[NSThread sleepUntilDate:

[NSDate dateWithTimeIntervalSinceNow:0.1f]];

}

[self.player pause];

}

- (void) push

{

// Create a simple new view controller

UIViewController *vc = [[UIViewController alloc] init];

vc.view.backgroundColor = [UIColor whiteColor];

vc.title = @"No Sounds";

// Disable the now-pressed right-button

self.navigationItem.rightBarButtonItem = nil;

// push the new view controller

[self.navigationController

pushViewController:[vc autorelease] animated:YES];

}

- (void) viewDidLoad

{

self.navigationItem.rightBarButtonItem =

BARBUTTON(@"Push", @selector(push));

self.title = @"Looped Sounds";

[self prepAudio];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 15 and open the project for this recipe.

http://github.com/erica/iphone-3.0-cookbook-

ptg

621Recipe: Handling Audio Interruptions

Recipe: Handling Audio Interruptions
When users receive phone calls during audio playback, that audio fades away.The stan-
dard answer/decline screen appears.As this happens, AVAudioPlayer delegates receive
the audioPlayerBeginInterruption: callback that is shown in Recipe 15-3.The audio
session deactivates, and the player pauses.You cannot restart playback until the interrup-
tion ends.

Should the user accept the call, the application terminates, and the application delegate
receives an applicationWillResignActive: callback.When the call ends, the application
relaunches (with an applicationDidBecomeActive: callback). If the user declines the
call or if the call ends without an answer, the delegate is instead sent audioPlayerEnd
➥Interruption:.You can resume playback from this method.

If it is vital that playback resumes after accepting a call, and the application needs to
relaunch, you can save the current time as shown in Recipe 15-3.The viewDidLoad
method in this recipe checks for a stored interruption value in the user defaults.When it
finds one, it uses this to set the current time for resuming playback.

This approach takes into account the fact that the application relaunches rather than
resumes after the call finishes.You do not receive the end interruption callback when the
user accepts a call.

Recipe 15-3 Storing the Interruption Time for Later Pickup

- (void)audioPlayerBeginInterruption:(AVAudioPlayer *)player

{

// Perform any interruption handling here

printf("Interruption Detected\n");

[[NSUserDefaults standardUserDefaults]

setFloat:[self.player currentTime]

forKey:@"Interruption"];

}

- (void)audioPlayerEndInterruption:(AVAudioPlayer *)player

{

// Resume playback at the end of the interruption

printf("Interruption ended\n");

[self.player play];

// Remove the interruption key. It won’t be needed

[[NSUserDefaults standardUserDefaults]

removeObjectForKey:@"Interruption"];

}

- (void) viewDidLoad

{

[self prepAudio];

ptg

622 Chapter 15 Audio, Video, and MediaKit

// Check for previous interruption

if ([[NSUserDefaults standardUserDefaults]

objectForKey:@"Interruption"])

{

self.player.currentTime =

[[NSUserDefaults standardUserDefaults]

floatForKey:@"Interruption"];

[[NSUserDefaults standardUserDefaults]

removeObjectForKey:@"Interruption"];

}

// Start playback

[self.player play];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 15 and open the project for this recipe.

Recipe: Audio That Ignores Sleep
Locking an iPhone by pressing the sleep/wake button causes an iPhone or iPod to experi-
ence the same interruption events that occur with phone calls.When the unit locks, the
AVAudioPlayer issues an interruption callback.The audio fades away and stops playback.
On unlock, the audioPlayerEndInterruption: callback triggers and the audio playback
continues from where it left off.Try testing Recipe 15-3 by locking and unlocking an
iPhone to see this behavior in action.

When you need your audio to continue playing regardless of whether a user locks a
phone, respond by updating the current audio session.Audio sessions set the context for
an application’s audio, providing direct control over the playback hardware.

To keep playing audio, you need to use a session style that doesn’t respond to autolock.
For example, you might use a play and record session:

if (![[AVAudioSession sharedInstance]

setCategory:AVAudioSessionCategoryPlayAndRecord error:&error])

{

// Error establishing the play & record session

NSLog(@"Error %@", [error localizedDescription]);

return NO;

}

Add this snippet to your code before you allocate a new player and sure enough, your
audio will ignore lock events.You can tap the sleep/wake button, causing your iPhone
screen to go black.The audio will continue to play.

http://github.com/erica/iphone-3.0-cookbook-

ptg

623Recipe: Audio That Ignores Sleep

There’s a problem though.When you use a play and record session, the iPhone auto-
matically lowers the volume on speaker output.This is by design. Lowering the playback
volume avoids feedback loops when a user records audio at the same time as playing audio
back.That’s great for two-way voice chat but bad news for general playback when you
need a full range of audio levels.

Recipe 15-4 presents a workaround that preserves the audio dynamic range while
ignoring lock events. It calls a low-level C-language audio session function to set the
session category.The “media” playback category it uses is not available as a standard
AVAudioSession constant.That is why you need this alternative approach. Like play and
record, a media session ignores sleep/wake button events and continues playback, but
unlike play and record, it provides full volume playback.

When initializing the audio session in this manner, you supply a callback function
rather than a method. Recipe 15-4 demonstrates this by implementing interruption
➥ListenerCallback(), a basic skeleton. Since all interruptions are already caught in the
delegate code from Recipe 15-3, this function simply adds a couple of print statements.
You may omit those if you want.

When phone calls arrive, the delegate callbacks from Recipe 15-3 handle the interrup-
tion and possible relaunch of the application. However, the application never responds to
lock/unlock events.You can see this in action by running the sample code and testing for
the five primary interruption configurations: call answered, call declined, call ignored,
lock, and unlock. By changing the audio session type, those callbacks are no longer gener-
ated and the audio remains unaffected by the sleep/wake button.

Recipe 15-4 Creating Full-Volume Lock-Resistant Audio Playback

void interruptionListenerCallback (void *userData,

UInt32 interruptionState)

{

if (interruptionState == kAudioSessionBeginInterruption)

printf("(ilc) Interruption Detected\n");

else if (interruptionState == kAudioSessionEndInterruption)

printf("(ilc) Interruption ended\n");

}

- (BOOL) prepAudio

{

NSError *error;

NSString *path = [[NSBundle mainBundle]

pathForResource:@"MeetMeInSt.Louis1904" ofType:@"mp3"];

if (![[NSFileManager defaultManager] fileExistsAtPath:path])

return NO;

/* Not this: Audio ends up too low!

if (![[AVAudioSession sharedInstance]

setCategory:AVAudioSessionCategoryPlayAndRecord error:&error])

ptg

624 Chapter 15 Audio, Video, and MediaKit

{

NSLog(@"Error %@", [error localizedDescription]);

return NO;

}

*/

// Catch interruptions via callback

AudioSessionInitialize(NULL, NULL,

interruptionListenerCallback, self);

AudioSessionSetActive(true);

UInt32 sessionCategory = kAudioSessionCategory_MediaPlayback;

AudioSessionSetProperty(kAudioSessionProperty_AudioCategory,

sizeof(sessionCategory), &sessionCategory);

// Initialize the player

self.player = [[AVAudioPlayer alloc] initWithContentsOfURL:

[NSURL fileURLWithPath:path] error:&error];

self.player.volume = 1.0f;

self.player.delegate = self;

if (!self.player)

{

NSLog(@"Error %@", [error localizedDescription]);

return NO;

}

[self.player prepareToPlay];

return YES;

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 15 and open the project for this recipe.

Recipe: Recording Audio
The AVAudioRecorder class simplifies audio recording in your applications. It provides the
same API friendliness as AVAudioPlayer, along with similar feedback properties.Together,
these two classes leverage development for many standard application audio tasks.

Start your recordings by establishing an AVAudioSession. Use a play and record session
if you intend to switch between recording and playback in the same application. Use a
simple record session (via AVAudioSessionCategoryRecord) otherwise. Once you have a

http://github.com/erica/iphone-3.0-cookbook-

ptg

625Recipe: Recording Audio

session, you can check its inputIsAvailable property.This property indicates that the
current device has access to a microphone.

- (BOOL) startAudioSession

{

// Prepare the audio session

NSError *error;

self.session = [AVAudioSession sharedInstance];

if (![self.session

setCategory:AVAudioSessionCategoryPlayAndRecord

error:&error])

{

NSLog(@"Error %@", [error localizedDescription]);

return NO;

}

// Activate the session

if (![self.session setActive:YES error:&error])

{

NSLog(@"Error %@", [error localizedDescription]);

return NO;

}

return self.session.inputIsAvailable;

}

Recipe 15-5 demonstrates the next step after creating the session. It sets up the recorder
and provides methods for pausing, resuming, and stopping the recording.

To start recording, it creates a settings dictionary and populates it with keys and values
that describe how the recording should be sampled.This example uses mono Linear PCM
sampled 8000 times a second, a fairly low sample rate. Here are a few points about cus-
tomizing formats. Unfortunately,Apple does not offer a best practice guide for audio set-
tings at this time.

n Set AVNumberOfChannelsKey to 1 for mono audio, 2 for stereo.
n Audio formats (AVFormatIDKey) that work well on the iPhone include
kAudioFormatLinearPCM (very large files) and kAudioFormatAppleIMA4 (com-
pact files).

n Standard AVSampleRateKey sampling rates include 8000, 11025, 22050, and 44100.
n For the linear PCM-only bit depth (AVLinearPCMBitDepthKey), use either 16 or

32 bits.

The code allocates a new AV and initializes it with both a file URL and the settings dic-
tionary. Once created, this code sets the recorder’s delegate and enables metering. Meter-
ing for AVAudioRecorder instances works like metering for AVAudioPlayer instances, as

ptg

626 Chapter 15 Audio, Video, and MediaKit

was demonstrated in Recipe 15-3.You must update the meter before requesting average
and peak power levels.

This method uses the same XMAX approach to create an approximate dynamic range
for the feedback meters that was shown in Recipe 15-1. Feel free to adjust XMAX to best
match the actual dynamic range for your application.

- (void) updateMeters

{

// Show the current power levels

[self.recorder updateMeters];

float avg = [self.recorder averagePowerForChannel:0];

float peak = [self.recorder peakPowerForChannel:0];

meter1.progress = (XMAX + avg) / XMAX;

meter2.progress = (XMAX + peak) / XMAX;

// Update the current recording time

self.title = [NSString stringWithFormat:@"%

[self formatTime:self.recorder.currentTime]];

}

This code also tracks the recording’s currentTime.When you pause a recording, the cur-
rent time stays still until you resume. Basically, the current time indicates the recording
duration to date.

When you’re ready to proceed with the recording, use prepareToRecord and then start
the recording with record. Issue pause to take a break in recording; resume again with
another call to record.The recording picks up where it left off.To finish a recording, use
stop.This produces a callback to audioRecorderDidFinishRecording:successfully:.
That’s where you can clean up your interface and finalize any recording details.

Recipe 15-5 Audio Recording with AVAudioRecorder

- (void) stopRecording

{

// This causes the didFinishRecording delegate method to fire

[self.recorder stop];

}

- (void) continueRecording

{

// Resume from a paused recording

[self.recorder record];

self.navigationItem.rightBarButtonItem =

BARBUTTON(@"Done", @selector(stopRecording));

self.navigationItem.leftBarButtonItem =

SYSBARBUTTON(UIBarButtonSystemItemPause, self,

@selector(pauseRecording));

}

ptg

627Recipe: Recording Audio

- (void) pauseRecording

{

// Pause an ongoing recording

[self.recorder pause];

self.navigationItem.leftBarButtonItem =

BARBUTTON(@"Continue", @selector(continueRecording));

self.navigationItem.rightBarButtonItem = nil;

}

- (BOOL) record

{

NSError *error;

// Recording settings

NSMutableDictionary *settings = [NSMutableDictionary dictionary];

[settings setValue:

[NSNumber numberWithInt:kAudioFormatLinearPCM]

forKey:AVFormatIDKey];

[settings setValue:

[NSNumber numberWithFloat:8000.0]

forKey:AVSampleRateKey];

[settings setValue:

[NSNumber numberWithInt: 1]

forKey:AVNumberOfChannelsKey]; // mono

[settings setValue:

[NSNumber numberWithInt:16]

forKey:AVLinearPCMBitDepthKey];

[settings setValue:

[NSNumber numberWithBool:NO]

forKey:AVLinearPCMIsBigEndianKey];

[settings setValue:

[NSNumber numberWithBool:NO]

forKey:AVLinearPCMIsFloatKey];

// File URL

NSURL *url = [NSURL fileURLWithPath:FILEPATH];

// Create recorder

self.recorder = [[AVAudioRecorder alloc]

initWithURL:url settings:settings error:&error];

if (!self.recorder)

{

NSLog(@"Error %@", [error localizedDescription]);

return NO;

}

ptg

628 Chapter 15 Audio, Video, and MediaKit

// Initialize degate, metering, etc.

self.recorder.delegate = self;

self.recorder.meteringEnabled = YES;

meter1.progress = 0.0f;

meter2.progress = 0.0f;

self.title = @

if (![self.recorder prepareToRecord])

{

NSLog(@"Error Prepare to record failed");

[ModalAlert say:@"Error while preparing recording"];

return NO;

}

if (![self.recorder record])

{

NSLog(@"Error Record failed");

[ModalAlert say:@"Error while attempting to record audio"];

return NO;

}

// Set a timer to monitor levels, current time

timer = [NSTimer scheduledTimerWithTimeInterval:0.1f

target:self selector:@selector(updateMeters)

userInfo:nil repeats:YES];

// Update the navigation bar

self.navigationItem.rightBarButtonItem =

BARBUTTON(@"Done", @selector(stopRecording));

self.navigationItem.leftBarButtonItem =

SYSBARBUTTON(UIBarButtonSystemItemPause, self,

@selector(pauseRecording));

return YES;

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 15 and open the project for this recipe.

http://github.com/erica/iphone-3.0-cookbook-

ptg

629Recipe: Recording Audio with Audio Queues

Recipe: Recording Audio with Audio Queues
In addition to the AVAudioPlayer class,Audio Queues can handle recording and playing
tasks in your applications.Audio Queues were needed for recording before the
AVAudioRecorder class debuted. Using queues directly helps demonstrate what’s going on
under the hood of the AVAudioRecorder class.

Recipe 15-6 records audio at the Audio Queue level, providing a taste of the C-style
functions and callbacks used.This code is heavily based on Apple sample code and specifi-
cally showcases functionality that is hidden behind the AVAudioRecorder wrapper.

The settings used in Recipe 15-6’s setupAudioFormat: method have been tested and
work reliably on the iPhone. It’s easy, however, to mess up these parameters when trying
to customize your audio quality. If you don’t have the parameters set up just right, the
queue may fail with little feedback. Google provides copious settings examples.

Note
Interested in learning more about other approaches for iPhone audio? iPhone developer Ben
Britten has posted a nice introduction to OpenAL audio on the iPhone at http://benbritten.
com/blog/2008/11/06/openal-sound-on-the-iphone/. OpenAL offers a multidimensional,
positional audio API.

Recipe 15-6 Recording with Audio Queues: The Recorder.m Implementation

// Write out current packets as the input buffer is filled

static void HandleInputBuffer (void *aqData,

AudioQueueRef inAQ, AudioQueueBufferRef inBuffer,

const AudioTimeStamp *inStartTime,

UInt32 inNumPackets,

const AudioStreamPacketDescription *inPacketDesc)

{

RecordState *pAqData = (RecordState *) aqData;

if (inNumPackets == 0 &&

pAqData->dataFormat.mBytesPerPacket != 0)

inNumPackets = inBuffer->mAudioDataByteSize /

pAqData->dataFormat.mBytesPerPacket;

if (AudioFileWritePackets(pAqData->audioFile, NO,

inBuffer->mAudioDataByteSize, inPacketDesc,

pAqData->currentPacket, &inNumPackets,

inBuffer->mAudioData) == noErr)

{

pAqData->currentPacket += inNumPackets;

if (pAqData->recording == 0) return;

AudioQueueEnqueueBuffer (pAqData->queue, inBuffer,

0, NULL);

}

}

http://benbritten.com/blog/2008/11/06/openal-sound-on-the-iphone/
http://benbritten.com/blog/2008/11/06/openal-sound-on-the-iphone/

ptg

630 Chapter 15 Audio, Video, and MediaKit

@implementation Recorder

// Set up the recording format as low quality mono AIFF

- (void)setupAudioFormat:(AudioStreamBasicDescription*)format

{

format->mSampleRate = 8000.0;

format->mFormatID = kAudioFormatLinearPCM;

format->mFormatFlags = kLinearPCMFormatFlagIsBigEndian |

kLinearPCMFormatFlagIsSignedInteger |

kLinearPCMFormatFlagIsPacked;

format->mChannelsPerFrame = 1; // mono

format->mBitsPerChannel = 16;

format->mFramesPerPacket = 1;

format->mBytesPerPacket = 2;

format->mBytesPerFrame = 2;

format->mReserved = 0;

}

// Begin recording

- (BOOL) startRecording: (NSString *) filePath

{

// Many of these calls mirror the process for AVAudioRecorder

// Set up the audio format and the url to record to

[self setupAudioFormat:&recordState.dataFormat];

CFURLRef fileURL = CFURLCreateFromFileSystemRepresentation(

NULL, (const UInt8 *) [filePath UTF8String],

[filePath length], NO);

recordState.currentPacket = 0;

// Initialize the queue with the format choices

OSStatus status;

status = AudioQueueNewInput(&recordState.dataFormat,

HandleInputBuffer, &recordState,

CFRunLoopGetCurrent(),kCFRunLoopCommonModes, 0,

&recordState.queue);

if (status) {

printf("Could not establish new queue\n");

return NO;

}

// Create the output file

status = AudioFileCreateWithURL(fileURL,

kAudioFileAIFFType, &recordState.dataFormat,

kAudioFileFlags_EraseFile, &recordState.audioFile);

ptg

631Recipe: Recording Audio with Audio Queues

if (status)

{

printf("Could not create file to record audio\n");

return NO;

}

// Set up the buffers

DeriveBufferSize(recordState.queue, recordState.dataFormat,

0.5, &recordState.bufferByteSize);

for(int i = 0; i < NUM_BUFFERS; i++)

{

status = AudioQueueAllocateBuffer(recordState.queue,

recordState.bufferByteSize, &recordState.buffers[i]);

if (status) {

printf("Error allocating buffer %d\n", i);

return NO;

}

status = AudioQueueEnqueueBuffer(recordState.queue,

recordState.buffers[i], 0, NULL);

if (status) {

printf("Error enqueuing buffer %d\n", i);

return NO;

}

}

// Enable metering

UInt32 enableMetering = YES;

status = AudioQueueSetProperty(recordState.queue,

kAudioQueueProperty_EnableLevelMetering,

&enableMetering,sizeof(enableMetering));

if (status)

{

printf("Could not enable metering\n");

return NO;

}

// Start the recording

status = AudioQueueStart(recordState.queue, NULL);

if (status)

{

printf("Could not start Audio Queue\n");

return NO;

}

recordState.currentPacket = 0;

recordState.recording = YES;

return YES;

}

ptg

632 Chapter 15 Audio, Video, and MediaKit

// Return the average power level

- (float) averagePower

{

AudioQueueLevelMeterState state[1];

UInt32 statesize = sizeof(state);

OSStatus status;

status = AudioQueueGetProperty(recordState.queue,

kAudioQueueProperty_CurrentLevelMeter, &state, &statesize);

if (status)

{

printf("Error retrieving meter data\n");

return 0.0f;

}

return state[0].mAveragePower;

}

// Return the peak power level

- (float) peakPower

{

AudioQueueLevelMeterState state[1];

UInt32 statesize = sizeof(state);

OSStatus status;

status = AudioQueueGetProperty(recordState.queue,

kAudioQueueProperty_CurrentLevelMeter, &state, &statesize);

if (status)

{

printf("Error retrieving meter data\n");

return 0.0f;

}

return state[0].mPeakPower;

}

// There’s generally about a one-second delay before the

// buffers fully empty

- (void) reallyStopRecording

{

AudioQueueFlush(recordState.queue);

AudioQueueStop(recordState.queue, NO);

recordState.recording = NO;

for(int i = 0; i < NUM_BUFFERS; i++)

{

AudioQueueFreeBuffer(recordState.queue,

recordState.buffers[i]);

}

ptg

633Recipe: Recording Audio with Audio Queues

AudioQueueDispose(recordState.queue, YES);

AudioFileClose(recordState.audioFile);

}

// Stop the recording after waiting just a second

- (void) stopRecording

{

[self performSelector:@selector(reallyStopRecording)

withObject:NULL afterDelay:1.0f];

}

// Pause after allowing buffers to catch up

- (void) reallyPauseRecording

{

if (!recordState.queue) {printf("Nothing to pause\n"); return;}

OSStatus status = AudioQueuePause(recordState.queue);

if (status) {printf("Error pausing audio queue\n"); return;}

}

// Pause the recording after waiting a half second

- (void) pause

{

[self performSelector:@selector(reallyPauseRecording)

withObject:NULL afterDelay:0.5f];

}

// Resume recording from a paused queue

- (BOOL) resume

{

if (!recordState.queue)

{

printf("Nothing to resume\n");

return NO;

}

OSStatus status = AudioQueueStart(recordState.queue, NULL);

if (status)

{

printf("Error restarting audio queue\n");

return NO;

}

return YES;

}

ptg

634 Chapter 15 Audio, Video, and MediaKit

// Return the current recording duration

- (float) currentTime

{

AudioTimeStamp outTimeStamp;

OSStatus status = AudioQueueGetCurrentTime (

recordState.queue, NULL, &outTimeStamp, NULL);

if (status)

{

printf("Error: Could not retrieve current time\n");

return 0.0f;

}

// 8000 samples per second

return outTimeStamp.mSampleTime / 8000.0f;

}

// Return whether the recording is active

- (BOOL) isRecording

{

return recordState.recording;

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 15 and open the project for this recipe.

Recipe: Playing Video with the Media Player
The MPMoviePlayerController class simplifies video display in your applications.This
class, which is part of the MediaPlayer framework, plays by its own rules.You do not push
it onto a navigation stack.You do not invoke it modally. Instead, you create it and tell it to
play. It takes control of the screen, offering the controls shown in Figure 15-2.

To regain control, subscribe your application to the MPMoviePlayerPlaybackDid
➥FinishNotification notification.This notification is sent under two circumstances:
when playback naturally ends, or when the user taps Done. Using the class couldn’t be
simpler.Allocate a new instance of the MPMoviePlayer class, initialize it with a URL, and
tell it to play. Release the player when the playback ends.

Recipe 15-7 includes two methods. One starts playback; the other cleans up when
playback ends.This exact code can be used to play back either video or audio. Just provide
a source URL pointing to a supported file type. Supported file types include MOV, MP4,
MPV, M4V, and 3GP, as well as MP3,AIFF, and M4A, among others.

This code uses an off-phone resource via an external URL. Be aware that such
connections can be slow (and possibly nonexistent) so prepare for possible lags during

http://github.com/erica/iphone-3.0-cookbook-

ptg

635Recipe: Playing Video with the Media Player

Figure 15-2 The full-screen media player interface
offers extensive user control over video playback. This is
the same video interface used in the iPod and YouTube
applications. (This screenshot is from a public domain
Betty Boop cartoon, courtesy of the Internet Archive at

archive.org.)

playback. Local file URLs (as shown previously in Recipe 15-1) produce more reliable
playback for video and audio resources.

Unfortunately, the MPMoviePlayer object offers limited API control. If you need to
loop a movie, you can restart playback after catching the finish notification, as shown here.

-(void)myMovieFinishedCallback:(NSNotification*)aNotification

{

MPMoviePlayerController* theMovie=[aNotification object];

[theMovie play];

}

This causes a visual hiccup between the time the movie first ends and then starts up again.
You want to take this into account, perhaps overlaying your main GUI with a black view.
Users may need to tap the play button again.While you can limit user interaction with
the movie by setting the player’s movieControlMode to a no-interaction or volume-only
mode, these modes hide the play button from the user.

Note
Recipe 13-7 demonstrated how to fully (and asynchronously) download a file from a remote
server before playing back that movie.

Recipe 15-7 Playing Back Videos Using the MPMoviePlayer

// Offsite resource Betty Boop Cinderella @Archive.org

#define PATHSTRING \

@"http://www.archive.org/download/bb_poor_cinderella/\

bb_poor_cinderella_512kb.mp4"

ptg

636 Chapter 15 Audio, Video, and MediaKit

@interface TestBedViewController : UIViewController

@end

@implementation TestBedViewController

-(void)myMovieFinishedCallback:(NSNotification*)aNotification

{

// Clean up after the movie finishes

MPMoviePlayerController* theMovie=[aNotification object];

[[NSNotificationCenter defaultCenter] removeObserver:self

name:MPMoviePlayerPlaybackDidFinishNotification

object:theMovie];

[theMovie release];

self.navigationItem.rightBarButtonItem =

BARBUTTON(@"Play", @selector(play));

self.title = nil;

}

- (void) play: (UIBarButtonItem *) bbi

{

// Hide the play button and present the player

self.navigationItem.rightBarButtonItem = nil;

self.title = @"Contacting Server";

MPMoviePlayerController* theMovie=[[MPMoviePlayerController alloc]

initWithContentURL:[NSURL URLWithString:PATHSTRING]];

[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(myMovieFinishedCallback)

name:MPMoviePlayerPlaybackDidFinishNotification

object:theMovie];

[theMovie play];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 15 and open the project for this recipe.

Recipe: Recording Video
Before you can record video, you must detect whether the device supports camera-based
video recording. Checking for an onboard camera, such as those in the first generation
and 3G iPhones, is not sufficient. Only the 3GS and newer units provide video recording

http://github.com/erica/iphone-3.0-cookbook-

ptg

637Recipe: Recording Video

capabilities. Perform two checks: first, that a camera is available, and second, that the avail-
able capture types includes video.The following method performs those checks.

- (BOOL) videoRecordingAvailable

{

// The source type must be available

if (![UIImagePickerController isSourceTypeAvailable:

UIImagePickerControllerSourceTypeCamera])

return NO;

// And the media type must include the movie type

NSArray *mediaTypes = [UIImagePickerController

availableMediaTypesForSourceType:

UIImagePickerControllerSourceTypeCamera]

return [mediaTypes containsObject:@"public.movie"];

}

Note that this method searches for a public.movie media type using a constant string.At
some point in the future of the iPhone SDK, you should be able to use the kUTTypeMovie
constant instead.These types are defined in the MobileCoreServices public framework in
UTCoreTypes.h.

As Recipe 15-8 demonstrates, recording video proves to be similar to capturing still
images with the onboard camera.You allocate and initialize a new image picker, set its del-
egate, select whether to allow editing, and present it.

Unlike still image capture, you must set three key properties. First, select a video qual-
ity. Recipe 15-8 uses a medium quality, but you can also choose high or low. Second,
specify a maximum video duration in seconds. Recipe 15-8 allows the user to record up
to 30 seconds of video. (The maximum can range up to 10 minutes using the video image
picker.) Finally, set the media type array for the picker to a one-object list using the movie
media type.You can include public.image to provide the user with the option to switch
between still and video capture, as highlighted in Figure 15-3.

By setting the allowsEditing property to YES, you permit users to use the built-in
video editor to trim their clips before saving or otherwise working with that data.
Whether you allow editing or not, when the user finishes the video capture, the standard
image picker callbacks inform the delegate.

With video, you retrieve a URL instead of the actual data.As Recipe 15-8 demon-
strates, you should check whether that video is compatible with the built-in album before
attempting to save. If it is, you may save it using the UISaveVideoAtPath
➥ToSavedPhotosAlbum() function. Examples of incompatible clips include MPEG-4
videos downloaded from the Internet Archive (http://archive.org) that you might want to
add to your photo album.These files are not album compatible.

http://archive.org

ptg

638 Chapter 15 Audio, Video, and MediaKit

Figure 15-3 Developers may specify one or more media types for the
image picker controller. The screenshot on the left demonstrates a video-only
capture. The right screenshot shows a picker that supports both image and

video capture.

Recipe 15-8 Using UIImagePickerController to Record Video

- (void)video:(NSString *)videoPath

didFinishSavingWithError:(NSError *)error

contextInfo:(void *)contextInfo

{

// Check for save errors

if (!error)

self.title = @"Saved!";

else

CFShow([error localizedDescription]);

}

- (void) imagePickerControllerDidCancel:

(UIImagePickerController *) picker

{

// User pressed cancel so dismiss the picker

[self dismissModalViewControllerAnimated:YES];

[picker release];

}

- (void)imagePickerController:(UIImagePickerController *)picker

didFinishPickingMediaWithInfo:(NSDictionary *)info

ptg

639Recipe: Picking and Editing Video

{

// Recover video URL

NSURL *url = [info objectForKey:UIImagePickerControllerMediaURL];

// Check if video is compatible with album

BOOL compatible =

UIVideoAtPathIsCompatibleWithSavedPhotosAlbum([url path]);

// Save

if (compatible)

UISaveVideoAtPathToSavedPhotosAlbum([url path], self,

@selector(videodidFinishSavingWithError:contextInfo:),

NULL);

[self dismissModalViewControllerAnimated:YES];

[picker release];

}

- (void) recordVideo: (id) sender

{

// Present the video recorder

UIImagePickerController *ipc =

[[UIImagePickerController alloc] init];

ipc.sourceType = UIImagePickerControllerSourceTypeCamera;

ipc.delegate = self;

ipc.allowsEditing = YES;

ipc.videoQuality = UIImagePickerControllerQualityTypeMedium;

ipc.videoMaximumDuration = 30.0f; // 30 seconds

ipc.mediaTypes = [NSArray arrayWithObject:@"public.movie"];

[self presentModalViewController:ipc animated:YES];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 15 and open the project for this recipe.

Recipe: Picking and Editing Video
The mediaTypes property used in Recipe 15-8 affects media selection as well as media
capture.To request a picker that presents video assets only, create a photo library picker
and use a media array that consists of a single public.movie string.The following method
creates a video-only picker.

- (void) pickVideo: (id) sender

{

// Present a video-only picker

UIImagePickerController *ipc =

[[UIImagePickerController alloc] init];

http://github.com/erica/iphone-3.0-cookbook-

ptg

640 Chapter 15 Audio, Video, and MediaKit

ipc.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;

ipc.delegate = self;

ipc.allowsEditing = NO;

ipc.videoQuality = UIImagePickerControllerQualityTypeMedium;

ipc.videoMaximumDuration = 30.0f; // 30 seconds

ipc.mediaTypes = [NSArray arrayWithObject:@"public.movie"];

[self presentModalViewController:ipc animated:YES];

}

To edit an already-existing video, start by checking that the video asset can be modified
as shown in Recipe 15-9. Call the UIVideoEditorController class method
canEditVideoAtPath:.This returns a Boolean value that indicates whether the video is
compatible with the editor controller.

If it is, you can allocate a new editor, set its delegate and videoPath properties, and
present it.The editor uses a set of delegate callbacks that are similar to but not identical to
the ones used by the UIImagePickerController class. Callbacks include methods for
success, failure, and user cancellation.

When a user has finished editing the video, the controller saves that video to a tempo-
rary path and calls videoEditorController:didSaveEditedVideoToPath:.That path
resides in the application sandbox’s tmp folder. If you do nothing with the data, it will be
deleted the next time the iPhone reboots.You can, however, save that data either locally
into the sandbox’s Documents folder or into the shared iPhone photo album.To do so,
follow the example shown in Recipe 15-8. Regardless of which callback is sent, it’s up to
you to dismiss the editor and release it.

Recipe 15-9 Using the Video Editor Controller

- (void)videoEditorController:(UIVideoEditorController *)editor

didSaveEditedVideoToPath:(NSString *)editedVideoPath

{

CFShow(editedVideoPath);

// Can do save here. The data has *not* yet

// been saved to the photo album

[self dismissModalViewControllerAnimated:YES];

[editor release];

}

- (void)videoEditorControllerDidCancel:

(UIVideoEditorController *)editor

{

// Hide the picker as the user has canceled

[self dismissModalViewControllerAnimated:YES];

[editor release];

}

- (void)videoEditorController:(UIVideoEditorController *)editor

ptg

641Recipe: Picking Audio with the MPMediaPickerController

didFailWithError:(NSError *)error

{

// Respond to an editor failure

[self dismissModalViewControllerAnimated:YES];

[editor release];

NSLog(@"Fail! %@", [error localizedDescription]);

}

- (void) doEdit

{

// Make sure that editing is possible

if (![UIVideoEditorController canEditVideoAtPath:self.vpath])

{

self.title = @"Cannot Edit Video";

printf("Cannot edit vid at path\n");

return;

}

// If so, present the editor

UIVideoEditorController *vec =

[[UIVideoEditorController alloc] init];

vec.videoPath = self.vpath;

vec.delegate = self;

[self presentModalViewController:vec animated:YES];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 15 and open the project for this recipe.

Recipe: Picking Audio with the
MPMediaPickerController
The MPMediaPickerController class provides an audio equivalent for the image-picking
facilities of the UIImagePickerController class. It allows users to choose an item or
items from their music library including music, podcasts, and audio books.The standard
iPod-style interface allows users to browse via playlists, artists, songs, albums, and more.

To use this class, allocate a new picker and initialize it with the kinds of media
to be used.You can choose from MPMediaTypeMusic, MPMediaTypePodcast,
MPMediaTypeAudioBook, MPMediaTypeAnyAudio, and MPMediaTypeAny.These are flags
and can be or’ed together to form a mask.

MPMediaPickerController *mpc = [[MPMediaPickerController alloc]

initWithMediaTypes:MPMediaTypeAny];

mpc.delegate = self;

http://github.com/erica/iphone-3.0-cookbook-

ptg

642 Chapter 15 Audio, Video, and MediaKit

Figure 15-4 In this multiple selection media
picker, already selected items appear in gray (see
ABC and Above It All). Users tap Done when fin-

ished. In the normal selection picker, the Done but-
ton is replaced by Cancel, allowing users to leave
without selecting an item. An optional prompt field
(here, Please Select an Item) appears above the

normal picker elements.

mpc.prompt = @"Please select an item";

mpc.allowsPickingMultipleItems = NO;

[self presentModalViewController:mpc animated:YES];

Next, set a delegate and optionally set a prompt.The prompt is text that appears at the
top of the media picker, as shown in Figure 15-4.When you choose to allow multiple
item selection, the Cancel button on the standard picker is replaced by the label Done.
Normally, the dialog ends when a user taps a track.With multiple selection, users can
keep picking items until they press the Done button. Selected items are updated to use
gray labels.

The mediaPicker:didPickMediaItems: delegate callback handles the completion of a
user selection.The MPMediaItemCollection instance that is passed as a parameter can be
enumerated by accessing its items. Each item is a member of the MPMediaItem class and
can be queried for its properties, as shown in Recipe 15-10. Recipe 15-10 uses a media
picker to select multiple music tracks. It logs the items the user selected by artist and title.

ptg

643Recipe: Picking Audio with the MPMediaPickerController

Table 15-1 Media Item Properties

Properties Type Filterable

General Media Item

MPMediaItemPropertyPersistentID uint64_t Yes

MPMediaItemPropertyMediaType NSNumber

Integer

Yes

MPMediaItemPropertyTitle NSString Yes

MPMediaItemPropertyAlbumTitle NSString Yes

MPMediaItemPropertyArtist NSString Yes

MPMediaItemPropertyAlbumArtist NSString Yes

MPMediaItemPropertyGenre NSString Yes

MPMediaItemPropertyComposer NSString Yes

MPMediaItemPropertyPlayback

Duration

NSNumber

NSTimeInterval

MPMediaItemPropertyAlbumTrack

Number

NSNumber

Integer

MPMediaItemPropertyAlbumTrackCount NSNumber

Integer

MPMediaItemPropertyDiscNumber NSNumber

integer

MPMediaItemPropertyDiscCount NSNumber

integer

MPMediaItemPropertyArtwork MPMediaItemArtwork

MPMediaItemPropertyLyrics NSString

MPMediaItemPropertyIsCompilation NSNumber

Boolean

Yes

Podcast Item

MPMediaItemPropertyPodcastTitle NSString

User Defined

MPMediaItemPropertyPlayCount NSNumber

Integer

MPMediaItemPropertySkipCount NSNumber

Integer

Table 15-1 lists the available properties for media items, the type they return and
whether they can be used to construct a media property predicate. Building queries and
using predicates is discussed in Recipe 15-11.

ptg

644 Chapter 15 Audio, Video, and MediaKit

Recipe 15-10 Selecting Music Items from the iPod Library

@implementation TestBedViewController

- (void)mediaPicker: (MPMediaPickerController *)mediaPicker

didPickMediaItems:(MPMediaItemCollection *)mediaItemCollection

{

// Show the selected items

for (MPMediaItem *item in [mediaItemCollection items])

NSLog(@"[%@] %@",

[item valueForProperty:MPMediaItemPropertyArtist],

[item valueForProperty:MPMediaItemPropertyTitle]);

[self dismissModalViewControllerAnimated:YES];

[mediaPicker release];

}

- (void)mediaPickerDidCancel:(MPMediaPickerController *)mediaPicker

{

// Respond to user cancel

[self dismissModalViewControllerAnimated:YES];

[mediaPicker release];

}

- (void) action: (UIBarButtonItem *) bbi

{

// Present the picker, allowing multiple selections

MPMediaPickerController *mpc = [[MPMediaPickerController alloc]

initWithMediaTypes:MPMediaTypeMusic];

mpc.delegate = self;

mpc.prompt = @"Please select an item";

mpc.allowsPickingMultipleItems = YES;

[self presentModalViewController:mpc animated:YES];

}

- (void) viewDidLoad

{

self.navigationItem.rightBarButtonItem =

Table 15-1 Continued

Properties Type Filterable

MPMediaItemPropertyRating NSNumber

Integer between 0
and 5

MPMediaItemPropertyLastPlayedDate NSDate

ptg

645Creating a Media Query

Table 15-2 Query Types

Class Method Global? Filter Group Type

albumsQuery No MPMediaTypeMusic MPMediaGrouping
➥Album

artistsQuery No MPMediaTypeMusic MPMediaGrouping
➥Artist

audiobooksQuery No MPMediaTypeAudioBook MPMediaGrouping
➥Title

compilations
➥Query

No MPMediaTypeAny |
MPMediaItemPropertyIs
➥Compilation

MPMediaGroupingAlbum

composersQuery Yes MPMediaTypeAny MPMediaGrouping
➥Composer

genresQuery Yes MPMediaTypeAny MPMediaGroupingGenre

playlistsQuery Yes MPMediaTypeAny MPMediaGrouping
➥Playlist

podcastsQuery No MPMediaTypePodcast MPMediaGrouping
➥PodcastTitle

songsQuery No MPMediaTypeMusic MPMediaGroupingTitle

BARBUTTON(@"Action", @selector(action));

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 15 and open the project for this recipe.

Creating a Media Query
Media Queries allow you to filter your iPod library contents, limiting the scope of your
search.Table 15-2 lists the nine class methods that MPMediaQuery provides for predefined
searches. Each query type controls the grouping of the data returned. Each collection is
organized as tracks by album, or by artist, or by audio book, and so on.

http://github.com/erica/iphone-3.0-cookbook-

ptg

646 Chapter 15 Audio, Video, and MediaKit

This approach reflects the way that iTunes works on the desktop. In iTunes, you select a
column to organize your results, but you search by entering text into the application’s
Search field.

Building a Query
Count the number of albums in your library using an album query.This snippet creates
that query and then retrieves an array, each item of which represents a single album.These
album items are collections of individual media items.A collection may contain a single
track or many.

MPMediaQuery *query = [MPMediaQuery albumsQuery];

NSArray *collections = query.collections;

NSLog(@"You have %d albums in your library\n", collections.count);

Many iPhone users have extensive media collections often containing hundreds or thou-
sands of albums, let alone individual tracks.A simple query like this one may take several
seconds to run and return a data structure that represents the entire library.

A search using a different query type allows returns collections organized by that
type.You can use a similar approach to recover the number of artists, songs, composers,
and so on.

Using Predicates
A media property predicate efficiently filters the items returned by a query. For example,
you might want to find only those songs whose title matches the phrase “road.”The
following snippet creates a new songs query and adds a filter predicate to search for that
phrase.The predicate is constructed with a value (the search phrase), a property (searching
the song title), and a comparison type (in this case “contains”). Use MPMediaPredicate
➥ComparisonEqualTo for exact matches and MPMediaPredicateComparisonContains
for substring matching.

MPMediaQuery *query = [MPMediaQuery songsQuery];

// Construct a title comparison predicate

MPMediaPropertyPredicate *mpp = [MPMediaPropertyPredicate

predicateWithValue:@"road"

forProperty:MPMediaItemPropertyTitle

comparisonType:MPMediaPredicateComparisonContains];

[query addFilterPredicate:mpp];

// Recover the collections

NSArray *collections = query.collections;

NSLog(@"You have %d matching tracks in your library\n",

collections.count);

ptg

647Creating a Media Query

// Iterate through each item, logging the song and artist

for (MPMediaItemCollection *collection in collections)

{

for (MPMediaItem *item in [collection items])

{

NSString *song = [item valueForProperty:

MPMediaItemPropertyTitle];

NSString *artist = [item valueForProperty:

MPMediaItemPropertyArtist];

NSLog(@"%@, %@", song, artist);

}

}

Note
If you’d rather use regular predicates with your media collections than media property
predicates, I have created an MPMediaItem properties category (http://github.com/erica/
MPMediaItem-Properties). This category allows you to apply standard NSPredicate queries
against collections, such as those returned by a multiple-item selection picker.

Handling Speed Issues
The preceding snippet runs slowly. Recovering property values takes far more time than
you might expect, up to a second each on a large library on a modern iPhone 3GS or
third generation iPod touch, the fastest available iPhone devices at the time this book was
written.There’s no apparent reason for why a property query should take much time at all
or why these property retrievals might be choked or affected by library size.

Delays make it hard to use these kinds of queries to provide a data source for a table
view. Recipe 15-11 shows this problem in action. It builds a list of song titles from a user
search. Even using a cache to avoid recovering already-used cell titles, the recipe demon-
strates that creating your own pickers is impractical for now due to speed issues.

Unless Apple greatly speeds up data recovery, you’re better off using the built-in
MPMediaPickerController class to retrieve individual MPMediaItems.

Recipe 15-11 Demonstrating the Choke Time for Media Queries

- (void)searchBarSearchButtonClicked: (UISearchBar *) searchBar

{

// Hide keyboard

[searchBar resignFirstResponder];

// Reset the title cache

self.titleCache = [NSMutableDictionary dictionary];

// Create a new query

MPMediaQuery *query = [MPMediaQuery songsQuery];

MPMediaPropertyPredicate *mpp = [MPMediaPropertyPredicate

predicateWithValue:searchBar.text

http://github.com/erica/MPMediaItem-Properties
http://github.com/erica/MPMediaItem-Properties

ptg

648 Chapter 15 Audio, Video, and MediaKit

forProperty:MPMediaItemPropertyTitle

comparisonType:MPMediaPredicateComparisonContains];

[query addFilterPredicate:mpp];

// Retrieve the results and reload the table data

self.songCollections = query.collections;

[self.tableView reloadData];

}

- (NSInteger)numberOfSectionsInTableView:(UITableView *)aTableView

{

// Combine all data into a single section

return 1;

}

- (NSInteger)tableView:(UITableView *)aTableView

numberOfRowsInSection:(NSInteger)section

{

// The number of rows is set by the matching collections

return [self.songCollections count];

}

- (UITableViewCell *)tableView:(UITableView *)tView

cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

// To give a sense of the timing

printf("Retrieving cell %d\n", indexPath.row);

UITableViewCellStyle style = UITableViewCellStyleDefault;

UITableViewCell *cell = [tView

dequeueReusableCellWithIdentifier:@"BaseCell"];

if (!cell) cell = [[[UITableViewCell alloc] initWithStyle:style

reuseIdentifier:@"BaseCell"] autorelease];

// Retrieve the item

MPMediaItem *item = [[[self.songCollections

objectAtIndex:indexPath.row] items] lastObject];

NSString *label = [item valueForProperty:MPMediaItemPropertyTitle];

cell.textLabel.text = label;

return cell;

}

- (void) viewDidLoad

{

self.navigationController.navigationBar.tintColor =

COOKBOOK_PURPLE_COLOR;

ptg

649Recipe: Using the MPMusicPlayerController

// Set up the search bar

UISearchBar *sb = [[[UISearchBar alloc]

initWithFrame:CGRectMake(0.0f, 0.0f, 320.0f, 44.0f)]

autorelease];

sb.autocapitalizationType = UITextAutocapitalizationTypeNone;

sb.autocorrectionType = UITextAutocorrectionTypeNo;

sb.backgroundColor = [UIColor clearColor];

sb.tintColor = COOKBOOK_PURPLE_COLOR;

self.navigationItem.titleView = sb;

sb.delegate = self;

self.titleCache = [NSMutableDictionary dictionary];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 15 and open the project for this recipe.

Recipe: Using the MPMusicPlayerController
Cocoa Touch includes a simple-to-use music player class that works seamlessly with media
collections. Despite what its name implies, the MPMusicPlayerController class is not a
view controller. It provides no onscreen elements for playing back music. Instead, it offers
an abstract controller that handles playing and pausing music.

It publishes optional notifications when its playback state changes.The class offers
two shared instances, the iPodMusicPlayer and an applicationMusicPlayer.Always
use the former. It provides reliable state change feedback, which you will want to catch
programmatically.

Initialize the player controller by calling setQueueWithItemCollection: with an
MPMediaItemCollection.

[[MPMusicPlayerController iPodMusicPlayer]

setQueueWithItemCollection:self.songs];

Alternatively, you can load a queue with a media query. For example, you might set a
playlistsQuery matching a specific playlist phrase, or an artist query to search for songs
by a given artist. Use setQueueWithQuery: to generate a queue from an MPMediaQuery
instance.

If you want to shuffle playback, assign a value to the controller’s shuffleMode property.
Choose from MPMusicShuffleModeDefault, which respects the user’s current setting,
MPMusicShuffleModeOff (no shuffle), MPMusicShuffleModeSongs (song-by-song shuffle),
and MPMusicShuffleModeAlbums (album-by-album shuffle).A similar set of options exists
for the music’s repeatMode.

Once you set the item collection, you can play, pause, skip to the next item in the
queue, go back to a previous item, and so forth.To rewind without moving back to a

http://github.com/erica/iphone-3.0-cookbook-

ptg

650 Chapter 15 Audio, Video, and MediaKit

previous item, issue skipToBeginning.You can also seek within the currently playing
item, moving the playback point forward or backward.

Recipe 15-12 offers a simple media player that shows the currently playing song (along
with its artwork, if available).When run, the user selects a group of items using an
MPMediaPickerController.This item collection is returned and assigned to the player,
which begins playing back the group.

A pair of observers use the default notification center to watch for two key changes:
when the current item changes and when the playback state changes.To catch these
changes, you must manually request notifications.This allows you to update the interface
with new “now playing” information when the playback item changes.

[[MPMusicPlayerController iPodMusicPlayer]

beginGeneratingPlaybackNotifications];

You may undo this request by issuing endGeneratingPlaybackNotifications, or you
can simply allow the program to tear down all observers when the application naturally
terminates. Please note that because this recipe uses iPod music player, playback continues
after leaving the application unless you specifically stop it. Playback is not affected by the
application teardown.

- (void) applicationWillTerminate: (UIApplication *) application

{

// Stop player when the application quits

[[MPMusicPlayerController iPodMusicPlayer] stop];

}

In addition to demonstrating playback control, Recipe 15-12 shows how to display album
art during playback. It uses the same kind of MPItem property retrieval used in previous
recipes. In this case, it queries for MPMediaItemPropertyArtwork, and if artwork is found
it uses the MPMediaItemArtwork class to convert that artwork to an image of a given size.

Recipe 15-12 Simple Media Playback with the iPod Music Player

#define PLAYER [MPMusicPlayerController iPodMusicPlayer]

#pragma mark PLAYBACK

- (void) pause

{

// Pause playback

[PLAYER pause];

toolbar.items = [self playItems];

}

- (void) play

{

// Restart play

[PLAYER play];

toolbar.items = [self pauseItems];

}

ptg

651Recipe: Using the MPMusicPlayerController

- (void) fastforward

{

// Skip to the next item

[PLAYER skipToNextItem];

}

- (void) rewind

{

// Skip to the previous item

[PLAYER skipToPreviousItem];

}

#pragma mark STATE CHANGES

- (void) playbackItemChanged: (NSNotification *) notification

{

// Update title and artwork

self.title = [PLAYER.nowPlayingItem

valueForProperty:MPMediaItemPropertyTitle];

MPMediaItemArtwork *artwork = [PLAYER.nowPlayingItem

valueForProperty: MPMediaItemPropertyArtwork];

imageView.image = [artwork imageWithSize:[imageView frame].size];

}

- (void) playbackStateChanged: (NSNotification *) notification

{

// On stop, clear title, toolbar, artwork

if (PLAYER.playbackState == MPMusicPlaybackStateStopped)

{

self.title = nil;

toolbar.items = nil;

imageView.image = nil;

}

}

#pragma mark MEDIA PICKING

- (void)mediaPicker: (MPMediaPickerController *)mediaPicker

didPickMediaItems:(MPMediaItemCollection *)mediaItemCollection

{

// Set the songs to the collection selected by the user

self.songs = mediaItemCollection;

// Update the playback queue

[PLAYER setQueueWithItemCollection:self.songs];

ptg

652 Chapter 15 Audio, Video, and MediaKit

// Display the play items in the toolbar

[toolbar setItems:[self playItems]];

// Clean up the picker

[self dismissModalViewControllerAnimated:YES];

[mediaPicker release];

}

- (void)mediaPickerDidCancel:(MPMediaPickerController *)mediaPicker

{

// User has canceled

[self dismissModalViewControllerAnimated:YES];

[mediaPicker release];

}

- (void) pick: (UIBarButtonItem *) bbi

{

// Select the songs for the playback queue

MPMediaPickerController *mpc = [[MPMediaPickerController alloc]

initWithMediaTypes:MPMediaTypeMusic];

mpc.delegate = self;

mpc.prompt = @"Please select items to play";

mpc.allowsPickingMultipleItems = YES;

[self presentModalViewController:mpc animated:YES];

}

#pragma mark INIT VIEW

- (void) viewDidLoad

{

self.navigationItem.rightBarButtonItem = BARBUTTON(@"Pick",

@selector(pick));

toolbar.tintColor = COOKBOOK_PURPLE_COLOR;

// Stop any ongoing music

[PLAYER stop];

// Add observers for state and item changes

[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(playbackStateChanged)

name:MPMusicPlayerControllerPlaybackStateDidChangeNotification

object:PLAYER];

[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(playbackItemChanged)

name:MPMusicPlayerControllerNowPlayingItemDidChangeNotification

object:PLAYER];

ptg

653Summary

[PLAYER beginGeneratingPlaybackNotifications];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 15 and open the project for this recipe.

One More Thing: Additional Movie Player
Properties
The MPMoviePlayerController class that was introduced in this chapter offers a few
helpful properties not covered in earlier recipes.These properties help control the way the
player is presented onscreen.

The player’s backgroundColor controls the tinting of the backsplash that lies behind
the movie. Normally the player appears in black, and the movie fades in when it finishes
preloading.To connect the video more closely to your normal interface, you can set this
property to [UIColor clearColor].Your interface will bleed through behind the player.

Another property is the movie player’s scalingMode, which sets how the video fits
within the player’s frame. By default, the player attempts to fit the video onscreen to fill at
least one dimension without cropping the other.This corresponds to the MPMovieScaling
➥ModeAspectFit constant.The two other options for scaling (in addition to none, which
provides no scaling) are aspect fill and normal fill.Aspect fill (MPMovieScaling
➥ModeAspectFill) fills the entire screen, while retaining the aspect ratio, clipping off
portions that fall outside the display. Normal fill (MPMovieScalingModeFill) discards the
aspect ratio and scales the horizontal and vertical axes independently.

When you want to control the point at which playback begins, set the initialPlayback
➥Time property.Taking an NSTimeInterval, this property offsets the start of the movie
playback to a point that you specify. Unfortunately, you cannot directly query the player
for the current time to store a pickup point for a later playback session. Hopefully Apple
will address that in future SDK releases.

Summary
This chapter introduced many ways to handle audio and video media, including playback
and recording.You saw recipes that worked with high-level Objective-C classes, and those
that worked with lower-level C functions.You discovered local and remote data sources
and read about media pickers, controllers, and more. Here are a few thoughts to take away
from this chapter:

n Apple is still in the process of building its AV media playback classes.Although
many of those classes seem to be preliminary or bare bones at this time, expect

http://github.com/erica/iphone-3.0-cookbook-

ptg

654 Chapter 15 Audio, Video, and MediaKit

these to grow as subsequent firmware debuts.The AVAudioPlayer did not debut
until the 2.2 firmware; the AVAudioRecorder debuted even later. Media playback
and control remains a work in progress.

n When you plan to work with video, be aware of bandwidth limitations. Local
phone carriers may not appreciate you burdening their networks with excessive
data transfer, and that burden may affect your ability to place your application in
App Store.

n Audio Queue provides powerful low-level audio routines, but they’re not for the
faint of heart or for anyone who just wants a quick solution. If you need the kind
of fine-grained audio control that Audio Queues bring,Apple supplies extensive
documentation on achieving your goals.

n The MPMusicPlayerController provides a really simple way to interact with
music from your onboard iTunes library.There is no way that I know of to access
music data directly, so be sure to master both AVAudioPlayer use for local data files
as well as MPMusicPlayerController for iTunes.

ptg

16
Push Notifications

When developers need to communicate directly with users, push notifications
provide the solution.They deliver messages directly to the iPhone screen via a
special Apple service. Push notifications let the iPhone display an alert, play a

custom sound, or update an application badge. In this way, off-phone services connect
with an iPhone-based client, letting them know about new data or updates. Unlike most
other iPhone development arenas, nearly all the push story takes place off the phone.
Developers must create Web-based services to manage and deploy these updates. In this
chapter, you learn how push notifications work and dive into the details needed to cre-
ate your own push-based system.

Introducing Push Notifications
Push notifications, also called remote notifications, refer to a kind of message sent to iPhones
by an outside service.These push-based services work with any kind of application that
normally checks for information updates. For example, a service might poll for new
direct messages on Twitter or respond to sensors for in-home security systems.When new
information becomes available for a client, the service pushes that update through Apple’s
remote notification system.The notification transmits directly to the phone, which has
registered to receive those updates.

The key to push is that these messages originate from outside the device itself.They
are part of a client-server paradigm that lets Web-based server components communicate
with iPhone clients through an Apple-supplied service.With push, developers can send
nearly instant updates to iPhones that don’t rely on users launching a particular applica-
tion. Instead, processing occurs on the server side of things.When push messages arrive,
the iPhone client can respond by displaying a badge, playing a sound, and/or showing an
alert box.

According to Apple, battery life is the single biggest reason for endorsing push notifi-
cation.When many applications run at once via background processes, these processes can
put an undue burden on a device battery, shortening the amount of time available before
a recharge is needed.With push, applications can learn about new updates even when

ptg

656 Chapter 16 Push Notifications

they’re not running.This lets Apple enforce its strict one-third-party-application-at-a-
time policy while at the same time allowing users to receive notifications that are tied to
application state changes.

Moving application logic to a server also limits the client-side complexity. Offsite pro-
cessing provides energy savings for iPhone-based applications.They can now rely on push
rather than using the iPhone’s local CPU resources to monitor and react to important
information changes.

Push’s reason for being is not only tied into local resources. It also offers a valuable
solution for communicating with Web-based services that goes beyond poll-and-update
applications. For example, push might allow you to hook into a recommendation service
that produces restaurant suggestions even when an application isn’t running or to a calen-
dar service that sends you reminder notices about an upcoming appointment. So don’t
think about push solely as a battery saver.Also think about it as a conduit for Web services
as well.

From social networking to monitoring RSS feeds, push lets iPhone users keep on top
of asynchronous data feeds. It offers a powerful solution for connecting iPhone clients to
Web-based systems of all kinds.With push, the services you write can connect to your
installed iPhone base and communicate updates in a clean, functional manner.

How Push Works
Push notifications aren’t just a general way to talk directly to iPhones at will.They are
tied to specific applications and require several security checks.A push server can only
communicate with those iPhones that are running its application, that are online, and that
have opted to receive remote messages. Users have the ultimate say in push updates.They
can allow or disallow that kind of communication, and a well-written application lets
users opt-in and opt-out of the service at will.

The chain of communication between server and client works like this. Push providers
deliver message requests through a central Apple server and via that server to their iPhone
clients. In normal use, the server triggers on some event (like new mail or an upcoming
appointment) and generates notification data aimed at a specific iPhone device. It sends
this message request to the Apple Push Notification Service (APNS).This notification
uses JSON formatting and is limited to 256 bytes each, so the information that can be
pushed through on that message is quite limited.This formatting and size ensures that
APNS limits bandwidth to the tightest possible configuration.

APNS offers a centralized system that negotiates communication with iPhones in the
real world. It passes the message through to the designated iPhone.A handler on the
iPhone decides how to process the message.As Figure 16-1 shows, push providers talk to
APNS, sending their message requests, and APNS talks to phones, relaying those messages
to handlers on the unit.

ptg

657Introducing Push Notifications

Push Provider iPhoneAPNS

Figure 16-1 Providers send messages through Apple’s centralized
push notification service to communicate with an iPhone.

Push Provider

Push Provider

Push Provider

iPhone

iPhone

iPhone

iPhone

iPhone

APNS

Figure 16-2 Apple’s Push Notification Service offers many
gateways on its provider-facing side, allowing multiple providers
to connect in parallel. Each push provider may connect to any

number of iPhone devices.

Multiple Provider Support
APNS was built to support multiple provider connections, allowing many services to
communicate with it at once. It offers multiple gateways into the service so that each
push service does not have to wait for availability before sending its message. Figure 16-2
illustrates the many-to-many relationship between providers and iPhones.APNS allows
providers to connect at once through multiple gateways. Each provider can push messages
to many different iPhones.

ptg

658 Chapter 16 Push Notifications

Security
Security is a primary component of remote notifications.The push provider must sign up
for a secure sockets layer certificate for each application it works with. Services cannot
communicate with APNS unless they authenticate themselves with this certificate.They
must also provide a unique key called a token that identifies both the phone to message
and the application to notify.

After receiving an authenticated message and device token,APNS contacts the phone
in question. Each iPhone or member of the iPhone family such as the iPod touch must
be online in some way to receive a notification.They can be connected to a cellular data
network or to a Wi-Fi hotspot.APNS establishes a connection with the device and relays
the notification request. If the device is offline and the APNS server cannot make a con-
nection, the notification is queued for later delivery.

Upon receiving the request, the iPhone performs a number of checks. Push requests
are ignored when the user disables push updates for a given application; users can do so in
the Settings application on their iPhone.When updates are allowed, and only then, the
iPhone determines whether the client application is currently running. If so, it sends a
message directly to the running application via the application delegate. If not, it performs
some kind of alert, whether displaying text, playing a sound, or updating a badge.

When an alert displays, users typically have the option to close the alert or tap View. If
they choose View, the iPhone launches the application in question and sends it the notifi-
cation message that it would have received while running. If the user taps Close, the noti-
fication gets ignored and the application does not launch.

This pathway, from server to APNS to iPhone to application, forms the core flow of
push notifications. Each stage moves the message along the way.Although the multiple
steps may sound extensive, in real life the notification arrives almost instantaneously. Once
you set up your certificates, identifiers, and connections, the actual delivery of informa-
tion becomes trivial. Nearly all the work lies in first setting up that chain and then in pro-
ducing the information you want to deliver.

Make sure you treat all application certificates and device tokens as sensitive informa-
tion.When storing these items on your server, you must ensure that they are not generally
accessible. Should this information hit the wild, it could be exploited by third parties.This
would likely result in Apple revoking your SSL push certificate.This would disable all
remote notifications for any apps you have sold and might force you to pull the applica-
tion from the store.

Push Limitations
Push notifications are not reliable. In reality, they can be fairly flaky.Apple does not guar-
antee the delivery of each notification or the order in which notifications arrive. Never
send vital information by push. Reserve this feature for helpful notifications that update
the user, but that the user can miss without consequence.

Items in the push delivery queue may be displaced by new notifications.That means
that notifications may have to compete and may get lost along the way.Although Apple’s

ptg

659Provisioning Push

feedback service reports failed deliveries (i.e., messages that cannot be properly sent
through the push service, specifically to applications that have been removed from a
device), you cannot retrieve information regarding bumped notifications. From the APN
service point of view, a lost message was still successfully “delivered.”

Provisioning Push
To start push development, you must visit Apple’s iPhone Developer Program portal.This
portal is located at http://developer.apple.com/iphone/manage/overview/index.action.
Sign in with your iPhone developer credentials to gain access to the site. Here at the por-
tal, you can work through the steps needed to create a new application identifier that can
be associated with a push service.

There’s a fair amount of detail involved. Make sure you hit every point.The following
sections walk you through the process.You see how to create a new identifier, generate a
certificate, and request a special provisioning profile so you can build push-enabled appli-
cations.Without a push-enabled profile, your application will not be able to receive
remote notifications.

Generate a New Application Identifier
At the developer portal, click on App IDs.You’ll find this option in the column on the
left side of the Web page.This opens a page that allows you to create new application
identifiers. Each push service is based on a single identifier, which you must create and
then set to allow remote notification.You cannot use a wild-card identifier with push
applications; every push-enabled app demands a unique identifier.

In the App IDs section, click Add ID; this button appears at the top-right of the Web
page. Once clicked, the site opens a new Create App ID page. Enter a name that describes
your new identifier, such as “My First Push Application” and a new bundle identifier.

These IDs typically use reverse domain patterns like com.domainname.appname, such as
com.sadun.firstpushapp.The identifier must be unique and may not conflict with any
other registered application identifier in Apple’s system.The bundle identifier for your
application (set in the Info.plist file) needs to exactly match the last part of this string. If,
for example, the ID in the portal is XYZZYPLUGH.com.sadun.pushapp, then the bun-
dle identifier of your app should be com.sadun.pushapp.

Click Submit to add the new identifier.This adds the app ID irrevocably to Apple’s
system, where it is now registered to you.You return to the App ID page with its list of
identifiers and are now ready to establish that identifier as push compliant.

Note
Apple does not provide any way to remove an application identifier from the program portal
once it has been created.

http://developer.apple.com/iphone/manage/overview/index.action

ptg

660 Chapter 16 Push Notifications

Figure 16-3 Create a new certificate request even though you’ve probably
already done so in the past for your developer and distribution certificates.

Generate Your SSL Certificate
On the App ID page, you can see which identifiers work with push and which do not.
The Apple Push Notification column shows whether push has been enabled for each app
ID.The three states for this column are

n Unavailable (gray) for IDs that are no longer available
n Available (yellow) for apps that can be used with push but that haven’t yet been set

up to do so
n Enabled (green) for apps that are ready for push

You’ll find two dots next to each application identifier—one for Development and
another for Production.These options are configured separately. Locate your new app ID,
make sure the yellow Available for Development is shown, and click Configure.This
option appears in the rightmost column.When clicked, the browser opens a new Config-
ure App ID page that permits you to associate your identifier with the push notification
service.

An Enable Push Notification Services check box appears about halfway down the
page. Check this box to start the certificate creation process. Once checked, the two Con-
figure buttons on the right side of the page become enabled. Click that button.A page of
instructions loads, showing you how to proceed. It guides you through creating a secure
certificate that will be used by your server to sign messages it sends to the APNS.

As instructed, launch the Keychain Access application.This application is located on
your Macintosh in the /Applications/Utilities folder. Once launched, choose Keychain
Access > Certificate Assistant > Request a Certificate From a Certificate Authority (see
Figure 16-3).You need to perform this step again even if you’ve already created previous
requests for your developer and distribution certificates.The new request adds information
that uniquely identifies the SSL certificate.

Once the Certificate Assistant opens, enter your e-mail address and add a recognizable
common name such as First Push App.This common name is important. It will come in

ptg

661Provisioning Push

Figure 16-4 The Enabled label appears next to application identifiers that
have been approved for push notification. You must create separate SSL cer-

tificates for development and for production.

handy for the future, so choose one that is easy to identify and that describes your project
accurately.The common name lets you distinguish otherwise similar looking keychain
items from each other in the OS X Keychain Access utility.

After specifying a common name, choose Saved to Disk and click Continue.The Cer-
tificate Assistant prompts you to choose a location to save to (the Desktop is handy). Click
Save, wait for the certificate to be generated, and then click Done. Return to your Web
browser and click Continue.You are now ready to submit the certificate-signing request.

Click Choose File and navigate to the request you just generated. Select it and click
Choose. Click Generate to build your new SSL push service certificate.This can take a
minute or two, so be patient and do not close the Web page. Once the certificate has been
generated, click Continue. Download the new certificate by clicking Download Now.
Finally, click Done.You return to the App ID page where a new, green Enabled indicator
should appear next to your app ID (see Figure 16-4).Apple also e-mails you a confirma-
tion that your certificate request was approved.

Note
Should you ever need to download your SSL certificate again, click Configure to return to the
Configure App ID page. There, you can click Download to request another copy.

If you plan to run your Push Server from your Macintosh, add the new certificate to your
keychain by double-clicking the downloaded .cer file. It will be added to your login key-
chain and appear in your Certificates. Figure 16-5 shows that you can identify the certifi-
cate by clicking the small triangle next to it to reveal the common name you used when
creating the certificate request.

Push-Specific Provisions
You cannot use wild-card provisions for push-enabled applications. Instead, you must cre-
ate a single provision for just that application.This means that if you intend to create
development, ad hoc, and distribution versions of your app, you must request three new
mobile provision files in addition to whatever provisions you have already created for
other work.

Go to the Provisioning section of the developer portal and choose whether to create a
Development or Distribution profile by clicking the appropriate tab. Click Add Profile to
begin creating your new provision.A Create iPhone Provisioning Profile page opens,
whether for development or distribution.

n Development Provision—For development, enter a profile name such as “My
First Push App Development.” Check the certificate you will be using and choose

ptg

662 Chapter 16 Push Notifications

Figure 16-5 Identify which Push Service SSL certificate you are dealing
with by clicking the down arrow. This reveals the common name used to gen-

erate the original certificate request.

your application identifier from the pop-up list. Select the devices you will be using
and click Submit.

n Distribution Provision—For distribution, select App Store or Ad Hoc. Enter a
name for your new provision such as “My First Push App Distribution” or “My
First Push App Ad Hoc.” Choose your application identifier from the pop-up list.
For Ad Hoc distribution only, select the devices to include in your provision. Click
Submit to finish.

It may take a minute or two for your profile to generate.Wait a short while and reload
the page.The provision status should change from Pending to Active. Download your
new provision and add it to Xcode by dragging it onto the Xcode application icon.

Registering Your Application
Signing an application with a push-compatible mobile provision is just the first step to
working with push notifications.The application must request to register itself with the
iPhone’s remote notification system.You do this with a single UIApplication call, as fol-
lows.The application did finish launching delegate method provides a particularly con-
venient place to call this.

[[UIApplication sharedApplication]

registerForRemoteNotificationTypes:types];

ptg

663Registering Your Application

This call tells the iPhone OS that your application wants to accept push messages.The
types you pass specify what kinds of alerts your application will receive.The iPhone offers
three types of notifications:

n UIRemoteNotificationTypeBadge—This kind of notification adds a red
badge to your application icon on SpringBoard.

n UIRemoteNotificationTypeSound—Sound notifications let you play
sound files from your application bundle.

n UIRemoteNotificationTypeAlert—This style displays a text alert box
in SpringBoard or any other application with a custom message using the alert
notification.

Choose the types you want to use and or them together.They are bit flags, which com-
bine to tell the notification registration process how you want to proceed. For example,
the following flags allow alerts and badges but not sounds.

types = UIRemoteNotificationTypeBadge | UIRemoteNotificationTypeAlert;

Performing the registration updates user settings.As Figure 16-6 shows, a Notifications
pane gets added to Settings if one has not already been created by another program.Your
application appears as a subpane, offering user control over notification types. Switches
appear only for those notifications that you registered. If your application uses just two
types, then two switches appear in that pane. Figure 16-6 shows an application that has
registered for all three.

To remove your application from active participation in push notifications, send
unregisterForRemoteNotifications.This unregisters your application for all notifica-
tion types and does not take any arguments.

[[UIApplication sharedApplication] unregisterForRemoteNotifications];

Retrieving the Device Token
Your application cannot receive push messages until it generates and delivers a device
token to your server. It must send that device token to the offsite service that pushes the
actual notifications. Recipe 16-1, which follows this section, does not implement server
functionality. It provides only the client software.

A token is tied to one device. In combination with the SSL certificate, it uniquely
identifies the iPhone and can be used to send messages back to the phone in question. Be
aware that device tokens can change after you restore iPhone firmware.

Device tokens are created as a byproduct of registration. Upon receiving a registration
request, the iPhone OS contacts the Apple Push Notification Service. It uses a secure
socket layer (SSL) request. Somewhat obviously, the unit must be connected to the Inter-
net. If it is not, the request will fail.The iPhone forwards the request to APNS and waits
for it to respond with a device token.

APNS builds the device token and returns it to the iPhone OS, which in turn passes it
back to the application via an application delegate callback, namely

application:didRegisterForRemoteNotificationsWithDeviceToken:

ptg

664 Chapter 16 Push Notifications

Figure 16-6 Remote notification controls appear for each application that
has registered with the iPhone for push support. These controls are removed

when applications unregister.

Your application must retrieve this token and pass it to the provider component of your
service, where it needs to be stored securely.Anyone who gains access to a device token
and the application’s SSL certificate could spam messages to iPhones.You must treat this
information as sensitive and protect it accordingly.

Note
At times, the token may take time to generate. Consider designing around possible delays
into your application by registering at each application run. Until the token is created and
uploaded to your site, you will not be able to provide remote notifications to your users.

Handling Token Request Errors
At times,APNS is unable to create a token or your device may not be able to
send a request. For example, you cannot generate tokens from the simulator.A
UIApplicationDelegate method application: didFailToRegisterForRemote

➥NotificationsWithError: lets you handle these token request errors. For the most part,
you’ll want to retrieve the error and display it to the user.

// Provide a user explanation for when the registration fails

- (void)application:(UIApplication *)application

didFailToRegisterForRemoteNotificationsWithError:(NSError *)error

{

ptg

665Registering Your Application

Push Provider

iPhone

APNS

YES

Application is
running?

Perform notification
(sound, badge, alert)

User taps
action key on

alert

- (void)application:
 (UIApplication *)application
 didReceiveRemoteNotification
 (NSDictionary *)userInfo

NO

Figure 16-7 Visible and audible notification are only presented when the application
is not running. Should the user click on an alert’s action key (normally View), the appli-

cation launches and the payload is sent as a notification to the
UIApplicationDelegate.

UITextView *tv = (UITextView *)[[application keyWindow]

viewWithTag:TEXTVIEWTAG];

NSString *status = [NSString stringWithFormat:

@"%@\nRegistration failed.\n\nError: %@", pushStatus(),

[error localizedDescription]];

tv.text = status;

}

Responding to Notifications
The iPhone uses a set chain of operations (see Figure 16-7) in responding to push notifi-
cations.When an application is running, the notification is sent directly to a
UIApplicationDelegate method, application: didReceiveRemoteNotification:.
The payload, which is sent in JSON format, is converted automatically into an
NSDictionary, and the application is free to use the information in that payload however
it wants.As the application is already running, no further sounds, badges, or alerts are
invoked.

// Handle an actual notification

- (void)application:(UIApplication *)application

didReceiveRemoteNotification:(NSDictionary *)userInfo

{

UITextView *tv = (UITextView *)[[application keyWindow]

ptg

666 Chapter 16 Push Notifications

Figure 16-8 Remote alerts can appear in SpringBoard (left) or in third-
party applications (right). Users may Close the alert or, by pressing the action
button on the right, switch to the notifying application. In this case, that appli-
cation is HelloWorld, whose name is clearly seen on the alert. The action but-

ton text is customizable.

viewWithTag:TEXTVIEWTAG];

NSString *status = [NSString stringWithFormat:

@"Notification received:\n%@",[userInfo description]];

tv.text = status;

NSLog(@"%

}

When an application is not running, the iPhone performs all requested notifications that
are allowed by registration and by user settings.These notifications may include playing a
sound, badging the application, and/or displaying an alert. Playing a sound can also trigger
iPhone vibration when a notification is received.

In the case of an alert, all two-buttoned alerts offer a pair of choices.The user can tap
Close (the leftmost button) and close the alert or tap the alert’s action key (the rightmost
button) and launch the app. Upon launching, the application delegate receives the same
remote notification callback that an already-running application would have seen (see
Figure 16-8).Alerts appear on the lock screen when the iPhone is locked.

ptg

667Recipe: Push Client Skeleton

Figure 16-9 The Push Client skeleton introduced
in Recipe 16-1 lets users specify which services

they want to register.

Recipe: Push Client Skeleton
Recipe 16-1 introduces a basic client that allows users to register and unregister for push
notifications.The interface (shown in Figure 16-9) uses three switches that control the
services to be registered.When the application launches, it queries the app’s enabled
remote notification types and updates the switches to match.Thereafter, the client keeps
track of registrations and unregistrations, adjusting the switches to keep sync with the real-
ity of the settings.

Two buttons at the top left and right of the interface let users unregister and register their
application.As mentioned earlier in this chapter, unregistering disables all services associ-
ated with the app. It provides a clean sweep. In contrast, registering apps requires flags to
indicate which services are requested.

When requesting new services, the user is always prompted to approve. Figure 16-10
shows the dialog that appears.The user must confirm by explicitly granting the application
permission. If the user does not, by tapping Don’t Allow, the flags remain at their previous
settings.

Unfortunately, the confirmation dialog does not generate a callback when it is dis-
missed, regardless of whether the user agreed or not.To catch this event, you can listen for

ptg

668 Chapter 16 Push Notifications

Figure 16-10 Users must explicitly grant
permission for an application to receive

remote notifications.

a general notification (UIApplicationDidBecomeActiveNotification) that gets gener-
ated when the dialog returns control to the application. It’s a hack and is not guaranteed
to work in the long term, but at the time of writing,Apple has not provided any other
way to know when the user responded and how the user responded. In Recipe 16-1, the
confirmationWasHidden: method catches this notification and updates the switches to
match any new registration settings.

Note
The three sound files included in the online sample project (ping1.caf, ping2.caf, and
ping3.caf) let you test sound notifications with real audio.

Recipe 16-1 Push Client Skeleton

#define TEXTVIEWTAG 11

NSString *pushStatus ()

{

Being something of a skeletal system, this push client doesn’t actually respond to push
notifications beyond showing the contents of the user info payload that gets delivered.
Figure 16-9 illustrates the actual payload that was sent in Figure 16-10.This display is
performed in the application: didReceiveRemoteNotification: method in the
application delegate.

ptg

669Recipe: Push Client Skeleton

return [[UIApplication sharedApplication]

enabledRemoteNotificationTypes] ?

@"Remote notifications were active for this application" :

@"Remote notifications were not active for this application";

}

@implementation TestBedController

// Fetch the current switch settings

- (NSUInteger) switchSettings

{

NSUInteger which = 0;

if ([(UISwitch *)[self.view viewWithTag:101] isOn])

which = which | UIRemoteNotificationTypeBadge;

if ([(UISwitch *)[self.view viewWithTag:102] isOn])

which = which | UIRemoteNotificationTypeAlert;

if ([(UISwitch *)[self.view viewWithTag:103] isOn])

which = which | UIRemoteNotificationTypeSound;

return which;

}

// Change the switches to match reality

- (void) updateSwitches

{

NSUInteger rntypes = [[UIApplication sharedApplication]

enabledRemoteNotificationTypes];

[(UISwitch *)[self.view viewWithTag:101] setOn:

(rntypes & UIRemoteNotificationTypeBadge)];

[(UISwitch *)[self.view viewWithTag:102] setOn:

(rntypes & UIRemoteNotificationTypeAlert)];

[(UISwitch *)[self.view viewWithTag:103] setOn:

(rntypes & UIRemoteNotificationTypeSound)];

}

// Little hack work-around to catch the end when the

// confirmation dialog goes away. Apple has given this

// the thumbs up for use after I filed a technical query

- (void) confirmationWasHidden: (NSNotification *) notification

{

[[UIApplication sharedApplication]

registerForRemoteNotificationTypes: [self switchSettings]];

[self updateSwitches];

}

// Register application for the services set out by the switches

- (void) doOn

{

ptg

670 Chapter 16 Push Notifications

UITextView *tv = (UITextView *)[self.view viewWithTag:TEXTVIEWTAG];

if (![self switchSettings])

{

tv.text = [NSString stringWithFormat:

@"%@\nNothing to register. Skipping.\n\

(Did you mean to press Unregister instead?)",

pushStatus()];

[self updateSwitches];

return;

}

NSString *status = [NSString stringWithFormat:

@"%@\nAttempting registration", pushStatus()];

tv.text = status;

[[UIApplication sharedApplication]

registerForRemoteNotificationTypes:[self switchSettings]];

}

// Unregister application for all push notifications

- (void) doOff

{

UITextView *tv = (UITextView *)[self.view viewWithTag:TEXTVIEWTAG];

NSString *status = [NSString stringWithFormat:

@"%@\nUnregistering.", pushStatus()];

tv.text = status;

[[UIApplication sharedApplication]

unregisterForRemoteNotifications];

[self updateSwitches];

}

- (void)loadView

{

self.view = [[[NSBundle mainBundle] loadNibNamed:@"view" owner:self

options:NULL] objectAtIndex:0];

self.title = @"Push Client";

self.navigationItem.rightBarButtonItem = BARBUTTON(@"Register",

@selector(doOn);

self.navigationItem.leftBarButtonItem = BARBUTTON(@"Unregister",

@selector(doOff);

[self updateSwitches];

[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(confirmationWasHidden)

name:@"UIApplicationDidBecomeActiveNotification" object:nil];

}

@end

ptg

671Recipe: Push Client Skeleton

@interface SampleAppDelegate : NSObject <UIApplicationDelegate>

@end

@implementation SampleAppDelegate

- (void) showString: (NSString *) aString

{

UITextView *tv = (UITextView *)[[[UIApplication sharedApplication]

keyWindow] viewWithTag:TEXTVIEWTAG];

tv.text = aString;

}

// Retrieve the device token

- (void)application:(UIApplication *)application

didRegisterForRemoteNotificationsWithDeviceToken:

(NSData *)deviceToken

{

NSUInteger rntypes = [[UIApplication sharedApplication]

enabledRemoteNotificationTypes];

NSString *results = [NSString stringWithFormat:

@"Badge: %@, Alert:%@, Sound: %@",

(rntypes & UIRemoteNotificationTypeBadge) ? @"Yes" : @"No",

(rntypes & UIRemoteNotificationTypeAlert) ? @"Yes" : @"No",

(rntypes & UIRemoteNotificationTypeSound) ? @"Yes" : @"No"];

NSString *status = [NSString stringWithFormat:

@"%@\nRegistration succeeded.\n\nDevice Token: %@\n%@",

pushStatus(), deviceToken, results];

[self showString:status];

NSLog(@"deviceToken %@", deviceToken);

}

// Provide a user explanation for when the registration fails

- (void)application:(UIApplication *)application

didFailToRegisterForRemoteNotificationsWithError:

(NSError *)error

{

NSString *status = [NSString stringWithFormat:

@"%@\nRegistration failed.\n\nError: %@", pushStatus(),

[error localizedDescription]];

[self showString:status];

NSLog(@"Error in registration. Error: %@", error);

}

// Handle an actual notification

- (void)application:(UIApplication *)application

didReceiveRemoteNotification:(NSDictionary *)userInfo

ptg

672 Chapter 16 Push Notifications

{

NSString *status = [NSString stringWithFormat:

@"Notification received:\n%@",[userInfo description]];

[self showString:status];

CFShow([userInfo description]);

}

// Report the notification payload when launched by alert

- (void) launchNotification: (NSNotification *) notification

{

[self performSelector:@selector(showString)

withObject:[[notification userInfo] description]

afterDelay:1.0f];

}

- (void)applicationDidFinishLaunching:(UIApplication *)application {

UIWindow *window = [[UIWindow alloc]

initWithFrame:[[UIScreen mainScreen] bounds]];

UINavigationController *nav = [[UINavigationController alloc]

initWithRootViewController:[[TestBedController alloc] init]];

[window addSubview:nav.view];

[window makeKeyAndVisible];

// Listen for remote notification launches

[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(launchNotification)

name:@"UIApplicationDidFinishLaunchingNotification"

object:nil];

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 16 and open the project for this recipe.

Building Notification Payloads
Delivering push notification through APNS requires three things: your SSL certificate, a
device ID, and a custom payload with the notification you want to send.The payload uses
JSON formatting.You’ve already read about generating the certificate and producing the
device identifiers, which you need to pass up to your server. Building the JSON payloads
basically involves transforming a small well-defined dictionary into JSON format.

JSON (JavaScript Object Notation) is a simple data interchange format based on key-
value pairs.The JSON Web site (www.json.org) offers a full syntax breakdown of the for-
mat, which allows you to represent values that are strings, numbers, and arrays.The APNS

www.json.org
http://github.com/erica/iphone-3.0-cookbook-

ptg

673Building Notification Payloads

aps

 badge : number

 sound : sound file name string

 alert : string

 alert

 body : string

 action-loc-key : string

Figure 16-11 The aps dictionary may contain
one or more notification types including a badge

request, a sound file, and/or an alert.

payload consists of up to 256 bytes, which must contain your complete notification
information.

Notification payloads must include an aps dictionary.This dictionary defines the prop-
erties that produce the sound, badge, and/or alert sent to the user. In addition, you may
add custom dictionaries with any data you need to send to your application so long as
you stay within the 256 byte limit. Figure 16-11 shows the hierarchy for basic (nonlocal-
ized) alerts.

The aps dictionary contains one or more notification types.These include the standard
types you’ve already read about: badges, sounds, and alerts. Badge and sound notifications
each take one argument.The badge is set by a number, the sound by a string that refers to
a file already inside the application bundle. If that file is not found (or the developer passes
default as the argument), a default sound plays for any notification with a sound request.
When a badge request is not included, the iPhone removes any existing badge from the
application icon.

There are two ways to produce an alert.You can pass a string, which defines the mes-
sage to show.This automatically produces a notification with two buttons under that mes-
sage: Close and View.To customize buttons, pass a dictionary instead. Send the message
text as the body and the string to use for the Action key (normally View) as action-loc-
key.This replaces View with whatever text you specify.

To produce an alert with a single OK button, pass null as the argument to action-
loc-key.This creates a special alert style with one button. Just as when a user taps Close,
the OK style alert will not pass any data directly to your application.The app must poll for
any updates when next opened by the user.

Localized Alerts
When working with localized applications, construct your aps > alert dictionary with
two additional keys. Use loc-key to pass a key that is defined in your application’s Local-
izable.strings file.The iPhone looks up the key and replaces it with the string found for
the current localization.

ptg

674 Chapter 16 Push Notifications

Table 16-1 JSON Payload Samples

Sample Type JSON

Hello message, displays with two buttons. {"aps":{"alert":"hello"}}

Hello message, displays with two buttons,
but built using JSON with an alert diction-
ary.

{"aps":{"alert":{"body":"hello"}}}

Hello message with one OK button. {"aps":{"alert":{"action-loc-

key":null,"body":"hello"}}}

Hello message with two buttons, Close
and Open, the latter being a custom
replacement for View.

{"aps":{"alert":{"action-loc-

key":"Open","body":"hello"}}}

Hello message that adds an application
badge of 3.

{"aps":{"badge":3,"alert":{"body":

"hello"}}}

Play a sound without an alert. {"aps":{"sound":"ping2.caf",

"alert":{}}}

Play sound, display badge, display alert,
use a custom button.

{"aps":{"sound":"ping2.caf",

"badge":2,"alert":{"action-loc-

key":"Open","body":"Hello"}}}

Add a custom payload including an array. {"aps":{"alert":{"body":"Hello"}},

"key1":"value1",

"key2":["a","b","c"]}

At times, localization strings use arguments like %@ and %n$@. Should that hold true for
the localization you are using, you can pass those arguments as an array of strings via loc-
args.As a rule,Apple recommends against using complicated localizations as they can
consume a major portion of your 256-byte bandwidth.

Transforming from Dictionary to JSON
Once you’ve designed your dictionary, you must transform it to JSON.The JSON format
is simple but precise. If you can, use an automated library to convert your dictionary to
the JSON string.There are numerous solutions for this for any number of programming
languages, including JavaScript, Perl, and so on. Here’s a quick rundown of JSON basics.
Table 16-1 offers examples of these rules in action.

n The entire payload is a dictionary. Dictionaries consist of key-value pairs stored
between brackets, that is, {key:value, key:value, key:value, ...}.

n Key-value pairs are separated with commas.
n Strings use double quotes; numbers do not. Reserved words include true, false, and

null. Reserved words are not quoted.
n Arrays consist of a list of items between square brackets, that is, [item, item, item,...].

ptg

675Building Notification Payloads

n The following symbols must be escaped in strings by using a backslash literal indica-
tor: ' " \ /.

n You may want to remove carriage returns (\r) and new lines (\n) from your pay-
loads when sending messages.

n Spaces are optional. Save space by omitting them between items.
n The aps dictionary appears within the top-level folder, so the most basic payload

looks something like {aps:{}}.

Custom Data
So long as your payload has room left, keeping in mind your tight byte budget, you can
send additional information in the form of key-value pairs.As Table 16-1 showed, these
custom items can include arrays and dictionaries as well as strings, numbers, and constants.
You define how to use and interpret this additional information.The entire payload dic-
tionary is sent to your application so whatever information you pass along will be available
to the application: didReceiveRemoteNotification: method via the user dictionary.

A dictionary containing custom key-value pairs does not need to provide an alert,
although doing so allows your user to choose to open your application if it isn’t running.
If your application is already launched, the key-value pairs arrive as a part of the payload
dictionary.

Receiving Data on Launch
When your client receives a notification, tapping the action key (by default,View)
launches your application.Then after launching, the iPhone sends your application dele-
gate an optional callback.The delegate recovers its notification dictionary by implement-
ing a method named application:didFinishLaunchingWithOptions:. Unfortunately,
this method might not work properly. So here are both the standard ways of retrieving
notification information plus a work-around.

Normally, the iPhone passes the notification dictionary to the delegate method via the
launch options parameter. For remote notifications, this is the official callback to retrieve
data from an alert-box launch.The didReceiveRemoteNotification: method is not
called when the iPhone receives a notification and the application is not running.

This “finished launching” method is actually designed to handle two completely differ-
ent circumstances. First, it handles these notification alert launches, allowing you to
recover the payload dictionary and use the data that was sent. Second, it works with appli-
cation launches from openURL:. If your app has published a URL scheme, and that
scheme is used by another application, the application delegate handles that launch with
this method.

In either case, the method must return a Boolean value.As a rule, return YES if you
were able to process the request or NO if you were not.This value is actually ignored in
the case of remote notification launches, but you must still return a value.

At the time of writing, implementing this method does not work properly.The appli-
cation will hang without displaying a GUI. Fortunately, there’s an easy work-around that

ptg

676 Chapter 16 Push Notifications

does not rely on the callback method.You can, instead, listen for a launch notification and
catch the userInfo dictionary that is sent with it.This solution has the advantage of being
reliable and tested. Keep an eye on Apple’s developer forums (http://devforums.apple.
com) to keep track of when this issue gets fixed.

Start by adding your application delegate as a listener via the default
NSNotificationCenter in your normal applicationDidFinishLaunching method.

[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(launchNotification)

name:@”UIApplicationDidFinishLaunchingNotification” object:nil];

Then implement the method for the selector you provided. Here, the application waits for
the GUI to finish loading and then displays the user info dictionary, where the remote
notification data has been stored.

- (void) launchNotification: (NSNotification *) notification

{

[self performSelector:@selector(showString) withObject:
[[notification userInfo] description] afterDelay:1.0f];

}

Between the notification listener and the method callback, you can reliably grab the user
data from remote notifications.This work-around should remain viable regardless of when
and how Apple addresses the didFinishLaunchingWithOptions method.

Note
When your user taps Close and later opens your application, the notification is not sent on
launch. You must check in with your server manually to retrieve any new user information.
Applications are not guaranteed to receive alerts. In addition to tapping Close, the alert may
simply get lost. Always design your application so that it doesn’t rely solely on receiving
push notifications to update itself and its data.

Recipe: Sending Notifications
The notification process involves several steps (see Figure 16-12). First, you build your
JSON payload, which you just read about in the previous section. Next, you retrieve the
SSL certificate and the device token for the unit you want to send to. How you store
these is left up to you, but you must remember that these are sensitive pieces of informa-
tion. Open a secure connection to the APNS server. Finally, you handshake with the
server, send the notification package, and close the connection.

This is the most basic way of communicating and assumes you have just one payload to
send. In fact, you can establish a session and send many packets at a time; however, that is
left as an exercise for the reader as is creating services in languages other than Objective-
C.The Apple Developer Forums (devforums.apple.com) host ongoing discussions about
push providers and offer an excellent jumping off point for finding sample code for PHP,
Perl, and other languages.

http://devforums.apple.com
http://devforums.apple.com

ptg

677Recipe: Sending Notifications

Build JSON Payload(s)

Retrieve Device Token(s)
and SSL Certificate

Establish connection
with APNS

Handshake, Send
notification package(s)

Figure 16-12 The steps for sending remote
notifications.

Be aware that APNS may react badly to a rapid series of connections that are repeatedly
established and torn down. If you have multiple notifications to send at once, go ahead
and send them during a single session. Otherwise,APNS might confuse your push deliver-
ies with a denial of service attack.

Recipe 16-2 demonstrates how to send a single payload to APNS, showing the steps
needed to implement the fourth and final box in Figure 16-12.The recipe is built around
code developed by Stefan Hafeneger and uses Apple’s ioSock sample source code.

The individual server setups vary greatly depending on your security, databases, organi-
zation, and programming language. Recipe 16-2 demonstrates a minimum of what is
required to implement this functionality and serves as a template for your own server
implementation in whatever form this might take.

Sandbox and Production
Apple provides both sandbox (development) and production (distribution) environments
for push notification.You must create separate SSL certificates for each.The sandbox helps
you develop and test your application before submitting to App Store. It works with a
smaller set of servers and is not meant for large-scale testing.The production system is
reserved for deployed applications that have been accepted to App Store.

n The Sandbox servers are located at gateway.sandbox.push.apple.com, port 2195.
n The Production servers are located at gateway.push.apple.com, port 2195.

Recipe 16-2 Pushing Payloads to the APNS Server

// Adapted from code by Stefan Hafeneger

- (BOOL) push: (NSString *) payload

{

ptg

678 Chapter 16 Push Notifications

otSocket socket;

SSLContextRef context;

SecKeychainRef keychain;

SecIdentityRef identity;

SecCertificateRef certificate;

OSStatus result;

// Ensure device token

if (!self.deviceTokenID)

{

printf("Error: Device Token is nil\n");

return NO;

}

// Ensure certificate

if (!self.certificateData)

{

printf("Error: Certificate Data is nil\n");

return NO;

}

// Establish connection to server.

PeerSpec peer;

result = MakeServerConnection("gateway.sandbox.push.apple.com",

2195, &socket, &peer);

if (result)

{

printf("Error creating server connection\n");

return NO;

}

// Create new SSL context.

result = SSLNewContext(false, &context);

if (result)

{

printf("Error creating SSL context\n");

return NO;

}

// Set callback functions for SSL context.

result = SSLSetIOFuncs(context, SocketRead, SocketWrite);

if (result)

{

printf("Error setting SSL context callback functions\n");

return NO;

}

ptg

679Recipe: Sending Notifications

// Set SSL context connection.

result = SSLSetConnection(context, socket);

if (result)

{

printf("Error setting the SSL context connection\n");

return NO;

}

// Set server domain name.

result = SSLSetPeerDomainName(context,

"gateway.sandbox.push.apple.com", 30);

if (result)

{

printf("Error setting the server domain name\n");

return NO;

}

// Open keychain.

result = SecKeychainCopyDefault(&keychain);

if (result)

{

printf("Error accessing keychain\n");

return NO;

}

// Create certificate from data

CSSM_DATA data;

data.Data = (uint8 *)[self.certificateData bytes];

data.Length = [self.certificateData length];

result = SecCertificateCreateFromData(&data, CSSM_CERT_X_509v3,

CSSM_CERT_ENCODING_BER, &certificate);

if (result)

{

printf("Error creating certificate from data\n");

return NO;

}

// Create identity.

result = SecIdentityCreateWithCertificate(keychain, certificate,

&identity);

if (result)

{

printf("Error creating identity from certificate\n");

return NO;

}

// Set client certificate.

ptg

680 Chapter 16 Push Notifications

CFArrayRef certificates = CFArrayCreate(NULL,

(const void **)&identity, 1, NULL);

result = SSLSetCertificate(context, certificates);

if (result)

{

printf("Error setting the client certificate\n");

return NO;

}

CFRelease(certificates);

// Perform SSL handshake.

do {result = SSLHandshake(context);}

while(result == errSSLWouldBlock);

// Convert string into device token data.

NSMutableData *deviceToken = [NSMutableData data];

unsigned value;

NSScanner *scanner = [NSScanner

scannerWithString:self.deviceTokenID];

while(![scanner isAtEnd]) {

[scanner scanHexInt:&value];

value = htonl(value);

[deviceToken appendBytes:&value length:sizeof(value)];

}

// Create C input variables.

char *deviceTokenBinary = (char *)[deviceToken bytes];

char *payloadBinary = (char *)[payload UTF8String];

size_t payloadLength = strlen(payloadBinary);

// Prepare message

uint8_t command = 0;

char message[293];

char *pointer = message;

uint16_t networkTokenLength = htons(32);

uint16_t networkPayloadLength = htons(payloadLength);

// Compose message.

memcpy(pointer, &command, sizeof(uint8_t));

pointer += sizeof(uint8_t);

memcpy(pointer, &networkTokenLength, sizeof(uint16_t));

pointer += sizeof(uint16_t);

memcpy(pointer, deviceTokenBinary, 32);

pointer += 32;

memcpy(pointer, &networkPayloadLength, sizeof(uint16_t));

ptg

681Recipe: Push in Action

pointer += sizeof(uint16_t);

memcpy(pointer, payloadBinary, payloadLength);

pointer += payloadLength;

// Send message over SSL.

size_t processed = 0;

result = SSLWrite(context, &message, (pointer - message),

&processed);

if (result)

{

printf("Error sending message via SSL.\n");

return NO;

}

else

{

printf("Message sent.\n");

return YES;

}

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 16 and open the project for this recipe.

Recipe: Push in Action
Once you set up a client such as the one discussed in Recipe 16-1 and routines like
Recipe 16-2 that let you send notifications, it’s time to think about deploying an actual
service. Recipe 16-3 introduces a Twitter client that repeatedly scans a search.twitter.com
RSS feed and pushes notifications whenever a new tweet is found (see Figure 16-13).

This code is built around the push routine from Recipe 16-2 and the XML parser
from Recipe 13-13.This utility pulls down Twitter search data as an XML tree and finds
the first tree node of the type “entry,” which is how Twitter stores each tweet.

Next, it creates a string by combining the poster name (from the “name” leaf) and the
post contents (from the “title” leaf). It then adds a JSON-escaped version of this string to
the aps > alert dictionary as the message body.The alert sound and one-button style are
fixed in the main aps payload dictionary.

The application runs in a loop with a time delay set by a command-line argument.
Every n seconds (determined by the second command-line argument), it polls, parses, and
checks for a new tweet, and if it finds one, pushes it out through APNS. Figure 16-13
shows this utility in action, displaying a tweet alert on the client iPhone.

http://github.com/erica/iphone-3.0-cookbook-

ptg

682 Chapter 16 Push Notifications

Figure 16-13 Twitter provides an ideal way to
test a polled RSS feed.

Recipe 16-3 Wrapping Remote Notifications into a Simple Twitter Utility

#define TWEET_FILE [NSHomeDirectory()\

stringByAppendingPathComponent:@".tweet"]

#define URL_STRING \

@"http://search.twitter.com/search.atom?q=+ericasadun"

#define SHOW_TICK NO

#define CAL_FORMAT @%Y-%m-%dT%H:%M:%SZ"

int main (int argc, const char * argv[]) {

if (argc < 2)

{

printf("Usage: %s delay-in-seconds\n", argv[0]);

exit(-1);

}

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

// Fetch certificate and device information from the current

// directory as set up with pushutil

char wd[256];

getwd(wd);

ptg

683Recipe: Push in Action

NSString *cwd = [NSString stringWithCString:wd];

NSArray *contents = [[NSFileManager defaultManager]

directoryContentsAtPath:cwd];

NSArray *dfiles = [contents pathsMatchingExtensions:

[NSArray arrayWithObject:@"devices"]];

if (![dfiles count])

{

printf("Error retrieving device token\n");

exit(-1);

}

NSDictionary *dict = [NSDictionary dictionaryWithContentsOfFile:

[cwd stringByAppendingPathComponent:[dfiles lastObject]]];

if (!dict || ([[dict allKeys] count] < 1))

{

printf("Error retrieving device token\n");

exit(-1);

}

[APNSHelper sharedInstance].deviceTokenID = [dict objectForKey:

[[dict allKeys] objectAtIndex:0]];

NSArray *certs = [contents pathsMatchingExtensions:

[NSArray arrayWithObject:@"cer"]];

if ([certs count] < 1)

{

printf("Error finding SSL certificate\n");

exit(-1);

}

NSString *certPath = [certs lastObject];

NSData *dCert = [NSData dataWithContentsOfFile:certPath];

if (!dCert)

{

printf("Error retrieving SSL certificate\n");

exit(-1);

}

[APNSHelper sharedInstance].certificateData = dCert;

// Set up delay

int delay = atoi(argv[1]);

printf("Initializing with delay of %d\n", delay);

// Set up dictionaries

NSMutableDictionary *mainDict = [NSMutableDictionary dictionary];

NSMutableDictionary *payloadDict =

[NSMutableDictionary dictionary];

NSMutableDictionary *alertDict = [NSMutableDictionary dictionary];

ptg

684 Chapter 16 Push Notifications

[mainDict setObject:payloadDict forKey:@"aps"];

[payloadDict setObject:alertDict forKey:@"alert"];

[payloadDict setObject:@"ping1.caf" forKey:@"sound"];

[alertDict setObject:[NSNull null] forKey:@"action-loc-key"];

while (1 > 0)

{

NSAutoreleasePool *wadingpool =

[[NSAutoreleasePool alloc] init];

TreeNode *root = [[XMLParser sharedInstance] parseXMLFromURL:

[NSURL URLWithString:URL_STRING]];

TreeNode *found = [root objectForKey:@"entry"];

if (found)

{

// Recover the string to tweet

NSString *tweetString = [NSString stringWithFormat:

@"%@-%@", [found leafForKey:@"name"],

[found leafForKey:@"title"]];

// Recover pubbed date

NSString *dateString = [found leafForKey:@"published"];

NSCalendarDate *date = [NSCalendarDate dateWithString:

dateString calendarFormat:CAL_FORMAT];

// Recover stored date

NSString *prevDateString = [NSString

stringWithContentsOfFile: TWEET_FILE

encoding:NSUTF8StringEncoding error:nil];

NSCalendarDate *pDate = [NSCalendarDate dateWithString:

prevDateString calendarFormat:CAL_FORMAT];

// Tweet only if there is either no stored date or

// the dates are not equal

if (!pDate || ![pDate isEqualToDate:date])

{

// Update with the new tweet information

NSLog(@"\nNew tweet from %\n \"%@\"\n\n",

[found leafForKey:@"name"],

[found leafForKey:@"title"]);

// Store the tweet time

[dateString writeToFile:TWEET_FILE atomically:YES

encoding:NSUTF8StringEncoding error:nil];

ptg

685Feedback Service

// push it

[alertDict setObject:jsonescape(tweetString)

forKey:@"body"];

[[APNSHelper sharedInstance] push: [JSONHelper

jsonWithDict:mainDict]];

}

}

root = nil;

found = nil;

[wadingpool drain];

[NSThread sleepForTimeInterval:(double) delay];

if (SHOW_TICK) printf("tick\n");

}

[pool drain];

return 0;

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 16 and open the project for this recipe.

Feedback Service
Apps don’t live forever. Users add, remove, and replace applications on their iPhones all
the time. From an APNS point of view, it’s pointless to deliver notifications to iPhones
that no longer host your application.As a push provider, it’s your duty to remove inactive
device tokens from your active support list.As Apple puts it,“APNS monitors providers
for their diligence in checking the feedback service and refraining from sending push
notifications to nonexistent applications on devices.” Big Brother is watching.

Apple provides a simple way to manage inactive device tokens.When users uninstall
apps from a device, push notifications begin to fail.Apple tracks these failures and provides
reports from its APNS feedback server.The APNS feedback service lists devices that failed
to receive notifications.As a provider, you need to fetch this report on a periodic basis and
weed through your device tokens.

The feedback server hosts sandbox and production addresses, just like the notification
server.You find these at feedback.push.apple.com (port 2196) and feedback.sandbox.push.
apple.com.You contact the server with a production SSL certificate and shake hands in
the same way you do to send notifications.After the handshake, read your results.The
server sends data immediately without any further explicit commands on your side.

The feedback data consists of 38 bytes.This includes the time (4 bytes), the token
length (2 bytes), and the token itself (32 bytes).The timestamp tells you when APNS first

http://github.com/erica/iphone-3.0-cookbook-

ptg

686 Chapter 16 Push Notifications

determined that the application no longer existed on the device.This uses a standard
UNIX epoch, namely seconds since Midnight, January 1st, 1970.The device token is
stored in binary format.You need to convert it to a hex representation to match it to your
device tokens if you use strings to store token data.At the time of writing this book, you
can ignore the length bytes.They are always 0 and 32, referring to the 32-byte length of
the device token.

// Retrieve message from SSL.

size_t processed = 0;

char buffer[38];

do

{

// Fetch the next item

result = SSLRead(context, buffer, 38, &processed);

if (result) break;

// Recover Date from data

char *b = buffer;

NSTimeInterval ti = ((unsigned char)b[0] << 24) +

((unsigned char)b[1] << 16) +

((unsigned char)b[2] << 8) +

(unsigned char)b[3];

NSDate *date = [NSDate dateWithTimeIntervalSince1970:ti];

// Recover Device ID

NSMutableString *deviceID = [NSMutableString string];

b += 6;

for (int i = 0; i < 32; i++) [

deviceID appendFormat:@"%02x", (unsigned char)b[i]];

// Add dictionary to results

[results addObject:

[NSDictionary dictionaryWithObject:date

forKey:deviceID]];

} while (processed > 0);

Note
Search your Xcode Organizer Console for “aps” to locate APNS error messages.

Designing for Push
When designing for push, keep scaling in mind. Normal computing doesn’t need to scale.
When coding is done, an app runs on a device using the local CPU. Should a developer
deploy an extra 10,000 copies, there’s no further investment involved other than increased
technical support.

ptg

687Summary

Push computing does scale.Whether you have 10,000 or 100,000 or 1,000,000 users
matters.That’s because developers must provide the service layer that handles the opera-
tions for every unit sold.The more users supported, the greater the costs will be. Consider
that these services need to be completely reliable and that consumers will not be tolerant
of extended downtimes.

Consider an application with just 10,000 users. It might service a million uses per day,
assuming update checks every 15 minutes. More time-critical uses might demand checks
every few minutes or even several times a minute.As the computational burden builds, so
do the hosting costs.While cloud computing provides an excellent match to these kinds
of needs, that kind of solution comes with a real price in development, maintenance, and
day-to-day operations.

On top of reliability, add in security concerns. Many polled services require secure cre-
dentials.Those credentials must be uploaded to the service for remote use rather than
being stored solely on the device. Even if the service in question does not use that kind of
authentication, the device token that allows your service to contact a specific phone is
sensitive in itself. Should that identifier be stolen, it could let spammers send unsolicited
alerts.Any developer who enters this arena must take these possible threats seriously and
provide highly secure solutions for storing and protecting information.

These concerns, when taken together, point to the fact that push notifications are seri-
ous business. Some small development houses may completely opt out of being push
providers for apps that depend on new information notifications. Between infrastructure
and security concerns, the work it will take to properly offer this kind of service may
price itself out of reach for those developers.Third party providers like Key Lime Tie
(keylimetie.com) and Urban Airship (urbanairship.com) offer ready-to-use Push infra-
stracture with affordable pricing plans.They handle the remote notification deployment
for you.

On the other hand, many developers may employ push for occasional opt-in notifica-
tions, such as alerting users that upgrades are now available in the App Store or to send
tips about using the product. How tolerant iPhone users will be of this kind of use
remains to be seen.

Summary
In this chapter, you saw push notifications both from a client-building point of view and
as a provider.You learned about the kinds of notifications you can send and how to create
the payload that moves those notifications to the device.You discovered registering and
unregistering devices and how users can opt in and out from the service.You saw how to
create a provider utility that pushes new Twitter items.

Much of the push story lies outside this chapter. It’s up to you to set up a server and
deal with security, bandwidth, and scaling issues.The reality of deployment is that there
are many platforms and languages that can be used that go beyond the Objective-C
sample code shown here. Regardless, the concepts discussed and recipes shown in this

ptg

688 Chapter 16 Push Notifications

chapter give you a good stepping off point.You know what the issues are and how things
have to work. Now it’s up to you to put them to good use.

n The big wins of notifications are their instant updates and immediate presentation.
Like SMS messages, they’re hard to overlook when they arrive on your iPhone.
There’s nothing wrong in opting out of push if your application does not demand
that kind of immediacy.

n Guard your SSL certificate and device tokens.Although it’s too early to say how
Apple will respond to security breaches, experience suggests that it will be messy
and unpleasant.

n Don’t leave users without service when you have promised to provide it to them.
Build a timeline into your business plan that anticipates what it will take to keep
delivering notifications over time and how you will fund this. Consumers will not
be tolerant of extended downtimes; your service must be completely reliable.

n Build to scale.Although your application may not initially have tens of thousands of
users, you must anticipate a successful app launch as well as a modest one. Create a
system that can grow along with your user base.

ptg

17
Using Core Location and

MapKit

Core Location infuses the iPhone with on-demand geopositioning based on a vari-
ety of technologies and sources. MapKit adds interactive in-application mapping
allowing users to view and manipulate annotated maps.With Core Location and

MapKit, you can develop applications that help users meet up with friends, search for
local resources, or provide location-based streams of personal information.This chapter
introduces these location-aware frameworks and shows you how you can integrate them
into your iPhone applications.

How Core Location Works
Location is meaningful. Cocoa Touch understands that.Where we compute is fast becom-
ing just as important as how we compute and what we compute.The iPhone is con-
stantly on the go, traveling along with its users, throughout the course of the day, both at
home and on the road. Core Location brings the iPhone’s mobility into application
development.

Core Location addresses location-based programming. It enables applications to hook
into location-aware Web APIs like fireeagle.com, outside.in, upcoming.org, twitter.com,
and flickr.com. It helps you provide geotagged content to your user and lets your user
search for local resources such as restaurant and event listings.With on-demand geoloca-
tion, mobile computing opens itself up to a wide range of Web 2.0 API libraries.

All of these features depend on one thing: location.And it’s up to Core Location to
tell your application where your users are.The iPhone uses several methods to locate you.
These technologies depend on several providers including Skyhook Wireless (http://
skyhookwireless.com, aka http://loki.com), Google Maps (http://maps.google.com/),
and the U.S. Department of Defense Global Positioning System (http://tycho.usno.navy.
mil/gpsinfo.html).The following sections provide a rundown of the ways an iPhone can
detect and report position.

http://skyhookwireless.com
http://skyhookwireless.com
http://loki.com
http://maps.google.com/
http://tycho.usno.navy.mil/gpsinfo.html
http://tycho.usno.navy.mil/gpsinfo.html

ptg

690 Chapter 17 Using Core Location and MapKit

GPS Positioning
On newer-model 3G/3GS iPhones, the onboard GPS system tracks movement courtesy
of a series of medium Earth orbit satellites provided by the U.S. Department of Defense.
These satellites emit microwave signals, which the iPhone picks up and uses to triangulate
position to a high level of accuracy. Like any GPS system, the iPhone requires a clear path
between the user and the satellites, so it works best outdoors and away from trees.

GPS positioning is not currently available for the first generation iPhone or the iPod
touch line.These units must fall back to other ways of tracking location, just as a 3G/3GS
iPhone does when it cannot lock to a satellite signal.

SkyHook Wi-Fi Positioning
In the United States, Core Location’s preferred pseudo-GPS geopositioning method calls
on SkyHook Wireless. SkyHook offers extremely accurate Wi-Fi placement.When an
iPhone detects nearby Wi-Fi and WiMax routers, it uses their MAC addresses to search
SkyHook’s databases, positioning you from that data.All iPhone models, including the
touch line, are Wi-Fi enabled, allowing them to scan for those units.

SkyHook Wi-Fi data collection works like this. SkyHook sends drivers and pedestrians
down city streets throughout its covered territories, which includes most U.S. metropoli-
tan areas.These agents scan for Wi-Fi hotspots (called access points) and when found, they
record the location using traditional GPS positioning matched to the Wi-Fi MAC
address.

This works great when Wi-Fi routers stay still.This works terribly when people pack
up their Wi-Fi routers and move with them to, say, Kentucky.That having been said, Sky-
Hook data does get updated. It provides pretty accurate positioning and can usually locate
you within a few hundred feet of your actual location, even though people and their
routers will continue to move to Kentucky and other places.You can submit coordinate
and MAC address information directly through Skyhook’s volunteer location program.
Visit http://www.skyhookwireless.com/howitworks/submit_ap.php for details.

Cell Tower Positioning
A less-accurate location approach involves cell tower positioning. Here, the iPhone uses
its antenna to find the nearest four or five cell towers and then triangulates your position
based on the cell tower signal strength.You’ve probably seen cell tower location in action;
it’s the kind that shows you about a half mile away from where you are standing—assum-
ing you’re not standing right next to an actual cell tower.

iPod touch units cannot use cell tower positioning, lacking the GPRS cell tower
antennas that are iPhone standard issue. Cell tower-based location usually acts as a fallback
method due to its low accuracy.

http://www.skyhookwireless.com/howitworks/submit_ap.php

ptg

691Recipe: Core Location in a Nutshell

Internet Provider Positioning
SkyHook actually offers a third positioning approach, but it is one I’ve never seen the
iPhone use.Then again, I live in a major metropolitan area; I haven’t given it a very good
try.This last-ditch approach uses an Internet provider location to find the nearest mapped
Internet provider’s central office.This is a solution of last resort.The returned data is typi-
cally up to several miles off your actual location—unless you happen to be visiting your
Internet provider.

Hybridizing the Approaches
The iPhone approaches location in stages. Based on the accuracy level you request, it uses
a fallback method. If it cannot accurately locate you with GPS or Wi-Fi technology, it
falls back to cell tower location for iPhone users. If that doesn’t work, it presumably falls
back further to Internet provider location.And if that doesn’t work, it finally fails.

The latest releases of the SDK provide multiple asynchronous success callbacks for
each of these fallback methods.You may receive three or four results at any time.What’s
more, those methods keep working over time, as the iPhone’s location changes. Each call-
back includes an accuracy measure, indicating the method used.

Knowing how the iPhone does this is important.That’s because any ten attempts to
grab your location on a first generation iPhone may result in maybe three or four Wi-Fi
successes, the remainder falling back to cell tower hits.Although you can set your desired
location accuracy to the highest possible settings, unless you listen for multiple callbacks,
you might miss out on catching the best possible location.

The cost to this is time.A location request may take 10 or 15 seconds to establish
itself.Working with multiple requests, averaging, and best-results repetition is best done in
the background away from the GUI.When possible, avoid making your user wait for your
program to finish its location queries.

Note
Apple requires that users authorize all location requests when Core Location is first
launched. Once authorized, you may use location for the duration of the application session.

Recipe: Core Location in a Nutshell
Core Location is easy to use, as demonstrated by the following steps.They walk you
through a process of setting up your program to request location data that’s representative
of normal use.These steps and Recipe 17-1 provide just one example of using Core Loca-
tion’s services, showing how you might pinpoint a user’s location.

1. Add the Core Location framework to your project. Drag it into your Xcode project
and add it to the Frameworks folder in the Groups & Files column. Make sure to
include the CoreLocation headers in your code.

2. Allocate a location manager. Set the manager’s delegate to your primary view con-
troller or application delegate. Optionally, set its desired distance filter and accuracy.

ptg

692 Chapter 17 Using Core Location and MapKit

The distance filter specifies a minimum distance in meters.The device must move at
least this distance before it can register a new update. If you set the distance for 5
meters, for example, you will not receive new events until the device has moved that
far.

The accuracy property specifies the degree of precision that you’re requesting.To be
clear, the location manager does not guarantee any actual accuracy. Setting the
requested accuracy asks the manager to (attempt to) retrieve at least that level.When
you do not need precision, the manager will deliver its results using whatever tech-
nology is most available.

When you do need precision, the desiredAccuracy property informs the manager
of that need.You’ll find a high level of accuracy especially important for walking
and running applications.A lower accuracy level may work for driving in a car or
for locating users within large geographical boundaries like cities, states, and
countries.

3. Check whether the user has enabled Core Location by testing the location man-
ager’s locationServicesEnabled property. Users have the option to switch off
Core Location from General > Location Services in the Settings application.

4. Start locating.Tell the location manager to start updating the location. Delegate call-
backs let you know when the location has been found.This can take many seconds
or up to a minute to occur.

5. Handle the location event delegate callbacks.You’ll deal with two types of callbacks:
successes that return CLLocation data (locationManager:didUpdateToLocation:
➥fromLocation:) and failures that do not (locationManager:didFailWithError:).
Add these delegate methods to your code to catch location updates. In Recipe 17-1,
the successful location logs an information overview (description) that includes the
current latitude and longitude results.

Depending on your requested accuracy, you may receive three or four location call-
backs based on the various location methods used and the requested accuracy, so
take this nonlinearity into account.

6. Wait. Callbacks arrive asynchronously, as location data becomes available.The loca-
tion information returned to your application includes positioning information
along with accuracy measures that you can use to evaluate precision.

Test your Core Location applications on the device and not in the simulator.The simula-
tor is hard coded to return the geocoordinates of Apple Headquarters in Cupertino.
Deploying Recipe 17-1 to the device allows you to test results as you walk or drive
around with your iPhone.

ptg

693Recipe: Core Location in a Nutshell

Recipe 17-1 Using Core Location to Retrieve Latitude and Longitude

@interface TestBedViewController : UIViewController <CLLocationManagerDelegate>

{

IBOutlet UITextView *textView;

CLLocationManager *locManager;

}

@property (retain) CLLocationManager *locManager;

@end

@implementation TestBedViewController

@synthesize locManager;

- (void)locationManager:(CLLocationManager *)manager

didFailWithError:(NSError *)error

{

// Respond to the (rare) location manager failure

NSLog(@"Location manager error: %@", [error description]);

return;

}

- (void)locationManager:(CLLocationManager *)manager

didUpdateToLocation:(CLLocation *)newLocation

fromLocation:(CLLocation *)oldLocation

{

// Output a summary of the current location result

NSLog(@"%@\n", [newLocation description]);

}

- (void) viewDidLoad

{

// Initialize the location manager

self.locManager = [[[CLLocationManager alloc] init] autorelease];

if (!self.locManager.locationServicesEnabled)

{

NSLog(@"User has opted out of location services");

return;

}

self.locManager.delegate = self;

self.locManager.desiredAccuracy = kCLLocationAccuracyBest;

// Set the optional distance filter

self.locManager.distanceFilter = 5.0f; // in meters

// Start recovering location information

[self.locManager startUpdatingLocation];

}

ptg

694 Chapter 17 Using Core Location and MapKit

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 17 and open the project for this recipe.

Location Properties
Each CLLocation instance returned by the updated location callback contains a number
of properties that describe the device as it travels. Location objects can combine their vari-
ous properties into a single text result, as used in Recipe 17-1, via the description
instance method.Alternatively, you can pull out each value on a property-by-property
basis. Location properties include the following:

n altitude—This property returns the currently detected altitude. It returns a
floating-point number in meters above sea level. Speaking as a resident of the “Mile
High City,” I can assure you the accuracy of this value is minimal at best. Use these
results with caution.

n coordinate—Recover the device’s detected geoposition through the
coordinate property.A coordinate is a structure with two fields, latitude and
longitude, both of which store a floating-point value. Positive values for latitude lie
north of the equator; negative ones south of the equator. Positive longitudes lie east
of the meridian; negative longitudes west of the meridian.

n course—Use the course value to determine the general direction in which the
device is heading.This value, which is 0 degrees for North, 90 degrees for East, 180
degrees for South, and 270 degrees for West, roughly approximates the direction of
travel. For better accuracy, use headings (CLHeading instances) rather than courses.
Headings provide access to magnetic and true North readings via the magnetome-
ter.They are another feature of Core Location and are detailed later in this chapter.

n horizontalAccuracy—This property indicates the accuracy (i.e., the uncer-
tainty or measurement error) of the current coordinates.Think of the coordinates
that are returned as the center of a circle, and the horizontal accuracy as its radius.
The true device location falls somewhere in that circle.The smaller the circle, the
more accurate the location.The larger the circle, the less accurate it is. Negative
accuracy values indicate a measurement failure.

n verticalAccuracy—This property offers an altitude equivalent for horizontal
accuracy. It returns the accuracy related to the true value of the altitude, which may
(in theory) vary between the altitude minus that amount to the altitude plus that
amount. In practice, altitude readings are extremely inaccurate, and the vertical
accuracy typically bears little relationship to reality.

n speed—In theory, this value returns the speed of the device in meters per second.
In practice, this property is best reserved for car travel rather than walking. Recipes
follow later in this chapter that demonstrate how this raw property value is used,
and that derive velocity independently.

http://github.com/erica/iphone-3.0-cookbook-

ptg

695Recipe: Tracking Speed

n timestamp—This property identifies the time at which the location measure-
ment took place. It returns an NSDate instance set to the time when the location
was determined by Core Location.

Note
Running a continuous location query is a power-consuming choice. Location services may
result in a short battery life, as has been demonstrated by many jogging and biking applica-
tions currently released on App Store.

Recipe: Tracking Speed
The built-in speed property returned by each CLLocation instance allows you to track
the device’s velocity over time. Recipe 17-2 highlights its use.When the location manager
callback updates the device’s location, the code recovers the speed and logs it.This recipe
computes the current speed in miles per hour by multiplying the meters per second value
by 2.23693629.

The following viewDidLoad method sets the desired accuracy to the nearest 10 meters,
skipping the distance filtering used by Recipe 17-1.This example is intended for use in a
vehicle rather than walking. For walking, running, or biking, you want to use a higher
level of accuracy and use a strategy that eliminates inaccurate readings. Recipe 17-3 shows
how to do so.

Recipe 17-2 Recovering the speed Property from a Location Instance

- (void)locationManager:(CLLocationManager *)manager

didUpdateToLocation:(CLLocation *)newLocation

fromLocation:(CLLocation *)oldLocation

{

// If a speed is detected, log that data in miles per hour

if (newLocation.speed > 0.0f)

{

NSString *speedFeedback = [NSString stringWithFormat:

@"Speed is %0.1f miles per hour",

2.23693629 * newLocation.speed];

NSLog(@"%

}

}

- (void) viewDidLoad

{

self.locManager = [[[CLLocationManager alloc] init] autorelease];

if (!self.locManager.locationServicesEnabled)

{

NSLog(@"User has opted out of location services");

return;

}

ptg

696 Chapter 17 Using Core Location and MapKit

// Set the delegate and requested accuracy

self.locManager.delegate = self;

self.locManager.desiredAccuracy =

kCLLocationAccuracyNearestTenMeters;

// Start capturing location data

[self.locManager startUpdatingLocation];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 17 and open the project for this recipe.

Recipe: Computing Speed and Distance
When moving slowly, or at least more slowly than a car typically moves, you want make
two specific code accommodations. First, increase your desired accuracy to the highest
possible value. Second, ignore the built-in speed property and calculate your speed from
scratch. Recipe 17-3 meets these two goals by keeping track of the last-detected most
accurate location possible. For purposes of this recipe,“most accurate” is defined as within
100 meters, that is, a likely GPS position.

It uses “accurate” positions to calculate a distance by calling CLLocation’s
getDistanceFrom: method. Dividing the distance by the change in time yields the
device’s velocity.The method discards values with lower accuracy and values where the
device has not moved at least a meter in distance.

For walking and biking, this method produces a more accurate speed while still falling
far short of “precise.”This is best demonstrated by testing the sample code in the real
world with a 3G or later GPS-enabled iPhone. Should you need to deploy a Core
Location-based application with higher accuracy than these samples provide, you’ll need
to tweak your sample rates and feedback based on the likely real-world use for the device.

Recipe 17-3 Deriving Location Information

- (void)locationManager:(CLLocationManager *)manager

didUpdateToLocation:(CLLocation *)newLocation

fromLocation:(CLLocation *)oldLocation

{

if (newLocation.horizontalAccuracy <

kCLLocationAccuracyHundredMeters) // within 300 feet or so

{

// Need a baseline to compute from

if (self.lastAccurateLocation)

{

// Calculate the change in time and distance

http://github.com/erica/iphone-3.0-cookbook-

ptg

697Recipe: Computing Speed and Distance

NSTimeInterval dTime = [newLocation.timestamp

timeIntervalSinceDate:

self.lastAccurateLocation.timestamp];

float distance = [newLocation

getDistanceFrom:lastAccurateLocation];

if (distance < 1.0f) return;

// Sum up the aggregate distance

aggregateDistance += distance;

// Report the speed and distance

NSString *reportString = [NSString stringWithFormat:

@"Speed: %0.1f miles per hour. %0.1f meters.",

2.23693629 * distance / dTime, aggregateDistance];

NSLog(@"%

}

// Update the last accurate location

self.lastAccurateLocation = newLocation;

}

}

- (void) viewDidLoad

{

// Use the best accuracy

self.locManager = [[[CLLocationManager alloc] init] autorelease];

if (!self.locManager.locationServicesEnabled)

{

NSLog(@"User has opted out of location services");

return;

}

// Initialize the location manager

self.locManager.delegate = self;

self.locManager.desiredAccuracy = kCLLocationAccuracyBest;

[self.locManager startUpdatingLocation];

aggregateDistance = 0.0f;

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 17 and open the project for this recipe.

http://github.com/erica/iphone-3.0-cookbook-

ptg

698 Chapter 17 Using Core Location and MapKit

Recipe: Keeping Track of “North” by Using
Heading Values
The iPhone’s onboard location manager can return a computed course value that indi-
cates the current direction of travel, that is, North, South, Southeast, and so on.These val-
ues take the form of a floating-point number between 0 and 360, with 0 degrees
indicating North, 90 degrees being East, and so forth.This computed value is derived
from tracking a user’s location over time. Newer iPhone units have a better way to deter-
mine a user’s course. Recent devices provide an onboard magnetometer, which can return
both magnetic North and true North values.

Not every iPhone supports headings.A magnetometer was first released on the iPhone
3GS.Test each device for this ability before subscribing to heading callbacks. If the loca-
tion manager can generate heading events, the headingAvailable property returns YES.
Use this result to control your startUpdatingHeading requests.

if (self.locManager.headingAvailable)

[self.locManager startUpdatingHeading];

Cocoa Touch allows you to filter heading callbacks just as you do with distance ones. Set
the location manager’s headingFilter property to a minimal angular change, specified as
a floating-point number. For example, if you don’t want to receive feedback until the
device has rotated at least 5 degrees, set the property to 5.0.All heading values use
degrees, between 0.0 and 360.0.To convert a heading value to radians, divide by 180.0
and multiply it by pi.

Heading callbacks return a CLHeading object.You can query the heading for two prop-
erties, magneticHeading and trueHeading.The former returns the relative location of
magnetic North, the latter true North.True North always points to the geographic north
pole. Magnetic North corresponds to the pole of the Earth’s geomagnetic field, which
changes over time.The iPhone uses a computed offset (called a declination) to determine
the difference between these two.

On an enabled iPhone, magnetic heading updates are available even if the user has
switched off location updates in the Settings application.What’s more, users are not
prompted to give permission to use heading data. Magnetic heading information cannot
compromise user privacy so it remains freely available to your applications.

You can only use the trueHeading property in conjunction with location detection.
The iPhone requires a device’s location to compute the declination needed to determine
true North. Declinations vary by geoposition.The declination for Los Angeles is different
from Perth’s, which is different from Moscow’s, and London’s, and so forth. Some loca-
tions cannot use magnetometer readings at all. Certain anomalous regions like Michipi-
coten Island in Lake Superior and Grants, New Mexico, offer iron deposits and lava flows
that interfere with normal magnetic compass use. Metallic and magnetic sources, such as
your computer, car, or refrigerator, may also affect the magnetometer. Several “metal
detector” applications in App Store leverage this quirk.

ptg

699Recipe: Keeping Track of “North” by Using Heading Values

Figure 17-1 The iPhone’s built-in magnetometer
and the code from Recipe 17-4 ensure that this

arrow always points North.

The headingAccuracy property provides an error value.This number indicates a plus
or minus range that the actual heading falls within.A smaller error bar indicates a more
accurate reading.A negative value represents an error in reading the heading.

You can retrieve raw magnetic values along the X,Y, and Z axes using the x, y, and z
CLHeading properties.These values are measured in microteslas and normalized into a
range that Apple states is -128 to 128. (The actual range is more likely to be -128 to 127
based on standard bit math.) Each axis value represents an offset from the magnetic field
lines tracked by the device’s built-in magnetometer.

Recipe 17-4 uses CLHeading data to rotate a small image view with an arrow pointer.
The rotation ensures that the arrow always points North. Figure 17-1 shows the interface
in action.

Recipe 17-4 Detecting the Direction of North

@implementation TestBedViewController

@synthesize locManager;

// Catch location errors

- (void)locationManager:(CLLocationManager *)manager

didFailWithError:(NSError *)error

{

ptg

700 Chapter 17 Using Core Location and MapKit

NSLog(@"Location manager error: %@", [error description]);

}

// Respond to new heading

- (void)locationManager:(CLLocationManager *)manager

didUpdateHeading:(CLHeading *)newHeading

{

// Convert the heading into radians

CGFloat heading = -1.0f * M_PI *

newHeading.magneticHeading / 180.0f;

// Rotate the North arrow accordingly

arrow.transform = CGAffineTransformMakeRotation(heading);

}

// Allow Core Location to display the device calibration

// panel when needed

- (BOOL)locationManagerShouldDisplayHeadingCalibration:

(CLLocationManager *)manager

{

return YES;

}

- (void) viewDidLoad

{

// Initialize the location manager. No need to test for

// user opt-in/opt-out

self.locManager = [[[CLLocationManager alloc] init] autorelease];

self.locManager.delegate = self;

if (self.locManager.headingAvailable)

[self.locManager startUpdatingHeading];

else

arrow.alpha = 0.0f;

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 17 and open the project for this recipe.

Recipe: Reverse Geocoding
The phrase reverse geocoding means transforming latitude and longitude information into
human-recognizable address information. MapKit offers a reverse geocoder class that con-
verts from coordinates to location descriptions by way of Google. Using this feature binds

http://github.com/erica/iphone-3.0-cookbook-

ptg

Recipe: Reverse Geocoding

Figure 17-2 Address Dictionary contents for
Lollipop Lake at Garland Park in Denver, Colorado.

you to the Google Maps terms of service, which you can read about at http://code.
google.com/apis/maps/iphone/terms.html.

Performing a reverse geocoding request requires little more than allocating a new
MKReverseGeocoder instance, setting its coordinate and delegate and telling it to start.The
delegate declares the MKReverseGeocoderDelegate protocol and implements the two
callbacks (success and failure) shown in Recipe 17-5.

When a reverse geocoding request succeeds, the delegate callback provides an
MKPlaceMark instance.This object includes an addressDictionary that contains key-
value pairs describing the address. Figure 17-2 shows the contents of the address diction-
ary for Lollipop Lake in Denver.

The MKPlaceMark object also offers individual properties with the same information out-
side the dictionary structure.These properties include the following:

n subThoroughfare stores the street number, e.g., the “1600” for 1600 Pennsylvania
Avenue.

n thoroughfare contains the street name, e.g., Pennsylvania Avenue.
n sublocality, when available, refers to the local neighborhood name or a landmark,

e.g.,White House.
n subAdministrativeArea is typically the local county, parish, or other administra-

tive area.

701

http://code.google.com/apis/maps/iphone/terms.html
http://code.google.com/apis/maps/iphone/terms.html

ptg

Chapter 17 Using Core Location and MapKit702

n locality stores the city, e.g.,Washington, D.C.
n administrativeArea corresponds to the state, such as Maryland or Virginia.
n postalCode is the zip code, e.g., 20500
n country is self-explanatory, storing the country name, such as the United States.
n countryCode provides an abbreviated country name, like “US”.

These properties’ names are used in capitalized form in the address dictionary. For exam-
ple, the subThoroughfare property corresponds to the SubThoroughfare key.You can see
this capitalization in the keys shown in Figure 17-2.

In addition to these properties, the address dictionary offers a FormattedAddressLines
entry that stores an array of preformatted strings for the address in question.You can use
these strings to display an address, for example,“1600 Pennsylvania Avenue NW”,“Wash-
ington, DC 20500”,“USA.”

Recipe 17-5 Recovering Address Information from a Coordinate

- (void)locationManager:(CLLocationManager *)manager

didFailWithError:(NSError *)error

{

NSLog(@"Location manager error: %@", [error description]);

}

- (void)reverseGeocoder:(MKReverseGeocoder *)geocoder

didFailWithError:(NSError *)error

{

NSLog(@"Reverse geocoder error: %@", [error description]);

}

- (void)locationManager:(CLLocationManager *)manager

didUpdateToLocation:(CLLocation *)newLocation

fromLocation:(CLLocation *)oldLocation

{

MKReverseGeocoder *geocoder =

[[MKReverseGeocoder alloc]

initWithCoordinate:newLocation.coordinate];

geocoder.delegate = self;

[geocoder start];

}

- (void)reverseGeocoder:(MKReverseGeocoder *)geocoder

didFindPlacemark:(MKPlacemark *)placemark

{

NSLog([placemark.addressDictionary description]);

if ([geocoder retainCount]) [geocoder release];

}

ptg

Recipe: Viewing a Location 703

Figure 17-3 A coordinate region of a tenth of a degree latitude by a tenth
of a degree longitude covers an area the size of a smallish city or large town,

approximately 5 to 7 miles on a side. Shrinking that region down to 0.005
degrees on a side produces a street-level display (left). These streets lie

within Denver’s Garland Park/Virginia Vale neighborhood (right).

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 17 and open the project for this recipe.

Recipe: Viewing a Location
The MKMapView class presents users with interactive maps built on the coordinates and
scale you provide.Available in Interface Builder, you can easily drag a map view into your
GUI and access it via an IBOutlet.The following code snippet sets a map’s region to a
detected Core Location coordinate, showing 0.1 degrees of latitude and longitude around
that point. In the United States, a region with that range corresponds to the size of a rela-
tively small city or large town, about seven by five miles. Figure 17-3 (left) shows that 0.1
degree-by-0.1 degree range on a map view.

mapView.region = MKCoordinateRegionMake(

self.bestLocation.coordinate, MKCoordinateSpanMake(0.1f, 0.1f));

Region size changes occur due to the curvature of the earth.At the equator, one degree
of longitude corresponds to about 69 miles (~111 kilometers).This shrinks to zero at the

http://github.com/erica/iphone-3.0-cookbook-

ptg

Chapter 17 Using Core Location and MapKit704

poles. Latitude is not affected by position. One degree of latitude is always approximately
69 miles (~111 km).

To view map data on a neighborhood level, cut the coordinate span down to 0.01 by
0.01. For a street-by-street level, you can use a smaller span, say, 0.005 degrees latitude by
0.005 degrees longitude. Figure 17-3 (right) shows the Garland Park neighborhood at
this range.

You can avoid dealing with latitude and longitude degrees and create regions by speci-
fying distance in meters.This snippet sets the view region to a 500-by-500 meter square
around the central coordinate.That roughly approximates the 0.005 by 0.005 degree
lat/lon span, showing a street-by-street presentation.

mapView.region = MKCoordinateRegionMakeWithDistance(

self.bestLocation.coordinate, 500.0f, 500.0f);

Finding the Best Location Match
Recipe 17-6 performs an on-demand location search using a timed approach.When the
user taps the Find Me button, the code starts a 10-second timer. During this search, it
attempts to find the best possible location. It uses the horizontal accuracy returned by
each location hit to choose and retain the most accurate geoposition.When the time ends,
the view controller zooms in its map view, revealing the detected location.

Recipe 17-6 displays the current user location both during and after the search. It does
this by setting the showsUserLocation property to YES.When enabled, this property pro-
duces a pulsing purple pushpin that initially appears at the center of the map view at the
device location.That location is detected with Core Location. Figure 17-3 shows the user
pushpin at the center of both screenshots.

Whenever this property is enabled, the map view tasks Core Location with finding the
device’s current location. So long as this property remains set to YES, the map will con-
tinue to track and periodically update the user location.A pulsing circle that surrounds the
pushpin indicates the most recent search accuracy. Recipe 17-7 later in this chapter takes
advantage of this built-in functionality to skip the search-for-the-best-result approach
used here in Recipe 17-6.

Once the location is set, the Recipe 17-6 permits the user to start interacting with the
map. Enabling the zoomEnabled property means users can pinch, drag, and otherwise
interact with and explore the displayed map.This recipe waits until the full search com-
pletes before allowing this interaction, ensuring that the user location remains centered
until control returns to the user.

Upon finishing the search, the recipe stops requesting location callbacks by calling
stopUpdatingLocation.At the same time, it permits the map view to continue tracking
the user, leaving the showsUserLocation property set to YES.

After unsubscribing to updates, the view controller instance sets its location manager
delegate to nil.This assignment prevents any outstanding callbacks from reaching the
controller after the timer finishes. Otherwise, the user and the outstanding callbacks might
compete for control of the screen.

ptg

Recipe: Viewing a Location 705

Recipe 17-6 Presenting User Location Within a Map

@implementation TestBedViewController

@synthesize locManager;

@synthesize bestLocation;

- (void)locationManager:(CLLocationManager *)manager

didFailWithError:(NSError *)error

{

NSLog(@"Location manager error: %@", [error description]);

}

- (void)locationManager:(CLLocationManager *)manager

didUpdateToLocation:(CLLocation *)newLocation

fromLocation:(CLLocation *)oldLocation

{

// Keep track of the best location found

if (!self.bestLocation) self.bestLocation = newLocation;

else if (newLocation.horizontalAccuracy <

bestLocation.horizontalAccuracy)

self.bestLocation = newLocation;

// Show the location within a cityscape while searching

mapView.region = MKCoordinateRegionMake(

self.bestLocation.coordinate,

MKCoordinateSpanMake(0.1f, 0.1f));

// Show the user location but prevent interaction

mapView.showsUserLocation = YES;

mapView.zoomEnabled = NO;

}

// Search for n seconds to get the best location during that time

- (void) tick: (NSTimer *) timer

{

if (++timespent == MAX_TIME)

{

// Invalidate the timer

[timer invalidate];

// Stop the location task

[self.locManager stopUpdatingLocation];

self.locManager.delegate = nil;

// Restore the find me button

self.navigationItem.rightBarButtonItem =

BARBUTTON(@"Find Me", @selector(findme));

ptg

Chapter 17 Using Core Location and MapKit706

if (!self.bestLocation)

{

// No location found

self.title = @"";

return;

}

// Note the final accuracy in the title bar

self.title = [NSString stringWithFormat:@"%0.1f meters",

self.bestLocation.horizontalAccuracy];

// Update the map to street-level and allow user interaction

[mapView setRegion:MKCoordinateRegionMake(

self.bestLocation.coordinate,

MKCoordinateSpanMake(0.005f, 0.005f)) animated:YES];

mapView.showsUserLocation = YES;

mapView.zoomEnabled = YES;

}

else

self.title = [NSString stringWithFormat:@"%d secs remaining",

MAX_TIME - timespent];

}

// Perform user-request for location

- (void) findme

{

// Disable right button

self.navigationItem.rightBarButtonItem = nil;

// Search for the best location

timespent = 0;

self.bestLocation = nil;

self.locManager.delegate = self;

[self.locManager startUpdatingLocation];

[NSTimer scheduledTimerWithTimeInterval:1.0f target:self

selector:@selector(tick) userInfo:nil repeats:YES];

}

- (void) viewDidLoad

{

self.locManager = [[[CLLocationManager alloc] init] autorelease];

if (!self.locManager.locationServicesEnabled)

{

NSLog(@"User has opted out of location services");

return;

}

ptg

Recipe: User Location Annotations 707

else

{

// User generally allows location calls

self.locManager.desiredAccuracy = kCLLocationAccuracyBest;

self.navigationItem.rightBarButtonItem =

BARBUTTON(@"Find Me", @selector(findme));

}

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 17 and open the project for this recipe.

Recipe: User Location Annotations
Recipe 17-6 provided a way to visually track a location event as it focused over time.
Recipe 17-7 kicks this idea up a notch to track a device as it moves over time. Instead of
sampling locations over time and picking the best result, it employs a far easier approach
while achieving similar results. It hands over all responsibility for user location to the map
view and its userLocation property.

As mentioned in the discussion for Recipe 17-6, enabling the showsUserLocation
property automatically tasks Core Location to track the device. Recipe 17-7 leverages this
capability by checking that location once a second. It updates the map view to reflect that
location, keeping the map centered on the user and adding a custom annotation to the
user pin to display the current coordinates.

Annotations are pop-up views that attach to locations on the map.They offer a title
and a subtitle, which you can set as desired. Figure 17-4, which follows in the next sec-
tion, shows a map that displays an annotation view.

The MKUserLocation class provides direct access to the user location pin and its associ-
ated annotation. It offers two readable and writable properties called title and subtitle.
Set these properties as desired. Recipe 17-7 sets the title to “Location Coordinates” and
the subtitle to a string containing the latitude and longitude.

The MKUserLocation class greatly simplifies annotation editing, but you are limited to
working with the map view’s user location property.The more general case for annota-
tions proves more complicated. It is detailed in Recipe 17-8, which follows this section.

Recipe 17-7 Tracking the Device Through the MapView

@implementation TestBedViewController

@synthesize locManager;

// Search for n seconds to get the best location during that time

- (void) tick: (NSTimer *) timer

http://github.com/erica/iphone-3.0-cookbook-

ptg

Chapter 17 Using Core Location and MapKit708

{

if (mapView.userLocation)

[mapView setRegion:

MKCoordinateRegionMake(

mapView.userLocation.location.coordinate,

MKCoordinateSpanMake(0.005f, 0.005f)) animated:NO];

mapView.userLocation.title = @"Location Coordinates";

mapView.userLocation.subtitle = [NSString stringWithFormat:

@"%f, %f",

mapView.userLocation.location.coordinate.latitude,

mapView.userLocation.location.coordinate.longitude];

}

// Perform user-request for location

- (void) findme

{

self.navigationItem.rightBarButtonItem = nil;

[self.locManager startUpdatingLocation];

[NSTimer scheduledTimerWithTimeInterval:1.0f target:self

selector:@selector(tick) userInfo:nil repeats:YES];

}

- (void) viewDidLoad

{

self.locManager = [[[CLLocationManager alloc] init] autorelease];

if (!self.locManager.locationServicesEnabled)

{

NSLog(@"User has opted out of location services");

return;

}

else

{

// User generally allows location calls

self.locManager.desiredAccuracy = kCLLocationAccuracyBest;

self.navigationItem.rightBarButtonItem =

BARBUTTON(@"Find Me", @selector(findme));

mapView.showsUserLocation = YES;

mapView.zoomEnabled = NO;

}

}

@end

ptg

Recipe: Creating Map Annotations

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 17 and open the project for this recipe.

Recipe: Creating Map Annotations
Cocoa Touch does not provide a map annotation class.This is surprising since annotations
play such an important role in most map-based applications. Instead, Cocoa Touch defines
an MKAnnotation protocol.You must design your own classes that conform to this proto-
col, which demands a coordinate property and title and subtitle instance methods.
Listing 17-1 demonstrates how to do this. It builds a simple MapAnnotation class, provid-
ing the coordinate, title, and subtitle features demanded by the protocol.

Listing 17-1 Building a Map Annotation Object

@interface MapAnnotation : NSObject <MKAnnotation>

{

CLLocationCoordinate2D coordinate;

NSString *title;

NSString *subtitle;

}

@property (nonatomic, readonly) CLLocationCoordinate2D coordinate;

@property (nonatomic, retain) NSString *title;

Figure 17-4 This annotated map view was cre-
ated using data from MapKit and the outside.in

Web site.

709

http://github.com/erica/iphone-3.0-cookbook-

ptg

Chapter 17 Using Core Location and MapKit710

@property (nonatomic, retain) NSString *subtitle;

@end

@implementation MapAnnotation

@synthesize coordinate;

@synthesize title;

@synthesize subtitle;

// Initialize with a coordinate

- (id) initWithCoordinate: (CLLocationCoordinate2D) aCoordinate

{

if (self = [super init]) coordinate = aCoordinate;

return self;

}

-(void) dealloc

{

self.title = nil;

self.subtitle = nil;

[super dealloc];

}

@end

Creating, Adding, and Removing Annotations
To use annotations, you must create them and add them to a map view.You can do so by
adding a single annotation at a time:

anAnnotation = [[[MapAnnotation alloc]

initWithCoordinate:coord] autorelease];

[mapView addAnnotation:anAnnotation];

Alternatively, you can build an array of annotations and add them all at once:

[annotations addObject:annotation];

[mapView addAnnotations:annotations];

Delete annotations from a map by performing removeAnnotation: to remove just one
annotation or removeAnnotations: to remove all items in an array.

If you need to return a map view to a no-annotations state, remove all its existing
annotations.This snippet recovers the array of existing annotations via the annotations
property. It then removes these from the map.

[mapView removeAnnotations:mapView.annotations];

Annotation Views
Annotation objects are not views.The MapAnnotation class laid out in Listing 17-1 does
not create any onscreen elements. It is an abstract class that describes an annotation. It’s
the map view’s job to convert that annotation description into an actual onscreen view.

ptg

Recipe: Creating Map Annotations 711

Those views belong to the MKAnnotationView class.You can retrieve the annotation view
for an existing annotation by querying the map. Supply the annotation and request the
matching view.

annotationView = [mapView viewForAnnotation:annotation];

Nearly all annotation views you’ll work with belong to an MKAnnotationview subclass,
namely MKPinAnnotationView.These are the pins that you can drop onto maps.When
tapped, they display a callout view. Figure 17-4 shows a map view with ten annotations,
one of which has been tapped. Its callout shows information for the 5280 Magazine head-
quarters along with an information URL and an accessory button that links to that URL.

Customizing Annotation Views
After adding annotations, via addAnnotation: or addAnnotations:, the map view starts
building the annotation views that correspond to those annotations.When it finishes, its
delegate, which must declare the MKMapViewDelegate protocol, receives a callback.The
delegate is notified with mapView:didAddAnnotationViews: once the views are built and
added to the map.This callback provides your application with an opportunity to cus-
tomize those annotation views.

An array of annotation views is passed as the second parameter to that callback.You can
iterate through this array to set features like the view’s image or to customize its accessory
buttons. Listing 17-2 shows how you might prepare each of these annotation views for use
based on their annotations.

Listing 17-2 Preparing Annotation Views for Use

- (void)mapView:(MKMapView *)mapView

didAddAnnotationViews:(NSArray *)views

{

for (MKPinAnnotationView *mkaview in views)

{

if ([mkaview.annotation.title

isEqualToString:@"Current Location"])

{

// Current location is purple, no button

mkaview.pinColor = MKPinAnnotationColorPurple;

mkaview.rightCalloutAccessoryView = nil;

continue;

}

// Other annotations are red, with a button

mkaview.pinColor = MKPinAnnotationColorRed;

UIButton *button = [UIButton buttonWithType:

UIButtonTypeDetailDisclosure];

mkaview.rightCalloutAccessoryView = button;

}

}

ptg

Chapter 17 Using Core Location and MapKit712

This example uses the annotation title to choose a pin color and whether to display a
button.You are not limited to the built-in annotation protocol, which was minimally satis-
fied with the class defined in Listing 17-1. Design your annotation class with any instance
variables and methods you like for more control over how you query the annotations to
prepare your annotation views.

Each annotation view provides direct access to its annotation via its annotation prop-
erty. Use that annotation data to build the exact view you need. Here are some of the
annotation view properties you’ll want to customize in your MapKit applications.

Each MKPinAnnotationView uses a color.You set this color via the pinColor property.
MapKit provides three color choices: red (MKPinAnnotationColorRed), green
(MKPinAnnotationColorGreen), and purple (MKPinAnnotationColorPurple).According
to Apple’s human interface guidelines, red pins indicate destination points, places that the
user may want to explore or navigate to. Green pins are starting points, places from which
the user can begin a journey. Purple pins are user-specified.When you encourage users to
add new data into the map, use purple to indicate that the user has defined them.As you
saw in previous recipes, a map view-defined purple pin also indicates the current user
location.

Each annotation view offers two slots, on the left and right of the callout bubble.The
rightCalloutAccessoryView and leftCalloutAccessoryView properties allow you to
add buttons or any other custom subview to your callout. Figure 17-4 shows a callout that
uses a right-side detail disclosure button.This button was built in Listing 17-2.You are not
limited to buttons, however.You might add image views or other standard Cocoa Touch
views as needed.

The canShowCallout property controls whether tapping a button produces a callout
view. Enabled by default, you can set this property to NO if you do not want user taps to
open callouts.

You can offset the callouts (normally they appear directly above the pin in question) by
changing the calloutOffset property to a new CGPoint.You can also change the posi-
tion for the annotation view itself by adjusting its centerOffset property.With pin anno-
tations, the view’s art is set by default, but you can create custom annotation art by
assigning a UIImage to the view’s image property. Combine custom art with the center
offset to produce the exact map look you want.

Responding to Annotation Button Taps
MapKit simplifies button tap management.Whenever you set a callout accessory view
property to a control, MapKit takes over the control callback.You do not need to add a
target and action. MapKit handles that for you.All you have to do is implement the
mapView:annotationView:calloutAccessoryControlTapped: delegate callback, as
demonstrated in Recipe 17-8.

Recipe 17-8 uses the outside.in Web service (http://outside.in) to locate noteworthy
places near any given coordinate. It derives the coordinate of interest from user interac-
tions with the map view.Whenever the user adjusts the map, the map view delegate
receives a mapView:regionDidChangeAnimated: callback.The callback pulls the

http://outside.in

ptg

Recipe: Creating Map Annotations 713

coordinate of the map center via its centerCoordinate property. It submits this coordi-
nate to outside.in and retrieves an XML list of places.

The recipe iterates through these places, adding an annotation for each.The XML data
supplies the title for each place and an outside.in URL, used as a subtitle.This information
is used in the accessory control callback.When the user taps the button, the callback
method opens the subtitle URL, providing a hot link between the callout view and a
Safari page with location details.

Recipe 17-8 Creating an Annotated, Interactive Map

@implementation TestBedViewController

@synthesize locManager;

@synthesize current;

- (void)locationManager:(CLLocationManager *)manager

didFailWithError:(NSError *)error

{

NSLog(@"Location manager error: %@", [error description]);

}

// Update map when the user interacts with it

- (void)mapView:(MKMapView *)aMapView

regionDidChangeAnimated:(BOOL)animated

{

// Gather annotations

MapAnnotation *annotation;

NSMutableArray *annotations = [NSMutableArray array];

self.title = @"Searching...";

// Add a current location annotation

if (self.current)

{

annotation = [[[MapAnnotation alloc]

initWithCoordinate:self.current.coordinate] autorelease];

annotation.title = CURRENT_STRING;

[annotations addObject:annotation];

}

// Clean up the map

[mapView removeAnnotations:mapView.annotations];

// Fetch all the new locations from outside.in

[self performSelector:@selector(setTitle)

withObject:@"Contacting Outside.in..." afterDelay:0.1f];

NSString *urlstring = [NSString stringWithFormat:

@"http://api.outside.in/radar.xml?lat=%f&lng=%f",

mapView.centerCoordinate.latitude,

ptg

Chapter 17 Using Core Location and MapKit714

mapView.centerCoordinate.longitude];

NSData *data = [NSData dataWithContentsOfURL:

[NSURL URLWithString:urlstring]];

printf("Received %d bytes of data from outside.in\n", data.length);

// Check to see if we got valid data

NSString *xml = [[[NSString alloc] initWithData:data

encoding:NSUTF8StringEncoding] autorelease];

if ([xml rangeOfString:@"places"].location == NSNotFound)

{

// Clean up and return

[mapView addAnnotations:annotations];

return;

}

// If so, parse the data and find the place information

TreeNode *root = [[XMLParser sharedInstance]

parseXMLFromData:data];

// Add an annotation for each "place", using the coordinates,

// name and URL

for (TreeNode *node in [root objectsForKey:@"place"])

{

// Extract the coordinates

NSArray *coords = [[node leafForKey:@"georsspoint"]

componentsSeparatedByString:@" "];

if (coords.count < 2) continue;

CLLocationCoordinate2D coord;

coord.latitude = [[coords objectAtIndex:0] floatValue];

coord.longitude = [[coords objectAtIndex:1] floatValue];

// Create the annotation

annotation = [[[MapAnnotation alloc]

initWithCoordinate:coord] autorelease];

annotation.title = [node leafForKey:@"name"];

annotation.subtitle = [node leafForKey:@"url"];

// Add it

[annotations addObject:annotation];

}

// Clean up the root

[root teardown];

// Add the annotations

[mapView addAnnotations:annotations];

}

ptg

Recipe: Creating Map Annotations 715

- (void)locationManager:(CLLocationManager *)manager

didUpdateToLocation:(CLLocation *)newLocation

fromLocation:(CLLocation *)oldLocation

{

// Disable further location for the moment

self.locManager.delegate = nil;

[self.locManager stopUpdatingLocation];

// Set the current location

self.current = newLocation;

// Set the map to that location and allow user interaction

mapView.region = MKCoordinateRegionMake(newLocation.coordinate,

MKCoordinateSpanMake(0.02f, 0.02f));

mapView.zoomEnabled = YES;

// Restore find me button

self.navigationItem.rightBarButtonItem =

BARBUTTON(@"Find Me", @selector(findme));

}

// Perform user-request for location

- (void) findme

{

// Disable right button

self.navigationItem.rightBarButtonItem = nil;

self.title = @"Searching for location...";

// Search for location

self.locManager.delegate = self;

[self.locManager startUpdatingLocation];

}

- (void)mapView:(MKMapView *)mapView

annotationView:(MKAnnotationView *)view

calloutAccessoryControlTapped:(UIControl *)control

{

MapAnnotation *annotation = view.annotation;

[[UIApplication sharedApplication] openURL:

[NSURL URLWithString:annotation.subtitle]];

}

- (void)mapView:(MKMapView *)mapView

didAddAnnotationViews:(NSArray *)views

ptg

Chapter 17 Using Core Location and MapKit716

{

// Initialize each view

for (MKPinAnnotationView *mkaview in views)

{

// The current location does not get a button

if ([mkaview.annotation.title

isEqualToString:CURRENT_STRING])

{

mkaview.pinColor = MKPinAnnotationColorPurple;

mkaview.rightCalloutAccessoryView = nil;

continue;

}

// All other locations are red with a button

mkaview.pinColor = MKPinAnnotationColorRed;

UIButton *button = [UIButton buttonWithType:

UIButtonTypeDetailDisclosure];

mkaview.rightCalloutAccessoryView = button;

}

}

- (void) viewDidLoad

{

self.locManager = [[[CLLocationManager alloc] init] autorelease];

if (!self.locManager.locationServicesEnabled)

{

NSLog(@"User has opted out of location services");

return;

}

else // User allows location calls via settings

{

self.locManager.desiredAccuracy = kCLLocationAccuracyBest;

self.navigationItem.rightBarButtonItem =

BARBUTTON(@"Find Me", @selector(findme));

mapView.delegate = self;

}

}

@end

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 17 and open the project for this recipe.

http://github.com/erica/iphone-3.0-cookbook-

ptg

One More Thing: Geocoding

One More Thing: Geocoding
Geocoding means to turn a normal street address into a latitude and longitude. For exam-
ple, you might start with “1600 Pennsylvania Avenue NW,Washington D.C.” and end up
with 38.879971, -76.982887, the latitude and longitude of the United StatesWhite House.

As you can see, this is the opposite process of reverse geocoding, which starts with a
coordinate and returns a human-readable address. Geocoding starts with the human-
readable version and returns a coordinate.

Unfortunately,Apple did not build normal geocoding into MapKit. Fortunately, there
are other external providers for this service, including Yahoo, MapQuest, and Virtual Earth.
Yahoo’s Geocoding API (http://developer.yahoo.com/maps/rest/V1/geocode.html) offers
on-demand geocoding using a simple REST API.

To use it, you must sign up for a developer API key.Your requests will not work with-
out that key, and you will be subject to Yahoo’s terms and conditions.A rate limit applies,
and Yahoo reserves the right to charge fees at some point in the future for its services.You
need a separate API key for each application you build. Requesting that key is simple and
requires little more than describing the application, offering a Web site link, and signing in
with your Yahoo credentials.

To use the API, you submit your app ID, and the street and city you want located.The
more information you provide, the more specific your geocoded result will be.This snip-
pet creates a RESTful URL for the Big Chicken in Marietta, Georgia.The Yahoo service
responds with a short XML result, providing the latitude and longitude information for
that location.

NSMutableString *urlstring = [NSMutableString string];

[urlstring appendFormat:

@"http://local.yahooapis.com/MapsService/V1/geocode?appid=%@",

API_KEY];

[urlstring appendFormat:

@"&street=12+Cobb+Parkway&city=Marietta&zip=30062"]

Recipe 17-9 uses the Yahoo API to find several points of interest within the United States.
It uses those geocoded coordinates to create custom annotations, presenting the interface
shown in Figure 17-5.This recipe relies on an annotation object that has been expanded
somewhat from the one used for Recipe 17-8. Its annotation stores a URL string for the
disclosure button and an image URL string to help create the image shown at the left of
the disclosure.

As the recipe shows, addresses,Web sites, and image URLs have been hard coded into
the example.You could easily expand this to a more general API service that offers local
sites of interest.

Recipe 17-9 Reverse Geocoding Locations for Use with MapKit

- (void) findme

{

NSString *whichLocation = [LOCATIONS objectAtIndex:whichItem];

717

http://developer.yahoo.com/maps/rest/V1/geocode.html

ptg

Chapter 17 Using Core Location and MapKit718

// Geocode the location

[self performSelector:@selector(setTitle)

withObject:whichLocation afterDelay:0.1f];

// Create the REST URL

NSMutableString *urlstring = [NSMutableString string];

[urlstring appendFormat:

@"http://local.yahooapis.com/MapsService/V1/geocode?appid=%@",

API_KEY];

NSString *locationURLString;

NSString *picstring;

// All images courtesy of Wikipedia (http://en.wikipedia.org)

// and under either Creative Commons Attribution or Public Domain

switch (whichItem)

{

case 0:

// White House

[urlstring appendFormat:

@"&street=Pennsylvania+Avenue&city=@Washington+DC"];

locationURLString =

@"http://en.wikipedia.org/wiki/White_house";

picstring = @"http://upload.wikimedia.org/\

wikipedia/commons/a/af/WhiteHouseSouthFacade.JPG";

break;

case 1:

// Big Chicken of Marietta

[urlstring appendFormat:

@"&street=12+Cobb+Parkway&city=Marietta&zip=30062"];

locationURLString =

@"http://en.wikipedia.org/wiki/Big_Chicken";

picstring = @"http://upload.wikimedia.org/wikipedia/\

commons/e/ed/Thebigchicken.jpg";

break;

case 2:

// LA Zoo

[urlstring appendFormat:

@"&street=5333+Zoo+Drive&city=Los+Angeles&zip=90027"];

locationURLString =

@"http://en.wikipedia.org/wiki/LA_Zoo";

picstring = @"http://upload.wikimedia.org/\

wikipedia/en/c/c9/LAzoo.jpg";

break;

case 3:

// Big Hot Dog

[urlstring appendFormat:

@"&street=10+Old+Stagecoach+Road&city=Baily&state=CO"];

ptg

One More Thing: Geocoding 719

locationURLString =

@"http://en.wikipedia.org/wiki/\

Coney_Island_Hot_Dog_Stand";

picstring = @"http://upload.wikimedia.org/wikipedia/\

commons/e/ea/Coney_Island_2007.JPG";

break;

case 4:

// Randy’s Donuts

[urlstring appendFormat:

@"&street=4805+West+Manchester+Avenue\

&city=Inglewood&zip=90301"];

locationURLString =

@"http://en.wikipedia.org/wiki/Randy%27s_Donuts";

picstring = @"http://upload.wikimedia.org/\

wikipedia/commons/1/1d/2008-0914-RandysDonuts.jpg";

default:

break;

}

// Retrieve the geocoded result

NSData *data = [NSData dataWithContentsOfURL:

[NSURL URLWithString:urlstring]];

printf("Received %d bytes of data from Yahoo\n", data.length);

// Recover the coordinate

TreeNode *root = [[XMLParser sharedInstance]

parseXMLFromData:data];

CLLocationCoordinate2D coord;

coord.latitude = [[root leafForKey:@"Latitude"] floatValue];

coord.longitude = [[root leafForKey:@"Longitude"] floatValue];

// Set up the map view

mapView.region =

MKCoordinateRegionMakeWithDistance(coord, 10000, 10000);

mapView.zoomEnabled = YES;

// Create the annotation if it is not in the dictionary

// This annotation implementation has been extended from

// Recipe 17-8 to include a picture and a url

if (![annotationDict objectForKey:whichLocation])

{

MapAnnotation *annotation = [[[MapAnnotation alloc]

initWithCoordinate:coord] autorelease];

annotation.title = whichLocation;

annotation.urlstring = locationURLString;

annotation.picstring = picstring;

ptg

Chapter 17 Using Core Location and MapKit720

annotation.subtitle = [NSString stringWithFormat:

@"%f, %f", coord.latitude, coord.longitude];

[annotationDict setObject:annotation forKey:whichLocation];

// Reload the annotations including the new one

[mapView removeAnnotations:mapView.annotations];

[mapView addAnnotations:[annotationDict allValues]];

}

whichItem = (whichItem + 1) % [LOCATIONS count];

self.navigationItem.rightBarButtonItem =

BARBUTTON(whichLocation, @selector(findme));

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 17 and open the project for this recipe.

Figure 17-5 Reverse geocoding a street address
lets MapKit display an annotation at the proper

map location.

http://github.com/erica/iphone-3.0-cookbook-

ptg

Summary 721

Summary
Core Location and MapKit go hand in hand, offering ways to locate a device’s geoposi-
tion and present related location information in a coherent map-based presentation. In
this chapter, you discovered how to use Core Location to obtain real-time latitude and
longitude coordinates and how to reverse geocode those coordinates into real address
information.You read about working with speed and course headings both in their native
and computed forms.You learned how to set up a map, adjust its region, and add a user
location and custom annotations. Here are a few final thoughts for you before you navi-
gate away from this chapter:

n Know your audience and how they will be using your application before deciding
how you will approach your location needs. Some Core Location features work
better for driving, others for walking and biking.

n Test, test, test, test, test, test. Core Location applications must be exhaustively tested
and tuned in the field as well as at Xcode for best results in App Store.

n “Oh, didn’t I see you at -104.28393 west today?”Addresses are a lot more mean-
ingful to most people than coordinates. Use reverse geocoding to produce human-
readable information.

n Zip codes are especially API-friendly. Even if you do not plan to use a map pres-
entation in your application, zip codes are ready for traditional GUI integration.A
reverse-geocoded zip code can help retrieve nearby retail information such as
addresses and phone numbers as well as information about nearby parks and
attractions.

n Well-designed annotation views help bring meaningful interactivity into a map
view. Don’t be afraid to use buttons, images, and other custom elements that expand
a map’s utility.

ptg

This page intentionally left blank

ptg

18
Connecting to the Address Book

In addition to standard user interface controls and media components that you’d see on
any computer, the iPhone SDK provides a number of tightly focused developer solu-
tions specific to iPhone and iPod touch delivery.The most useful of these include

Address Book access, allowing you to programmatically access and manage the contacts
database.This chapter introduces the Address Book and demonstrates how to use its
frameworks in your applications.You read about accessing information on a contact-by-
contact basis, how to modify and update contact information, and how to use predicates
to find just the contact you’re interested in.This chapter also covers the GUI classes that
provide interactive solutions for picking, viewing, and modifying contacts. By the time
you’ve read through this chapter, you’ll have discovered the address book from the
bottom up.

Recipe: Working with the Address Book
The iPhone SDK provides not one but two address book frameworks.These are Address-
Book.framework and AddressBookUI.framework.As their names suggest, they occupy
distinct niches in the iPhone SDK.AddressBook provides low-level C-based structures
and routines for accessing contact information from the iPhone’s onboard SQLite data-
bases.AddressBookUI offers high-level Objective-C based UIViewController browser
objects to present to users. Both frameworks are small.They provide just a few classes and
data types.

On the iPhone, contact data resides in the home Library folder. On the Macintosh-
based iPhone simulator, you can freely access these files in ~/Library/Application Sup-
port/iPhone Simulator/User/Library/AddressBook.The two files,AddressBook.sqlitedb
and AddressBookImages.sqlitedb use standard SQLite to store contact information
and, in the latter file, optional contact images. On the iPhone, the same files live in
/var/mobile/Library/AddressBook, that is, out of the application sandbox.You must use
the two Address Book frameworks to query or modify the user’s contact information
rather than accessing these files directly.

ptg

724 Chapter 18 Connecting to the Address Book

Address Book UI
The AddressBookUI framework provides several precooked view controllers that interact
with the onboard contacts database.These interfaces include a general people picker, a
contact viewer, and a contact editor.You set a delegate and then push these controllers
onto your navigation stack or display them modally, as shown in the recipes in this chapter.

Like the image picker and video camera controllers you saw in Chapter 7,“Working
with Images,” and Chapter 15,“Audio,Video, and MediaKit,” the AddressBookUI con-
trollers are not very flexible.Apple intends you to use them as provided, with little or no
customization from the developer.What’s more, they require a certain degree of low-level
programming prowess.As you see in this chapter, these classes interact with the underly-
ing Address Book in circuitous ways.

Address Book
In the C-based AddressBook framework, the ABRecordRef type provides a core contact
structure.This record stores all information for each contact, including name, e-mail,
phone numbers, and so forth. Every record corresponds to a complete address book con-
tact. Query the address book for the number of objects currently stored in its database.
Despite the name, the ABAdressbookCreate() function does not create a new address
book; it creates a reference to the system address book.

+ (int) contactsCount

{

ABAddressBookRef addressBook = ABAddressBookCreate();

return ABAddressBookGetPersonCount(addressBook);

}

Recover individual records by calling the ABAddressBookCopyArrayOfAllPeople()
function.The following method retrieves those records as an array and then adds each
record into an ABContact object. ABContact is a custom Objective-C wrapper developed
for this book. Objective-C wrappers provide easy integration between the C-based
address book calls and normal Cocoa Touch development and memory management.The
full source for this, and a couple of other wrapper classes, can be found in the sample
code for this chapter.

+ (NSArray *) contacts

{

ABAddressBookRef addressBook = ABAddressBookCreate();

NSArray *thePeople = (NSArray *)

ABAddressBookCopyArrayOfAllPeople(addressBook);

NSMutableArray *array = [NSMutableArray

arrayWithCapacity:thePeople.count];

for (id person in thePeople)

[array addObject:[ABContact

contactWithRecord:(ABRecordRef)person]];

[thePeople release];

ptg

725Recipe: Working with the Address Book

return array;

}

The ABContact class hides an internal ABRecordRef, the CF type that corresponds to
each contact record.The remaining portion of the wrapper involves nothing more than
generating properties and methods that allow you to reach into the ABRecordRef to set
and access its subrecords.

@interface ABContact : NSObject

{

ABRecordRef record;

}

@end

Nearly all ABRecordRef functions use the ABPerson prefix.This prefix corresponds to the
ABPerson class that is available on the Macintosh but not on the iPhone. So while the
function calls are ABPerson-centric, all the data affected by these calls are actually
ABRecordRef instances.The reason for this becomes clearer when you notice that the
same ABRecordRef structure is used in the AddressBook framework to represent both
people (individual contacts, whether people or businesses) and groups (collections of con-
tacts, such as work colleagues and personal friends).The SDK provides ABGroup functions
as well as ABPerson ones.You read about groups later in this section.

Retrieving and Setting ABRecord Strings
Each ABRecord stores a number of simple string values that represent, along with other
items, a person’s name, title, job, and organization. Retrieve these items by copying field
values from the record.The following method uses a property constant (ABPropertyID)
that identifies the requested field in the record.The method copies this value, casts it to a
string, and returns that content.

- (NSString *) getRecordString:(ABPropertyID) anID

{

return [(NSString *) ABRecordCopyValue(record, anID) autorelease];

}

// Sample uses

- (NSString *) firstname

{return [self getRecordString:kABPersonFirstNameProperty];}

- (NSString *) lastname

{return [self getRecordString:kABPersonLastNameProperty];}

The 13 string-based fields you can recover in this fashion are as follows.These identifiers
are defined as constant integers in the ABPerson.h header file.They identify fields in an
ABRecordRef that store a single string for each property.

n kABPersonFirstNameProperty

n kABPersonLastNameProperty

ptg

726 Chapter 18 Connecting to the Address Book

n kABPersonMiddleNameProperty

n kABPersonPrefixProperty

n kABPersonSuffixProperty

n kABPersonNicknameProperty

n kABPersonFirstNamePhoneticProperty

n kABPersonLastNamePhoneticProperty

n kABPersonMiddleNamePhoneticProperty

n kABPersonOrganizationProperty

n kABPersonJobTitleProperty

n kABPersonDepartmentProperty

n kABPersonNoteProperty

Setting string-based properties proves to be just as simple as retrieving them. Cast the
string you want to set to a CFStringRef. Use ABRecordSetValue() to store the data back
into the record.Take note that these calls do not update the address book.They only
change the data within the record. If you want to store a user’s contact information, you
have to write that information back to the address book.A solution for doing so follows
later in this section.

- (BOOL) setString: (NSString *) aString

forProperty:(ABPropertyID) anID

{

CFErrorRef error;

BOOL success = ABRecordSetValue(record, anID,

(CFStringRef) aString, &error);

if (!success) NSLog(@"Error %@",

[(NSError *)error localizedDescription]);

return success;

}

// Examples of use

- (void) setFirstname: (NSString *) aString

{[self setString: aString forProperty:

kABPersonFirstNameProperty];}

- (void) setLastname: (NSString *) aString

{[self setString: aString forProperty: kABPersonLastNameProperty];}

Simple Date Properties
In addition to the string properties you just saw, the address book stores three key dates:
an optional birthday, the date the record was created, and the date the record was last
modified.These items use the following property constants.

ptg

727Recipe: Working with the Address Book

n kABPersonBirthdayProperty

n kABPersonCreationDateProperty

n kABPersonModificationDateProperty

Access these items exactly as you would with strings but cast to and from NSDate
instances instead of NSString instances.Although you can, theoretically, modify the latter
two properties, you’re best allowing the address book to handle them.

// Return a date-time field from a record

- (NSDate *) getRecordDate:(ABPropertyID) anID

{

return [(NSDate *) ABRecordCopyValue(record, anID) autorelease];

}

// Get the contact’s birthday

- (NSDate *) birthday

{return [self getRecordDate:kABPersonBirthdayProperty];}

// Set a date-time field in a record

- (BOOL) setDate: (NSDate *) aDate forProperty:(ABPropertyID) anID

{

CFErrorRef error;

BOOL success = ABRecordSetValue(record, anID,

(CFDateRef) aDate, &error);

if (!success) NSLog(@"Error %@",

[(NSError *)error localizedDescription]);

return success;

}

// Set the contact’s birthday

- (void) setBirthday: (NSDate *) aDate

{[self setDate: aDate forProperty: kABPersonBirthdayProperty];}

Getting and Setting Multivalue Record Properties
Each person may have multiple e-mail addresses, phone numbers, and important dates
(beyond the birthday singleton) associated with his or her contact. ABPerson uses a
multivalue structure to store lists of these items. Each multivalue item is basically an array.
You can recover each array from the record via its property identifier. Instead of returning
a string, the record returns a CFArrayRef.

The multivalue property identifiers you may work with are as follows:

n kABPersonEmailProperty

n kABPersonPhoneProperty

n kABPersonURLProperty

ptg

728 Chapter 18 Connecting to the Address Book

n kABPersonDateProperty

n kABPersonAddressProperty

n kABPersonInstantMessageProperty

The first three of these items (e-mail, phone, and URL) store multistrings—that is, arrays
of strings.Their associated type is the kABMultiStringPropertyType. Each multivalue
type plays an important role in storing data back to the record.The type is used to allo-
cate memory and determine the size for each field within the record.

The next item, the date property, stores an array of dates using
kABMultiDateTimePropertyType. Both the address and instant message properties
consist of arrays of dictionaries and use kABMultiDictionaryPropertyType.

Note
“Related names” represents another multistring property but one that does not actually get
used on the iPhone Contacts application at this time. It uses the kABPersonRelatedNames
➥Property constant and stores names and their relationships, for example, Mary Ball
Washington might be stored in George Washington’s contact using the kABPersonMother
➥Label. See ABPerson.h for a full list of relation constants.

It’s straightforward to retrieve an array of values for any of these properties. Just copy the
property out of the record (using ABRecordCopyValue()) and then break it down into its
component array.The address book provides a function that copies the array from the
property into a standard CFArrayRef.

- (NSArray *) arrayForProperty: (ABPropertyID) anID

{

CFTypeRef theProperty = ABRecordCopyValue(record, anID);

NSArray *items =

(NSArray *)ABMultiValueCopyArrayOfAllValues(theProperty);

CFRelease(theProperty);

return [items autorelease];

}

Although you might think you’ve retrieved all the information with those two calls, you
have not.Value retrieval alone is not sufficient for working with multivalued items. Each
element stored in a multivalue array uses a label as well as a value. Figure 18-1 shows part
of an address book contact page. Grouped items use labels to differentiate the role for
each e-mail, phone number, and so forth.This contact has three phone numbers and three
e-mail address, each of which displays a label indicating the value’s role.

You must copy the labels from the property as well as the values to retrieve all the
information stored for each multivalue property.The following method copies each label
by its index and adds it to a labels array.Together, the labels and the values comprise a
complete multivalue collection.

- (NSArray *) labelsForProperty: (ABPropertyID) anID

{

ptg

729Recipe: Working with the Address Book

CFTypeRef theProperty = ABRecordCopyValue(record, anID);

NSMutableArray *labels = [NSMutableArray array];

for (int i = 0; i < ABMultiValueGetCount(theProperty); i++)

{

NSString *label =

(NSString *)ABMultiValueCopyLabelAtIndex(theProperty, i);

[labels addObject:label];

[label release];

}

CFRelease(theProperty);

return labels;

}

Figure 18-1 Multivalue items consist of both a
label (e.g., main, Google, and mobile for these
phone numbers, or home, work, and Google for

these e-mail addresses) and a value.

Saving into multivalue objects works the same way but in reverse.To store multivalued
items into a record, you must transform your Cocoa Touch objects into a form the record
can work with.The following method expects an array of dictionaries. Each dictionary
must contain two keys: value and label.The objects for these keys correspond to the value
and label retrieved from the original multivalued property.This code iterates through that
array of dictionaries and adds each value and label to the mutable multivalue object.

- (ABMutableMultiValueRef) createMultiValueFromArray:

(NSArray *) anArray withType: (ABPropertyType) aType

ptg

730 Chapter 18 Connecting to the Address Book

{

ABMutableMultiValueRef multi = ABMultiValueCreateMutable(aType);

for (NSDictionary *dict in anArray)

ABMultiValueAddValueAndLabel(multi,

(CFTypeRef) [dict objectForKey:@"value"],

(CFTypeRef) [dict objectForKey:@"label"], NULL);

return multi;

}

Notice how this method creates the multivalue object using an ABPropertyType supplied
as the method parameter.This is where the various kinds of multistring types come into
play.

For example, you can populate an e-mail property with strings and labels using
kABMultiStringPropertyType.This method calls the one that creates a multivalue
object, providing both value-label dictionaries and the multiproperty type to use. Once
that multivalue item is created, it is passed to another method to be set.

- (void) setEmailDictionaries: (NSArray *) dictionaries

{

ABMutableMultiValueRef multi = [self

createMultiValueFromArray:dictionaries

withType:kABMultiStringPropertyType];

[self setMulti:multi forProperty:kABPersonEmailProperty];

CFRelease(multi);

}

Assigning a multivalue object to a record is simple. Use the standard ABRecordSetValue()
call.The following method performs the assignment of a multivalued object to a property
within a record.There is essentially no difference between this call and the calls that set a
single date or string property.All the work is done in creating the multivalue item in the
first place.

- (BOOL) setMulti: (ABMutableMultiValueRef) multi

forProperty: (ABPropertyID) anID

{

CFErrorRef error;

BOOL success = ABRecordSetValue(record, anID, multi, &error);

if (!success)

NSLog(@"Error %@",

[(NSError *)error localizedDescription]);

return success;

}

Addresses and Instant Message Properties
Both address and instant message (SMS) properties use dictionaries rather than strings
or dates.This adds an extra step to the creation of a multivalue array.You must populate
a set of dictionaries and then add them to an array along with their labels. Figure 18-2

ptg

731Recipe: Working with the Address Book

Label: home

Value: george@home.com Street: 1600 Pennsylvania Ave

City: Washington, DC

Zip: 20500
Label: work

Value: george@work.com

Label: Google

Value: george@gmail.com

Multivalue Email

Label: work

Value:

Street: 1 Main Street

City: Arlington

State: Virginia

Zip: 20502

Label: home

Value:

Multivalue Address

Figure 18-2 Unlike multivalue e-mail, which stores a single string for each value, multi-
value addresses contain an entire address dictionary.

illustrates this additional layer.As this figure shows, e-mail multivalue items consist of an
array of label-value pairs, where each value is a single string. In contrast, addresses use a
separate dictionary, which is bundled into the value item.

Here’s an example that demonstrates the steps involved in creating a two-address multi-
value item.This code builds the dictionaries and then adds them, along with their labels,
to a base array.The array created by this code corresponds to the multivalue address object
shown on the right side of Figure 18-2.

// Create the array that will store all the address

// value-label dictionaries

NSMutableArray *addresses = [NSMutableArray array];

// Create White House Address and add it to the array

NSDictionary *wh_addy = [ABContact

addressWithStreet:@"1600 Pennsylvania Avenue"

withCity:@"Washington, DC" withState:nil

withZip:@"20500" withCountry:nil withCode:nil];

[addresses addObject:[ABContact dictionaryWithValue:wh_addy

andLabel:kABWorkLabel]];

// Create a home address and add it to the array

NSDictionary *home_addy = [ABContact

addressWithStreet:@"1 Main Street" withCity:@"Arlington"

withState:@"Virginia" withZip:@"20502"

ptg

732 Chapter 18 Connecting to the Address Book

withCountry:nil withCode:nil];

[addresses addObject:[ABContact dictionaryWithValue:home_addy

andLabel:kABHomeLabel]];

This code relies on convenience methods to create both the address dictionaries and the
value/label dictionaries used for the multivalue array.The following methods produce the
label/value dictionaries, and the address and SMS dictionaries. Notice how the keys for
the address and SMS dictionaries are predefined, using address book key constants.

// Create a value/label dictionary

+ (NSDictionary *) dictionaryWithValue: (id) value

andLabel: (CFStringRef) label

{

NSMutableDictionary *dict = [NSMutableDictionary dictionary];

if (value) [dict setObject:value forKey:@"value"];

if (label) [dict setObject:(NSString *)label forKey:@"label"];

return dict;

}

// Create an address dictionary

+ (NSDictionary *) addressWithStreet: (NSString *) street

withCity: (NSString *) city

withState:(NSString *) state withZip: (NSString *) zip

withCountry: (NSString *) country withCode: (NSString *) code

{

NSMutableDictionary *md = [NSMutableDictionary dictionary];

if (street) [md setObject:street

forKey:(NSString *) kABPersonAddressStreetKey];

if (city) [md setObject:city

forKey:(NSString *) kABPersonAddressCityKey];

if (state) [md setObject:state

forKey:(NSString *) kABPersonAddressStateKey];

if (zip) [md setObject:zip

forKey:(NSString *) kABPersonAddressZIPKey];

if (country) [md setObject:country

forKey:(NSString *) kABPersonAddressCountryKey];

if (code) [md setObject:code

forKey:(NSString *) kABPersonAddressCountryCodeKey];

return md;

}

// Create an sms dictionary

+ (NSDictionary *) smsWithService: (CFStringRef)

service andUser: (NSString *) userName

{

NSMutableDictionary *sms = [NSMutableDictionary dictionary];

if (service) [sms setObject:(NSString *) service

ptg

733Recipe: Working with the Address Book

forKey:(NSString *) kABPersonInstantMessageServiceKey];

if (userName) [sms setObject:userName

forKey:(NSString *) kABPersonInstantMessageUsernameKey];

return sms;

}

Working with Address Book Images
Each record in the address book may be associated with an optional image.You can copy
image data to and from each record.The ABPersonHasImageData()function indicates
whether data is available for a given record. Use this to test whether you can retrieve
image data.

Image data is stored as CFData, which is toll-free bridged with NSData.As the UIImage
class fully supports converting images into data and creating images from data, you just
need to cast that data as needed. Use the UIImagePNGRepresentation() function to
transform a UIImage instance into an NSData representation. Use imageWithData: to cre-
ate a new image from NSData.

// Return an image from a Contact’s record

- (UIImage *) image

{

if (!ABPersonHasImageData(record)) return nil;

CFDataRef imageData = ABPersonCopyImageData(record);

UIImage *image = [UIImage imageWithData:(NSData *) imageData];

CFRelease(imageData);

return image;

}

// Set the record’s image

- (void) setImage: (UIImage *) image

{

CFErrorRef error;

BOOL success;

if (image == nil) // remove

{

if (!ABPersonHasImageData(record)) return;

success = ABPersonRemoveImageData(record, &error);

if (!success) NSLog(@"Error %@",

[(NSError *)error localizedDescription]);

return;

}

NSData *data = UIImagePNGRepresentation(image);

success = ABPersonSetImageData(record, (CFDataRef)data, &error);

if (!success) NSLog(@"Error %@",

ptg

734 Chapter 18 Connecting to the Address Book

[(NSError *)error localizedDescription]);

}

Creating, Adding, and Deleting Records
The ABPersonCreate() function returns a new ABRecordRef instance.This record exists
outside the address book and represents a freestanding data structure.To date, all the meth-
ods you’ve seen in this chapter have modified individual records, but none so far has actu-
ally saved a record to the address book. Keep that in mind as you look at this convenience
method that returns a newly initialized contact.

+ (id) contact

{

ABRecordRef person = ABPersonCreate();

id contact = [ABContact contactWithRecord:person];

CFRelease(person);

return contact;

}

To write new information to the address book takes two steps.You must add the record
and then save the address book. New iPhone developers often forget the second step, lead-
ing to an address book that appears to resist changes.This method adds a new contact to
the address book, first by adding the record and then by saving the changes.

+ (NSString *) addContact: (ABContact *) aContact

{

ABAddressBookRef addressBook = ABAddressBookCreate();

CFErrorRef error;

BOOL success = ABAddressBookAddRecord(addressBook,

aContact.record, &error);

if (!success) return [(NSError *)error localizedDescription];

success = ABAddressBookSave(addressBook, &error);

return success ? nil : [(NSError *)error localizedDescription];

}

You cannot overwrite new contact information to a contact that already exists in the
address book. If you create a new “George Washington” record and attempt to save it to an
address book that already has a “George Washington” record, you’ll fail.That’s because the
new record does not have the same record identifier as the original.The mismatch
between the two records causes the error. Here is how you query a record for its unique
identifier.

- (ABRecordID) recordID {return ABRecordGetRecordID(record);}

You can update contact information only by reading out the existing record, modifying it,
and saving it (this approach is used in Recipe 18-7), or by removing the record and then
adding back a new version.

ptg

735Recipe: Working with the Address Book

Removing a record from the address book requires a save step, just like adding a record.
Once removed, the record still exists as an object, but it no longer is stored in the address
book database. Here’s how you can remove a record from the address book.

- (NSString *) removeSelfFromAddressBook

{

ABAddressBookRef addressBook = ABAddressBookCreate();

CFErrorRef error;

BOOL success = ABAddressBookRemoveRecord(addressBook,

self.record, &error);

if (!success) return [(NSError *)error localizedDescription];

success = ABAddressBookSave(addressBook, &error);

return success ? nil : [(NSError *)error localizedDescription];

}

Searching for Contacts
The default address book framework allows you to perform a prefix search across records.
This function returns an array of records whose composite names (typically first name
appended by last name, but localizable to countries where that pattern is reversed) match
the supplied string.

NSArray *array = (NSArray *)ABAddressBookCopyPeopleWithName(

addressBook, CFSTR("Eri"));

Note
Address Book routines are written using C-based Core Foundation libraries. Many classes
live in both the Cocoa Touch Foundation and Core Foundation worlds. For example, an
NSArray* pointer corresponds to Core Foundation CFArrayRef. These classes are “toll
free bridged.” They provide identical structure and functionality, and you can cast one to the
other without penalty. The snippet shown above casts the array reference returned by the
Core Foundation ABAddressBookCopyPeopleWithName() into an NSArray pointer for eas-
ier Objective-C wrapping.

It’s far easier to combine a set of properties, like those provided in the custom ABContact
class, with NSPredicate instances.The following code matches a string against a contact’s
first name, middle name, last name, and nickname.The predicate uses property names to
define how it matches or rejects contacts. It does this using a case and diacritical insensitive
match ([cd]) that compares against all points within each string (contains), not just the
start (begins with).

+ (NSArray *) contactsMatchingName: (NSString *) fname

{

NSPredicate *pred;

NSArray *contacts = [ABContactsHelper contacts];

pred = [NSPredicate predicateWithFormat:

@"firstname contains[cd] %@ OR lastname contains[cd] %@ OR\

ptg

736 Chapter 18 Connecting to the Address Book

nickname contains[cd] %@ OR middlename contains[cd] %@",

fname, fname, fname, fname];

return [contacts filteredArrayUsingPredicate:pred];

}

Note
Apple’s Predicate Programming Guide offers a comprehensive introduction to predicate
basics. It demonstrates how to create predicates and use them in your application.

Working with Groups
Groups allow you to collect contacts into related sets such as work, home, and other natu-
ral groupings. Each group is nothing more than another ABRecord but with a few special
properties. Groups don’t store names, addresses, and phone numbers. Instead, they store a
reference to other contact records.

Are you unfamiliar with groups on the iPhone? That’s because Apple’s iPhone Contact
application doesn’t provide a way to create them.The only way to add groups of contacts
to your iPhone is via the SDK or by synchronizing an address book from your Macintosh.

You can count the number of groups in the current address book by retrieving the
group records, as shown in this method.There’s no direct way to query the number of
groups as there is with the number of person contacts.The following methods are part of
an ABGroup wrapper class that provides an Objective-C wrapper for address book groups
like ABContact wraps address book contacts.

+ (int) numberOfGroups

{

ABAddressBookRef addressBook = ABAddressBookCreate();

NSArray *groups =

(NSArray *)ABAddressBookCopyArrayOfAllGroups(addressBook);

int ncount = groups.count;

[groups release];

return ncount;

}

Create groups using the ABGroupCreate() function.This function returns an ABRecordRef
in the same way that ABPersonCreate() does.The difference lies in the record type. For
groups, this property is set to kABGroupType instead of kABPersonType.

+ (id) group

{

ABRecordRef grouprec = ABGroupCreate();

id group = [ABGroup groupWithRecord:grouprec];

CFRelease(grouprec);

return group;

}

ptg

737Recipe: Working with the Address Book

Add and remove members of a group by calling ABGroupAddMember() and
ABGroupRemoveMember().These calls affect records only and are not stored until you save
the address book.

- (BOOL) addMember: (ABContact *) contact

withError: (NSError **) error

{

return ABGroupAddMember(self.record, contact.record,

(CFErrorRef *) error);

}

- (BOOL) removeMember: (ABContact *) contact

withError: (NSError **) error

{

return ABGroupRemoveMember(self.record, contact.record,

(CFErrorRef *) error);

}

Each member of a group is a person, or using this chapter’s ABContact terminology, a
contact.This method scans through a group’s members and returns an array of ABContact
instances, each initialized with the ABRecordRef for a group member.

- (NSArray *) members

{

NSArray *contacts =

(NSArray *)ABGroupCopyArrayOfAllMembers(self.record);

NSMutableArray *array =

[NSMutableArray arrayWithCapacity:contacts.count];

for (id contact in contacts)

[array addObject:

[ABContact contactWithRecord:(ABRecordRef)contact]];

[contacts release];

return array;

}

Every group has a name. It is the primary group property that you can set and retrieve. It
uses the kABGroupNamePropert identifier, and it otherwise works just like the contacts
properties.

- (NSString *) getRecordString:(ABPropertyID) anID

{

return [(NSString *) ABRecordCopyValue(record, anID) autorelease];

}

- (NSString *) name

{

NSString *string = [self getRecordString:kABGroupNameProperty];

return [string autorelease];

}

ptg

738 Chapter 18 Connecting to the Address Book

- (void) setName: (NSString *) aString

{

CFErrorRef error;

BOOL success = ABRecordSetValue(record,

kABGroupNameProperty, (CFStringRef) aString, &error);

if (!success)

NSLog(@"Error %@", [(NSError *)error localizedDescription]);

}

ABContact, ABGroup, and ABContactsHelper
The sample code that accompanies this section includes source for three wrapper classes.
The snippets shown throughout this discussion highlight the techniques used in these
classes. Due to the length and overall redundancy of the classes, a single recipe listing (nor-
mally Recipe 18-1) has been omitted from this section.The examples you’ve already seen
together comprise this section’s “recipe.”The sample code joins these techniques together
into a group of Address Book wrappers. So Recipe 18-1 can be found in the sample code
for this chapter.

The custom ABContact class is somewhat based on the Mac-only ABPerson class. It
provides a more Cocoa Touch interface with built-in Objective-C 2.0 properties than the
C-style property queries that Apple’s ABPerson uses.All the contact-specific methods
you’ve seen to date in this section derive from this class.

A second class called ABGroup wraps all the group functionality for ABRecordRef
instances. It offers Objective-C access to group creation and management. Use this class to
build new classes, and add and remove members.

The final class, ABContactsHelper provides address book-specific methods. Use this
class to search through the address book, retrieve arrays of records, and so forth.Although
I have included a few basic searches across names and phone numbers, you can easily
expand this class, which is hosted at http://github.com/erica, for more complex queries.

Recipe: Searching the Address Book
Predicate-based searches are both fast and effective. Recipe 18-2 shows predicate-based
queries in action. It presents a search table (like the one introduced in Recipe 11-16) that
displays a scrolling table of contacts.This table responds to user search bar queries with live
updates.

Because search tables have two data sources, this recipe uses two arrays.A contacts array
stores the entire address book contacts list.A second, filtered array is built each time the
user updates the search bar, using the contactsMatchingName: method you just read
about in the preceding section.

When a user taps a row, this recipe displays an ABPersonViewController instance.This
class offers a view that displays the details for a given record, similar to Figure 18-1.To use

http://github.com/erica

ptg

739Recipe: Searching the Address Book

this view controller, you allocate and initialize it and set its displayedPerson property.As
you’d expect, this property stores an ABRecordRef.

Person view controllers offer a limited delegate. By setting the personViewDelegate
property, you can subscribe to the personViewController:shouldPerformDefault
➥ActionForPerson: method.This method triggers when users select certain items in the
view, including phone numbers, e-mail addresses, URLs, and addresses. Return YES to per-
form the default action (dialing, e-mailing, etc.) or NO to skip. Recipe 18-2 uses this call-
back to display the value for the selected item in the debug console.Although you can
interact with other display elements like the contact note and ringtone, these items do not
produce callbacks.

To extend this recipe to allow editing, set the person view controller’s allowsEditing
property to YES.This provides the edit button that appears at the top right of the display.
When tapped, the edit button triggers the same editing features in the person view that
you normally see in the Contacts application.

Recipe 18-2 Selecting and Displaying Contacts with Search

- (NSInteger)tableView:(UITableView *)aTableView

numberOfRowsInSection:(NSInteger)section

{

// Normal table

if (aTableView == self.tableView)

return self.contacts.count;

// Search table

self.filteredArray = [ABContactsHelper

contactsMatchingName:self.searchBar.text];

return self.filteredArray.count;

}

- (UITableViewCell *)tableView:(UITableView *)aTableView

cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

// Dequeue or create a cell

UITableViewCellStyle style = UITableViewCellStyleSubtitle;

UITableViewCell *cell = [aTableView

dequeueReusableCellWithIdentifier:@"BaseCell"];

if (!cell) cell = [[[UITableViewCell alloc] initWithStyle:style

reuseIdentifier:@"BaseCell"] autorelease];

// Retrieve the contact information and set the cell text

NSArray *collection = (aTableView == self.tableView) ?

self.contacts : self.filteredArray;

ABContact *contact = [collection objectAtIndex:indexPath.row];

cell.textLabel.text = contact.contactName;

cell.detailTextLabel.text = contact.phonenumbers;

ptg

740 Chapter 18 Connecting to the Address Book

return cell;

}

- (BOOL)personViewController:

(ABPersonViewController *)personViewController

shouldPerformDefaultActionForPerson:(ABRecordRef)person

property:(ABPropertyID)property

identifier:(ABMultiValueIdentifier)identifierForValue

{

// Reveal the item that was selected

if ([ABContact propertyIsMultivalue:property])

{

NSArray *array = [ABContact arrayForProperty:property

inRecord:person];

CFShow([array objectAtIndex:identifierForValue]);

}

else

{

id object = [ABContact objectForProperty:property

inRecord:person];

CFShow([object description]);

}

return YES;

}

- (void)tableView:(UITableView *)aTableView

didSelectRowAtIndexPath:(NSIndexPath *)indexPath

{

// Respond to row selection by displaying the person view

ABPersonViewController *pvc =

[[[ABPersonViewController alloc] init] autorelease];

NSArray *collection = (aTableView == self.tableView) ?

self.contacts : self.filteredArray;

ABContact *contact = [collection objectAtIndex:indexPath.row];

pvc.displayedPerson = contact.record;

pvc.personViewDelegate = self;

// pvc.allowsEditing = YES; // optional editing

[[self navigationController] pushViewController:pvc animated:YES];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 18 and open the project for this recipe.

http://github.com/erica/iphone-3.0-cookbook-

ptg

741Recipe: Accessing Image Data

Figure 18-3 You can easily retrieve and display
the image data associated with address book

contacts.

Recipe: Accessing Image Data
Recipe 18-3 expands on Recipe 18-2 by adding contact image thumbnails to each table
cell. It does this by creating a new 45-by-45 pixel image.When image data is available, that
image is rendered onto the thumbnail.When it is not, the thumbnail is left blank. Upon
being drawn, the image is assigned to the cell’s imageView. Please note that the imageView
property was introduced in the 3.0 SDK. For deployment to pre-3.0 firmware, you may
use the cell’s image property, which is now deprecated.

Figure 18-3 shows the interface for this recipe. In this screenshot, a search is in progress
(matching against the letter “e”).The records that match the search each display their
image thumbnail.

Notice how simple it is to create and use thumbnails in this recipe. It takes just a few lines
of code to build a new image context, draw into it (for contacts with images), and save it
out to a UIImage instance.

Recipe 18-3 Displaying Address Book Images in Table Cells

- (UITableViewCell *)tableView:(UITableView *)aTableView

cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

ptg

742 Chapter 18 Connecting to the Address Book

// Dequeue or create a cell

UITableViewCellStyle style = UITableViewCellStyleSubtitle;

UITableViewCell *cell = [aTableView

dequeueReusableCellWithIdentifier:@"BaseCell"];

if (!cell) cell = [[[UITableViewCell alloc] initWithStyle:style

reuseIdentifier:@"BaseCell"] autorelease];

// Recover the contact

NSArray *collection = (aTableView == self.tableView) ?

self.contacts : self.filteredArray;

ABContact *contact = [collection objectAtIndex:indexPath.row];

cell.textLabel.text = contact.contactName;

cell.detailTextLabel.text = contact.phonenumbers;

// Draw the image into a thumbnail

UIGraphicsBeginImageContext(CGSizeMake(45.0f, 45.0f));

if (contact.image)

[contact.image drawInRect:

CGRectMake(0.0f, 0.0f, 45.0f, 45.0f)];

UIImage *img = UIGraphicsGetImageFromCurrentImageContext();

UIGraphicsEndImageContext();

// Set the image for the cell

cell.imageView.image = img;

return cell;

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 18 and open the project for this recipe.

Recipe: Picking People
The AddressBookUI framework offers a handy people picker controller. Browsing your
entire Contacts list is just as easily accomplished as displaying an individual contact screen.
Use the ABPeoplePickerNavigationController class to present an interactive browser,
as shown in Figure 18-4.

Allocate and display the controller before presenting it modally. Make sure to set the
peoplePickerDelegate property, which allows you to catch user interactions with the view.

- (void) action: (UIBarButtonItem *) bbi

{

ABPeoplePickerNavigationController *ppnc =

[[ABPeoplePickerNavigationController alloc] init];

http://github.com/erica/iphone-3.0-cookbook-

ptg

743Recipe: Picking People

ppnc.peoplePickerDelegate = self;

[self presentModalViewController:ppnc animated:YES];

}

When you declare the ABPeoplePickerNavigationControllerDelegate protocol, your
class must implement the following three methods.These methods respond to users when
they tap a contact, or any of a contact’s properties, or when the user taps Cancel:

n peoplePickerNavigationController:shouldContinueAfter
➥SelectingPerson:—When users tap a contact, you have two choices.You
can accept the person as the final selection and dismiss the modal view controller
(as is done here in Recipe 18-4), or you can navigate to the individual display.To
pick just the person, this method returns NO.To continue to the individual screen,
return YES.The second argument contains the selected person, in case you want to
stop after selecting any ABPerson record.

n peoplePickerNavigationController:shouldContinueAfter
➥SelectingPerson:property:identifier:—This method does not
get called until the user has progressed to an individual contact display screen.
Then, it’s up to you whether to return control to your program (return NO) or to
continue (return YES).You can determine which property has been tapped and to
recover its value using the code from Recipe 18-2.Although this method should
be optional, it is not at the time of writing this book.

Figure 18-4 The iPhone people picker navigation
control enables users to search through the con-

tacts database and select a person or organization.

ptg

744 Chapter 18 Connecting to the Address Book

n peoplePickerNavigationControllerDidCancel:—When a user taps
Cancel, you still want a chance to dismiss the modal view.This method catches the
cancel event, allowing you to use it to perform the dismissal.

Recipe 18-4 presents the simplest possible people picking example. It presents the picker
and waits for a user to select a contact.When the user does so, it dismisses the picker and
changes the view controller title (in the navigation bar) to show the composite name of
the selected person. Returning NO from the primary callback means the property callback
will never be called.You must still include it in your code as all three methods are
required.

Recipe 18-4 Picking People

// Respond to the selection of a contact by a user

- (BOOL)peoplePickerNavigationController:

(ABPeoplePickerNavigationController *)peoplePicker

shouldContinueAfterSelectingPerson:(ABRecordRef)person

{

self.title = [[ABContact contactWithRecord:person] compositeName];

[self dismissModalViewControllerAnimated:YES];

[peoplePicker release];

return NO; // do not continue further

}

// Required method that is never called in the people-only-picking

- (BOOL)peoplePickerNavigationController:

(ABPeoplePickerNavigationController *)peoplePicker

shouldContinueAfterSelectingPerson:(ABRecordRef)person

property:(ABPropertyID)property

identifier:(ABMultiValueIdentifier)identifier

{

[self dismissModalViewControllerAnimated:YES];

[peoplePicker release];

return NO;

}

// Handle a user cancel

- (void)peoplePickerNavigationControllerDidCancel:

(ABPeoplePickerNavigationController *)peoplePicker

{

[self dismissModalViewControllerAnimated:YES];

[peoplePicker release];

}

// Present the picker

- (void) action: (UIBarButtonItem *) bbi

ptg

745Recipe: Limiting Contact Picker Properties

Figure 18-5 The people picker’s displayed prop-
erties allows you to choose which properties to

present to users, in this case e-mail only.

{

ABPeoplePickerNavigationController *ppnc =

[[ABPeoplePickerNavigationController alloc] init];

ppnc.peoplePickerDelegate = self;

[self presentModalViewController:ppnc animated:YES];

}

Recipe: Limiting Contact Picker Properties
When you need users to pick a certain kind of property, such as an e-mail address, you
won’t want to present users with a person’s street address or fax number. Limit the picker’s
displayed properties to show just those items you want the users to select from. Figure 18-5’s
picker has been limited to e-mail selection.

To make this happen, choose the displayed properties by submitting an array of property
types to the controller. Set the picker’s displayedProperties property. Recipe 18-5
offers two picking options, one for e-mail, the other for phone numbers.Although these
examples use a single property for the properties array, you can choose to display any
number of properties.

ptg

746 Chapter 18 Connecting to the Address Book

Recipe 18-5 Choosing Display Properties

// Ensure that users can access the detail screen

- (BOOL)peoplePickerNavigationController:

(ABPeoplePickerNavigationController *)peoplePicker

shouldContinueAfterSelectingPerson:(ABRecordRef)person

{

return YES;

}

// Display the selected property

- (BOOL)peoplePickerNavigationController:

(ABPeoplePickerNavigationController *)peoplePicker

shouldContinueAfterSelectingPerson:(ABRecordRef)person

property:(ABPropertyID)property

identifier:(ABMultiValueIdentifier)identifier

{

// We are guaranteed to only be working with e-mail or phone

[self dismissModalViewControllerAnimated:YES];

NSArray *array = [ABContact arrayForProperty:property

inRecord:person];

self.title = (NSString *)[array objectAtIndex:identifier];

[peoplePicker release];

return NO;

}

// Handle user cancels

- (void)peoplePickerNavigationControllerDidCancel:

(ABPeoplePickerNavigationController *)peoplePicker

{

[self dismissModalViewControllerAnimated:YES];

[peoplePicker release];

}

// Select an e-mail address

- (void) email

{

ABPeoplePickerNavigationController *ppnc =

[[ABPeoplePickerNavigationController alloc] init];

ppnc.peoplePickerDelegate = self;

[ppnc setDisplayedProperties:[NSArray

arrayWithObject:NUMBER(kABPersonEmailProperty)]];

[self presentModalViewController:ppnc animated:YES];

}

// Select a phone number

- (void) phone: (UIBarButtonItem *) bbi

ptg

747Recipe: Adding New Contacts

{

ABPeoplePickerNavigationController *ppnc =

[[ABPeoplePickerNavigationController alloc] init];

ppnc.peoplePickerDelegate = self;

[ppnc setDisplayedProperties:[NSArray

arrayWithObject:NUMBER(kABPersonPhoneProperty)]];

[self presentModalViewController:ppnc animated:YES];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 18 and open the project for this recipe.

Recipe: Adding New Contacts
Allow your users to create new contacts with the ABNewPersonViewController class.This
view controller offers an editing screen that simplifies the interactive creation of a new
address book entry.After allocating and initializing the view controller, start by creating a
new contact and assigning it to the displayedPerson property. If you want, you can pre-
fill the contact’s record with properties first. Recipe 18-7, which follows this one, uses
prefilling to modify already-existing contacts.

Next, assign the newPersonViewDelegate and declare the ABNewPersonView
➥ControllerDelegate protocol. Delegates receive one callback, newPersonView
➥Controller:didCompleteWithNewPerson:.This callback is sent for both selection and
cancel events. Check the person parameter to determine which case applies, as shown in
Recipe 18-6.

If the user taps Done after editing the new contact, save the contact data to the address
book. If you’re doing this manually rather than using the ABContactsHelper helper class,
make sure you both add the record and save the address book.

When a contact already exists with the same credentials, you need to handle the situa-
tion in some fashion.This recipe removes the existing contact to replace it with the new
one, but you can also throw up an alert and ask the user how to proceed.The user might
choose to keep the original or the replacement, or if you want, you can try to merge the
two records somehow.

Recipe 18-6 Using the New Person View Controller

- (void)newPersonViewController:

(ABNewPersonViewController *)newPersonViewController

didCompleteWithNewPerson:(ABRecordRef)person

{

if (person)

{

ABContact *contact = [ABContact contactWithRecord:person];

http://github.com/erica/iphone-3.0-cookbook-

ptg

748 Chapter 18 Connecting to the Address Book

self.title = [NSString stringWithFormat:

@"Added %@", contact.compositeName];

if (![ABContactsHelper addContact:contact withError:nil])

{

// May already exist so remove and add again to

// replace existing with new

[contact removeSelfFromAddressBook:nil];

[ABContactsHelper addContact:contact withError:nil];

}

}

else

self.title = @"Cancelled";

[self.navigationController popViewControllerAnimated:YES];

}

- (void) add

{

// Create a new view controller

ABNewPersonViewController *npvc =

[[[ABNewPersonViewController alloc] init] autorelease];

// Create a new contact

ABContact *contact = [ABContact contact];

npvc.displayedPerson = contact.record;

// Set delegate

npvc.newPersonViewDelegate = self;

[self.navigationController pushViewController:npvc animated:YES];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 18 and open the project for this recipe.

Recipe: Modifying Existing Contacts
Recipe 18-7 uses the ABNewPersonViewController class’s ability to prefill a form to mod-
ify existing contacts.The modify method starts by presenting a people picker controller.
Once a user selects a contact, the application responds by using that contact information to
populate the new person controller, which is then pushed onto the navigation stack.

As with Recipe 18-6, the code differentiates between cancel and done.This recipe,
however, does not try to replace an existing contact. Instead, it simply adds the contact

http://github.com/erica/iphone-3.0-cookbook-

ptg

749Recipe: Modifying Existing Contacts

back into place.The contact’s record ID is established by the people picker, and that same
record ID allows the new changes to overwrite the old.

Recipe 18-7 Selecting and Modifying an Address Book Contact

#pragma mark NEW PERSON DELEGATE METHODS

- (void)newPersonViewController:

(ABNewPersonViewController *)newPersonViewController

didCompleteWithNewPerson:(ABRecordRef)person

{

if (person)

{

// Save the edited contact

ABContact *contact = [ABContact contactWithRecord:person];

self.title = [NSString stringWithFormat:

@"Updated %@", contact.compositeName];

[ABContactsHelper addContact:contact withError:nil];

}

else

self.title = @"Cancelled";

[self.navigationController popViewControllerAnimated:YES];

}

#pragma mark PEOPLE PICKER DELEGATE METHODS

- (BOOL)peoplePickerNavigationController:

(ABPeoplePickerNavigationController *)peoplePicker

shouldContinueAfterSelectingPerson:(ABRecordRef)person

{

[self dismissModalViewControllerAnimated:YES];

[peoplePicker release];

ABContact *contact = [ABContact contactWithRecord:person];

// Handle the modification request by pre-filling the

// new person view controller

ABNewPersonViewController *npvc =

[[ABNewPersonViewController alloc] init];

npvc.displayedPerson = contact.record;

npvc.newPersonViewDelegate = self;

[self.navigationController pushViewController:npvc

animated:YES];

return NO;

}

- (BOOL)peoplePickerNavigationController:

(ABPeoplePickerNavigationController *)peoplePicker

shouldContinueAfterSelectingPerson:(ABRecordRef)person

ptg

750 Chapter 18 Connecting to the Address Book

property:(ABPropertyID)property

identifier:(ABMultiValueIdentifier)identifier

{

// Required method that is never called in the people-only-picking

[self dismissModalViewControllerAnimated:YES];

[peoplePicker release];

return NO;

}

- (void)peoplePickerNavigationControllerDidCancel:

(ABPeoplePickerNavigationController *)peoplePicker

{

// Handle a cancel by dismissing the controller

[self dismissModalViewControllerAnimated:YES];

[peoplePicker release];

}

#pragma mark Base GUI

- (void) modify

{

// Call out a new picker controller

ABPeoplePickerNavigationController *ppnc =

[[ABPeoplePickerNavigationController alloc] init];

ppnc.peoplePickerDelegate = self;

[self presentModalViewController:ppnc animated:YES];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 18 and open the project for this recipe.

Recipe: The ABUnknownPersonViewController
What happens when you have some information like an e-mail address or a phone num-
ber, but you don’t have a contact to associate with it yet? The ABUnknownPersonView
➥Controller allows you to add that information to a new or existing contact.This class
exists to associate known properties with unknown contacts. It works like this.

You allocate and initialize the view controller and then create and prefill a record.
Recipe 18-8 defines a record with a single e-mail address.You can add more items if you
want, and each will be displayed in the view controller. Figure 18-6 (left) shows this
recipe’s controller with its single e-mail.Assign the prefilled record to the
displayedPerson property.

The Create New Contact and Add to Existing Contact buttons are controlled by the
allowsAddingToAddressBook property.When a user taps on the new contact button, a

http://github.com/erica/iphone-3.0-cookbook-

ptg

751Recipe: The ABUnknownPersonViewController

Figure 18-6 (Left) The Unknown Person Controller allows you to display
properties and add them to a new or existing contact. (Middle) The proper-
ties you set prefill the new contact form when the user taps Create New
Contact. (Right) When you disable the address book features and enable
actions, you create a sheet that offers one-tap access to phone numbers,

e-mail addresses, URLs, and so forth.

form appears (see Figure 18-6, middle) that is prefilled with the properties from that
record. If you disable this adding property, the buttons do not appear (see Figure 18-6,
right).When you set the allowsAction property to YES, users can still tap on these ele-
ments to connect to an e-mail address, to phone numbers, and so forth.This provides a
handy way to present a list of interactive contact information and URLs with an already-
defined view controller.

The alternateName and message properties provide the text that fills the name and
organization fields in Figure 18-6 (left).Although you can populate these fields with data
via the record, the alternate options do not transfer to contacts.Therefore they provide a
nice way to prompt the user without side effects.

Set the unknownPersonViewDelegate property and declare the ABUnknownPersonView
➥ControllerDelegate protocol to receive the unknownPersonViewController:did
➥ResolveToPerson: method. Called when the user taps Done, this method allows you to
recover the record that the data was saved to. It also provides a place where you can pop the
view controller and release it, knowing that the user has finished interaction with the
dialog.

Recipe 18-8 Adding Existing Properties to Contacts

- (void)unknownPersonViewController:

(ABUnknownPersonViewController *)unknownPersonView

didResolveToPerson:(ABRecordRef)person

{

[self.navigationController popViewControllerAnimated:YES];

[unknownPersonView release];

ptg

752 Chapter 18 Connecting to the Address Book

}

- (void) action: (UIBarButtonItem *) bbi

{

// Create the controller

ABUnknownPersonViewController *upvc =

[[ABUnknownPersonViewController alloc] init];

upvc.unknownPersonViewDelegate = self;

// Create and prefill record

ABContact *contact = [ABContact contact];

NSArray *emails = [NSArray arrayWithObject:

[ABContact dictionaryWithValue:@"feedback@ericasadun.com"

andLabel:kABWorkLabel]];

contact.emailDictionaries = emails;

upvc.displayedPerson = contact.record;

// Actions make calls, send text, email, etc. Set to NO to disallow

upvc.allowsActions = NO;

// YES means can add these properties to a new or existing contact

upvc.allowsAddingToAddressBook = YES;

// Default value to show in place of name

upvc.alternateName = @"Unknown Person";

// Optional text to display below alternate name

upvc.message = @"What do you want to do?";

[self.navigationController pushViewController:upvc animated:YES];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 18 and open the project for this recipe.

One More Thing: Adding Random Contact Art
The Monster ID project consists of a collection of body part art that can be compiled
together to form random pictures. It was developed by Andreas Gohr, and was inspired by
a Web post by Don Park and the combinatoric critters. Built up by adding predrawn arms,
legs, a body, and so forth, the resulting composite image produces a full creature.

http://github.com/erica/iphone-3.0-cookbook-

ptg

753One More Thing: Adding Random Contact Art

Figure 18-7 You can add images to contacts
with the unknown person controller as well as e-
mail addresses, phone numbers, and other text-

based data.

The randomImage method in Recipe 18-9 builds a monster image from its compo-
nents.This art can be assigned directly to an address book contact or can be used as the
seed for a new contact using the unknown person controller. Either way, you can use an
ABContact instance and assign an image using its image property. If you’re not using the
controller, don’t forget to save the address book after updating a record’s image.

Recipe 18-9 uses the unknown person controller approach.When the user taps an
action button, it requests a Monster ID image and presents the controller, which is shown
in Figure 18-7.The image appears in the Info page, and the standard create/add buttons
allow users to add the generated art to a new or existing contact. Users can tap Back to
return without adding the image.A new monster generates each time the sheet appears.

Recipe 18-9 Combining Random Art with the Unknown Person Controller

// Graphics from: http://www.splitbrain.org/go/monsterid

- (UIImage *) randomImage

{

// Build a random image based on the monster id art

CGRect rect = CGRectMake(0.0f, 0.0f, 120.0f, 120.0f);

UIGraphicsBeginImageContext(CGSizeMake(120.0f, 120.0f));

ptg

754 Chapter 18 Connecting to the Address Book

UIImage *part;

part = [UIImage imageNamed:IMAGEFILE(@"oldarms_%d.png", 5)];

[part drawInRect:rect];

part = [UIImage imageNamed:IMAGEFILE(@"oldlegs_%d.png", 5)];

[part drawInRect:rect];

part = [UIImage imageNamed:IMAGEFILE(@"oldbody_%d.png", 15)];

[part drawInRect:rect];

part = [UIImage imageNamed:IMAGEFILE(@"oldmouth_%d.png", 10)];

[part drawInRect:rect];

part = [UIImage imageNamed:IMAGEFILE(@"oldeyes_%d.png", 15)];

[part drawInRect:rect];

part = [UIImage imageNamed:IMAGEFILE(@"oldhair_%d.png", 5)];

[part drawInRect:rect];

UIImage *image = UIGraphicsGetImageFromCurrentImageContext();

UIGraphicsEndImageContext();

return image;

}

- (void) action: (UIBarButtonItem *) bbi

{

// Build an empty contact with a random image

ABContact *contact = [ABContact contact];

contact.image = [self randomImage];

// Present unknown person controller

ABUnknownPersonViewController *upvc =

[[ABUnknownPersonViewController alloc] init];

upvc.unknownPersonViewDelegate = self;

upvc.allowsAddingToAddressBook = YES;

upvc.message = @"Who does this look like?";

upvc.displayedPerson = contact.record;

[self.navigationController pushViewController:upvc animated:YES];

}

- (void) viewDidLoad

{

srandom(time(0)); // randomize

self.navigationItem.rightBarButtonItem =

BARBUTTON(@"Action", @selector(action));

}

ptg

755Summary

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 18 and open the project for this recipe.

Summary
This chapter introduced Address Book core functionality for both the AddressBook and
AddressBookUI frameworks. Here are a few parting thoughts about the frameworks you
just encountered:

n Although useful, the low-level Address Book functions can prove frustrating to
work with directly.The various helper classes that accompany this chapter may help
make your life a little easier.

n Accessing and modifying an address book image works like any other field. Supply
image data instead of strings, dates, or multivalue arrays. Don’t hesitate to use image
data in your contacts applications.

n The view controllers provided by the AddressBookUI framework work seamlessly
with the underlying AddressBook routines.There’s no need to roll your own GUIs
for most common address book interaction tasks.

n The unknown person controller provides a really great way to store specific infor-
mation (such as a company’s e-mail address, an important Web site, etc.) into a con-
tact while allowing user discretion for where (or whether) to place that
information.

http://github.com/erica/iphone-3.0-cookbook-

ptg

This page intentionally left blank

ptg

19
A Taste of Core Data

Beginning with the 3.0 SDK,Apple has finally brought Core Data to the iPhone.
The Core Data framework provides persistent data solutions. It offers managed data
stores that can be queried and updated from your application.With Core Data, you

gain a Cocoa Touch-based object interface that brings relational data management out
from SQL queries and into the Objective-C world of iPhone development.This chapter
introduces Core Data. It provides just enough recipes to give you a taste of the technol-
ogy, offering a jumping off point for further Core Data learning. By the time you finish
reading through this chapter, you’ll have seen Core Data in action.You’ll gain an
overview of the technology and have worked through several common Core Data
scenarios.This chapter cannot provide a full review of Core Data—there are stand-alone
books for that—but it does offer a jumping off point for anyone who wants to integrate
this technology into their iPhone applications.

Introducing Core Data
Core Data simplifies the way your applications create and use managed objects. Until the
3.0 SDK, all data management and SQL access were left to fairly low-level libraries. It
wasn’t pretty, and it wasn’t easy to use. Now Core Data has joined the Cocoa Touch
framework family, bringing easy data management to the iPhone. Core Data provides a
flexible object management infrastructure. It offers tools for working with persistent data
stores, generating solutions for the complete object life cycle.

Core Data lives in the Model portion of the Model-View-Controller paradigm. Core
Data understands that application-specific data must be defined and controlled outside the
application’s GUI. Because of that, the application delegate, view controller instances, and
custom model classes provide the most natural homes for Core Data functionality.Where
you place the ownership depends on how you’ll use the data.

As a rule, your application delegate usually owns any shared database that gets used
throughout the application. Simpler applications may get by with a single view controller
that manages the same data access.The key lies in understanding that the owner controls
all data access—reading, writing, and updating.Any part of your application that works
with Core Data must coordinate with that owner.

ptg

758 Chapter 19 A Taste of Core Data

While it’s agreed that the data model portion of the application exists separately from
its interface,Apple understands that data does not exist in a vacuum.The 3.0 SDK inte-
grates seamlessly with UITableView instances. Cocoa Touch’s fetched-results controller
class was designed and built with tables in mind. It offers useful properties and methods
that support table integration.You see this integration in action via recipes later in this
chapter.

Creating and Editing Model Files
Model files define how Core Data objects are structured. Each project that links against
the Core Data framework includes one or more model files.These .xcdatamodel files
define the objects, their attributes, and their relationships.

Each object may own any number of properties, which are called attributes.Attribute
types include strings, dates, numbers, and data. Each object can also have relationships,
which are links between one object and another.These relationships can be single, using a
one-to-one relationship, or they can be multiple, using a one-to-many relationship. In
addition, those relationships can be one-way, or they can be reciprocal, providing an
inverse relationship.

You define your model in Xcode by laying out a new data model file. Create these
Xcode model files by selecting File > New File > iPhone OS > Resource > Data Model
> Next. Enter a name for your new file, click Next, and click Finish. Xcode adds the new
model file to your project.

Double-click the .xcdatamodel file to open it in an editor window, as shown in Figure
19-1.Add new object entities (basically “classes”) in the top-left list; define attributes and
relationships in the top middle (essentially “instance variables”).The top right offers a
context-sensitive inspector.An object graph appears below, offering a grid-based visual
presentation of the entities you have defined.

Tap the + button at the bottom-left of the Entity list at the top-left of the window to
add a new entity (a class definition that acts as an object skeleton) to your model. By
default all new entities are instantiated at runtime as instances of the NSManagedObject
class. Edit the word “Entity” to give your new object a name, for example, Person.

With the entity selected, you can add attributes. Each attribute has a name and is
typed, just as you’d define an instance variable. Relationships are pointers to other objects.
You can define a single pointer for a one-to-one relation (the single manager for a
department) or a set for a one-to-many relation (all the members of a department).

Take note of the inspector at the top-right. Here, you can edit an object’s name, set its
type, define its default value, and more.

The graph at the bottom of the editor shows the entities you have defined. It provides
arrows that represent the relationships between the various kinds of entities in your proj-
ect. In this model, every person belongs to a department. Each department has a manager
(a one-to-one relationship) and any number of members (a one-to-many relationship).

ptg

759Introducing Core Data

Figure 19-1 The model editor allows you to build object definitions for your
Core Data applications.

Generating Header Files
Once you have laid out and saved your model, you can generate header files for each
entity.These header files are not required, but they allow you to use dot notation in your
applications, which saves you from having to use valueForKey: calls to retrieve managed
object attributes.

Select an entity, and choose File > New File > iPhone OS > Cocoa Touch Class >
Managed Object Class > Next > Next > Finish. Xcode generates a pair of .h/.m files for
the entity and adds it to your project. For example, here is the Department header for the
project shown in Figure 19-1.

#import <CoreData/CoreData.h>

@interface Department : NSManagedObject

{

}

@property (nonatomic, retain) NSString * groupName;

@property (nonatomic, retain) NSManagedObject * manager;

@property (nonatomic, retain) NSSet* members;

@end

@interface Department (CoreDataGeneratedAccessors)

- (void)addMembersObject:(NSManagedObject *)value;

- (void)removeMembersObject:(NSManagedObject *)value;

ptg

760 Chapter 19 A Taste of Core Data

- (void)addMembers:(NSSet *)value;

- (void)removeMembers:(NSSet *)value;

@end

You can see that the group name is a string, that the manager points to another managed
object, and that the members one-to-many relationship is defined as a set.

Although this looks like a standard Objective-C class header file, importantly there are
no actual implementation details that you have to work with. Core Data takes care of
those for you using the @dynamic compiler keywords.

@implementation Department

@dynamic groupName;

@dynamic manager;

@dynamic members;

@end

The main reason for generating Core Data files lies in their ability to add new behavior
and transient attributes, that is, attributes not saved in the persistent store. For example,
you might create a fullName attribute returning a name built from a person’s firstName
and lastName. Plus, there’s nothing to stop you from using a managed object class like
any other class, that is, using and manipulating all kinds of data.You can bundle any kind
of Objective-C behavior into a managed object instance by editing its implementation
file.You can add instance and class methods as needed.

Creating a Core Data Context
After designing the managed object model, it’s time to build code that accesses a data file.
To work with Core Data you need to programmatically create a managed object context.
A context performs all the access and update functions needed to coordinate your model
with a file.

The following method initializes the context for an application.This work is all done
for you when you use a prebuilt Core Data template; this method shows how to do the
same work by hand. It starts by reading in all the model files from the application bundle
and merging them into a central model. It then initializes a persistent store coordinator.
This coordinator provides low-level file access using the central model.You supply a URL
that points to the file you want to use to store the model’s data. Finally, this method ini-
tializes a new context using the coordinator and stores it as a retained instance variable.

- (void) initCoreData

{

NSError *error;

// Path to sqlite file.

NSString *path = [NSHomeDirectory()

ptg

761Introducing Core Data

stringByAppendingString:@"/Documents/cdintro_00.sqlite"];

NSURL *url = [NSURL fileURLWithPath:path];

// Init the model

NSManagedObjectModel *managedObjectModel =

[NSManagedObjectModel mergedModelFromBundles:nil];

// Establish the persistent store coordinator

NSPersistentStoreCoordinator *persistentStoreCoordinator =

[[NSPersistentStoreCoordinator alloc]

initWithManagedObjectModel:managedObjectModel];

if (![persistentStoreCoordinator

addPersistentStoreWithType:NSSQLiteStoreType

configuration:nil URL:url options:nil error:&error])

NSLog(@"Error %@", [error localizedDescription]);

else

{

// Create the context and assign the coordinator

self.context =

[[[NSManagedObjectContext alloc] init] autorelease];

[self.context

setPersistentStoreCoordinator:persistentStoreCoordinator];

}

[persistentStoreCoordinator release];

}

It’s important to maintain a context instance that you can refer to, whether from a view
controller (for a simple Core Data application) or from your application delegate (the
typical location for more complex applications).The context is used for all read, search,
and update operations in your application.

Adding Objects
Create new objects by inserting entities into your managed context.The following snip-
pet builds three new items, a department and two people.After inserting the object,
which returns the new instance, you set the managed object’s properties (its attributes and
relationships) by assignment. Each person belongs to a department. Each department has a
set of members and one manager.This code reflects the design built in Figure 19-1.You
do not have to explicitly set the department’s members.The inverse relationship takes care
of that for you, adding the members into the department when you set the person’s
department attribute.

- (void) addObjects

{

// Add a new department

Department *department = (Department *)[NSEntityDescription

ptg

762 Chapter 19 A Taste of Core Data

insertNewObjectForEntityForName:@"Department"

inManagedObjectContext:self.context];

department.groupName = @"Office of Personnel Management";

// Add a person

Person *person1 = (Person *)[NSEntityDescription

insertNewObjectForEntityForName:@"Person"

inManagedObjectContext:self.context];

person1.name = @"John Smith";

person1.birthday = [self dateFromString:@"12-1-1901"];

person1.department = department;

// Add another person

Person *person2 = (Person *)[NSEntityDescription

insertNewObjectForEntityForName:@"Person"

inManagedObjectContext:self.context];

person2.name = @"Jane Doe";

person2.birthday = [self dateFromString:@"4-13-1922"];

person2.department = department;

// Set the department relationships

department.manager = person1;

// Save out to the persistent store

NSError *error;

if (![self.context save:&error])

NSLog(@"Error %@", [error localizedDescription]);

}

No changes to the persistent store file take effect until you save.A save operation brings
the database file up to date with the model stored in memory.The single save request in
this code tells the context to synchronize its state with the persistent store, writing out all
changes to the database file.

If you run this code in the simulator, you can easily inspect the .sqlite file that’s cre-
ated. Navigate to the simulator folder (~/Library/Application Support/iPhone Simula-
tor/User/Applications) and into the folder for the application itself. Stored in the
Documents folder (depending on the URL used to create the persistent store), a .sqlite
file contains the database representation that you’ve created.

Use the command-line sqlite3 utility to inspect the contents by performing a .dump
operation. Here you see the two SQL table definitions (department and manager) that
store the information for each object plus the insert commands used to store the instances
built in your code.

% sqlite3 cdintro_00.sqlite

SQLite version 3.4.0

Enter ".help" for instructions

ptg

763Introducing Core Data

sqlite> .dump

BEGIN TRANSACTION;

CREATE TABLE ZDEPARTMENT (Z_PK INTEGER PRIMARY KEY, Z_ENT INTEGER, Z_OPT INTEGER,
ZMANAGER INTEGER, ZGROUPNAME VARCHAR);

INSERT INTO "ZDEPARTMENT" VALUES(1,1,1,1,’Office of Personnel Management’);

CREATE TABLE ZPERSON (Z_PK INTEGER PRIMARY KEY, Z_ENT INTEGER, Z_OPT INTEGER,
ZDEPARTMENT INTEGER, ZBIRTHDAY TIMESTAMP, ZNAME VARCHAR);

INSERT INTO "ZPERSON" VALUES(1,2,1,1,-3126877200,’John Smith’);

INSERT INTO "ZPERSON" VALUES(2,2,1,1,-2484234000,’Jane Doe’);

CREATE TABLE Z_PRIMARYKEY (Z_ENT INTEGER PRIMARY KEY, Z_NAME VARCHAR, Z_SUPER
INTEGER, Z_MAX INTEGER);

INSERT INTO "Z_PRIMARYKEY" VALUES(1,’Department’,0,1);

INSERT INTO "Z_PRIMARYKEY" VALUES(2,’Person’,0,2);

CREATE TABLE Z_METADATA (Z_VERSION INTEGER PRIMARY KEY, Z_UUID VARCHAR(255),
Z_PLIST BLOB);

INSERT INTO "Z_METADATA" VALUES(1,’A4ADDA90-5C26-4E01-8E68-
1C4BB7A910B1’,X’62706C6973743030D60102030405060708090A0B105F10204E5353746F72654D6F
64656C56657273696F6E48617368657356657273696F6E5F101E4E5353746F72654D6F64656C566572
73696F6E4964656E746966696572735B4E5353746F7265547970655F101D4E5350657273697374656E
63654672616D65776F726B56657273696F6E5F10194E5353746F72654D6F64656C56657273696F6E48
61736865735F10125F4E534175746F56616375756D4C6576656C1003A05653514C69746510F1D20C0D
0E0F5A4465706172746D656E7456506572736F6E4F10203B34C3D1DAC08316B2656664A26C9EAC82FE
04E4C34FC75A3E0981E678F3909B4F1020DE27A38E814A2A5F72418573563732F83CBC1CACAADF39FA
559420B155E5A973513200080015003800590065008500A100B600B800B900C000C200C700D200D900
FC011F0000000000000201000000000000001100000000000000000000000000000121’);

CREATE INDEX ZDEPARTMENT_ZMANAGER_INDEX ON ZDEPARTMENT (ZMANAGER);

CREATE INDEX ZPERSON_ZDEPARTMENT_INDEX ON ZPERSON (ZDEPARTMENT);

COMMIT;

sqlite>

Querying the Data Base
Retrieve objects from the database by performing fetch requests.A fetch request describes
your search criteria. It’s passed through and used to initialize a results object that contains
a pointer to the managed objects that meet those criteria.The results controller executes
the fetch before passing back the array of managed object results.

The following fetchObjects method creates a new request, setting its entity type to
Person.This search looks for Person objects in the shared managed store. Each request
must contain at least one sort descriptor. For this example, the search returns a list of
Person records sorted in ascending order by their name field.Although you can produce
more complicated queries, this example shows the simplest “please return all managed
items of a given type” request.

- (void) fetchObjects

{

// Create a basic fetch request

NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];

[fetchRequest setEntity:[NSEntityDescription

entityForName:@"Person" inManagedObjectContext:self.context]];

ptg

764 Chapter 19 A Taste of Core Data

// Add a sort descriptor. Mandatory.

NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc]

initWithKey:@"name" ascending:YES selector:nil];

NSArray *descriptors = [NSArray arrayWithObject:sortDescriptor];

[fetchRequest setSortDescriptors:descriptors];

[sortDescriptor release];

// Init the fetched results controller

NSError *error;

self.fetchedResultsController = [[NSFetchedResultsController alloc]

initWithFetchRequest:fetchRequest

managedObjectContext:self.context

sectionNameKeyPath:nil cacheName:@"Root"];

if (![self.fetchedResultsController performFetch:&error])

NSLog(@"Error %@", [error localizedDescription]);

[self.fetchedResultsController release];

[fetchRequest release];

}

- (void) action: (UIBarButtonItem *) bbi

{

[self fetchObjects];

for (Person *person in

self.fetchedResultsController.fetchedObjects)

NSLog(@"%@ : %@", person.name, person.department.groupName);

}

The fetch request is used to initialize an NSFetchedResultsController object.This class
manages the results returned from a Core Data fetch.The results controller is kept on
hand via a retained class property (self.fetchedResultsController). Fetch results pro-
vide concrete access to the data model objects.After fetching the data, this action:
method lists out each person by name and department. It uses the results’
fetchedObjects property to do so.

Detecting Changes
Fetched results might be used as a table data source or to fill out an object settings form,
or for any other purpose you might think of.Whether you’re retrieving just one object or
many, the fetched results controller offers you direct access to those managed objects on
request.

So how do you make sure that your fetched data remains current? After adding new
objects or otherwise changing the data store, you want to fetch a fresh set of results. Sub-
scribe to the results controller’s controllerDidChangeContent: callback.This method
notifies your class when changes affect your fetched objects.To subscribe, declare the

ptg

765Introducing Core Data

NSFetchedResultsControllerDelegate protocol and assign the controller’s delegate as
follows.After setting the results’ delegate, you receive a callback each time the data store
updates.

self.fetchedResultsController.delegate = self.

Removing Objects
Removing objects, especially those that use relationships in addition to simple properties,
can prove harder than you might first expect. Consider the following code. It goes
through each person in the fetched object results and deletes them before saving the con-
text.This method fails as it tries to save the context to file.

- (void) removeObjects

{

NSError *error = nil;

for (Person *person in

self.fetchedResultsController.fetchedObjects)

[self.context deleteObject:person];

if (![self.context save:&error])

NSLog(@"Error %@ (%@)", [error localizedDescription]);

[self fetchObjects];

}

That’s because Core Data ensures internal consistency before writing data out, throwing
an error if it cannot.The managed model from Figure 19-1 uses several cross-references.
Each person may belong to a department, which stores a list of its members and its
manager.These references must be cleared before the object can safely be removed from
the persistent store. If not, objects may point to deleted items, a situation that can lead to
bad references.

The following is another version of the same method, one that saves without errors.
This updated version removes all references from the department object. It checks
whether a person is a manager, removing that connection if it exists. It also filters the per-
son out of its department members using a predicate to return an updated set. Once these
connections are removed, the context will save out properly.

- (void) removeObjects

{

NSError *error = nil;

if (!self.fetchedResultsController.fetchedObjects.count)

{

NSLog(@"No one to delete");

return;

}

ptg

766 Chapter 19 A Taste of Core Data

// Remove each person

for (Person *person in

self.fetchedResultsController.fetchedObjects)

{

// Remove person as manager if necessary

if (person.department.manager == person)

person.department.manager = nil;

// Remove person from department

NSPredicate *pred = [NSPredicate predicateWithFormat:

@"SELF != %@", person];

if (person.department.members)

person.department.members = [person.department.members

filteredSetUsingPredicate:pred];

// Delete the person object

[self.context deleteObject:person];

}

// Save

if (![self.context save:&error])

NSLog(@"Error %@", [error localizedDescription]);

}

In addition to this kind of manual disconnection, you can set Core Data delete rules in
the data model editor. Delete rules control how an object responds to an attempted
delete.You can Deny delete requests, ensuring that a relationship has no connection before
allowing object deletion. Nullify resets inverse relationships before deleting an object.
Cascade deletes an object plus all its relationships; for example, you could delete an entire
department (including its members) all at once with a cascade. No Action provides that
the objects pointed to by a relationship remain unaffected, even if those objects point
back to the item about to be deleted.

In the sample code that accompanies this chapter, the introductory project (essentially
Recipe 0 for this chapter) nullifies its connections.The department/members relationship
represents an inverse relationship. By using Nullify, the default delete rule, you do not
need to remove the member from the department list before deleting a person.

On the other hand, the department’s manager relationship is not reciprocal.As there is
no inverse relationship, you cannot delete objects without resetting that manager.Taking
these delete rules into account, the remove objects method for this example can be short-
ened to the following.

- (void) removeObjects

{

NSError *error = nil;

// Remove all people (if they exist)

ptg

767Recipe: Using Core Data for a Table Data Source

[self fetchObjects];

if (!self.fetchedResultsController.fetchedObjects.count)

{

NSLog(@"No one to delete");

return;

}

// Remove each person

for (Person *person in

self.fetchedResultsController.fetchedObjects)

{

// Remove person as manager if necessary

if (person.department.manager == person)

person.department.manager = nil;

// Delete the person object

[self.context deleteObject:person];

}

// Save

if (![self.context save:&error])

NSLog(@"Error %@", [error localizedDescription]);

}

Xcode issues warnings when it detects nonreciprocal relationships.Avoid these unbal-
anced relationships to simplify your code and provide better internal consistency. If you
cannot avoid nonreciprocal items, you need to take them into account when you create
your delete methods, as was done here.

Recipe: Using Core Data for a Table Data Source
Core Data on the iPhone works closely with table views.The NSFetchedResults
➥Controller class includes features that simplify the integration of Core Data objects
with table data sources.As you can see in the following list, many of the fetched results
class’s properties and methods are designed for table support.

n Index path access—The fetched results class offers object-index path integration
in two directions.You can recover objects from a fetched object array using index
paths by calling objectAtIndexPath:.You can query for the index path associated
with a fetched object by calling indexPathForObject:.These two methods work
with both sectioned tables and those tables that are flat—that is, that only use a
single section for all their data.

n Section key path—The sectionNameKeyPath property links a managed object
attribute to section names.This property helps determine which section each
managed object belongs to.You can set this property directly at any time or you
initialize it when you set up your fetched results controller.

ptg

768 Chapter 19 A Taste of Core Data

Recipe 19-1 uses an attribute named section to distinguish sections, although you
can use any attribute name for this key path. For this example, this attribute uses the
first character of each object name to assign a managed object to a section. Set the
key path to nil to produce a flat table without sections.

n Section groups—Recover section subgroups with the sections property.This
property returns an array of sections, each of which stores the managed objects
whose section attribute maps to the same letter.

Each returned section implements the NSFetchedResultsSectionInfo protocol.
This protocol ensures that sections can report their objects and numberOfObjects,
their name, and an indexTitle, that is, the title that appears on the quick reference
index optionally shown above and at the right of the table.

n Index titles—The sectionIndexTitles property generates a list of section titles
from the sections within the fetched data. For Recipe 19-1, that array includes sin-
gle letter titles.The default implementation uses the value of each section key to
return a list of all known sections.

Two further instance methods, sectionIndexTitleForSectionName: and
sectionForSectionIndexTitle:atIndex:, provide section title lookup features.
The first returns a title for a section name.The second looks up a section via its
title. Override these to use section titles that do not match the data stored in the
section name key.

As these properties and methods reveal, fetched results instances are both table aware and
table ready for use. Recipe 19-1 uses these features to duplicate the indexed color name
table first introduced in Chapter 11,“Creating and Managing Table Views.”The code in
this recipe recovers data from the fetched results using index paths, as shown in the
method that produces a cell for a given row and the method that tints the navigation bar
with the color from the selected row.

Each method used for creating and managing sections is tiny.The built-in Core Data
access features reduce these methods to one or two lines each.That’s because all the work
in creating and accessing the sections is handed over directly to Core Data.The call that
initializes each fetched data request specifies what data attribute to use for the sections.
Core Data then takes over and does the rest of the work.

self.fetchedResultsController = [[NSFetchedResultsController alloc]

initWithFetchRequest:fetchRequest

managedObjectContext:self.context

sectionNameKeyPath:@"section" cacheName:@"Root"];

Caching reduces overhead associated with producing data that’s structured with sections
and indices. Multiple fetch requests are ignored when the data has not changed, minimiz-
ing the cost associated with fetch requests over the lifetime of an application.The name
used for the cache is completely arbitrary. Either use nil to prevent caching or supply a

ptg

769Recipe: Using Core Data for a Table Data Source

name in the form of an NSString.The snippet above uses "Root", but there’s no reason
you can’t use another string.

Recipe 19-1 Building a Sectioned Table with Core Data

- (UITableViewCell *)tableView:(UITableView *)tableView

cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

// Retrieve or create a cell

UITableViewCell *cell =

[tableView dequeueReusableCellWithIdentifier:@"basic cell"];

if (!cell) cell = [[[UITableViewCell alloc]

initWithStyle:UITableViewCellStyleDefault

reuseIdentifier:@"basic cell"] autorelease];

// Recover object from fetched results

NSManagedObject *managedObject =

[self.fetchedResultsController objectAtIndexPath:indexPath];

cell.textLabel.text = [managedObject valueForKey:@"name"];

UIColor *color =

[self getColor:[managedObject valueForKey:@"color"]];

cell.textLabel.textColor =

([[managedObject valueForKey:@"color"] hasPrefix:@"FFFFFF"]) ?

[UIColor blackColor] : color;

return cell;

}

- (void)tableView:(UITableView *)tableView

didSelectRowAtIndexPath:(NSIndexPath *)indexPath

{

// When a row is selected, color the navigation bar accordingly

NSManagedObject *managedObject =

[self.fetchedResultsController objectAtIndexPath:indexPath];

UIColor *color =

[self getColor:[managedObject valueForKey:@"color"]];

self.navigationController.navigationBar.tintColor = color;

}

#pragma mark Sections

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView

{

// Use the fetched results section count

return [[self.fetchedResultsController sections] count];

}

ptg

770 Chapter 19 A Taste of Core Data

- (NSInteger)tableView:(UITableView *)tableView

numberOfRowsInSection:(NSInteger)section

{

// Return the count for each section

return [[[self.fetchedResultsController sections]

objectAtIndex:section] numberOfObjects];

}

- (NSArray *)sectionIndexTitlesForTableView:(UITableView *)aTableView

{

// Return the array of section index titles

return self.fetchedResultsController.sectionIndexTitles;

}

- (NSString *)tableView:(UITableView *)aTableView

titleForHeaderInSection:(NSInteger)section

{

// Return the title for a given section

NSArray *titles = [self.fetchedResultsController

sectionIndexTitles];

if (titles.count <= section) return @"Error";

return [titles objectAtIndex:section];

}

- (NSInteger)tableView:(UITableView *)tableView

sectionForSectionIndexTitle:(NSString *)title

atIndex:(NSInteger)index

{

// Query the titles for the section associated with an index title

return [self.fetchedResultsController.sectionIndexTitles

indexOfObject:title];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 19 and open the project for this recipe.

Recipe: Search Tables and Core Data
Core Data stores are designed to work efficiently with NSPredicates. Predicates allow
you to create fetch requests that select only those managed objects that match the predi-
cate’s rule or rules.Adding a predicate to a fetch request limits the fetched results to
matching objects.

Recipe 19-2 adapts the search table from Recipe 11-16 to build a Core Data-based
solution.This recipe uses a search bar to select data from the persistent store, displaying the
results in a table’s search sheet. Figure 19-2 shows a search in progress.

http://github.com/erica/iphone-3.0-cookbook-

ptg

771Recipe: Search Tables and Core Data

Figure 19-2 To power this search table with Core
Data, the fetched results must update each time

the text in the search box changes.

As the text in the search bar at the top of the table changes, the search bar’s delegate
receives a searchBar:textDidChange: callback. In turn, that method performs a new
fetch. Recipe 11-16 shows that fetch method, which builds a restrictive predicate.

The recipe’s performFetch method creates that simple predicate based on the text in
the search bar. It sets the request’s predicate property to limit matches to names that
contain the text, using a case insensitive match. contains matches text anywhere in a
string.The [cd] after contains refers to case and diacritic insensitive matching. Diacritics
are small marks that accompany a letter, such as the dots of an umlaut or the tilde above a
Spanish n.

For more complex queries, assign a compound predicate. Compound predicates allow
you to combine simple predicates together using standard logical operations like AND,
OR, and NOT. Use the NSCompoundPredicate class to build a compound predicate out
of a series of component predicates, or include the AND, OR, and NOT notation directly
in NSPredicate text, as was done in Chapter 18,“Connecting to the Address Book.”

None of the methods from Recipe 19-1 need updating for use with Recipe 19-2’s
performFetch method.All the cell and section methods are tied to the results object and
its properties, simplifying implementation even when adding these search table features.

ptg

772 Chapter 19 A Taste of Core Data

Recipe 19-2 Using Fetch Requests with Predicates

- (void) performFetch

{

// Init a fetch request

NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];

NSEntityDescription *entity = [NSEntityDescription

entityForName:@"Crayon" inManagedObjectContext:self.context];

[fetchRequest setEntity:entity];

// Apply an ascending sort for the color items

NSSortDescriptor *sortDescriptor =

[[NSSortDescriptor alloc] initWithKey:@"name"

ascending:YES selector:nil];

NSArray *descriptors = [NSArray arrayWithObject:sortDescriptor];

[fetchRequest setSortDescriptors:descriptors];

// Recover query

NSString *query = self.searchBar.text;

if (query && query.length) fetchRequest.predicate =

[NSPredicate predicateWithFormat:@"name contains[cd] %@",

query];

// Init the fetched results controller

NSError *error;

self.fetchedResultsController =

[[NSFetchedResultsController alloc]

initWithFetchRequest:fetchRequest

managedObjectContext:self.context

sectionNameKeyPath:@"section" cacheName:@"Root"];

self.fetchedResultsController.delegate = self;

[self.fetchedResultsController release];

if (![[self fetchedResultsController] performFetch:&error])

NSLog(@"Error %@", [error localizedDescription]);

[fetchRequest release];

[sortDescriptor release];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 19 and open the project for this recipe.

http://github.com/erica/iphone-3.0-cookbook-

ptg

773Recipe: Integrating Core Data Tables with Live Data Edits

Recipe: Integrating Core Data Tables with Live
Data Edits
Recipe 19-3 demonstrates how to move basic table editing tasks into the Core Data
world. Its code is based on the basic edits of Recipe 11-12.There are, however, real
changes that must be made to provide its Core Data solution.These changes include the
following adaptations.

n Adding and deleting items are restricted to the data source—Methods that
commit an editing style (i.e., perform deletes) and that add new cells do not directly
address the table view. In the original recipe, each method reloaded the table view
data after adds and deletes. Recipe 19-3 saves data to the managed context but does
not call reloadData.

n Data updates trigger table reloads—The actual reloadData call triggers when
the fetched results delegate receives a controllerDidChangeContent: callback.This
method gets sent when the fetched results object recognizes that the stored data has
updated.That happens after data changes have been saved via the managed object
context.

n The table forbids reordering—Recipe 19-3’s tableView:canMoveRowAtIndexPath:
method hard codes its result to NO.When working with sorted fetched data sources,
users may not reorder that data.This method reflects that reality.

Together, these changes allow your table to work with add and delete edits, as well as con-
tent edits.Although content edits are not addressed in this recipe, they involve a similar
fetch update approach when users modify attributes used by sort descriptors.

The actual add and delete code follows the approach detailed at the start of this chap-
ter. Objects are added by inserting a new entity description.Their attributes are set and
the context saved. Objects are deleted from the context, and again the context is saved.
These updates trigger the content changed callbacks for the fetched results delegate.

As this recipe shows, the Core Data interaction simplifies the integration between the
data model and the user interface.And that’s due in large part to Apple’s thoughtful class
designs that handle the managed object responsibilities. Recipe 19-3 highlights this
design, showcasing the code parsimony that results from using Core Data.

Recipe 19-3 Adapting Table Edits to Core Data

-(void)enterEditMode

{

// Start editing

[self.tableView deselectRowAtIndexPath:

[self.tableView indexPathForSelectedRow] animated:YES];

[self.tableView setEditing:YES animated:YES];

[self setBarButtonItems];

}

ptg

774 Chapter 19 A Taste of Core Data

-(void)leaveEditMode

{

// Finish editing

[self.tableView setEditing:NO animated:YES];

[self setBarButtonItems];

}

- (BOOL)tableView:(UITableView *)tableView

canMoveRowAtIndexPath:(NSIndexPath *)indexPath

{

return NO; // no reordering allowed

}

- (void)tableView:(UITableView *)tableView

commitEditingStyle:(UITableViewCellEditingStyle)editingStyle

forRowAtIndexPath:(NSIndexPath *)indexPath

{

// Delete request

if (editingStyle == UITableViewCellEditingStyleDelete)

{

NSError *error = nil;

[self.context deleteObject:[fetchedResultsController

objectAtIndexPath:indexPath]];

if (![self.context save:&error])

NSLog(@"Error %@", [error localizedDescription]);

}

// Update buttons after delete action

[self setBarButtonItems];

// Update sections

[self performFetch];

}

- (void) add

{

// Request a string to use as the action item

NSString *todoAction =

[ModalAlert ask:@"What Item?" withTextPrompt:@"To Do Item"];

if (!todoAction || todoAction.length == 0) return;

// Build a new item and set its action field

ToDoItem *item = (ToDoItem *)[NSEntityDescription

insertNewObjectForEntityForName:@"ToDoItem"

inManagedObjectContext:self.context];

item.action = todoAction;

ptg

775Recipe: Implementing Undo-Redo Support with Core Data

item.sectionName =

[[todoAction substringToIndex:1] uppercaseString];

// Save the new item

NSError *error;

if (![self.context save:&error])

NSLog(@"Error %@", [error localizedDescription]);

// Update buttons after add

[self setBarButtonItems];

// Update sections

[self performFetch];

}

- (void)controllerDidChangeContent:

(NSFetchedResultsController *)controller

{

// Update table when the contents have changed

[self.tableView reloadData];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 19 and open the project for this recipe.

Recipe: Implementing Undo-Redo Support with
Core Data
Core Data simplifies table undo-redo support to an astonishing degree. It provides auto-
matic support for these operations with little programming effort. Here are the steps you
need to take to add undo-redo to your table based application.

1. Add an undo manager to the managed object context.After establishing a managed
object context (typically in your application delegate), set its undo manager to a
newly allocated instance.

self.context.undoManager =

[[[NSUndoManager alloc] init] autorelease];

2. Assign that undo manager in your view controller. Set your view controller’s undo
manager to point to the undo manager used by the managed object context.

self.context = [(TestBedAppDelegate *)

[[UIApplication sharedApplication] delegate] context];

self.undoManager = self.context.undoManager;

http://github.com/erica/iphone-3.0-cookbook-

ptg

776 Chapter 19 A Taste of Core Data

3. Optionally, provide shake-to-edit support. If you want your application to respond
to device shakes by offering an undo-redo menu, add the following line to your
application delegate.
application.applicationSupportsShakeToEdit = YES;

4. Ensure that your view controller becomes the first responder when it is onscreen.
Provide the following suite of methods.These methods allow the view responder to
become first responder whenever it appears.The view controller resigns that first
responder status when it moves offscreen.

- (BOOL)canBecomeFirstResponder {

return YES;

}

- (void)viewDidAppear:(BOOL)animated {

[super viewDidAppear:animated];

[self becomeFirstResponder];

}

- (void)viewWillDisappear:(BOOL)animated {

[super viewWillDisappear:animated];

[self resignFirstResponder];

}

The preceding steps provide all the setup needed to use undo management in your table.
Recipe 19-4 integrates that undo management into the actual delete and add methods for
the table.To make this happen, it brackets the core data access with an undo grouping.The
beginUndoGrouping and endUndoGrouping calls appear before and after the context
updates and saves with changes.An action name describes the operation that just took
place.

These three calls (begin, undo, and setting the action name) comprise all the work
needed to ensure that Core Data can reverse its operations. For this minimal effort, your
application gains a fully realized undo management system, courtesy of Core Data. Be
aware that any undo/redo data will not survive quitting your application.This works just
as you’d expect with manual undo/redo support.

Recipe 19-4 Expanding Cell Management for Undo/Redo Support

- (void)tableView:(UITableView *)tableView

commitEditingStyle:(UITableViewCellEditingStyle)editingStyle

forRowAtIndexPath:(NSIndexPath *)indexPath

{

[self.context.undoManager beginUndoGrouping];

// Delete request

if (editingStyle == UITableViewCellEditingStyleDelete)

ptg

777Recipe: Implementing Undo-Redo Support with Core Data

{

NSError *error = nil;

[self.context deleteObject:

[fetchedResultsController objectAtIndexPath:indexPath]];

if (![self.context save:&error])

NSLog(@"Error %@", [error localizedDescription]);

}

[self.context.undoManager endUndoGrouping];

[self.context.undoManager setActionName:@"Delete"];

// Update buttons after delete action

[self setBarButtonItems];

// Update sections

[self performFetch];

}

- (void) add

{

// Request a string to use as the action item

NSString *todoAction = [ModalAlert ask:@"What Item?"

withTextPrompt:@"To Do Item"];

if (!todoAction || todoAction.length == 0) return;

[self.context.undoManager beginUndoGrouping];

// Build a new item and set its action field

ToDoItem *item = (ToDoItem *)[NSEntityDescription

insertNewObjectForEntityForName:@"ToDoItem"

inManagedObjectContext:self.context];

item.action = todoAction;

// Index by the first character of the action

item.sectionName =

[[todoAction substringToIndex:1] uppercaseString];

// Save the new item

NSError *error;

if (![self.context save:&error])

NSLog(@"Error %@", [error localizedDescription]);

[self.context.undoManager endUndoGrouping];

[self.context.undoManager setActionName:@"Add"];

ptg

778 Chapter 19 A Taste of Core Data

// Update buttons after add

[self setBarButtonItems];

// Update sections

[self performFetch];

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 19 and open the project for this recipe.

Summary
This chapter offered just a taste of Core Data’s capabilities.These recipes showed you how
to design and implement basic Core Data applications.They used Core Data features to
work with its managed object models.You read about defining a model and implement-
ing fetch requests.You saw how to add objects, delete them, modify them, and save them.
You learned about predicates and undo operations, and discovered how to integrate Core
Data with table views.After reading through this chapter, here are a few final thoughts to
take away with you:

n Xcode issues a standard compiler warning when it encounters relationships that are
not reciprocal. Nonreciprocal relationships add an extra layer of work, preventing
you from taking advantage of simple delete rules like Nullify.Avoid these relation-
ships when possible.

n When moving data from a pre-3.0 store into a new SQLite database, be sure to use
some sort of flag in your user defaults. Check whether you’ve already performed a
data upgrade or not.You want to migrate user data once when the application is
upgraded but not thereafter.

n Predicates are one of my favorite 3.0 SDK features. Spend some time learning how
to construct them and use them with all kinds of objects like arrays and sets, not
just with Core Data.

n Core Data’s capabilities go way beyond the basic recipes you’ve seen in this chap-
ter. Check out Tim Isted’s Core Data for iPhone, available from Pearson Educa-
tion/Addison-Wesley for an in-depth exploration of Core Data and its features.

http://github.com/erica/iphone-3.0-cookbook-

ptg

20
StoreKit: In-App Purchasing

New to the 3.0 SDK, StoreKit offers in-app purchasing that integrates into your
software.With StoreKit, end users can use their iTunes credentials to buy
features, subscriptions, or consumable assets from within an application after

initially purchasing and installing the application from App Store.This chapter introduces
StoreKit and shows you how to use the StoreKit API to create purchasing options for
users. In this chapter, you read about getting started with StoreKit.You learn how set up
products at iTunes Connect and localize their descriptions.You see what it takes to create
test users and how to work your way through various development/deployment hurdles.
This chapter teaches you how to solicit purchase requests from users and how to hand
over those requests to the store for payment. By the time you finish this chapter, you’ll
have learned about the entire StoreKit picture, from product creation to sales.

Getting Started with StoreKit
When your application demands a more complex purchase model than buy-once use-
always, consider StoreKit. StoreKit offers developers a way to sell additional products from
within an application. It offers iTunes payments to create additional revenue streams.
There are many reasons to use StoreKit.You might support a subscription model, provide
extra game levels on demand, or introduce other unlockable features via this new 3.0
framework.

That isn’t to say that users download new code.All StoreKit-based applications ship
with their features already built in. For example, StoreKit purchases might let users access
parts of your application that you initially set as off limits.They can also download or
unlock new data sets, or authorize access to subscription-based Web feeds. StoreKit pro-
vides the way users can pay to access these features, letting them go live after purchase.

It’s important to note that you cannot use in-app purchasing to sell “hard” assets (such
as T-shirts) nor intermediate currency (such as store credit for a Web site) at this time.
And, yes, real gambling is forbidden as well.Any goods sold via in-app purchase must be
able to be delivered digitally to your application.

ptg

780 Chapter 20 StoreKit: In-App Purchasing

Develop
Application
Skeleton

Upload Skeleton
to iTunes
Connect

Create in-App
Product at

iTunes Connect

Submit Purchase
GUI Screenshot

Developer
Approval

Upload Finalized
Application to

iTunes Connect

Continue Developing Application

Test Application Purchases

Figure 20-1 The StoreKit development process.

With StoreKit, you choose the items you want to sell and you set their price. StoreKit
and iTunes take care of the details.They provide the infrastructure that brings that store-
front into your application through a series of API calls and delegate callbacks.

Unfortunately, StoreKit presents a paradox, which is this:You cannot fully develop and
test your in-application purchasing until you have already submitted your application to
iTunes.And you cannot fully submit your application to iTunes knowing that you’re not
done developing it. So what’s a developer to do? How do you properly develop for
StoreKit?

There is, fortunately, a solution.This solution is shown in Figure 20-1.To work around
the StoreKit paradox, you upload a somewhat-working but not fully functional applica-
tion skeleton to iTunes Connect.You do this with the full understanding that you’ll be
rejecting your binary and replacing it at some point in the future.

The reason you have to upload that skeleton is that you need an application in active
review to begin developing StoreKit applications and products.You cannot create new
in-application purchases at iTunes Connect, and you cannot test those purchases with the

ptg

781Creating Test Accounts

sandbox version of StoreKit without a “live” application. For purposes of StoreKit, this
means you need an application either in review or already accepted at App Store.

Note
When submitting your skeleton application for testing, roll back your availability date in the
iTunes Connect Pricing tab. This prevents your “not ready for prime time” app from inadver-
tently appearing for sale on App Store until you’re ready. Reset that date once you’re ready
to go live.

Until October 2009, StoreKit applications could not be free. Before then, you needed to
choose at least Tier 1 (corresponding to US$0.99) or higher when pricing your application.
StoreKit and iTunes Connect no longer limit in-application purchasing to paid applications.

Once you’ve submitted your application and created at least one in-application purchase
item, you can begin to fully develop and test your application and its purchases. Use the
sandbox version of StoreKit along with test user accounts to buy new items without
charging a real credit card.The sandbox StoreKit lets you test your application features
before, during, and after payment.

When you have finished development, and are ready to submit a final version to App
Store, you complete the StoreKit development process at iTunes Connect.You must
upload a screenshot showing the GUI for your application purchase, you must explicitly
approve each in-app purchase item, and you must reject your skeleton and upload a fully
working version of your application.

The following sections one walk you through this process.You read about each of these
steps in greater detail and learn how to add StoreKit to your application.

Creating Test Accounts
Test accounts play a key role in the StoreKit development scenario. Create one or more
new user accounts before you begin developing new StoreKit-enabled applications.These
accounts allow you to log in to iTunes to test your application payments without charging
real money.

Here’s how you add a new user. Log in to iTunes Connect, and choose Manage Users >
In App Purchase Test User. Click Add New User. iTunes Connect presents the form shown
in Figure 20-2.When filling out this form, keep the following points in mind.

n Each e-mail address must be unique, but it doesn’t have to be real. So long as the
address does not conflict with any other one in the system, you’ll be fine.As you
might guess, other developers have already taken the easy to type addresses like
abc.com, abcd.com, and so on.

n Names do not have to be real. Birthdates do not have to be real. I use a basic alpha-
betical naming system. My users are “a Sadun,”“b Sadun,”“c Sadun,” and so forth.
Everyone was born on January 1st.

n Passwords must be at least six characters long. If you plan on typing the password in
repeatedly, stick to lowercase letters. If you use uppercase, you’ll have to handle the

ptg

782 Chapter 20 StoreKit: In-App Purchasing

Figure 20-2 Add new test users in iTunes Connect by filling out this form.

Caps key on the iPhone. If you use numbers, you’ll have to switch between key-
board styles.A single easy-to-remember disposable password can be used for all your
test accounts.

n The secret question/answer fields are meaningless in this context, but they cannot
be left empty.You cannot enter the same string for both fields, and each field must
be at least six characters long. Consider using a question/answer pair like “aaaaaa”
and “bbbbbb” to simplify account creation.

n Selecting an iTunes Store is required.This store sets the region for your testing. If
you plan to use multiple language support for various stores, make sure you create a
test account in each affected region.

n You can delete user accounts and add new ones on the fly. If you run out of users
who haven’t yet purchased any items, just create new users as needed.

n You do not want to sign into your “account” in the Settings application. If you try
to do so, the iPhone will force you to consent to its standard user agreement and
will then try to extract a valid credit card from you. Use Settings to log out of an
account but avoid it for logging in to one.

Creating New In-App Purchase Items
Each in-application purchase item must be registered at iTunes Connect.To create a new
purchase, log in and navigate to Manage Your In App Purchases. Click Create New and
choose an application from the list shown.That list reflects all apps, whether already in
App Store or currently in review. Select the application by clicking on its icon.

After selecting an application, iTunes Connect prompts you to create a new in-app
purchase, as shown in Figure 20-3.This figure shows the two top sections from that

ptg

783Creating New In-App Purchase Items

Figure 20-3 Create new purchase items in iTunes Connect by filling out
this form.

screen (pricing and details).A third, review, section appears below this, and you can scroll
down to see it.

Filling Out the Pricing Section
The pricing section specifies how a purchase is identified and priced.You must enter a ref-
erence name and a product identifier.The reference name is arbitrary. It is used to provide
a name for iTunes Connect’s search results and in the application’s Top In-App Purchase
section in App Store. So enter a meaningful name (e.g.,“Unlock Level 3 Purchase”) that
helps you and others know what the item is and how it is used in your application.

The product ID is a unique identifier, similar to the application identifier used for your
app.As a rule, I use my application ID and append a purchase name to that such as
com.sadun.scanner.optionalDisclosure.You need this identifier to query the store
and retrieve details about this purchase.The same rules apply to the product ID as to
application IDs.You cannot use an identifier more than once.You cannot “remove” it from
App Store. Once registered, it’s registered forever.

Next, select a purchase type.You may choose any of the following three types. Once
you select a type and save the new purchase item, you cannot go back and change it.That
type is irrevocably tied to the product ID. If you make a mistake, you must create a new
item with a new product ID.

n Non-consumable—Users purchase this item once.Thereafter, they can redown-
load this purchase for free, as many times as they want. Use this option for features
that users can unlock like extra game levels.

ptg

784 Chapter 20 StoreKit: In-App Purchasing

n Subscription—Users purchase this item over and over during the lifetime of the
application.You can check whether an account has already purchased an item, but
you cannot redownload the item without paying again. Use subscriptions to provide
paid access to controlled data for a period of time like for-pay newspaper articles
and medical database searches.

n Consumable—Consumables work like subscriptions in that each download must
be paid for, but they are not used in the same way. Consumables are items that can
be purchased multiple times, such as extra hit points or additional CPU time on a
primary server. Consumable items can be used up (“consumed”) without an associ-
ated time period like you have with subscriptions.

Leave the final item in the Pricing section (Cleared for Sale) checked.The Cleared for
Sale check box ensures that your applications, both development and distribution, have
programmatic access to the purchase item.

Note
You can change the pricing tier and Cleared for Sale check box at any time during review. You
must submit new changes for review once the purchased items have been approved. You
cannot edit the identifier or reuse an existing identifier, nor can you change the type of prod-
uct after creating the purchase item.

Adding Item Details
Each purchasable item must be able to describe itself to your application.The item has to
report its price, which was set in the Pricing section, and offer both a display name (the
name of the product that is being purchased) and description (an explanation to the user
that describes what the purchase is and does).These latter two elements are localized to
specific languages.At the time of writing this book, those languages are

n English (also Australian English, Canadian English, UK English)
n Dutch
n French (also Canadian French)
n German
n Italian
n Japanese
n Spanish (also Mexican Spanish)
n Simplified Chinese

You can create data for any or all these languages so long as you define at least one.You
cannot submit a new purchase item without creating one or more name/description pairs.
For most developers who are targeting the U.S. store, a single English entry should cover
your needs.

If your application is sold world wide, you’ll likely want to mirror the existing localiza-
tions you use with your app descriptions and in-app features. If your iTunes store marketing

ptg

785Creating New In-App Purchase Items

material provides a Japanese localization, for example, and your application offers a Japanese
language version, you’ll want to create a Japanese-localized in-app purchase description as
well. If you do not, you can still use in-app purchases but the language will default to what-
ever localizations you have provided.

Note
Always use native speakers to localize, edit, and proof text.

When entering this data, keep some points in mind.Your application is the consumer for
this information.The text you type in iTunes Connect helps create the purchase GUI that
your application presents to the user.The user’s language settings select the localization. If
you plan to use a simple alert sheet with a Buy/Cancel choice, keep your wording tight.
Limit your verbosity. If you will use a more complex view, consider that as well.

No matter how you will create your GUI, remember that your description has to con-
vey the action of purchasing as well as a description of the item being purchased—for
example,“When purchased, this option unlocks this application’s detail screens.These
screens reveal even more data about the scanned MDNS services.”A shorter description
like “Extra detail screens” or “Unlock more details” doesn’t explain to users how the pur-
chase works and what they can expect to receive.

Note
You can edit item display details at any time during review at iTunes Connect. You must sub-
mit new changes for review once the purchased items have been approved.

Submitting a Purchase GUI Screenshot
The For Review section appears at the bottom of the item sheet.You do not use this sec-
tion until you have finished developing and debugging your application.When you have
done so, upload a screenshot into the provided field.The screenshot must show the in-app
purchase in action, demonstrating the custom GUI you built.

Figure 20-4 displays the kind of screenshot you might submit.Valid pictures must be
320x480, 480x320, 320x460, or 480x300 pixels in size. (These latter two sizes use screen-
shots with the 20-pixel status bar removed.) The screenshot highlights how you have
developed the purchase feature. Submit an image highlighting the purchase.

Developer Approval
After you have finished your sandbox testing and are confident that the application and
the in-app purchasing are ready for Apple to review, you must personally approve the
application. Go to iTunes Connect > Manage In-App Purchases and select any purchase
item. Click the green Approve button.

You are prompted to select how you want to submit, as shown in Figure 20-5. Choose
Submit With Binary to submit the purchase item with your next binary upload. Choose
Submit Now for review with an already-approved 3.x or later application.The first option

ptg

786 Chapter 20 StoreKit: In-App Purchasing

Figure 20-4 You must submit a screen shot
showing your in-application purchase GUI to Apple

when you are ready to have that purchase
reviewed.

Figure 20-5 Choose the way you want Apple to review an in-application
purchase choice.

is meant for applications that have just now added an in-application purchase feature.The
second option allows you to add new purchases to an existing, tested product.

ptg

787Building a GUI

Figure 20-6 Choose the in-app purchases you want to have reviewed when
you resubmit your self-rejected binary.

Submitting the Application
Once you approve the application, it’s ready to enter the review queue. If you chose the
first option, make sure you follow up by submitting a new copy of your binary. Other-
wise, the purchase item and the application will not be reviewed together.

To submit the new binary, reject the current version. Upon doing so, you no longer are
able to test your application with the sandbox purchase server.You must have an applica-
tion that’s in review or accepted to use these services. Go ahead and upload the new fully
working version.

Upon reuploading a binary, iTunes Connect prompts you to submit in-app purchases.
Figure 20-6 illustrates this. Check the in-app items you want to use and save your
changes.The purchase item and the application will be reviewed together, solving the
“which came first” paradox.

Building a GUI
Apple’s StoreKit framework does not provide a built-in GUI for soliciting user purchases.
You must create your own, like the one shown previously in Figure 20-4.You retrieve
localized prices and descriptions from the App Store by creating SKProductsRequest
instances.This class asks the store for that information based on the set of identifiers you
provide. Each identifier must be registered at iTunes Connect as an in-app purchase item.

Allocate a new products request instance and initialize it with that set.You can add iden-
tifiers for items you’ve already established as well as items you’re planning on adding in the
future. Since each identifier is basically a string, you could create a loop that builds identifiers

ptg

788 Chapter 20 StoreKit: In-App Purchasing

according to some naming scheme (e.g., com.sadun.app.item1, com.sadun.app.item2, etc.)
to provide for future growth.This snippet searches for a single item.

// Create the product request and start it

SKProductsRequest *preq = [[SKProductsRequest alloc]

initWithProductIdentifiers:[NSSet setWithObject:PRODUCT_ID]];

preq.delegate = self;

[preq start];

When using a products request, your delegate must declare and implement the
SKProductsRequestDelegate protocol.This consists of three simple callbacks. Listing 20-
1 shows these callback methods for a simple application.When a response is received, this
code looks for a product (only one was requested, per the code snippet right before this
paragraph) and retrieves its localized price and description.

It then builds a simple alert using the description as the alert text and two buttons (the
price and “No Thanks”).This alert functions as a basic purchase GUI.

Note
StoreKit will not work if you are not connected to the network in some way. Refer to Chapter
14, “Device Capabilities,” to find recipes that help check for network access.

Listing 20-1 Products Request Callback Methods

- (void)request:(SKRequest *)request

didFailWithError:(NSError *)error

{

[self doLog:

@"Error: Could not contact App Store properly, %@",

[error localizedDescription]];

}

- (void)requestDidFinish:(SKRequest *)request

{

// Release the request

[request release];

[self doLog:@"Request finished."];

}

- (void)productsRequest:(SKProductsRequest *)request

didReceiveResponse:(SKProductsResponse *)response

{

// Find a product

SKProduct *product = [[response products] lastObject];

if (!product)

{

[self doLog:@"Error Could not find matching products"];

return;

}

ptg

789Purchasing Items

// Retrieve the localized price

NSNumberFormatter *numberFormatter =

[[NSNumberFormatter alloc] init];

[numberFormatter

setFormatterBehavior:NSNumberFormatterBehavior10_4];

[numberFormatter setNumberStyle:NSNumberFormatterCurrencyStyle];

[numberFormatter setLocale:product.priceLocale];

NSString *formattedString = [numberFormatter

stringFromNumber:product.price];

[numberFormatter release];

// Show the information

[self doLog:product.localizedTitle];

[self doLog:product.localizedDescription];

[self doLog:@"Price %@", formattedString];

// Create the GUI

NSArray *buttons = [NSArray arrayWithObject: formattedString];

if ([ModalAlert ask:describeString withCancel:@"No Thanks"

withButtons:buttons])

{

// Carry out the purchase

}

}

Purchasing Items
To purchase items from your application, start by adding a transaction observer.The best
place to do this is in your application delegate’s finished-launching method. Use your pri-
mary model class as the observer and make sure that class declares and implements the
SKPaymentTransactionObserver protocol.

[[SKPaymentQueue defaultQueue] addTransactionObserver:mainClass];

With an observer in place, you can use the GUI from Listing 20-1 to begin the actual
purchase.

if ([ModalAlert ask:describeString

withCancel:@"No Thanks” withButtons:buttons])

{

// Purchase the item

SKPayment *payment = [SKPayment

paymentWithProductIdentifier:PRODUCT_ID];

[[SKPaymentQueue defaultQueue] addPayment:payment];

}

ptg

790 Chapter 20 StoreKit: In-App Purchasing

Figure 20-7 Users must confirm the purchase
after moving past your user interface into the
actual App Store/StoreKit purchasing system.

else

{

// restore the GUI to provide a buy/purchase button

// or otherwise to a ready-to-buy state

}

StoreKit prompts the user to confirm the in-app purchase, as shown in Figure 20-7, and
then takes over the purchase process. Users may need to log in to an account before they
can proceed.

Signing Out of Your iTunes Account for Testing
To use the test accounts you set up in iTunes Connect, be sure to sign out of your cur-
rent, real account. Launch the Settings application, choose the Store preferences, and click
Sign Out.

As mentioned earlier in this chapter, do not attempt to sign in again with your test
account credentials. Just quit out of Settings and return to your application.After clicking
Buy, you are prompted to sign in to iTunes.At that prompt, choose Use Existing Account
and enter your account details.

ptg

791Purchasing Items

Note
You cannot use the simulator to test StoreKit. All testing must be performed on an actual
iPhone or iPod touch.

Regaining Programmatic Control After a Purchase
The payments transaction observer receives callbacks based on the success or failure of the
payment process. Listing 20-2 shows a skeleton for responding to both finished and
unfinished payments.After the user finishes the purchase process, the transaction will have
succeeded or failed. On success, perform whatever action the user has paid for, whether
by downloading data or unlocking features.

Listing 20-2 Responding to Payments

- (void)paymentQueue:(SKPaymentQueue *)queue

removedTransactions:(NSArray *)transactions

{

}

- (void) completedPurchaseTransaction:

(SKPaymentTransaction *) transaction

{

// PERFORM THE SUCCESS ACTION THAT UNLOCKS THE FEATURE HERE

// Finish transaction

[[SKPaymentQueue defaultQueue] finishTransaction: transaction];

[ModalAlert say:@"Thank you for your purchase."];

}

- (void) handleFailedTransaction: (SKPaymentTransaction *) transaction

{

if (transaction.error.code != SKErrorPaymentCancelled)

[ModalAlert say:@"Transaction Error. Please try again later."];

[[SKPaymentQueue defaultQueue] finishTransaction: transaction];

}

- (void)paymentQueue:(SKPaymentQueue *)queue

updatedTransactions:(NSArray *)transactions

{

for (SKPaymentTransaction *transaction in transactions) {

switch (transaction.transactionState) {

case SKPaymentTransactionStatePurchased:

case SKPaymentTransactionStateRestored:

[self completedPurchaseTransaction:transaction];

break;

case SKPaymentTransactionStateFailed:

[self handleFailedTransaction:transaction];

ptg

792 Chapter 20 StoreKit: In-App Purchasing

break;

case SKPaymentTransactionStatePurchasing:

[self repurchase];

break;

default: break;

}

}

}

Registering Purchases
You can use any of a number of approaches to register purchases.You can synchronize
with a Web server, create local files, set user defaults, or add keychain entries.The solution
you choose is left up to you. Just don’t lose track of purchases. Once a user buys an
unlockable feature, subscription, or data, you must guarantee that your application sup-
plies the promised element or elements.

It’s easiest to unlock features through user preferences.This snippet creates a new
default, indicating that the user has purchased a disclosure feature. Upon completing the
purchase, the code updates the user defaults database and hides the “buy” button from the
interface.

// Update user defaults

[[NSUserDefaults standardUserDefaults] setBool:YES

forKey:@"Supports Disclosure"];

[[NSUserDefaults standardUserDefaults] synchronize];

// Hide "buy" button

self.navigationItem.leftBarButtonItem = nil;

The application can check for this preference each time it launches.
For the most part, users cannot hack their way into your application to update prefer-

ences settings by hand.The application is sandboxed (other applications cannot access
your files), and the data cannot be edited from the Macintosh backup system. It is possible
in jailbroken systems, if you use just a simple preference like this. For anyone worried
about piracy, consider a more secure approach.

If you have any concerns, consider using some sort of verifiable authentication key
rather than a standard Boolean value.Alternatively, use the system keychain (see Chapter
13,“Networking”).The keychain provides a secure data store that cannot easily be
manipulated from the jailbroken iPhone command line.

A simple example of storing the purchase on the keychain would be a routine like this.

-(void) unlockMaxGameLevels

{

KeychainItemWrapper *wrapper = [[KeychainItemWrapper alloc]

initWithIdentifier:@”CustomGameApp” accessGroup:nil];

[wrapper setObject:@”MaxUnlocked” forKey:(id)kSecValueData];

ptg

793Purchasing Items

[wrapper release];

}

Using the keychain provides the additional benefit that the data stored here will survive
an application being deleted and then later reinstalled.

When you use an offsite server to register and authenticate purchases, make sure to
echo those settings on the device. Users must be able to use their applications regardless
of whether they have network access.A local setting (e.g.,“Service enabled until 6 June
2011”) lets the application run and provide proper feedback, even when a subscribed
service is inaccessible.

Several start-ups like Urban Airship (urbanairship.com) and Key Lime Tie’s iLime
service (ilime.com) now offer support for in-app purchase data delivery.They provide
servers that allow you to offload content from your application, handle its delivery to
your customers, and allow you to keep that content up to date as needed.

Restoring Purchases
Purchase may be restored on a device where an application was uninstalled and then rein-
stalled, or where an application was installed on a second device associated with the same
iTunes account. If a customer’s iTunes account has multiple devices, like a family with five
iPhones and iPods, a purchase by any of the devices allows all the devices to download
that purchase with no additional charge.

StoreKit allows you to restore purchases, which is particularly important for consum-
able and subscription items where you do not want to allow the user to repurchase an
already-valid item. In the case of a nonconsumable item, the user can repurchase without
cost ad infinitum. For these nonconsumable items, you can simply submit your purchase
request.The App Store interface will present a window informing the user that they have
already purchased this item, and that they can download it again for free.

To restore purchases associated with an iTunes account, call
restoreCompletedTransactions.This works just like adding a payment and involves the
same callbacks.To catch a repurchase separately from a purchase, check for
SKPaymentTransactionStateRestored as the payment transaction state, as in Listing 20-2.

- (void) repurchase

{

// Repurchase an already purchased item

[[SKPaymentQueue defaultQueue] restoreCompletedTransactions];

}

That’s because purchase events provide not one but two possible successful outcomes.The
first is a completed purchase.The user has bought the item and the payment has finished
processing.The second is the restored purchase described here. Make sure your payment
queue handler looks for both states.

There’s a loophole here. Consider providing a consumable purchase item such as a
credit to send a FAX. Should the user uninstall the application and then reinstall, any

ptg

794 Chapter 20 StoreKit: In-App Purchasing

repurchase functionality may restore an asset that has already been used.Applications with
consumable products must be designed with more thought for the security infrastructure
and demand server-side accounting that keeps track of user credits and consumed assets.

Go ahead and restore purchases but ensure that those purchases properly coordinate
with your server database.As you’ll read about shortly in the section that follows this one,
Apple provides a unique identifier for each purchase by way of a purchase receipt.A
repurchased item retains that original identifier, allowing you to distinguish between new
purchases and restored ones.

Purchasing Multiple Items
Users can purchase more than one copy of consumable items and subscriptions. Set the
quantity property for a payment to request a multiple purchase.This snippet adds a pay-
ment request for three copies of a product, perhaps adding three months to a subscrip-
tion, 3,000 hit points to a character, or so forth.

SKMutablePayment *payment = [SKMutablePayment

paymentWithProductIdentifier:PRODUCT_ID];

payment.quantity = 3;

[[SKPaymentQueue defaultQueue] addPayment:payment];

Handling Delays in Registering Purchases
If your purchase connects with a server and you cannot complete the purchase registra-
tion process, do not finalize the transaction. Do not call finishTransaction: until you are
guaranteed that all establishment work has been done for your customer.

Should you fail to set up your user with his or her newly purchased items before the
application is quit, that’s okay.The transaction remains in the purchase queue until the
next time the application launches.You are given another opportunity to try to finish
your work.

Validating Receipts
A successful purchase transaction contains a receipt.This receipt, which is sent in raw
NSData format, corresponds to an encoded JSON string. It contains a signature and pur-
chase information. Here is a sample receipt, from one of my purchases.

{

"signature" =
"AbtAgJQlIPicxP/g4ubwT/noCER4jE+LuGNfxfy++DsiEUrdOYNcf6GqljT+/qDlLCvSZUnWGG7YrACLD
FQRREftjNDmkgekbErdP8uI9IAN0sH6vkHx5sc/2p9hHRbG6AY/CDDj11g+esLRe8HYGxCBaHlIMa+o/ZK
tHr3Rl+jUMIIDUzCCAjugAwIBAgIIZRSRTdlYBLUwDQYJKoZIhvcNAQEFBQAwfzELMAkGA1UEBhMCVVMxE
zARBgNVBAoMCkFwcGxlIEluYy4xJjAkBgNVBAsMHUFwcGxlIENlcnRpZmljYXRpb24gQXV0aG9yaXR5MTM
wMQYDVQQDDCpBcHBsZSBpVHVuZXMgU3RvcmUgQ2VydGlmaWNhdGlvbiBBdXRob3JpdHkwHhcNMDkwNjE1M
jIwNTU2WhcNMTQwNjE0MjIwNTU2WjBkMSMwIQYDVQQDDBpQdXJjaGFzZVJlY2VpcHRDZXJ0aWZpY2F0ZTE
bMBkGA1UECwwSQXBwbGUgaVR1bmVzIFN0b3JlMRMwEQYDVQQKDApBcHBsZSBJbmMuMQswCQYDVQQGEwJVU
zCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAytGMXZy3gitJ2JMKFojSDynC/9yYezyn9HBX+u3/3Vc

ptg

795Validating Receipts

pWE2XhcgGKYqNBA1+AewOzrKO774OsokTu4qymEx10ph8UTmsZewB0ESMHBEjF7FN6/HccsQUYC3WagrHn
T12HG2Ih0OAm/ZhpWzj0HS4m813LpIyo00sewMvMNL2hkcCAwEAAaNyMHAwDAYDVR0TAQH/BAIwADAfBgN
VHSMEGDAWgBQ2HejinYLSARi1MmsO10MLkVhDOjAOBgNVHQ8BAf8EBAMCB4AwHQYDVR0OBBYEFKmDg/IZS
MU+ElcIFMzNo36ZXyT1MBAGCiqGSIb3Y2QGBQEEAgUAMA0GCSqGSIb3DQEBBQUAA4IBAQARpJs+O2Y3gL8
gHdASkrfZHFpwINd1VcB5VF5LkVpnFz63zylA/3cGIDG91b/d5NIwZjkVt4Bgvd62o/mCbzCsWiNfSKTJV
FK1D78BDQoSO2oHTuQuz1BR7xzNHxQZ90zUS6ZX9SC8N3g3A1jEtAyDhZNB+CRBBXLwZdnBUeBsT9QLpjv
TnekZcGTnU08zfCjGF3eBJEu9eP6WgexK1xMSp72kEOmYbn6yTi3D4YrcYx4Q3n/57VBP2en8qXWeP5oHD
sLTGzLRsWdoB3VxJLrF2ivL8JS8zqC0qyac452pN6xunRuzyyfpaqzQL12BzFEe44xna2byektSbtquA5L
NAAAAAA==";

"purchase-info" =
"ewoJIml0ZW0taWQiID0gIjMzMDI5MjgwNiI7Cgkib3JpZ2luYWwtdHJhbnNhY3Rpb24taWQiID0gIjEwM
DAwMDAwMDAwNTIyOTMiOwoJInB1cmNoYXNlLWRhdGUiID0gIjIwMDktMDktMDQgMTU6MzU6MjYgRXRjL0d
NVCI7CgkicHJvZHVjdC1pZCIgPSAiY29tLnNhZHVuLnNjYW5uZXIuZGlzY2xvc3VyZTIiOwoJInRyYW5zY
WN0aW9uLWlkIiA9ICIxMDAwMDAwMDAwMDUyMjkzIjsKCSJxdWFudGl0eSIgPSAiMSI7Cgkib3JpZ2luYWw
tcHVyY2hhc2UtZGF0ZSIgPSAiMjAwOS0wOS0wNCAxNTozNToyNiBFdGMvR01UIjsKCSJiaWQiID0gImNvb
S5zYWR1bi5TY2FubmVyIjsKCSJidnJzIiA9ICIxLjAiOwp9";

"pod" = "100";

"signing-status" = "0";

}

Apple strongly recommends that you validate all receipts with their servers to prevent
hacking and ensure that your customers actually purchased the items they are requesting.
Listing 20-3 shows how.

You must POST a request to one of Apple’s two servers.The URL you use depends
on the deployment of the application. Use buy.itunes.apple.com for production software
and sandbox.itunes.apple.com for development.

The request body consists of a JSON dictionary.The dictionary is composed of one key
(“receipt-data”) and one value (a Base64-encoded version of the transaction receipt data. I
normally use the CocoaDev NSData Base 64 extension (from http://www.cocoadev.com/
index.pl?BaseSixtyFour) to convert NSData objects into Base64-encoded strings. CocoaDev
provides many great resources for Mac and iPhone developers.

A valid receipt returns a JSON dictionary similar to the following.The receipt
includes the transaction identifier, a product ID for the item purchased, the bundle ID for
the host application, and a purchase date. Most importantly, it returns a status.

{"receipt":{"item_id":"330292806",

"original_transaction_id":"1000000000052438", "bvrs":"1.0",

"product_id":"com.sadun.scanner.disclosure2",

"purchase_date":"2009-09-04 19:23:15 Etc/GMT", "quantity":"1",

"bid":"com.sadun.Scanner",

"original_purchase_date":"2009-09-04 19:23:15 Etc/GMT",

"transaction_id":"1000000000052438"}, "status":0}

A valid receipt always has a 0 status.Any number other than 0 indicates that the receipt is
invalid.

Simply checking for the status may not be sufficient for validation. It’s not too difficult
to set up a proxy server to intercept calls to the validation server and return JSON
{“status”:0} to all requests.What’s more, the receipt data that is sent along with the

http://www.cocoadev.com/index.pl?BaseSixtyFour
http://www.cocoadev.com/index.pl?BaseSixtyFour

ptg

796 Chapter 20 StoreKit: In-App Purchasing

validation request can be easily deserialized into exactly the same data shown in the
“receipt” portion of the JSON dictionary shown above. For that reason, you should
always use receipt validation cautiously and as part of the overall purchase process, where
it’s less likely that proxy servers can override communications with Apple.

Listing 20-3 Checking a Receipt

// Produce a JSON request

NSString *json = [NSString stringWithFormat:

@"receipt-data\":\"%@\"}",

[transaction.transactionReceipt base64Encoding]];

// Choose a server to verify the receipt

NSString *urlsting = SANDBOX ?

@"https://sandbox.itunes.apple.com/verifyReceipt" :

@"https://buy.itunes.apple.com/verifyReceipt";

// Create a url request

NSMutableURLRequest *urlRequest = [NSMutableURLRequest

requestWithURL:[NSURL URLWithString: urlsting]];

if (!urlRequest) NOTIFY_AND_LEAVE(@"Error creating the URL Request");

// Use POST and set the body to the encoded JSON

[urlRequest setHTTPMethod: @"POST"];

[urlRequest setHTTPBody:[json dataUsingEncoding:NSUTF8StringEncoding]];

// Submit the request and recover the response

NSError *error;

NSURLResponse *response;

NSData *result = [NSURLConnection sendSynchronousRequest:urlRequest
returningResponse:&response error:&error];

// A valid JSON string with a receipt dictionary should be received

NSString *resultString = [[NSString alloc] initWithData:result
encoding:NSUTF8StringEncoding];

CFShow(resultString);

[resultString release];

ptg

797Summary

Summary
The StoreKit framework offers a great new way to monetize your applications.As you
read in this chapter, you can set up your own storefront to sell services and features from
your application. Here are a few final thoughts:

n Although the entire setup and testing process may seem a little “Which came first?
The chicken or the egg?” it is demonstrably possible to develop and deploy a
StoreKit-based application with a minimum of headaches.

n Remember to reject and then resubmit your binaries after adding new purchasable
items.You want to ensure that both the application and the items are ready for
Apple to review.

n Avoid finalizing transactions until your new-purchase setup is completely, utterly,
100% done, even if that means waiting for an application relaunch.At the same
time, inform the user that the purchase process is experiencing unexpected delays.

n Your methods can only request product information from in-app items that are reg-
istered to the currently running application.You cannot share requests across apps.

n Don’t forget to set up the purchase observer! More heads have been banged against
desks and hair pulled out over that one step than any other StoreKit issue.

ptg

This page intentionally left blank

ptg

21
Accessibility and Other iPhone

OS Services

Applications interact with standard iPhone services in a variety of ways.This chapter
introduces several approaches.Applications can define their interfaces to the iPhone’s
VoiceOver accessibility handler, creating descriptions of their GUI elements.

Developers can create bundles to work with the built-in Settings applications so that users
can access applications’ defaults using that interface.Applications can also declare public
URL schemes allowing other iPhone applications to contact them and request services that
they themselves offer.This chapter explores these application service interactions. It shows
you how to implement these features in your applications.You see how to build these
service bridges through code, through Interface Builder, and through supporting files.

Adding VoiceOver Accessibility to Your Apps
Accessibility enhancements open up the iPhone to users with disabilities. iPhone OS fea-
tures allow users to magnify (or “zoom”) displays, invert colors, and more.As a developer,
accessibility enhancement centers on VoiceOver, a way that visually impaired users can
“listen” to their GUI.VoiceOver converts an application’s visual presentation into an
audio description.

Don’t confuse VoiceOver with Voice Control.The former is a method for presenting
an audio description of a user interface and is highly gesture-based.The latter refers to
Apple’s proprietary voice recognition technology for hands-free interaction.

This section offers a brief overview of VoiceOver accessibility.You read about adding
accessibility labels and hints to your applications and testing those features in the simula-
tor and on the iPhone.Accessibility is available and can be tested on third generation or
later devices, including the iPhone 3GS and the third generation iPod touch.

Accessibility in Interface Builder
Use the Identity Inspector > Accessibility pane in Interface Builder (see Figure 21-1) to
add labels and hints to the UIKit elements in your interface. Enter strings in either or

ptg

800 Chapter 21 Accessibility and Other iPhone OS Services

Figure 21-1 Interface Builder’s Identity Inspector
lets you specify object accessibility information.

both of the two fields provided.As you do so, know that these fields and the text they
contain play different roles in the bigger accessibility picture. Labels identify views; hints
describe them. In addition to these fields, you’ll find a general accessibility Enabled check
box and a number of Traits check boxes.

Labels
A good label tells the user what an item is, often with a single word. Label an accessible
GUI the same way you’d label a button with text.“Edit,”“Delete,” and “Add” all describe
what objects do.They’re excellent button text and accessibility label text.

But accessibility isn’t just about buttons.“Feedback,”“User Photo,” and “User Name”
might describe the contents and function of a text view, an image view, and a text label. If
an object plays a visual role in your interface, it should play an auditory role in VoiceOver.
Here are a few tips for designing your labels:

n Do not add the view type into the label—For example, don’t use “Delete but-
ton,”“Feedback text view,” or “User name text field.”VoiceOver adds this informa-
tion automatically, so “Delete button” in the identity pane becomes “Delete button
button” in the actual VoiceOver playback.

n Capitalize the label but don’t add a period—VoiceOver uses your capital-
ization to properly inflect the label when it speaks.Adding a period typically
causesVoiceOver to end the label with a downward tone, which does not blend
well into the object-type that follows.“Delete. button” sounds wrong.“Delete
button” does not.

n Aggregate information—When working with complex views that function as a
single unit, build all the information in that view into a single descriptive label and
attach it to that parent view. For example, in a table view cell with several subviews

ptg

801Adding VoiceOver Accessibility to Your Apps

but without individual controls, you might aggregate all the text information into a
single label that describes the entire cell.

n Label only at the lowest interaction level—When users need to interact with
subviews, label at that level. Parent views, whose children are accessible, do not
need labels.

n Localize—Localizing your accessibility strings opens them up to the widest audi-
ence of users.

Hints
Hints tell users what to expect from interaction. In particular, they describe any nonobvi-
ous results. For example, consider an interface where tapping on a name, for example,
John Smith attempts to call that person by telephone.The name itself offers no informa-
tion about the interaction outcome. So offer a hint telling the user about it—for example,
“Places a phone call to this person,” or even better,“Places a phone call to John Smith.”
Here are tips for building better hints.

n Use sentence form—Start with a capital letter and end with a period. Do this
even though each hint has a missing subject.This format ensures that VoiceOver
speaks the hint with proper inflection.

n Use verbs that describe what the element does, not what the user does—
“[This text label] Places a phone call to this person.” provides the right context for the
user.“[You will] Place a phone call to this person.” does not.

n Do not say the name or type of the GUI element—Avoid hints that refer to
the UI item being manipulated. Skip the GUI name (its label, such as “Delete”) and
type (its class, such as “button”).VoiceOver adds that information where needed,
preventing any overly redundant playback such as “Delete button [label] button
[VoiceOver description] button [hint] removes item from screen.” Use “Removes item
from screen.” instead.

n Avoid the action—Do not describe the action that the user takes. Do not say
“Swiping places a phone call to this person” or “Tapping places a phone call to this
person.”VoiceOver uses its own set of gestures to activate GUI elements. Never
refer to gestures directly.

n Be verbose—“Place call” does not describe the outcome as well as “Place a call to
this person,” or, even better,“Place a call to John Smith.”A short but thorough
explanation better helps the user than one that is so terse that the user has to guess
about details.Avoid hints that require the user to listen again before proceeding.

n Localize—As with labels, localizing your accessibility hints works with the widest
user base.

ptg

Enabling Accessibility
The Enabled check box controls whether a UIKit view works withVoiceOver.As a rule,
keep this item checked unless the view is a container whose subviews need to be acces-
sible. Enable only those items at the most direct level of interaction or presentation.
Views that organize other views don’t play a meaningful role in the voice presentation.
Exclude them.

Table view cells offer a good example of accessibility containers, that is, objects that
contain other objects.The rules for table view cells are as follows:

n A table view cell without embedded controls should be accessible.
n A table view cell with embedded controls should not be. Its child controls should be.

Outside Interface Builder, nonaccessible containers are responsible for reporting how
many accessible children they contain and which child views those are. See Apple’s Acces-
sibility Programming Guide for iPhone for further details about programming containers
for accessibility. Custom container views need to declare and implement the
UIAccessibilityContainer protocol.

Traits
Traits characterize UIKit item behaviors.VoiceOver uses these traits while describing
interfaces.As Figure 21-1 shows, there are 12 possible traits you can assign to views. Select
the traits that apply to the selected view, keeping in mind that you can always update
these choices programmatically.

Apple’s accessibility documents request that you only check one of the following four
mutually exclusive items at any time: Button, Link, Static Text, or Search Field. If a button
works as a link as well, choose either the button trait or the link trait but not both.You
choose which best characterizes how that button is used.At the same time, a button
might show an image and play a sound when tapped, and you can freely add those traits.

Working with Accessibility from Code
Every UIKit view conforms to the UIAccessibility protocol, offering properties that
let you set labels and hints, along with the other accessibility features shown in Figure 21-1.
You can set those properties in Interface Builder or use them directly in code. Listing 21-1
sets the accessibilityHint property to update a button’s hint as a user types a username
into a related text field.As the text in that field changes, the button’s hint updates to
reflect that value.

Listing 21-1 Programmatically Updating Accessibility Information

- (BOOL)textField:(UITextField *)textField

shouldChangeCharactersInRange:(NSRange)range

replacementString:(NSString *)string

{

// Catch the change to the user name field and update

// the accessibility hint to mirror that

802 Chapter 21 Accessibility and Other iPhone OS Services

ptg

803Adding VoiceOver Accessibility to Your Apps

NSString *username = textField.text;

if (username && username.length > 1)

callbutton.accessibilityHint = [NSString

stringWithFormat:@"Places a call to %@", username];

else

callbutton.accessibilityHint =

@"Places a call to the person named in the text field.";

return YES;

}

Testing with the Simulator
The iPhone simulator’s Accessibility Inspector is designed for testing accessible applica-
tions before deploying them to the iPhone.The simulator’s inspector simulates VoiceOver
interaction with your application, providing immediate visual feedback via a floating pane
(there is no actual voice produced) without having to use the VoiceOver gesture interface
directly.As you cannot replicate many VoiceOver gestures with the simulator (such as
triple-swipes and sequential hold-then-tap gestures), the inspector focuses on describing
interface items rather than responding to VoiceOver gestures.

Enable this feature by opening Settings > General > Accessibility. Switch the Accessi-
bility Inspector to On.The inspector, shown in Figure 21-2 immediately appears. It lists
the current settings for the currently selected accessible element.

Know how to enable and disable the inspector:The circled X in the top-left corner of
the inspector controls that behavior. Click it once to shrink the inspector to a disabled
single line. Click again to restore the inspector to active mode. For the most part, keep the
inspector disabled until you actually need to inspect a GUI item.

Like VoiceOver, the inspector interferes with normal application gestures. It will slow
down your work, so use it sparingly, normally when you are ready to test.You want to
launch your application with the inspector disabled but available. Navigate to the screen
you want to work with and then enable the inspector.

The application shown in Figure 21-1 uses the code from Listing 21-1.The Call but-
ton’s accessibility hint updates as the text in the field changes.Activating the inspector
allows you to view the current hint as you update the text field, ensuring that the button
hint properly matches the label text.

Testing Accessibility on the iPhone
Testing on the iPhone is a critical part of accessibility development.The iPhone allows
you to work with the actual VoiceOver utility rather than a window-based inspector.You
hear what your users will hear and are able to test your GUI with your fingers and ears
rather than with your eyes.

Like the Simulator, the iPhone provides a way to enable and disable VoiceOver on the
fly.Although you can enable VoiceOver in Settings and then test your application with
VoiceOver running, you’ll find that it’s far easier to use a special toggle.The toggle lets

ptg

Figure 21-2 The iPhone simulator’s Accessibility
Inspector highlights the currently selected GUI fea-
ture, revealing its label, hint, and other accessibility

properties.

you avoid the hassle of navigating out of Settings and over to your application using
VoiceOver gestures.You can switch VoiceOver off, use normal iPhone interactions to get
your application started, and then switch VoiceOver back on when you’re ready to test.

804 Chapter 21 Accessibility and Other iPhone OS Services

Here are the steps you need to take to enable that toggle.

1. Go to the Accessibility settings pane. Navigate to Settings > General > Accessibility.

2. Locate the Triple-click Home choice.The Triple-click Home button provides a
user-settable shortcut for accessibility choices.Tap on Triple-click Home to open
the Home pane.

3. Choose Toggle VoiceOver. Select Toggle VoiceOver to set it as your triple-click
action. Once selected (a check appears to its right), you can enable and disable
VoiceOver by triple-clicking the physical Home button at the bottom of your
iPhone.A spoken prompt confirms the current VoiceOver setting.

This VoiceOver toggle offers you the ability to skip many of the laborious details involved
in navigating to your application using triple-fingered drags, and multistage button clicks.
At the same time, you should be conversant with VoiceOver gestures and interactions.
Table 21-1 offers a summary of VoiceOver gestures that you need to know for testing
your application.

ptg

805Adding VoiceOver Accessibility to Your Apps

Table 21-1 Common VoiceOver Gestures for Applications as of iPhone OS 3.1

Task VoiceOver Equivalent

Toggle VoiceOver Triple-click the physical Home button.

Toggle ScreenCurtain Triple-tap the screen, three times (i.e., a triple-tap with
three fingers).

Toggle VoiceOver speech Toggle the VoiceOver speech entirely (not just for a sin-
gle description) by triple-tapping the screen twice (i.e.,
a double-tap with three fingers). Neither of these
options disables VoiceOver.

Stop speaking the current
item

Double-tap the screen twice (i.e., double-tap with two
fingers). Double-tap again to resume the description.
In the home screen, when VoiceOver is not active, this
gesture stops and resumes audio playback.

Tapping buttons Method 1: Tap and hold the button with one finger. Tap
the screen with another finger.

Method 2: Tap the button to select it. Double-tap the
screen to activate the button.

Scrolling a text view Method 1: Tap and hold the text view with one finger.
Tap with a second finger to scroll to the top or bottom
of the text scroller.

Method 2: Tap the text view to select it. Double-tap the
screen to scroll to the top or bottom of the text
scroller.

Adjusting the text insertion
point

With an editable text view or field selected, adjust the
insertion point by flicking up or down with a single fin-
ger. The point may move by characters or by word
depending on how you have set up your preferences.

Accessing the spoken text
menu

Tap and hold one finger in the text view. Flick up and
down with another finger to choose between character
movement, word movement, and edit mode, which
uses the last-chosen movement option. (This gesture,
properly known as the “rotor,” is supposed to be per-
formed as a twisted two-finger drag. The approach
used here worked more consistently in testing.)

Selecting text Set the insertion point and enter edit mode (see
above). Tap and hold one finger in the text view. Drag
left or drag right.

ptg

806 Chapter 21 Accessibility and Other iPhone OS Services

Take special note of ScreenCurtain, which allows you to blank your iPhone display, offer-
ing a true test of your application as an audio-based interface.Try the iPhone calculator
application with ScreenCurtain enabled to gain a true sense of the challenge of using an
iPhone application without sight.

Recipe: Adding Custom Settings Bundles
The iPhone uses the NSUserDefaults class to access and manage application preferences.
With it, you can store information that your application needs to preserve between suc-
cessive runs. For example, you might save a current player name, a list of high scores, or

Table 21-1 Continued

Task VoiceOver Equivalent

Typing text Enter text edit mode by selecting a text field or text
view and then double-tap the screen. The keyboard
appears onscreen.

Typing method 1: Tap and hold a keyboard button with
your left pointer finger. Tap somewhere else on the
screen with your right pointer finger. This is the best
way to use the delete key repeatedly.

Typing method 2: Tap on a key to select it. Double-tap
the screen to type that key.

Moving sliders Select the slider and then flick up or down with a sin-
gle finger to adjust the slider value.

Scroll a list Flick three fingers up or down.

Paging through the home page
iPhone application launcher

Flick three fingers left or right.

Select and speak an item Tap the item.

Spell out the selected item
one character or word at a
time

Flick a single finger up or down. This uses the settings
from the spoken text menu.

Speak the next or previous
item

Flick a single finger left or right.

Read the entire screen Double-flick upwards. This doesn’t work as consis-
tently as it could. So alternatively use the following
approach: Flick left repeatedly to the first item in the
screen. Then two-fingered stroke down. You can read
the screen starting from the currently selected item
using the double-fingered stroke down gesture.

Unlock iPhone Select the Unlock slider. Double-tap the screen.

ptg

807Recipe: Adding Custom Settings Bundles

the last-used view configuration. User defaults programmatically assign values to a persist-
ent database associated with your application.These defaults are stored in your application
sandbox’s Library folder, in a property list file named with your application identifier.

Treat user defaults as a mutable dictionary. Set and retrieve objects using keys, just as
you would with that dictionary. Defaults entries are limited to standard property list
types—that is, NSString, NSNumber, NSDate, NSData, NSArray, and NSDictionary.When
you need to store information that does not fall into one of these classes, consider using
another file (such as one that resides in your sandbox’s Library or Documents folders) or
serialize your object into NSData and store that data in defaults.

The synchronize method forces the defaults database to update to the latest changes
made in memory. Synchronizing assures you that the file-based defaults data is up-to-date,
an important factor if your application gets interrupted for some reason.The following
snippet demonstrates setting, synchronizing, and retrieving data from the user defaults sys-
tem, per Recipe 8-5.

[[NSUserDefaults standardUserDefaults]

setObject:colors forKey:@"colors"];

[[NSUserDefaults standardUserDefaults]

setObject:locs forKey:@"locs"];

[[NSUserDefaults standardUserDefaults] synchronize];

NSLog(@"%@", [[NSUserDefaults] objectForKey@"lastViewTag"]);

The Settings App
iPhone applications can add custom preferences into the main Settings app (see Figure
21-3).These preferences access the same application-specific user defaults that you work
with programmatically.The difference is that Settings provides a friendly GUI for your
users.Any changes your users make to these screens update and synchronize with standard
user defaults.

Custom settings are listed after system settings, but otherwise look and act like the
ones that Apple preloaded into your system.As the screenshots in Figure 21-3 show, cus-
tom preferences provide a variety of data interaction styles, including text fields, switches,
and sliders.

Because these settings create standard NSUserDefaults entries, you can easily query
and modify any of these settings from code. For example, Recipe 21-1 defines a field
called “Name” (see Figure 21-3, right screenshot, first item in the top Group).This text
field stores its value to the @"name_preference" key.You can see whether the user has
entered a value for this key from your application.

NSLog(@"% objectForKey:@"name_preference"];

ptg

808 Chapter 21 Accessibility and Other iPhone OS Services

Figure 21-3 (Left) Custom settings bundles for third-party applications
appear on the Settings screen after the built-in settings. On the iPhone, you
may have to scroll down a bit to find them. (Right) Developer-defined prefer-
ences elements can include text fields (both regular and secure), switches,

sliders, multivalue choices, group titles, and child panes.

Avoid Sensitive Information
Use settings to store nonsensitive account preferences such as usernames and option tog-
gles.Although passwords are visually obscured with dots, they’re stored in clear text in
your application sandbox.When working with sensitive information, use your iPhone’s
secure keychain instead. Settings bundles do not offer keychain integration at this time.
Keychain recipes appear in Chapter 13,“Networking.”

Settings Schema
A copy of the settings schema resides in your Developer folder at /Developer/Platforms/
iPhoneOS.platform/Developer/Library/Xcode/Plug-ins/iPhoneSettingsPlistStructDefs.
xcodeplugin.Xcode uses this file to check its property list syntax. In the file, you can see all
the definitions and the required and optional attributes used to specify custom prefer-
ences. If Apple should ever expand or change its definitions, you’ll be able to find those
changes in this file.

ptg

809Recipe: Adding Custom Settings Bundles

Defining a Settings Bundle
Each settings pane corresponds to one property list file. Recipe 21-1 shows the source for
the pane in Figure 21-3 (right). It demonstrates each SDK settings type and provides a
sample definition.Types include text fields (strings), sliders (floating-point numbers),
switches (Boolean values), and multiple selection (one-of-n choices). In addition, you can
group items and link to child panes.

To add new settings, build a dictionary and add it to the PreferencesSpecifiers
array. Each individual preference dictionary needs, at a minimum, a type and a title. Some
settings, like the PSGroupSpecifier group item, require nothing more to work. Others,
such as text fields, use quite a few properties.You want to specify capitalization and auto-
correction behaviors as well as the keyboard type and whether the password security fea-
ture obscures text, as you can see in Recipe 21-1.

To add a settings bundle to your program, follow these steps.Alternatively, you can cre-
ate a new settings bundle by choosing File > New File > iPhone OS > Resource > Set-
tings Bundle.

1. Create each of the property lists, one for each screen.The primary plist must be
named Root.plist.

2. Create a new folder and add your property lists.

3. Rename the folder to Settings.bundle. OS X warns you about the name; go ahead
and confirm the rename.The folder transforms into a bundle. (To view the contents
of your new bundle, right-click [Control-click] and choose Show Package Con-
tents from the contextual pop-up.)

4. Drag the bundle into the Groups & File column of your Xcode project (see
Figure 21-4).

5. Create a 29x29 version of your main application icon file (typically icon.png) and
add it to your project with the name Icon-Settings.png.This art is used by the
Settings application to label your bundle along with the application name.You can
see this in Figure 21-3 (left).The small icon to the left of HelloWorld uses this
special icon.

When you next run your program, the settings bundle installs and makes itself available to
the Settings application. Should your source have any syntax errors, you find a blank
screen rather than the settings you expect. It helps to build your settings in stages to avoid
this.

Xcode offers a limited interactive syntactically aware editing window. Open the prop-
erty list and then choose View, Property List Type, iPhone Settings plist.You may find it
easier to edit by hand in TextEdit or the stand-alone Property List Editor if you’re com-
fortable with lower-level tools.

ptg

810 Chapter 21 Accessibility and Other iPhone OS Services

Figure 21-4 Add the Settings.bundle into your project’s Groups & Files
list. Double-click the property lists to edit them further in Xcode.

Note
In Recipe 21-1, the File property uses no extension; the .plist extension is understood.

Recipe 21-1 Creating a Custom Settings Pane

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>Title</key>

<string>YOUR_PROJECT_NAME</string>

<key>StringsTable</key>

<string>Root</string>

<key>PreferenceSpecifiers</key>

<array>

<dict>

<key>Type</key>

<string>PSGroupSpecifier</string>

<key>Title</key>

<string>Group</string>

</dict>

<dict>

<key>Type</key>

<string>PSTextFieldSpecifier</string>

<key>Title</key>

ptg

811Recipe: Adding Custom Settings Bundles

<string>Name</string>

<key>Key</key>

<string>name_preference</string>

<key>DefaultValue</key>

<string></string>

<key>IsSecure</key>

<false/>

<key>KeyboardType</key>

<string>Alphabet</string>

<key>AutocapitalizationType</key>

<string>None</string>

<key>AutocorrectionType</key>

<string>No</string>

</dict>

<dict>

<key>Type</key>

<string>PSTextFieldSpecifier</string>

<key>Title</key>

<string>Password</string>

<key>Key</key>

<string>prefs_preference</string>

<key>DefaultValue</key>

<string></string>

<key>IsSecure</key>

<true/>

<key>KeyboardType</key>

<string>Alphabet</string>

<key>AutocapitalizationType</key>

<string>None</string>

<key>AutocorrectionType</key>

<string>No</string>

</dict>

<dict>

<key>Type</key>

<string>PSToggleSwitchSpecifier</string>

<key>Title</key>

<string>Enabled</string>

<key>Key</key>

<string>enabled_preference</string>

<key>DefaultValue</key>

<true/>

<key>TrueValue</key>

<string>YES</string>

<key>FalseValue</key>

<string>NO</string>

</dict>

<dict>

ptg

<key>Type</key>

<string>PSSliderSpecifier</string>

<key>Key</key>

<string>slider_preference</string>

<key>DefaultValue</key>

<real>0.5</real>

<key>MinimumValue</key>

<integer>0</integer>

<key>MaximumValue</key>

<integer>1</integer>

<key>MinimumValueImage</key>

<string></string>

<key>MaximumValueImage</key>

<string></string>

</dict>

<dict>

<key>Type</key>

<string>PSMultiValueSpecifier</string>

<key>Key</key>

<string>multi_preference</string>

<key>DefaultValue</key>

<string>One</string>

<key>Title</key>

<string>MultiValue</string>

<key>Titles</key>

<array>

<string>one</string>

<string>two</string>

<string>three</string>

<string>four</string>

</array>

<key>Values</key>

<array>

<string>one</string>

<string>two</string>

<string>three</string>

<string>four</string>

</array>

</dict>

<dict>

<key>Type</key>

<string>PSGroupSpecifier</string>

<key>Title</key>

<string>Info</string>

</dict>

<dict>

812 Chapter 21 Accessibility and Other iPhone OS Services

ptg

<key>Type</key>

<string>PSChildPaneSpecifier</string>

<key>Title</key>

<string>Legal</string>

<key>File</key>

<string>Legal</string>

</dict>

</array>

</dict>

</plist>

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 21 and open the project for this recipe.

813Recipe: Adding Custom Settings Bundles

Settings and Users
Although settings bundles offer a well-defined resource for developers to centralize their
user-defined defaults, real-world experience suggests they’re a feature you may not actu-
ally want to use. Few iPhone users are aware of third-party settings outside their applica-
tions. Even fewer actually use those settings on a regular basis. Most users want to stay
within the bounds of an application for all app-related tasks, including settings.

Because of this, many (if not most) App Store developers have moved away from set-
tings bundles and brought their settings directly into the application.Adding settings views
allows users to find and set preferences easily. Unfortunately, creating those screens is labor
intensive and fussy.

There is, fortunately, a middle ground between relying solely on settings bundles and
building your own views.The Llama Settings project at Google Code (http://code.
google.com/p/llamasettings/) offers a set of classes that read property lists (including from
your settings bundles), allowing you to display settings screens within your application
without much extra work or overhead.The project was developed and is maintained by
Scott Lawrence.

Open sourced, the Llama Settings classes provide similar kinds of display and interactive
elements including group titles, sliders, and switches. In addition, the project adds support
for color selectors, URL launchers, and more.Although these items are not supported in
Apple’s Settings app, you can use them within your program by defining standard property
lists without further programming.

Checking User Defaults
You may solicit and set defaults via settings bundles, application-based views, code-level
access, or a hybrid of these approaches.When using those settings, be aware that certain
items may not yet exist. If a user hasn’t opened your settings bundle, the default settings

http://github.com/erica/iphone-3.0-cookbook-
http://code.google.com/p/llamasettings/
http://code.google.com/p/llamasettings/

ptg

you specified in the bundle’s property lists may not have ever been set. For most objects,
you can test for this via objectForKey:.This method returns nil for nonexistent keys.

Here’s one reason a nil value may play a role in your programming. One default that
you’ll always want to set through code is a “last version” key.This key records the applica-
tion version that was most recently run.You’ll want to check for this default whenever
your application launches.

If that default is nil, the application is a new install.You may want to prepare files and
perform other setup tasks at first run.After that setup, set a value for the key, one that indi-
cates the currently deployed app version. (And don’t forget to synchronize after setting
that key.)

It doesn’t end with a check for nil, though.You’ll always know when the user has just
upgraded from a previous version by checking that setting.When the last run version dif-
fers from your current version, you have the opportunity to perform any updates that
bring your user into data compliance for the most recent release.

Recipe: Creating URL-Based Services
Apple’s built-in applications offer a variety of services that can be accessed via URL calls.
You can ask Safari to open Web pages, Maps to show a map, or use the mailto: style URL
to start composing a letter in Mail.A URL scheme refers to the first part of the URL that
appears before the colon, such as http or ftp.

These services work because the iPhone knows how to match URL schemes with
applications.A URL that starts with http: opens in Mobile Safari.The mailto: URL always
links to Mail.What you may not know is that you can define your own URL schemes
and implement them in your applications. Not all standard schemes are supported on the
iPhone.The ftp scheme is not available for use.

Custom schemes allow applications to launch whenever Mobile Safari (or another
application) opens a URL of that type. For example, should your application register xyz,
any xyz:// links go directly to your application for handling, where they’re passed to the
optional application: handleOpenURL: method.The applications launch whether you’ve
defined a handler method or not. If all you want to do is run an application, adding the
scheme and opening the URL enables cross-application launching.

Handlers extend launching to allow applications to do something with the URL that’s
been passed to it.They might open a specific data file, retrieve a particular name, display a
certain image, or otherwise process information included in the call.

Using URL Schemes
The advantages of scheme-based launching are many.Take the Iconfactory’s Twitterrific,
for example. Developer Craig Hockenberry introduced a custom service that lets users and
third-party developers launch his application and open a prefilled, ready-to-post tweet.

This lets developers add Twitter support to their applications without any program-
ming needed. Since Twitterrific already stores sensitive username and password informa-
tion, all that you have to supply is the body text.When invoked, control passes to

814 Chapter 21 Accessibility and Other iPhone OS Services

ptg

815Recipe: Creating URL-Based Services

Twitterrific, which takes over and allows users to finish tweeting.When done, users quit
Twitterrific and may return to the original application if desired.

These kinds of services work best when they provide some kind of performance boost
or data leverage. In the case of Twitterrific, it’s not about tweeting. It takes very little code
to tweet. (See Chapter 13.) At the same time, doing so requires you to take on either the
responsibility of securely storing user credentials or forcing users to enter those credentials
on each use.The Twitterrific service lets you bypass those issues and expand the way your
application works.

Service Downsides
It’s not all good news on the services front; there’s definitely a downside to third-party
services. Once your application depends on a service, you basically force your users to
download a second application.And that application may not always be the one they want
to use. Consider the loyal Echofon (formerly TwitterFon) user who might not have Twit-
terrific installed on his or her phone. If you demand Twitterrific, you may meet resistance.

Any features that depend on third-party services must always be optional. Consider if,
for example, Echofon were to introduce its own tweeting URL scheme. If your applica-
tion offered service-based tweeting, you should in response make your application robust
and flexible enough to allow users to choose their preferred client.

Another downside is this: iPhone applications cannot tell what schemes are available.
There’s no way to poll for on-offer services.Apple provides no public registry that you
can scan through to see what’s out there. Using services is basically a matter of trust.

That being said, you can test whether a URL service is available. If the
UIApplication’s canOpenURL: method returns YES, you are guaranteed that openURL:
will be able to launch another application to open that URL.You are not guaranteed that
the URL is valid, only that its scheme is registered properly to an existing application.

if ([[UIApplication sharedApplication] canOpenURL:aURL])

[[UIApplication sharedApplication] openURL:aURL];

Cross-Promotion
There is another important business-oriented aspect to scheme-based launching, namely
cross-promotion. Defining URL schema allows your application to test whether other
applications exist from your company’s lineup. If the application cannot handle the URL
(i.e., canOpenURL: returns NO), you can provide links to App Store, encouraging users to
download other applications from your company.

Registering Schemes: Declaring the URL
It takes two steps to add services to your application. First, declare your URL scheme in
your Info.plist. Second, add a handler to your application delegate. Here are the steps you
take to do this.

To declare your URL scheme, you need to specify information for the iPhone’s
Launch Services.Add a CFBundleURLTypes entry into your Info.plist.This consists of an

ptg

array of dictionaries that describe the URL types the application can open and handle.
Each dictionary contains two keys: a CFBundleURLName and an array of
CFBundleURLSchemes.

The URL name is an abstract name (also known as its “kind”).You can use any string.
On the Mac, this provides the visible description shown in Finder. On the iPhone, it’s just
a way of keeping your schemes straight.

The Schemes array is a list of prefixes that belong to the abstract name.You can add
one scheme or many.The following declares just one.You may want to prefix your name
with an x.Although the iPhone is not part of any standards organization, the x prefix
indicates that this is an unregistered name.

<key>CFBundleURLTypes</key>

<array>

<dict>

<key>CFBundleURLName</key>

<string>com.sadun.demonstration</string>

<key>CFBundleURLSchemes</key>

<array>

<string>x-sadun-services</string>

</array>

</dict>

</array>

iPhone developer Emanuele Vulcano has started an informal registry over at the CocoaDev
Web site (http://cocoadev.com/index.pl?ChooseYourOwniPhone URLScheme). iPhone
Developers can share their schemes in a central listing, so that you can discover services
you want to use and promote services that you offer.The registry lists services, their URL
schemes, and describes how these services can be used by other developers.

Registering Schemes: Adding the Handler Method
The second part of implementing URL handling means providing an application delegate
method called application:handleOpenURL:.

- (BOOL)application:(UIApplication *)application

handleOpenURL:(NSURL *)url {}

When implemented by your app delegate, this method lets you respond to an openURL:
call made by another application.Your method must return a Boolean value, either YES to
indicate that the URL handling succeeded or NO when it fails. Here’s the basic skeleton of
the function:

- (BOOL)application:(UIApplication *)application

handleOpenURL:(NSURL *)url

{

// Recover the string

if (!url) return NO;

NSString *URLString = [url absoluteString];

816 Chapter 21 Accessibility and Other iPhone OS Services

http://cocoadev.com/index.pl?ChooseYourOwniPhoneURLScheme

ptg

817Recipe: Creating URL-Based Services

// YOUR WORK HERE

return YES;

}

With iPhone URL schemes, the colon is mandatory, but you need not use forward slashes
after. For example, mailto:foo@bar.com is a valid URL.You need not use
mailto://foo@bar.com.

To parse out your calling string, you want to remove the initial URL scheme up to the
colon.
NSRange colon = [URLString rangeOfString:@""];

NSString *request = [URLString substringFromIndex:

(colon.location + 1)];

It’s up to your handler to deal with whatever request has been forwarded.You define the
protocol and you implement how that is recovered. Consider the following sample request
protocol:

x-sadun-services:command?param1=p1¶m2=p2¶m3=p3&...

This protocol assumes that a command will be followed by a question mark, followed by a
set of parameter pairs. Each pair uses the equal symbol and provides a plain-text parameter
name and a URI-encoded text-based parameter value.

Your code handles all request parsing. Could providing URL scheme support open
an attack vector from third parties? No.The reality is that the danger is minimal or non-
existent.You can choose to handle the request, ignore the request, and so forth. NSStrings
present little danger to your application.

Returning Control to a Calling Application
With careful programming, you can allow the calling application to regain control after
handling a URL request.An application might send back requested material along with a
status indication of whether the operation was a success. It depends on how you define
and implement your protocol. Here’s a sample of a paste request from an application that
supports interapplication copy and paste.

x-sadun-services:paste?scheme=iping&data=hello+world&\

clipboard=test1&password=foobar&expire=1500

This example URL shows a request to paste “Hello World” into a clipboard named test1.
It’s a secured clipboard whose data will expire after 1,500 seconds (25 minutes).What’s
notable here is the “scheme” parameter. It tells this service who to respond to.After per-
forming the paste, the service opens a new URL with the results, using that scheme to call
home.

On most iPhones and iPod touch units, the entire trip has a latency of about 4.5 to 5
seconds.You can try this for yourself.The sample code for this recipe contains two appli-
cations. One (iPong) is a copy/paste server, another (iPing) is a test client.The client keeps
track of time from when it first sends out its request to when it receives the response

ptg

URL. Once you have installed the server, you can mess with the client to test out all kinds
of scenarios to test the service and its protocol.

A minor vulnerability is exposed here. Should the calling client lie or provide the
wrong scheme parameter, control may be transferred to a third application. If the scheme
does not refer to a real application, the request will simply hang. On the other hand,
allowing the service to return to the originating application is a huge win. It keeps the
user from having to quit and relaunch that first application and is a feature more applica-
tions should offer once they have finished handling a request, be it sending e-mail or post-
ing a tweet.

Implementing Custom Schemes
When the iPhone installs an application, its Info.plist list tells the iPhone OS to associate
that application with any schemes you’ve defined.Thereafter, whenever the OS encoun-
ters a matching scheme, the proper application launches to handle the URL. Recipe 21-2
shows a sample method skeleton that handles the opening of that URL.

This recipe demonstrates how to recover the URL scheme and break it down into
parameters, and how to return to a calling application.The actual sample code for iPong
contains all these components but uses a more complicated handler than the method
shown in Recipe 21-2.

818 Chapter 21 Accessibility and Other iPhone OS Services

Note
Use the following native URL strings for opening videos in YouTube: http://www.youtube.com/
watch?v=VIDEO_IDENTIFIER, or http://www.youtube.com/v/VIDEO_IDENTIFIER. The iPhone
does not use a YouTube-specific schema.

Recipe 21-2 Responding to URL Scheme Requests

- (BOOL)application:(UIApplication *)application

handleOpenURL:(NSURL *)url

{

// Recover the string

if (!url) return YES;

NSString *URLString = [url absoluteString];

// Recover the colon location

NSRange colon = [URLString rangeOfString:@""];

if (colon.location == NSNotFound) return YES;

// Extract command and parameter dictionary

NSString *action = [URLString substringFromIndex:

(colon.location + 1)];

NSMutableDictionary *paramDict = [NSMutableDictionary dictionary];

NSRange r = [action rangeOfString:@"?"];

if (r.location != NSNotFound)

{

http://www.youtube.com/watch?v=VIDEO_IDENTIFIER
http://www.youtube.com/watch?v=VIDEO_IDENTIFIER
http://www.youtube.com/v/VIDEO_IDENTIFIER

ptg

819Summary

NSString *paramString = [action substringFromIndex:

(r.location + 1)];

NSArray *parameters = [paramString

componentsSeparatedByString:@"&"];

action = [action substringToIndex:r.location];

for (NSString *eachParam in parameters)

{

NSArray *pair = [eachParam

componentsSeparatedByString:@"="];

if ([pair count] != 2) continue;

NSString *key = [[pair objectAtIndex:0] lowercaseString];

NSString *value = [pair objectAtIndex:1];

[paramDict setValue:value forKey:key];

}

}

// Perform any actual work here using those parameters

// pong back with a result

NSString *scheme = [paramDict objectFoKey:@"scheme"];

if (!scheme) return YES;

NSString *urlString = [NSString stringWithFormat:

@:pasteservice?status=Success", scheme];

NSURL *outurl = [NSURL urlWithString:urlString];

if ([application canOpenURL:outurl]

[application openURL:outurl];

return YES;

}

Get This Recipe’s Code
To get the code used for this recipe, go to http://github.com/erica/iphone-3.0-cookbook-, or
if you’ve downloaded the disk image containing all of the sample code from the book, go to
the folder for Chapter 21 and open the project for this recipe.

Summary
When an iPhone application opens itself to iPhone OS services, it becomes an active par-
ticipant in a wider ecosystem.Accessibility, settings, and URL schemes all demonstrate how
an application can fit into the iPhone OS beyond the immediate functionality provided by

http://github.com/erica/iphone-3.0-cookbook-

ptg

820 Chapter 21 Accessibility and Other iPhone OS Services

the application itself. Here are a few thoughts to take away with you as you finish this
chapter:

n VoiceOver and the iPhone’s accessibility features as a whole are still very, very new.
Expect them to develop further as the platform matures.This is a feature that will
continue to change as Apple grows the iPhone’s disabled audience.

n Including accessibility labels and hints creates new audiences for your application,
just like language localizations do.Adding these takes relatively little work to
achieve and offers excellent payoffs to your users.

n Although most users do not use third-party preferences in the Settings apps, some
do. Consider offering your settings both inside and outside your application.

n Expand your application’s user base by exposing helpful functionality to other
applications. URL schemes let you create a demand by other application developers
that can trickle down into end-user sales for your product.A great set of services
that’s easy to use can be marketed to other developers through custom URL
schemes.

ptg

A
Info.plist Keys

Table A-1 lists many of the Info.plist keys available for the iPhone and describes their
use.The raw key name is listed first.The English localized string appears just below,
where available.This latter item is the string that Xcode shows you in the Info.plist

editor when you have not chosen Show Raw Keys/Values from the editor’s contextual
pop-up menu.

Table A-1 Common Info.plist Keys

Key Type Use

CFBundleDisplayName

Bundle display name.

String App bundle’s display name. This
name can be localized with
InfoPlist.strings. Xcode initially sets
this value to the name used to
create your Xcode project.

CFBundleName

Bundle name.

String The application’s short display
name, normally the same as
CFBundleDisplayName.

CFBundleDevelopmentRegion

Localization native development region.

String Native region for the bundle’s
author. Sets a default value for the
native localization.

CFBundleAllowMixedLocalizations

Localized resources can be mixed.

Boolean Allows frameworks to retrieve
localized resources.

ptg

822 Appendix A Info.plist Keys

Table A-1 Continued

Key Type Use

CFBundleExecutable

Executable file.

String (Required key) Name of the executable file in
the .app bundle. The name of this property is
automatically added to your property list. It is
initially based on the ${EXECUTABLE_NAME}
set in your Xcode project, typically the same
name as your project.

CFBundleIconFile

Icon file.

String Name of the icon file for the application.
Normally icon.png, but you can use another
name. Xcode does not add a default value.
App Store requires this value to be properly
set.

CFBundleIdentifier

Bundle identifier.

String (Required key) The unique identifier for your
application. See Chapter 1, “Introducing the
iPhone SDK,” and Chapter 2, “Building Your
First Project,” for information about choosing
and registering application identifiers.

CFBundleInfoDictionary

➥Version

InfoDictionary version.

String (Required key) Normally set to 6.0. This value
defines the current version of the property
list structure. Xcode automatically adds this
value to your Info.plist. Leave it as set.

CFBundleLocalizations

Localizations.

Array A list of strings that specify all supported
localizations, e.g., en, fr, ja, etc. Each entry
in this property’s array is a string that identi-
fies a language name and can include
regional localizations like en-us and en-uk.

CFBundleVersionString

Bundle version.

String Version-number string for the application.
Required by App Store to be unique for each
application update build.

CFBundleShortVersionString

Bundle version string, short.

String Although supported on the iPhone, this key is
meant for Mac apps that use a three-number
version system of release numbers, revision
numbers, and maintenance release numbers.

CFBundleURLTypes

URL types.

Array Array of dictionaries describing the URL
schemes supported by the application. See
Chapter 21, “Accessibility and Other iPhone OS
Services,” for details on constructing this array.

ptg

823Appendix A Info.plist Keys

Table A-1 Continued

Key Type Use

LSRequiresIPhoneOS

Application requires iPhone
environment.

Boolean Indicates that the application is meant to run
only on iPhone OS.

NSMainNibFile

Main nib file base name.

String Specifies the primary xib/nib file used by the
application.

UIInterfaceOrientation

Initial interface orientation.

String Specify the initial interface orientation to use
when the application launches. Values may be
set to UIInterfaceOrientationPortrait
(Portrait, Default), UIInterfaceOrientation
➥PortraitUpsideDown (Portrait),
UIInterfaceOrientationLandscapeLeft

(Landscape), or UIInterfaceOrientation
➥LandscapeRight (Landscape).

UIPrerenderedIcon

Icon already includes gloss and
bevel effects.

Boolean Determines whether the iPhone applies a shine
and gloss effect to the application icon (NO) or
uses the icon as is (YES).

UIRequiresPersistentWiFi

Application uses Wi-Fi.

Boolean When enabled, tells the iPhone OS that the ap-
plication needs a Wi-Fi connection to run. If a
Wi-Fi connection is not found, the user is
prompted at launch to connect to a Wi-Fi
network.

When set to NO, the iPhone OS closes any
active Wi-Fi connection after 30 minutes. When
set to YES, this does not happen, allowing
persistent use of the Wi-Fi connection.

UIStatusBarHidden

Status bar is initially hidden.

Boolean Set to true to hide the status bar on launch.

UIStatusBarStyle

Status bar style.

String Chooses an initial status bar style using the
standard constants. Defaults to a gray status
bar. Values may be set to UIStatus
➥BarStyleDefault (Gray style (default)),
UIStatusBarStyleBlackTranslucent

(Transparent black style [alpha of 0.5]), or
UIStatusBarStyleBlackOpaque (Opaque
black style).

ptg

824 Appendix A Info.plist Keys

Table A-1 Continued

Key Type Use

UIRequiredDeviceCapabilities

Required device capabilities.

Array Capabilities required on device for the
application to run, such as a camera. As
of the 3.1 iPhone OS, legal values in-
clude wifi, accelerometer,
location-services, gps,
magnetometer, microphone,
opengles-1, opengles-2, armv6,
armv7, and peer-peer. This information
helps App Store and iTunes know which
device-related features are required by an
application in order to function properly.
See Chapter 14, “Device Capabilities,”
for details on using this option.

UISupportedExternalAccessory

➥Protocols

Supported external accessory
protocols.

Array Defines the accessory protocols sup-
ported by the application for communicat-
ing with third-party hardware.

UIViewEdgeAntialiasing

Renders with edge antialiasing.

Boolean Indicates whether Core Animation layers
antialias data that’s not pixel-aligned. The
default is NO and setting it to YES reduces
performance while increasing rendering
quality. When enabled, it provides sophisti-
cated rendering with a noticeable perform-
ance impact.

UIViewGroupOpacity

Renders with group opacity.

Boolean Indicates whether Core Animation sublayers
inherit the opacity of their superlayer.
Defaults to NO.

ptg

Symbols
+ (plus), class methods, 101
- (dash), method declarations, 98
2.x support, adding to image selection, 263
3.1 support, adding to image selection, 263
@ (at) symbol, 92, 103

A
ABAddressBookCopyArrayOfAllPeople()

function, 724
ABAdressBookCreate() function, 724
Abbott, Jay, 86
ABContact class, 738
ABContactsHelper class, 738
ABGroup class, 738
ABGroupAddMember() function, 737
ABGroupCreate() function, 736
ABGroupRemoveMember() function, 737
ABPeoplePickerNavigationController class,

742, 744
ABPeoplePickerNavigationControllerDelegate

protocol, 743
ABPersonHasImageData() function, 733
ABRecordCopyValue() function, 728
ABRecordRef type, 724-725
ABRecordSetValue() function, 726, 730
ABUnknownPersonViewController, 750-752
accelerometer

detecting shakes, 605-608
locating “up,” 597-599
moving onscreen objects, 599-601

AccelerometerHelper class, 605
access points (Wi-Fi), 690
accessibility (VoiceOver)

adding from code, 802-803
adding with Interface Builder, 799-802
common VoiceOver gestures, 805-806
overview, 799
testing on iPhone, 803-804, 806
testing with simulator, 803

accessing
Address Book image data, 741-742
arrays, 133
camera, 148
device information, 589-590, 592-593
FTP sites, 586-587
SDKAPIs from Xcode, 50-51

ptg

sets, 135
substrings, 128-129

accessor methods, 105
accessory views

check marks in table cells, 446-448
disclosure accessories in table cells,

449-451
accounts, test accounts (StoreKit)

creating, 781-782
signing into, 790

action sheets
displaying text in, 405-406
menus, creating, 403-405
pop-ups versus, 403

actions
adding, 162
connecting buttons to, 347

ad hoc distributions, 83
applications, building, 84
artwork, adding, 84-85
devices, registering, 83
entitlement files, 83
mobile provisions, building, 83

Address Book
ABContact class, 738
ABContactsHelper class, 738
ABGroup class, 738
ABRecordRef type, 724-725
ABUnknownPersonViewController,

750-752
AddressBookUI framework, 724
contacts

adding, 747-748
adding random contact art, 752-754
limiting contact picker properties,

745-747
modifying, 748-750
picking people, 742-745
searching for, 735

groups, 736-738
images, 733-734, 741-742
overview, 723
properties

address and instant message
properties, 730-733

date properties, 726-730
multivalue record properties,

727-730

records
adding, 734
creating, 734
deleting, 735-736
multivalue record properties,

727-730
retrieving and setting ABRecord

strings, 725-726
referencing, 724
searching, 738-740

address book controllers, 150
address properties (Address Book), 730-733
AddressBookUI framework, 724
addSubview method, 29
affine transform of UIView, 233-234
alert sounds, creating, 418
alerts, 391, 673. See also progress indicators

application badges, updating, 416-417
audio alerts, 417-420
classes for, 394
creating, 391-392
delegate methods in, 392-394
displaying, 190-191, 394
localized alerts, 673
modal alerts, creating with run loops,

396-399
network activity indicators, 415-416
no-button alerts, creating, 394-396
orientable scroll-down alerts, creating,

412-415
requesting text input via, 399-402
tappable overlays, creating, 411-412
variadic arguments with, 402-403
volume alert, displaying, 420-421

allApplicationSubviews() function, 214
allocating memory, 94
allSubviews() function, 214
alternating table cell colors, 439-441
animations. See also transitions

in buttons, 351-354
view animations

bouncing views, 248-250
building UIView animation blocks,

236-237
callbacks, 237
Core Animation calls, 244-246
Core Animation transitions,

242-244

826 accessing

ptg

curl transitions, 246-247
fading views in and out, 237-238
flipping views, 240-241
image view animations, 250-251
overview, 236
swapping views, 239-240

annotations
map annotations

adding, 710
annotation views, 710-712
creating, 710
MapAnnotation class, 709-710
responding to annotation button

taps, 712-716
user location annotations, 707-708

APNS (Apple Push Notification Service), 656
App Store

compiling clean builds for, 80-81
debugging uploads, 81-82

appending strings, 126
Apple Push Notification Service (APNS), 656
application approval for in-app purchase

items (StoreKit), 785-786
application badges, updating, 416-417
application bundles, 257

components, 26-27
application folder hierarchy, 22-23
executable, 23
icon and default images, 25-26
Info.plist files, 23-25
NIB files, 26

loading images from, 258
application delegate, 20-21
application identifiers

editing, 66-67
generating for push notifications, 659
registering, 15

application limits, platform differences, 11
application registration for push notifica-

tions, 662-663
error handling, 664-665
responding to notifications, 665-666
retrieving device tokens, 663-664

applications. See also projects
IPA archives, 27
overview, 17-18
sandboxes, 27
sharing keychains between, 575-577

skeleton, 18-22
submitting for review, 787

applying image processing, 293-295
aps dictionary, 673-675
archiving, persistence through, 314-315
arguments, variadic arguments with alerts,

402-403
arrays, 133

accessing, 133
converting strings to, 128
converting to strings, 134
creating, 133
NSArray class, 97
NSMutableArray class, 97
for table sections, creating, 468-469
testing, 134
view controller arrays, loading, 198

artwork, adding to ad hoc distributions,
84-85

assembling applications
application skeleton, 18-19

application delegate, 20-21
main.m file, 19-20
view controller, 21-22

overview, 17-18
assigning

data sources for tables, 425-426
delegates for tables, 426
properties, 109

retained, 113-114
self-assigning, 112

asynchronous downloads, 560-565
at (@) symbol, 92, 103
atomic methods, 109
attributes

Core Data, 758
of properties, 109-110

audio
handling interruptions, 621-622
ignoring lock events, 622-624
iPod library contents, filtering,

645-649
looping, 618-620
picking, 641-645
playing, 611, 615-618

catching end of playback, 614
initializing audio players, 611-612
monitoring audio levels, 613

827audio

ptg

with MPMusicPlayerController
class, 649-653

scrubbing audio, 614
recording, 624-628

with Audio Queues, 629-634
audio alerts, 417

alert sounds, creating, 418
system sounds, creating, 417-420
vibration, creating, 418

audio players, initializing, 611-612
Audio Queues, 417, 629-634
Audio Services, 418-420
authentication challenges, handling,

565-566
autorelease memory management, 58
autorelease objects

creating, 111-112
explained, 110-111
lifetime of, 112
retaining, 112-113

autorelease pools, 19-20
autosizing, 176-179

text editors, 372
availability, checking, 555-557. See also

reachability
availability date, setting, 781
AVAudioPlayer class, 417, 611. See also audio

catching end of playback, 614
initializing audio players, 611-612
monitoring audio levels, 613
playing audio, 615-618
scrubbing audio, 614

AVAudioRecorder class, 624
AVAudioSession class, 624

B
background color of tables, changing,

430-432
background images for tables, creating,

432-433
badges, 673

application badges, updating, 416-417
Ballard, Kevin, 388
bar button items, 347
bars, 146-147
battery state, monitoring, 594-595

behavior limits, platform differences, 12
bitmaps, 291

applying image processing, 293-295
drawing into bitmap contexts, 291-293
image-processing limitations, 295-297
testing touches against bitmap alpha

levels, 309-311
Bluetooth, GameKit and, 495

limitations, 496-497
Bonjour, 495

GameKit sessions and, 496, 498
iPhone servers

creating, 515-520
Mac clients, creating, 520-523

names and ports, registering, 528-529
scanning for services, 540-543

BonjourHelper class, 528-537
bookmarks, 76-77
bouncing views, 248-250
bounded movement, 306-307
bounded views, moving randomly, 231-232
breakpoints, 53-55
Britten, Ben, 629
browsing parse trees, 580-582
buffers, NSData class, 136
built-in controls in table cells, 441-443
Bundle Seed IDs, 16
buttons, 344-345

adding in Interface Builder, 345-347
animation in, 351-354
connecting to actions, 347
custom buttons

building in Xcode, 348-351
creating, 346-347

multiline button text, 351
in segmented controls, 362-363
toggle buttons, 354-356

C
C programming language, 91, 116
C strings, converting to/from, 127
caching, 768

memory management, 59
monitoring with Instruments

application, 62-64
calculating lines, 323-325

828 audio

ptg

callbacks
adding to protocols, 123
animation callbacks, 237
optional callbacks, 123-124

camera. See also images
accessing, 148
capturing time-lapse photos, 273-275
custom camera overlays, 275, 277-278
model differences, 7
selecting and customizing images from

camera roll, 265-267
snapping photos and writing to photo

album, 268-270
camera roll, selecting and customizing

images from, 265-268
canceling peer picker alerts, 499
capability requirements, adding, 590-592
capturing

colors, 165
time-lapse photos, 273-275

Carbon, explained, 117
case (of strings), changing, 129
catching end of audio playback, 614
categories, explained, 120-121
cell tower positioning, 690
cells (table)

adding, 453
alternating colors, 439-441
building custom, 435-439
with built-in controls, 441-443
check marks in, 446-448
deleting, 451-456
disclosure accessories in, 449-451
removing selection highlights, 448-449
reordering, 456-457
retaining state, 443-445
returning from sections, 470
reusing, 425, 428
selection color, setting, 429
swiping, 453
types of, 433-435
visualizing reuse, 445-446

centering landscape views, 234-235
certificates, 14
CFShow function, 105
CGFont class, 388
CGRect structure, 223-224, 227
CGRectCreateDictionaryRepresentation()

function, 223

CGRectFromString() function, 223, 313
CGRectGetCenter() function, 227
CGRectInset() function, 223
CGRectIntersectsRect() function, 223
CGRectMake function, 223
CGRectMoveToCenter() function, 227
CGRectZero() function, 223
chat, 512-515
check marks in table cells, 446-448
chevrons, 449-451
child-view undo support, 316
choices, views for, 145
chunked data for asynchronous

downloads, 562
circles, detecting, 325-327
circular hit test, 308
Clang static analyzer, 64-65, 98
class headers, inspecting, 163
class methods, 101
classes. See also Foundation classes

for alerts, 394
explained, 92-93
extending, 120-121
hierarchy, 102-103
implementing, 100
logging information, 103-105
naming in Cocoa Touch, 92
for progress indicators, 406-407

clean builds, 80-81
clearing console log, 56-57
CLHeading class, 698
client mode (peer pickers), 500, 502
client skeleton example (push notifications),

667-672
clients

in GameKit, 498
Mac clients, creating for iPhone

Bonjour servers, 520-523
clipboard for simulator, 48, 524-525
CLLocation class, properties, 694-695
closing connections with BonjourHelper

class, 530
Cocoa, explained, 117. See also Foundation

classes
Cocoa Touch

class names, 92
definition of, 4-5
explained, 117

829Cocoa Touch

ptg

CocoaDev Web site, 816
code, adding VoiceOver accessibility from,

802-803
code signing identity, setting, 67-68
code-based temperature converter example,

166-169
collapsing methods, 77
collections, 133-136

arrays, 133-134
dictionaries, 134-135
fast enumeration, 101
memory management, 135
sets, 135
writing to files, 135-136

color
background color of tables, changing,

430-432
capturing, 165
selection color for table cells,

setting, 429
of table cells, alternating, 439-441

com.yourcompany, overriding, 86
comparing dates, 131
compiler directives

explained, 73-74
iPhone-specific definitions,

recovering, 74-75
pragma marks, 76-77
runtime checks, 75-76

compiler warnings
message forwarding, 140
treating as errors, 98

compiling
applications, 68-69
clean builds for App Store, 80-81

complex data, sending via GameKit, 510-512
compound predicates in fetch requests

(Core Data), 771
computing speed and distance, 696-697
configurations, creating/editing distribution

configurations, 78-79
conforming to protocols, 124-125
connecting buttons to actions, 347
connection process, GameKit peers,

498-500, 502
connections

adding, 163-164
asynchronous downloads, 560-565

authentication challenges, handling,
565-566

closing with BonjourHelper class, 530
connectivity changes, scanning for,

549-552
data uploads, 572-575
FTP access, 586-587
GameKitHelper class, 503-504
IP and host information, retrieving,

552-555
network activity indicators, 415-416
network status, checking, 545-547
online connections, creating with

GameKit, 537-540
peer-to-peer connections. See

Bonjour; GameKit
POST requests, uploading via,

569-572
site availability, checking, 555-557
synchronous downloads, 557-560
UIDevice class, extending for

reachability, 547-549
WiFi connections with

BonjourHelper class, 528-537
connectivity changes, scanning for, 549-552
console

clearing log, 56-57
running, 55-56

Console tab (Organizer), 72
constraining movement, 305, 307
consumable purchases, 784
Contact Add button, 344
contacts (Address Book)

ABUnknownPersonViewController,
750-752

adding, 747-748
adding random contact art, 752-754
limiting contact picker properties,

745-747
modifying, 748-750
picking people, 742-745
searching for, 735

content length for asynchronous
downloads, 562

contents controllers, 149
contexts (Core Data)

creating, 760-761
inserting entities into, 761-763

830 CocoaDev Web site

ptg

controller behavior
delegation, 30-31
notifications, 33
overview, 30
target-actions, 32

controls, 145-146, 341
buttons, 344-345

adding in Interface Builder, 345-347
animation in, 351-354
building in Xcode, 348-351
connecting to actions, 347
creating custom buttons, 346-347
multiline button text, 351

events, 341-344
page indicators, 376-383
remove controls, displaying/

dismissing, 452
segmented controls, 362-363
sending events, 364
sliders, custom slider thumbs, 356-361
subclassing UIControl class, 363-366
switches, 354-356
in table cells, 441-443
text fields

dismissing keyboards, 366-369
text entry filtering, 374-376

text views
creating text editors, 371-374
dismissing keyboards, 370-371
smart labels, 387-388

toolbars
creating in Interface Builder,

384-385
creating in Xcode, 385-386
tips for, 387

types of, 341
convenience methods, 111
conversion method, defining, 165-166
converting

aps dictionary to JSON, 674-675
arrays to strings, 134
C strings, 127
Interface Builder files to Objective-C,

51-53
strings to arrays, 128
XML data to tree data structures,

577-582
coordinate systems, 224

Core Animation
calls, 244-246
transitions, 242-244

Core Data
contexts, creating, 760-761
explained, 757-758
header files, generating, 759-760
model files, creating/editing, 758
objects

creating, 761-763
removing, 765-767
retrieving, 763-764

search tables example, 770-772
table data sources example, 767-770
table editing example, 773-775
table undo/redo support example,

775-778
Core Foundation

explained, 117
memory management, 116-117

Core Graphics, masking reflections with,
253-255

Core Location
cell tower positioning, 690
computing speed and distance, 696-697
detecting direction of north, 698-700
GPS positioning, 690
hybrid positioning approaches, 691
Internet provider positioning, 691
model differences, 8
overview, 689
SkyHook Wi-Fi positioning, 690
tracking latitude and longitude

code listing, 693
location properties, 694-695
step-by-step process, 691-692

tracking speed, 695-696
counting table sections/rows, 469-470
Cox, Brad J., 91
Crash Logs tab (Organizer), 72-73
credentials, 566-569
cross-promotion, 815
curl transitions, 246-247
custom buttons. See also buttons

building in Xcode, 348-351
creating, 346-347

custom camera overlays, 275, 277-278
custom getters/setters, creating, 107-109

831custom getters/setters

ptg

custom key-value pairs in notification
payloads, 675

custom modal controllers example, 199-201
custom overlays for progress indicators,

creating, 409-411
custom popping options example (navigation

controllers), 197-199
custom settings bundles, adding, 806-807

avoiding sensitive information, 808
checking user defaults, 813-814
creating custom settings page, 810-813
defining settings bundle, 809
Llama Settings project, 813
Settings app, 807
settings schema, 808

custom slider thumbs, 356-361
custom table cells, building, 435-439
custom templates, creating, 86-88
custom undo routine, 318-319
customized paged scroller example, 379-383
customizing

images from camera roll, 265-268
selected table cells, 439
table headers/footers, 474-476
toolbars, 56-57
Xcode identities, 85-86

cylinder roll example (picker views), 484-487

D
dash (-), method declarations, 98
data access limits, platform differences, 10
data display, views for, 144
data handling, GameKitHelper class, 504-505
data length, checking in GameKit, 523-527
data retrieval via pasteboards, 525
data sharing via pasteboards, 524
data source methods, building searchable,

465-466
data sources, 34-35

explained, 122
for tables

assigning, 425-426
methods, 427-428

data storage via pasteboards, 524
data structures for table sections, creating,

468-469
data uploads, 572-575

date properties (Address Book), 726-730
date/time

entering in tables, 487-490
formatting, 490-493
NSDate class, 131-132
NSDateFormatter class, 132

deallocating objects, 117-119
example, 119
retained properties, 118
variables, 118

debugger, 53
breakpoints, 53-55
console, 55-57
customizing toolbars, 56-57
objects, inspecting, 55
opening, 53
running, 53
zombies, enabling, 57

debugging
App Store uploads, 81-82
tethered debugging, overview, 6-7

declaring
interfaces, 92
methods, 98-99
optional callbacks, 123-124
URL, 815-816

default settings, checking user defaults,
813-814

Default.png files, 25-26
defining

conversion method, 165-166
protocols, 122-123
settings bundle, 809

delays
in registering purchases (StoreKit), 794
in system sounds, 419

delegate methods
alerts, 392-394
assigning for tables, 426
table searches, 467
table sections, 472

delegation, 30-31, 122
delete rules (Core Data), 766
deleting. See removing
deployment

application identifiers, editing, 66-67
code signing identity, setting, 67-68
compiling applications, 68

832 custom key-value pairs in notification payloads

ptg

development provisions, installing, 66
signing applications, 68-69

deselecting table cells, 448
deserializing property lists, 510-512
Detail Disclosure button, 344
Detail pane (Xcode projects), 41-42
detecting

circles, 325-327
device orientation, 601-603
direction of north, 698-700
leaks with Instruments application,

59-60, 62
multitouch, 327-329
shakes

with accelerometer, 605-608
with motion events, 603-604

developer portal
overview, 13
provisioning, 16
registering application identifiers, 15
registering devices, 14-15
requesting certificates, 14
setting up teams, 13-14

developer programs. See also developer
portal

Enterprise Developer Program, 2
Online Developer Program, 2
registering for, 3
Standard Developer Program, 2
table of, 1-2
University Developer Program, 3

development devices, 5
development process for push

notifications, 659
application identifier, generating, 659
push-specific provisions, 661-662
SSL certificate, generating, 660-661

development provisions, installing, 66
device capability requirements, adding,

590-592
device information, accessing, 589-590,

592-593
device orientation, detecting, 601-603
device tokens

managing inactive, 685-686
retrieving, 663-664

devices, registering, 14-15, 83
Devices list (Organizer), 71

dictionaries, 133-135
creating, 134
listing keys, 135
removing objects, 135
replacing objects, 134
searching, 134

direct manipulation interfaces. See also
touches

calculating lines, 323-325
detecting circles, 325-327
gesture distinction, 329-333
interactive resize and rotation,

333-338
multitouch, 303-304, 327-329
persistence, 311-315
simple direct manipulation interface,

304-305
touch-based painting, 321-323
undo support, 316-320

direction of north, detecting, 698-700
direction sensing

locating “up,” 597-599
moving onscreen objects, 599-601

directives. See compiler directives
disabling proximity sensor, 596-597
disclosure accessories in table cells,

449-451
disconnections

BonjourHelper class, 530
GameKitHelper class, 503-504

disk space, checking, 608-609
dismissing

keyboards, 366-371
remove controls, 452

displaying
alerts, 190-191, 394
data, views for, 144
images in scrollable view, 278-280
multiimage paged scroll, 280-281
remove controls, 452
text in action sheets, 405-406
volume alert, 420-421
peer picker, 498-499

distance, computing, 696-697
distribution configurations, creating/editing,

78-79. See also ad hoc distributions
Documents folder, saving images to,

270-271

833Documents folder

ptg

dot notation, 105
double-taps, 330
downloads

asynchronous downloads, 560-565
iPhone SDK, 3
synchronous downloads, 557-560

draggable views, creating, 304-305
drags, 330
drawing

into bitmap contexts, 291-293
touch-based painting, 321-323

duplex connections with BonjourHelper
class, 530

dynamic typing, explained, 96-98

E
e-mailing images, 272-273
editing

Address Book contacts, 748-750
application identifiers, 66-67
distribution configurations, 78-79
main.m (hybrid temperature converter

example), 172-173
model files (Core Data), 758
navigation bar, 159
simulator library, 48
tables in Core Data, 773-775
video, 639-641
view controller implementation,

171-172
views, 44-45

editor windows (Xcode projects), 42
efficiency of custom slider thumbs, 358
embedding images onto scrollers, 278-280
enabling

accessibility, 802
interactions, 160
proximity sensor, 596-597
reorientation, 175-176
simulated elements, 160
zombies, 57

energy limits, platform differences, 11
Enterprise Developer Program, 2
entities (Core Data), 758

header files, generating, 759-760
inserting into contexts, 761-763

entitlement files, 83

epochs, 131
error handling for device token requests,

664-665
errors, treating warnings as, 98
evaluating autosize option, 178-179
events

control events, 341-344
motion events, detecting shakes,

603-604
sending from controls, 364

executable, 23
extending

classes, 120-121
UIDevice class for reachability,

547-549
extracting

numbers from strings, 130
view hierarchy tree, 213

F
fading views, 237-238
fast enumeration of collections, 101
feedback service for push notifications,

685-686
fetch requests (Core Data), 763-764
fetch results (Core Data)

search tables example, 770-772
table data sources example, 767-770

file extensions, 19
file management, 136-138
file system size, checking, 608-609
File Transfer Protocol (FTP), accessing sites,

586-587
files

executable, 23
file types, 19
Info.plist, 23-25
IPA archives, 27
NIB files, 26
writing collections to, 135-136
writing/reading strings, 127-128

filtering
iPod library contents, 645-649
text entries, 374-376

finding
Address Book contacts, 735
best location match, 704-707

834 dot notation

ptg

fixpng utility, 10-11
flipping views, 240-241
FlipView interface, 241
font table example, 428-430
FontLabel, 388
footers for tables, customizing, 474-476
form data uploads, 572-575
format specifiers for strings, 104
formatting date/time, 490-493
Foundation, explained, 117
Foundation classes, 125-126

collections, 133-136
dates, 131-132
file management, 136-138
index paths, 132
NSData, 136
numbers, 131
strings, 126-130
timers, 132
URLs, building, 136

frames. See views
free space, checking, 608-609
freeform group tables, 473, 477-480
FTP (File Transfer Protocol), accessing sites,

586-587
FTPHelper class, 586-587

G
GameKit, 495

Bluetooth and, 495-497
clients, 498
complex data, sending, 510-512
limitations, overcoming, 523-527
online connections, creating, 537-540
peers, 498

connection process, 498-500, 502
state changes, 503

sending/receiving data, 502
servers, 498
sessions, 496, 498
status logs, monitoring, 509-510
Voice Chat, 512-515

GameKitHelper class, creating, 503, 505-509
connections/disconnections, 503-504
data handling, 504-505

gaming with BonjourHelper class, 528-537
Garbage Collection, 12

geocoding, 717-720
reverse geocoding, 700-702

geometry
interface design, 151

keyboards, 154-155
navigation bars/toolbars/tab bars,

153-154
status bar, 151-152
text fields, 155
UIScreen class, 155

view geometry, 222-223
coordinate systems, 224
frames, 223-224
transforms, 224

gesture distinction, 329-333
getters

creating custom, 107-109
explained, 106-107

GKPeerPickerController class, 151, 498
GKSession class, 500
GKVoiceChatService class, 512
GPS positioning, 690
Graphics Convert application, 11
grayscale images, 298-299
grouped tables, creating, 473, 477-480
groups (Address Book), 736-738
guides, adding, 184

H
.h file extension, 19
handler methods, adding, 816-817
hardware requirements, 3
header files, 92

Core Data, generating, 759-760
importing, 93
viewing side-by-side with method

file, 88
header titles for table sections, creating,

470-471
headers for tables, customizing, 474-476
Hewitt, Joe, 281
hiding status bar, 152
hierarchies, view, 211-213
hints, accessibility, 801
Hockenberry, Craig, 814
host information, retrieving, 552-555
hybrid positioning approaches, 691

835hybrid positioning approaches

ptg

hybrid temperature converter example, 170
adapting template, 170
adding view controller, 170
designing interface, 171
editing main.m, 172-173
editing view controller

implementation, 171-172
running application, 173

I
IB (Interface Builder). See Interface Builder
icon.png files, 25-26
id type, 99
identities (Xcode), customizing, 85-86
ignoring lock events, 622-624
iLime service, 793
image backdrops, creating, 160
Image Picker, 150, 263
image processing

applying, 293-295
limitations, 295-297

image view animations, 250-251
ImageHelper class, 260-261
images

adding random contact art, 752-754
Address Book images, 733-734

accessing image data, 741-742
background images for tables, creating,

432-433
bitmaps, 291

applying image processing, 293-295
drawing into bitmap contexts,

291-293
image-processing limitations,

295-297
creating from scratch, 281-285
custom camera overlays, 275, 277-278
e-mailing, 272-273
grayscale, 298-299
loading

from application bundle, 258
with ImageHelper class, 260-261
from photo album, 260, 262-265
from sandbox, 258-259
from URLs, 259-260

photo orientation, 288-290

saving to Documents folder, 270-271
screenshots, 290-291
scroll views

creating multiimage paged scroll,
280-281

displaying images in scrollable view,
278-280

selecting and customizing from
camera roll, 265-268

snapping photos with iPhone and
writing to photo album, 268-270

sources, 257-258
thumbnails, creating, 285-288
time-lapse photos, capturing, 273-275
uploading to TwitPic, 572-575

importing header files, 93
in-app purchase items (StoreKit), creating,

782-786
adding item details, 784-785
application approval, 785-786
pricing section, 783-784
submitting purchase GUI

screenshot, 785
inactive device tokens, managing, 685-686
index path access (Core Data), 767
index paths, 132, 425
index titles (Core Data), 768
indexed characters of strings, 126
indexed substrings, requesting, 128
indexes for table sections, creating, 471-472
Info Dark button, 344
Info Light button, 344
Info.plist files, 23-25

list of keys, 821-824
inheriting methods, 98
initializing audio players, 611-612
inserting entities into contexts (Core Data),

761-763
inspecting

class headers, 163
objects in debugger, 55

installing development provisions, 66
instance methods. See methods
instance variables, 91
instances, 94
instant message properties (Address Book),

730-733

836 hybrid temperature converter example

ptg

Instruments application
definition of, 4
detecting leaks, 59-60, 62
monitoring caching, 62-64

interaction limits, platform differences, 11
interactions, enabling, 160
interactive resize and rotation, 333-338
Interface Builder

adding buttons, 345-347
adding VoiceOver accessibility from,

799-802
converting to Objective-C, 51-53
custom table cells, building, 435-439
definition of, 4
tab bar controllers in, 207-208
table cells with built-in controls,

441-443
temperature converter example,

156-159
adding connections, 163-164
adding labels, 160
adding media to, 157
adding outlets/actions, 162
capturing colors, 165
creating image backdrops, 160
creating new project, 156
defining conversion method,

165-166
editing navigation bar, 159
enabling simulated elements, 160
inspecting class header, 163
replacing main view, 159-160
running application, 166
testing interface, 161

tips for, 184-185
toolbars, creating, 384-385
views, editing, 44-45
.xib files, opening, 43-44

interface creation, 155-156
code-based example, 166-169
hybrid example, 170

adapting template, 170
adding view controller, 170
designing interface, 171
editing main.m, 172-173
editing view controller

implementation, 171-172
running application, 173

Interface Builder example, 156-159
adding connections, 163-164
adding labels, 160
adding media to, 157
adding outlets/actions, 162
capturing colors, 165
creating image backdrops, 160
creating new project, 156
defining conversion method,

165-166
editing navigation bar, 159
enabling simulated elements, 160
inspecting class header, 163
replacing main view, 159-160
running application, 166
testing interface, 161

loading .xib files from code example,
173-174

interface design, 143
bars, 146-147
controls, 145-146
geometry, 151-155
hybrid temperature converter

example, 171
Interface Builder tips, 184-185
pickers, 146
progress indicators, 147
for rotation, 174-175

autosizing, 176-179
enabling reorientation, 175-176
moving views, 179-180, 182
swapping views, 183

tables, 146
UIView class, 143-144
UIWindow class, 143-144
view controllers, 147-148

address book controllers, 150
GKPeerPickerController class, 151
media player controllers, 151
MFMailComposeViewController

class, 150
table controllers, 149-150
UIImagePickerController class, 150
UINavigationController class,

148-149
UITabBarController class, 149
UIViewController class, 148

837interface design

ptg

views
displaying data, 144
making choices, 145

interfaces
declaring, 92
FlipView, 241

Internet, downloading images from, 257
Internet provider positioning, 691
interruptions to audio, handling, 621-622
IP information, retrieving, 552-555
IPA archives, 27
iPhone deployment. See deployment
iPhone developer programs

Enterprise Developer Program, 2
Online Developer Program, 2
registering for, 3
Standard Developer Program, 2
table of, 1-2
University Developer Program, 3

iPhone Development Tools list (Organizer), 71
iPhone model differences

OpenGL ES, 9
cameras, 7
core location differences, 8
microphones, 7-8
overview, 7
processor speeds, 9
speakers, 7-8
telephony, 8
vibration support and proximity, 9

iPhone platform limitations
application limits, 11
behavior limits, 12
data access limits, 10
energy limits, 11
interaction limits, 11
memory limits, 10
overview, 9
storage limits, 10

iPhone SDK Simulator. See Simulator
iPhone SDK. See SDK (Software

Developer’s Kit)
iPhone servers

creating with Bonjour, 515-520
Mac clients, creating, 520-523

iPhone-specific definitions, recovering, 74-75
iPod library contents, filtering, 645-649
item details for in-app purchase items

(StoreKit), 784-785
iTunes Connect, registering for, 3

J–K
JSON (JavaScript Object Notation), 672

converting aps dictionary to, 674-675
payload samples, 674

key-value pairs, custom data in notification
payloads, 675

keyboards
dismissing, 366-371
geometry of, 154-155

keychain
persistence of data, 567
sharing between applications, 575-577
storing user credentials, 566-569

KeychainItemWrapper class, 567
keys, dictionary keys, listing, 135
Kosmaczewski, Adrian, 51
Krasner, Glenn, 29

L
labels

accessibility, 800-801
adding, 160
smart labels, 387-388

landscape views, centering, 234-235
languages for item details (StoreKit),

784-785
latitude and longitude, tracking, 691

code listing, 693
location properties, 694-695
step-by-step process, 692

launching applications, receiving notification
data, 675-676

laying out table views, 424
layout guides, adding, 184
leaks, memory management, 58-62
length of strings, 126
Library folder, 259
limitations

of iPhone SDK, 12-13
platform limitations, 9-12
Simulator limitations, 5-6

limiting contact picker properties (Address
Book), 745-747

lines, calculating, 323-325
listing dictionary keys, 135
Llama Settings project, 813

838 interface design

ptg

loading
images

from application bundle, 258
with ImageHelper class, 260-261
from photo album, 260, 262-265
from sandbox, 258-259
from URLs, 259-260

view controller arrays, 198
.xib files from code, 173-174

localization for item details (StoreKit),
784-785

localized alerts, 673
location properties (CLLocation object),

694-695
locations

geocoding, 717-720
map annotations, 710-716
user location annotations, 707-708
viewing, 703-707

lock events, ignoring, 622-624
log files, monitoring, 509-510
logging class information, 103-105
looping audio, 618-620
loops, run loops, creating modal alerts with,

396-399

M
.m file extension, 19
Mac clients for iPhone Bonjour servers,

creating, 520-523
mail composition, 150
main view, replacing, 159-160
main.m file

autorelease pools, 19-20
hybrid temperature converter

example, editing, 172-173
purpose of, 19
UIApplicationMain function, 20

managed contexts. See contexts (Core Data)
map annotations

adding, 710
annotation views, 710-712
creating, 710
geocoding, 717-720
MapAnnotation class, 709-710
responding to annotation button taps,

712-716

MapAnnotation class, 709-710
MapKit. See also map annotations

reverse geocoding, 700-702
user location annotations, 707-708
viewing locations, 703-707

masking reflections with Core Graphics,
253-255

measurements in interface design, 151
keyboards, 154-155
navigation bars/toolbars/tab bars,

153-154
status bar, 151-152
text fields, 155
UIScreen class, 155

media. See also audio; video
adding to projects, 157
adding to views, 184

media player controllers, 151
Media Queries

creating, 645-649
types of, 645

memory limits, platform differences, 10
memory management, 58

allocating memory, 94
autorelease, 58
autorelease object lifetime, 112
caching, 59

monitoring with Instruments
application, 62-64

Clang static analyzer, 64-65
collections, 135
Core Foundation, 116-117
creating autorelease objects, 111-112
creating objects, 110-111, 115-116
deallocating objects, 117-119
explained, 110
high retain counts, 115
leaks, 58-62
releasing memory, 94-95
properties and, 105-106
retained properties, 113-114
retaining autorelease objects, 112-113

menus
creating, 403-405
scrolling, 405
two-item menu example (navigation

controllers), 192-193

839menus

ptg

message forwarding
compiler warnings, 140
explained, 138
implementing, 139
method signatures, building, 139
multiple inheritance, 140-141
undocumented methods of, 141

message tracking, 35
messages, sending to nil, 100. See also alerts
method files, viewing side-by-side with

header file, 88
method signatures, building, 139
methods, 91

accessor methods, 105
class methods, 101
collapsing, 77
data source methods for tables, 427-428
declaring, 98-99
delegate methods

in alerts, 392-394
for table searches, 467
for table sections, 472

dynamic typing, 96-98
explained, 93, 95-96
frame utility methods, 227-231
for group tables, 478
implementing, 99
inheriting, 98
nesting invocations, 100
for picker views, 482
searchable data source methods,

building, 465-466
variadic arguments with alerts,

402-403
MFMailComposeViewController class, 150
MFMailComposeViewControllerDelegate

protocol, 272
microphones, model differences, 7-8
MKAnnotation class, 709
MKAnnotationView class, 711
MKMapView class, 144
MKPlaceMark class, 701
MKReverseGeocoder class, 701
MKReverseGeocoderDelegate class, 701
MKUserLocation class, 707
mobile provisions

building, 83
definition of, 23

modal alerts, creating with run loops,
396-399

modal controllers, 190
custom example, 199-201

model differences
OpenGL ES, 9
cameras, 7
core location differences, 8
microphones, 7-8
overview, 7
processor speeds, 9
speakers, 7-8
telephony, 8
vibration support and proximity, 9

model files (Core Data), creating/editing, 758
model-view-controller design pattern. See

MVC (model-view-controller) design pattern
models (MVC)

data sources, 34-35
message tracking, 35
overview, 34
UIApplication class, 35

modifying Address Book contacts, 748-750
momentary views, pushing, 198-199
monitoring

audio levels, 613
battery state, 594-595
caching with Instruments application,

62-64
status logs, 509-510

motion events, detecting shakes, 603-604
movement, constraining, 305, 307
movies. See video
moving

bounded views, 231-232
objects, 185
onscreen objects with accelerometer,

599-601
views, 179-180, 182

MPMediaItem class, 642-644
MPMediaPickerController class, 151,

641, 647
MPMoviePlayer class, 634-636
MPMoviePlayerController class, 151,

634, 653
MPMusicPlayerController class, 151,

649-653
multiimage paged scroll, creating, 280-281

840 message forwarding

ptg

multiline button text, 351
multimedia. See audio; video
multiple buttons in segmented controls,

362-363
multiple inheritance, message forwarding,

140-141
multiple item purchases (StoreKit), 794
multiple provider support for push

notifications, 657
multitouch, 303-304

detecting, 327-329
multivalue record properties (Address Book),

727-730
multiwheel tables, building, 480-484
music. See audio
mutable arrays, 97, 133
mutable buffers, 136
mutable dictionaries, 134
mutable strings, 130
MVC (model-view-controller) design pattern

controller behavior
delegation, 30-31
notifications, 33
overview, 30
target-actions, 32

message tracking, 35
models, 34-35
overview, 28-29
view classes, 29-30

N
names (Bonjour), registering, 528-529
naming

classes in Cocoa Touch, 92
views, 184, 219-222

navigating between view controllers example
(navigation controllers), 195-197

navigation applications, 37
navigation bars, 146-147

editing, 159
geometry of, 153-154
undo support, 316-317

navigation controllers, 148-149, 187
custom modal controllers example,

199-201
custom popping options example,

197-199

modal controllers, 190
navigating between view controllers

example, 195-197
persistence example, 204-207
pushing/popping, 188-189
segmented control example, 193-195
setup, 187-188
tab bars

example, 201-204
in Interface Builder, 207-208

two-item menu example, 192-193
UINavigationItem class, 189-190

nesting method invocations, 100
network activity indicators, 415-416
network connections. See connections
network status, checking, 545-547
NeXTStep operating system, 91
NIB files, 26
nil, 100
no-button alerts, 394-396
non-consumable purchases, 783
north, detecting direction of, 698-700
notification payloads

building, 672
converting aps dictionary to JSON,

674-675
custom key-value pairs, 675
localized alerts, 673
notification types, 673
receiving data on launch, 675-676

sending, 676-681
notifications. See push notifications
NSArray class, 97, 133-134
NSBundle class, 137
NSData class, 136
NSDate class, 131-132
NSDateFormatter class, 132, 490
NSDictionary class, 134-135
NSFetchedResultsController class, 150, 764
NSFileManager class, 136-138, 608
NSHomeDirectory() function, 259
NSIndexPath class, 132
NSKeyedArchiver class, 314
NSKeyedUnarchiver class, 314
NSLog function, 103-105
NSMutableArray class, 97, 133
NSMutableData class, 136
NSMutableDictionary class, 134

841NSMutableDictionary class

ptg

NSMutableString class, 130
NSNetServiceBrowser class, 520, 540
NSNotificationCenter class, 33, 426
NSNumber class, 131
NSObject class, 94, 102
NSOperation class, 570
NSOperationQueue class, 570
NSSet class, 135
NSString class, 92, 103, 126-130

accessing substrings, 128-129
building strings, 126
changing case, 129
converting to/from C strings, 127
extracting numbers from strings, 130
indexed characters, 126
length of strings, 126
mutable strings, 130
search/replace with, 129
testing strings, 130
writing to/reading from files, 127-128

NSStringFromCGRect() function, 223, 313
NSTimeInterval class, 131
NSTimer class, 132
NSUndoManager class, 457
NSURL class, 136
NSURLConnection class, 557
NSURLCredential class, 565
NSURLRequest class, 569
NSUserDefaults class, 806
NSXMLParser class, 577
numbers

extracting from strings, 130
NSNumber class, 131

O
object layout, viewing, 185
object-oriented programming, 28, 91-92
Objective-C

categories, 120-121
classes

explained, 92-93
hierarchy, 102-103
logging information, 103-105

collections, 101
converting Interface Builder files to,

51-53
dynamic typing, 96-98

explained, 91-92
Foundation classes, 125-126

collections, 133-136
dates, 131-132
file management, 136-138
index paths, 132
NSData, 136
numbers, 131
strings, 126-130
timers, 132
URLs, building, 136

header files, 92
memory management, 94-95

autorelease object lifetime, 112
Core Foundation, 116-117
creating autorelease objects,

111-112
creating objects, 110-111, 115-116
deallocating objects, 117-119
explained, 110
high retain counts, 115
retained properties, 113-114
retaining autorelease objects,

112-113
message forwarding, 138-141
methods, 93-101
objects, 92-94
properties, 105-110
protocols, 122-125
singletons, 119-120

objects. See also specific objects
autorelease objects, 111-113
creating, 93-94, 110-111, 115-116
deallocating, 117-119
explained, 92-93
inspecting in debugger, 55
moving, 185
retain counts, 95

online connections, creating with GameKit,
537-540

Online Developer Program, 2
onscreen objects, moving with

accelerometer, 599-601
OpenAL audio, 629
OpenGL ES, 9, 37
opening

debugger, 53
.xib files, 43-44

842 NSMutableString class

ptg

operation queues, 570
operations, 570
optional callbacks, 123-124
Organizer, 69

Console tab, 72
Crash Log tab, 72-73
Devices list, 71
iPhone Development Tools list, 71
Projects and Sources list, 70
Screenshot tab, 73
Summary tab, 71-72

orientable scroll-down alerts, 412-415
orientation

designing for rotation, 174-175
autosizing, 176-179
enabling reorientation, 175-176
moving views, 179-182
swapping views, 183

device orientation, detecting, 601-603
of photos

fixing, 288-290
test images, adding, 290

of status bar, 152
outlets, 162
overcoming GameKit limitations, 523-527
overlays

custom overlays
creating for progress indicators,

409-411
custom camera overlays, 275-278

orientable scroll-down alerts, 412-415
tappable overlays, 411-412

P
page indicators

adding, 376-378
customized paged scroller example,

379-383
parse trees

browsing, 580-582
building, 578

passwords, storing in keychain, 566-569
pasteboards, 524-525
pathToView() function, 214
payloads. See notification payloads
payments (StoreKit), responding to, 791-792
peer pickers, 151

peer-to-peer connections. See Bonjour;
GameKit

peers in GameKit, 498
connection process, 498-502
state changes, 503

people picker (Address Book), 742-745
performance of Media Queries, 647-649
persistence, 311

of keychain data, 567
navigation controllers example,

204-207
persistence through archiving,

314-315
recovering state, 313-314
storing state, 312-313
in text editors, 371

phases of touches, 302
phone calls, 621-622
photo album, 257. See also images

loading images from, 260-265
writing photos to, 268-270

picker views
building multiwheel tables, 480-484
cylinder roll example, 484-487
date/time, entering, 487-490

pickers, 146
picking

audio, 641-645
GameKit peers, 498-502
people (Address Book), 742-745
video, 639-640

platform limitations
application limits, 11
behavior limits, 12
data access limits, 10
energy limits, 11
interaction limits, 11
memory limits, 10
overview, 9
storage limits, 10

playing
audio, 611-618

catching end of playback, 614
ignoring lock events, 622-624
initializing audio players, 611-612
looping audio, 618-620
monitoring audio levels, 613
resuming after interruption,

621-622

843playing

ptg

scrubbing audio, 614
with MPMusicPlayerController

class, 649-653
video with MPMoviePlayer, 634-636

plus (+) class methods, 101
pngcrush utility, 10
pop-ups, 403
Pope, Stephen, 29
popping navigation controllers, 188-189,

197-199
populating tables, 427
ports (Bonjour), registering, 528-529
positioning

cell tower positioning, 690
GPS positioning, 690
hybrid approaches, 691
Internet provider positioning, 691
SkyHook Wi-Fi positioning, 690

POST requests, uploading via, 569-572
pragma marks, 76-77
predicates

in fetch requests (Core Data), 770-772
in Media Queries, 646-647
in table searches, 466

preferences tables, 473, 477-480
pricing section for in-app purchase items

(StoreKit), 783-784
processor speeds, 9
production environments for push

notifications, 677
progress indicators, 147

classes for, 406-407
creating, 407-409
custom overlays, 409-411

projects
adding media to, 157
compiling, 68
creating, 37-39

Detail pane, 41-42
editing views, 44-45
editor windows, 42
from scratch, 48-52
opening .xib files, 43-44
project files, list of, 43
running in simulator, 46
styles of, 37-38
Xcode project window, 40-41

signing compiled, 68-69

Projects and Sources list (Organizer), 70
properties. See also specific properties

AddressBook properties
address and instant message

properties, 730-733
date properties, 726-730
multivalue record properties,

727-730
attributes, 109-110
of CLLocation object, 694-695
creating, 106-107
custom getters/setters, 107-109
dot notation, 105
explained, 105
memory management, 105-106
of MPMediaItem class, 643-644
of MPMoviePlayerController

class, 653
retained properties

assigning values to, 113-114
cautions about, 114
deallocating objects, 118
reassigning, 114

self-assigning, 112
of text fields, 367-368
of UIDatePicker class, 487
of UIView class, 235-236

property lists, serializing/deserializing,
510-512

protocols
adding callbacks, 123
conforming to, 124-125
declaring optional callbacks, 123-124
defining, 122-123
explained, 122
implementing optional callbacks, 124
incorporating, 123

provisioning, 16
mobile provisions, 83
push-specific provisions, 661-662

proxies, 43
proximity sensor, enabling/disabling,

596-597
purchase GUI (StoreKit)

creating, 787-789
screenshot for in-app purchase items,

submitting, 785

844 playing

ptg

purchase models (StoreKit)
application submission, 787
explained, 779-781
in-app purchase items, creating,

782-786
purchase GUI, creating, 787-789
purchasing items, 789-794
test accounts, creating, 781-782
validating receipts, 794-796

purchase types (StoreKit), 783
purchasing items (StoreKit), 789-794

multiple items, 794
registering purchases, 792-794
responding to payments, 791-792
restoring purchases, 793-794
signing into test accounts, 790

push notifications, 33
advantages of, 655-656
application registration, 662-663

error handling, 664-665
responding to notifications,

665-666
retrieving device tokens, 663-664

building notification payloads, 672
converting aps dictionary to JSON,

674-675
custom key-value pairs, 675
localized alerts, 673
notification types, 673
receiving data on launch, 675-676

client skeleton example, 667-672
designing for, 686-687
development process

application identifier, generating, 659
push-specific provisions, 661-662
SSL certificate, generating, 660-661

explained, 656
feedback service, 685-686
limitations of, 658-659
multiple provider support, 657
security, 658
sending notification payloads, 676-681
table notifications, 426
Twitter client example, 681-685

push-specific provisions, 661-662
pushing

navigation controllers, 188-189
temporary views, 198-199

Q–R
querying subviews, 214-215
queues, 417, 629-634

random contact art, adding, 752-754
ranges, generating substrings from, 129
reachability, extending UIDevice class for,

547-549. See also availability
read-only properties, 106-107
read-write properties, 106
reading

with BonjourHelper class, 530
image data, 258

loading image files with
ImageHelper class, 260-261

loading images from application
bundle, 258

loading images from photo album,
260-265

loading images from sandbox,
258-259

loading images from URLs,
259-260

strings from files, 127-128
reassigning retained properties, 114
receipts (StoreKit), validating, 794-796
receivers, 99
receiving

GameKit data, 502
notification data on launch, 675-676

recording
audio, 624-634
video, 636-639

records (Address Book)
adding, 734
creating, 734
deleting, 735-736
multivalue record properties, 727-730
retrieving and setting ABRecord

strings, 725-726
recovering

iPhone-specific definitions, 74-75
state, 313-314
view hierarchy tree, 213

redo/undo support
in Core Data, 775-778
Redo buttons, adding to tables,

458-460

845redo/undo support

ptg

referencing system address book, 724
reflections

adding to views, 251-252
masking with Core Graphics, 253-255

registration
application identifiers, 15
Bonjour names and ports, 528-529
devices, 14-15, 83
for developer programs, 3
for iTunes Connect, 3
purchases (StoreKit), 792-794
for push notifications, 662-666
registering schemes

adding handler method, 816-817
declaring URL, 815-816

undos, 317-318
relationships (Core Data), 758, 766
releasing memory, 94-95
reliable mode, sending/receiving data, 502
remote notifications. See push notifications
remove controls, 452
removing

Address Book records, 735-736
breakpoints, 55
dictionary objects, 135
objects (Core Data), 765-767
selection highlights in table cells,

448-449
simulator data, 48
subviews, 216
table cells, 451-456
tree data structures, 582

reordering
subviews, 216
table cells, 456-457

reorientation, enabling, 175-176
replacing

dictionary objects, 134
main view, 159-160
search/replace, 129

requesting
certificates, 14
indexed substrings, 128

requirements, device capability
requirements, 590-592

resizing
frames, 225-226
text editors, 372

responder chain, 603-604
responding

to annotation button taps, 712-716
to payments (StoreKit), 791-792
to push notifications, 665-666
to URL scheme requests, 818-819

restoring purchases (StoreKit), 793-794
resuming audio playback after interruption,

621-622
retain counts, 95, 115
retaining

autorelease objects, 112-113
properties, 109, 113-114, 118

retrieving
ABRecord strings, 725-726
data via pasteboards, 525
device tokens, 663-664
IP and host information, 552-555
objects (Core Data), 763-764
views, 217-218

returning
control to calling application, 817-818
table cells from sections, 470

reusing table cells, 425, 428, 445-446
reverse geocoding, 700-702
review, submitting applications for, 787
root view controllers, 156
rotation

designing for, 174-175
autosizing, 176-179
enabling reorientation, 175-176
moving views, 179-182
swapping views, 183

interactive resize and rotation,
333-338

Rounded Rectangle button, 344
rows in tables, counting, 469-470
run loops, 396-399
running

console, 55-56
debugger, 53
projects in simulator, 46

runtime checks, 75-76

846 referencing system address book

ptg

S
sandbox

loading images from, 258-259
overview, 27, 257
sandbox environments for push

notifications, 677
sandbox files, 47

saving images to Documents folder, 270-271
.sb file extension, 28
scaling for push notifications, 686-687
scanning

for Bonjour services, 540-543
for connectivity changes, 549-552

screen
screen orientation for scroll-down

alerts, 412-415
UIScreen class, 155

Screenshot tab (Organizer), 73
screenshots, 290-291, 785
scroll-down alerts, 412-415
scrolling

changing background color based on,
431-432

menus, 405
scroll views

creating multiimage paged scroll,
280-281

displaying images in scrollable view,
278-280

scrubbing audio, 614
SDK (Software Developer’s Kit), 3

Cocoa Touch, 4-5
development devices, 5
downloading, 3
hardware requirements, 3
IB (Interface Builder), 4
Instruments, 4
limitations of, 12-13
SDK APIs, accessing from Xcode,

50-51
Shark, 4
Simulator, 4-6
Xcode, 4

search display controllers, 149, 464-465
search tables, Core Data for, 770-772
searchable data source methods, 465-466

searching
Address Book, 738-740
Address Book contacts, 735
dictionaries, 134
search/replace, 129
tables

delegate methods, 467
search display controller, building,

464-465
searchable data source methods,

building, 465-466
section groups (Core Data), 768
section key paths (Core Data), 767
sectioned tables, 467

building with Core Data, 769
counting, 469-470
data structure, creating, 468-469
delegate methods with, 472
header titles, creating, 470-471
indexes, creating, 471-472
returning cells from, 470

security
for push notifications, 658, 686-687
Security framework, 567
user credentials, storing in keychain,

566-569
segmented controls, 193-195, 362-363
selected table cells, customizing, 439
selecting

images from camera roll, 265-268
from stacked views, 184

selection color for table cells, 429
selection highlights in table cells, removing,

448-449
selectors, 93
self variable, 99
self-assigning properties, 112
sending

complex data via GameKit, 510-512
events from controls, 364
GameKit data, 502
messages to nil, 100
notification payloads, 676-681

serializing property lists, 510-512
server mode (peer pickers), 500, 502

847server mode (peer pickers)

ptg

servers
in GameKit, 498
iPhone servers

creating with Bonjour, 515-520
Mac clients, creating, 520-523

Web servers, 582-586
services, URL-based

adding handler method, 816-817
cross-promotion, 815
declaring URL, 815-816
implementing custom schemes, 818
overview, 814
responding to URL scheme requests,

818-819
returning control to calling

application, 817-818
service downsides, 815
URL schemes, 814-815

session objects, creating, 500
sessions in GameKit, 496-498
sets, 133-135
setters

creating custom, 107-109
explained, 106-107

setting ABRecord strings, 725-726
Settings app, 807
settings schema, 808
shake-controlled undo support, 319-320, 458
shakes, detecting

with accelerometer, 605-608
with motion events, 603-604

sharing keychains between applications,
575-577

sharing data via pasteboards, 524
Shark, 4
showAlert() function, 190-191
side-by-side code, viewing, 88
signatures, method signatures, 139
signing

compiled applications, 68-69
into test accounts (StoreKit), 790

simple direct manipulation interface,
304-305

simulated elements, enabling, 160
Simulator

clipboard for, 48
definition of, 4
explained, 46-48

limitations, 5-6
running projects in, 46

singletons, 101, 119-120
site availability, checking, 555-557
sizing

frames, 225-226
interactive resize and rotation,

333-338
SkyHook Wi-Fi positioning, 690
sleep mode, ignoring, 622-624
sliders, custom slider thumbs, 356-361
Smalltalk, 28, 91
smart labels, 387-388
Software Developer’s Kit. See SDK
sorting tables, 462-463
sound. See audio
source files

application delegate, 20-21
main.m, 19-20
overview, 18-19
view controller, 21-22

speakers, 7-8
speed

computing, 696-697
for Media Queries, 647-649
tracking, 695-696

springs, 176
sqlite3 utility, 762
SSL certificates, generating for push

notifications, 660-661
stacked views, selecting from, 184
Standard Developer Program, 2
state

recovering, 313-314
state changes in GameKit peers, 503
storing, 312-313
of table cells, retaining, 443-445

static analyzer, 64-65
static typing, 96
status bar, 151-152
status logs, monitoring, 509-510
storage limits, 10
StoreKit

application submission, 787
explained, 779-781
in-app purchase items

adding item details, 784-785
application approval, 785-786

848 servers

ptg

creating, 782-786
pricing section, 783-784
submitting purchase GUI

screenshot, 785
purchase GUI, 787-789
purchasing items, 789-794
test accounts, 781-782
validating receipts, 794-796

storing
data via pasteboards, 524
state, 312-313
user credentials in keychain, 566-569

stretching views, 349
strings. See also NSString class

ABRecord strings, 725-726
converting arrays to, 134
format specifiers, 104

struts, 176
subclassing UIControl class, 363-366
submitting

applications for review, 787
purchase GUI screenshot

(StoreKit), 785
subscription purchases, 784
substrings, accessing, 128-129
subviews

adding, 216
querying, 214-215
removing, 216
reordering, 216
view callbacks, 216-217

Summary tab (Organizer), 71-72
swapping views, 183, 239-240
swipes, 329, 453
switches, 354-356
symbolication, 73
synchronize method, 807
synchronous downloads, 557-560
sysctl() method, 592-593
sysctlbyname() method, 592-593
System Audio services, 417-418
System Configuration framework, 546
system information, 589-590, 592-593
system sounds

creating, 417-420
delays, 419

T
tab bars, 149

geometry of, 153-154
in Interface Builder, 207-208
navigation controllers example,

201-204
persistence example, 204-207
Tab bar applications, 37

table controllers, 149-150
table notifications, 426
tables, 146

background color, 430-432
background image, 432-433
cells. See cells (table)
creating, 424
data sources, 427-428, 767-770
date/time, entering, 487-490
editing in Core Data, 773-775
font table example, 428-430
group tables, 477-480
grouped tables, 473
headers/footers, 474-476
multiwheel tables, 480-484
populating, 427
searching

delegate methods, 467
search display controller, building,

464-465
searchable data source methods,

building, 465-466
sections, 467

counting, 469-470
data structure, creating, 468-469
delegate methods with, 472
header titles, creating, 470-471
indexes, creating, 471-472
returning cells from, 470

sorting, 462-463
UITableView class, 423-426
UITableViewController class, 424
undo support, 457-462

adding Undo/Redo buttons,
458-460

in Core Data, 775-778
shake-to-edit, 458

tagging views, 173-174, 217-218
tappable overlays, 411-412
taps, 329

849taps

ptg

target-actions, 32
target settings, 83
TCPConnection class, 515
TCPServer class, 515
teams, 13-14
tearing down tree data structures, 582
telephony, 8
temperature converter example

code-based, 166-169
hybrid

adapting template, 170
adding view controller, 170
designing interface, 171
editing main.m, 172-173
editing view controller

implementation, 171-172
running application, 173

Interface Builder, 156-159
adding connections, 163-164
adding labels, 160
adding media to, 157
adding outlets/actions, 162
capturing colors, 165
creating image backdrops, 160
creating new project, 156
defining conversion method,

165-166
editing navigation bar, 159
enabling simulated elements, 160
inspecting class header, 163
replacing main view, 159-160
running application, 166
testing interface, 161

loading .xib files, 173-174
templates

adapting, 170
creating custom, 86-88
creating projects, 37-39

Detail pane, 41-42
editing views, 44-45
editor windows, 42
opening .xib files, 43-44
project files, list of, 43
running in simulator, 46
Xcode project window, 40-41

moving views, 180-182
temporary views, pushing, 198-199

testing
accessibility, 803-806
arrays, 134
interface, 161
network status, 545-547
strings, 130
test accounts (StoreKit)

creating, 781-782
signing into, 790

test images, adding, 290
touches, 307-308

circular hit test, 308
testing against bitmap alpha levels,

309-311
tethering, 6-7
text

displaying in action sheets, 405-406
multiline button text, 351
text fields

geometry of, 155
keyboards, dismissing, 366-369
properties, 367-368
text entry filtering, 374-376

text input, requesting via alerts,
399-402

text editors, 371-374
text views

keyboards, dismissing, 370-371
smart labels, 387-388
text editors, creating, 371-374

thumbnails, creating from images, 285-288
thumbs (sliders), 356
time-lapse photos, capturing, 273-275
time/date

entering in tables, 487-490
formatting, 490-493

timers, NSTimer class, 132
timestamp property (CLLocation object), 695
To Do List view hierarchy, 212-213
toggle buttons, 354-356
Toll Free Bridging, 117
toolbars, 146-147

creating
in Interface Builder, 384-385
tips for, 387
in Xcode, 385-386

customizing, 56-57
geometry of, 153-154

850 target-actions

ptg

touch wheels, 363-366
touch-based painting, 321-323
touches

calculating lines, 323-325
constraining movement, 305-307
detecting circles, 325-327
gesture distinction, 329-333
interactive resize and rotation,

333-338
methods, 302-303
multitouch, 303-304, 327-329
overview, 301-302
persistence, 311-315
phases, 302
simple direct manipulation interface,

304-305
testing, 307-311
touch-based painting, 321-323
touching views, 303
tracking, 364
undo support

child-view undo support, 316
creating undo managers, 316
custom undo routine, 318-319
navigation bars, 316-317
registering undos, 317-318
shake-controlled undo support,

319-320
tracking

latitude and longitude
code listing, 693
location properties, 694-695
step-by-step process, 691-692

speed, 695-696
touches, 364

transaction observers, 789
transforming views, 224, 232

affine transform of UIView, 233-234
centering landscape views, 234-235

transitions (view)
Core Animation calls, 244-246
Core Animation transitions, 242-244
curl transitions, 246-247

transparency, animating transparency
changes in views, 237-238

tree data structures, converting XML data to,
577-582

troubleshooting
device orientation sensing, 602
enabling interactions, 160

TwitPic, uploading images to, 572-575
Twitter client example (push notifications),

681-685
Twitterrific, 814
two-item menu example (navigation

controllers), 192-193

U
UDIDs (unique device identifiers), 14
UIAcceleration class

locating “up,” 597-599
moving onscreen objects, 599-601

UIAccelerometerDelegate protocol, 597
UIAccessibility protocol, 802
UIActionSheet class, 145, 391, 394,

403-405
UIActivityIndicatorView class, 147, 406-407
UIAlertView class, 145, 391-394
UIApplication class, 35, 119
UIApplicationMain function, 20
UIBarButtonItem class, 145, 347
UIButton class, 145, 344-345, 351
UIControl class. See also controls

control events, 341-344
subclassing, 363-366
types of controls, 341

UIDatePicker class, 146, 487-490
UIDevice class, 119-121, 589-590

battery state, monitoring, 594-595
device orientation, detecting, 601-603
enabling/disabling proximity sensor,

596-597
extending for reachability, 547-549
retrieving IP and host information,

552-555
UIEdgeInsetsInsetRect() function, 231
UIImage class. See images
UIImageJPEGRepresentation() function, 270
UIImageOrientation class, 288-290
UIImagePickerController class, 148-150,

262-267, 638
UIImagePNGRepresentation() function, 270
UIImageView class, 144
UIImageWriteToSavedPhotosAlbum()

function, 268

851UIImageWriteToSavedPhotosAlbum() function

ptg

UILabel class, 144, 387
UINavigationBar class, 146
UINavigationController class, 30, 148-149,

187. See also navigation controllers
UINavigationItem class, 189-190
UIPageControl class, 146, 376-378
UIPasteboard class, 524
UIPickerView class, 146, 480-482
UIProgressView class, 147, 406-409
UIResponder class, 102
UIScreen class, 155
UIScrollView class, 144
UISearchBar class, 147, 464
UISearchDisplayController class, 464
UISegmentedControl class, 146,

193-195, 362
UISlider class, 146, 356-361
UISwitch class, 146, 354
UITabBar class, 147
UITabBarController class, 30, 149, 201
UITableView class, 30, 146, 423.

See also tables
UITableViewCellStyleDefault class, 433
UITableViewCellStyleSubtitle class, 433
UITableViewCellStyleValue1 class, 434
UITableViewCellStyleValue2 class, 434
UITableViewController class, 149, 424

font table example, 428
populating tables, 427
views, laying out, 424

UITextField class, 146
keyboards, dismissing, 366-369
text entry filtering, 374-376

UITextInputTraits protocol, 367
UITextView class, 144

keyboards, dismissing, 370-371
smart labels, 387-388
text editors, creating, 371-374

UIToolbar class, 147
UITouchPhaseBegan class, 302
UITouchPhaseCancelled class, 302
UITouchPhaseEnded class, 302
UITouchPhaseMoved class, 302
UITouchPhaseStationary class, 302
UIVideoEditorController class, 640
UIView class, 29, 143-144. See also views
UIViewController class, 29-30, 148
UIWebView class, 144

UIWindow class, 143-144
undo support

child-view undo support, 316
in Core Data, 775-778
creating undo managers, 316
custom undo routine, 318-319
navigation bars, 316-317
registering undos, 317-318
shake-controlled undo support,

319-320
in tables, 457-462

adding Undo/Redo buttons,
458-460

shake-to-edit, 458
in text editors, 371
Undo buttons, adding to tables,

458-460
undo managers, creating, 316

unique device identifiers (UDIDs), 14
University Developer Program, 3
unreliable mode, sending/receiving

data, 502
updating

application badges, 416-417
fetch requests (Core Data), 764
loadView method, 174

uploading
form data, 572-575
via POST requests, 569-572

uploads to App Store, debugging, 81-82
Urban Airship, 793
URL-based services, creating

adding handler method, 816-817
cross-promotion, 815
declaring URL, 815-816
implementing custom schemes, 818
overview, 814
responding to URL scheme requests,

818-819
returning control to calling

application, 817-818
service downsides, 815
URL schemes, 814-815

URLs
building, 136
loading images from, 259-260

user credentials, storing in keychain,
566-569

852 UILabel class

ptg

user defaults, checking, 813-814
user interface design. See interface design
user location annotations, 707-708
utilities, 10-11, 38

V
validating

receipts (StoreKit), 794-796
text entries, 374-376

variables, deallocating objects, 118
variadic arguments, 402-403
vibration, 9, 418-420
video

editing, 639-641
picking, 639-640
playing, 634-636
recording, 636-639

view callbacks, 216-217
view classes, 29-30
view controllers, 21-22, 147-148. See also

navigation controllers
adding, 170
address book controllers, 150
alerts, displaying, 190-191
arrays, loading, 198
custom modal controllers example,

199-201
editing implementation, 171-172
GKPeerPickerController class, 151
media player controllers, 151
MFMailComposeViewController

class, 150
root view controller, 156
table controllers, 149-150
UIImagePickerController class, 150
UINavigationController class, 148-149
UITabBarController class, 149
UIViewController class, 148

view-based applications, 38
viewing

locations
finding best location match,

704-707
overview, 703-704

object layout, 185
side-by-side code, 88

views, 143-144
adding media to, 184
animations

bouncing views, 248-250
building UIView animation blocks,

236-237
callbacks, 237
Core Animation calls, 244-246
Core Animation transitions,

242-244
curl transitions, 246-247
fading views in and out, 237-238
flipping views, 240-241
image view animations, 250-251
overview, 236
swapping views, 239-240

annotation views, 710-712
bounded views, moving randomly,

231-232
creating, 50
display and interaction traits, 235-236
displaying data, 144
draggable views, 304-305
editing, 44-45
fading in and out, 237-238
flipping, 240-241
frames

adjusting sizes, 225-226
CGRect structure, 223-224, 227
overview, 224-225
utility methods, 227-231

geometry
keyboards, 154-155
navigation bars/toolbars/tab bars,

153-154
status bar, 151-152
text fields, 155
UIScreen class, 155

main view, replacing, 159-160
making choices, 145
moving, 179-182
naming, 184, 219-222
picker views, 484-487
reflections

creating, 251-252
masking with Core Graphics,

253-255

853views

ptg

retrieving, 217-218
scroll views

creating multiimage paged scroll,
280-281

displaying images in scrollable view,
278-280

stacked views, 184
stretching, 349
subviews

adding, 216
querying, 214-215
removing, 216
reordering, 216
view callbacks, 216-217

swapping, 183, 239-240
table views, 424
tagging, 173-174, 217-218
temporary views, 198-199
touch-based painting, 321-323
touching, 303
transforming, 232

affine transform of UIView,
233-234

centering landscape views, 234-235
transitions

Core Animation calls, 244-246
Core Animation transitions,

242-244
curl transitions, 246-247

view geometry, 222-223
coordinate systems, 224
frame rectangles, 223-224
transforms, 224

view hierarchies, 211-212
recovering view hierarchy tree, 213
To Do List view hierarchy, 212-213

visualizing cell reuse, 445-446
Voice Chat (GameKit), 512-515
Voice Control, 799
VoiceOver accessibility

adding from code, 802-803
adding with Interface Builder, 799

enabling accessibility, 802
hints, 801
labels, 800-801
traits, 802

common VoiceOver gestures, 805-806

overview, 799
testing on iPhone, 803-806
testing with simulator, 803

volume alert, 420-421
Vulcano, Emanuele, 816

W
warnings, treating as errors, 98
Web servers, 582-586
Web sites, authentication challenges,

565-566
wheel tables, 480-484
WiFi connections, 528-537
window-based applications, 38
writing

collections to files, 135-136
photos to photo album, 268-270
strings to files, 127-128

WWDR intermediate certificate, 14

X–Y–Z
.xcdatamodel files, 758
Xcode

accessing SDKAPIs, 50-51
building custom buttons, 348-351
compiler directives, 73-76
debugger

breakpoints, 53-55
console, 55-57
customizing toolbars, 56-57
inspecting objects, 55
opening, 53
running, 53
zombies, 57

definition of, 4
projects

creating, 37-39
creating from scratch, 48-52
Detail pane, 41-42
editing views, 44-45
editor windows, 42
opening .xib files, 43-44
project files, list of, 43
project window, 40-41
running in simulator, 46

854 views

ptg

side-by-side code, viewing, 88
templates. See templates
toolbars, 385-386

Xcode identities, customizing, 85-86
Xcode Organizer. See Organizer
.xib files, 19

loading from code, 173-174
opening, 43-44

XML data, converting to tree data structures,
577-582

XMLParser class, 578

Yahoo Geocoding API, 717

zombies, enabling, 57

855zombies

ptg

Cocoa® Programming for Mac® OS X,
Third Edition
Aaron Hillegass | ISBN-13: 978-0-321-50361-9

The bestselling introduction to Cocoa—
now revised!

Once again updated to cover the latest

Mac programming technologies and still

enthusiastically recommended by experienced

Mac OS X developers.

Core Animation
Marcus Zarra / Matt Long
ISBN-13: 978-0-321-61775-0

The definitive, full-color, task-based reference

to Core Animation.

iPhone® for Programmers: An App-Driven
Approach
Deitel and Associates
ISBN-13: 978-0-13-705842-6

The professional programmer’s DEITEL® guide to

iPhone app development using iPhone SDK 3.x,

Xcode, Objective-C, and Cocoa.

For more information and to read
sample material, please visit
informit.com/learnmac.

Titles are also available at
safari.informit.com.

Essential Resources for
Apple Developers

ptg

ESSENTIAL REFERENCES FOR
PROGRAMMING PROFESSIONALS

Developer’s Library

Developer’s Library books are available at most retail and online

bookstores. For more information or to order direct, visit our

online bookstore at informit.com/store.

Online editions of all Developer’s Library titles are available by

subscription from Safari Books Online at safari.informit.com.

informit.com/devlibrary

Developer’s
Library

Developing Hybrid
Applications for the
iPhone

Lee S. Barney

ISBN-13: 978-0-321-60416-3

Cocoa® Programming
Developer’s Handbook

David Chisnall

ISBN-13: 978-0-321-63963-9

Cocoa Design Patterns

Erik M. Buck

Donald A. Yacktman

ISBN-13: 978-0-321-53502-3

Other Developer’s Library Titles

TITLE AUTHOR ISBN-13

Android Wireless Application Shane Conder / Lauren Darcey 978-0-321-62709-4

Development

Programming in Objective-C 2.0 Stephen G. Kochan 978-0-321-56615-7

Building Open Social Apps Chris Cole / Chad Russell / 978-0-321-61906-8

Jessica Whyte

PHP and MySQL® Web Luke Welling / Laura Thomson 978-0-672-32916-6

Development, Fourth Edition

ptg

Your purchase of The iPhone™ Developer’s Cookbook, Second Edition includes access
to a free online edition for 45 days through the Safari Books Online subscription service.
Nearly every Addison-Wesley Professional book is available online through Safari Books
Online, along with more than 5,000 other technical books and videos from publishers
such as Cisco Press, Exam Cram, IBM Press, O’Reilly, Prentice Hall, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specific answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at
www.informit.com/safarifree

STEP 1: Enter the coupon code: XAQKWWA.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have difficulty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

www.informit.com/safarifree

	Addison Wesley - iPhone Developers Cookbook Second Edition (December 2009) (ATTiCA)
	Table of Contents
	Preface
	1 Introducing the iPhone SDK
	iPhone Developer Programs
	Getting Started
	Understanding Model Differences
	Platform Limitations
	SDK Limitations
	Using the Developer Portal
	Assembling iPhone Projects
	iPhone Application Components
	Programming Paradigms
	Summary

	2 Building Your First Project
	Creating New Projects
	Building Hello World the Template Way
	Using the Simulator
	The Minimalist Hello World
	Using the Debugger
	Memory Management
	Recipe: Using Instruments to Detect Leaks
	Recipe: Using Instruments to Monitor Cached Object Allocations
	Using the Clang Static Analyzer
	Building for the iPhone
	From Xcode to Your iPhone: The Organizer Interface
	Using Compiler Directives
	Building for Distribution
	Clean Builds
	Building for Ad Hoc Distribution
	Customizing Xcode Identities
	Creating Custom Xcode Templates
	One More Thing: Viewing Side-by-Side Code
	Summary

	3 Objective-C Boot Camp
	The Objective-C Programming Language
	Classes and Objects
	Methods, Messages, and Selectors
	Class Hierarchy
	Logging Information
	Properties
	Simple Memory Management
	Crafting Singletons
	Categories (Extending Classes)
	Protocols
	Foundation Classes
	One More Thing: Message Forwarding
	Summary

	4 Designing Interfaces
	UIView and UIWindow
	UIViewControllers
	View Design Geometry
	Building Interfaces
	Walk-Through: Building a Temperature Converter with IB
	Walk-Through: Building a Converter Interface by Hand
	Walk-Through: Creating a Hybrid Converter
	Walk-Through: Loading .xib Files Directly from Code
	Designing for Rotation
	Enabling Reorientation
	Autosizing
	Moving Views
	Swapping Views
	One More Thing: A Half Dozen Great Interface Builder Tips
	Summary

	5 Working with View Controllers
	Developing with Navigation Controllers
	Utility Function
	Recipe: Building a Simple Two-Item Menu
	Recipe: Adding a Segmented Control
	Recipe: Navigating Between View Controllers
	Recipe: Using Creative Popping Options
	Recipe: Presenting a Custom Modal Information View
	Recipe: Tab Bars
	Recipe: Remembering Tab State
	One More Thing: Interface Builder and Tab Bar Controllers
	Summary

	6 Assembling Views and Animations
	View Hierarchies
	Recipe: Recovering a View Hierarchy Tree
	Recipe: Querying Subviews
	Managing Subviews
	Recipe: Tagging and Retrieving Views
	Recipe: Naming Views
	View Geometry
	Recipe: Working with View Frames
	Recipe: Randomly Moving a Bounded View
	Recipe: Transforming Views
	Display and Interaction Traits
	UIView Animations
	Recipe: Fading a View In and Out
	Recipe: Swapping Views
	Recipe: Flipping Views
	Recipe: Using Core Animation Transitions
	Recipe: General Core Animation Calls
	Curl Transitions
	Recipe: Bouncing Views as They Appear
	Recipe: Image View Animations
	One More Thing: Adding Reflections to Views
	Summary

	7 Working with Images
	Recipe: Finding and Loading Images
	Recipe: Accessing Photos from the iPhone Photo Album
	Recipe: Selecting and Customizing Images from the Camera Roll
	Recipe: Snapping Photos and Writing Them to the Photo Album
	Recipe: Saving Pictures to the Documents Folder
	Recipe: E-Mailing Pictures
	Recipe: Capturing Time Lapse Photos
	Recipe: Using a Custom Camera Overlay
	Recipe: Displaying Images in a Scrollable View
	Recipe: Creating a Multiimage Paged Scroll
	Recipe: Creating New Images from Scratch
	Recipe: Building Thumbnails from Images
	Fixing Photo Orientation
	Taking Screenshots
	Recipe: Working Directly with Bitmaps
	One More Thing: Going Grayscale
	Summary

	8 Gestures and Touches
	Touches
	Recipe: Adding a Simple Direct Manipulation Interface
	Recipe: Constraining Movement
	Recipe: Testing Touches
	Recipe: Testing Against a Bitmap
	Recipe: Adding Persistence to Direct Manipulation Interfaces
	Recipe: Persistence Through Archiving
	Recipe: Adding Undo Support
	Recipe: Adding Shake-Controlled Undo Support
	Recipe: Drawing Onscreen
	Recipe: Calculating Lines
	Recipe: Detecting Circles
	Recipe: Detecting Multitouch
	Recipe: Gesture Distinction
	One More Thing: Interactive Resize and Rotation
	Summary

	9 Building and Using Controls
	The UIControl Class
	Buttons
	Adding Buttons in Interface Builder
	Building Custom Buttons in Xcode
	Multiline Button Text
	Adding Animated Elements to Buttons
	Recipe: Animating Button Responses
	Recipe: Working with Switches
	Recipe: Adding Custom Slider Thumbs
	Recipe: Creating a Twice-Tappable Segmented Control
	Recipe: Subclassing UIControl
	Recipe: Dismissing a UITextField Keyboard
	Recipe: Dismissing UITextView Keyboards
	Recipe: Building a Better Text Editor
	Recipe: Text Entry Filtering
	Recipe: Adding a Page Indicator Control
	Recipe: Creating a Customizable Paged Scroller
	Building a Toolbar
	One More Thing: Smart Labels
	Summary

	10 Alerting Users
	Talking Directly to Your User Through Alerts
	Recipe: No-Button Alerts
	Recipe: Creating Modal Alerts with Run Loops
	Recipe: Soliciting Text Input from the User
	Recipe: Using Variadic Arguments with Alert Views
	Recipe: Presenting Simple Menus
	Recipe: Displaying Text in Action Sheets
	“Please Wait”: Showing Progress to Your User
	Recipe: Building a UIProgressView
	Recipe: Building Custom Overlays
	Recipe: Tappable Overlays
	Recipe: Orientable Scroll-Down Alerts
	Recipe: Using the Network Activity Indicator
	Recipe: Badging Applications
	Recipe: Simple Audio Alerts
	One More Thing: Showing the Volume Alert
	Summary

	11 Creating and Managing Table Views
	Introducing UITableView and UITableViewController
	Recipe: Implementing a Very Basic Table
	Recipe: Changing a Table’s Background Color
	Recipe: Creating a Table Image Backsplash
	Recipe: Exploring Cell Types
	Recipe: Building Custom Cells in Interface Builder
	Recipe: Alternating Cell Colors
	Recipe: Building a Custom Cell with Built-In Controls
	Recipe: Remembering Control State for Custom Cells
	Recipe: Creating Checked Table Cells
	Recipe: Removing Selection Highlights from Cells
	Recipe: Working with Disclosure Accessories
	Recipe: Deleting Cells
	Recipe: Reordering Cells
	Recipe: Adding Undo Support to a Table
	Recipe: Sorting Tables
	Recipe: Searching Through a Table
	Recipe: Working with Sections
	Recipe: Creating Grouped Tables
	Recipe: Customizing Headers and Footers
	Recipe: Creating a Group Table with Many Cell Types and Heights
	Recipe: Building a Multiwheel Table
	Recipe: Using a View-Based Picker
	Recipe: Using the UIDatePicker
	One More Thing: Formatting Dates
	Summary

	12 Making Connections with GameKit and Bonjour
	Recipe: Creating Basic GameKit Services
	Recipe: Peeking Behind the Scenes
	Recipe: Sending Complex Data Through GameKit
	Recipe: GameKit Voice Chat
	Recipe: Using Bonjour to Create an iPhone Server
	Recipe: Creating a Mac Client for an iPhone Bonjour Service
	Recipe: Working Around Real-World GameKit Limitations
	Recipe: iPhone to iPhone Gaming Via BonjourHelper
	Creating an “Online” GameKit Connection
	One More Thing: Scanning for Services
	Summary

	13 Networking
	Recipe: Checking Your Network Status
	Recipe: Extending the UIDevice Class for Reachability
	Recipe: Scanning for Connectivity Changes
	Recipe: Recovering IP and Host Information
	Recipe: Checking Site Availability
	Recipe: Synchronous Downloads
	Recipe: Asynchronous Downloads
	Recipe: Handling Authentication Challenges
	Recipe: Using the Keychain to Store Sensitive Data
	Recipe: Uploading Via POST
	Recipe: Uploading Data
	Recipe: Sharing Keychains Between Applications
	Recipe: Converting XML into Trees
	Recipe: Building a Simple Web-Based Server
	One More Thing: FTPHelper
	Summary

	14 Device Capabilities
	Recipe: Accessing Core Device Information
	Adding Device Capability Restrictions
	Recipe: Recovering Additional Device Information
	Recipe: Monitoring the iPhone Battery State
	Recipe: Enabling and Disabling the Proximity Sensor
	Recipe: Using Acceleration to Locate “Up”
	Recipe: Using Acceleration to Move Onscreen Objects
	Recipe: Detecting Device Orientation
	Recipe: Detecting Shakes Using Motion Events
	Recipe: Detecting Shakes Directly from the Accelerometer
	One More Thing: Checking for Available Disk Space
	Summary

	15 Audio, Video, and MediaKit
	Recipe: Playing Audio with AVAudioPlayer
	Recipe: Looping Audio
	Recipe: Handling Audio Interruptions
	Recipe: Audio That Ignores Sleep
	Recipe: Recording Audio
	Recipe: Recording Audio with Audio Queues
	Recipe: Playing Video with the Media Player
	Recipe: Recording Video
	Recipe: Picking and Editing Video
	Recipe: Picking Audio with the MPMediaPickerController
	Creating a Media Query
	Recipe: Using the MPMusicPlayerController
	One More Thing: Additional Movie Player Properties
	Summary

	16 Push Notifications
	Introducing Push Notifications
	Provisioning Push
	Registering Your Application
	Recipe: Push Client Skeleton
	Building Notification Payloads
	Recipe: Sending Notifications
	Recipe: Push in Action
	Feedback Service
	Designing for Push
	Summary

	17 Using Core Location and MapKit
	How Core Location Works
	Recipe: Core Location in a Nutshell
	Recipe: Tracking Speed
	Recipe: Computing Speed and Distance
	Recipe: Keeping Track of “North” by Using Heading Values
	Recipe: Reverse Geocoding
	Recipe: Viewing a Location
	Recipe: User Location Annotations
	Recipe: Creating Map Annotations
	One More Thing: Geocoding
	Summary

	18 Connecting to the Address Book
	Recipe: Working with the Address Book
	Recipe: Searching the Address Book
	Recipe: Accessing Image Data
	Recipe: Picking People
	Recipe: Limiting Contact Picker Properties
	Recipe: Adding New Contacts
	Recipe: Modifying Existing Contacts
	Recipe: The AB Unknown Person View Controller
	One More Thing: Adding Random Contact
	Summary

	19 A Taste of Core Data
	Introducing Core Data
	Recipe: Using Core Data for a Table Data Source
	Recipe: Search Tables and Core Data
	Recipe: Integrating Core Data Tables with Live Data Edits
	Recipe: Implementing Undo-Redo Support with Core Data
	Summary

	20 StoreKit: In-App Purchasing
	Getting Started with StoreKit
	Creating Test Accounts
	Creating New In-App Purchase Items
	Submitting the Application
	Building a GUI
	Purchasing Items
	Validating Receipts
	Summary

	21 Accessibility and Other iPhone OS Services
	Adding VoiceOver Accessibility to Your Apps
	Recipe: Adding Custom Settings Bundles
	Recipe: Creating URL-Based Services
	Summary

	Index
	A: Info.plist Keys
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J–K
	L
	M
	N
	O
	P
	Q–R
	S
	T
	U
	V
	W
	X–Y–Z

