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Preface

Rivers, as part of the nature, have been a focus of human activities since the beginning
of civilization. Through engineering practices, such as flood control, water supply,
irrigation, drainage, channel design, river regulation, navigation improvement, power
generation, environment enhancement, and aquatic habitat protection, humans have
come to understand more about rivers and established basic principles and analytical
methodologies for river engineering. With the help of computation and information
techniques, numerical modeling of flow and sediment transport in rivers has improved
greatly in recent decades and been applied widely as a major research tool in solving
river engineering problems. These advances motivated me to write this book on the
physical principles, numerical methods, and engineering applications of computational
river dynamics.

Most of the topics included in this book have been the central theme of my research
work. I developed a simple 1-D quasi-steady sediment transport model for my bach-
elor’s degree in 1986, a width-averaged 2-D unsteady open-channel flow model in
my master’s thesis in 1988, and an integrated 1-D and depth-averaged 2-D sediment
transport model under quasi-steady flow conditions in my Ph.D. dissertation in 1991
at the Department of River Engineering, Wuhan University of Hydraulic and Electric
Engineering, China. In 1995-1997, I established a 3-D sediment transport model at
the Institute for Hydromechanics, University of Karlsruhe, supported by the Alexander
von Humboldt Foundation, Germany. Since 1997, I have revisited 1-D and 2-D mod-
els and developed a 1-D channel network model and a depth-averaged 2-D model for
unsteady flow and non-uniform sediment transport at the National Center for Com-
putational Hydroscience and Engineering, University of Mississippi, USA, through a
Specific Research Agreement between the USDA Agricultural Research Service and the
University of Mississippi. I have also reviewed sediment transport theories, established
several sediment transport formulas, and developed models for dam-break fluvial pro-
cesses, vegetation effects, cohesive sediment transport, and contaminant transport. All
these model developments and studies contributed to this book.

This book is intended primarily as a reference book for river scientists and engineers.
It is also useful for professionals in hydraulic, environmental, agricultural, and geo-
logical engineering. It can be used as a textbook for civil engineering students at the
graduate level.

My fascination with river engineering and computational river dynamics began
with my first supervisor, Prof. Jianheng Xie. Later I learned a great deal about tur-
bulence models and computational techniques in CFD from Prof. Wolfgang Rodi.
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Notations

Symbol Meaning

A Cross-sectional area of flow in |-D model

Ap Bed area at the cross-section

B Channel width at the water surface

b Flow width at height z in width-averaged 2-D model

C Depth-, width- or section-averaged suspended-load concentration
Contaminant concentration

Cq Drag coefficient of sediment particle or vegetation

Cy, G, G Concentrations of dissolved, sorbed, and total contaminants

Ch Chezy coefficient

G Depth- or cross-section-averaged concentration of total load

Cs Depth- or cross-section-averaged equilibrium suspended-load concentration

C Local sediment concentration

Chy Cbx Actual and equilibrium near-bed suspended-load concentrations

€0, Gy local and depth-averaged concentrations of vegetation

D Diameter of vegetation stem

Dy, Ep Near-bed deposition and entrainment fluxes of sediment

Dy, Dy, Dispersion fluxes of suspended load

Dy ny» Dyx; Dyy
d

dso

d

dm

- o

Fdi fa
Fu, Fs, Fp, ...
F

wx\;roq:h

Dispersion transports of momentum
Sediment diameter

Median diameter of sediment mixture
Sediment diameter of size class k
Arithmetic mean diameter of sediment

Drag forces on vegetation
Fluxes across cell faces
External force per unit volume
Coriolis coefficient
Gravitational acceleration
Flow depth

Vegetation height

Jacobian determinant
Conveyance of channel
Turbulent kinetic energy
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Symbol Meaning
ks Equivalent (effective) roughness height
Subscript k Sediment size class index
Associated with turbulent kinetic energy
L L Adaptation length of sediment
Im Mixing length
Nqg Vegetation density
n Manning roughness coefficient
Py Production of turbulence by shear
p Pressure
p’ Pressure correction
Pbk Bed-material gradation in mixing layer
b Porosity of sediment deposit
Q Flow discharge
Qb, Qb Actual and equilibrium bed-load transport rates
Qr, Qe Actual and equilibrium total-load transport rates
q Unit flow discharge
Qb Qb Actual and equilibrium unit bed-load transport rates
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Ax, Ay
Azp, AAp
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Side discharges of flow and sediment

Hydraulic radius of channel

Hydraulic radius of channel bed

Hydraulic radius of vegetated bed

Source term

Energy slope, friction slope

Temperature or transport stage number
Depth-averaged stresses

Time

Depth- or section-averaged flow velocity
Depth-averaged flow velocities in x- and y-directions
Width-averaged flow velocities in x- and z-directions
Critical average velocity for incipient motion
bed shear velocity

Bed-load velocities

Flow velocities in x;(x,y, z) directions

Flow velocities in &, (£, n, ¢) directions
Horizontal Cartesian coordinates

i-coordinate in the Cartesian coordinate system
Vertical coordinate above a datum (or bed)

Bed surface elevation

Water surface elevation

Adaptation coefficient of sediment

Direction cosines of bed-load movement
Correction factor for momentum

Correction factors for suspended and total loads
Wetted perimeter at the cross-section

Sand dune height

Area of the control volume centered at P

Time step

Grid spacings

Changes in bed elevation and area

Thickness of bed-load layer

Kronecker delta
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Symbol Meaning

Om Mixing layer thickness

8h, 6Q Increments of water stage and flow discharge
£ Dissipation rate of turbulent energy

&s Turbulent diffusivity of sediment

O Repose angle of sediment

y Specific weight of water and sediment mixture
Yf Vs Specific weights of water and sediment

K Von Karman constant

A Darcy-Weisbach friction factor

Wy V Dynamic and kinematic viscosities of water
Vg Turbulent or eddy viscosity

T Circumference-diameter ratio ~ 3.14159

C Shields number

O Critical Shields number

0, v Temporal, spatial weighting factors

0 Density of water and sediment mixture

P0 Density of flow density at water surface

Ob Density of water and sediment mixture at bed surface layer
0d Dry density of sediment deposit

Of> Ps Densities of water and sediment

o Schmidt number

T, T Shear stresses

Th, r,; Bed shear stress, grain shear stress

Tc Ceritical shear tress for incipient motion

Tee Critical shear stress for erosion

Ts Wind driving force at the water surface

s Sediment settling velocity

Wsf Floc settling velocity
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Introduction

1. OVERVIEW OF RIVER ENGINEERING

The origin of river engineering dates back to ancient times. According to historical
records, the Chinese began building levees along the Yellow River about six thou-
sand years ago. Approximately around the same period, irrigation systems and flood
control structures were constructed in Mesopotamia, and also some ten centuries
later in Egypt. During the Renaissance period, the observation of water flow and
sediment transport was carried out by the Italian artist and engineer Leonardo da
Vinci (1452-1519). Since then, scientists and engineers have performed a great num-
ber of studies on rivers, and constructed dams, levees, dikes, bridges, river training
works, navigation facilities, and water supply facilities along rivers. This section briefly
highlights the key issues in river engineering.

River dynamics

The study on the flow, sediment transport, and channel evolution processes in rivers
began centuries ago, but river dynamics emerged as a distinct discipline of science
and technology only after M. P. DuBoys established a bed-load formula in 1879 and
H. Rouse proposed a function for the vertical distribution of suspended sediment in
1937. River dynamics deals with river flow and sediment problems, such as turbu-
lent flow in alluvial channels, movable bed roughness, sediment settling, incipient
motion, transport, deposition, and erosion. River dynamics also incorporates the
study of fluvial processes, including river pattern classification, channel evolution
laws, and regime theory. It provides physical principles and analysis methods for river
engineering.

Flood control and mitigation

Flood is one of the biggest disasters rivers can cause. A river system is usually in
balance — to a certain degree — with the hydrological and geological conditions of its
basin. When the amount of runoff generated from uplands due to overwhelming rain-
fall exceeds the transport and storage capacity of the river system, the flow will overtop
or break banks and flood neighboring areas. Owing to thousands of years’ struggling
against flood threats, humans have developed many flood control technologies, such
as levees, river training works, storage areas, and diversion structures. Levees are one
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of the major measures used to control flood in many rivers. River training works, such
as spur-dikes, weirs, and bank revetments, are often constructed to control the flow
and protect banks and levees. Flood storage areas, such as reservoirs, lakes, deten-
tion ponds, and floodplains, help detain the flood propagation speed and reduce the
peak of the flood. Diversion areas or channels are usually designated for emergency
purposes when flood threatens the safety of backbone structures and key areas. As a
new technology, flood forecasting and warning systems have been established in many
regions to mitigate the flood disaster.

Reservoir sedimentation

Sediment deposition reduces the storage capacity and life span of reservoirs. With
time, the deposition will extend upstream and submerge more land, while sediments,
especially coarse particles, will be detained by reservoirs, causing erosion in down-
stream channels. The deposition and erosion processes and the ultimate equilibrium
profiles in reservoirs and downstream channels are topics of concern. After reservoirs
reach equilibrium states, their efficiency in terms of flood control, power genera-
tion, and sediment detention may be significantly reduced, and then problems with
dam decommission and rehabilitation and their impacts on the environment become
important.

Sediment control in low-head hydro-projects

Low-head hydro-projects include low dams, sluice gates, spillways, power generation
facilities, water diversion structures, water intake structures, and navigation facili-
ties. Because the reservoirs formed by low dams are small, sediment transport and
morphological evolution in the reservoirs and downstream channels reach new equi-
librium states relatively quickly. The appropriate design of sluice gates, spillways, and
power generators can prevent coarse sediments from entering into turbines. In princi-
ple, navigation and water intake structures should be placed at locations such as the
outer bank of the channel bend where less sediment deposition occurs. Flows around
hydro-projects should be controlled with certain river training works. Sometimes it
may be necessary to dredge and flush the deposits.

River restoration

Because of the impact of human activities or the variation of natural environment con-
ditions, river systems change their forms through bed aggradation, degradation, and
bank migration. These changes may be undesirable. For example, channel meander-
ing and main flow displacement may cause land loss, bridge failure, levee breach, and
difficulty in water intake. Serious erosion and deposition may impair aquatic habi-
tats. Once adverse impacts occur, training, mitigation, and restoration are needed to
change river systems to more favorable stable states.

Protection of structure foundations

In-stream structures, such as bridge piers, abutments, spur-dikes, and weirs, change the
flow significantly and may induce considerable erosion. Erosion also occurs due to jet
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impingement at the downstream of sluice gates, spillways, and overfalls. Local erosion
is the major reason for the failures of many structures. Because of the complexity of the
processes involved, the prediction and prevention of local erosion around structures
are very challenging.

Sediment problems in estuaries

Morphodynamic processes under the actions of river runoff, tidal flow, and wave
currents in estuaries are extremely complex. A large amount of fine-grained cohesive
sediments coming from rivers are deposited in estuarine regions, forming mouth bars
and reducing the flow depth in navigation channels. Salinity intrusion intensifies the
deposition of cohesive sediments and affects the water quality. Fine-grained sediments
also enter harbors and cause significant deposition there. Training works and dredging
are necessary to maintain the navigation channels.

Watershed management

Water bodies, such as rivers, lakes, and reservoirs, receive water runoff and sediment
load from uplands. Serious erosion in the uplands increases the downstream sediment
load, causing sedimentation and reducing the storage and transport capacities of down-
stream river systems. Conversely, a reduction in the erosion of uplands decreases the
downstream sediment supply, causing channel degradation, headcutting, and bank
instability. Rational watershed management is essential for both uplands and river
systems.

Sediment-related environmental problems

Environmental quality is an important global issue. Wastes from industry and agricul-
ture impair not only the water quality, but also the sediment quality in the receiving
river systems. Sediments, especially clay and silt, are associated with the transport of
many pollutants. The impaired sediments also accumulate on the channel bed with
time, and later become a major source of pollution through resuspension.

1.2 ROLE OF COMPUTATIONAL SIMULATION
IN RIVER ENGINEERING ANALYSIS

River flow and sediment transport are among the most complex and least understood
processes or phenomena in nature. It is very difficult to find analytical solutions for
most problems in river engineering, and it is very tedious to obtain numerical solutions
without the help of high-speed computers. Therefore, before the 1970s, many river
engineering problems had to be solved through field investigations and laboratory
physical models (also called scale models). With the recent advancements in computer
technology, computational models have been greatly improved and widely applied to
solve real-life problems. One-dimensional (1-D) models have been used in short- and
long-term simulations of flow and sediment transport processes in rivers, reservoirs,
and estuaries. Two-dimensional (2-D) and three-dimensional (3-D) models have been
used to predict in more detail the morphodynamic processes under complex flow
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conditions in curved and braided channels and around river training works, bridge
piers, spur-dikes, and water intake structures.

Physical modeling and computational simulation are the two major tools used in
river engineering analysis. Both have their advantages and disadvantages. Physical
modeling can provide directly visible results, but it is expensive and time-consuming.
Because the flow, sediment transport, and bed change processes in rivers are very
complicated, it is difficult to ensure similarity between a physical model and its proto-
type. Errors may arise due to distortions of model scale and variations in experimental
environments such as temperature. Computational simulation gives direct, real-scale
predictions without any scale distortion and is cost-effective. However, the reliability
of computational simulation relies on how well the physical processes are mathemat-
ically described through governing equations, boundary conditions, and empirical
formulas; how accurately the differential governing equations are discretized using
numerical schemes; how effectively the discretized algebraic equations are solved using
direct or iterative solution methods; and whether the numerical solution procedures
are correctly coded using computer languages. If the mathematical description is unrea-
sonable, the numerical discretization incorrect, the solution method ineffective, or if
the computed code has bugs, the results from a numerical model cannot be trusted.
Because many empirical formulas are used to close the mathematical problems, the
applicability of computational simulation is still somehow limited. Before a numerical
model can be applied to a real-life project, it needs to be verified and validated using
analytical solutions and data measured in laboratories and fields.

To solve a real-life engineering problem correctly and effectively, the integration of
field investigation, physical modeling, and computational simulation is needed. Field
investigation is the first thing to do for a comprehensive understanding of the problem.
It provides the necessary hydrologic and sediment information on the study domain
and boundary conditions, which are required in both physical modeling and com-
putational simulation. It also provides data to calibrate physical and computational
models. If the study reach is not long, either physical modeling or computational sim-
ulation can be chosen to analyze the problem. The most cost-effective method is to use
physical models to study a few scenarios and collect enough data to calibrate compu-
tational models, and then use the calibrated computational models to analyze more
scenarios. If the study reach is too long, 1-D numerical models are often used in the
entire reach; they provide boundary conditions for 2-D and 3-D numerical models as
well as physical models for detailed analyses in important subreaches.

1.3 SCOPE, PROBLEMS, AND STRATEGIES
OF COMPUTATIONAL RIVER DYNAMICS

Computational river dynamics is a branch of computational fluid dynamics (CFD). It
solves river engineering problems using numerical methods. River flow is an incom-
pressible flow; therefore, many successful numerical methods developed in CFD can
be applied here. However, river flow has a free surface and movable bed, which make
computational river dynamics relatively complicated and difficult. Many assumptions
and empirical formulas must be used to close the mathematical systems, and the
approximate solutions sought may not be unique. Thus, computational river dynamics
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is an engineering science rather than applied mathematics. Not only must a successful
numerical modeler possess knowledge about numerical techniques, but he or she must
also have enough experience in river engineering.

In computational river dynamics, the flow, sediment transport, and morphological
change processes in rivers are described by a set of coupled, non-linear algebraic and
differential equations that usually cannot be solved in closed form. The analysis of
river morphodynamic phenomena thus requires an approximation process, the end
result of which is a field of discrete property values at a finite number of locations
(“points” or “nodes”) distributed over the study domain. The general procedure for
developing a computational model consists, essentially, of the following steps:

(1) Conceptualize the complicated physical phenomena of study, with the necessary
simplifications and assumptions that express our understanding of the nature
of the system and its behavior (e.g., dimensionality; steady, quasi-steady, or
unsteady; laminar or turbulent; subcritical, supercritical, or mixed; gradually
or rapidly varied flow; fixed or movable bed; bed load, suspended load, or total
load; low or high sediment concentration; uniform or multiple sediment sizes;
equilibrium or non-equilibrium transport; cohesive or non-cohesive; bank ero-
sion; channel meandering; contaminants; solution domain; initial and boundary
conditions);

(2) Describe the physical phenomena of study using a set of algebraic and differential
equations that are subject to the conservation laws of mass, momentum, and
energy;

(3) Divide the study domain into a mesh of points, finite volumes, or finite elements
corresponding to the used numerical methods;

(4) Discretize the differential equations to equivalent algebraic equations by introduc-
ing ‘trial functions’, held to approximate the exact solution locally;

(5) Solve the coupled algebraic equations, which are subject to case-specific boundary
conditions, using an iteration or elimination algorithm to find the property values
at the grid points, and

(6) Code the established solution procedures using computer languages, such as
FORTRAN, C, or C++, and package the model with a graphical user interface for
pre- and post-processing, if possible.

The major problems in computational river dynamics include:

(1) Adequacy of the (simplified) conceptual models representing the complicated real
system and its behavior;

(2) Realism of the mathematical models describing the complex hydrodynamic and

morphodynamic processes that cannot be represented exactly (e.g., turbulence,

bed roughness, and the interaction between flow and sediment), and reliability of

the empirical formulas used to close the mathematical systems;

Ability to generate adequate meshes over complex domains;

Accuracy and consistency of numerical approximations;

Numerical stability and computational efficiency of solution methods;

Correctness of computer coding, and

EEEND
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(7)

Reliability of numerical solutions and applicability of computational models in
different situations.

To insure the quality of the simulation results, a computational model of flow and
sediment transport should be verified and validated before application in solving real-
life problems. Model verification and validation usually follow three steps (Wang and
Wu, 2005):

(1)

Verification by Analytic Solutions. The agreement between analytic and numeri-
cal solutions certifies the correctness of the mathematical formulation, numerical
methods, and computer programming. It can also determine errors of numerical
solution quantitatively.

Validation by Laboratory Experiments. Because laboratory experiments con-
ducted in controlled environments can eliminate many unnecessary complications,
the numerical model should be able to reproduce the same physical phenomena
measured in laboratories.

Validation by Field Measurements. One portion of the field data should be used
to calibrate the physical parameters in the model, and the remaining data can
be used to determine whether the computational model can simulate the real-life
problem. Researchers must realize that the numerical results may only approx-
imately agree with the measured data, because the computational model only
represents a simplified version of the physical processes in natural rivers. How-
ever, the realistic trend of spatial and temporal variations should be predicted
correctly.

The application of a computational model to the solution of a real-life problem
involves the following five major tasks:

(1)

Data Preparation. Data should be collected and analyzed to understand the phys-
ical processes of study, determine initial and boundary conditions, estimate model
parameters, and calibrate the model. The required data should include, but are
not limited to, geomorphic, hydrological, hydraulic, and sediment information,
largely depending on the model used and the study case. They can be obtained via
in-situ field survey and from historical records.

Estimation of Model Parameters. Model parameters can be classified as numerical
and physical. Numerical parameters, such as time step, grid spacing, number of
size classes, and relaxation coefficient, result from numerical discretization and
solution methods. They should be determined by considering the accuracy the
study problem requires and the stability of the numerical schemes used. Phys-
ical parameters can be subdivided into two groups. One group represents the
physical properties of water and sediment, such as water density, viscosity, sedi-
ment density, particle size, particle shape factor, and bed-material porosity. These
physical properties can be measured. The other group results from the concep-
tualization of physical processes and represents the characteristics of flow and
sediment transport, including channel roughness coefficient, sediment transport
capacity, sediment adaptation length, and mixing layer thickness. These physical
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process parameters are often calibrated using measured data or determined using
empirical formulas.

(3) Model Calibration. The computational model should be calibrated using the avail-
able data measured in the study reach to insure that the aforementioned parameters
are estimated correctly, that the empirical formulas are chosen appropriately, and
that the observed physical processes are generally well reproduced by the model.
The calibrated model can then be applied to predict the physical processes in
various scenarios.

(4) Interpretation of Simulation Results. Because sediment transport models are
highly empirical and the model development and application processes are not
infallible, engineering judgment should be used in the interpretation of simu-
lation results. Consulting with model developers, senior scientists, and local
engineers who are familiar with the study channel can enhance confidence in
the end results. In addition, efficiently grouping important results using attrac-
tive graphs and tables permits an easy understanding and communication among
model developers, users, and report readers.

(5) Analysis of Uncertainties. Sources of uncertainties include model conceptualiza-
tion, boundary conditions, model parameters, and data. Uncertainties may be
reduced by using a more adequate model, selecting appropriate boundary condi-
tions, calibrating model parameters carefully, and collecting more reliable data.
Sensitivity analysis and stochastic modeling may also be conducted to resolve
uncertainties.

As described above, the development and application of a computational model
is a long process consisting of many steps. The accuracy and reliability of the end
results rely on manipulations at every step. The developer should approximate the
physical processes reasonably via the mathematical model, derive and code the numer-
ical discretization and solution methods correctly, and verify and validate the model
thoroughly. The user should prepare the data carefully, estimate model parameters
correctly, necessarily calibrate the model, reasonably interpret results, and consider
possible uncertainties.

1.4 CLASSIFICATION OF FLOW AND SEDIMENT
TRANSPORT MODELS

Flow and sediment transport models can be classified in various ways, as described
below.

According to their dimensionality, flow and sediment transport models are classified
as 1-D, vertical 2-D, horizontal 2-D, and 3-D. Flow and sediment transport in natural
rivers are usually 3-D phenomena, which should be more realistically simulated using
3-D models. However, 3-D models are more time-consuming. Therefore, 1-D and
2-D models have been established via simplifications, such as section-, depth-, and
width-averaging, to achieve feasible solutions in engineering practices. 1-D models
study the longitudinal profiles of the cross-section-averaged properties of flow and
sediment transport in rivers. The vertical 2-D models, which may be idealized or
width-averaged, study the (width-averaged) properties of flow and sediment transport
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in the longitudinal section. Because of the complexity of channel geometries, the width-
averaged 2-D models are preferable to the idealized vertical 2-D models in natural
situations. The horizontal 2-D models, which also are often called depth-averaged
2-D models, study the horizontal distributions of the depth-averaged quantities of
flow and sediment. 1-D models are widely applied in the simulation of long-term
sedimentation processes in long channels, 3-D models are often used in local fields
with strong 3-D features, and 2-D models are in between them.

Based on flow states, flow and sediment transport models are often categorized as
steady, quasi-steady, or unsteady. Steady models do not include the time-derivative
terms in flow and sediment transport equations, but consider temporal changes in
bed elevation and bed-material gradation. Quasi-steady models divide an unsteady
hydrograph into many time intervals, each of which is represented by a steady flow
discharge. Quasi-steady models are often used in the simulation of long-term fluvial
processes in rivers, but they cannot be used in cases with strong unsteadiness, such as
tidal flow in estuaries and flash floods in small watersheds. Unsteady models are more
general and can be used to simulate unsteady fluvial processes as well as steady and
quasi-steady processes.

As for the number of sediment size classes simulated, sediment transport models can
be uniform (single-sized) or non-uniform (multiple-sized). Uniform sediment models
represent the entire sediment mixture using a single-sized class, whereas non-uniform
sediment models divide the sediment mixture into a number of size classes and study
the behavior of each size class. Because sediments in natural rivers are usually non-
uniform in size and experience interaction among different size classes, non-uniform
sediment models are more realistic.

In accordance with sediment transport modes, sediment transport models are often
grouped as bed-load, suspended-load, and total-load models. Many early developed
models considered only bed-load or suspended-load transport. Because sediment may
change from bed load to suspended load or vice versa depending on flow conditions,
total-load models are more preferable.

Based upon sediment transport states, sediment transport models are classified as
equilibrium (saturated) and non-equilibrium (unsaturated). In many of the early mod-
els, it is assumed that the actual sediment transport rate is equal to the capacity of
flow carrying sediment at equilibrium conditions at each computational point (cross-
section or vertical line). The models based on this local equilibrium assumption are
called equilibrium transport models. However, alluvial river systems always change in
time and space due to many reasons; therefore, absolute equilibrium states rarely exist
in natural conditions. The local equilibrium assumption is not realistic, particularly
in cases of strong erosion and deposition. Non-equilibrium sediment transport mod-
els renounce this assumption and adopt transport equations to determine the actual
bed-load and suspended-load transport rates. Non-equilibrium transport models are
being more widely applied in river engineering these days.

In terms of numerical methods, flow and sediment transport models are categorized
as finite difference, finite volume, finite element, finite analytic, or efficient element
models. Since each of these numerical methods has its advantages and disadvantages,
numerical models based on all them exist in the literature. The choice of a specific
model depends on the nature of the problem, the experience of the modeler, and the
capacity of the computer being used.



Introduction 9

Depending on the calculation procedure, flow and sediment transport models can be
classified as fully decoupled, semi-coupled, or fully coupled. Fully decoupled models
ignore the influence of sediment transport and bed change on the flow field by assuming
a low sediment concentration and a small bed change, and calculate the flow and
sediment transport separately at each time step. Fully coupled models compute all
the flow and sediment quantities simultaneously. Semi-coupled models calculate some
quantities in coupled form and the others separately. For example, flow and sediment
modules may be decoupled, whereas sediment transport, bed change, and bed material
sorting in the sediment module may be coupled. Because flow, sediment, and bed
material always interact with each other in an alluvial river system, fully coupled
models are more general and physically reasonable, whereas the applicability of fully
decoupled and semi-coupled models is limited. However, coupled models are more
sophisticated and may require more computational effort than decoupled models. In
addition, the results from decoupled models may be justified due to the difference in
time scales of flow and sediment transport and the use of empirical formulas for bed
roughness and sediment transport capacity. Fully decoupled and semi-coupled models
are still used by many investigators.

Depending on how to conceptualize sediment, sediment transport models can be
discerned as particulate and continuous-medium models. Particulate models treat sed-
iment as a group of particulate entities and describe the movement of single particles,
whereas continuous-medium models assume sediment as a kind of pseudo-continuous
medium. The assumption of continuous-medium models is only valid when the char-
acteristic size of the sediment particles is much shorter than the characteristic length
of the processes of study and the volume under consideration has enough sediment
particles. Apparently, particulate models are not limited in this way. From a strictly
theoretical point of view, particulate models should be preferred. However, because of
the limitations of computer capacity, considerable difficulties are encountered in the
simulation of the behavior of millions or even billions of irregularly shaped particles
that may collide randomly. In reality, particulate models are only feasible when the
sediment concentration is extremely low. Therefore, continuous-medium models are
more widely applied in the study of sediment transport in rivers. A typical continuous-
medium model is the diffusion model that is most often used for suspended-load
transport.

1.5 COVERAGE AND FEATURES OF THIS BOOK

The subjects of this book include physical principles, numerical methods, model clo-
sures, and application examples in computational river dynamics. It is organized into
twelve chapters.

Chapter 1 provides a general overview of computational river dynamics and the
arrangement of this book. Chapter 2 introduces the mathematical descriptions of
flow, sediment transport, and morphological change processes in rivers. Chapter 3
presents the fundamentals of sediment transport. Chapter 4 introduces the numerical
techniques widely used to solve open-channel flows with sediment transport, such as
the finite difference method and the finite volume method. These methods are applied
and extended in the remaining chapters of this book. Chapter 5 describes the 1-D
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modeling approaches that are widely used in computational river dynamics. Chapter 6
explains the depth-averaged and width-averaged 2-D models for flow and sediment
transport. It also includes a discussion of the enhancement of the depth-averaged 2-D
model in order to take the effects of secondary flows in curved channels into account.
Chapter 7 illustrates the 3-D modeling approaches for turbulent flow, general sediment
transport in rivers, and local scour around in-stream hydraulic structures. Chapter 8
covers the general techniques used to integrate and couple various models, such as
domain decomposition; the coupling of 1-D, 2-D, and 3-D channel models; and the
integration of channel and watershed models. Chapters 9—12 introduce several special
topics related to river engineering, such as dam-break fluvial processes, vegetation
effects on fluvial processes, cohesive sediment transport, and contaminant transport.

This book is one of the first to present a complete picture of the physical principles
and numerical methods used in computational river dynamics. It covers the funda-
mentals of flow and sediment transport in rivers, including many newly developed
non-uniform sediment transport formulas. It is unique in presenting multidimen-
sional numerical models, including 1-D, depth-averaged 2-D, width-averaged 2-D, and
3-D models, as well as integration and coupling of these models. It introduces many
recently developed numerical methods for solving open-channel flows, such as the
SIMPLE(C) algorithms with Rhie and Chow’s momentum interpolation method on
non-staggered grids, the projection method, and the extended stream function and
vorticity method. It presents state-of-the-art sediment transport modeling approaches,
such as non-equilibrium transport models, non-uniform total-load transport mod-
els, and semi-coupled and coupled procedures for flow and sediment calculations.
It includes many engineering applications, such as reservoir sedimentation, channel
erosion (due to dam construction), channel widening and meandering, local scour
around in-stream hydraulic structures, vegetation effects on channel morphodynamic
processes, and cohesive sediment transport.



Chapter 2

Mathematical description of flow
and sediment transport

This chapter presents a mathematical basis for computational river dynamics,
including definition of water and sediment properties, sediment diffusion the-
ory, Reynolds-averaged flow and sediment transport equations and their
turbulence closures, derivation of 1-D and 2-D model equations from 3-D model
equations, formulation of equilibrium and non-equilibrium sediment transport mod-
els, and equations of non-uniform sediment transport and bed material sorting.

2.1 PROPERTIES OF WATER AND SEDIMENT
2.1.1 Properties of water

Density and specific weight of water
Water density, pf, is the mass of water per unit volume, often in kg - m~3 (kilograms
per cubic meter) in the international unit (SI) system. It is 1,000 kg-m~3 at 4°C and
varies slightly with temperature, as shown in Table 2.1.

The specific weight of water, yy, is the weight of water per unit volume, often in

N-m~3 (Newtons per cubic meter). It is related to the water density by
Yf = P8 (2.1)

where g is the gravitational acceleration and equals about 9.80665 m-s~2 (

square second).

meters per

Viscosity of water

Water deforms under the action of shear. The dynamic viscosity of water, wu, is the
constant of proportionality relating the shear stress, 7, to the deformation rate, du/dz,
as follows:

du

T=ny (2.2)

where u is the flow velocity, and z is the coordinate normal to the flow direction.
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Table 2.1 Density and viscosity of water

Temperature (°C) Density (kg-m~3)  Dynamic viscosity (N-s-m~2)  Kinematic viscosity (m*s~")
0 1000 1.79 x 1073 1.79 x 10~¢
5 1000 151 x 1073 151 x 1076
10 1000 131 x 1073 1.31 x 107¢
15 999 .14 x 1073 I.14x 10-¢
20 998 1.00 x 103 1.00 x 10~¢
25 997 891 x 1074 8.94 x 1077
30 996 7.97 x 107* 8.00 x 1077
35 994 7.20 x 1074 7.25 x 1077
40 992 6.53 x 1074 6.58 x 107

The kinematic viscosity of water, v, is the ratio of the dynamic viscosity to the
water density:

=1 (2.3)

The units often used for viscosities 2 and v are N-s-m~2 and m?s~!, respectively.

Water viscosity is directly related to molecular interactions. It decreases as water
temperature increases, as shown in Table 2.1. For common temperatures in rivers, the
kinematic viscosity can be approximated by

v = (1.785 — 0.0584T + 0.00116T% — 0.0000102T3) x 10 °m?s~!  (2.4)

where T is the temperature in °C (degrees Celsius).

2.1.2 Properties of sediment
2.1.2.1 Physical properties of single particles

Density and specific weight of sediment

Sediment density, ps, is the mass of sediment per unit volume, often in kg-m™3.

It depends on the material of sediment. The density of quartz particles is about
2,650 kg - m~3 and does not vary significantly with temperature. In most natural rivers,
the density of sediment can be assumed to be constant.

The specific weight of sediment, y, is the weight of sediment per unit volume, often
in N-m~3. It is related to the sediment density by

Vs = psg (2.5)

Due to the buoyancy effect, the specific weight of sediment particles submerged in
water is lighter than the actual specific weight exposed to air. According to Archimedes’
principle, the specific weight of submerged sediment is the difference between the
specific weights of sediment and water, ys — yy.



Mathematical description of flow and sediment transport 13

The specific gravity of sediment, G, is the ratio of the specific weights of sediment
and water at a standard reference temperature that is commonly set at 4°C. The specific
gravity of quartz particles is

G=Y_P _1565 (2.6)

v ey

Particle size and grade scale

Sediment particle size may be represented by nominal diameter, sieve diameter, and
fall diameter. The nominal diameter, d, is defined as the diameter of a sphere that has
the same volume as the given particle, i.e.,

6V
b4

d= (2.7)

where V is the volume of the sediment particle, and 7 is the circumference-diameter
ratio (*3.14159). The SI units often used for sediment size are mm (millimeters) and
m (meters).

A sediment particle may be considered as an ellipsoid. Denote a, b, and c¢ as its
diameters in the longest, the intermediate, and the shortest mutually perpendicular
axes, respectively. Thus, as an approximation, the particle volume may be estimated
as V ~ wabc/6, and then substituting this formula into Eq. (2.7) yields the following
relation for the nominal diameter:

d ~ ~abc (2.8)

The sieve diameter is the length of the side of a square sieve opening through which
the given particle will just pass. It is approximately equal to the intermediate diameter
b. The sieve diameter is slightly smaller than the nominal diameter. For naturally worn
sediment particles over the range of about 0.2 to 20 mm, the sieve diameter is approxi-
mately 0.9 times the nominal diameter on average (U. S. Interagency Committee, 1957,
Raudkivi, 1990).

The standard fall diameter is the diameter of a sphere that has a specific gravity
of 2.65 and has the same terminal settling velocity as the given particle in quiescent,
distilled water at a temperature of 24°C.

Sediment size may be measured by calipers, by optical methods, by photographic
methods, by sieving, or by sedimentation methods (Vanoni, 1975; Simons and Senturk,
1992). For coarse particles, such as boulders, cobbles, and coarse gravel, size may be
determined by direct measurement of the volume or the diameters a, b, and ¢ in
the longest, the intermediate, and the shortest axes, which are usually converted to
the nominal diameter by Eq. (2.7) or (2.8). For fine gravel and sand, size may be
determined by sieving or visual accumulation tube. For silt and clay, size is measured
by hydraulic settling methods, such as the pipet method, bottom withdrawal method,
and hydrometer method. The fall diameter is often obtained by these methods for silt
and clay.
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Table 2.2 Sediment grade scale

Class Size range (mm) Class Size range (mm)

Very large boulders 4,000-2,000 Very coarse sand 2-1

Large boulders 2,000-1,000 Coarse sand 1-0.5

Medium boulders 1,000-500 Medium sand 0.5-0.25

Small boulders 500-250 Fine sand 0.25-0.125
Very fine sand 0.125-0.062

Large cobbles 250-130 Coarse silt 0.062-0.031

Small cobbles 130-64 Medium silt 0.031-0.016
Fine silt 0.016-0.008

Very coarse gravel 64-32 Very fine silt 0.008-0.004

Coarse gravel 32-16 Coarse clay 0.004-0.002

Medium gravel 16-8 Medium clay 0.002-0.001

Fine gravel 84 Fine clay 0.001-0.0005

Very fine gravel 4-2 Very fine clay 0.0005-0.00024

The aforementioned boulders, cobbles, gravel, sand, silt, and clay are classi-
fied based on the grade scale listed in Table 2.2, which is commonly used in river
engineering. Each class may be further divided into several subclasses.

Shape factor

The shape of sediment particles in natural rivers is very irregular. It is often described
by the Corey shape factor:

(2.9)

The Corey shape factor of naturally worn particles is usually about 0.7.

2.1.2.2 Bulk properties of sediment mixtures

Size distribution

A mixture that consists of sediment particles with non-uniform sizes can be represented
by a suitable number of size classes. Each size class, numbered as k, is defined by the
lower and upper bound diameters and represented by a characteristic diameter, dj,. If
the lower and upper bound diameters of size class k are denoted as dj, and d,,;, the
characteristic diameter may be determined using d, = /dpd,., dr = (dy + d)/2,
ordp = (dj + dyp + Vdidyr) /3.

The fraction, py, of each size class is the ratio of its weight (volume or number) to
the total weight (volume or number) of the mixture, ranging from 0 to 1. It should be
noted that p;, is also often defined by percent, ranging from 0 to 100.

The size distribution (composition, gradation) of a sediment mixture can be mea-
sured by sieving analysis. It is often represented by the frequency histogram (pyramid)
and cumulative size frequency curve. The histogram is constructed by plotting the sizes
representing size class intervals on the abscissa and the actual percent (by weight, vol-
ume or number) of the total sample contained in each size class on the ordinate, as
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Figure 2.1 Size distribution: (a) histogram and (b) cumulative frequency curve.

shown in Fig. 2.1(a). The cumulative size frequency curve shows the percent of mate-
rial finer than a given sediment size in the total sample, as shown in Fig. 2.1(b). For a
sediment mixture with a normal size distribution, the cumulative size frequency curve
is a straight line on the normal probability paper.

Characteristic diameters

The median diameter, dso, is the particle size at which 50% by weight of the sample
is finer. Likewise, d1g and dog are the particle sizes at which 10% and 90% by weight
of the sample are finer, respectively. The diameters d1¢, dso, and dog can be read from
the cumulative size frequency curve, as shown in Fig. 2.1(b).

The arithmetic mean diameter is determined by

N
dm =Y prdi/100 (2.10)
k=1

where p;, is by percent, and N is the total number of size classes.
The geometric mean diameter is given by

dg = db/100 . g /100 /100 (2.11)

Uniformity

The uniformity of a sediment mixture can be described by the standard deviation:

dsar "
== 2.12
% (d15.9 ) (212
or the gradation coefficient:
dsa1 | dso

1
Gr==|—+-—"— 2.13
) < dso d15.9> (2:13)
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where di5.9 and dg4.1 are the particle sizes at which 15.9% and 84.1% by weight of
the sample are finer, respectively. For a normal size distribution, oy = dg4.1/ds0 =
dso/d1s.9.

Kramer (1935) defined a uniformity parameter as the ratio of the mean sizes of the
two portions in the cumulative size frequency curve separated by dso:

50 100
M= pede [ Y pede (2.14)
Ak=0 =50

where Ay, is the cumulative percentage of sediment finer than size dj.
For uniform sediment, M = 1. A smaller value of M corresponds to a more non-
uniform sediment mixture.

Porosity and dry density

A sediment deposit is a porous material and has voids among solid particles. Its
porosity, p,,, is a measure of the volume of voids per unit volume of the deposit:

i VU

= — 2.15
Vo= v (2.15)

where V,, and V; are the volumes of voids and solids, respectively.
The dry density, pg, and dry specific weight, y,, of a sediment deposit are the mass
and weight of the solids per unit total volume. They are related to the porosity by

pa=ps(L=p,), va=y1—=p,) (2.16)

Han et al. (1981) proposed the following semi-empirical formula to calculate the
initial porosity of a uniform sediment deposit:

1-0.525 (Lf d<1mm
Dy = d+45 (2.17)

0.3+ 0.175¢70:095(d=do)/do > 1 mm

where d is the sediment size in mm; dj is a reference size, set to be 1 mm; and &1 is
the thickness of the water film attaching to sediment particles, given a value of about
0.0004 mm.

In a non-uniform sediment deposit, fine particles probably fill the voids among
coarse particles. Han et al. (1981) investigated this filling phenomenon and proposed
a method for the overall porosity of the deposit. However, their method is relatively
complicated and inconvenient to use. If a sediment deposit is composed of only fine
particles or if its size range is narrow, the filling phenomenon is negligible and the
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overall porosity can be calculated using the Colby (1963) method:

N
= lei’e (2.18)

where py is the fraction of the kth size class in the sediment deposit; and p) , is the
porosity of size class k, which can be calculated using Eq. (2.17) or another method.

Komura (1963) proposed an empirical formula for the initial porosity of a sediment
deposit:

0.0864

=0245 4+ —— -
Pim + (0_1d50)0.21

(2.19)

where dsg is the median diameter of the deposit (mm).

Wu and Wang (2006) revalidated the Komura formula (2.19) using extensive
laboratory and field data, as shown in Fig. 2.2. It can be seen that the Komura formula
is quite close to the trend of the data set, slightly underestimating the dry density for
sand and gravel and overestimating it for silt and coarse clay. The Han et al. formula
has more errors. A more accurate curve was obtained in Fig. 2.2 and expressed as

0.21

2013
P + s +0.002)021

(2.20)

where dsg is in mm.

In addition, the porosity and dry density of a fine-grained sediment deposit may
vary with deposit depth and residence time due to consolidation. This is discussed in
Section 11.1.6.
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Figure 2.2 Initial dry density of deposit as function of median diameter (Wu and Wang, 2006).
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Repose angle

The repose angle is the angle, with respect to the horizontal, of the slope formed by
sediment particles submerged in water under incipient sliding conditions. According
to laboratory experiments by Tianjing University (see Zhang et al., 1989), the repose
angle, ¢,, is related with sediment size as follows:

¢r=32.5+1.27d (2.21)

where ¢, is in degrees, and d is in mm. Eq. (2.21) was calibrated using the data in the
sediment size range between 0.2 and 4.4 mm.

The repose angle is also related to other properties of sediment particles, such as
density, shape, gradation, compaction, and material. It may range from 30° to 42°
for non-cohesive sediment particles. More discussion on the repose angles of various
sediments can be found in Simons and Senturk (1992).

2.1.2.3 Definition of sediment loads

All sediment particles moving with flowing water are called total load. The total load
can be divided into bed load and suspended load as per sediment transport mode or
bed-material load and wash load as per sediment source, as depicted in Fig. 2.3.

Wash load

Elevation

Coarse - Fine

Particle size

Figure 2.3 Definition of sediment loads.

The bed load consists of sediment particles that slide, roll, or saltate in the layer
several particle sizes above the bed surface. It usually accounts for 5-25% of the total
load for fine particles and more for coarse particles in natural rivers.

The suspended load is composed of sediment particles that move in suspension in
the water column above the bed-load layer. Its weight is continuously supported by the
turbulence of flow.

The bed-material load is made up of moving sediment particles that are found in
appreciable quantities in the channel bed. It constantly exchanges with the bed material
and has significant contribution to the channel morphology.
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The wash load is comprised of moving sediment particles that are derived from
upstream sources other than the channel bed. It is not found in appreciable quantities
in the bed. It is finer than the bed-material load and rarely exchanges with the bed
material. Einstein (1950) defined wash load as the grain size of which 10% of the
bed material mixture is finer.

It should be noted that the definition of wash load and bed-material load depends
on flow and sediment conditions. Some wash load in upstream channels may become
bed-material load in downstream channels due to the weakening of flow strength.
Some sediment particles are wash load in the main channel but may be bed-material
load in flood plains.

By definition, the bed-material load is the sum of bed load and suspended load. So
is the wash load. However, the wash load consists of fine particles that move mainly
in suspension, and thus dividing it into bed load and suspended load does not make
much sense in practice.

2.1.3 Properties of the water and sediment mixture

Fig. 2.4 shows a sketch of a mixture consisting of a volume of water, V,,, and a
volume of sediment, V. It is termed as “mixture” for short. Sediment concentration is
defined as

= Vs o Vs (2.22)
Vi + Vs VfVu/ + ¥s Vs

where c is the concentration by volume, and ¢ is the concentration by weight (mass).
They are related by ¢ = Gc¢/[1 + (G — 1)c]. Both them are unitless. In addition,
sediment concentration is sometimes given by weight or mass per unit volume of the
mixture (N-m~3 or kg - m~3), which is obtained by ysc or psc. It is also given in parts
per million by weight (ppm), which is equivalent to 10°¢.

Note that the volumetric sediment concentration c is used in this book, except where
stated otherwise.

2 @
/‘\ o
@,

Figure 2.4 Sketch of the water and sediment mixture.
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The density of the mixture, p, is determined by
p=pr(1—c)+ psc (2.23)

and the specific weight of the mixture is correspondingly given by y = pg.
The velocity of the mixture, #;, is defined as

1
u; = ;[Pf(l — Oug; + pscig] (2.24)

where uy; is the i-component of water velocity, #g; is the i-component of sediment
velocity, and i denotes three spatial directions (= 1,2, 3).

2.2 GOVERNING EQUATIONS OF WATER AND SEDIMENT
TWO-PHASE FLOW

Because the stochastically averaged properties of a group of sediment particles are
mainly concerned in river engineering, sediment is often assumed to be a kind of
continuous medium. Two mathematical models can be used to describe the water
and sediment two-phase flow based on this assumption. One is the two-fluid model
that considers water and sediment as two fluids and establishes the continuity and
momentum equations for each phase. The other is the diffusion model that consid-
ers the movement of sediment particles as a phenomenon of diffusion in the water
flow and hence establishes the continuity and momentum equations for the water-
sediment mixture and the transport (diffusion) equation for sediment particles. The
two-fluid model is more general, from which the diffusion model can be derived, as
described by Wu and Wang (2000). Detailed discussions on the two-fluid model can
also be found in Soo (1967), Ni et al. (1991), Liu (1993), and Greimann and Holly
(2001). However, the two-fluid model is not introduced here because it is quite com-
plex. The flow and sediment transport equations used in this book are based on the
diffusion model.

2.2.1 Hydrodynamic equations

Applying the mass and momentum conservation laws leads to the continuity and
momentum equations for the instantaneous movement of the water-sediment mixture.
These equations are written in Cartesian tensor notations as follows:

B dpm) _
ot ax;

d(pu; d(pu;u; 0 oTj;
(pu;) T (ou; /) —F — l n oTjj
ot 0x; 0x; 0x;

0 (2.25)

(2.26)

where ¢ is the time; x; is the i-coordinate in the Cartesian coordinate system; p is the
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pressure of the mixture; 7;; (7,7 = 1, 2, 3) are the stresses of the mixture; and F; is the
i-component of the external force on the mixture, such as gravity.

Note that the spatial direction indices i and j are subject to Einstein’s summation
convention: Subscript (or superscript) repeated twice in any product or quotient of
terms is summed over the entire range of values of that subscript (or superscript). For
example, a,‘,‘bi = Z;:l a,‘jb,‘ = aj1 bl + a,‘zbz + algbg in the 3-D system.

According to numerous experimental studies, the water-sediment mixture with low
sediment concentration (less than about 200 kg-m~3) is a kind of Newtonian fluid,
the constitutive relation of which is given by the Navier-Poisson law:

5 = 204Dy — > Dy 2.27)
where 1, is the dynamic viscosity of the mixture; Dj; is the tensor of deformation rate,
defined as D;; = (du;/dx; + du;/dx;)/2; and §;; is the Kronecker delta, with §; = 1
when i =j and §; = 0 when i # /.

When the sediment concentration is high, the mixture becomes a non-Newtonian
fluid, such as Bingham fluid. The relation between shear stress and deformation rate
for the one-directional shear flow of Bingham fluid is written as

d
T3 =18+ nd—;’ (2.28)

where 713 is the shear stress, 7p is the yield stress, and 7 is the plastic viscosity.
Extending Eq. (2.28) to the multi-directional shear flow yields the general constitu-
tive relation of Bingham fluid (Prager, 1961; Wu and Wang, 2000):

T 1
T = (zum + 111/32) (Di, - 3Dkkaij> (2.29)
2

where I, = %(D,‘,»D,»,‘ - %Dﬁk), and w,, is 7.

The single-directional shear flow field can be divided into two zones by 713 > tp and
713 < 18- Eq. (2.28) is only applicable to the zone of 713 > tp. Similarly, Eq. (2.29) is
valid in the zone of t;7;; > Zré for the multi-directional shear flow.

2.2.2 Sediment transport equation

Sediment transport is governed by the following mass balance equation:

ac 4 d(ug;c) _

— 0 (2.30)
ot 0x;

Because the sediment velocity #; is not a dependent variable in the diffusion model,
Eq. (2.30) is rewritten as

dc  d(uic) 0
Y + ax; = _aixi[(usz —u;) c] (2.31)
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where ug; —u; is the “diffusion” velocity of sediment in the mixture. It can be related to
the interphase velocity difference ug; — ug; by us; —u; = —pr(1 — ¢)(us; — us;)/ p, based
on Eq. (2.24). Wu and Wang (2000) derived a differential equation for the interphase
velocity difference #s; — ug; from the momentum equations of the two-fluid model,
but the derived equation is complex and inconvenient to use. For fine sediments, the
particle inertia or the lag between (local) flow and sediment movement is very small,
and nearly no relative motion exists except for the settling due to gravity; thus, the
following relation is assumed:

Usi — Ui = —W5u3; (2.32)

where wg,, the settling velocity of sediment particles in the water-sediment mix-
ture, and the subscript “3” in §3; denotes the vertical direction defined by
gravity.

Substituting Eq. (2.32) into the sediment transport equation (2.31) yields the closed
sediment transport equation:

dc  d(ujc) d
— = — 83i 2.33
T ox; ox; (Ws11€837) ( )

2.2.3 Simplification in the case of low sediment
concentration

If the sediment concentration is low, p &~ p; & constant, 1 — ¢ ~ 1, wm ~ u,
and wg;, is close to ws, the settling velocity of a single particle in clear water. Then
the continuity equation (2.25) and momentum equation (2.26) of the mixture can be
simplified to

ou;

=0 (2.34)
3x1‘

dui | duiu)) = 1F1_13l+lafij (2.35)

ot 0x; P pox;  p ox;

and the constitutive relation (2.27) of Newtonian fluid can be written as
3%,‘ 314,'

i = —+ — 2.36
i H <8x,— + 8x,—> ( )

Substituting Eq. (2.36) into Eq. (2.35) leads to the following Navier-Stokes equation
widely used in the single-phase fluid mechanics for laminar flows or instantaneous
motions of turbulent flows:

duj | d(wn) 1F 18 wn 8%u;

1

k2 0x; 0 p 0x; ; 0x;0x;

(2.37)
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The sediment transport equation (2.33) can be further simplified to

oc  d(uic) 0
— = — 83 2.
9z + ox; 9x; (wscd3)) (2.38)

In principle, Eq. (2.38) is applicable only for fine sediments and low concentrations
(see Greimann and Holly, 2001). It is commonly accepted that if the sediment size is
finer than 1 mm and the sediment concentration is lower than 0.1 by volume, Eq. (2.38)
can be approximately used.

In summary, the water and sediment two-phase flow model in the case of low sedi-
ment concentration can be simplified to the model of clear water flow with sediment
transport. Because the sediment concentration usually is not high in most natural
rivers, the simplified diffusion model has been widely adopted in river dynamics.

2.3 TIME-AVERAGED MODELS OF TURBULENT FLOW
AND SEDIMENT TRANSPORT

2.3.1 Mean movement equations

Egs. (2.34), (2.37), and (2.38), which are the exact equations for instantaneous
motions of flow and sediment, cannot be solved directly in most cases, because of
limited computer capacity. Since engineers usually are not interested in the details of the
turbulent fluctuating motions, how to describe and solve the mean motions of turbulent
flow is important in practice. As suggested by Osborne Reynolds, the instantaneous
quantity of a variable ¢ can be divided into mean and fluctuating quantities as

p=0¢+¢ (2.39)

where “—” denotes the mean quantity, and “’” denotes the fluctuating quantity. The
mean quantity is defined as

_ 1 t+T
P= / o dr (2.40)
t

where T is the time period considered, which should be much longer than the
fluctuation period of turbulence, as shown in Fig. 2.5.
The fluctuating quantity satisfies

1 t+T
@) = ?f ¢ dr =0 (2.41)
t

Reynolds-averaging Egs. (2.34), (2.37), and (2.38) yields the mean continuity and
momentum equations of flow and the mean transport equation of sediment:
dit;

= 2.42
3%; 0 (2.42)
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Figure 2.5 Reynolds’ time-averaging procedure.

ou; d(ujuy) 11_3 1 0p © 0%, B Bu;u;

= -F--= (2.43)
ot 0x; P pox;  p Ox;ox; 0x;
¢ o) 9 dulc
— = — (wsC83j) — —L 2.44
o1 T Tox; w90 — S (2.44)

where w; is the correlation between the fluctuating velocities in the x;- and

xj-directions, and #;c’ is the correlation between the fluctuating sediment concentra-

tion and velocity in the x;-direction. Physically, —pu;u; represents the momentum
transport due to turbulent motions; it is called the turbulent or Reynolds stress.
—u;c’ is the turbulent sediment flux, representing the sediment transport due to
turbulence.

The set of equations (2.42)—(2.44) is not closed, due to the appearance of high-order
correlation terms. In the next subsections, methods are introduced briefly to close

this equation set on the levels of zero-, one-, and two-equation turbulence models.
A detailed review can be found in Rodi (1993).

2.3.2 Zero-equation turbulence models

Boussinesq’s eddy viscosity concept is widely used to model the turbulent or Reynolds
stresses in Eq. (2.43). This concept assumes that, in analogy to the viscous stresses in
Eq. (2.36), the turbulent stresses are proportional to the mean velocity gradients:

dum; il 2
=v(—+—)—Zks; 2.45
vt (ax,' + 8x,~> 3 v ( )

where vy is the turbulent or eddy viscosity; and k is the turbulent kinetic energy, defined
as k = uu;/2. In contrast to the molecular viscosity v, the eddy viscosity v; is not a
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fluid property but strongly depends on the state of turbulence, perhaps varying largely
in time and space. In most flow regions, the eddy viscosity is much larger than the
molecular viscosity; thus, the latter usually is negligible.
In direct analogy to the turbulent momentum transport, the turbulent sediment flux
is assumed to be proportional to the gradient of sediment concentration:
ac

—uic = ssa—xi (2.46)

where ¢ is the turbulent diffusivity of sediment. &; is often related to the eddy viscosity
by & = v;/o., with o, being the Schmidt number (between 0.5 and 1.0), which is
discussed in detail in Section 3.5.1.

Note that the last term of Eq. (2.45) can be combined with the pressure-gradient
term when Eq. (2.45) is inserted into the momentum equation (2.43). Therefore, the
appearance of k in Eq. (2.45) does not necessitate the determination of it, and the set of
equations (2.42)—(2.44) is closed using relations (2.45) and (2.46). Then the problem
becomes how to determine the eddy viscosity. The eddy viscosity is usually assumed to
be proportional to the velocity scale # and the length scale L,,, of (large-scale) turbulent
motions:

Vvt X ULy, (2.47)

One of the zero-equation turbulence models widely used for the eddy viscosity is
the Prandtl mixing length model, which postulates that the velocity scale # for two-
dimensional shear flows is equal to the mean-velocity gradient times the mixing length,
thus yielding

ou
2
V=l |52

(2.48)

where I, is the mixing length. Commonly used relations are: /,, = xz for boundary
layer flows, and [,,, = kz+/(1 — z/h) for open-channel flows, in which « is the von
Karman constant, z is the distance to the wall boundary or the bed, and # is the
flow depth.

The mixing length model is suitable for flows where turbulence is in local equi-
librium, rather than where the convective and/or diffusive transport of turbulence is
important. Generally, the mixing length model is often used for simple shear-layer
flows where [,,, can be specified empirically. It is rarely used for rapidly varied flows,
such as recirculating flows, in channels with complex geometry, due to difficulties in
specifying [,,.

Another often used zero-equation turbulence model is the parabolic eddy visco-
sity model:

v = 1 Usz (1 - %) (2.49)

where U, is the bed shear velocity.
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Eq. (2.49) may be derived by substituting the log distribution of flow velocity along
the flow depth and the relation I,,, = kz/(1 — z/h) into Eq. (2.48). Therefore, model

(2.49) can be seen as a special case of model (2.48).

2.3.3 One-equation turbulence models

In the often used one-equation turbulence model, the eddy viscosity is determined using
the Kolmogorov-Prandtl expression, which adopts v/ as the velocity scale and reads

v = ¢, VRLy, (2.50)

where ¢, is a coefficient of about 0.084.

Unlike the mixing length model, the one-equation turbulence model uses a trans-
port equation to determine the turbulent energy k and, in turn, the fluctuating
velocity scale. The transport equation of k can be derived in exact form from the
continuity and Navier-Stokes equations. For high Reynolds numbers, this equation

reads

ak 9 9 wu,  p — 3w, o o
Wb — .u/.(” ”) _ag 2 sy

2, Miox, Vo, ax;

The three terms on the right-hand side of Eq. (2.51) represent the diffusion, produc-
tion, and dissipation of k, respectively. To close this equation, the diffusion term is
treated in analogy to Eq. (2.46), and the dissipation term is determined as cpk®/?/L,,,,
thus yielding the modeled % equation:

k 0 3 (v ok k3/2

— 4+ — k)= ——=— |+ P, —cp— 2.52

ot + ax; (iR) Ax; (ak ax,') ok~ ep Ly, ( )
where P, is the production of turbulence by shear, defined as P, = —u;u;aﬁi/axi; op,

is a coefficient of about 1.0; and ¢p is a coefficient, usually set as cp = 0.08/c),.

For the turbulence in a state of local equilibrium, its production is equal to dissipa-
tion, and then Eq. (2.52) can be simplified as v;(9i1/32)> — cpk3/?/L,, = 0 in the case
of shear flows. By using Eqgs. (2.48) and (2.50), the following relation can be derived
(Rodi, 1993):

1/4
L,, T
Cu

Therefore, L,, can be determined using simple empirical formulas similar to those
for the mixing length ,,,.
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2.3.4 Two-equation turbulence models

Linear k-g¢ turbulence models

Because of difficulties in specifying the length scale of turbulence in complex flows, the
one-equation turbulence model described above has limitations. Thus, a differential
equation for the length scale is often added, which in conjunction with the velocity scale
equation constitute a two-equation turbulence model. The widely used two-equation
models include the k-¢ turbulence models, which replace the length scale with the
dissipation rate & = vdu,/dx; - du;/dx; and assume

kz
Vr = cp— (2.54)
&
where ¢, is a coefficient.
The k equation (2.52) is rewritten as
ok 0 d v; Ok
By Ly = 2 () yp— 2.55
at + ax,‘(ul ) ax; (Gk axi> T ( )

An exact ¢ equation can be derived from the continuity and Navier-Stokes equations,
but it includes several terms that have little known physical meanings and have to be
modeled drastically (Rodi, 1971). The final modeled ¢ equation is expressed as

ag+ 9 (s5) 9
% L % e =L
ot x| ax;

v, de ) . Z(Cﬂ Py — core) (2.56)

O¢ E)x,-

where oy, .1, and ¢ are coefficients.

Launder and Spalding (1974) suggested a set of values for the coefficients: ¢, = 0.09,
ce1 =144, ¢c.2 = 1.92, 0, = 1.0, and 0. = 1.3, as listed in Table 2.3. The k-¢ model
using this set of coefficients is often called the standard k-¢ turbulence model.

However, the standard k- model overpredicts the spread rate of axisymmetric jet by
about 30% (Rodi, 1993) and underpredicts the flow reattachment length downstream
of a backward-facing step by 15-20% (Abe et al., 1994). Many modifications of it
have been suggested in the literature. Several examples are given below, and more can
be found in Rodi (1993) and other references.

In the standard k-¢ model, the ¢ equation is modeled drastically and may have
limitations. Chen and Kim (1987) added a second time scale of the production
range of turbulence kinetic energy spectrum and modified the ¢ equation to consider

Table 2.3 Coefficients in linear k-¢ turbulence models

k- Model < Cel Ce Ok [
Standard 0.09 1.44 1.92 1.0 1.3
Non-equilibrium 0.09 1.15+ 0.25P /¢ 1.90 0.8927 I.15

RNG 0.085 1.42 — (1 —n/n0)/ (1 + Bn?) 1.68 0.7179 0.7179
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non-equilibrium between turbulence generation and dissipation. The modified k and
¢ equations are still formulated as Egs. (2.55) and (2.56), with a functional form of
the coefficient c.1 as c,1 = 1.15 + 0.25P, /s. The other coefficients are recalibrated
as ¢, = 0.09, ¢.2 = 1.90, o), = 0.8927, and o, = 1.15. The modified model is
called the non-equilibrium k-¢ turbulence model, which has been tested in the case
of recirculating flows with improved performance over the standard version (Shyy
etal., 1997).

Yakhot et al. (1992) rederived the & equation using the renormalized group (RNG)
theory. One new term was introduced to take into account the highly anisotropic fea-
tures of turbulence, usually associated with regions of large shear, and to modify the
viscosity accordingly. This term was claimed to improve the simulation accuracy of
the RNG k-¢ turbulence model for highly strained flows. It can be included in the coef-
ficient ¢z1 by ¢z1 = 1.42—n(1—n/n0)/(1+ Bn?). Here, B = 0.015, n= (2S;S;)/*k/e,
Sij = (9u;/dx; + 0u;/dx;)/2, and no = 4.38. The other coefficients are ¢, = 0.085,
ce2 = 1.68, 0, = 0.7179, and 0, = 0.7179, as listed in Table 2.3.

The standard k-¢ turbulence model is restricted to high-Reynolds-number flows
and is not applicable in the viscous sublayer near a wall. Jones and Launder (1972)
proposed a low-Reynolds-number k-¢ turbulence model, and later many investigators,
e.g., Chien (1982) and Abe et al. (1994), suggested revisions. Usually, a damping
function is introduced in the eddy viscosity equation (2.54) to mimic the direct effect of
molecular viscosity on the shear stress, while two damping functions are multiplied to
the production and destruction terms in the equation (2.56) to increase the magnitude
of ¢ (for additional dissipation) near the wall and to incorporate the low Reynolds
number effect on the decay of isotropic turbulence, respectively. Expressions of these
damping functions and their performance can be found in Srikanth and Majumdar
(1992) and Abe et al. (1994).

All the above k-¢ turbulence models based on the Boussinesq assumption are often
called linear k-¢ turbulence models. In addition to them, another frequently used
two-equation model is the k-w turbulence model established by Wilcox (1993) by
replacing the length scale with the specific dissipation rate w. Because w is related to ¢
by w = ¢/(B*k) with 8* = 0.09, the k-w model is similar to the standard k-¢ model,
with different coefficients. Its details are left to interested readers.

Nonlinear k-¢ turbulence models

The Boussinesq assumption, which adopts an isotropic eddy viscosity concept for all
Reynolds stresses, fails for flows with sudden changes in mean-strain rate or with
“extra” strain rates, e.g., curved flows, because the Reynolds stresses adjust to such
changes at a rate unrelated to the mean flow processes. Lumley (1970), Rodi (1976),
Saffman (1976), Wilcox and Rubesin (1980), and Speziale (1987) derived more general
relations for the Reynolds stresses. For example, the relation of Speziale (1987) reads

Tij 2 2 k3 1
i PAVAVES §k3’7 + 4CDCH87 SikSkj — gsmkskmrsi/

T
+ 4CECM87 Sii — gskk&,’ (2.57)
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where 7;; are the Reynolds stresses, 317 = 08;j/0t+itydS;;/dxp —Sp;014;/dx ) —Sp;04; /30X,
and CD = CE = 1.68.

Rodi (1976) assumed that the transport of turbulent stresses is proportional to the
transport of turbulent energy, thus simplifying the full Reynolds stress equation to an
algebraic expression:

(2.58)

2 (1 —=y)(P; — %Pk&/)
= ok [38” i Pp—(1—cpe

where y and ¢; are coefficients; and Pj; is the stress production, defined as P;; =
—uju), ;[ dxy — u}u;qaui/axk.

Egs. (2.57) and (2.58) include the Boussinesq approximation as leading terms and
need to be coupled with a k-¢ model. Thus, they are often called nonlinear k-¢ tur-
bulence models. Speziale showed model (2.57) yields more accurate predictions for
the Reynolds normal stress in turbulent channel flows and homogenous shear flows
than the standard k-¢ turbulence model. For example, for a unidirectional uniform
duct flow, the standard k-¢ model predicts 7., — 7,, = 0, whereas the nonlinear k-¢
turbulence model yields

B raa\>  [ou\?
S (T I

As a result, the nonlinear k-¢ turbulence model (2.57) is able to simulate the
turbulence-driven secondary flows (Speziale, 1987; Pezzinga, 1994). So is Rodi’s
algebraic stress model (2.58).

2.3.5 Other turbulence models and simulations

A more advanced turbulence model is the Reynolds stress model, in which the trans-
port equations of u;u; are derived in exact form from the continuity and Navier-Stokes

equations and modeled to obtain a closed system (see Rodi, 1993). The large eddy
simulation (LES) and direct numerical simulation (DNS) of turbulent flows have
also advanced recently in CFD. However, the Reynolds stress model, LES, and DNS
have been little tested so far and are not yet in use for practical applications in river
engineering.

2.4 DERIVATION OF I-D AND 2-D FLOW AND SEDIMENT
TRANSPORT EQUATIONS

Because of the limitation of computer capacity, solving a full 3-D model is time-
consuming; this was particularly true several decades ago. Thus, the development of
1-D and 2-D models has been an important task in computational river dynamics
(e.g., de Saint Venant, 1871; Kuipers and Vreugdenhil, 1973). The derivation of
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1-D and 2-D model equations from 3-D model equations via section-, depth-, and
width-integrating (averaging) approaches is introduced in this section.

Before deriving the spatially-integrated models, let us introduce the 3-D flow and
sediment transport equations and the associated boundary conditions at the water
surface, channel bottom, and banks. In the Cartesian coordinate system shown in
Fig. 2.6, the 3-D continuity and momentum equations (2.42) and (2.43) of flow with
low sediment concentration are rewritten as

Juy ~ Ouy = Ouy

a3 2.60
ox + ay 0z ( )
dux 0y Olmyuy) Dty 1 19p 19T
ot 0x ay 3z p * pox p Ox
lafx}' + lafxz (2.61)
pdy p 3z '
duy | Daniny) 3(u3) L) 1 Top 1 0m
ot 0x ay a2 o ” pady p 0x
10ny | 19m (2.62)
p dy p Oz
g Duxz)  OGnyuy)  9p) 1 19p 10T
ot ox ay 0z o pdz  p ox
190y | 197 (2.63)

pay p 0z

where x (= x1) and y (= x2) are the horizontal coordinates; z (= x3) is the vertical
coordinate above a datum; u,, u,, and u, are the components of mean velocity in the
x-, y- and z-directions; Tyy, Txy, ..., and 7., are the stresses (including both molecular
and turbulent effects); and Fy, F,, and F; are the components of the resultant external
force in the x-, y- and z-directions. As gravity is assumed to be the only external force,
Fy =F,=0and F, = —pg.

Note that the bar “-”, denoting time-averaged quantities, is omitted in Eqgs. (2.60)-
(2.63) for simplicity.

For gradually varied (shallow water) flows, the inertia and diffusion effects in the
vertical momentum equation (2.63) are usually neglected, yielding the hydrostatic
pressure equation:

» _

P =g (2.64)
Z

Under the assumption of constant p along the depth, Eq. (2.64) has an analytic
solution:
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Figure 2.6 Configuration of flow and sediment transport.

p=pat+pgzs —2) (2.65)

where z; is the water surface elevation, and p, is the atmospheric pressure at the water
surface. A constant p, is assumed here for a short river reach.

Substituting Eq. (2.65) into Egs. (2.61) and (2.62) yields the x- and y-momentum
equations for gradually varied flows:

duy () N 3 (yty) N ugy) _ 0zs  10Tex | 107y 19174
ot 0x ay a9z ax p 0x p Ay p 02
(2.66)
2
(2.67)

Because the channel bed and banks generally vary in much lower speed than the
flow, the following non-slip condition is applied at these solid boundaries:

Uy = Oy ity = 0,11y, = 0 (2.68)

The water surface is a free moving boundary, the location of which is part of the
solution. For a particle on the free surface, its location (x,y, z) can be described by

T =2s(x,9,1) (2.69)
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and it moves with the free surface, i.e.,

dx dy dz
E = Upys E = uhy’ E = Up, (270)

where u,,, uj,,, and u,, are the components of flow velocity at the water surface in
the x-, y- and z-directions. Thus, differentiating Eq. (2.69) with respect to ¢ leads to
the following kinematic condition of free surface:

s | 0% 1y, 0%

— — = 2.71
oy b - Tty 3y Upy, (2.71)

The three-dimensional sediment transport equation (2.44) closed using Eq. (2.46)
1s rewritten as

dc  d(uyc d(uyc d(uyc d(wsc d dc d ac
7+(x)+(y)+(z)_ (ws):7 gl ) 4 L (e,
ot ox ay a2 0z ox ax ay ay

d dc
— — 2.72
a2 (85 8z> (2.72)

In general, Eq. (2.72) is approximately applicable to all sediment loads (if fine
enough) in the entire water column. However, because bed load and suspended load
behave differently, the water column is often divided into two zones: a bed-load zone
from the bed elevation z; to z;, + & and a suspended-load zone from z;, + § to zs,
as shown in Fig. 2.6. Here, § is the thickness of the bed-load zone, which is usually
assumed to be about twice the sediment diameter (Einstein, 1950) or half the bed-form
height.

The net vertical sediment flux across the water surface should be zero and, thus, the
suspended-load boundary condition at the water surface is

(8586 + wsc> =0 (2.73)
92 =2

There are usually two approaches to specify the suspended-load boundary condition
at the interface between the suspended-load and bed-load zones. One approach is to
assume the near-bed suspended-load concentration to be at equilibrium:

Cle=2,4+8 = Chx (2.74)

where ¢y, is the equilibrium (capacity) sediment concentration at the interface.
The other approach is to assume that the near-bed sediment entrainment flux is at
the capacity of flow picking up sediment under the considered flow conditions and
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bed sediment configurations:

d
Ejp = —& o€ — (2.75)

02 =z 45

where E;, is the entrainment flux of sediment at the interface. Correspondingly, the
deposition flux at the interface is defined as D, = wscy, in which ¢, is the suspended-
load concentration at the interface between the suspended-load and bed-load zones.
Note that E, and Dy, are defined per unit area of horizontal plane rather than bed
surface; the bed surface may be curved, whereas E; and Dj, are along the vertical
direction.

Egs. (2.74) and (2.75) are often called “concentration” and “gradient” boundary
conditions, respectively. Eq. (2.74) is applicable for equilibrium sediment transport at
the interface, while Eq. (2.75) is applicable for both equilibrium and non-equilibrium
sediment transports. In particular, for equilibrium transport, D, = E; and Eq. (2.75)
becomes Eq. (2.74). Therefore, Eq. (2.75) is more general than Eq. (2.74). More
discussions about the near-bed suspended-load boundary condition are given in
Sections 2.5.2 and 7.3.1.

2.4.1 Depth-averaged 2-D model equations

Depth-averaged hydrodynamic equations

The depth-averaged quantity @ of a three-dimensional variable ¢ is defined by

1 (%
_ h[% & dz (2.76)

Integrating the continuity equation (2.60) over the flow depth yields

Zs a Zs 8 Zs a
/ O 4y + / Mz + / M e — 0 (2.77)
w 0% » 9V w 02

h

which is reformulated using the Leibniz integral rule as

a [* 025 gy 025 0z
I . uxdz — th? +u hx? + 7/ ”ydz Upy—— 3y + upy—— dy
+up, —up, =0 (2.78)

Substituting boundary conditions (2.68) and (2.71) into Eq. (2.78) leads to the
depth-integrated 2-D continuity equation:

— + Uy a(hUy) =0 (2.79)
ot ox ay

where Uy and U, are the depth-averaged quantities of local velocities u, and u,, defined
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by Eq. (2.76). Note that 8h/9¢ in Eq. (2.79) may be replaced by dzs/9¢, because the
bed change is omitted.
Integrating the x-momentum equation (2.66) over the flow depth yields

/% Otz 1o /Z 3(u2) et /z Onyus) o /z Datits) |
. Ot w  0X @ dy P 0z

b b b b

% g 1 %9 1 (%9 1 (%0
=g [ der [ [TT0ars o [M B 250
2 0X P Jy Ox pJy 0y pJy, 0z

and then applying the Leibniz rule to this equation yields

ad % 025 dzp, 0 B, 5 02 5 03y
at(/ ”"dz)_”’”at+””xat+ax f wedlz | = o

b b

;2 / " wyind % | % |
— UyUAZ | — U UL — Upy ULy — up,u — Uup,u
dy ” ylUx hyUhx dy byHbx 3y hz%hx bz¥"bx

0z 190 Zs 1 0z 1 az
= _ghis + = / Texdz | — *Txx,sis + *":xx,bi;7
ox  pox \Jy o ox p 0x

19 ([ 1 9z 1 oy 1
-2 dz) = 10 S p 2 2 L D — 2.81
oy (/z, o z) p sy T Tt (s = D) (2:81)

Substituting boundary conditions (2.68) and (2.71) into Eq. (2.81) results in the
depth-integrated x-momentum equation:

d(hUy)  3(hUEH  9(hUyUy) 0z | 10[h(Tex + Dix)]
ot T ax T oy —ghst s ox
13[h(Tyy + D)l 1

+ —(Tsx — Tpy)
P dy P
(2.82)

where Ty, and Ty, are the depth-averaged normal and shear stresses; Dy, and Dy
account for the dispersion momentum transports due to the vertical non-uniformity of
velocity, defined as Dyy = —7 zz; (x — Uy)*dzand Dy, = —£ Zz; (y — Uy)(uy — Uy)
dz; Tsx is the x-component of shear force per unit horizontal area, usually due to
wind driving at the water surface, defined as Tox = Tuzs — Tax s025/0X — Tay,s025/0Y;5
and 1p, is the x-component of bed shear force per unit horizontal area, defined as
Thx = Txg,b — Tax,bh 03/ 0X — Ty, 1,023,/ dy. Note that 1, may be written as 7, = 71, Tpy,
in which 7, is the x-component of bed shear force per unit bed surface area, and 11,
is the bed slope coefficient defined as 12, = [1 + (9z,/9x)* + (3zp/0y)*1"/2.
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Similarly, integrating Eq. (2.67) over the flow depth leads to the depth-integrated
y-momentum equation:

2
a(hUy) N a(hU,Uy) N d(hUy) _ —gh% N 10[h(Tyx + Dyx)]
at ax ay ay p ax
10[h(Tyy+ Dyy)] 1
- —2 P (1y — 1)
P dy p

(2.83)

where Ty, and T, are the depth-averaged shear and normal stresses; D, and D,
account for the dispersion momentum transports due to the vertical non-uniformity of
velocity, defined as Dyx = Dy, and Dy, = —% f;b (ny — Uy)zdz; Ty is the y-component
of wind shear force per unit horizontal area at the water surface; and 1, is the y-
component of bed shear force per unit horizontal area.

The depth-averaged stresses Tjj(i,j = x,y) can be related to the gradients of the
depth-averaged velocities by the Bossinesq assumption similar to Eq. (2.45) in a tur-
bulence model, such as the depth-averaged k-¢ turbulence model proposed by Rastogi
and Rodi (1978). However, there is not a general method to handle the dispersion
terms Dj;. Dj; are not related to turbulence, but both D;; and Tj; represent momentum
transports as effective stresses. In nearly straight channels, the dispersion transports
are usually combined with the turbulent stresses. In curved channels, secondary flows,
especially the helical flow, play an important role in fluvial processes, and thus the
dispersion transports become important and should be taken into account through
additional model closures. This is discussed in Section 6.3.

Depth-averaged sediment transport equations

Unlike the depth-averaged quantities defined by Eq. (2.76), the depth-averaged
suspended-load concentration, C, is defined by

1 s
C= 7/ uscdz 2.84
(h—8Us Jpyrs (2.84)

where Us is the streamwise depth-averaged velocity, and u; is the local flow velocity

projected to the streamwise direction. By definition, Us = f;; 45 usdz/(h — 68), but U

is approximately set as the resultant depth-averaged velocity U = /U2 + UJ% at each

horizontal point.
Integrating the three-dimensional sediment transport equation (2.72) over the
suspended-load zone leads to

/ZS %dz—l—/zs B(ch)dz+/‘zs a(uyc)dz+[zs 8(uzc)dz_/z5 a(a)gc)dz
2p+s ot 2p+d ox 2pt+o 3y pt+0 0z 2p+o 0z

s 0 dc Zs ad dc s 9 dc
= —e,— ) | dz +/ [— (ss—>] dz +/ [— (85—)] dz 2.85
£b+5 |:ax ( ax)] 2p+8 3}/ ay zp+o 9z 0z ( )
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By applying the Leibniz integral rule and boundary conditions (2.68), (2.71), (2.73),
and (2.75) to Eq. (2.85) and assuming that the bed-load zone is very thin, i.e., § < b,
the depth-integrated suspended-load transport equation is obtained:

k) <hc> d(hU,C) N a(hU,C)

at \ Bs dx dy
0 aC 0 aC
=—|h|es— + Dy — | h | es— + Dq E, — D 2.86
ax[(‘gaﬁ )]+8y[<gay+ y)]+b b (286)

where f; is a correction factor for suspended load:

s Zs
Bs :/ uscdz/(Us/ cdz) (2.87)
2+ 2p+6

Note that the coefficient B¢ in Eq. (2.86) should not be zero; otherwise, no suspended
load moves. s should also appear in the diffusion terms in Eq. (2.86), but it is lumped
into the diffusivity ¢ for simplicity. However, if the depth-averaged sediment con-
centration C is defined using Eq. (2.76) rather than (2.84), B; should appear in the
convection terms rather than the storage term, i.e.,

3(Bsh
B(hC)+3(ﬂshUxC)+ (BshU, C)

at ax ay
0 aC 0 aC

= —|h|es— + Dy — | h | es— + Dq E, — D 2.88
ax[(sax+ )]+ay[(8ay+ y)]+b b (2.88)

It should be clarified that defining the depth-averaged suspended-load concentration
C by Eq. (2.76) results in the unit suspended-load discharge g = B;UbhC, while the
definition (2.84) yields gs = UbC. If mass balance is respected, either definition can
be used. The definition (2.84) is adopted in this book, except where stated otherwise.

The coefficient Bs is actually the ratio of the depth-averaged sediment and flow
velocities and accounts for the temporal lag between flow and suspended-load trans-
port in the depth-averaged 2-D model. As demonstrated later, s also appears in the
1-D model. However, this lag due to difference between the depth-averaged flow and
sediment velocities can be automatically taken into account in the 3-D (or vertical
2-D) model, which directly uses the local flow velocity and sediment concentration as
dependent variables. The evaluation of B is discussed in Section 3.8.

Dgy and Dy, in Eq. (2.86) are called dispersion sediment fluxes, which account for
the dispersion effect due to the non-uniform distributions of flow velocity and sediment
concentration over the flow depth, defined as D, = —% zz; (ux — Uy)(c — C)dz and

Dy = —% ZZ; (ty — Uy)(c — C)dz. In nearly straight channels, the dispersion fluxes
may be combined with the (turbulent) diffusion fluxes, with & replaced by a mixing
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coefficient to represent the diffusion and dispersion effects together. In curved chan-
nels, the dispersion fluxes become important and need to be modeled, as discussed in
Section 6.3.

Integrating the three-dimensional sediment transport equation (2.72) over the bed-
load zone leads to the bed-load mass balance equation:

9zp  0(8cs)  Aopeqp)  9(byqp)
1-p )% -
(1= bm) ot + ot + dx + dy

D, — E, (2.89)

where p),, is the porosity of bed material at the bed surface, c; is the average volumetric
concentration of sediment at the bed-load zone, gy, is the bed-load transport rate by
volume per unit time and width (m?s~1), and «y, and apy are the direction cosines of
bed-load movement. The bed load is usually assumed to move along the direction
of bed shear stress but may be affected by secondary flows in curved channels and
gravity in channels with steep bed and bank slopes.

The first term on the left-hand side of Eq. (2.89) represents the bed change, which
results from the exchange between moving sediment and bed material. The second term
accounts for the storage effect. In general, the average bed-load concentration c;s is
related to the bed-load transport rate g, and velocity uy, by cs = q;,/(8up,), thus yielding

up

0z, 0 (qp d(opeqp)  9(pyqp)
1-p )%t 2 _
(=t ot + at ( ) dx + dy

D, — E, (2.90)
Because the bed-load velocity u, is usually slower than the flow velocity, Eq. (2.90)
accounts for the temporal lag between flow and bed-load transport.
Summing Eqgs. (2.86) and (2.90) leads to the overall sediment balance equation:

a3p 0 (hct) 0qx 3(]7ty

1—p &b & (7
(=P 8t+8t Bs 0x dy

-0 (2.91)

where C; is the depth-averaged concentration of total load; gs and g, are the total-
load fluxes: g = apeqp + hUxC — £shdC/9x — hDsy and g1y = apyqp, + hU,C —
eshdC/dy — bDyy; and B; is a correction factor for total load, related to s and u;, by

hC; 1
= = 2.92
hC/Bs + qp/up 7s/Bs + (1 —rs)U/uy ( )

Bt

where 7; is the ratio of suspended load to total load.

2.4.2 Width-averaged 2-D model equations

Fig. 2.7 shows the configuration of a cross-section. The width-averaged quantity & of
a three-dimensional variable ¢ is defined by

~ 1 [P
d=_ ody (2.93)
b Jy,
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Figure 2.7 Configuration of cross-section.

where b1 and b are the y-coordinate values of two banks; and b = by — by, i.e.,
the flow width at height z. Note that x and y are herein set along the longitudinal
and transverse directions of the channel, respectively, for deriving the width-averaged
2-D and 1-D model equations. However, this arrangement is not necessary in the
depth-averaged 2-D and 3-D models.

Integrating the three-dimensional continuity equation (2.60) along the y-coordinate
axis over the flow width yields

[72 a [72 a bz a
/ 9 gy +/ % gy +/ My =0 (2.94)
b, 0x b, 0y b, 0%

and applying the Leibniz integral rule and the non-slip boundary condition at banks
to this equation yields the width-integrated continuity equation of flow:

d(bUy) N AU,
0x 9z

0 (2.95)

where Uy and U, are the width-averaged velocities in the x- and z-directions, defined
by Eq. (2.93).

In a similar manner, integrating the x- and z-momentum equations (2.61) and (2.63)
over the flow width leads to the width-integrated momentum equations:

abUy)  abU?»  abU,U, 1,09 13[b(Tex + Dsx
®Uy , 06Ty | 30000 _ 1, 0p  100b(Tex + D)l

b
Jt ax a2 p Ix p 0x
10[b(Txz + D 1
+ ,M — (M1 Tl + 112T2)
p 0z o

(2.96)
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26Uy | 80Ty 00U _ PR VL 1 9[b(Tex + Da)]
ot ox 0z p 9z p ox
19[b(T,, + D 1
)

P 0z p
(2.97)
where p and iy(i, j = x,z) are the width-averaged pressure and stresses, respec-
tively; D;; are the dispersion momentum transports due to the lateral non-uniformity
of flow velocity, defined as Dyy = —7 bblz (uy — Uy)?dy, Dyy = Dy = —7 fbhlz

(uy — f]x)(uz — LN]Z)dy, and ISZZ = —% bblz (uy — ﬁz)zdy; 7, and 1,(/ = 1,2) are the
shear stresses in the x- and z-directions on the two bank surfaces; and m; are the bank
slope coefficients, defined as 72; = [1 + (3b;/3x)* + (8b;/92)*1"/>.

For gradually varied flows, the effects of inertia, diffusion, and dispersion in the
vertical momentum equation (2.97) can be neglected, yielding the hydrostatic pressure
equation (2.65). The x-momentum equation (2.96) is then turned to

260y | 26T | 36TTy) _ L 3[b(Tyx + Dix)]
ot 0x 0z ax p ox
13[b(Ty; + D 1
I
p 0z p

(2.98)

where Z; is the laterally-averaged water surface elevation.
Integrating Eq. (2.72) over the flow width leads to the width-integrated suspended-
load transport equation:

abC) abULC) abU,C)  dbwC)
+ + -
ot 0x 0z 02

i) € ~ ) 3C  ~

where C is the width-averaged concentration of suspended load; Dy and Dy, are
the dispersion fluxes, defined as Dg, = —% bblz (ux — Uy)(c — C)dy and D, = —%

bblz (uy — (NJz)(c - E)dy; and S, includes the sediment exchange at banks and the side
discharge from tributaries.
The bed-load zone is so thin that it is not necessary to consider the vertical variation
of sediment concentration in this zone. The width-integrated bed-load transport is
determined using the 1-D transport equation introduced in the next subsection.
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2.4.3 Section-averaged |-D model equations

The cross-section-averaged quantity ® of a three-dimensional variable ¢ is defined by

S ([ panzt [* [ gava
d=1 A:—/ 2 2.100
i ffoaa=5 [ [ oa (2.100)

where A is the flow area in the cross-section, as shown in Fig. 2.7.
Integrating the 3-D continuity equation (2.60) over the cross-section leads to

% by g . rbog = rb g
/ / ”"dydz+/ / ﬂdyder/ / M hydz =0 (2.101)
2 Jby ox 2 Jby dy 2 Jby 92

which is reformulated to the following 1-D continuity equation by applying the Leibniz
rule, the non-slip condition (2.68) at the channel bed and banks, and the kinematic
condition (2.71) at the water surface:

DA | A(AT)

8t+ ax

0 (2.102)

where U is the flow velocity averaged over the cross-section, defined by Eq. (2.100).
Integrating the 3-D momentum equation (2.66) over the cross-section yields the 1-D
momentum equation:

AU AU?
a( U)+8( U _

40% | 10T + Dol | 1
at 0x ox p ax

+ ;(B'Esx - bex)
(2.103)

where ;[:xx is the normal stress averaged over the cross-section, ﬁxx is the dispersion
momentum transport, B is the channel width at the water surface, x is the wetted
perimeter, Ty is the wind driving force per unit horizontal area at the water surface,
and 7, is the shear force per unit area of bed and bank surfaces.

The turbulent stress term in Eq. (2.103) is usually ignored, because it is much weaker
than the convection term. The dispersion term is often combined with the convection
term by introducing a correction factor. In inland rivers, the wind driving force usually
is negligible. Therefore, the resulting 1-D momentum equation is

3AU)  (BAU? 9z, 1
AY) L 3PAVD) _ _p %% _Los. (2.104)
at ax aix p

where 8 is the correction factor for momentum, defined as 8 = I Ausz / (Aﬁz), with
u being the streamwise flow velocity in the 3-D model.
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The average suspended-load concentration, C, at the cross-section is defined as

~ 1
= —A// ucdA (2.1085)
AU J Ja,

where ¢ is the local suspended-load concentration, and A; is the flow area in the
suspended-load zone, as shown in Fig. 2.7. It is often assumed that A; ~ A. Integrating
Eq. (2.72) over the suspended-load zone leads to the 1-D suspended-load transport
equation:

3 (AC 3 Kkl 3C
2 (ﬂ) (AT = (Ass - )+B<Eb—Db> (2.106)

where Ej, and Dy, are the width-averaged sediment entrainment and deposition fluxes at
the interface between the suspended-load and bed-load zones, and f; is the correction
factor for suspended load:

ps = //A uch/ (ﬁ//; ch) (2.107)

Note that no dispersion term appears in Eq. (2.106), due to the definition of Cin
Eq (2.105). However, if C is defined by Eq. (2.100), a dispersion term should appear
in Eq. (2.106). Normally, the diffusion term in Eq. (2.106) is ignored, yielding

= B(E, — Dy) (2.108)

Kl AC +a(Aﬁ€)
/§S ax

Integrating Eq. (2.72) over the bed-load zone yields the 1-D bed-load mass balance
equation:

a )% N a(zﬁ\aatCs) N @ = B(D, — Ey) (2.109)

where dA, /0t is the rate of change in bed area; A, is the cross-sectional area of the
bed above a reference datum, as shown in Fig. 2.7; As is the cross-sectional area of
the bed-load zone; Qy, is the bed-load transport rate at the cross-section; and Cj is the
laterally-averaged bed-load concentration.

In analogy to Eq. (2.90), by using Cs = Qp/(AsUp), Eq. (2.109) can be rewritten as

a—pp 0 L (20) 4 2 _ gD, -y (2.110)

dAy, (Qb) 00y
Jat ot

where Uy, is the laterally-averaged velocity of bed load.
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Summing Egs. (2.108) and (2.110) leads to the 1-D mass balance equation of
total load:

(2.111)

a-ppies? (AF‘) § 280G
t At \ B 0x
Where C, is the  total-load concentration averaged over the cross-section, defined as
= (Qp + As UC)/(AU), and B; is a correction factor for total load, related to Bs
and U, by Br = AC,/(AC/Bs + Qp/Up) = 1/[rs/Bs + (1 — 1)U U, Wl’llCh is similar
to Eq. (2.92).

2.4.4 Effects of sediment transport and bed change
on flow

Recall that the aforementioned 1-D, 2-D, and 3-D hydrodynamic equations ignore
the effects of flow density and bed change by assuming that the sediment con-
centration is low and that the bed varies much more slowly than the flow. This
assumption is not valid for high shear flows with strong sediment transport. In
addition, the flow density varies with salinity, temperature, and other factors.
In general, the 3-D hydrodynamic equations with a variable flow density p are
Eqgs. (2.25) and (2.26), which are rewritten in the Cartesian coordinate system shown
in Fig. 2.6 as

p 0 3 9

% (pux) (puy) n (puz) _0 (2.112)
ot ox ay 0z

O(pux)  Opuy)  dpuytts)  dpusits) 3 0%  OTxy 0T

at 9x dy dz 7 dx  ox dy 0z
(2.113)

Dpmy) | dpmemny) | d(puz) Loy o dp | Bn | dry By

at ax dy az Yy dx 3y | oz
(2.114)

Apus) | dpusuz)  dpuyns) 0puz) _ o 0p , 9t | 0Ty | 07

at ax dy 3z  ° dz | oax 3y | 0z
(2.115)

Like Eq. (2.63), the z-momentum equation (2.115) can be simplified to the hydro-
static pressure equation (2.64) for gradually varied (shallow water) flows. When
the flow density is variable in the vertical direction, Eq. (2.64) has the following
solution:

Zs
p=pa+f 0gdz (2.116)
Z
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Substituting Eq. (2.116) into Egs. (2.113) and (2.114) and assuming a constant p,
yields

Wpuy) | d(puz) | dpuyiy)  0(puzity) 9z / dp
= —pog == — L4
ot " ax T ay T a2 M8ax 8] ™
0Txx  O0Txy 0Ty (2.117)
ax ay a
2
d(puy)  d(puxuy)  9(puy)  d(puyuy) 92 /ZS ap
= —pog == — L
ot T ax oy T oz PGy T8 3y ®
0Tyx 0Ty 0Ty (2.118)

where pg is the flow density at the water surface.
Integrating Eqgs. (2.112), (2.117), and (2.118) over the flow depth leads to the
depth-integrated 2-D flow equations:

3(ph) +8(phUx) +8(phUy) L+, 0

= 2.11
ot ox oy TP =0 (2.119)
d(phUy)  3(phUz)  3(phUyUy) 9zs 1 59  3[h(Tax + Day)l
= —pgh— — ~gh?L 4 Z T T e
ot ax T oy P8 e 28 o T ox
3[h(Tyy + D
+ w + Tex — Tpy (2.120)
2
WphUy) | 3phUsUy) | 00hUy) o dzs 1 a0p | 3Ub(Tyx 4 Dy))
ot ox ay ay 2 ay ox
a[h(Tyy + D
4 Aoy + Dyl Toy — Ty (2.121)

ay

where py, is the density of the water-sediment mixture in the bed surface layer, deter-
mined by p, = prp;, + ps(1 = p;,), with p;,, being the porosity of the surface-layer bed
material. Note that in the derivation of Egs. (2.119)—(2.121), it is assumed that the
flow density is constant along the flow depth but varies horizontally.

Integrating Eqgs. (2.112), (2.113), and (2.115) over the flow width yields the width-
integrated 2-D equations of flow with a density varying in the longitudinal section:

d(pb) n 3(pbUy) n 3(pbUy)

=0 (2.122)
ot 0x k4
d(pbUy)  3(pbU2)  3(pbU,Uy) _ 3p  [b(Txx + Dxx)]
+ + =-b_— 4 —=
ot 0x 0z 0x 0x
A[b(Tyz + Dyl
+ % — (m1Tx1 +mM2Tx2)

(2.123)
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ot 0x 02 po8 02 0x
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(2.124)

By applying the hydrostatic pressure assumption, the vertical momentum equation
(2.124) can be simplified to Eq. (2.116), and then the streamwise momentum
equation (2.123) is turned to

3pbUy)  8(pbU2)  3(pbU,Uy) 9% / p
x = —(pobeZ 4 gb | L4
ot T ax T oz P08 T8V | 5™

N b(Trx + D)l N [b(Tx + Dx)]
0x 0z
— (m1Tx1 +mM2Tx2) (2.125)

Integrating Eqgs. (2.112) and (2.117) over the cross-section yields the general 1-D
equations of flow with a longitudinally variable density:

3(pA)  d(pAD) A,
ot T ax P T

9 ~ ) ~ 9z, 1 ap
—(pA — (pBAU?) = —pgA—= — —oAh, = — 7 2.127
Bt(p U)+8x (pﬂ U) P8AT = 58AMp T~ = XThx ( )

0 (2.126)

where b, = fOB h%ddy/A, with b, 4 being the local flow depth.

Note that the effect of sediment concentration on the flow field is taken into account
in Egs. (2.112)—(2.127) through the density of the water-sediment mixture defined in
Eq. (2.23). The effect of bed change is considered in the 1-D and depth-averaged 2-D
models by including the bed change terms in Egs. (2.119) and (2.126), whereas this
is done in the width-averaged 2-D and 3-D models by specifying the near-bed fluxes
and changing the computational domains at the bed boundary.

2.5 NET EXCHANGE FLUX OF SUSPENDED LOAD NEAR BED

2.5.1 Exchange model using near-bed capacity
formula

In the depth-averaged 2-D (or 1-D) model, the near-bed sediment exchange flux
Dy, — Ey, in the suspended-load transport equation must be modeled, because the near-
bed concentration ¢, is not a dependent variable to be solved. The deposition flux
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Dy (= wscp) is usually determined by relating ¢;, to the depth-averaged suspended-
load concentration C through ¢, = «.C, in which «. is the adaptation or recovery
coefficient.

The entrainment flux Ej, (= wscyp,) can be determined by directly using an empirical
formula for the near-bed suspended-load transport capacity cy,.. The net exchange flux
thus reads

Dy — Ep = acwC — wscp, (2.128)

Examples of this model can be found in Spasojevic and Holly (1990) and Minh
Duc (1998).

The coefficient a, in non-equilibrium sediment transport states is little known and
very difficult to determine theoretically. It is often approximately evaluated using
the Rouse, Lane-Kalinske, or another distribution of suspended-load concentration
introduced in Section 3.5.1, established under equilibrium conditions. For example,
the use of the Rouse distribution yields (Minh Duc, 1998)

) bh— S ws/k U,
ac = (h—8) //8 ( zzb—é) dz (2.129)

Lin (1984) proposed the following relation for a.:

KUy

@ = 3.25+0.55In ( ‘:; ) (2.130)

which was used by Spasojevic and Holly (1990).

2.5.2 Exchange model using average capacity formula

The entrainment flux E;, can also be determined by relating ¢, to the equilibrium
(capacity) depth-averaged suspended-load concentration C, through c¢,, = oCy,
in which a is the adaptation coefficient under the equilibrium condition and
C, is determined using an empirical formula. Therefore, the net exchange flux is
determined by

Dy — Ep = a.wsC — a5 Cy (2.131)

In the equilibrium sediment transport state, o, = 4, but in a non-equilibrium state,
ac # acs. Because equilibrium is acquired through exchange between bed material and
moving sediment near the bed, the sediment in the lower layer near the bed usually
reaches equilibrium more promptly than the sediment in the upper layer near the water
surface. In other words, the relative difference between the actual and equilibrium
sediment concentrations in the lower layer is usually smaller than that in the upper



46 Computational River Dynamics

layer. Therefore, one may expect that for erosion, C/c;, < Cy/cp. and o, > acy; for
deposition, C/cj, > Cy/cps and ac < acs.

However, the difference between o, and o, is often assumed to be negligible, for
simplicity. Thus, the net exchange flux can be determined by (Han, 1980; Wu, 1991)

Dy, — Ep = aw(C — Cy) (2.132)

where o is a new adaptation coefficient.
Equating Egs. (2.131) and (2.132) leads to aws(C— C,) = acwsC —awsCy and then

Cs
o =0, + ((XC - O{C*)ﬁ (2.133)

(2.134)

Q= Oy + (¢ — Olcy)

C-C,

When erosion occurs, a. > a4 and C < C,; when deposition occurs, o, < a4 and
C > C,. Substituting these relations into Egs. (2.133) and (2.134) results in o < a,
and o < ay. Therefore, the coefficient @ in Eq. (2.132) is usually less than the two
coefficients a. and a4 in Eq. (2.131) (Wu, 1991).

Galappatti and Vreugdenhil (1985) derived a function for « through an approxi-
mate analytical integration of the pure vertical 2-D convection-diffusion equation of
suspended load. They used the “concentration” boundary condition (2.74), which
assumes equilibrium sediment transport near the bed. Armanini and di Silvio (1986)
argued that the “concentration” boundary condition may result in large errors for
fine sediments. They derived a different function for o through the integration of
Galappatti and Vreugdenhil by specifying the “gradient” boundary condition (2.75).
In addition, Armanini and de Silvio performed a sensitivity analysis of the approxi-
mate solutions by applying the procedure of Galappatti and Vreugdenhil directly to
the transport (cu) instead of to the concentration (¢). Armanini and de Silvio’s function
can be approximated as

L=t (1-9) exp[—l.S (" l‘j] (2.135)

where a is the thickness of the bottom layer, defined as a = 33z0 = 33h/exp
(1+«Cy//2), in which z¢ is the zero-velocity distance in the logarithmic velocity
distribution, and C,, is the Chezy resistance coefficient of the channel. The thickness
of the bottom layer has the order of magnitude of the grain diameter when the bed is
flat, and the order of magnitude of the bed form height in the presence of bed forms.
Zhou and Lin (1998) also established a formula for « using the analytical solutions of
the pure vertical 2-D convection-diffusion equation of suspended load with constant
diffusivity in steady, uniform flow. They adopted the analytical solution with the
“concentration” boundary condition for erosion case, and that with the “gradient”
boundary condition for deposition case. The coefficient « is determined by

— 2.1
2 + (2.136)



Mathematical description of flow and sediment transport 47

where R =6ws/(kU,), and oy is the first positive root of the following
equations:

tg(o) = _Z (for erosion), 2ctg(o) = — — R (for deposition) (2.137)
R R 20

Eq. (2.136) represents two curves for « in cases of erosion and deposition, respec-
tively, as plotted in Fig. 2.8. The difference between these two curves is significant
for small Rouse numbers ws/(kUy), but gradually decreases as the Rouse number
increases. It should be noted that because the “concentration” boundary condition is
used, the curve for erosion case may have large errors for fine sediments (small Rouse
numbers), as discussed by Armanini and di Silvio (1986).

]
1
| P el Zhou-Lin, deposition
. Zhaou-Lin, ercsion
\ ——— Armanini-di Silvio

Figure 2.8 Relation between adaptation coefficient and Rouse number.

Armanini and di Silvio’s function, Eq. (2.135) with a/h = 0.017 is also plotted in
Fig. 2.8. It is shown that for small Rouse numbers Eq. (2.135) is close to Zhou and
Lin’s curve for deposition case, and as the Rouse number increases, the difference
between Egs. (2.135) and (2.136) increases. It is also shown that the values of « given
by these two methods are always larger than 1.

It should be noted that Egs. (2.135) and (2.136) were derived for a pure vertical 2-D
case under many assumptions and simplifications. Their application in natural rivers
should be done with caution, because the adaptation coefficient « is affected by many
other factors, as discussed in Section 2.5.3.

2.5.3 Complexity of adaptation coefficient of
sediment

Effect of cross-sectional shape

The value of & in the 1-D model is related to the cross-sectional shape. This is
demonstrated by the following analysis suggested by Zhou and Lin (1998).
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Width-integrating the steady depth-averaged 2-D suspended-load transport equ-
ation leads to

B 8C B
[ UbS— dy = —/ aws(C — Cy)dy (2.138)
0 0x 0

and the 1-D formulation of Eq. (2.138) is
~ aC PO
OH-~ = —ag0(€—C) (2.139)
x

where H, U, C, and C, are the flow depth, velocity, actual and equilibrium suspended-
load concentrations averaged over the cross-section, respectively; and oy is the
adaptation coefficient in the 1-D model.

The equilibrium depth-averaged suspended-load concentration at each vertical line
may be determined using the Zhang (1961) formula introduced in Section 3.5.3:

3 m
C, =K. (ghUa)> (2.140)
S

where K, is a coefficient, and 1 is an exponent.
In analogy to Eq. (2.140), the actual depth-averaged suspended-load concentration
at each vertical line is assumed to have the relation:

3 m
C—K (ggw ) (2.141)
S

where K is a coefficient similar to K.
The depth-averaged flow velocity at each vertical line is assumed to be proportional
to the local flow depth:

Uoch (2.142)

where 7 is an exponent and has a value of 2/3 if the Manning equation is used.
Substituting relations (2.140)—(2.142) into Eq. (2.138) and comparing the resulting
equation with Eq. (2.139) leads to (Zhou and Lin, 1998)

fOB pr+l dy fOB ah(?:r—l)mdy
B foB Gr=m+r+1 4y

@ = (2.143)

Eq. (2.143) shows that aq, is related to the cross-sectional shape and varies with
exponents 72 and r. After o has been determined using Eq. (2.136), a4 can be calcu-
lated using Eq. (2.143). As an approximation, « may be assumed to be constant along



Mathematical description of flow and sediment transport 49

the channel width, thus yielding

B B -
] o fO hr+1dyf0 pHGr 1)mdy
o “ Bf(f" hGr=Dymtr1 4y

(2.144)

where A, is considered as a correction factor to account for the influence of cross-
sectional shape. Normally, A, is in the range of 0.25-1.0.

Effects of other factors

The settling velocity ws in Egs. (2.72) and (2.132) is often set as that of a single
particle in quiescent, distilled water. This is valid if the sediment concentration is very
low, but in general the effect of sediment concentration on ws should be considered.
Moreover, ws considers only the actions of drag force and submerged weight in still
water. In reality, sediment particles also experience other forces exerted by moving
water (Li, 1993; Wu and Wang, 2000). In particular, the Saffman (19635) lift force,
which might be important near the bed where the velocity gradient is high, may reduce
the settling velocity. These effects should be lumped in the adaptation coefficient «,
if no corrections are made to the settling velocity. This usually leads to reduction in
a values.

In addition, the above analyses of « consider only the flat bed without bed forms.
Bed forms often exist in natural rivers and affect the sediment exchange near the bed
and, in turn, the values of «. However, this effect is little understood. The bed-load
layer may become thicker because of bed forms, so that reduction in « values may be
expected based on Eq. (2.129) or (2.135).

Therefore, the adaptation coefficient o lumps the effects of many factors on sediment
transport. Tests in many rivers and reservoirs conducted by Han (1980) and Wu (1991)
suggest that o is about 1 for strong erosion, 0.5 for mild erosion and deposition, and
0.25 for strong deposition in 1-D models. These values differ from those (larger than
1) predicted by Egs. (2.129), (2.130), (2.135), and (2.136), but they are qualitatively
reasonable if these corrections due to the effects of cross-sectional shape, sediment
concentration, Saffman lift force, and bed forms are considered. However, these values
are given for reference only, and calibrating o using measurement data is preferable
for a specific case study.

2.6 EQUILIBRIUM AND NON-EQUILIBRIUM SEDIMENT
TRANSPORT MODELS

2.6.1 Formulation of equilibrium transport model

Each of the 1-D, 2-D, and 3-D sediment transport models described in Section 2.4
has only two governing equations, namely the suspended-load transport equation and
the bed-load mass balance equation, but there are three unknowns: suspended-load
concentration, bed-load transport rate, and bed change rate. Thus, one more equation
is required to close each model. Most of the first sediment transport models adopt the
assumption of local (instantaneous) equilibrium for bed-load transport, which assumes
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that the actual bed-load transport rate is equal to the transport capacity under the
equilibrium condition at every computational point (cross-section or vertical line), i.e.,

qb =qb*(U’hs Tad’ Vss--) (2145)

where gy, is the equilibrium (capacity) bed-load transport rate, which can be
determined using an empirical formula introduced in Section 3.4.

Eq. (2.145) can be used to close the 1-D, 2-D, and 3-D sediment transport models.
For example, the depth-averaged 2-D model is closed using Eq. (2.145) for bed-load
transport rate, Eq. (2.86) for suspended-load concentration, and Eq. (2.90) or (2.91)
for bed change. This approach is often called the equilibrium (or saturated) sediment
transport model.

2.6.2 Formulation of non-equilibrium transport model

Because of variations in flow conditions and channel properties, the sediment trans-
port in natural rivers usually is not in states of equilibrium. Sediment cannot reach new
equilibrium states instantaneously, due to the temporal and spatial lags between flow
and sediment transport. Therefore, the assumption of local equilibrium transport is
usually unrealistic and may have significant errors in cases of strong erosion and depo-
sition. A more realistic and general approach is the non-equilibrium (or unsaturated)
sediment transport model, which is described below.

For only suspended-load transport, the bed change is attributed to the net sediment
flux at the lower boundary of the suspended-load zone and thus determined by

0z
1 —Pi,,)aff =Dy, —E,
— awy(C — Cy) (2.146)

For only bed-load transport, Bell and Sutherland (1983) proposed a loading law
based on their analysis of laboratory tests:

0qp b 9qps
10 _ K — A6 4ok
ox 1Gps — qp) + b, 0x

(2.147)
where K is the loading-law coefficient. However, because Eq. (2.147) is an observation
of steady bed-load transport, its application to unsteady total-load sediment transport
is not straightforward. In addition, the last term on the right-hand side of Eq. (2.147)
lacks a physical basis. Daubert and Lebreton (1967), Wellington (1978), Nakagawa
and Tsujimoto (1980), Phillips and Sutherland (1989), and Thuc (1991) used the
following more general bed-load exchange model near the bed:

9z

, 1
(1 - pm)ﬁ = fb(qb = qbs) (2.148)

where L, is the adaptation length of bed load. Eq. (2.148) is based on theoretical
reasoning similar to that of Einstein (1950) but for bed load at a non-equilibrium state.
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On the right-hand side of Eq. (2.148), q;,/L;, and qy,.,./L;, represent the deposition and
entrainment rates of bed load, respectively.

Wu et al. (2000a) extended relation (2.148) to the total-load transport when bed
load is dominant. However, for general cases in which bed load and suspended
load are equivalently important, Wu (2004) suggested the following relation for
bed change:

0zp

, 1
(1- pm)ﬁ = E(Qt = qtx) (2.149)

where L; is the adaptation length of total load; and g; and gy are the actual and
equilibrium (capacity) total-load transport rates: q; = qp + UbC and g« = qpy +
UhC.,.

The term on the right-hand side of Eq. (2.149) was also adopted by Armanini and di
Silvo (1988) for the exchange flux between the bed-load layer and the bed. Eq. (2.149)
can be conveniently used in models that compute total (bed-material) load transport
without discerning bed load and suspended load. When suspended load and bed load
are calculated separately, Eq. (2.149) may be rewritten as

02 1
(1- p;,,>8—f = ais(C = C) + (@ = ) (2.150)

where o; is the adaptation coefficient of total load: a; = (Uh)/(L;ws).

Because the bed-load layer usually is very thin, it can be assumed that @ ~ «;.
Thus, substituting Eq. (2.150) into Eq. (2.90) yields the bed-load transport equation
(Wu, 2004):

at

d (ap\ , opxqp) Oapyqp) 1
— = — - 2.151
(%) + o) T L gy, — 2.151)

An alternative is to use Egs. (2.146) and (2.148) to compute the bed changes due
to suspended load and bed load, respectively, and then sum them to obtain the bed
change due to total load, i.e.,

0z 1
(1= p) =5, =Dy = Ey + @y — db) (2.152)

Note that L;, in Eq. (2.148) is replaced by the adaptation length L in Eq. (2.152).
L is approximately equal to L; in general cases and reduces to L, in the case of
bed load. However, L; and L are noted differently in this book for use of L;
in bed-material load models and L in models computing bed load and suspended
load separately. Further discussion on the relation between L, and L is given in
Section 5.1.2.1.

Eq. (2.152) is written in a general form, so that it can be used in the 1-D, 2-D, and
3-D models that compute bed load and suspended load separately. Substituting it into
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Eq. (2.90) yields the following bed-load transport equation:

= (%) LGS AT ) (2.153)

at \uy ax 3y L

which is similar to Eq. (2.151) except that L, is replaced by L.

By using Eq. (2.153) for bed-load transport, Eq. (2.86) for suspended-load transport,
and Eq. (2.152) or the overall sediment continuity equation (2.91) for bed change, the
depth-averaged 2-D sediment transport model is closed. Similar closures can be derived
for the 1-D, width-averaged 2-D, and 3-D models, which are explained in detail in
Chapters 5-7.

2.6.3 Adaptation length of sediment

The adaptation length is a characteristic distance for sediment to adjust from
non-equilibrium to equilibrium transport. It is a very important parameter in the
non-equilibrium sediment transport model. For suspended load, the adaptation length
L; is calculated by

L, = uh (2.154)

oaws

where « is the adaptation coefficient described in Section 2.5.

For bed load, the adaptation length L, has been given significantly different values
in the literature. Bell and Sutherland (1983) found that L; was a function of time ¢ in
an experimental case of bed degradation downstream of a dam due to clear water
inflowing. In numerical modeling studies, Nakagawa and Tsujimoto (1980), Phillips
and Sutherland (1989), Thuc (1991), and Wu et al. (2000a) set L; as the average
saltation step length of sand on the bed for laboratory cases, whereas Rahuel et al.
(1989) and Fang (2003) gave much larger values, such as one or two times the grid
spacing for field cases.

One reason for the aforementioned differences in values of Ly, is that the bed-load
movement is closely associated with bed forms, which are usually on a small scale
in laboratory experiments and on a larger scale in natural rivers. Naturally, L, may
take the value related to the length scale of the dominant bed form (Wu et al., 2004a;
Wu, 2004). For example, in Bell and Sutherland’s (1983) experiments of channel
degradation due to clear water, the transport of sediment (mainly bed load) was sig-
nificantly influenced by the scour hole near the flume inlet, and thus the adaptation
length was related to the dimension of the scour hole as a function of time #. In the case
where the bed is mainly covered by sand ripples, which usually occurs in laboratory
experiments, L;, may take the average saltation step length of sand or the length of
sand ripples, as adopted by Nakagawa and Tsujimoto (1980), Phillips and Sutherland
(1989), Thuc (1991), and Wu et al. (2000a). If sand dunes are the dominant bed form,
L, may take the length of sand dunes, which is about 5-10 times the flow depth. If
alternate bars are the dominant bed form, L, may take the length of alternate bars,
which is about 6.3 times the channel width (Yalin, 1972).



Mathematical description of flow and sediment transport 53

On the other hand, considering numerical accuracy and sometimes stability in the
solution of bed-load transport equation, e.g., Eq. (2.153), the grid spacing should
be (several times) smaller than the adaptation length. However, because of limited
computer capacity, the grid spacing has to be given large values (sometimes much
larger than the length of the dominant bed form) in field cases, and to obtain feasible
solutions, L, is hence set to one or two times the grid spacing (Rahuel et al., 1989;
Fang, 2003). This treatment perhaps is the choice under certain circumstances, but it
may give grid-dependent solutions.

Because bed-material load is a combination of bed load and suspended load, its
adaptation length can be given the larger of L;, and L; (Wu et al., 2004a):

L; = max{Ly, Ls} (2.1595)
or a weighted average of L, and L;:
Lt = (1 - 75)Lb + rsLs (2.156)

where 7; is the ratio of suspended load to bed-material (total) load.

In cases where bed load and suspended load coexist, L is usually larger than Ly,
and thus Eq. (2.155) gives o = oy, which is required in the derivation of Eq. (2.151).
Therefore, Eq. (2.155) was used by Wu (2004) in many cases. However, because L,
and « are usually treated as calibrated parameters, the difference between Egs. (2.155)
and (2.156) is not important.

Because wash load does not have significant exchange with the bed, its adaptation
coefficient « and length L can be set to be zero and infinitely large, respectively.

It should be pointed out that because the values of L, and « vary by case, the methods
discussed above and in Section 2.5 are only empirical guidance for evaluating these
two parameters. Their calibration using available measurement data is recommended
to obtain more reliable results for real-life problems. Sensitivities of sediment transport
models to these parameters are demonstrated in Sections 5.6 and 9.2.

2.7 TRANSPORT AND SORTING OF NON-UNIFORM SEDIMENT
MIXTURES

2.7.1 Non-uniform sediment transport

In the case of non-uniform sediment transport, moving sediment particles collide and
interact; bed sediment particles experience the hiding and exposure effects, because
fine particles are more likely to be hidden and coarse particles have more chance to be
exposed to flow. However, if the sediment concentration is low, interactions among the
moving sediment particles are usually negligible, so that each size class of the moving
sediment mixture can be assumed to have the same transport behavior as uniform
sediment. This assumption is adopted in this book, except where stated otherwise. As
an example, a depth-averaged 2-D non-uniform sediment transport model based on it
is presented below.
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As described in Section 2.1.2.2, the non-uniform sediment mixture is divided
into N size classes. Under the assumption of low sediment concentration,
Eq. (2.86) is applied to determine the transport of each size class of sus-
pended load:

3 (th) a(hU,Cp) n a(hUka)
ot

Bsk 9x dy
0 aCy 0 aCy
=—|hles— +D — |h|es— +D Cy, —C
9% |: (53 9x + sxk):| + 3y |: (85 dy + syk>i| + awg (Cyp %)
(k=1,2,...,N) (2.157)

where subscript & is the sediment size class index; C and C,, are the actual and equi-
librium (capacity) depth-averaged concentrations of the kth size class of suspended
load, respectively; Dy, and Dy, are the dispersion fluxes; fy, is the correction factor
defined by Eq. (2.87) for size class k; and wy, is the settling velocity of the kth size
class of sediment.

Note that the size class index k in this book is not subject to Einstein’s summation
convention.

Extending Eq. (2.153) for the transport of each size class of bed load yields

9 (%k) d(@pxdp) | O@byqer) _ 1

at \upy ax 3y L

(bsk — Abk) (2.158)

where gy and gy, are the actual and equilibrium (capacity) transport rates of the kth
size class of bed load, respectively, and #;,, is the bed-load velocity.

Note that the values of @ and L may vary with size classes. However, for simplicity,
they are not explicitly noted with the subscript k, because they are often treated as
calibrated parameters and each is given the same value for all size classes in most cases.

Extending Eq. (2.152) for the fractional bed change yields

a9z

1
(1=, (3 ) = awg(Cr — Cyr) + —(qbk — qowk) (2.159)
t), L

where (dz,,/0t), is the rate of change in bed elevation due to size class k.
The total rate of change in bed elevation, dz;,/9¢, is determined by

%_i 8& (2.160)
at at /, '

k=1

Note that even though the sediment concentration is assumed to be low, the hiding
and exposure phenomena in non-uniform bed materials always exist. However, these
phenomena affect only the entrainment of sediment from the bed. Such effects are
accounted for through the fractional sediment transport capacities C,; and qp,. This
is discussed in Sections 3.4-3.6.
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2.7.2 Bed material sorting

The size gradation (composition) of bed material may vary along the vertical direction
due to historical sedimentation. To consider this variation, the bed material above
the nonerodible layer is often divided into multiple layers, as shown in Fig. 2.9. The
top layer is the mixing layer. All sediment particles in the mixing layer are subject to
exchange with those moving with flow, i.e., entraining from the mixing layer to the
water column or depositing from the water column to the mixing layer. The second
layer is a subsurface layer. More underlying subsurface layers can be added, if needed.
However, the sediment particles in the subsurface layers do not directly exchange with
the moving particles.

Figure 2.9 Multiple-layer model of bed material sorting.

The mixing layer concept was adopted by Hirano (1971), Bayazit (1975), Karim
and Kennedy (1982), Rahuel et al. (1989), Armanini and di Silvio (1988), Wu (1991),
and van Niekerk ef al. (1992). The temporal variation of the bed-material gradation
in the mixing layer can be determined by (Wu, 1991; also see Wu, 2004)

3 (Smbpk) 0z, « [90m 0z
_ L) 2.161
ot (8t )k+pbk ot ot ( )

where §,, is the mixing layer thickness; py, is the fraction of the kth size class of bed
material contained in the mixing layer; and pj, is pj, when 9z;,/9t — 38,,,/3¢ > 0 and
the fraction of the kth size class of bed material contained in the second layer when
azp /0t — 38,,/0t < 0.

The first term on the right-hand side of Eq. (2.161) represents the exchange between
moving sediment and bed material, while the last term accounts for the exchange
between the mixing and second layers, due to rise or descent of the lower bound of
the mixing layer.

The bed-material gradation in the second layer is calculated by

9(3sPsbk) « (08n 02
—_— = —_——— 2.162
ot Pee\ 75y ot ( )
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where & is the second layer thickness, and pg;, is the fraction of the kth size class of
bed material contained in the second layer.

Eq. (2.162) assumes no exchange between the second and third layers. This is
physically right. In addition, changing the layer thickness or moving the layer divi-
sions up or down during the simulation may induce numerical mixing of sediment
between layers and thus should be avoided, except that the division between the
mixing and second layers may change due to variations in flow, sediment, and bed
conditions.

Rahuel ez al. (1989) treated the bed-load layer and the mixing layer together as an
active layer in a 1-D bed-load model, and Spasojevic and Holly (1990; 1993) extended
this concept to 2-D and 3-D total-load models. The sediment balance in the active layer
is described as

0(8mpPpk)
ot

1 -p,)

38, 9%y
ot ot

+ V- Gpk + Epp — Dy — (1 = ), )0}, (

(2.163)

where Dy, and Ep, are the deposition and entrainment fluxes of the kth size class of
sediment at the lower bound of the suspended-load zone.

It can be seen that Eq. (2.163) is the sum of Egs. (2.158), (2.159), and (2.161), with
only the storage term in Eq. (2.158) omitted.

2.7.3 Mixing layer thickness

The mixing layer thickness is related to the time scale under consideration (Bennett and
Nording, 1977; Rahuel et al., 1989; Wu, 1991). If a very short, nearly instantaneous
time scale is considered, the mixing layer should be a thin bed surface layer containing
particles susceptible to entrainment due to a momentary increase in the local bed shear
stress. This is called the instantaneous mixing layer. If the time scale is longer, e.g.,
in the order of magnitude of the time it takes for a bed form (ripple or dune) to
traverse its own wavelength, the mixing layer can be the order of magnitude of the
bed form height. If the time scale is much longer, e.g., in the order of magnitude of
the computational time step, the mixing layer includes the layer of material eroded
or deposited and the instantaneous mixing layer.

Since the sand dune height is generally relative to the flow depth, Karim and
Kennedy (1982) evaluated the mixing layer thickness as 0.1-0.2 times the flow
depth. Borah et al. (1982) determined the mixing layer thickness under armoring
conditions by

dr,

= — 2.164
¢! _p;n)pbm ( )

Sm

where dr is the smallest size of the sediment particles that are immobile, and py,, is
the fraction of all the immobile particles in the mixing layer.
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Van Niekerk et al. (1992) related the mixing layer thickness to the dimensionless
bed shear stress as follows:

/

T
Sm = 2dso—2 (2.165)
TS0

where dsg is the median size of bed material in the mixing layer, 7, is the skin friction
component of bed shear stress, and 7,50 is the critical shear stress for incipient motion
corresponding to dsp.

Wu and Vieira (2002) set the mixing layer thickness as the larger of half the sand
dune height and twice the sediment size:

8m = max [0.5A,2d50] (2.166)

where A is the sand dune height, which can be calculated using the van Rijn (1984c¢)
formula.

The mixing layer thickness is an important parameter in non-uniform sediment
transport models. The sensitivity of model results to it is demonstrated in Section 5.6.






Chapter 3

Fundamentals of sediment transport

Introduced in this chapter are basic theories and empirical formulas of sediment
transport, which are essentially used to close the mathematical models of flow,
sediment transport, and morphological change in alluvial rivers. Some of them can be
found in Graf (1971), Vanoni (1975), Chien and Wan (1983), Chang (1988), Zhang
et al. (1989), Raudkivi (1990), Simons and Senturk (1992), Julien (1995), and Yang
(1995). However, many recently developed non-uniform sediment transport formulas
are particularly included here.

3.1 SETTLING OF SEDIMENT PARTICLES

3.1.1 General considerations

Settling or fall velocity is the average terminal velocity that a sediment particle attains
in the settling process in quiescent, distilled water. It is related to particle size, shape,
submerged specific weight, water viscosity, sediment concentration, etc.

A sediment particle experiences gravity, buoyant force, and drag force during its
settling. Its submerged weight, which is the difference between the gravity and buoyant
force, is expressed as

Ws = (o5 — p)gard’ (3.1)

where d is the sediment size, 21d? is the volume of the sediment particle, and a; has
a value of /6 for a spherical particle. Note that p is actually given as the pure water
density pr because a single particle (or low concentration) is considered.

The drag force is the result of the tangential shear stress exerted by the fluid (skin
drag) and the pressure difference (form drag) on the particle. It is written in the general
form:

2
Fy= cdpazdl%s (3.2)

where C; is the drag coefficient, w; is the settling velocity, a2d? is the projected area
of the particle on the plane normal to the direction of settling, and a; has a value of
7 /4 for a spherical particle.
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The drag force should be equal to the submerged weight in the terminal stage of
settling, yielding

2 b, 1/2
ws = <alp pgd) (3.3)
a2 Cy p

3.1.2 Settling velocity of spherical particles

In the laminar (streamline) settling region (i.e., the particle Reynolds number R, =
wsd/v < 1.0), Stokes derived the drag force on a spherical particle by solving the
Navier-Stokes equations without inertia terms. The derived drag coefficient is

Cy== (3.4)

Inserting Eq. (3.4) into Eq. (3.3) leads to the Stokes law for the settling velocity of
spherical particles:

1 ps—p d*
18 »p gv

(3.5)

wWws =

where ws and d are in m-s~! (meters per second) and m (meters), respectively.
Oseen (1927) solved the Navier-Stokes equations, including some inertia terms, and
obtained the following relation:

24 3
Cy= i (1+ 16R> (3.6)

Goldstein (1929) found a relatively complete solution of Oseen’s approximation as
follows:

24 3 19 71
C 14+ —R R? + R} + 3.7
d= Re< 167 T 1280 ¢ T 20480 ) (3-7)

Eq. (3.7) is valid for R, up to 2.0. Beyond this range, the drag coefficient usually
has to be determined by experiments rather than theoretical solutions. Rouse (1938)
summarized the available experimental data and obtained the relation between Cy and
R, shown in Fig. 3.1, which can be used to determine C; and, in turn, the settling
velocity of spherical particles.

Fig. 3.1 shows that when R, > 1,000 — i.e., in the turbulent settling region — the
drag coefficient is no longer related to the particle Reynolds number and has a value
of about 0.435, thus yielding

ws =172 /%" Led (3.8)
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Figure 3.1 Relation between C4 and R, for spheres.

3.1.3 Settling velocity of sediment particles

Sediment particles in natural rivers, which usually have irregular shapes and rough
surfaces, exhibit differences in settling velocity in comparison with spherical parti-
cles. Rubey (1933) derived the following formula for the settling velocity of natural
sediment particles:

w,=F <pp5 - 1) od (3.9)

where F = 0.79 for particles larger than 1 mm settling in water with temperatures
between 10 and 25°C. For smaller grain sizes, F is determined by

2 362 ] 362 17
Fol|?y B L (3.10)
[3 gd? (ps/p — 1)] [gd3(ps/p - 1)}

Zhang (1961; also see Zhang and Xie, 1993) assumed the drag force on a sediment
particle in the transition between laminar and turbulent settling regions as

F; = Cipvdws + Cypd*w? (3.11)

where C; and C, are coefficients. Based on many laboratory data, Zhang obtained
the formula for the settling velocity of naturally worn sediment particles:
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v\2 Ds v
ws = \/(13.956{) + 1.09 (,0 — 1) gd — 13'953 (3.12)

The Zhang formula can be used in a wide range of sediment sizes from laminar to
turbulent settling regions. It can be simplified to Eq. (3.5) with a coefficient of 1/25.6 in
the laminar settling region, and to Eq. (3.8) with a coefficient of 1.044 in the turbulent
settling region.

Van Rijn (1984b) suggested the use of the Stokes law, Eq. (3.5), in computing the
settling velocity for sediment particles smaller than 0.1 mm, the Zanke (1977) formula
for particles from 0.1 to 1 mm:

P 12
ws =102 1] 1+0.01 (ps - 1) g1 _q (3.13)
d o v2

and the following formula for particles larger than 1 mm:

12
ws=1.1 [(‘: . 1) gdi| (3.14)

In fact, the formulas of Rubey, Zhang, and Zanke have the same formulation with
different coefficients. Similar formulas were also proposed by Cancharov (1954; see
Cheng, 1997), Sha (1965), Graf (1971), Hallermeier (1981), Raudkivi (1990), Julien
(19935), and Ahrens (2000). In general, the drag coefficient can be approximated by
(Cheng, 1997)

1/n n
Cy= [(f) +N1/”} (3.15)

where M, N, and # are coefficients. Table 3.1 lists the values of these three coefficients
given by different investigators for naturally worn sediment particles. The coefficient
M was given a value of 24 by Rubey (1933), Zanke (1977), and Julien (1995), and
values between 32-34 by Zhang (1961), Raudkivi (1990), and Cheng (1997). The tests
against measurement data performed by Cheng have shown that for natural sediment
particles the values of 32-34 for M give better predictions than the value of 24. Note
that the latter corresponds to the Stokes law, Eq. (3.5), for spherical particles. Rubey
gave the coefficient N a value of 2.1, which significantly underestimates the settling
velocity for coarse sediment particles.

Cheng (1997) used M = 32, N = 1, and n = 1.5, and derived the following formula
for the settling velocity of naturally worn sediment particles:

1.5
s = g (,/25+1.2D§—5) (3.16)

where D, = d[(ps/p — 1)g/v*1'/3.
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Table 3.1 Values of M, N, and n

Author M N n
Rubey (1933) 24 2.1 I
Zhang (1961) 34 1.2 I
Zanke (1977) 24 1.1 I
Raudkivi (1990) 32 1.2 I
Julien (1995) 24 1.5 I
Cheng (1997) 32 | 1.5

Egs. (3.9), (3.12), (3.13), and (3.16) are valid for naturally worn sediment particles,
the Corey shape factors of which usually are about 0.7. Krumbein (1942), Corey
(1949), McNown et al. (1951), Wilde (1952), and Schulz et al. (1954) experimentally
investigated the effect of particle shape on settling velocity. Based on these experiments,
the Subcommittee on Sedimentation of the U.S. Interagency Committee on Water
Resources (1957) recommended a series of curves shown in Fig. 3.2 to determine the
settling velocity of sediment particles for given particle size, Corey shape factor, and
water temperature. However, this graphical relation is inconvenient to use, because
several interpolations must be conducted to obtain the sought solution. In addition,
all the data used in the calibration were in the range of R, > 3, and the relation was
extended to the range of R, < 3 based on the assumption that it approaches the Stokes
law, Eq. (3.5), for spheres.

Romanovskii (1972) also performed experiments to investigate the effect of particle
shape on settling velocity and obtained a relation of settling velocity with particle size

B L
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Figure 3.2 Relation of fall velocity with particle size, shape factor, and temperature
(U.S. Interagency Committee, 1957).
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and shape factor in the turbulent settling region. Dietrich (1982) proposed an empirical
formula to determine the settling velocity of sediment from laminar to turbulent settling
regions, considering the effects of sediment size, density, shape factor, and roundness
factor. However, the roundness factor used in the Dietrich formula is rarely measured
in practice, and his formula is very complicated and relatively difficult to use. Jimenez
and Madsen (2003) simplified the Dietrich formula, but still graphically related two
coefficients to the shape factor.

For more generality and convenience to use, Wu and Wang (2006) calibrated the
coefficients M, N, and » in Eq. (3.15) as follows by using the natural sediment settling
data of Krumbein (1942), Corey (1949), Wilde (1952), Schulz et al. (1954), and
Romanovskii (1972):

M =53.5¢7965% N =5.65¢2%" 1n=0.7+0.95p (3.17)

where Sp is the Corey shape factor defined in Eq. (2.9). Fig. 3.3 compares the measured
drag coefficients and those calculated using Eq. (3.15) with coefficients determined
by Eq. (3.17). Because the data in Fig. 3.3 were in the range of R, > 3, the trend
of the C; — R, relation in the range of R, < 3 was determined using the data sets of
Zegzhda, Arkhangel’skii, and Sarkisyan compiled by Cheng (1997). Because naturally
worn sediment particles were used in these three sets of experiments, their Corey shape
factors were assumed to be 0.7. The relationship between C; and R, in the range of
these data is shown in Fig. 3.4.

It should be noted that when Sp = 1.0, the proposed Eq. (3.15) with coefficients
determined by Eq. (3.17) deviates from the relation of spheres obtained by Rouse
(1938). The reason is that the naturally worn sediment particles with a Corey shape
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Figure 3.3 Drag coefficient as function of Reynolds number and particle shape (VWWu and Wang, 2006).
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Figure 3.4 Drag coefficient as function of Reynolds number for naturally worn sediment particles
(Sp = 0.7 ) (Wu and Wang, 2006).

factor of 1.0 may not be exactly spherical, and other factors, such as particle surface
roughness, also affect the settling process.

Inserting Eq. (3.15) into Eq. (3.3) yields the general relation of settling velocity (Wu
and Wang, 2006):

n
My | |1 4N |
= | J=+(=-=D3 — - 1
“* = Nd \/4+(3M2 ) 2 (3.18)

Note that the sediment size d in Eq. (3.18) should be the nominal diameter (in
meters), on which the drag coefficient C; in Fig. 3.3 was based.

Eq. (3.18) is applied with coefficients M, N, and 7 determined using Eq. (3.17). It is
an explicit relation of settling velocity with sediment size and shape factor; thus, it can
be easily used. The predictions using Eq. (3.18) and the curves recommended by the
U.S. Interagency Committee (1957) are compared in Fig. 3.5. Here, the temperature
is 24°C, the Corey shape factors are in the range of 0.3-0.9, and the sediment sizes
are between 0.2 and 64 mm. It can be seen that these two methods give very close
predictions. The average deviation between them is about 2.75%. However, larger
deviations are expected for fine sediments (less than 0.2 mm in diameter). The reason,
which has been mentioned above, is that the U.S. Interagency Committee’s curves
approach the Stokes law, Eq. (3.5), that might result in 30% error for the settling
velocity of natural sediment particles as shown in Fig. 3.4. Eq. (3.18) has been validated
using measurement data and should have better accuracy than the U.S. Interagency
Committee’s curves for fine sediment particles.

In addition, Wu and Wang (2006) compared more than ten sediment settling veloc-
ity formulas, and found that the formulas of Zhang (1961), Hallermeier (1981),
Dietrich (1982), Cheng (1997), Ahrens (2000), Jimenez and Madsen (2003), and
Wu and Wang (2006) have comparable and reasonable reliabilities for predicting the
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Figure 3.5 Comparison of Eq. (3.18) and the method of U.S. Interagency Committee
(Wu and Wang, 2006).

settling velocity of naturally worn sediment particles (with a Corey shape factor of
about 0.7). The average errors normally are less than 9%. If the shape factor is con-
cerned, the formula of Wu and Wang is more convenient and has better accuracy on
average.

3.1.4 Influence of sediment concentration
on settling velocity

The settling velocity of a sediment particle in turbid water is influenced by the presence
of other particles. Experiments have shown that when the sediment concentration is
high, the settling velocity in turbid water is strongly reduced in comparison with that
in clear water. This effect, known as hindered settling, is largely caused by the return
flow of water induced by the settling of sediment. According to Richardson and Zaki
(1954), the sediment settling velocity in turbid water, ws;;, can be determined by

O = (1 — ¢)"ws (3.19)

where w; is the settling velocity in clear water, ¢ is the volumetric sediment concen-
tration, and # is an empirical exponent that varies from 4.9 to 2.3 for R, = wsd/v
increasing from 0.1 to 1000. For particles in the range of 0.05 to 0.5 mm under normal
flow conditions, the coefficient # is about 4.

Based on his and McNown and Lin’s (1952) experiments, Oliver (1962) proposed
a formula for wg,,:

W = (1 —2.15¢)(1 — 0.75¢%33) (3.20)
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Sha (1965) proposed a similar formula:

c
wsn=\1-— ws (3.21)
(v

where n = 3 according to the experimental data for sediment with a diameter of
0.01 mm.

For cohesive sediments, the settling process is more complex. This is discussed in
Section 11.1.3.

3.2 INCIPIENT MOTION OF SEDIMENT

3.2.1 Equilibrium of a single sediment particle at
incipient motion

Consider sediment particles on the channel bed, as shown in Fig. 3.6. The forces acting
on them include the drag force Fp, lift force Fy, and submerged weight W;. If the
sediment particles are cohesive, a cohesion force also exists. However, quantification
of the cohesion force is quite difficult because it is related to the physical and chemical
properties of water and sediment. For simplicity, only non-cohesive sediment particles
are considered here, so that the cohesion force is excluded.

Point of pivot

Figure 3.6 Forces on a sediment particle on the bed.

As the flow strength increases, the sediment particles on the bed will start moving.
This is termed as “incipient motion.” The modes of incipient motion can be sliding,
rolling, and saltating. In the case of rolling, the force balance for a sediment particle
at incipient motion can be expressed as

—k1dW + kadFp + k3dF; = 0 (3.22)

where k1d, kyd, and k3d are the distances from the lines of action of forces Ws, Fp,
and Fr to the point of pivot.
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The drag and lift forces acting on the particle are usually determined by

(3.23)

(3.24)

where u,, is the bottom flow velocity acting on the particle; a2d* and a3d? are the
projected areas of the particle on the planes normal to the flow direction and the
vertical direction, respectively; and Cp and Cy, are the drag and lift coefficients, related
to particle shape, position on the bed, etc.

Inserting Egs. (3.1), (3.23), and (3.24) into Eq. (3.22) yields the critical bottom

velocity for sediment incipient motion:

2kiay Ps — P >1/2
.= d 3.25
o <kza2CD +ksasCL p (3.25)

3.2.2 Incipient motion criteria for a group
of sediment particles

Eq. (3.25) is a criterion for the incipient motion of an individual particle on the bed. For
a group of sediment particles, there are two approaches to determine the threshold
criterion of incipient motion: stochastic and deterministic. The stochastic approach
considers the sediment incipient motion as a random phenomenon due to the stochas-
tic properties of turbulent flow and sediment transport. This approach usually does
not adopt a threshold value of sediment transport rate as the criterion at which the sed-
iment particles start moving. The pioneer using the stochastic approach for sediment
transport is Einstein (1942, 1950).

The deterministic approach usually adopts a certain amount of sediment particles in
motion as the incipient motion criterion. Theoretically, a zero bed-load transport rate
should be used, but this is not meaningful in practice. Numerous experiments have
shown that even when the flow strength is much weaker than the critical condition
proposed by Shields (1936), there are still some sediment particles moving on the bed.
Kramer (1935) defined three types of motion of bed material: weak movement (only
a few particles are in motion on the bed), medium movement (the grains of mean
diameter begin to move), and general movement (all the mixture is in motion). How-
ever, his criterion is only qualitative and difficult to use. Therefore, several low levels
of bed-load transport rate were suggested as the quantitative critical condition for
incipient motion — for instance, gp, = 14 cm?m~'min~! by Waterways Experiment
Station, U.S. Army Corps of Engineers, and g;,/(osdws) = 0.000317 by Han and
He (1984). Yalin (1972) also proposed a quantitative criterion related to the number
of particles moving on the bed. For a non-uniform sediment mixture, the threshold
criterion for incipient motion is more complex because of interactions among different
size classes. Parker et al. (1982) suggested the following threshold condition for the
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incipient motion of non-uniform sediment particles on gravel beds:

« _ dosk(ps/p —1)

_ QosklPs/P =) 60p (3.26)
kT por(ghSH2hSy

where W is a dimensionless bed-load transport rate, g, is the volumetric transport
rate per unit width for the kth size class of bed load, pyy is the fraction by weight of
the kth size class in bed material, / is the flow depth, and S¢ is the energy slope.

3.2.3 Incipient motion of uniform sediment particles
Critical average velocity

Using Eq. (3.25) and the power-law distribution of velocity

U—=——
m

mt 1 (;)WU (3.27)

yields the critical average velocity for sediment incipient motion:

_ 12 1/m
U =K <”S pgd) <h> (3.28)
0 d

where U, is the critical velocity averaged over the cross-section or flow depth (m-s~1),
and K is the coefficient determined by experiments. For example, Shamov (1959; see
Zhang and Xie, 1993) used m = 6 and K = 1.14, while Zhang (1961) used m = 7
and K = 1.34.

The similarity between Egs. (3.3) and (3.28) yields the following formula for the
critical average velocity (Yang, 1973):

U.  [0.66 +2.5/[log(Usd/v) — 0.06] 1.2 < U,d/v <70 (3.29)
o 205 U.d/v > 70 ‘
where U, is the bed shear velocity.
Critical shear stress
Using Eq. (3.25) and the logarithmic distribution of velocity
u=575U,log (30.22“) (3.30)
S
yields
2 1
te kaay (3.31)

(s —v)d _ kaa2Cp + k3a3Cp. [5.75108(30.224xs/k5)]”
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where 7. is the critical shear stress for sediment incipient motion, z, is the height at
which the bottom velocity acts on the particle, ks is the bed roughness height, and
Xs is a correction factor related to the roughness Reynolds number kU, /v in general
situations and has a value of 1 for a hydraulic rough bed.

Because Cp, Cy, and x;s are related to flow conditions, Eq. (3.31) can be rewritten as

Tc

Ay i f(Uid/v) (3.32)

Eq. (3.32) was first proposed by Shields (1936). The dimensionless parameter
7./[(¥s — y)d], denoted as O, is often called the critical Shields number. Shields drew
a curve of ®, and R,, = U,d/v using his experimental data. However, the original
Shields curve did not have any measurement data in the range of small R,,. Therefore,
many investigators, such as Yalin and Karahan (1979) and Chien and Wan (1983),
modified the original Shields curve using wider ranges of data. Fig. 3.7 shows the
Shields curve modified by Chien and Wan.

Because the relation between ©. and R, in Fig. 3.7 is not explicit, iteration is needed
to obtain the critical shear stress for a given sediment size. However, an explicit relation
between ®, and the non-dimensional particle size D, = d[(ps/p — 1)g/v*]'/3 can be
obtained from Fig. 3.7. It is approximated by (Wu and Wang, 1999)

0.126D;%*, D, <1.5
0.131D;%%, 1.5<D, <10
. ]0.0685D;%%7, 10 <D, <20
(vs—y)d ] 0.0173D%°, 20 < D, <40
0.0115D%3°, 40 < D, < 150
0.052, D, > 150

(3.33)

where 7. and d are in N-m~2 and m, respectively.
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Figure 3.7 Shields curve modified by Chien and Wan (1983).
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3.2.4 Incipient motion of non-uniform sediment
particles

Interactions exist among different size classes of a non-uniform sediment mixture on
the bed. Coarse particles have higher chances of exposure to flow, while fine particles
are more likely sheltered by coarse particles. Therefore, it is necessary to consider the
effect of this hiding and exposure mechanism on non-uniform sediment transport. The
widely used approach is to introduce correction factors into the existing formulas of
uniform sediment incipient motion and transport, as discussed below.

Qin formula

Qin (1980) proposed the following formula for the incipient motion of non-uniform
sediment particles:

b\ Vs — ¥ d
U, =0.786 (d) : y gdy (1 + 2.5m’”> (3.34)
90

where U, is the critical average velocity for the incipient motion of size class k of
bed material (m-s~'), d, is the diameter of size class k(m), d,, is the arithmetic mean
diameter of bed material (m), and # represents the compactness of non-uniform bed
material:

_ 0.6, Ng <2
~ 10.76059 — 0.68014/(n,; +2.2353), 5y =2

where ny = dgo/d10. A formula similar to Eq. (3.34) was also proposed by Xie and
Chen (1982; see Zhang and Xie, 1993).

Methods of Egiazaroff and others

Egiazaroff (1965), Ashida and Michiue (1971), Hayashi et al. (1980), and Parker et al.
(1982) developed formulas to determine the incipient motion of non-uniform sedi-
ment particles by introducing correction factors as functions of the non-dimensional
sediment size dy/d,, or dy/dso. The Egiazaroff formula can be written as

2
Ockz[ log 19 } (3.35)

O log(19d,/dn)

where O, = 7.4/[(ys — y)di], with T, being the critical shear stress for the incipient
motion of particle dj, in bed material; and ©. can be interpreted as the critical Shields
number corresponding to d,,,. ®, was given 0.06 by Egiazaroff. This value is too large
in general. Misri ef al. (1984) found that ®, should be 0.023-0.0303.
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Ashida and Michiue (1971) modified the Egiazaroff formula as

Ou [ llog19/log(19d,/dm))*  di/dm > 0.4 (3.36)
O, | dw/ds dp/dm < 0.4 '
and Hayashi et al. (1980) proposed a similar modification:
Ou [ log8/log(8dr/dm)1* di/dm =1 (3.37)
Q. | du/ds dp/dm < 1 ’

The formulas proposed by Parker et al. (1982) and others can be written as

d —m
Ok = Ouso (Ci;) (3.38)

where ©_s¢ is the critical Shields number corresponding to the medium size dsg of bed
material, and 7 is an empirical coefficient between 0.5-1.0.

Method of Wu et al.

Consider a mixture of sediment particles with various diameters on the bed, as shown
in Fig. 3.8. For simplicity, the sediment particles are assumed to be spheres. The drag
and lift forces acting on a particle depend on how it is resting on the bed, i.e., whether
it is hidden by other particles or exposed to flow. Its position on the bed can be
represented by its exposure height A,, which is defined as the difference between the
apex elevations of it and the upstream particle. If A, > 0, the particle is considered to
be at an exposed state; if A, < 0, it is at a hidden state. For a particle with diameter
dj in the bed surface layer, the value of A, is in the range between —d; and dj,. Here,
d; is the diameter of the upstream particle. Because the sediment particles randomly
distribute on the bed, A, is a random variable. A, is herein assumed to have a uniform
probability distribution function:

1/(dy+dp, —dj<A.=<dy

= 3.39

f { 0, otherwise ( )

The probability of particles d; staying in front of particles dj, is assumed to be the

fraction, py;, of particles d; in bed material. Therefore, the probabilities of particles
dj, hidden and exposed due to particles d; are obtained from Eq. (3.39) as follows:

dj

Phk,j:ijidk_’_d/_ (3.40)

d
Dek,i =Pb/7dk ﬁdj (3.41)
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Figure 3.8 Definition of exposure height of bed material.

The total hidden and exposed probabilities, pj, and p,., of particles dj, are then
obtained by summing Egs. (3.40) and (3.41) over all size classes, respectively:

N
d.
Phe = Zpbjid Jid‘ (3.42)
=t kTG
N
dy.
Dok = Zpbjidk i) (3.43)

where N is the total number of particle size classes in the non-uniform sediment
mixture.

A relation ppp + p.r = 1 exists. For uniform sediment particles, p,, = pr = 0.5,
which means the hidden and exposed probabilities are equal. In a non-uniform sed-
iment mixture, P, > ppp for coarse particles, and p,, < pj, for fine particles.
This can be demonstrated with a simple example. For a sediment mixture with two
size classes di = 1 mm, py; = 0.4 and d; = 5§ mm, py; = 0.6, one can obtain
pp1 = 0.7 > pe1 = 0.3, pp = 0.3667 < p.r = 0.6333. It is shown that more coarse
particles are exposed and more fine particles are hidden.

By using the hidden and exposed probabilities, a hiding and exposure correction
factor is defined as (Wu et al., 2000b)

Dek )m
=[— 3.44
Nk ( P ( )

where m is an empirical parameter. The criterion for sediment incipient motion
proposed by Shields (1936) is then modified as

Tck Dek )—m
— X 0. (= 3.45
(vs — ¥)dy (Ph/e B4)

where ®, = 0.03 and m = 0.6, which are calibrated using laboratory and field data, as
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Figure 3.9 Comparison of measured and calculated critical shear stresses (Wu et al., 2000b).

shown in Fig. 3.9. The measured critical shear stresses in Fig. 3.9 were determined using
Eq. (3.26) as the reference transport threshold. The agreement between measurements
and predictions is generally good.

3.2.5 Incipient motion of sediment particles
on slopes

For a sediment particle on a sloped bed or bank, its incipient motion is affected not
only by the drag and lift forces, but also by the component of gravity along the slope.
Brooks (1963) suggested the following method to determine the critical shear stress
T¢, for the incipient motion of sediment on a sloped bed:

(3.46)

. tan ¢, tanZ ¢,

Tep _ singsinés N \/cosz . sin? ¢ cos? 6
where ¢ is the slope angle with positive values for downslope beds, 6; is the angle
between the flow direction and the horizontal line of the slope, and ¢, is the repose
angle.

Van Rijn (1989) also suggested a method to determine t.y:

Tep = kR1k2 T, (3.47)

where k1 is the correction factor for the streamwise-sloped bed (in the flow direc-
tion), determined by ki = sin(¢, — ¢r)/sin¢,; and ky is the correction factor for
the sideward-sloped bed (normal to the flow direction), determined by ky =
cos o7+/1 — tan2 1 /tan? ¢,. Here, ¢ and @7 are the slope angles in the flow and
sideward directions, respectively.
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3.3 MOVABLE BED ROUGHNESS IN ALLUVIAL RIVERS

3.3.1 Bed forms in alluvial rivers

Bed forms in alluvial rivers are closely related to flow conditions. As the flow strength
increases, a stationary flat bed may evolve to sand ripples, sand dunes, moving plane
bed, anti-dunes, and chutes/pools (Richardson and Simons, 1967; Zhang et al., 1989),
as shown in Fig. 3.10. This process is explained below in more detail:

. —
(a) Stationary flat bed (d) Moving plane bed
R / =

/\/\/\—/-\/\./—\_/\

(b) Ripples (e) Anti-dunes

———'-;k/_\ = /:‘.\

—

(a)
(b)

sy o

Pool .
~ A - S W
(c) Dunes (f) Chutes and pools

Figure 3.10 Bed forms in alluvial rivers (Zhang et al., 1989).

In the stage of stationary flat bed, the flow is weak and only a small amount of
sediment particles move on the bed.

As the flow strength increases, more and more sediment particles participate in
motion, and sand ripples occur. The generation of sand ripples mainly depends
on the stability of the movable bed under the action of turbulent shear flow. Their
dimension is highly related to the bed-material size d, and they are about 100 d
in length and 50-100 d in height.

Due to the effect of large-scale flow eddies, bed shear stress decreases and increases,
and sediment deposits and erodes at alternate patterns, thus resulting in generation
of sand dunes on the bed. In the upstream slope of a sand dune, flow acceleration
usually causes sediment erosion; in the downstream slope, flow deceleration and
separation cause sediment deposition. Therefore, the sand dunes migrate down-
stream in certain shapes. Their dimension is highly related to the flow depth 5.
They are usually about 5-10 » long and 0.1-0.5 » high.

When the flow strength continually increases, sediment particles may be suspended
and transported far downstream; thus, sand dunes are washed out, and the bed
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may become plane again. Although the bed is plane, sediment particles are still
moving on the bed.

(e) Further increase in flow strength will induce anti-dunes. In the anti-dune stage,
the flow Froude number usually is larger than 1, and the sediment movement
is strongly influenced by the free surface flow. While water and sediment move
downstream, the bed and water surface waves actually propagate upstream in
phase. They may break like sea surfs or subside as standing waves.

(f) Chutes and pools occur at relatively large slopes, with high flow velocities and
sediment concentrations. Sediment particles move intensively in this stage.

The stationary flat bed, ripples, and dunes are usually called the lower flow regime,
while the moving plane bed, anti-dunes, and chutes/pools are called the upper flow
regime. Anti-dunes and chutes/pools are mostly observed in laboratory flumes but
rarely found in natural rivers.

In addition, other large-scale bed forms, such as point bars, alternate bars, and
islands, often exist in natural rivers. They are usually generated by channel meandering,
expansion, and contraction as well as tributary confluence. Their dimensions are thus
related to channel width, depth, curvature, etc.

3.3.2 Division of grain and form resistances

For a channel bed with sand grains and bed forms (such as sand ripples and dunes),
the bed shear stress, 7, may be divided into the grain (skin or frictional) shear stress,
7;, and the form shear stress, 7;:

‘L’b = ‘L'[; —|— ‘L'é/ (3.48)

The bed shear stress is usually calculated by
7 = YR}S; (3.49)

where Ry, is the hydraulic radius of the channel bed.

Einstein (1942) suggested the division of the hydraulic radius R, into two parts R},
and Ry, corresponding to the grain and form roughnesses, and determined the grain
and form shear stresses as

‘L'[; = )/RZS,(, ‘L';)/ = )/RZSf (3.50)

The assumption of equal velocity: U = RiﬂS;/z/n, U= R;2/3S;/2/n’, and U =
RZZBS;/Z/H” yields R} = Ry, (1 /n)3/% and R) = R, (1" /n)3/?. Here, U is the average
flow velocity, 7 is the Manning roughness coefficient of channel bed, and #’ and »”
are the Manning coefficients corresponding to the grain and form roughnesses, respec-

tively. Therefore, from these two relations and Egs. (3.49) and (3.50), the following
relations for the grain and form shear stresses are obtained:

/N 3/2 N\ 3/2
T, = (n) Ty T = <n> T (3.51)
n n
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Eq. (3.51) is similar to the method adopted by Meyer-Peter and Mueller (1948). It
should be noted that the grain roughness coefficient #’ can be calculated using several
methods, such as 7' = d'/¢/21.5 (Strickler, 1923), n' = d;66/26 (Meyer-Peter and
Mueller, 1948), #' = d;° /24 (Patel and Ranga Raju, 1996), and ' = d§°/20 (Li and
Liu, 1963; Wu and Wang, 1999). Here, the units of sediment sizes and #’ are m
and s-m~1/3, respectively.

Inserting Eq. (3.51) into Eq. (3.48) leads to

n3/2 — (n/)3/2 + (11//)3/2 (352)

Unlike the above Einstein’s method, Engelund (1966) suggested the division of the
bed shear stress according to the energy slope and determined the grain and form shear
stresses as

T, = beS;{, T = )/RbS;(/ (3.53)

where S}’( and S}’[’ are the parts of the energy slope corresponding to the grain and form
roughnesses, respectively.

Applying the equal velocity assumption and the Manning equations U = Ri/ 35;/2/

n, U= RS ', and U = RYPS)V? 1 yields S} = S;7' fm)* and S = S /m)?.
Then substituting these two relations into Eq. (3.53) and using Eq. (3.49) results in

" 2 ' 2
T, = () Ty T, = () 7 (3.54)
n n

Inserting Eq. (3.54) into Eq. (3.48) leads to
=) + (1')? (3.55)

Note that the exponents are 3/2 in Eq. (3.52), but 2 in Eq. (3.55). However, both
Einstein’s and Engelund’s methods give the following relation for the Chezy coefficient:

111
S ==5+=s 3.56
c2ocrcp (3:56)

where Cj, is the total Chezy coefficient; and C; and C; are the fractional Chezy
coefficients corresponding to the grain and form roughnesses, respectively.

3.3.3 Movable bed roughness formulas

Einstein and Barbarossa (1952), Engelund and Hansen (1967), and Alam and Kennedy
(1969) proposed empirical methods for separately calculating the grain and form resis-
tances to flow. Li and Liu (1963), Richardson and Simons (1967), and Wu and Wang
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(1999) suggested direct calculation of the total roughness coefficient of a movable
bed. Van Rijn (1984c¢) and Karim (1995) established empirical relations to predict the
height of bed forms and then the roughness coefficient on a movable bed. Brownlie
(1983) proposed a formula to determine the flow depth rather than the roughness
coefficient in an alluvial river. The van Rijn, Karim, and Wu-Wang formulas are
introduced below as examples.

Van Rijn formula

Van Rijn (1984c¢) established a relation for the sand-dune height, A, as shown in
Fig. 3.11 and expressed as

<¢150>0'3 —0.5T
=0.11( =) a-e®hes-1 (3.57)

A

b
where T is the non-dimensional excess bed shear stress or the transport stage number,
defined as T = (U./Uy)* — 1; U, is the effective bed shear velocity related to grain
roughness, determined by U, = Ug®’/C}, with C;, = 18log(4h/d9o) ; Ui is the
critical bed shear velocity for sediment incipient motion, given by the Shields diagram;
and dsp and dog are the characteristic diameters of bed material.
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Figure 3.1 Relation of sand-dune height (van Rijn, 1984c).

In van Rijn’s method, the length of sand dunes is set as A; = 7.3h, the grain
roughness is 3d9g, and the form roughness is 1.1A(1 — e=232/*¢), Therefore, the
effective bed roughness is calculated by means of

ks = 3dog + 1.1A(1 — e~ 232 /%a) (3.58)

and the Chezy coefficient is then computed by
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C, = 18log (1in> (3.59)

where Ry, is determined using Vanoni and Brooks’ (1957) method.

Karim formula

Karim (1995) proposed the following formula to determine the Manning roughness
coefficient on a movable bed:

0.465
n=0.037d%'2 (1.20 + 8.92h) (3.60)

where 7 is in s-m~1/3; dsq is in m; and b is the hydraulic depth, which is the flow
area divided by water surface width. The graphical relation between A and U, /ws is
shown in Fig. 3.12. In the range of 0.15 < U,/ws < 3.64, A is determined by

2 3 4
* * * U*
A = —0.04 +0.294 <U> +0.00316 <U> —0.0319 (U> + 0.00272 ()

3 ws ws ws ws
(3.61)
where wj is the settling velocity of sediment particles with size dsy.

Eq. (3.61) was calibrated using experimental data reported by Guy et al. (1966) and
field data measured in the Missouri River.
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Figure 3.12 Relative roughness height as function of U, /ws (Karim, 1995).
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Wu-Wang formula

The Manning roughness coefficient # for a movable bed is often related to the bed
sediment size d by

d1/6
= An

n

(3.62)

where A,, is a roughness parameter related to bed-material size composition, particle
shape, bed forms, flow conditions, etc.

For a stationary flat bed covered with uniform sediment particles, Strickler (1923)
suggested A, = 21.1. Here, the units of # and d are s-m~/3 and m, respectively.
For a stationary flat bed with non-uniform sediment particles, d is usually set as the
median size dso, and A,, is about 20 (Li and Liu, 1963; Zhang and Xie, 1993; Wu and
Wang, 1999). If the sediment particles with slightly irregular shapes are tightly placed
on the bed, A,, may have a larger value up to 24 (i.e., lower resistance to flow). If the
sediment particles with rather irregular shapes are loosely placed on the bed, A, has a
smaller value between 17 and 20. In addition, if d is set as dgs or dog rather than ds,
A, has a value of 24 (Patel and Ranga Raju, 1996) or 26 (Meyer-Peter and Mueller,
1948), respectively.

For a movable bed with sand waves, the effect of bed forms on A,, should be included.
Li and Liu (1963) proposed a relation of A, ~ U/U, for natural rivers:

20U/U)32 1< U/U, <2.13

39w UsU > 213 (3.63)

n

However, Eq. (3.63) does not agree with most of the flume and field data used in the
test performed by Wu and Wang (1999). To improve this shortcoming, Wu and Wang
established a relation between A,,/(g'/>Fr!/3) and '(l;/‘l:c5(), as shown in Fig. 3.13. Here,

Fr is the Froude number U/\/gTJ. The values of A,/(g"/?Fr'/3) decrease, and then,
increase as 7, /7 50 increases. Physically, this trend represents the fact that sand ripples
and dunes are formed first, and then, washed away gradually. For the convenience of
users, the relation between A, /(g'/*Fr'/3) and 1, /7.50 in the range of 1 < 7/ /7c50 < 55
is approximated by

A, 8[1 4 0.0235(t) /7c50) '] (3.64)
gy2Er13 (7, /Tes0) /3 '

The critical shear stress 750 in Eq. (3.64) is calculated using the Shields curve mod-
ified by Chien and Wan (1983), and the grain shear stress 7, is calculated using
Eq. (3.51), with ' calculated by n' = d;(/)6/20 and 7;, by Eq. (3.49). The bed hydraulic
radius R, is determined using Williams’ (1970) method: R, = b/(1 + 0.055h/B?), in
which B is the channel width.
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Figure 3.13 Relation between A,/(g'/2Fr'/3) and 7y/Tes0 (Wu and Wang, 1999).

3.3.4 Comparison of movable bed roughness
formulas

The movable bed roughness formulas of Li and Liu (1963), van Rijn (1984c), Karim
(1995), and Wu and Wang (1999) were tested against 4,376 sets of flume and field data
collected by Brownlie (1981). These data sets were measured by many investigators
in several decades, covering flow discharges of 0.00263-28825.7 m3s~!, flow depths
of 0.04-17.3 m, flow velocities of 0.2-3.32 m-s~!, bed slopes of 0.00002-0.067,
sediment median diameters of 0.011-76.1 mm, and sediment size standard deviations
up to 9.8. Table 3.2 compares the measured and predicted flow depths. It can be
seen that the van Rijn, Karim, and Wu-Wang formulas almost have the same level
of reliability for predicting the flow depth. As compared with the Li-Liu formula, the
Wu-Wang formula has much improvement.

Table 3.2 Comparison of measured and predicted
flow depths

Error range % of calculated flow depths in error range

Li-Liu van Rijn Karim Wu-Wang

+10% 21.8 44.0 41.0 41.5
+20% 41.8 779 74.9 75.9
+30% 58.8 91.4 91.0 944

3.4 BED-LOAD TRANSPORT

Laboratory experiments and field measurements have revealed that the sediment trans-
port rate (or concentration) at an equilibrium state in a steady, uniform flow, which
is often termed as the sediment transport capacity or the capacity of flow-carrying



82 Computational River Dynamics

sediment, is a function of flow conditions and sediment properties. A variety of such
functions for bed load, suspended load, and bed-material load have been established
in the literature. Some of them are introduced in Sections 3.4-3.6.

3.4.1 Total transport rate of bed load

Many investigators — e.g., Duboys (1879), Schoklitsch (1930), Meyer-Peter and
Mueller (1948), Bagnold (1966, 1973), Dou (1964), Graf (1971), Yalin (1972),
Engelund and Fredswe (1976), and van Rijn (1984a) — established formulas to cal-
culate the total transport rate of bed load. The following formulas are presented as
examples.

Meyer-Peter-Mueller formula

Meyer-Peter and Mueller (1948) related the bed-load transport rate to the excess grain
shear stress:

13/2 3/2
Tbs _g| RIEYTVRS G a7 (3.65)
ysv (vs/y — Dgd;, (Vs = ¥)dm

where gp, is the bed-load transport rate by weight per unit time and width (N - m~1s~1);
dy, is the arithmetic mean diameter of the bed sediment mixture (m); & is the reciprocal
of the Manning roughness coefficient # of channel bed; &’ is the reciprocal of the

Manning coefficient #" due to grain roughness, calculated by k' = 26 /d;(/f; and R is
the hydraulic radius of the channel (m).

Bagnold formula

Bagnold (1966, 1973) related the sediment transport rate to the stream power 7, U
and derived a bed-load transport formula:

0.37h
s U Uy — Uy 5.75Uylog =)t
% Th (1 _ ( d ) s (3.66)

Qbx = ps — p tana U, U

where g, is by weight per unit time and width (N-m~'s™1), 7, is in N-m~2, tan« is
the friction coefficient of about 0.63, nd is the average height of acting force during a
saltation, d is the sediment size (m), and 7 = 1.4(U,/U,.)%®.

Dou formula

Dou (1964) also established an empirical formula for bed-load transport rate based
on the stream power concept:

U
P -y

s Ws

qps = Ko (3.67)
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where gy, is by mass per unit time and width (kg-m~!s™!), U/ is the critical average
velocity for sediment particles to cease motion, and K is an empirical coefficient with
a value of 0.01 for sand.

Eq. (3.67) can also be used to determine bed-material load, for which Ky = 0.1 as
calibrated using Gilbert’s data.

Yalin formula

Yalin (1972) analyzed the bed-load velocity and weight and then established the
following bed-load formula:

9bx
Vst*

— 0.635s [1 - %111(1 + as)] (3.68)

where g, is by weight per unit time and width (N-m~!s71), s = (® — ©,)/0,, a =
2.450.(y/ys)%*, and @ is the Shields number 7, /[(ys — y)d].

Engelund-Fredsee formula

Engelund and Fredsee (1976) related the bed-load transport rate to the bed-load
velocity and the probability for bed material to start moving, and obtained

@, = 11.6(0 — ©,) (J@ - 0.7\@) (3.69)

where ®, = qp../[vsv/ (vs/y — 1)gd?], and gy, is by weight per unit time and width
(N-m~1s71).

Van Rijn formula

Van Rijn (1984a) determined bed load as

0.5 41.572.1
_ Ps — P d5o T
b = 0.053 ( ; g) PIE (3.70)

where gy, is by volume per unit time and width (m?s~1), D, is the particle parameter
defined in Eq. (3.16), and T is the transport stage number defined in Eq. (3.57).
Eq. (3.70) was calibrated using data with a size range of 0.2-2 mm.

In addition, several bed-material load formulas, such as those of Ackers and White
(1973) and Engelund and Hansen (1967), can be used to calculate the bed-load trans-
port rate for coarse sediments. Yang (1984) modified his 1973 bed-material load
formula for gravel transport, which is primarily in bed load.

Note that the bed-load formulas introduced above calculate the transport rate of
uniform bed load or the total transport rate of non-uniform bed load as a single size
class. Thus, they may be used for narrowly graded sediment mixtures.
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3.4.2 Fractional transport rate of bed load

The pioneering research on the fractional transport rate of non-uniform sediment is
attributed to Einstein (1950). After that, Ashida and Michiue (1972), Parker et al.
(1982), Misri et al. (1984), Samaga et al. (1986a), Bridge and Bennett (1992), Patel
and Ranga Raju (1996), and Wu et al. (2000b) proposed several methods to calculate
the fractional transport rate of non-uniform bed load. Hsu and Holly (1992) proposed
a method to compute the size composition of non-uniform bed load by considering the
probability and availability of moving sediment. Some of these methods are introduced
below.

Einstein formula

Einstein (1942, 1950) considered the probability of sediment transport due to the
fluctuation of turbulent flow and established sediment transport functions based on
fluid mechanics and probability theory. His bed-load function is graphically shown
in Fig. 3.14 and expressed as

. /(1/”% ey, 4350,

= " R (3.71)
1/7)W— 2 1 + 435(1)*/2

where @, = qpur/[Pprysy/ (vs/y — Dgd}l, and W,y = & Y(B2/BH)W, in which .

is the bed-load transport rate of size class k by weight per unit time and width, ¥ =
(vs — ¥)dr/(yR'S¢), & and Y are the hiding and pressure correction factors for non-
uniform sediment, 8 = log 10.6, and B, = log(10.6X/A;). R’ is the hydraulic radius
due to grain roughness, determined using Einstein’s movable bed roughness method.
A; is the apparent roughness of bed surface, and As = k¢/xs, with ks = dgs and x
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Figure 3.14 Einstein’s (1950) bed-load function compared with uniform sediment data.
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being the correction coefficient defined in Eq. (3.31). X is the characteristic grain size
of bed material, defined as X = 0.77A; if A;/§ > 1.8 and X = 1.395 if A/ < 1.8,
with § being the laminar sublayer thickness (= 11.6v/U)).

Parker et al. formula

Based on the equal mobility concept, Parker et al. (1982) developed a gravel transport
function, as shown in Fig. 3.15, in which the dimensionless bed-load transport rate
Wi is defined in Eq. (3.26) and the dimensionless shear stress 6, is

bSs

= ' 3.72
(ps/p — Dy}, 3.72)

Ok

where 7% = 0.0875d50/dy, with dso being the subpavement size.
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Figure 3.15 Gravel transport function of Parker et al. (1982).

Since all grain sizes are assumed to have approximately equal mobility, only one
grain size, the subpavement size dso, is used to characterize the bed-load transport
rate as
W — 0.0025 exp[14.2(650 — 1) — 9.28(050 — 1)2] 0.95 <659 < 1.65

k 11.2(1 — 0.822/650)*5 050 > 1.65

(3.73)
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where 05 is the dimensionless shear stress defined in Eq. (3.72) corresponding to the
subpavement size dsg. This formula was verified using field data with sediment sizes
ranging from 18 to 28 mm.

Considering the fact that the bed-load transport in gravel-bed rivers is accomplished
by means of mobilization of grains exposed on the bed surface rather than substrate
particles, Parker (1990) transformed Eq. (3.73) into a surface-based relation. The
details can be found in his paper.

Hsu and Holly’s method

The method proposed by Hsu and Holly (1992) first determines the size distribution
of the transported sediment and then the total transport rate. The fraction of each size
class in the transported material is postulated to be proportional to the joint probability
of two factors: (1) its mobility under the prevailing hydraulic conditions, and (2) its
availability on the bed surface (active layer).

If the fluctuation of flow velocity is assumed to have the Gaussian probability
distribution, the mobility of size class k is derived as

P 1! / ——2 d (3.74)
= exX X .
mo,k 5 T p 702

where U is the mean velocity of flow; U, is the incipient velocity of size class k, deter-
mined using the Qin (1980) formula (3.34) modified by recalibrating the coefficient
0.786 as 1.5; and o is the standard deviation of the normalized fluctuating velocity
U’/U and has a value of about 0.2.

The availability of size class k is equivalent to its fractional representation on the
bed surface (active layer), p,. Thus, the fraction of size class k in the transported
material is

PWIO
pp = — mok Pbk (3.75)

dmax
2d" Pruok Dbk

After the size distribution of the transported material is obtained, the mean size d,;;
and mean incipient velocity U,; are calculated. The total bed-load transport rate can
then be evaluated using any appropriate predictor. The Shamov formula was suggested
and modified as

U, h

7\° 1/4
Qbe = 12.5V/dmt (U— Ucmin) ( v ) (dmf> (3.76)

where gy, is the total transport rate of bed load per unit channel width (kg-m~1s™1)

and Uy min is the incipient velocity of the smallest size class (m-s~1).

b

Methods of Ranga Raju and his co-workers

Ranga Raju and his co-workers (Misri et al., 1984; Samaga et al., 1986a; Patel
and Ranga Raju, 1996) extended the Paintal (1971) uniform bed-load formula to
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computing the fractional transport rate of non-uniform bed load. Based on the assump-
tion that the motion of fine particles is dominated by the lift force while the motion
of coarse particles is by the drag force, Misri et al. (1984) proposed a semi-theoretical
hiding-exposure correction factor. This correction factor was revised subsequently by
Samaga et al. (1986a) and Patel and Ranga Raju (1996). In the latest version published
by Patel and Ranga Raju, the bed-load function is shown in Fig. 3.16, in which the
dimensionless bed-load transport rate and the effective shear stress are

Dy = bk - (3.77)
PorYsy/ (Vs/v — 1)gdk
‘[eff = gb‘[[; (3.78)

where 7, = yR}S7, R) = (Un’/S;/2)3/Z, n = dé§6/24, and &, is the hiding-exposure
correction factor for the effective shear stress determined by

Cmép, = 0.0713(Cyz/,)~0-75144 (3.79)

with 7, =7, /[(ys — ¥)de],
log Cs = —0.1957 — 0.9571log(z, /7c) — 0.1949[log(r,;/tc)]2
+0.0644[log(z} /7)1,
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Figure 3.16 Fractional bed-load function (Patel and Ranga Raju, 1996).
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oo 1.0, M > 0.38
"7 10.7092logM +1.293, 0.05 <M < 0.38

where M is the Kramer uniformity coefficient, and . is the critical shear stress for the
arithmetic mean size d,,.

Wu et al. formula

Wu et al. (2000b) related the bed-load transport rate to the non-dimensional excess
grain shear stress Ty, = 7, /7 — 1, with 7., and 7; determined using Egs. (3.45) and
(3.51), respectively. The established relation for the fractional transport rate of non-
uniform bed load is graphically shown in Fig. 3.17 and expressed as

@y = 0.0053 [(”) X _ 1} (3.80)
n Tek

where @y = Gpur/[Pors/ (Vs/V — l)gdi], Qbsk 18 by volume per unit time and width

(m?s~1), ' = d§66/20, and 7 is the Manning roughness coefficient of channel bed.
Note that the hiding and exposure effect in non-unifrom bed material is accounted for
through 7, determined using Eq. (3.45).

Eq. (3.80) was verified by using laboratory data for non-uniform bed load mea-
sured by Samaga et al. (1986a), Liu (1986), Kuhnle (1993), and Wilcock and
McArdell (1993), as well as field data from five natural rivers: the Susitna, Chulitna,
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Figure 3.17 Relation of fractional bed-load transport rate (Wu et al., 2000b).
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Black, Toutle, and Yampa Rivers compiled by Williams and Rosgen (1989). In each
set of the selected field data, flow and sediment parameters were measured at the same
time, and the bed-load rate and bed-material size composition were averaged from
multiple samples across the same cross-section. These data sets cover a wide range of
flow and sediment conditions, with flow discharges up to 2,800 m3s~! and sediment
sizes from 0.062 to 128 mm.

3.4.3 Comparison of bed-load formulas

Because of the complexity of sediment transport processes, all existing sediment trans-
port formulas are empirical or semi-empirical. Large discrepancies may exist among
these formulas when they are applied in real-life engineering. Therefore, evaluation of
their performances in various situations is very important.

Comparison of bed-load formulas using single-fraction data

Chien (1980; also see Chien and Wan, 1983) compared the formulas of Einstein
(1942), Meyer-Peter and Mueller (1948), Bagnold (1966), and Yalin (1972) with
measured data, as shown in Fig. 3.18. For weak sediment transport (¥, > 2),
the Yalin formula underpredicts the bed-load transport rate, and other formulas
provide reasonably good predictions. The Meyer-Peter-Mueller formula seems to pre-
dict better than the Einstein formula in the weak transport stage, but the situation
is reversed in the middle transport stage. However, for strong sediment transport
(¥, < 2), the predictions of these formulas are significantly different. Because in
this range bed load and suspended load are very difficult to discern, and the mea-
sured data may have large errors, it is hard to judge which formula is better (Chien,
1980).
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Figure 3.18 Comparison of bed-load formulas (Chien, 1980).
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Wu et al. (2000b) compared their bed-load transport formula (3.80) and the
formulas of Meyer-Peter and Mueller (1948), Bagnold (1966), and Engelund and
Fredese (1976) against 1,345 sets of uniform bed-load data. These data were selected
from Brownlie’s (1981) compilation by limiting the standard deviation of bed mate-
rial o < 1.2, the Shields number ® > 0.055, and the Rouse number w,/ku, > 2.5.
They were observed in several decades by many investigators, covering flow dis-
charges of 0.00094-297 m3s~!, flow depths of 0.01-2.56 m, flow velocities of
0.086-2.88 m-s~!, surface slopes of 0.0000735-0.0367, and sediment sizes of
0.088-28.7 mm. None of them was used to calibrate the Wu et al. formula. As shown
in Table 3.3, the Wu et al. formula provides the best results.

Many other investigators, such as Yang (1984) and van Rijn (1984a), have also
compared bed-load transport formulas. The conclusions are usually different because
different data have been used. However, it has been shown that the existing formulas
have better predictions for flume data than for field data. The reasons are that the bed-
load transport is more complex and the measurement instruments are less efficient in
natural rivers. As recognized by van Rijn (1984a), it is hardly possible to predict the
bed-load transport rate with accuracy less than a factor of 2. Perhaps his remark is
useful for sediment engineers to judge the prediction capability of the existing sediment
transport formulas.

Table 3.3 Calculated versus measured transport rates of uniform bed load

Error range % of calculated transport rates in error range
Engelund-Fredese Bagnold Meyer-Peter-Mueller  Wau et al.

08<r<125 214 214 21.3 387
0667 <r<15 374 38.9 394 59.3
05<r<2 54.1 57.2 66.2 80.1

Note: r is the ratio of calculated and measured transport rates.

Comparison of bed-load formulas using multi-fraction data

Ribberink et al. (2002) tested the performances of several multi-fraction bed-load
transport formulas, including the Parker (1990) formula, the Wu et al. (2000b) for-
mula, the Ackers-White (A& W, 1973) formula with the hiding-exposure correction
factors of Day (1980) and Proffitt and Sutherland (P&S, 1983) (to be introduced in
Section 3.6.2), and the Meyer-Peter-Mueller (MP&M, 1948) formula with the hiding-
correction factors of Egiazaroff (1965) and Ashida and Michiue (A&M, 1972). The
“single-size” Engelund-Hansen (E&H, 1967) and van Rijn (1984a) formulas without
any hiding and exposure correction were added as reference. The data used cover the
bed-load transport of widely graded sediment mixtures in the lower Shields regime.
The results are summarized in Table 3.4 and expressed in mean under- or overesti-
mation scores (factor 7 over/underestimation gives a score of 1/n). Separate scores are
made for the predicted total transport rate and mean transported diameter, and an
average score for both.

Of all the compared multi-fraction formulas, the Wu et al. (2000b) formula gives
the highest scores, followed by the Ackers-White formula with the hiding-exposure
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Table 3.4 Verification scores of multi-fraction bed-load formulas
(Ribberink et al., 2002)

Formula Score for Score for Average
transport rate mean diameter score
Wau et al. 0.43 0.86 0.64
E&H 0.34 0.63 0.49
A&W -+ Day 0.37 0.59 0.48
Parker (surface) 0.23 0.73 0.48
A&W + P&S 0.34 0.49 0.42
Van Rijn 0.18 0.54 0.36
MP&M + Egiaz. 0.26 0.34 0.30
MP&M + A&M 0.29 0.29 0.29

correction factor of Day (1980). Surprisingly, also the Engelund-Hansen formula,
which was not developed for multi-fraction use for widely graded sediment mixtures,
is the second-best formula in the list. All the Meyer-Peter-Mueller formulas give the
worst scores, mainly due to many cases with zero predicted transport rate.

3.5 SUSPENDED-LOAD TRANSPORT

3.5.1 Vertical distribution of suspended-load
concentration

For equilibrium sediment transport under steady, uniform flow conditions, the
suspended-load transport equation (2.72) is simplified to

UG (g Bc) (3.81)
Tz \ Tz '

0z

By using the sediment condition (2.73) at the water surface, Eq. (3.81) is further
simplified to

wsc—l—ssﬁ =0 (3.82)
0z

The diffusion coefficient & is often assumed to be proportional to the eddy viscosity
of turbulent flow. By using Eq. (2.49), a parabolic distribution of &5 can be obtained:

£ = O%KU*Z (1 - %) (3.83)

where oy is the Schmidt number, related to sediment size, concentration, etc. Note that
z is defined here as the vertical coordinate above the bed, for simplicity.

With ¢ determined using Eq. (3.83) with constant ws and o5 along the flow depth,
Eq. (3.82) can be solved to derive the following vertical distribution of suspended-load
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concentration:

osws

c _(h/z=1\*"

where 8 is the reference level near the bed, and ¢, is the sediment concentration
at §. Eq. (3.84), which was first derived by Rouse (1937), is called the Rouse
distribution.

Fig. 3.19 shows the profile of suspended-load concentration calculated using
Eq. (3.84) with o5 = 1. One can see that the calculated concentration is zero at
the water surface and tends to be infinitely large as z is close to the bed. These are
not physically reasonable. Therefore, the reference level § is usually set at a certain
height —e.g., 2d, 0.05h, and half the dune height — above the bed rather than directly
at the bed.

Zhang (1961) derived a distribution function of suspended-load concentration by
using the eddy viscosity determined from the mixing length measured by Nikuradse
in uniform pipe flow:

% =0.14 — 0.087% — 0.06n* (3.85)

where [,,, is the mixing length, 4 is the radius of pipe or the flow depth, and n = 1—z/b.

g

"'-‘.,‘____‘q

dh=
0.05

Figure 3.19 Distribution of suspended-load concentration.
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The derived distribution function is

L exp{ s (fny - f(nbn} (3.86)
Chx kU,

where n, =1 — /b, and

1
f(n) = 2arctan /5 + In +\/ﬁ+ V2 |:1n77+ V2an+a

1—n  a3? [aZ + n?

12 2
+ arctan (1 + 7)) — arctan (1 — ’7):|
a a
with a = 1.526.

The Zhang distribution is shown in Fig. 3.19 as dashed lines. It improves the sedi-
ment concentration near the water surface, but the formulation is more complicated
and inconvenient to use.

Lane and Kalinske (1941) assumed o5 = 1 and averaged the sediment diffusivity in
Eq. (3.83) over the flow depth as

K

6U*h (3.87)

B =
and then introduced this value into Eq. (3.82) and derived

c 6ws (z2—38
o (57)] .

Van Rijn (1984Db) also derived a vertical distribution of suspended-load concentra-
tion using the following two-layer relation of sediment diffusivity:

. {KU* (1—z/h)z/os z/h <0.5 (3.89)

0.25cUyh /o z/h>0.5

In the case of small concentration (¢ < ¢, < 0.001), the van Rijn distribution is

c {[(h/z —1D/h/s =D z/h < 0.5 (3.90)

cpe | (B8 — 1) expl—4r(z/bh —0.5)] z/b>0.5
where r = ws/(k Uy).

The parameter wg/(k Uy) is called the suspension or Rouse number. Physically, the
Rouse number represents the effect of gravity (ws) against the effect of turbulent diffu-
sion (k Uy). When the Rouse number is larger, the effect of gravity is stronger and the
distribution of sediment concentration along the flow depth is less uniform. When the
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Rouse number is smaller, the effect of turbulent diffusion is stronger and the distribu-
tion of sediment concentration is more uniform. It can be seen from Fig. 3.19 that when
the Rouse number is larger than about 5.0, the relative concentration of suspended
load is very small, and thus ws/(kU,) ~ 5.0 can be used as the critical condition
for suspension. When the Rouse number is less than about 0.06, the suspended-
load concentration almost uniformly distributes along the flow depth, and thus
ws/(kUy) ~ 0.06 may be used as a condition to divide wash load and bed-material load.

Brush et al. (1962), Matyukhin and Prokofyev (1966), and Majumdar and Carstens
(1967) experimentally showed that for fine particles o; = 1, and for coarse par-
ticles os > 1. However, Einstein and Chien (1954) obtained the relation between
ws/(kUy) and osws/(x Uy) shown in Fig. 3.20 by comparing the measured suspended-
load distribution with Eq. (3.84), and suggested that o5 should be smaller than 1. This
contradiction might be due to differences in flow and sediment conditions in which
the data were measured.

P&

oy [mold )

5 _Flume experiments

»  Yanoni

o lsmail

o Chien

Field measwrements
T o « Missowri River
bt + Mpcharalxya River

] | 1 3 4 5 & 7
£ = /(L)

Figure 3.20 Relation between w,/(kU.) and ows/(kU,) (Einstein and Chien, 1954).

Van Rijn (1984b) proposed a formula to determine the Schmidt number oy:

1 2
:HZ(ES) for o.1<%<1 (3.91)

O * *

The von Karman constant has a value of about 0.4 for clear water flow and is a
function of the depth-averaged concentration, settling velocity, and bed shear velocity
for sediment-laden flow (Einstein and Chien, 1955). Yalin and Finlayson (1972)
introduced a damping factor for the von Karman constant:

K = Pk (3.92)
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where « is the von Karman constant for clear water flow, and «,, is the one for
sediment-laden flow. Van Rijn (1984b) determined the damping factor as

0.8 0.4
b =1+ (;) 2 (;)) (3.93)

where ¢ is the local sediment concentration (by volume), and c¢p is the maximum
sediment concentration (= 0.65).

3.5.2 Near-bed concentration of suspended load

Empirical formulas were established by Engelund and Fredsee (1976), Smith and
McLean (1977), van Rijn (1984b), Celik and Rodi (1988), Zyserman and Fredsae
(1994), and Cao (1999) for the near-bed concentration of single-sized suspended load,
and by Einstein (1950), Garcia and Parker (1991), and Hu and Wang (1999) for
the near-bed fractional concentration of multi-sized (non-uniform) suspended load.
The Einstein, van Rijn, and Zyserman-Fredsee formulas are introduced below as
examples.

Einstein formula

Einstein (1950) set the reference level of suspended-load concentration at two grain
diameters above the channel bed and related the near-bed concentration of suspended
load to the bed-load transport rate g, as follows:

1 gpuk
11.6 8 U,

Chyh = (3.94)

where ¢y, is the concentration of the kth size class of suspended load at the reference
level § (by weight per unit volume), and U, is the skin friction velocity.

Van Rijn formula

Van Rijn (1984b) set the reference level § at the equivalent roughness height ks or half
the bed-form height and established

d50T1.5

cpe = 00155
*

(3.95)

where ¢, is the volumetric concentration of suspended load at the reference level, and
T and D, are defined in Egs. (3.57) and (3.70).

Zyserman-Fredsoe formula

Zyserman and Fredsee (1994) set the reference level at two grain diameters above the
bed and determined the near-bed volumetric concentration of suspended load as
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L _ 03310 -0.049)'7
T 140.72(0' — 0.045)175

(3.96)

where @' = U2 /[(ps/p — 1)gd].

Two issues regarding the aforementioned formulas of near-bed suspended-load con-
centration should be pointed out. One is that the suspended-load concentration near
the channel bed is very difficult to measure at the present time and has to be extrapo-
lated from those measured in the upper flow layer with the aid of an assumed vertical
distribution of sediment concentration. The accuracy and reliability of this analysis
highly depend on the used distribution function of sediment concentration near the
bed. The often used Rouse distribution is not reliable near the bed, and some later
modifications introduced in Section 3.5.1 do not improve much indeed. Therefore, the
calibration of these formulas using direct measurement data near the bed should be
carried out in the future.

The other issue is that the near-bed concentration is defined at different reference
levels in different formulas. Each formula should be applied only at the height where
the near-bed concentration is defined. This makes comparison of these formulas very
difficult. For sediment transport modeling, it is more convenient to set the reference
level at the interface between the bed-load and suspended-load layers.

3.5.3 Suspended-load transport rate

Einstein’s method

Einstein’s (1950) method determines the suspended-load transport rate by integrating
the product of local sediment concentration ¢ and flow velocity # over the suspended-
load zone from §(= 2d) to b:

b
q.s*le:/ ckudz (3.97)
8

where g, is the transport rate of the kth size class of suspended load.
Using the Rouse distribution of sediment concentration (o5 = 1) and the logarithmic
distribution of flow velocity in Eq. (3.30) (replacing U, by U, ) yields

h hjz—1 i , 2

30.2h
= 11.6Ucpud [2.303 log( - > x I, + IZk] (3.98)

N

where I, = 0216£/1 (=Xynde, and Ly = 0.216-% A= Inede
1k . A=)k Jop * ¢ > 2k ’ A=)k Jgp ¢ ’

with ¢ =z/b, &, = 8/h, 1, = wy,/(kUy), and Ay is defined in Eq. (3.71).
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Inserting Eq. (3.94) into Eq. (3.98) leads to

30.2h
Dk = Dbwk [2-30310g< A ) * I + Izk} (3.99)

N

The fractional transport rate of bed-material load is then obtained by g =
Qbsk + s+

Einstein’s method is an important contribution to sediment research. However, it is
laborious because numerical integrations are involved and U, is determined using his
movable bed roughness formula that needs to be solved iteratively. Many tests have
shown that Einstein’s method can provide reasonable results for narrowly graded
sediment mixtures, but not for those widely graded (Misri et al., 1984; Samaga et al.,
1986a&b). Modifications were proposed by several investigators, such as Colby and
Hembree (1955), Toffaletti (1968), and Shen and Hung (1983). Van Rijn (1984b)
also established a similar method to calculate the suspended-load transport rate using
Eq. (3.97) with his distribution function (3.90) and near-bed concentration formula
(3.95).

Bagnold formula

Based on his stream power concept, Bagnold (1966) established the following formula
to calculate the suspended-load transport rate:

Ps TbUZ
Ps — P Ws

gsx = 0.01 (3.100)

where g, is the suspended-load transport rate by weight per unit time and width
(N-m~1s71).

Zhang formula

Based on the energy balance of sediment-laden flow, Zhang (1961; also see Zhang
and Xie, 1993) derived the relation between suspended-load transport capacity C, and
parameter U3/(gRws), as shown in Fig. 3.21, using measured data from the Yangtze
River, the Yellow River, etc. Here, C, is the average suspended-load concentration
(kg -m~3). One may write the Zhang formula as Eq. (2.140) with variable coefficients
K, and m. For convenience, Guo (2002) approximated the C, ~ U3/(gRw;) curve in
Fig. 3.21 by the following equation:

1 U3 1.5 1 U3 1.15
Ci=— 1+ (-— 3.101
720 <ngs> / * (45 ngs> ( )

Wu and Li (1992) extended the Zhang formula to determine the fractional concen-
tration of non-uniform suspended load as C,; = pyCj;. Here, py, is the bed-material
gradation, and Cj is the potential equilibrium concentration of size class k determined
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Figure 3.21 Relation of C, and U¥ (gRw;) (Zhang, 1961).

by the C; ~ U3/(gRwg,) curve calibrated using multiple-sized sediment data. How-
ever, Wu and Li’s (1992) method does not explicitly consider the hiding and exposure
effect among non-uniform sediment particles.

Wu et al. formula

Based on Bagnold’s (1966) stream power concept, Wu et al. (2000b) related the
suspended-load transport rate to the rate of energy available in the alluvial system and
to the resistance to sediment suspension. The former was expressed as TU, and the
latter was accounted for by the settling velocity ws and the critical shear stress z.. Here,
T is the shear stress on the wetted perimeter of the cross-section: T = y RS;. Through
dimensional analysis, the independent parameter (z/7. — 1)U/w, was derived. By
using the laboratory data of non-uniform suspended load measured by Samaga et al.
(1986b) and two sets of field data in the Yampa River and the Yellow River, the
relation between the fractional suspended-load transport rate g, and the parameter
(t/t — 1)U /wg, was established. It is shown in Fig. 3.22 and expressed as

T U 1.74
®,, = 0.0000262 |:( - 1) ] (3.102)
Tck Wk

where @y, = G/ [Poi/ Vs/Y — 1)gd2], with g, being the suspended-load trans-

port rate by volume per unit time and width (m?s~!); and 7, is determined using
Eq. (3.45), which takes into account the hiding and exposure effect in non-uniform
sediment transport. The sediment settling velocity wy is calculated using the Zhang
formula (3.12).
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Figure 3.22 Relation of fractional suspended-load transport rate (Wu et al., 2000b).

3.6 BED-MATERIAL LOAD TRANSPORT

Bed-material load is the sum of bed load and suspended load. Therefore, one may
either separately calculate the bed-load and suspended-load transport rates, or directly
calculate the bed-material load transport rate. Examples of the former approach are
the methods of Einstein (1950), van Rijn (1984a & b), and Wu et al. (2000b), which
are introduced in Sections 3.4 and 3.5. Examples of the latter approach are Laursen’s
(1958), Engelund and Hansen’s (1967), Ackers and White’s (1973), Yang’s (1973),
and Karim’s (1998) methods, which are introduced below.

3.6.1 Total transport rate of bed-material load

Laursen formula

The Laursen (1958) formula divides a sediment mixture into size classes and calculates
the total average concentration of bed-material load as

N 7/6 /
Cre = 0.01y i (‘2’?) (Tb _ )f(U*) (3.103)
k=1

Tck Wsk

where Ci, is the sediment concentration by weight per unit volume; p;, is the fraction
of the kth size class of available sediment material; N is the total number of size classes;
7.4 is the critical shear stress for the incipient motion of sediment size dy,, given by the
Shields diagram; and 7, is the bed shear stress due to grain roughness, determined
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using the Manning-Strickler equation:

o pUZ dso 13

The function f(U,/ws) in Eq. (3.103) is given as two different curves for bed load
and bed-material load, as shown in Fig. 3.23. Therefore, the Laursen formula can be
used to determine either bed load or bed-material load.

Note that the Laursen formula can provide the sediment concentration for each size
class, but it is generally used to determine only the total sediment concentration. It has
good reliability for fine sediments.

o T T
10t v 105
= Total load
§ Ili I i
= mu
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10" -+ "IT 10*
' Bed load 7
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107 1o ([ 19 o 1
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Figure 3.23 Function f(U./ws) in the Laursen (1958) formula.

Engelund-Hansen formula

Using Bagnold’s stream power concept and the similarity principle, Engelund and
Hansen (1967) established the following sediment transport formula:

f'o, =0.10°/7 (3.105)

where [’ is the friction factor, defined as f' = 2gRSf/U2; &y = qui/[vs/ (vs/y — 1gd?],
with gy, being the bed-material load transport rate by weight per unit time and width;
© is the Shields number 7;,/[(ys — y)d] ; and d is the median fall diameter of bed
material.

Strictly speaking, the Engelund-Hansen formula should be applied to dune-bed
streams in accordance with the similarity principle. However, many tests have shown
that it can be applied to the upper flow regime with particle size greater than 0.15 mm
(Chang, 1988).
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Yang formula

Yang (1973, 1984) related the bed-material load transport to the unit stream power
as follows:

_ uy s,
log Ctx = M + Nlog (3.106)

Ws Ws

where C;, is the sediment concentration in parts per million (ppm) by weight, U, is
determined using Eq. (3.29), and M and N are coefficients. For sand (d < 2 mm)

M = 5.435 — 0.286 log “’:}d ~0.457 log Z—

N = 1.799 — 0.409 log “’id —0.314log % (3.107)
and for gravel 2 mm < d < 10 mm)

M = 6.681 — 0.633 log ‘”;d — 4.816log %

N = 2.784 — 0.305 log w;d —0.282log % (3.108)

Ackers-White formula

The transport of coarse sediments, which are mainly in bed load, is attributed to the
stream power corresponding to the grain shear stress, 7, U, while the transport of fine
sediments, which are mainly in suspended load, is related to the turbulence intensity
and in turn the total stream power, 7, U. Based on this concept, Ackers and White
(1973) proposed a mobility factor of sediment transport:

1-n
U U
F, = * 3.109

T sy — Dgd]'? [«/32 log(th/d):| ( )

and related the bed-material load to this mobility factor as follows:

n m
Ggr = Ce.h (U) =A (Fgr - ) (3.110)
dys/y \ U Ac

where Cy, is the sediment concentration by weight, A is an empirical coefficient, m
is an empirical exponent, # is the transition exponent, and A, may be interpreted as
the critical value of Fg, for sediment incipient motion. Coefficients A, A, m, and n
were related to the dimensionless grain diameter D, = d[(ps/p — 1)g/v*]'/3, as listed
in Table 3.5, based on best-fit curves of laboratory data with sediment sizes greater
than 0.04 mm and Froude numbers less than 0.8.
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Table 3.5 Coefficients of the Ackers-White formula

D, > 60 | <D, <60
n=00 n = 1.00 — 0.56log D,
A.=0.17 A.=023D;"* 1 0.14
m =150 m =9.66D; " + 1.34

A=0025  logA = —353+286logD, — (logD,)>

Many tests have shown that the Ackers-White formula overpredicts the transport
rate for fine sediments (smaller than 0.2 mm).

3.6.2 Fractional transport rate of bed-material load

Modified Ackers-White formula (Day, 1980; Proffitt and Sutherland, 1983)

Day (1980) and Proffitt and Sutherland (1983) extended the Ackers-White (1973)
formula to calculate the fractional bed-material load transport rate:

Fop "
Ggro = A (f\’ - 1) (3.111)
c

where

ur U o Coth  (U\"
For e = g 172 s Gk = d T7
[(vs/y — Dgdy] V32 log(10h/d,,) pordrys/y \ U

with C,,; being the sediment concentration by weight of size class k, and 5, the hiding
and exposure correction factor. Day’s correction factor is

1

= 3.112
= 0.4(d,/da) 05 + 0.6 (3.112)
where dj is the reference diameter, determined by
dy (d84)_0'28
— =1.6(— 3.113
dso di6 ( )
Proffitt and Sutherland’s correction factor reads
0.40, dy/d, < 0.075
me =1 0.53log(dy/dw) +1.0, 0.075 < dp/d, < 3.7 (3.114)
1.30, dy/dy > 3.7

where d,, is the reference diameter used by Proffitt and Sutherland (1983).
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SEDTRA module (Garbrecht et al., 1995)

The SEDTRA module (Garbrecht et al., 1995) calculates the fractional sediment trans-
port rates using three established transport formulas: the Laursen (1958) formula for
size classes from 0.01 to 0.25 mm, the Yang (1973) formula for size classes from 0.25
to 2.0 mm, and the Meyer-Peter-Mueller (1948) formula for size classes from 2.0 to
50.0 mm. The total concentration of sediment Cy, is calculated by

Crs =Y prCrut (3.115)
k

where C,,;, is the sediment concentration of size class k; and py, is the fraction of the
kth size class of available sediment, usually set as the bed-material gradation.

In order to account for the hiding and exposure effect in non-uniform bed material,
the sediment size d,, used to calculate the critical flow strength for the incipient motion
of each size class, is adjusted using the following equation (Kuhnle, 1993; Wilcock,
1993; Garbrecht et al., 1995):

d,, = dj (?) (3.116)

where d,;, is the mean diameter of bed material; and x is an empirical parameter,
determined by x = 1.7/B,,, with B, being a bimodality parameter (Wilcock, 1993):

4 172
Bm=(df> > bm (3.117)

where d. and dy are the representative diameters of coarse and fine modes, respectively;
and p,, is the portion of the sediment mixture contained in the two modes.

When B,, is less than 1.7, x = 1, and for high values of B,,,, x approaches zero.
Table 3.6 lists the values of x recommended by Kuhnle et al. (1996). The mixture
names for Wilcock and Southard’s (1988) data refer to the standard deviation of bed
material, and those for Kuhnle’s (1993) data refer to the percentage of gravel in bed
material, e.g., SG25 for the mixture with 25% gravel and 75% sand.

The SEDTRA module takes the advantages of the three formulas used and thus
performs well in general; however, these formulas may not transit smoothly in the

Table 3.6 Values of x recommended by Kuhnle et al. (1996)

Mixture name Reference dpy, (mm) Mixture type Bm X

SGI0 (lab.) Kuhnle (1993) 0.616 Bimodal 2.49 0.7
SG25 (lab.) Kuhnle (1993) 0.927 Bimodal 2.60 0.7
SG45 (lab.) Kuhnle (1993) 1.454 Bimodal 2.73 0.6
1/2  (lab.) Wilcock & S. (1988) 1.82 Unimodal 0.67 1.0
¥ (lab.) Wilcock & S. (1988) 1.85 Unimodal 0.37 1.0

Goodwin Creek Kuhnle (1993) 1.189 Bimodal 3.10 0.5
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case of low sediment transport, because they adopt different criteria for incipient
motion.

Karim formula

Karim (1998) related the availability of sediment to the areal fraction of bed material,
and established the following formula for the fractional transport rate of bed-
material load:

U 297 g N1
ek _0.00139 [} <> -
sly — 1)gd1‘:’ (ys/y — ngk [OWA

(3.118)

where g, isin m?s~1; p is the areal fraction of bed material, related to the volumetric

fraction of bed material, py;, by

N
pa = 21 Pt (3.119)
k el k
and 7y, is the hiding and exposure correction factor:
dy \©
m=Cp (k) (3.120)
dso
where dsg is the median size of bed material; and Cy and C, are coefficients:
C1 = 1.15wss50/ U (3.121)
Cy = 0.60wss50/ Us (3.122)

with wgs0 being the settling velocity for dsg.

Egs. (3.121) and (3.122) show that C; and C, increase as wsso/U, increases. This
suggests that the coarser the sediment mixture, the stronger the hiding and exposure
effect. This is physically reasonable. However, the correction factor in Eq. (3.121) is
not equal to 1 for uniform sediment, so that Eq. (3.118) may be significantly different
from the original uniform sediment transport formula.

3.6.3 Comparison of bed-material load formulas

Many investigators — e.g., Vanoni (1975), Alonso (1980), Brownlie (1981), Shen
and Hung (1983), van Rijn (1984b), Nakato (1990), and Woo and Yoo (1991) —
have compared the existing formulas for the total and fractional transport rates of
bed-material load using extensive flume and field data. Several examples are briefly
introduced below. More details can be found in relevant publications.
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Alonso (1980) tested eight formulas, including those of Ackers and White (1973),
Engelund and Hansen (1967), Laursen (1958), Yang (1973), Bagnold (1966), Meyer-
Peter and Mueller (1948), Yalin (1972), and the combination of the Meyer-Peter-
Mueller bed-load formula and the Einstein (1950) suspended-load formula (denoted
as MPME), using 225 sets of flume data and 40 sets of field data. Alonso limited
his comparisons against those field data where bed-material load could be measured
by special facilities to avoid the uncertainty of unmeasured load. Table 3.7 shows
the discrepancies of the selected formulas. The Yang (1973), Ackers-White (1973),
Engelund-Hansen (1967), and Laursen (1958) formulas are more reliable.

Table 3.7 Comparison of sediment transport formulas (Alonso, 1980)

Formula Ratio of predicted and measured discharges
Flume data with Flume data with Field data
h/d > 70 (177 sets) h/d < 70 (48 sets) (40 sets)

Mean o % in 0.5-2 Mean o % in 0.5-2 Mean o % in 0.5-2

Ackers-White 134 129 73.0 1.12 052 89.6 127 0.68 87.8
Engelund-H. 073 0.68 5lI.1 0.75 050 66.7 146 056 829
Laursen 081 051 714 1.04 099 792 0.65 0.48 56.1
MPME 3.1 275 421 1.34 1.04 66.7 0.83 1.02 585
Yang 099 060 798 090 051 854 1.0l 039 927
Bagnold 085 250 208 1.53 1.14 458 039 0.26 320
Meyer-Peter-M. 040 049 185 103 083 729 024 0.09 0

Yalin 1.62 4.08 32.6 192 1.65 64.6 259 1.62 463

Note: o = standard deviation, and % in 0.5-2 means percentage of data in error range of 0.5-2.

Brownlie (1981) compared fourteen formulas. The discrepancies resulting from
these formulas are shown in Fig. 3.24. The median and 16th and 84th percentile values
in the figure are based on the approximation of a log-normal distribution of errors.
The Brownlie (1981), Ackers-White (1973), and Engelund-Hansen (1967) formulas
provide good results for the data sets used in the comparison.

Woo and Yoo (1991) tested ten sediment transport formulas using the data carefully
selected from Brownlie’s (1981) compilation. Fig. 3.25 presents the discrepancy ratios
of the calculated and measured sediment discharges. The Engelund-Hansen (1967),
Ackers-White (1973), and van Rijn (1984a & b) formulas are more reliable than
other compared formulas.

The author compared the Engelund-Hansen (1967), Ackers-White (1973), Yang
(1973, 1984), and Wu et al. (2000b) formulas as well as the SEDTRA module (Gar-
brecht et al., 1995) against 1,859 sets of uniform bed-material load data selected from
Brownlie’s (1981) compilation by limiting the standard deviation of bed material o <
1.2 and the Shields number ® > 0.055. These data cover flow discharges of 0.00094—
297 m3s~1, flow depths of 0.01-2.56 m, flow velocities of 0.086-2.88 m -s~!, surface
slopes of 0.0000735-0.0367, and sediment sizes of 0.088-28.7 mm. None of them
was used to calibrate the Wu et al. formulas (3.80) and (3.102). The discrepan-
cies between the calculated and measured bed-material transport rates are listed in
Table 3.8. All these five formulas have comparable reliability for uniform bed-material
load transport rate.
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Figure 3.25 Comparison of sediment transport formulas (Woo and Yoo, 1991).

The author tested the Wu et al. (2000b) formula, the modified Ackers-White for-
mula (Proffitt and Sutherland, 1983), the modified Zhang formula (Wu and Li, 1992),
the Karim (1998) formula, and the SEDTRA module for fractional bed-material load.
Because the modified Zhang formula is only for the fractional discharge of suspended
load, it was combined with Eq. (3.80) to obtain the fractional discharge of bed-material
load. The non-uniform sediment data collected by Toffaletti (1968) were used, includ-
ing experimental data observed by Nomicos, Einstein-Chien, and Vanoni-Brooks, and
field data in the Rio Grande, Middle Loup, Niobrara, and Mississippi Rivers. In order
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Table 3.8 Calculated versus measured transport rates of uniform bed-material load for
Brownlie’s data (Wu and Wang, 2003)

Error range % of calculated transport rates in error range
Ackers- White Yang Engelund-Hansen SEDTRA Wu et al.

08 <r<125 37.3 334 33.6 36.6 404
0.667 <r<1.5 579 56.6 554 59.1 62.7
05<r<2 824 76.6 77.0 78.1 81.3

Note: r = calculation/measurement.

Table 3.9 Comparison of fractional bed-material load formulas

Error range % of calculated transport rates in error range
Modified Ackers-W. Karim Modified Zhang SEDTRA Wu et al.

05<r<2 5.6 42.7 48.1 56.9 579
033<r<3 1.1 63.5 67.9 73.1 76.1
025<r<4 20.8 733 80.7 80.9 85.2

to avoid the deficiency in the measurement of suspended load close to river bed, the
used field data were selected by limiting the height of the lowest measurement point to
be within 0.2 m (0.4 m in some of the Mississippi River data) above the bed. These data
cover flow discharges up to 21,600 m3s~!, flow depths up to 17.5 m, and sediment
sizes from 0.062 to 1 mm. Table 3.9 lists the discrepancies between the calculated
and measured fractional discharges of non-uniform bed-material load. The Wu et al.
formula and SEDTRA module perform better.

As shown in Tables 3.8 and 3.9, multi-fraction sediment transport formulas usually
have larger discrepancies than single-fraction formulas. This is because interactions
exist among different size classes in non-uniform bed materials, and it is difficult to
ensure all size classes at equilibrium states during measurements. Due to the fact that
the possible discrepancy of any existing sediment transport formula may exceed two
or three folds, verification using the data measured at the study site or similar sites
prior to application is recommended.

3.7 SEDIMENT TRANSPORT OVER STEEP SLOPES

Because channel slopes in most natural rivers are very gentle, the effect of gravity on
sediment transport is usually ignored. However, this effect is significant and should
be considered if longitudinal and/or transverse slopes are steep. Several methods
considering this effect are described below.

Nakagawa et al. formula

Nakagawa et al. (1986) established a formula to determine the pickup rate of sediment
particles on a steep side slope:
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3
el — 4 _003G,0 <1 - O'm@c) (3.123)
(os/p —Dg S

where p; is the pickup rate, defined as the probability density per unit time for a
sediment particle to be dislodged from the bed; and G, and € are coefficients:

sin(Bg + 84) + Rp s

G =
* 1+kLMs

(3.124)

s €08 0, — sin By, cos By

Q= 3.125
msGy ( )

where g is the static friction factor, with a value of about 0.7; k. is the drag and
lift force ratio, which is about 0.835; 6, is the transverse slope angle; §,; represents the
deflection angle of the flow velocity vector from the longitudinal direction; and By
is the angle of the sediment movement (resultant force) direction measured from the
p-axis defined along the wetted perimeter.

Damgaard et al. formula

Damgaard et al. (1997) modified the Meyer-Peter-Mueller (1948) bed-load formula
(3.65) to consider the effect of gravity in longitudinal slopes. The modified formula is
written as

Dp, = 8(0 — Ocy)* futope (3.126)

where @, = qp./[Vsi/ (vs/Y — 1)gd§0], ® is the Shields number 7, /[(vs — ¥)dso0], and

O, is the critical Shields number on sloped beds determined by

®c<p _ sin(¢, — @) (3.127)
O sin ¢, )

where ¢, is the repose angle; ¢ is the bed slope angle, with positive values for downslope
beds; and ©, is the critical Shields number on the horizontal bed, calculated using the
following algebraic representation of the Shields curve suggested by Soulsby (1996):

o _ 024
c= D,

+0.055(1 — ¢~ DP+/50) (3.128)

with D, = dso[(ps/p — Dg/v*11/3.
The parameter . is a correction factor, determined by

1 —¢r <=0

= 3.129
fotope { 1+0.8(0,/0)02(1 = Ogy /O)15F0/0: 0 < ¢ < ¢, ( )
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Wu’s method

Many sediment transport formulas, such as those of van Rijn (1984a & b) and Wu
et al. (2000b), can be expressed as q, = f(t; /7.) or f(z,/7c). Two approaches may
be used to consider the effect of bed slope in this group of formulas. One is to correct
the critical shear stress 7, using the method of Brooks (1963) or van Rijn (1989).
A disadvantage of this approach is that when the bed slope angle is close to the repose
angle, the corrected critical shear stress usually goes to zero and, thus, the calculated
sediment transport rate perhaps tends to be infinite. This situation should be limited.
The other approach is to add the streamwise component of gravity to the grain shear
stress 7, or the bed shear stress 7, without modifying 7. so that the situation of zero
critical shear stress can be avoided. The effective tractive force 1, (Wu, 2004) is thus
determined by

am

o (P = p)gd sin ¢ (3.130)

The = T;; + A

where 4 is a coefficient related to the shape and location of sediment particles, and A
is a friction factor. Note that 7, may be replaced by 7, in Eq. (3.130), depending on
the formula considered.

Because the friction factor A is difficult to determine, Eq. (3.130) is not ready for
use. In the case where the bed slope angle ¢ is equal to the repose angle ¢, , sediment
particles will start moving (7, = 7. ) even without any hydraulic action (7, = 0). Using
this condition, one can derive As = 7./[% (os — p)gd sin ¢,]. Inserting this relation into
Eq. (3.130) yields

The = Tj, + Tesin g /sin ¢, (3.131)

The coefficients As and a are replaced by the critical shear stress 7. and the repose
angle ¢,, which are easier to evaluate. However, the test performed by Wu (2004) using
the experimental data of Damgaard et al. (1997) shows that Eq. (3.131) is adequate
for negative (up) slopes, but for positive (down) slopes the following modification is
needed:

Tpe = Tj + AoTesing/sin g, (3.132)

where L is a coefficient. 1o may consider the difference in 7. on horizontal, upslope,
and downslope beds; it is related to flow and sediment conditions as well as bed
slope. When the above correction is applied to the Wu et al. (2000b) bed-load
and suspended-load transport formulas (3.80) and (3.102), Ag has the following
form (Wu, 2004):

1 =<0

Ao = . .
0 1+ O.Zz(tl;/rc)OJSeZsm(p/smq), ¢ > 0

(3.133)
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3.8 TEMPORAL LAGS BETWEEN FLOW AND SEDIMENT
TRANSPORT

Sediment transport exhibits temporal lags with flow due to flow and sediment velocity
difference and bed form development. In particular, such lags become significant for
coarse sediment transport under strongly unsteady flow conditions (e.g., Bell, 1980;
Tsujimoto et al., 1988; Phillips and Sutherland, 1990; Song and Graf, 1997; de Sutter
et al., 2001; Wu et al., 2006).

Lag between flow and suspended-load transport

There is a lag between the local flow and suspended-load velocities. This has been
observed experimentally by Muste and Patel (1997) and discussed in detail by Cheng
(2004). A two-phase flow model (Wu and Wang, 2000; Greimann and Holly, 2001)
can be used to describe this local velocity lag in general situations. However, according
to the experimental observations of Muste and Patel (1997), the local streamwise
velocity of suspended load with a diameter of 0.23 mm is less than the local flow
velocity by as much as 4%; this local velocity difference is negligible in comparison
with the depth-averaged flow and suspended-load velocity difference (Wu ez al., 2006).
Thus, the local velocity lag may be ignored, and only the depth-averaged velocity lag
is discussed below.
The concentration-weighted velocity of suspended load can be defined as

h h
Usoy =/ uscdz// cdz (3.134)
5 5

which is actually the overall velocity of suspended load from a depth-averaging point
of view. Therefore, the correction factor B¢ defined in Eq. (2.87) also is the ratio of
the depth-averaged suspended-load and flow velocities:

Bs = Used/U (3.135)

where U is the depth-averaged flow velocity.

Because higher sediment concentration corresponds to smaller flow velocity near
the channel bottom while lower sediment concentration corresponds to larger flow
velocity in the upper flow layer, Bs normally is less than 1 and U,y < U. By using
the logarithmic distribution of flow velocity, » = U{1 + /g[1 + In(z/h)1/(Cpx)},
and the Rouse distribution of suspended-load concentration introduced in Section
3.5.1 with the reference level set at 0.01h, Wu et al. (2006) obtained the relation
of B; with the Rouse number ws/(xU,) and the Chezy coefficient Cj, as shown
in Fig. 3.26. It can be seen that B; decreases as the Rouse number increases and
the Chezy coefficient decreases. For fine sediments, Bs is close to 1 and the lag
between the depth-averaged flow and sediment velocities can be ignored. However,
for coarse sediments, this lag can be up to 50% of the flow velocity and should be
considered.
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Figure 3.26 Factor B as function of the Rouse number and the Chezy coefficient
(Wau et al., 2006).

Lag between flow and bed-load transport

Bed load usually moves by rolling, sliding, and saltating, depending on flow and sed-
iment conditions. Saltation is the dominant mode of bed-load transport, while rolling
(and to a lesser extent, sliding) occurs only near the threshold of entrainment and
between individual saltation jumps (Bridge and Dominic, 1984). Van Rijn (1984a)
investigated the characteristics of particle saltation and determined the bed-load
velocity as

up

Vips/p —1)gd

where T is the transport stage number defined in Eq. (3.57).

The van Rijn formula (3.136) was verified by Wu et al. (2006) using three sets
of experimental data measured by Francis (1973), Luque and van Beek (1976), and
Lee and Hsu (1994). In the experiments of Francis (1973), the sediment used was
7.5 mm water-worn gravel, and multi-exposure photographs of grains were obtained
to show the trajectories and then determine the bed-load velocity. The experiments
of Luque and van Beek (1976) were performed in a closed rectangular channel at
different surface slopes and using different bed materials. Photographs were taken
at regular intervals to measure the mean rate of bed-load transport. The data from
these experiments with 0.9 and 1.8 mm sands and 3.3 mm gravel were selected. Lee
and Hsu (1994) measured the instantaneous saltation trajectories of sand particles
with sizes of 1.36 and 2.47 mm in a slope-adjustable recirculating flume by a real-
time flow visualization technique. These three groups of data were used to recalibrate
the bed-load velocity formula of van Rijn (1984a). Fig. 3.27 shows the new curve,
in which the transport stage parameter T is defined as T = 7;,/7. — 1, with 7}, being
the total bed shear stress measured in the three experiments where no significant bed

=1.57%¢ (3.136)
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Figure 3.27 Bed-load velocity as function of transport stage parameter (Wu et al., 2006).

forms developed. The new curve can be expressed as Eq. (3.136) with 1.64T%3 on the
right-hand side.
Fig. 3.27 and Eq. (3.136) show that the lag between flow and bed-load velocities

increases as sediment size increases.

Lag between flow and bed form development

It has been recognized that a temporal lag exists between flow and bed form devel-
opment, but this lag has rarely been investigated experimentally and numerically.
A simple empirical impulse response model was suggested by Phillips and Sutherland
(1990) to quantify this lag. The interested reader may refer to it. More generally, the
development of bed forms and, in turn, the associated temporal lag can be simulated
using a vertical 2-D or 3-D model if the selected computational mesh is fine enough
(much finer than the lengths and heights of the bed forms simulated). However, this
kind of simulation requires a powerful computer and an advanced numerical model.



Chapter 4

Numerical methods

River engineering problems are usually governed by nonlinear differential equations
in irregular and movable domains, most of which have to be solved using numerical
methods. Introduced in this chapter are the discretization methods for 1-D, 2-D, and
3-D problems on fixed and moving grids, the solution strategies for the Navier-Stokes
equations, and the solution methods of algebraic equations. Some of these can be
found in Patankar (1980), Hirsch (1988), Fletcher (1991), Ferziger and Peric (1995),
Shyy et al. (1996), etc.

4.1 CONCEPTS OF NUMERICAL SOLUTION

4.1.1 General procedure of numerical solution

Consider the problem in a domain of 2 < x < b shown in Fig. 4.1, governed by a
differential equation

L(f;x)=S (4.1)
with boundary conditions

f|x=a = fa, f|x:b = fb (4.2)

where L is the differential operator, f is the function to be determined, x is the spatial
coordinate, and § is the source term.

To acquire a numerical solution, the study domain is first represented by a finite
number of points, denoted as x1,x3, ..., and xy, which constitute the computational
grid (mesh). Here, x1 = a and xnx = b. The distance between two consecutive points,
Ax, is the grid size or spacing.

Eq. (4.1) is discretized on the computational grid using a numerical method.
A discrete equation Ly is then established to approximate the differential equation
at each grid point:

Li(f;x) =S8 (=2,...,N—1) (4.3)
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Figure 4.1 Example of numerical solution.

where ]A[ is the approximate solution of f, which is subject to boundary conditions:
fi=fs IN=f (4.4)

where ]?1 and ]A‘N are the values of]? at x = xq and xy, respectively.

The system of algebraic equations consisting of discrete equations (4.3) and bound-
ary conditions (4.4) is used to determine the approximate solution ( fl,fz, .. fN on
the computational grid. A direct or iterative solution method may be adopted to solve
the algebraic equations. The obtained approximate solution is a discrete function,
which is shown as solid circles in Fig. 4.1.

The quality of the approximate solution usually relies on the computational grid
used, the discretization method for the governing equation, and the solution method
for the discretized equations.

4.1.2 Properties of numerical solution

The most important properties of numerical solution are accuracy, consistency,
stability, and convergence. A brief overview of these terms is given below. Complete
descriptions can be found in Hirsch (1988), Fletcher (1991), etc.

Accuracy

Numerical accuracy refers to how well a discretized equation approximates to the
differential equation. Eq. (4.3) is said to have an accuracy of mth-order of Ax, if the
residual (error) is proportional to Ax™:

RL = L(f3%;) — La(f3x;) = O(Ax™) (4.5)

The residual term on the right-hand side of Eq. (4.5) can be obtained with the Taylor
series expansion method. However, it is usually difficult to judge the overall accuracy
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for a complex model system, because the governing equations and boundary conditions
may be discretized using numerical schemes with different accuracies. An alternative
method to analyze the accuracy is through the computation of solution errors on a
series of meshes with grid spacings of Ax,2Ax, 3Ax, etc. The root-mean-square error
for the solution on each grid is defined as

1/2

N
Ry = H:Z(fi - ﬁ)z} / N} (4.6)
=1

The error Ry is related to the grid spacing Ax, as shown in Fig. 4.2. This relationship
can be represented by

Rf =aAx™ (4.7)

where a is a nearly constant coefficient. The value of 7 can be determined from the
series of Ry and Ax pair values using a regression method.
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Figure 4.2 Relation between Ry and Ax.

Performing the above numerical accuracy analysis requires that the exact solution
be known in advance. This is not feasible for most problems in river engineering.
However, the prescribed solution forcing (PSF) method (Dee et al., 1992) can be used
instead. The PSF method substitutes the unknown function f in Eq. (4.1) by a known
function p. The new equation for p has the form:

L(p;x) =$* (4.8)

where S* is the new source term, which might be different from S because p may not
be the exact solution of Eq. (4.1). Note that it is preferable that the function p satisfies
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boundary conditions (4.2); however, for complex problems, this may be difficult, and
one may use the values of p at boundaries as boundary conditions for solving Eq. (4.8).
Because Egs. (4.1) and (4.8) have the same formulation except for the source terms,
the same numerical method can be used to solve Eq. (4.8) and find the approximate
solution of p. The above numerical accuracy analysis can then be conducted.

Consistency

The system of discretized equations is considered to be consistent with the original
differential equation if it is equivalent to the differential equation at each grid point
when the grid spacing reduces to zero.

The consistency analysis can be conducted by expanding all nodal values in the dis-
cretized equations as Taylor series about a single point. For consistency, the obtained
expression should be made up of the original partial differential equation and a remain-
der, and the remainder should reduce to zero at each grid point as the grid spacing
reduces to zero.

Stability

Numerical stability is concerned with growth or decay in errors introduced at any
stage of the computational process. In practice, because of limited computer stor-
age, an infinite decimal number is truncated to a finite number of significant figures,
thereby introducing round-off errors. A numerical algorithm is said to be stable if the
cumulative effect of the errors produced during its application is negligible.

The von Neumann and matrix methods are commonly used for stability analysis
(see Hirsch, 1988; Fletcher, 1991). Both methods can predict whether there will be a
growth in numerical errors including the round-off contamination between the true
solution of the numerical algorithm and the actually computed solution.

Convergence

A solution of the discretized algebraic equations is said to be convergent if the approx-
imate solution approaches the exact solution of the original differential equation for
each dependent variable as the grid spacing reduces to zero. Thus, for problem (4.1),
convergence requires f — f, as Ax — 0.

Proving the convergence of a numerical algorithm is generally very difficult, even
for the simplest cases. Nevertheless, for a restricted class of problems, convergence

can be established via the Lax equivalent theorem, which was described as follows
(Richtmyer and Morton, 1967; Fletcher, 1991):

Given a properly posed linear initial value problem and a finite difference approx-
imation to it that satisfies the consistency condition, stability is the necessary and
sufficient condition for convergence.

The Lax equivalent theorem is very useful to show the convergence through
the stability and consistency analyses, which are much easier. However, most of
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the problems in computational river dynamics are nonlinear, so the Lax equivalent
theorem is not always applicable.

In general, the tendency of convergence can be tested by successively refining the
computational grid and computing the root-mean-square error of the solution of each
dependent variable by Eq. (4.6). If Rf — 0 as Ax — 0, the numerical solution
is convergent. However, this test shows only the tendency rather than the ultimate
convergence (R = 0), because the mesh cannot be infinitely refined and the round-off
errors may increase as the number of grid points increases.

4.1.3 Discretization methods

Widely used discretization methods include finite difference method, finite element
method, finite volume method, finite analytical method, and efficient element method.
The finite difference method discretizes a differential equation by approximating dif-
ferential operators with difference operators at each point. The finite analytical method
discretizes the differential equation using the analytical solution of its locally linearizd
form, and the efficient element method establishes difference operators using interpola-
tion schemes in local elements. Because of their similarity, the finite analytical method
and efficient element method are herein grouped with the finite difference method.
The finite volume method integrates the differential equation over each control vol-
ume, holding the conservation laws of mass, momentum, and energy. In the finite
element method, the differential equation is multiplied by a weight function and inte-
grated over the entire domain, and then an approximate solution is constructed using
shape functions and optimized by requiring the weighted integral to have a minimum
residual.

The algebraic equations resulting from the finite difference and finite volume meth-
ods usually have banded and symmetric coefficient matrices that can be handled
efficiently, whereas the algebraic equations from the finite element method often
have sparse and asymmetric coefficient matrices that require relatively tedious effort
for solution. However, the classic finite difference and finite volume methods adopt
structured, regular meshes and encounter difficulties in conforming to the irregular
domains of river flow, while the finite element method adopts unstructured, irreg-
ular meshes and can conveniently handle such irregular domains. Therefore, it has
been a trend in recent decades to develop the finite difference and finite volume meth-
ods on irregular meshes, which have the grid flexibility of the finite element method
and the computational efficiency of the classic finite difference and finite volume
methods.

The finite difference method and finite volume method are introduced in this book.
The finite element method has also been used in many river models because of its grid
flexibility; however, it is absent from this book due to the author’s limited expertise.
Interested readers are encouraged to consult other references, such as Chung (1978),
Fletcher (1991), and Zienkiewicz and Taylor (2000).

One suggestion to new model developers and users is that any numerical method
may have its advantages and disadvantages, and subjectivity may prevent you from
becoming more successful. You should learn the basic properties — such as accuracy,
stability, convergence, and efficiency — of the method that you are going to use and
know how to take advantage of its strengths and avoid its weaknesses.
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4.2 FINITE DIFFERENCE METHOD
4.2.1 Finite difference method for |I-D problems

4.2.1.1 Taylor-series formulation of finite difference
schemes

Fig. 4.3 shows the 1-D computational grid used in the finite difference method. The
values of function f at x = x;41 and x = x;_1 can be expanded as Taylor series about
the point x = x;:

2 3
fi+1=f,«+<2£) Ax+2(8x§>A +6(§x§) Axd 4 ... (4.9)

2 3
fii=fi— (f)A +2(axf>i“ 2(2;;)im3+m (4.10)

where Ax = x;41 — x; or Ax = x; — x;_1. Ax is assumed to be uniform on the entire
computational grid for convenience in the following analyses.
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Figure 4.3 1-D finite difference grid.

Ignoring the high-order terms in Eq. (4.9), the first derivative of function f can be
approximated as

(a’f)g firr = f (4.11)

0x /; Ax

Eq. (4.11) is called the forward difference scheme. Similarly, from Eq. (4.10), the
backward difference scheme can be obtained as

(Ej’()_ ~ i (4.12)

ox /; Ax

Subtracting Egs. (4.9) and (4.10) yields the central difference scheme for the first
derivative:

(31‘) fir1 —fi-1 (4.13)

ox 2Ax
Summing Egs. (4.9) and (4.10) yields the central difference scheme widely used for

the second derivative:

ax2 Ax?

( 2f> fir = 2fi + finn .14
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The forward and backward difference schemes (4.11) and (4.12) are first-order
accurate, whereas the central difference schemes (4.13) and (4.14) are second-order
accurate. They are bases for many widely used difference schemes.

4.2.1.2 Discretization of 1-D steady problems

Numerical schemes often used in the discretization of 1-D steady problems include the
central, upwind, and exponential difference schemes, which are introduced below.

Central and upwind difference schemes

Consider the 1-D steady convection-diffusion equation:

df _, &

“ix T

g +5 (4.15)

where u is the velocity; and ¢, is the diffusion coefficient, which is positive.
Applying the central difference schemes (4.13) and (4.14) to the convection and
diffusion terms in Eq. (4.15), respectively, yields

Jirt = fiz1

fiot = 2i +fivr |
2Ax

Ax?

Si (4.16)

=8£

The central difference scheme (4.14) is adequate for discretizing the diffusion term.
However, the use of the central difference scheme (4.13) for the convection term may
result in numerical oscillations. Upwind difference schemes are usually preferred for
the convection term. The first-order upwind scheme uses the backward or forward
difference scheme for the convection term, depending on whether the velocity # is
positive or negative, i.e.,

fi—fir

u (u=>0)
u (3’() = Ax (4.17)
ox / : i+1 — fz
! u——— m<0)
Ax

Applying the upwind scheme (4.17) to the convection term and the central difference
scheme (4.14) to the diffusion term in Eq. (4.15) yields

Jimfimt _ fiot = 2fi + fis

+S8; (=0

Ax € Ax2
(4.18)
St =t fio1 = 2fi+ fiv LS (<0
Ax ¢ Ax? !

Exponential difference scheme

Assuming constant u, &, and S in the segment x;_1 < x < x;11 and imposing boundary
conditions f = f;_1 at x = x;_1 and f = fiy1 at x = x,;1, one obtains the following
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analytic solution of Eq. (4.15) in this segment:

f—fio1— (e —xi-)Si/u  expllx —xi—1u/e] -1
— (4.19)
fivr = fi-1 — (ig1 —xi-1)Si/u expl(xit1 — xi—1)u/ec] — 1
Imposing f = f; at x = x; in Eq. (4.19) yields
fi —fio1 = Sidx/u exp(—P/2) (4.20)

fis1 — fio1 — 28iAx/u ~ exp(P/2) + exp(—P/2)

where P is the Peclet number, defined as P = uAx/s., which represents the relative
importance of convection and diffusion effects.
Eq. (4.20) can be rewritten as

apfi = awfi-1 + agfiz1 + Si (4.21)

where aw = 5% exp(P/2)/sinh(P/2),ap = 5% exp(—P/2)/sinh(P/2), and ap =
aw + ag.

Eq. (4.21) is the exponential difference scheme. It was derived by Lu and Si (1990),
who called it a finite analytic scheme. It is similar to Spalding’s (1972) exponential
scheme based on the finite volume approximation (see Section 4.3.1).

Scheme (4.21) is capable of automatically upwinding and has a diagonally dominant
coefficient matrix. It is very stable. It tends to the upwind difference scheme (4.17) for
a strong convection problem (large P) and to the central difference scheme (4.14) for
a strong diffusion problem (small P).

4.2.1.3 Discretization of I-D unsteady problems

Time-marching schemes for 1-D unsteady problems include the Euler scheme, leapfrog
scheme, Lax scheme, Crank-Nicholson scheme, Preissmann scheme, characteristic
difference scheme, and Runge-Kutta method. The former five schemes are discussed
below, whereas the others can be found in Abbott (1966), Yeh et al. (1995), Fletcher
(1991), etc.

Euler scheme

Consider the 1-D unsteady convection equation:

of of
— — =S 4.22
ar T "ox 4.22)
The computational grid in the (x, ) plane for solving Eq. (4.22) is shown in Fig. 4.4.
The simplest scheme for the temporal term in Eq. (4.22) is the two-level difference
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Figure 4.4 Finite difference grid in (x, t) plane.

scheme:

of _ -1

(4.23)
at At

where At = t"t1 — ¢” is the time step length, and the superscript # is the time step
index.

Scheme (4.23) can be the forward or backward difference scheme in time. Applying
the forward difference scheme for the time-derivative term in Eq. (4.22) leads to an
explicit scheme:

ntl _ " _ fn
fi Atf’ +uf’ Af’*l =S" (u>0) (4.24)
X

1

whereas applying the backward difference scheme leads to an implicit scheme:

1 1
At A

_ ¢n+l
N =S w0 (4.25)

Note that the convection term in Egs. (4.24) and (4.25) is discretized using the
upwind scheme (4.17) rather than the central difference scheme for better stability, as
described in Section 4.2.1.2.

The forward difference scheme, with all other terms evaluated at time level #7, is
also known as the Euler method.
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The implicit scheme (4.25) is unconditionally stable, whereas the explicit scheme
(4.24) is stable if

At < Ax/|ul (4.26)
which is called the CFL (Courant-Friedrichs-Lewy) condition.

Leapfrog scheme

Using the central difference scheme (4.13) for both the temporal and spatial terms in
Eq. (4.22) results in the so-called leapfrog scheme:

1 -1
=t i

2At Ax (4.27)

The leapfrog scheme is second-order accurate in time and space. If the CFL condi-
tion (4.26) is satisfied, the leapfrog scheme is neutrally stable. However, the leapfrog
scheme is a three-level scheme, which requires an alternative method for the first
time step.

Lax scheme and Lax-Wendroff scheme

Replacing f; in scheme (4.23) by a weighted average value of /" |, f/", and f/ ; yields
the Lax scheme:

of A = [uir - na + )]
a At

(4.28)

where ¥ is a spatial weighting coefficient.
Applying the Lax scheme (4.28) for the convection equation (4.22) leads to

n+1 n 1 n n
i _1//,‘+’(1_';[f)(,‘_+1‘ ) no_fn
f I: f 2 f 1 f+1 ] n ufH_l f;_l S (429)
At 2Ax

If v = 1—u?At?/Ax* and S = 0, the difference equation (4.29) becomes the
Lax-Wendroff scheme, which is second-order accurate in time and space.
For the homogeneous convection-diffusion equation

of  of %
E + Ma = 85@ (430)

the Lax-Wendroff scheme is

(4.31)

2

=1 . [t A1 (e + 1.2, fit =217 + 1
At 2Ax ‘ Ax?
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The truncation error of the Lax-Wendroff scheme (4.31) is O(At%, Ax?) as well. Its
stability condition is #2 At? 4 2e.At < Ax? (see Fletcher, 1991).

Crank-Nicholson scheme

Applying Eq. (4.23) to the time derivative and a weighted average of the central
difference scheme (4.14) between time levels # and # + 1 to the diffusion term in
the 1-D diffusion equation

of _, o

O e, CT 1s 432
ot ax2 T (4.32)

yields

A O/ A/ W
At =9 Ax2 +5;
X

1

+(1-0) [ ’[‘_A# + S’?} (4.33)

where 6 is a temporal weighting factor. When 6 = 0, Eq. (4.33) is an explicit scheme,
and when 6 > 0, Eq. (4.33) is an implicit scheme. For 8 = 1/2, Eq. (4.33) is called the
Crank-Nicholson scheme, which is second-order accurate in time and space.

Preissmann scheme

Preissmann (1961) proposed an implicit scheme based on two levels in time and two
points in space, as shown in Fig. 4.5. This scheme replaces the continuous function
f and its time and space derivatives by

f=0lf + A=W+ A - Ol + 1 —¥)ff] (4.34)

fhan+ 1} i+ 1.n+ 1)

[
I {i+vy,n+#)
O

(1. m) {i+1,n

Figure 4.5 Computational element in the Preissmann scheme.
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n+l _ rn n+1 n
g—f i — i +d w>f f (4.35)
At
f f,’f:il ! i =t fﬁ
a Ax + (1 -0) A (4.36)

where 6 and ¢ are the weighting factors in time and space, respectively. The original
Preissmann scheme adopts ¥ = 1/2; thus, Eqs. (4.34)—(4.36) are the generalized
version.

Application of the Preissmann scheme in the 1-D simulation of unsteady open-
channel flows is discussed in detail in Section 5.2.2.

4.2.1.4 High-order difference schemes

The backward and forward difference schemes (4.11) and (4.12) based on two grid
points are the simplest asymmetric difference schemes, and the central difference
schemes (4.13) and (4.14) based on three grid points are the simplest symmetric
difference schemes. To enhance the accuracy of numerical discretization, one may
use more grid points in the difference formulation. For example, the following three-
point and four-point asymmetric difference schemes for the first derivative are derived
using the Taylor series expansion:

(3f> _ fi-a = 4fim1 + 3

O(Ax? 437
ax /; 2Ax +0Ax) ( )

+ O(AxY) (4.38)

<3f> _ fima = 6fi-1 + 3fi + 2fin1
ax); 6Ax

and the five-point symmetric difference schemes for the first and second derivatives are

f\ _ fi-a—8fic1 + 8fix1 — fir2
x /; N 12Ax

+ O(AxY (4.39)

T A fiv2 + O(AxY (4.40)

(azf) _ —fia+16fi1 = 30f + 16fi1 —
1

By using schemes (4.37) and (4.38), the second-order and third-order upwind
schemes for the convection terms in Egs. (4.15) and (4.22) can be established
as follows:

fi-2 — 4fi1 + 3fi
of u u>0
( > 2Ax (4.41)
dx SOt A —fir 0
2Ax
o Sfim2 = 6fi1 +3fi + 2fin1 =0
u () = 6Ax (4.42)
ax ) ; —2fi_1 = 3f; + 6fix1 — fin
u u<0

6Ax
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Upwind schemes (4.41) and (4.42) have better accuracy and less numerical diffusion
than the first-order upwind scheme (4.17). However, they may produce numerical
oscillations where the function f varies rapidly.

Using the asymmetric difference scheme (4.37) for the time derivative yields the
three-level implicit scheme:

g n+1 _ 3fl_n+1 _ 4](;; +f1’n_]
ot |, 2At

(4.43)

which is second-order accurate in time.

In addition, one may establish high-order schemes based on only two or three grid
points by including the first and second derivatives of the function in difference formu-
lations (Yang and Cunge, 1989; Wu, 1993). One approach is based on the expansion
of f"*1 as a Taylor series about #":

+1 Atk 1
it =fr 4 Z 37 + O(At™th (4.44)

For the homogeneous convection equation (4.22) with § = 0 and a constant velocity
u, one can derive 9%f/3tk = (—u)ka*f/ax*. Substituting this relation into Eq. (4.44)
ylelds

k
](in+1 fn_i_ZAit(_ ) (8 ]]:) +O(Atm+1) (445)

If the first and second derivatives in Eq. (4.45) are evaluated using the central dif-
ference schemes (4.13) and (4.14), Eq. (4.45) is exactly the Lax-Wendroff scheme.
A fourth-order accurate scheme can be obtained by using the five-point schemes (4.39)
and (4.40) for the first and second derivatives and constructing two fourth-order seven-
point schemes for the third and fourth derivatives in Eq. (4.45). However, to limit
the number of grid points involved, Wu (1993) suggested the following three-point
schemes for these derivatives:

(af)n 4<3’()n+<af)n Y/ S/} 15 L+ oaxt (4.46)
ox /4 ; ; Ax

ox ; 0x i+
(1) a2t —rn

4
9x2 A2 > Ax + O(Ax™) (4.47)

i+1 +O(A 4)

’f "t Wt/ (3f/3x) ' +8(8ffx)" + (affox)
dx3 ; - 2Ax3 2 Ax2

(4.48)
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= 36-=
x4 | Ax* Ax3

1

(W) foy =27 M OF /00, = @ffo

24 (2"

1

Egs. (4.46)—(4.49) can be derived using the Taylor series expansion. Note that
Eq. (4.46) needs to be solved using a direct or iterative method to compute the first
derivative at each point.

Higher-order (up to eighth-order) difference schemes can be derived by adding the
first and second derivatives at points i — 1 and i + 1 in Eq. (4.45). The approach
described above can also be applied in the derivation of high-order schemes for the
diffusion and convection-diffusion equations by substituting relevant relations for
akf otk into Eq. (4.44) (Wu, 1993).

However, the above high-order difference schemes must be treated specially at
boundary points because external points or boundary values for the first and/or
second derivatives are involved. Furthermore, they usually need a uniform mesh that
is difficult to conform to the irregular and movable boundaries of river flow. There-
fore, the numerical schemes of higher than fourth-order accuracy are rarely used in
computational river dynamics.

4.2.2 Finite difference method for multidimensional
problems on regular grids

4.2.2.1 Discretization of multidimensional steady problems

It is straightforward to extend the aforementioned 1-D finite difference schemes to the
discretization of 2-D and 3-D differential equations on regular grids. For example, on
the rectangular grid shown in Fig. 4.6, applying the upwind difference scheme (4.17)
for the convection terms and the central difference scheme (4.14) for the diffusion
terms in the 2-D steady convection-diffusion equation

of | of _ (0
an +1/ly@=86 (Z”Cz+2):)/2 +S (450)

yields

firtj = 2fijt fivty | fij=1 = 2+ figin
Ax? Ay?

Gx,"/' + Gy,',,' =& ( ) + S,"/ (4.51)

where Ax and Ay are the grid spacings in the x- and y-directions, respectively; Gy;; is
set as ux(fij — fi—1,7)/ Ax when u, > 0 and ux(fiy1; — fij))/ Ax when u, < 0; and G, ;
is uy(fij — fij—1)/Ay when uy, > 0 and u,(f; j11 — fij)/ Ay when u, < 0.
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Figure 4.6 2-D finite difference grid.

To apply the exponential difference scheme (4.21), one can rearrange Eq. (4.50) as

of of  *f\ _
<14xax - Scax2> + (”yay - gcayz) =S (452’>

Discretizing the convection and diffusion terms with the exponential difference
scheme (4.21) in the x- and y-directions, respectively, yields

apfi; = awfi-1j + agfis1j + asfij—1 + anfij+1 + Si (4.53)
where
aw = “x exp(Px/2)/sinh(Py/2), ag = X exp(—Px/2)/sinh(Px/2),
2Ax 2Ax
uy . I/Iy .
as = mexp(Py/Z)/smh(Py/Z), aN = TMCXP(—Py/Z)/SIHh(Py/Z)’ (4.54)

ap =aw + ag + as + an

with Py = uyAx/e. and Py = u,Ay/e..

Scheme (4.53) is also called the five-point hybrid finite analytic scheme (Li and
Yang, 1990; Lu and Si, 1990). Chen and Li (1980) derived the analytic solution for
Eq. (4.50) with constant velocity, diffusivity, and source term at the nine-point cluster
shown in Fig. 4.6 and established a nine-point finite analytic scheme. The nine-point

analytic scheme also has the capability of automatically upwinding and is very stable.
The details can be found in Chen and Li (1980).
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4.2.2.2 Discretization of multidimensional unsteady
problems

The important issue for discretizing 2-D and 3-D unsteady problems is how to arrange
spatial difference operators in different directions or fractional steps. Widely used
approaches include the full-domain implicit (or explicit) method, alternating direction
implicit method, and operator splitting method.

Full-domain implicit (or explicit) method

The full-domain implicit (or explicit) method discretizes all spatial derivatives in 2-D
and 3-D differential equations at the same time level. For example, extending Eq.
(4.33) to the 2-D diffusion equation

of _ (2 f
— = — S 4.55
ot e (ax2 Tt (4.53)
yields
+1 +1 +1 +1 +1 +l +1
f7 = (R 2 A o
I Ax? Ay?
1y f” + o= 2f 4 1
—-1,; = “lij t+1/ i,j—1 is] i,j+1 n+6

(4.56)

When 0 = 0, Eq. (4.56) is explicit in both x- and y-directions; its sufficient and
necessary stability condition is ¥ = e.At/h* < 1/4, if Ax = Ay = h. When 6 = 1,
Eq. (4.56) is implicit in both x- and y-directions and unconditionally stable; however,
the discretized equation at each grid point involves five unknowns and usually needs
to be solved by an iteration method.

Alternating direction implicit method

The alternating direction implicit (ADI) method was proposed by Peaceman and

Rachford (1955). It usually divides the computation into two or three steps and

discretizes the spatial derivatives implicitly in only one direction at each step.
Consider a 2-D partial differential equation:

of
L L+ Lyf (4.57)

where L, and L, are differential operators in the x- and y-directions. The correspond-
ing two-step ADI difference equations can be written as

fn+1/2 fn
At/z = A fn+1/2+A ](n

fn+l _ fn+1/2
At)2

(4.58)
— Axfn+1/2+Ayfn+1
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where Ay and A, are the spatial difference operators of Ly and L,, respectively. In

the first step, the operator Ly is approximated implicitly, while L, is approximated

explicitly. In the second step, L, is treated explicitly, while L, is treated implicitly.
For example, the ADI scheme for the 2-D diffusion equation (4.55) is

’7 +1/2 n+1/2
At/2 = ec@ufiy "+ Il + S
(4.59)
fn+1 fn+1/2
is] i n+1/2 +1 +1
T e el ol ) + S

where 8y, and 8y, are the central difference operators corresponding to the second
derivatives 8%/9x* and 82/9y?, respectively.

The ADI scheme (4.59) is unconditionally stable. Because only a 1-D difference
equation with three unknowns needs to be solved at each step, it is simpler than the
full-domain implicit difference equation (4.56).

Operator splitting method

The operator splitting method was proposed by Yanenko (1971) and others. It
splits the differential equation into several operators and then treats each operator
separately.

Consider a differential equation:

2—{: =Lif + Lof (4.60)

where L1 and L, are spatial operators. The corresponding difference equation is
written as

fn+1 fn
A A]]mJrl + Azf”+1 (4.61)

where A1 and Aj are the difference operators of L1 and L, respectively.
Eq. (4.61) can be split as

fril/z — fn = A2
At (4.62)
fn+1 _ fn+l/2
x; A2fn+1

Note that the operator splitting method can be used for 1-D, 2-D, and 3-D
problems. In other words, operators L; and L; in Eq. (4.60) can be one-, two-,
or three-dimensional.

The consistency of the operator splitting method for linear differential equations
has been proven, but not yet for nonlinear differential equations. However, extensive



130 Computational River Dynamics

numerical tests have shown that it can provide satisfactory results for many practical
nonlinear problems.

The advantage of the operator splitting method is that each operator can be handled
with an appropriate method specific to that operator. However, boundary conditions
may be difficult to implement, and the overall accuracy is hard to judge even though
high-order schemes might be used for every operator.

4.2.3 Finite difference method for multidimensional
problems on curvilinear grids

River flow problems usually have irregular and even movable domains. When the
classic finite difference method on regular grids is used to solve these problems, diffi-
culties may arise near boundaries. However, boundary conditions are essential to the
properties of the solution. Therefore, the finite difference method on fixed and moving
curvilinear grids has been established in the past decades via coordinate transformation
and interpolation, as described below.

4.2.3.1 Governing equations in generalized coordinate
system

In general, the unsteady coordinate transformation from the Cartesian coordinate
system (x;, ) to a moving, curvilinear coordinate system (&,,, T) can be written as

X =X; T i=1,2,3;m=1,2,3

{tl l(ém, ) ( b b b bl b ) (4_63)
=1

where &1, &, and &3(= &, 1, ¢) are the coordinates, and t is the time in the curvilinear
system.

Coordinate transformation (4.63) includes time and hence can be applied to both
fixed and movable grids (Wu, 1996a; Shyy et al., 1996). Its Jacobian matrix is

r dx1 0xp 0x3 0 7
051 061 98
o

B= 05 35 098 (4.64)

RS
083 353 083
dx1 Jdxy 0x3 1

L ot ot ot i

and Jacobian determinant is | = |B|. For a monotonic and reversible coordinate trans-
formation, the Jacobian determinant should be non-zero and have finite bounds, i.e.,
0<]J<+o0.

Denote o = 9£,,/dx; and B:, = dx;/0&,,. Then o and 9&,,/9t can be determined by

=" o= (4.65)
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where M, (i = 1,2,3) and M are the cofactors of 8! and 9¢/d&,, in the Jacobian
matrix B, respectively.

Under coordinate transformation (4.63), the first and second derivatives of function
f are given by

g — % + %li (4.66)
ot ot | 9t 0&y,
A qm L (4.67)
0x; 0&m
2
o-f _ afmi (a”af) (4.68)
8x,—8x,- 3§m 7 a‘i:n
and the substantial derivative is
Df of  of of . of
— ==L — = — 4.69
Dt ot Mok, o Mg, (4.69)

where u; and 1, are the velocities in the (x;,¢) and (&,,,7) coordinate systems,
respectively. They are related as follows:
N 0&m 0x; i A
i = 2 o= S Bl (4.70)
Note that like the Cartesian coordinate index i, the curvilinear coordinate index m
is also subject to Einstein’s summation convention.
In the (&,,t) coordinate system, the continuity and Navier-Stokes equations of
incompressible flows are

o | 0(itm)
Ly T 471
aT + A& ( )
u; ., ou; 1 ap 1 0T
oui o i g 1m0 L 472
e T T A T 72)
and the scalar transport equation is
dc . Oc m 0 dc
& g = (oo ) + 8 4.73
T T T (af e agn) - *.73)

where c is a scalar quantity, such as mass concentration and temperature.

4.2.3.2 Typical coordinate transformations

Boundary-fitted coordinate transformation

A boundary-fitted coordinate transformation was adopted by Thompson et al. (1985)
to simulate flows around physical bodies. In the 2-D case shown in Fig. 4.7,
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Figure 4.7 Boundary-fitted coordinate transformation.

the coordinate transformation between physical domain (x,y) and logical domain
(&,n) is governed by the Poisson equations:

9%
x2
8277
Ix2

82
S =rem
Y (4.74)
8277
92 =Q(,n)

where P and Q are source terms, which essentially determine the grid density

and smoothness.

Because the grid in the physical domain is unknown, it is inconvenient to solve the
equation set (4.74). Exchanging the independent and dependent parameters yields the
corresponding equations for x and y with respect to & and #:

92x 8%x
&2 0&an
82 2
a2y oY
&2 d&dn

+C

Iy n(pdy ) _
C +] (P8.§+Q8n>_o

9%x 5
a2 ¥/

82y

ox ax
P4 Q> =0
( 05~ m (4.75)

8772

where A = (9x/81)24(9y/dn)*, B = 0x/0&-3x/dn+03y/d€-3y/dn, and C = (dx/d&)>+
(0y/0&)%. Because the grid in the logical domain is prescribed, the two equations in
(4.75) can be solved conveniently.

The Jacobian determinant ] of the coordinate transformation is

_ Ox 9y
989

Under coordinate transformation (4.74), the first derivatives of [ are

of

0x

of _

1
oy

1
@)

0x dy
of | of
% + a? % (4.77)
of  of
% 2% (4.78)

ay
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where

The second derivatives are

92 82 9 9 9 dal\ &
Jza} }J+ 1257 2 %J+ o121y 20 of
dx2 d& 9ED an dE an | O
do? da?'\ of
1 1 2 1
—1 —L) =L 4.80
+ (ozl 5 +aj on ) o ( )
I*f L1 0%f Lo 2 O 2 2%
axdy 10‘23?2+(“1“2 +0‘1°‘2)a$73+ 1“2@
da aal 8 da a2\ 8
T e . A [ ) | AR OR 1Y
§ an | 3¢ 08 an | dn
92 9 92 92 dal aal\ 8
—f—a%a%—f—i—lcx%a%if +a%a%—f+ %& %ﬁ l
Jy2 92 AEIn an A& an | o
da? a2\ 9
+{a) =2 +a22 of (4.82)
o€ an | on

Local coordinate transformation on fixed grids

The previous boundary-fitted coordinate transformation can provide high-quality
numerical grids with global properties, such as orthogonality and smoothness. How-
ever, two partial differential equations need to be solved in the entire domain.
A simpler method for handling irregular boundary problems is the local coordinate
transformation that is based on only individual elements.

Suppose a 2-D physical domain is represented by a quadrilateral grid, and the nine-
point quadrilateral isoparametric element shown in Fig. 4.8 is used as the basic element
(Wuand Li, 1992; Wang and Hu, 1993). At each element all nine points are numbered
1 through 9 and the 5th point is the central point. This irregular element is converted
into a rectangle by the following coordinate transformation:

9

9
x=Y xppeEm, y=) v, n) (4.83)
k=1 k=1

where x; and y, are the coordinate values of the kth point in the (x,y) coordinate
system; and ¢, (k = 1,2,...,9) are the interpolation functions, which are quadratic
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Figure 4.8 2-D local coordinate transformation.

and satisfy ¢ (&, 7,) = Blk and ZZ:l @p = 1. They are written as

& +EDme +1P)/4 k=1,3,7,9
Eg+EHA-nH/2 k=46

o = (4.84)
(A =&H0me +n)/2 k=28
1-HA - k=S5
Differentiating coordinate transformation (4.83) with respect to & and 7 leads to
dx dor,. x 2 390k
% = ,Eﬁ%’ RPN
] 0 ) 0 ] (4.85)
y Pk ‘Pk
2 _ p—, =2
o~ o ae 0 oy o
and
3%x ? 3@y, 92 EX73 3%x ’ 3@y,
P LM asan Z Ggar o e
9 9 9 :
T S B oS G S T
pr k9g27 BEan ~ kagan® o pr T

The Jacobian determinant is Eq. (4.76). The first and second derivatives are given
by Egs. (4.77), (4.78), and (4.80)—(4.82).

For a 3-D problem, the volume formed by twenty-seven points shown in Fig. 4.9
is adopted as the basic element. This irregular element is turned into a cube by the
following coordinate transformation between the physical domain (x,y,z) and the
logical domain (£,1,¢):

27 27 27
X =Y om0 Y= M€, 0, 2= gr(,n,0)  (4.87)
k=1 k=1 k=1
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Figure 4.9 3-D local coordinate transformation.

where x1, yi, and z;, are the coordinate values of the kth point in the (x,y, z) coordinate
system, and ¢, (k = 1,2,...,27) are interpolation functions (Wu, 1996b):

&, +ED M + 1) +¢H/8 k=1,3,7,9,19,21,25,27

(L —EH e + MG +EH/4 k=2,8,20,26

E&+EDA -G +2)/4 k=4,6,22,24

E& +EHm+1H A —¢2/4 k=10,12,16,18 (4.88)
A —&eH0 =M (CL +¢2)/2 k=523

(1= &) +nH(1 —¢2)/2 k=11,17

Eg+EHA—nH(A -2 k=13,15
1-eHA-nHA-1¢?) k=14

Pr =

Note that the local coordinate transformations (4.83) and (4.87) do not specify
how to generate the computational grid. The grid can be generated by either the
boundary-fitted coordinate method or another more arbitrary method. However, to
ensure a monotonic coordinate transformation, the angles between &, 7, and ¢ grid
lines should be away from 0° and 180° in the physical space. It is preferable that the
angles are between 45° and 135°.

Local coordinate transformation on moving grids

The local coordinate transformations (4.83) and (4.87) on fixed grids can be extended
to moving grids. For a 2-D case, for example, the physical domain is represented
by a boundary-fitted quadrilateral grid at each time or iteration step. Because the
grid adapts to the changing boundaries, the coordinate values of each grid point are
functions of time, i.e., x; = x;(7) and y, = yx(t), as shown in Fig. 4.10. Therefore,
the local coordinate transformation at each element reads (Wu, 1996a)

9 9
x=Y @&, y=) @), t=t (4.89)
k=1 k=1

where ¢ (k = 1,2,...,9) are the interpolation functions expressed in Eq. (4.84).
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Figure 4.10 Local coordinate transformation on moving grid.

Because coordinate transformation (4.89) is time-dependent, it has relations (4.85)
and (4.86) as well as the following;:

8xk Y at ot dt
Z P at szh % 35 =0 5 =0 o (4.90)

The local coordinate transformation is convenient for complex movable bound-
ary problems. Because at each time (or iteration) step the used grid conforms to
the physical domain, the complex irregular and movable boundaries can be resolved
effectively.

Stretching coordinate transformation

The stretching coordinate transformation, which is also called the o-coordinate
transformation, is an algebraic example of the unsteady coordinate transformation
introduced in Section 4.2.3.1. If the boundaries are simple and vary gradually, the
physical domain can be expanded or contracted along one or more directions by
the stretching coordinate transformation, so that a fixed, regular logical domain is
obtained. For example, for 2-D gradually varied open-channel flows, the stretching
coordinate transformation shown in Fig. 4.11 is often used, which is expressed as

E=x
gzz;%H (4.91)
T=1

where 4 is the width of the physical domain, either the flow depth or channel width;
H is the width of the logical domain; and z;, is the distance from the lower boundary
to the x axis. For the vertical 2-D case, z;, and b are the bed elevation and flow depth
and vary with x and ¢.
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Figure 4.1 Stretching coordinate transformation.

Stretching coordinate transformation (4.91) has the following analytic relations:

ox ox o x
0§ a¢ ot
9 _0z, L9k 0z _ b9z 0% ¢ Ok (4.92)
9t 3¢ Hag» dr H’ 9t ot  Hoar’ '
oy oo oy
o A ot
and
§:1’ %ZO’ ﬁz()ﬁ
0x 02 ot
3¢  Haz, ¢ab 3¢ H 3¢  Haz, ¢ab (4.93)
ax b ax hox’ 9z b’ ot b ot hot’ '
al=0’ a—tzo’ al:l.
0x 0z ot

The 2-D stretching coordinate transformation (4.91) can be easily extended to the
3-D case by adding one stretching function in the third direction. Because analytic
transformation relations exist in the entire domain, it is very convenient to solve
the transformed governing equations in the fixed, regular logical domain. However,
this stretching coordinate transformation is inconvenient for the complex boundary
problems that do not have analytic transformation relations.

4.2.3.3 Discretization of the transformed equations

As mentioned above, the irregular (and/or moving) physical domain or element is
converted to a regular logical domain or element under coordinate transformations
(4.74), (4.83), (4.87), (4.89), and (4.91). Therefore, many classic finite difference
schemes based on regular grids can be used to solve the transformed equation on the
regular logical domain or element. For example, the convection-diffusion equation
(4.50) in the (x,y) coordinate system can be converted to the following form in the
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(€,n) coordinate system by these coordinate transformations:

cof . of O*f O*f
7+ur]an géagz +<9m]8 P +S (4.94)

where iy = ajuy + ajuy, )y = otuy + 03uy, g5 = ec(aja] +ogal), ey =
sc(a%a% + a%a%), and

32f o) dox 1 9a] of
19% 299
S* —S+2€C(oz1a1+oz2a2)a$a +e ( o 0 + o o +a) T —|—oz T

2 2 2
I day 5 0oy 1 0ay +a? 80(2 af
¢ 9 " Pon ) an

The transformed equation (4.94) is still a convection-diffusion equation, which can
be easily discretized using the upwind difference scheme (4.17), exponential difference
scheme (4.21), or another scheme on the rectangular logical domain or element. For
example, using the exponential difference scheme (4.21) for 71z df /& — ez 9%f /3&>
and i1,df /dn — £,,0*f/dn* in Eq. (4.94) yields Eq. (4.53) with coefficients (Wu,
1996b):

A /\

aw = —% _exp(Ps/2)/sinh(Ps/2), ap =

IAE ——exp(—Pz/2)/sinh(P¢ /2),

2Ag

A /\

as = Kexp(P /2)/sinh(P,/2), an = Kexp( P,/2)/sinh(P,/2), (4.95)

ap =aw + ag + as + an,

and the source term replaced by S*. Here, Pz = i1z A& /eg¢ and Py, = &1,An/epy, with
A§ and An being the grid lengths in the (&, ) system. For the local element shown in
Fig. 4.8, A& = An=1.

4.2.4 Interpolation method

4.2.4.1 Isoparametric interpolation method on fixed grids

At the nine-point isoparametric element shown in Fig. 4.8, the function f can be
approximated by interpolation:

9
f=> fon (4.96)

where f;, are the values of f on grid points, and ¢, are the interpolation functions given
in Eq. (4.84).
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The following difference schemes for the first and second derivatives of f can be
derived from Eq. (4.96) (Wu, 1996b):

9 9
of of
==Y afp, =) bifi (4.97)
ax ay
k=1 k=1
9 9
I’ I
5o1 = 2 ki 3l > difi (4.98)
k=1 k=1
where ag, by, i, and d, are coefficients:
99k d¢k 99k d¢k
1 2 1 2
W= Tou, bem e beg
3%y 32 32 dorl dal'\ 8
119 Pk 1,29 %k 229 %k 199 2007 ) 99
k=0 + 2aq e 95 +aja o’ aall 3 9% tog oan | 9E

da? 9oz \ 9
Y (% B R Rl ¥ Ok
0§ an ) dn

and
3% @y 3%y 3@y Aot das \ Ay
d =Ollo(1 20(1012 2052 1 2 2 2
k 297557 + 20; 28$8n+ 20— + 2% Y%, ) e
da? daz\ 9
+ a%—z —|—ot%—2 —(pk.
0§ an | on

Egs. (4.97) and (4.98) can be applied to any point in the local element. For example,
for the central point 5, one can obtain ay, by, cg, and d;, by specifying & = n = 0.

The isoparametric interpolation formula (4.96) can be extended to the 3-D case using
the interpolation functions (4.88) based on the 27-point element shown in Fig. 4.9, and
similar difference schemes for the 3-D first and second derivatives can be easily derived.

Note that the difference schemes (4.97) are similar to the central difference scheme
(4.13); thus, they are not as adequate for strong convection problems as the exponen-
tial difference scheme (4.95) and the upwind interpolation method introduced in the
next subsection.

4.2.4.2 Upwind interpolation method on fixed grids

Wang and Hu (1993) analytically solved the following convection-diffusion equation
with constant velocity, diffusivity, and source term in the 1-D local element shown
in Fig. 4.12:

df
ME = Sgd—gz +S (4.99)

and derived the upwind interpolation functions:
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Figure 4.12 1-D local element.

1
c1 = ﬁ{(zel’f —e P+ T —ER+ D]}

o = %{(Zepg —e P =)+ T — &R - 1]} (4.100)

ao=1-c—c

where T = e™P +ef —2,R = (e —e7T)/T, P is the Peclet number defined as P = /e,
u is the local velocity, and ¢ is the diffusion coefficient.

Fig. 4.13 shows the behavior of the upwind interpolation functions at various Peclet
numbers. It can be seen that these functions become more asymmetric as the Peclet
number increases, i.e., when convection becomes more dominant. This upwind feature
stabilizes this interpolation method in the simulation of strong convection problems.

The upwind interpolation functions in 2-D and 3-D cases can be obtained by apply-
ing Eq. (4.100) in every direction. For example, the upwind interpolation functions
for the 2-D element shown in Fig. 4.8 are constructed by

o = ci(§)ci(n) (4.101)

where k is corresponding to the pair of i and j according to Table 4.1.
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Figure 4.13 Upwind interpolation functions.

This upwind interpolation method is called the efficient element method by Wang
and Hu (1993). It has been used in hydrodynamic modeling by Jia and Wang (1999).
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Table 4.1 Relation between k and (i, j)

k | 2 3 4 5 6 7 8 9
Gp .0 @210 @1 (1L2) 22 &2 (1,3) 23) G3)

4.2.4.3 Interpolation method on moving grids

For a moving grid, Eq. (4.96) can still be used to interpolate the function f at the
element shown in Fig. 4.10 at each time step. Consequently the spatial derivatives of
f are discretized by schemes (4.97) and (4.98), while the time derivative is discretized
as (Wu, 1996a)

n+1 _
<3f> f5 —I—Ze fr+o (4.102)
S

at

where ¢, is the difference coefficient, defined as ¢, = ( ?)i 3{)‘? g?%)j; At is the
time step length; and 6 is an index: = 0 for explicit schemes and = 1 for implicit
schemes.

The second term on the right-hand side of scheme (4.102) appears due to grid

movement.

4.3 FINITE VOLUME METHOD
4.3.1 Finite volume method for 1-D problems

4.3.1.1 Discretization of I-D steady problems

Consider the 1-D steady, homogeneous convection-diffusion equation, which is
written in conservative form as

d 2 () = ( fi‘p) (4.103)
X

where ¢ is the quantity to be determined, and T is the diffusion coefficient. T is
related to ¢, in Eq. (4.15) by ' = pe.. Note that the flow density p is included
in Eq. (4.103) to consider its possible changes due to sediment, temperature,
salinity, etc.

Fig. 4.14 shows the commonly used 1-D finite volume grid. For a grid point P, the
point on its west side or in the negative x direction is denoted as W, and the point on
its east side or in the positive x direction is denoted as E. The further west and east
points are WW and EE, respectively. The control volume (cell) for point P is embraced
by two faces w and e, which are located midway (not absolutely necessary) between
W and P and between P and E, respectively.
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Figure 4.14 1-D finite volume grid.

Integrating Eq. (4.103) over the control volume centered at point P shown in
Fig. 4.14 yields

d d
(pu)e — (pugs)y = (rf) - (rj’) (4.104)
X e X w

To complete the discretization, the convection flux pu¢ and diffusion flux I'd¢/dx
at faces w and e are determined using the schemes described below.

Central scheme

The central scheme adopts a piecewise linear profie for ¢, as shown in Fig. 4.15. Thus,
the values of ¢ at cell faces are given as the average of two neighboring nodal values:

1 1
w = §(¢P +ow), ¢ = §(¢E + ép) (4.105)

and the diffusion fluxes are determined by

(rd¢> _ Tu@r —¢w) (Fd¢) = L@ iy 106)
dx w Ax,y dx e Ax,

where Ax,, and Ax, are the distances from W to P and from P to E, respectively.

O

L 4

W W ] [ E

Figure 4.15 Piecewise linear profie in central scheme.
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Substituting Egs. (4.105) and (4.106) into Eq. (4.104) yields

Le(9e —¢p)  Tw(dp — ow)
Ax, Ax,,

1 1
E(ﬁ”)e(d’lf +¢p) — E(pu)w(qﬁp +ow) =
(4.107)

The values of p, u, and T at faces w and e can be obtained by interpolation of their
values at points W, P, and E. This is to be discussed in the end of Section 4.3.2 for
general situations. The discretized equation (4.107) is reformulated as

appp = awdw + apPe (4.108)

where aw,ap, and ag are coefficients:

aw =Dy + Fy/2
ag =D, —F,/2 (4.109)
ap =aw +ag + (F. — F,)

with F = pu and D =T'/Ax.

Integrating the 1-D continuity equation over the control volume shown in Fig. 4.14
leads to F, = F,,, which is not introduced here in detail. Therefore, F, — F,, can be
eliminated from the expression of ap in Eq. (4.109).

Because the coefficients in Eq. (4.109) could become negative and |ap| < |ag|+ |aw|
when |F| > 2D (or |P| > 2), the central scheme may result in unrealistic solutions;
see also Section 4.2.1.2. Here, P is the Peclet number, defined in Eq. (4.20) or as
F/D. The numerical oscillations for the central scheme at large Peclet numbers are
due to the assumption that the convected property of ¢ at a cell face is given the aver-
age of its values at two neighboring points. Schemes that overcome this problem are
upwind scheme (Courant et al., 1952), exponential scheme (Spalding, 1972), hybrid
upwind/central scheme (Spalding, 1972), QUICK scheme (Leonard, 1979), SOUCUP
(Zhu and Rodi, 1991), HLPA scheme (Zhu, 1991), etc., as discussed below.

Upwind scheme

In the upwind scheme, the formulation of the diffusion flux remains unchanged. For
the convection flux the value of ¢ at face w is set as its value at the upwind adjacent
grid point, as shown in Fig. 4.16, thus yielding

[éw, if Fu=0
which can be rewritten as
F¢ = ¢w max(F,,0) — ¢p max(—F,,0) (4.111)

An expression similar to Eq. (4.111) can be derived for the convection flux at
face e. When Eq. (4.105) is replaced by this concept, the coefficients of the discretized
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W W [ e E

Figure 4.16 Stepwise profie in upwind scheme.

equation (4.108) become

aw = D,, + max(F,, 0)
ag = D, 4+ max(—F,, 0) (4.112)
ap =aw +ag + (F. — F,)

It is evident that no negative coefficients would arise in Eq. (4.112). Thus, the
solution will always be physically realistic. However, the upwind scheme is only first-
order accurate and has strong numerical diffusion.

Hybrid scheme

As mentioned above, the central scheme is second-order accurate, but it may encounter
difficulties when |F| > 2D; while the upwind scheme can solve these difficulties
although it is only first-order accurate. Combining these two schemes leads to a hybrid
scheme, which has the advantages of both schemes. The concept is that when |F| < 2D,
the central scheme is used, and when |F| > 2D, the upwind scheme is used. Thus, the
coefficient ay for the hybrid scheme is

Fu, if P,>2
aw=1{Dy+Fy/2, if —2<P,<2 (4.113)
0 if P, <=2

where P, is the Peclet number at face w. The resulting discretized equation can then
be written as Eq. (4.108) with coefficients:

aw = max(F,, Dy + F,/2,0)
ag = max(—F,,D, — F,/2,0) (4.114)
ap=aw +ag + (F. — Fy)
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Exponential scheme

As discussed in Section 4.2.1.2, if pu and T are assumed to be constant, Eq. (4.103)
has an exact solution. If a domain 0 < x < L is considered, with boundary conditions
¢ = ¢o at x = 0 and ¢ = ¢ at x = L, the solution of Eq. (4.103) is

¢ —¢0 _ exploux/T) — 1
L — Po exp(pul/T) —1

(4.115)

Define the total flux I = pu¢ — T'd¢/dx. Using the exact solution (4.115) as a profie
between points P and E, as shown in Fig. 4.17, yields the expression for I,,:

(4.116)

Iw:Fw|:¢W+ ¢W_¢P ]

exp(Py) — 1

Substituting Eq. (4.116) and a similar expression for I, into Eq. (4.104) leads to

Fe [(bp + ;;fa,jfl] —Fy [cpw + e)i"(”]);)‘pfl} -0 (4.117)
which can be written as Eq. (4.108) with coefficients:
= F,, exp(Fy/Dy)
exp(F,/Dy) —1

Fe (4.118)

~ exp(F,/D,) — 1
ap =aw +ag + (F, — Fy)

The exponential scheme (4.117) is based on the formulation first presented by
Spalding (1972). It is similar to the exponential difference scheme introduced in
Section 4.2.1.2.

i
e /l—h"";-.. -&H"‘"sE:ijtttnun
selution '\

e

w w P ¢ E

Figure 4.17 Sketch of exponential scheme.
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QUICK scheme

As shown in Fig. 4.18, QUICK (Quadratic Upwind Interpolation for Convective Kine-
matics) scheme, proposed by Leonard (1979), approximates the face value ¢,, by fitting
a parabolic curve through the values of ¢ at points WW, W, and P when F,, > 0, and
at W, P, and E when F,, < 0:

1 3 3
—§¢WW + Zd’W + §¢P F, >0
b = (4.119)

3 3 1
§¢W + Z¢P - §¢E F, <0

A similar expression can be derived for the value of ¢ at face e. The interpolation
scheme (4.119) has a third-order truncation error.

The QUICK scheme is widely applied, but it may have numerical oscillations where
the function ¢ changes sharply.

F 3 b,
. A

% N

W w W P e E

Figure 4.18 Quadratic profie in QUICK scheme.

SOUCUP scheme

SOUCUP (Composite Second-Order Upwind/Central Difference/First-Order Upwind)
scheme was proposed by Zhu and Rodi (1991). When F,, > 0, the SOUCUP scheme
approximates the face value ¢,, as

1.5¢w — 0.5¢ww 0 < (5\)(/ <0.5
bw =3 0.5(dp + ¢w) 0.5 <¢w =1 (4.120)
ow otherwise

where ¢w = (pw — dww)/(dp — dww).

Fig. 4.19 shows the relation between ¢w and ¢y, for the SOUCUP scheme. When
0< dw < 0.5, ¢, is approximated by the second-order upwind scheme. When 0.5 <
dw < 1,6, is determined by the central scheme. When ¢w < 0 or dw > 1,¢,, is
approximated by the first-order upwind scheme.
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Figure 4.19 Relation between q§w and q3W for SOUCUP scheme.

HLPA scheme

HLPA (Hybrid Linear/Parabolic Approximation) scheme was proposed by Zhu
(1991). When F,, > 0, the HLPA scheme approximates the face value ¢,, as

Sw = dw + vw(dp — dw)

where y,, = 1if 0 < ¢w < 1

ow — dww

(4.121)
op — dww

; otherwise, ¥, = 0. ¢w is defined in Eq. (4.120).

Second-order HLPA

0.73

Central _—"]:"

difference

QUICK

=

First-order
upwind

Figure 4.20 R

elation between qgw and q@w for HLPA scheme.
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Fig. 4.20 shows the relation between ¢w and ¢, for the HLPA scheme. When
0 < ¢w < 1,6, is approximated by the parabolic function through three points
(0, 0), (0.5, 0.75), and (1, 1). When ¢w < 0 or ¢w > 1,¢,, is approximated by the
first-order upwind scheme. Note that the point (0.5, 0.75) is the intersect point of
the QUICK scheme, central scheme, and second-order upwind scheme in the (¢, ¢y,)
plane.

The SOUCUP and HLPA schemes have good performance for convection-dominated
problems.

4.3.1.2 Discretization of 1-D unsteady problems

Integrating the 1-D unsteady, heterogeneous convection-diffusion equation

(o) ¢
o +—( ug) = <8x)+S (4.122)

over the control volume centered at point P shown in Fig. 4.14 yields

00 s+ puie = ur = (152) = (152) +sam (4123
x/, ox /),

where Axp is the length of the control volume.

Applying the backward difference scheme (4.23) for the time-derivative term, one
of the numerical schemes introduced in Section 4.3.1.1 for the convection fluxes, and
the central difference scheme for the diffusion fluxes in Eq. (4.123) yields

n+1
(0d)p™ — (0P} Axp =

~ awl ! +apgptt —appit 4 SAxp  (4.124)

The source term in Eq. (4.124) can be linearized as
SAxp = Sy + Spgpt! (4.125)

where Sy and Sp are coefficients. The linearization formulation (4.125) should be a
good representation of the S ~ ¢ relationship, and Sp must be nonpositive (Patankar,
1980).

The final form of the discretized equation is

P¢Vl+1 _— ¢)71+1 +a ¢n+1 _|_S/U (4.126)

where

dp =ap+ pp Axp/At — Sp, Sy = Su + ppdRAxp/At (4.127)
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Similarly, one can apply the three-level implicit scheme (4.43) for the time-derivative
term in Eq. (4.123). The resulting discretized equation is Eq. (4.126) with

dp =ap+1.5pp  Axp/At — Sp, Sy = Su+ 2pief — 0.5 i) Axp/At
(4.128)

4.3.2 Finite volume method for multidimensional
problems on fixed grids

Discretization of 2-D transport equation

The 2-D transport equation in the fixed, curvilinear coordinate system is written in
conservative form as

s 010)+ o (orico — vatal 32 )+ oL (olig - Tyt ) = s

(4.129)

where #1; and #, are the components of flow velocity in the &- and n-directions, which
are related to the velocity components #, and u, in the Cartesian coordinate system
by @ = a%ux + a% uy and it = a%ux + a%uy. Note that the source term S includes the
cross-derivative terms but excludes the second derivatives of coordinates (curvature
terms) that are very sensitive to grid smoothness.

The computational domain is discretized into a finite number of control volumes
(cells) by a computational grid. The grid may be the body-fitted grid generated by Eq.
(4.74) or another more arbitrary grid. One of the commonly used methods for the
control volume setup is shown in Fig. 4.21. The grid lines are identified as cell faces,
and the computational point is placed at the geometric center of each control volume.
The control volume centered at point P is embraced by four faces w, s, e, and 7, which
are the linear segments between cell corners nw, sw, se, and ne. It is connected with
four adjacent control volumes centered at points W, E, S, and N. Here, W denotes
the west or the negative & direction, E the east or the positive & direction, S the south
or the negative 5 direction, and N the north or the positive n direction.

Integrating the transport equation (4.129) over the control volume shown in
Fig. 4.21 yields

+1  n+1
pp Pp T — Ppdp

(/AEAU)P+<0]M5¢ MJala! ¢> Ane

At % 0

9 n+1
(p]uw Mala) 8‘;) A+ (p]w MJaZe? ¢) A&,

n+1
(p]unqs rJota? ¢) A& = SUAEAD) (4.130)

where Any, Ane, A&, and Af, are the widths of faces w, e, s, and #n in the (¢,7)
coordinate system; and A&p and Anp are the lengths of the control volume centered
at P in the &- and n-directions.
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Figure 4.2 Typical 2-D control volume.

The numerical schemes previously introduced for the 1-D case can be extended to
determine the convection and diffusion fluxes at faces w, e, s, and n. For example,
inserting the exponential scheme (4.116) into Eq. (4.130) leads to

PEO% A pp + F, [¢"+1 W]

n+1¢n+1

At exp(F./D,) — 1

¢n+l ¢n+1 ¢n+1 ¢n+1 ¢n+1 ¢n+1
exp(F,/D,) —1 exp(F,/Dy) — 1

|:¢n+1 ¢n+1 ¢n+1

F Do) = 1} — SAAp (4.131)

where AAp = (JA§An)p is the area of the control volume at point P; Fy,, Fe, F;, and
F,, are the convection fluxes at cell faces w, e, s, and », respectively, approximated by
the midpoint integral rule as follows:

Fy = pit ' AWt Fo= ol (JAn it

Fo= p T (Jae) it Fy= ppt (JA8),ith}s (4.132)

77"’

and D, D,, Ds, and D,, are the diffusion parameters:

Dy = (UJe} o} An)w/Aéw,  De = (U]} o} An)o/ Ak,
= (T]efaf AE)s/Ans, Dy = (T]a o} AE)/ Al (4.133)



Numerical methods |51

The final discretized transport equation is written as

n+1 n+1 nan
pp. ¢p  — Ppd
LA Ap = aweiy ! +apgp™ +asoft +angi! —apgpt! +b

At
(4.134)
where
_ F, exp(Fw/Dw) ap = F,
exp(F,/Dy) —1° exp(F,/De) — 1’
FSCXP(FS/DS) _ E, (4.135>

= 5 N, 4> 9 b
exp(Fs/Dg) — 1 N7 exp(F,/D,) — 1
ap=aw +ag +as+an + (F. — F, + F,, — F;), and b = SAAp.

The term F, — F,, + F,, — F; in the coefficient ap can be treated by using the discretized
continuity equation introduced in Section 4.4.

In fact, AAp and the quantities F and D at cell faces in Egs. (4.132) and (4.133)
can be evaluated using only the parameters in the Cartesian coordinate system without
involving the increments A§ and An (Peric, 1985; Zhu, 1992a). The area of the control
volume is calculated by

1
AAp = E|(xne — X510) Vw — Yse) — X — Xse) Ve — Vsw) (4.136)

The convection fluxes at faces w and s are determined by
Fy = ,0:5,+1 (]An)w’:‘g:;,l = Pz;+1 (b%“x + b%“y)gﬂ

Fo = pl T (JAag)at! = pft (bju + b3uy) (4.137)

where bl = JalAn ~ @y/dm)An, bl = JaiAn ~ —(3x/an)Ay, b} = JalAE ~
—(0y/0&)AE, and b% = ]Q%Aé ~ (0x/0&) A& according to Eq. (4.79). The difference
equations for b at center P and faces w and s of the control volume shown in Fig.
4.21 are:

b%[) =Yn — Vs, b%w = Ynw — Ysw> b%s =Yyp—Y)S,

b%P =Xs — Xn, b%w = X5 — Xnw, b%s = Xx§ — Xp,

b%P =Yw — Ve, b%w =yYw —JYp, b%s = Ysw — Yses

b%P = X — Xy, b%w =xp — Xw, b%s = X — X5+ (4.138)

The diffusion parameters at faces w and s are computed by
Dy = (o o} An)w/ Ak = Tiy(b1by + byb3)w/AAy
D = (T]aja] Ag)s/Ans = Ts(b1b] + b3b3)s/ AA; (4.139)
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where AA, = (JAEAR), = (AAw + AAp)/2, and AA; = (JAEAR); = (AAs +
AAp)/2.

Note that only formulations for the quantities at faces w and s are given in Egs.
(4.137)-(4.139). The reason is that the face e of each cell is the face w of the next cell
on the east side, and the face 7 of each cell is the face s of the next cell on the north
side. The quantities at each cell face need to be calculated only once. This ensures the
quantities across cell faces to be consistent.

Discretization of 3-D transport equation

The 3-D transport equation in the fixed, curvilinear coordinate system is written in
conservative form as

(p]¢)+( pli¢ — e} aﬁ) (]“n‘ib rjaa Zad’)

<,0]u;¢) rjo; f{;?) =JS (4.140)

where i, it,, and 71, are the components of flow velocity in the &-, n-, and ¢ -directions,
related to the velocity components u,, u,, and u, in the Cartesian coordinate system
by @z = a}ux —I-a%uy + a%uz, iy = a%ux + oz%uy —|—a§uz, and i1, = afux + aguy + aguz.

Fig. 4.22 shows the 3-D control volume centered at point P, which is embraced by
six faces w, e, s, n, b, and t. The cell faces are identified by the grid lines, and the point
P is placed at the geometric center of the cell. Compared to the 2-D case, point P is
connected to two more points B (bottom) and T (top) in the ¢ direction. Integrating
Eq. (4.140) in this control volume leads to

n+1 n+l n+1
P 7 pP¢PUAsAnA¢>p+<p]us¢ I} ,13‘9 AneAg
n+1
(]Ms¢ joa! a?) AnwA¢w+< pligg — TJata} ¢) IN NS

n+1
(10]”77¢ F]C\lz 2 :?) AEAL + (p]£‘§¢ - F]“f“;g?) A& Ay
t

N

n+1
(p]ucfb Jaja? f) A&y Any = SJAEANAL)p (4.141)

The backward difference scheme (4.23) is used to discretize the time-derivative term,
and the numerical schemes introduced in Section 4.3.1 are employed for the convection
and diffusion fluxes, thus yielding

n+1 ¢n+1

— PpPp
~ P PAV aw¢n+1 +aE¢n+1 +as¢n+1 +4N¢X[+1

+ﬂB¢n+1 +aT¢n+1 ¢n+1 (4.142)



Numerical methods 153

Figure 4.22 Typical 3-D control volume.

where AVp is the volume of the cell centered at point P, defined as AVp =

(JAEARAL)p.
If the exponential scheme is used, the coefficients in Eq. (4.142) are

_ E, eXP(Fu//Du/) ap = F,
exp(F,/Dy) —1° exp(F,/D.) — 1’
F; exp(Fs/Ds) E,
= SOPUS/DS) e 4.143
exp(Fs/Dg) — 17 N~ exp(Fn/Dy) — 1 (+.143)
Fy exp(Fy,/Dy) Fy
B=——7—""—7, 4T

~ exp(Fy/Dy) — 1 T T exp(Fy/Dyp) — 17
ap =aw +ag +as+an +ap+ar
+ (Fo—Fy+F,—F.+F —Fp), and b= SAVp

where

Fy = pi  JANAD) Wi, Fo = o) T (JAnAD) 41T,

§w>

Fo = I (JAsAg)sitY, Fy = ppt JAEAL) i,
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Fy = oy Jagamyily}, Fr= pp g agamil, (4.144)

and

Dy = (T]aj o} AnAL)w/Akw, De = (Tja)a} AnAg)e/ A,
= (TJafaf AEAL)s/Ans, Dy = (T]ata AEAL) /A, (4.145)

Dy, = (UJej o) AEAN),/ ALy, Dy = (T]aa) A& )/ AL

Like the 2-D case, AVp and the quantities F and D at cell faces in Eqs. (4.144)
and (4.145) can be calculated using only the parameters in the Cartesian coordinate
system, and the final discretized equation does not involve the increments A&, An,
and A¢ (Peric, 1985; Zhu, 1992b). This is demonstrated below.

Kordulla and Vinokur (1983) suggested a method to calculate the volume of a
3-D cell. As shown in Fig. 4.23, the cell with points A, B, ..., and H as its eight vertices
is decomposed into six tetrahedra, all containing the same diagonal joining points A
and H. The volume of the tetrahedron with vertices A, E, G, and H can be calculated as

— —

AV = f|(AE><AG) AH]| (4.146)

Thus, the volume of the total cell is

AV=2H:<A—1§XA—G>>+<H:XHE>+(A—G>XA—)C>

+(ﬁxﬁ>+(ﬁx£)+<ﬁxﬁ>].ﬁl‘ (4.147)

It is of interest to note that the above method of calculating cell volumes ensures
the conservation of space, i.e., the sum of all cell volumes gives exactly the total
volume of the solution domain. This is a necessary condition for guaranteeing the true
conservation of transported quantities (Zhu, 1992b).

The convection fluxes at faces w, s, and b are determined by

Fy = pl JANA) Wi = plit (bl + bluy + blug) 5!
Fo = N (AN = i (bR + b3y + bhu)! ! (4.148)
Fy = o) (TAE ALl = ot (BYus + biuy + b)) !

where bj = J AnAg, b} = JofAsAg, and b} = JaAtAn (i = 1,2,3). The

coefficients ” and, in turn, b?* can be calculated using Eq. (4.65) and the cofac-
tors of Bi, in the Jacobian matrix B in Eq. (4.64). For example, using b} =
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Figure 4.23 Volume of a 3-D cell.

(0y/0n 8z/0¢ — dy/d¢ 9z/9n)AnA¢ and discretizing the coordinate derivatives at cell
center P yields

blp = (v — ¥9) @ — 2) — (Ve — V) (20 — 25) (4.149)

Following this procedure, one can derive the discretized equations for all 57 at cell
center P and faces w, s, and b, which are not introduced here.
The diffusion parameters are

Dy, = (T]e)} o} AnAL) i/ Ay = T (biby + bib) + +b3b3)w/ AV,
Dg = (TJafaf AEAL)s/ Ans = Ts(b7b7 + bybs + b3b3)s/AVs  (4.150)

Dy, = (TJaj o’ A& An)y /ALy = Ty (b3 + b3b3 + b3b3),/ AV,

where AV, = (JAEANAD), = (AVw +AVp)/2, AV = (JAEARAL), =
(AVs+ AVp)/2,and AV, = (JAEANAL), = (AVE + AVp)/2.

In addition, the values of parameters, such as velocity, density, and diffusivity, at
cell faces need to be interpolated from their values at adjacent cell centers. The often
used method is linear interpolation. For example, the quantities of ¢ at faces w, s, and
b are computed by linear interpolation between the values at two adjacent cell centers
of each face as follows:

bw = fxpdp + (1 — frp)dw
¢s = fy,pop + (1 — fy,p)bs (4.151)
¢p =frpdp + (1 —fp)¢B
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where fxp, fy,p, and f,p are the interpolation factors, defined as fyp = Al,w/
(Alpy + Alyw), frp = Als/(Alps + Alss), and f,p = Alpp/(Alpp + Alpp), with
Alyw, Alpy, Alss, Alps, Alpg, and Alp, being the lengths of linear segments wW,
Pw, sS, Ps, bB, and Pb, respectively.

4.3.3 Finite volume method for multidimensional
problems on moving grids

The transport equation in the moving, curvilinear coordinate system (&,,,7) can be
written in conservative form as

9 ~ m,m a9
*(P](ls) + %, <P]“m¢ —TJoj"e; 8§m> =JS (4.152)

where #,,, (m = 1, 2 or 1, 2, 3) are the velocity components in the (§,,,7) system,
defined in Eq. (4.70).

Compared with Eq. (4.129) or (4.140) on fixed grids, Eq. (4.152) has additional
terms related to the moving grid. In particular, #,, include the term 9&,,/0¢ that is
related to the grid moving velocity. These terms can be eliminated for a steady problem,
but they should be considered for an unsteady problem.

Because the grid is moving, it needs to be generated repeatedly. Like the dis-
cretization of governing equations, the grid generation can be treated explicitly or
implicitly. In the explicit treatment, the grid is generated before the solution of govern-
ing equations at every time step, whereas in the implicit treatment, the grid generation
is coupled with the solution of governing equations.

The control volume in the moving grid system can still be arranged as Fig. 4.21
or 4.22 at every time step. For a 2-D case, integrating Eq. (4.152) over the control
volume, moving the cross-derivative diffusion terms into the source term, and then
using the numerical schemes described in Section 4.3.1.1 to determine the convection
and normal-derivative diffusion terms on cell faces yields the following discretized
equation (Wu, 1996a):

pn+1AAn+1¢n+1 _ pPAAn¢P
At

—a ¢n+l +aE¢n+1 +ds¢§t+l

+anoitt — apept! + (4.153)

Because of grid movement, the control volume area AAp varies with time. The
coefficients in Eq. (4.153) are evaluated in the same way as for the fixed grid in
Section 4.3.2.

4.4 NUMERICAL SOLUTION OF NAVIER-STOKES EQUATIONS

For incompressible flows, the momentum (Navier-Stokes) equations link the velocity
to the pressure gradient, while the continuity equation is just an additional constraint
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on the velocity field without directly linking to the pressure. Because of such a weak
linkage, the convergence and stability of a numerical solution of the Navier-Stokes
equations depend largely on how the pressure gradient and velocity are evaluated.
Storing the variables at the geometric center of the control volume coupled with the
use of linear interpolation for internodal variation usually leads to non-physical node-
to-node (checkerboard) oscillations. One approach for eliminating such oscillations is
to use the staggered grid, as adopted in Harlow and Welch’s (1965) MAC (Marker
and Cell) method, Chorin’s (1968) projection method, and Patankar and Spalding’s
(1972) SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm. The
other approach is to use the momentum interpolation technique proposed by Rhie and
Chow (1983) based on the non-staggered grid. In addition, the stream function and
vorticity approach is also useful for solving the 2-D Navier-Stokes equations.

4.4.1 Primitive variables: MAC formulation
on staggered grid

The 2-D Navier-Stokes equations (2.34) and (2.35) with a constant flow density are
written in the Cartesian coordinate system as

I T 4.154
ax + ay ( )

Oute y g 2ty O g 100 10t 1080y 455

ot ox dy p - pdx pox p dy

P 9 9 1 19p 19 19

D S, S Zp o SO0 2T 20T (4 56)

ot dx y p pdy p dx  p Ay

The MAC method first proposed by Harlow and Welch (1965) solves the Navier-
Stokes equations on the staggered rectangular grid, which stores the variables ., u,,
and p at different grid points, as shown in Fig. 4.24. The continuity equation (4.154)
is discretized as

n+1 n+1 un+1 _ un+1

1/2,j i—1/2, Sy j+1/2 Jij—1/2
i Uit1/2, ~ Ux,i /2 Cybitl/ Y112 _ (4.157)
o Ax Ay

where Dl'-’;rl is the dilatation of the cell (,j).
The momentum equations (4.155) and (4.156) are discretized as

At
+1 +1 +1
Z:+1/2,/ Z,i+1/2,i + F;l+1/2,j - Tx(p::'l” - P?i ) (4.158)
+1 +1 1
wyijris2 = yijr1ya T Glipayn — @%1 pi ) (4.159)

where F” , include the convection and diffusion terms in the momen-

i+1/2, and Gz;+1/
tum equations (4.155) and (4.156) discretized by the finite difference schemes
introduced in Section 4.2.
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Figure 4.24 Staggered grid in MAC method.

Substituting Eqgs. (4.158) and (4.159) into (4.157) leads to the discretized Poisson
equation for the pressure:

1 1 1 1 1 1
Pivy — WL AP | Piie — 205+ P
Ax? Ay?
PO o (Fhapi = Flipi | Gl = Gliap
i + (4.160)
At At Ax Ay

In Eq. (4.160) D};/At may be interpreted as a discretization of —(dD/dt);; with
D”Jrl = 0. Thus, the pressure solution resulting from Eq. (4.160) is such as to allow

the discretized continuity equation (4.157) to be satisfied at time level 7 + 1.

Eq. (4.160) can be solved by using an iterative or direct method. Once it is solved,
substituting the obtained p"*+! into Eqs. (4.158) and (4.159) permits ! and u;’H to
be calculated. Because Eqgs. (4.158) and (4.159) are explicit algorithms, the maximum
time step for a stable solution is restricted by (Peyret and Taylor, 1983)

0.25(|ux| + uy)*At Re <1 and At/(ReAx?) < 0.2§ (4.161)
with the assumption of Ax = Ay. Re is the Reynolds number.
4.4.2 Primitive variables: projection formulation

on staggered grid

The projection method first proposed by Chorin (1968) solves the transport equations
to predict intermediate velocities and then project these velocities onto a space of
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divergence-free field. Write the Navier-Stokes equations as

Jdu

1
+@-Vyu=F—- —-Vp+vAu (4.162)
ot Jo

V.ou=0 (4.163)

where u is the velocity vector; F is the external force; V is the divergence or gradient
operator, defined as V = i,9/0x +1,9/9y +1,9/9z, with iy, iy, and i, being unit vectors
in the x-, y-, and z-axes in the Cartesian coordinate system; and A is the Laplace
operator, defined as A = 8%/0x> + 8%2/0y> + 8%/32>.

The projection method consists of two steps in time. The first step computes the
intermediate velocity field u* by omitting the pressure term from the momentum
equation:

* n

A_t“ + @ V)" = F+ vAu* (4.164)

The second step projects u* to the space of divergence-free field to obtain u”*1:

un+1 =u* — ﬁvprﬂ»l

V_un+1:0

(4.165)
Substituting the first equation into the second equation in (4.165) yields a Poisson
equation for the pressure:

%Ap”“ =V.u* (4.166)

To solve Eq. (4.166), the following boundary condition is often applied:

n+1
apa — =0 (4.167)

where n denotes the direction normal to the boundary.

In the projection method, Eqs. (4.162) and (4.163) are usually discretized on a
staggered grid (such as the MAC grid in Fig. 4.24). The convection terms are commonly
discretized using an upwind scheme, and the diffusion terms can be discretized using
the central difference scheme.

Various variants of the projection method have been proposed in the literature to
solve the shallow water equations and the Navier-Stokes equations. Some of them are
introduced in Chapters 6 and 7.
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4.4.3 Primitive variables: SIMPLE(C) formulation on
staggered grid

SIMPLE algorithm

In the finite volume method, the 2-D Navier-Stokes equations are usually written in
conservative form as

a d(pu d(pu
ap | 3(puy)  3(puy)

-0 (4.168)
ot ox ay
0(pux) + 3(,014%) 3(,()Myux) =F, — al + @ + @ (4.169)
ot ox By 0x ax 3)’
2
0(puy) | Opuzmy)  Opmy) _ F, - o, 9% 9Ty (4.170)
ot dx dy dy  ox ay

Note that the flow density p may vary with sediment concentration, temperature,
salinity, etc.

Fig. 4.25(a) shows the staggered grid used in the SIMPLE algorithm of Patankar and
Spalding (1972). For simplicity, a rectangular grid is used here. The control volume
for the x-momentum equation is shown in Fig. 4.25(b). Applying the finite volume
discretization introduced in Section 4.3.2 to Eq. (4.169) in this control volume leads
to the following discretized equation for #y,:

Z ;He—l Zau n+1 +S +A (pn+1 p§+1) (4.171)

where A, is the width of face e, i.e., Ay,. Note that the index [ sweeps over all four #,
neighbors outside the control volume in Fig. 4.25(b).

As explained in Eq. (4.126), in the case of unsteady flow the discretized time-
derivative term is split and added to the source term S,; and the coefficient a%.
Therefore, Eq. (4.171) can be used for both steady and unsteady flows.

The control volume for the y-momentum equation is shown in Fig. 4.25(c). The
discretized equation for u, , can be written as

asult! = Za, W+ S, + An ot =R (4.172)

where A, = Ax,,.

Once the pressure field is given, the discretized momentum equations (4.171) and
(4.172) can be solved. However, the pressure field is still to be determined. In an
iterative solution process, a pressure field p* is first guessed and then an approximate
velocity field is obtained using the following equations:

e =D afuly + Sut Acpp — ) (4.173)
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Figure 4.25 Staggered grid in SIMPLE algorithm: (a) sketch of global grid, (b) control volume for uy,
(c) control volume for uy, and (d) control volume for p.

g, = s + Sy + Anph — pR) (4.174)
!

The approximate velocities u; and #; do not satisfy the continuity equation. Hence,
the pressure correction p’ and velocity corrections #) and ), are defined as

p=p" —p* (4.175)
ul = u" ), = u;H — ), (4.176)

Subtracting Eq. (4.173) from Eq. (4.171) and neglecting the term ), aju’ ; yields
the #/.-equation:

U, , = de(Pp — Pg) (4.177)

where d, = A,/a¥.
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In a similar manner, the u)-equation is derived by subtracting Egs. (4.172) and
(4.174) as

wy = du(Pp — PN) (4.178)

where d, = A, /d%,.
The control volume for the pressure is shown in Fig. 4.25(d), over which the
continuity equation (4.168) can be integrated as

pn+1 —p
L TP AxAy + [(pu) = (pu) 5T AY + [(puty) ™ — (puay) ™1 ]Ax = 0

At
(4.179)
Inserting Egs. (4.176)—(4.178) into Eq. (4.179) leads to the discrete equation for p’:
dopp = alyply + abply + alps + alpi + by (4.180)

where af, = p{f,“d Ay, dy = pitld,Ay, di = pitldax, af = pitd,Ax, df =
dyy + b+ ak + afy, and by = — (o — ) AxAY/AL — (oIt Nk, — pl Nk ) Ay—

— It} ) Ax.
The computatlon is performed in the following sequence:

(pn+1 *

(1) Guess the pressure field p*;

(2) Solve the momentum equations (4.173) and (4.174) to obtain #} and s

(3) Calculate p’ using (4.180);

(4) Calculate p using Eq. (4.175);

(5) Calculate #"*+! and u;’“ using Eqgs. (4.176)-(4.178);

(6) Treat the corrected pressure p as a new guessed pressure p*, and repeat the
procedure from step 2 to 6 until a converged solution is obtained, and

(7) Conduct the calculation of the next time step if unsteady flow is concerned.

SIMPLEC algorithm

Because the term ), a?’u;’l is neglected in the derivation of Eq. (4.177), the pressure
is not exactly solved in the aforementioned SIMPLE algorithm. Several algorithms,
such as SIMPLER (SIMPLE Revised, Patankar, 1980), PISO (Issa, 1982), and SIM-
PLEC (SIMPLE Consistence, van Doormaal and Raithby, 1984), have been proposed
to improve this. Van Doormaal and Raithby (1984) have reported that significant
savings on computation time can be achieved by the SIMPLEC algorithm in several
applications, as compared to the SIMPLE and SIMPLER algorithms. Therefore, the
SIMPLEC algorithm is introduced below.
The full velocity correction equation reads

i, =Y au, + Acpp — P) (4.181)
I
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To introduce a consistent approximation, the term }; aju, , is subtracted from
both sides of Eq. (4.181), yielding

ay =y af |, =D af Gy — )+ Acpp — Pp) (4.182)
I I

/

> the first term on

Assuming that all # , are of the same order of magnitude as u

the right-hand side of Eq. (4.182) can be omitted, thus yielding the new #/,-equation
at face e as

wy, = de(Pp — D) (4.183)

where d. = A./(a — Y, ay).
In a similar manner, the new #}-equation at face 7 is derived as

)y, = du(pp — PN (4.184)

where d,, = A, /(al, — Y, ay).

Substituting Eqgs. (4.176), (4.183), and (4.184) into Eq. (4.179) leads to the pressure
correction equation (4.180) with d,,d,,,d,, and ds replaced by d,,d,,d,, and d;,
respectively.

The SIMPLEC and SIMPLE algorithms have almost the same computational
sequence. Therefore, they can be implemented easily together in a computer code.

Note that both SIMPLE and SIMPLEC algorithms ignore terms in the derivation of
the pressure correction equation. This is not essential, because the pressure correction
equation is only an intermediate algorithm that leads to the correct pressure field,
without directly affecting the final solution. As long as a converged solution is obtained
(p’ = 0), all formulations of the p’ equation will give the same final solution (Pantakar,
1980, p.128).

4.4.4 Primitive variables: SIMPLE(C) formulation on
non-staggered grid

The non-staggered grid, also called the collocated grid, stores all variables on the same
set of grid points. Many terms in the discretized equations on the non-staggered grid
are identical, and the number of coefficients that must be computed and stored is
minimized. Thus, the non-staggered grid approach has simpler computer codes and
handles complex domains more easily than the staggered grid approach, especially in
3-D situations. However, the non-staggered grid encountered difficulties in the cou-
pling of pressure and velocity, as well as numerical oscillations in the pressure field;
thus, it had rarely been used for the computation of incompressible flows, until Rhie
and Chow (1983) proposed the momentum interpolation technique. This interpo-
lation technique improved the pressure-velocity coupling on the non-staggered grid.
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The works of Peric (1985), Majumdar (1988), and Ferziger and Peric (1995) fur-
ther popularized the non-staggered grid. The SIMPLE and SIMPLEC algorithms
based on the non-staggered grid with the momentum interpolation technique are
introduced below.

SIMPLE algorithm

The conservative form of the 2-D Navier-Stokes equations in the curvilinear grid
system reads

0 ad .
E(ﬁ])"‘f(ﬁ]“m) =0 (4.185)
a 01 d "
7(:0] uj) + aém( o] ity — F]Oé~ ] 9, > = —@U%‘ p)+JS (4.186)

where § includes the cross-derivative diffusion terms and the external forces.
Discretizating the momentum equation (4.186) in the control volume shown in
Fig. 4.21 yields the following equation for velocities u; p (i = 1,2):

1
wipt = D0 el Su | + DI = pth + DR = pih
Tp =W ,E,S,N
(4.187)

where D! = (Ja! An)p/a%, and D? = (Ja} A&)p/a%. Note that the values of p at faces
w,e,s, and # are calculated by linear interpolation between two adjacent points, as
expressed in Eq. (4.151).

In analogy to Eq. (4.126), Eq. (4.187) can be used for both steady and unsteady
flows.

After an under-relaxation is introduced to stabilize the iterative solution process,
Eq. (4.187) is rewritten as (Majumdar, 1988)

Wb = au[Hip + D} (it = pit) + D = pit D1+ (1 — aw)ufp
(4.188)

n+1

where Hip = Q_1_w gsN a’f ' 4 Sui)/a%, and u? 'p are the old values of %" in the

previous iteration step.
Because the pressure is unknown, a pressure field p* is guessed, and then the
approximate values of the velocities are obtained by

ulp = au[Hip + D}, — p3) + D (pF — )1+ (1 —e)ulp  (4.189)

Subtracting Eq. (4.189) from Eq. (4.188) and neglecting the terms H; p — H, leads
to the relation of velocity and pressure corrections at cell center:

up! = ulp +aulD} (), — po) + Di (i — p))] (4.190)
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and the pressure correction has the following relation:
P =4 (4.191)

The momentum interpolation technique proposed by Rhie and Chow (1983)
calculates the values of u; at face w as

”z (1 _fo)Glpw+][xPG p]“l‘au _fx,P)/a?ﬂw‘f'fx,P/a]]d)]
x (o} A @l — 03) + (1 = a)[(1 = fup)udyg + fupulp]  (4.192)

where G}; = H/p + Dl.z(p;‘ —p?¥), and Gl"‘W and affy, are the values of G1 and ap
for the neighboring control volume centered at point W.
Similarly, the values of #; at face s are calculated by

uls = au[(1 = f,2)GIps + fr.pGEpl + aul(1 — fy,p) /s + fy,p/]
X (]ai Aé)s(ps pP) + (1 —aw)l( fy,P)’/l, s+ ][y,PM, P (4.193)
where Gzz}k’ =H}p+ D} (p;, — p¥), and Gi”l‘,s and a’ are the values of G,Z*l; and a% for

the neighboring control volume centered at point S.
Subtracting Eqs. (4.192) and (4.193) from their counterparts for u] + and u"“

under the pressure field p"+! and neglecting the terms Gil* G}P, Gz* Glzp, etc.,
leads to

ul bl =}, + 0O, 0y — pp) (4.194)

Wl =l + @, OF (05 — pp) (4.195)

where O}, = [(1 = fx.p)/apy + fr,p/apl(Je} An)w, and OF = [(1 = fy,p)/alps + fy,p/a}]

(Jo? AE)s.
Using the definition (4.132) of the fluxes at cell faces yields

Fu = E}, +aly (0 — pp) (4.196)
Fo = Ff + (v — pp) (4.197)

where al‘}/ = aup”H([a An)wQ,w, § = 0up] +1(]a2A§)SQ15, and F}, and F¥ are
the fluxes determined using Eq. (4.132) in terms of the approximate velocities ],
abd u} .

Integrating the continuity equation (4.185) over the control volume shown in
Fig. 4.21 and discretizing the time-derivative term with the backward difference
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scheme yields

n+1 _n
%AAP—I—FE;—FW—FF”—FS:O (4.198)

Substituting Eqgs. (4.196) and (4.197) and two similar equations for the fluxes at
faces e and » into Eq. (4.198) leads to the equation for pressure correction:

dhpp = aly Py + abp + dipls + api + Sy (4.199)

where aP = aW+aE—|—aS+aN, and S, = —(,o’”rl — pp)AAp/At—(F; — E}, + F;; — FY).
The computation procedure of the SIMPLE algorithm on the non-staggered grid is
similar to that on the staggered grid, as introduced in Section 4.4.3.

SIMPLEC algorithm

Following Van Doormaal and Raithby (1984), the term }_ aju., is kept in the
derivation of Eq. (4.190), thus yielding

dpp=a, Y ajul, + auas[ DY@l —pL) + DXL —pi)]  (4.200)
I=E,W,N,S

The term a,, ) aju; p is then subtracted from both sides of Eq. (4.200), yielding

/ / /
ap — oy Z al | u;p=ay Z aj (u;; — uj p)

I=E,W.,N,S I=E,W.,N.§

+auds[D} ), — pl) + DI(p. — pj)]  (4.201)

Assuming that all #/ ik are of about the same order as #; , and neglecting the first
term on the right- hand side of Eq. (4.201) leads to

75t =ulp+ aulD} (0, — pi) + Di (s — p))] (4.202)

u
where D7 = D" /(1 — aud j—gwNs ) /ap)sm=1,2.

Using the momentum interpolation technique introduced above, the velocity
corrections at cell faces w and s are derived as

it = ut, + el Wy — pp) (4.203)

!t =t + 0, OF(ps — pp) (4.204)
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Whefs é,l,w = Q,‘l,w/[l —a, (1 _fx,P)(leE,W,N,s 47/51;) W_aufx,P(leE’W’N,S a?/“’f))P],
and Qis = Q,—z,s/[l —a,(1 - fy,P)(Z[ZE,W,N,S a?/dlu))s - Olufy,P(leE,W,N,s a?/a?))P]-

The fluxes at cell faces are still determined by Egs. (4.196) and (4.197), and the
pressure correction equation is still written as Eq. (4.199), with O} and Q%S replaced

by Q}w and les

4.4.5 Stream function and vorticity formulation

In the 2-D case, it is possible to avoid explicit appearance of the pressure in the Navier-
Stokes equations by introducing stream function and vorticity as dependent variables.
The voticity € is defined as

duy
o= _ O (4.205)
ox ay

Cross-differentiating the #, and u#, momentum equations (4.155) and (4.156)
with respect to y and x and then subtracting them yields the transport equation of
vorticity:

o Q) . 20 32Q
0 | s 00y ):v(8 L0 ) (4.206)

ot dx dy x> 9y2

Eq. (4.206) is for laminar flows. A similar equation can be derived for turbu-
lent flows.
The stream function v is defined by

e =2, uy =22 (4.207)

Substituting Eq. (4.207) into the continuity equation (4.154) leads to the following
Poisson equation for stream function:

a2y 3y
P e -Q (4.208)

Egs. (4.206) and (4.208) replace the continuity and Navier-Stokes equations
(4.154)—(4.156) and constitute the new governing equations. They can be solved
conveniently using the finite difference method, finite volume method, or finite
element method.

Since the pressure does not appear in Egs. (4.206) and (4.208) and the continuity
equation (4.154) is automatically satisfied, the stream function and vorticity method
is convenient in the 2-D case. However, extension of this method to the 3-D case is
not straightforward and loses the merits of the 2-D version.
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4.5 SOLUTION OF ALGEBRAIC EQUATIONS

After a partial differential equation is discretized using one of the previously introduced
numerical methods, the next task is to solve the resulting algebraic equations. If an
explicit scheme is used for an unsteady problem, only one unknown appears at each
time step, so the calculation can be easily performed step by step. If an implicit scheme
is used for an unsteady problem or a numerical scheme involving more than two
grid points is used for a steady problem, multiple unknowns appear in the algebraic
equations that must be solved together. The implicit scheme is usually more stable and
allows for larger time steps than the explicit scheme, yet its overall efficiency depends
on the method used to solve the algebraic equations.

The algebraic equations can be solved directly or iteratively. Direct methods, such
as the Gaussian elimination, are often used to solve linear algebraic equations; iter-
ation methods are usually used for nonlinear equations, because the coefficients
have to be updated and the equations have to be solved repeatedly. The meth-
ods often used for solving algebraic equations in computational river dynamics are
introduced below.

4.5.1 Thomas algorithm

The Thomas algorithm, also called the double sweep algorithm, is often used to solve
the set of algebraic equations resulting from the use of a three-point implicit finite
difference or finite volume method for a 1-D second-order differential equation. The
algebraic equations at internal points are

api¢i = aw,ipi—1 +ag;piv1 +b; (=2,3,...,m—1) (4.209)
and boundary conditions are

ap,1¢1 = ag1¢2 + b1 (4.210)
apPm = aWmbm-1 + bm (4.211)

where m1 is the total number of grid points.
The set of equations (4.209)—(4.211) can be written in matrix form as

—ap1  ag $1 b1
awy  —app Aag)2 553 by
aw,; —ap; 4k, ®i =| b

awm—1 —aPm-1 AEm—1 Dm—1 bm—1
L aw . m —AaPmn Jd L Pm _ L bm

which has a tridiagonal coefficient matrix.
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Assuming that ¢;_1 and ¢; are related by
¢i-1 = citi +d; (4.213)
and substituting Eq. (4.213) into Eq. (4.209) leads to

¢i = cir10iv1 +din (4.214)

where

cit1 = ag;/(ap; — ciaw,), dix1 = (bj +diaw;)/(ap;— ciaw;) (4.215)

Comparing the boundary condition (4.210) with Eq. (4.214) at the first point yields
the coefficients ¢, and dj:

¢ =agi/apy, dr=bi/ap; (4.216)

and then the coefficients ¢;11 and d;;1 are determined by Eq. (4.215) in the order of
increasing i from 2 to m — 1. This is the forward sweep.

At the last grid point, substituting ¢,,—1 = ¢;u¢m + d;, into the boundary condition
(4.211) yields

dm = (b + dmaW,m)/(dP,m — CmaAW.,m) (4.217)

Now all ¢; can be obtained using Eq. (4.213) in the order of decreasing i from m to
2. This is the backward sweep.

The Thomas algorithm is a direct solution method; it is particularly economical and
requires only 5m — 4 operations (multiplications and divisions) for linear problems.
For non-linear problems, the coefficients and source term in Eq. (4.209) are related to
the solution of ¢, so an iteration procedure is needed. At each iteration step, an initial
guess is given to ¢ at each point, the coefficients and source term are evaluated using
the guessed ¢, and then the double sweep calculations are performed to obtain the
new value of ¢ at each point. This procedure is repeated until a convergent solution
is reached. However, to obtain the convergent solution, it is necessary that

lap,il > lagil + |law il (4.218)

4.5.2 Jacobi and Gauss-Seidel iteration methods

Jacobi and Gauss-Seidel methods solve the algebraic equations point by point in
a certain order. They can be used in the solution of 1-D, 2-D, and 3-D prob-
lems. Consider the following algebraic equation resulting from a 2-D second-order
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differential equation:
apgij = awdi—1,j + apdir1,j + asgij-1 +andij+1 + b (4.219)

Assume that ap # 0. If an initial approximation ¢ to the solution is chosen, the
Jacobi iteration method gives a new approximation by

O = aw®, 4 axolly +asoll oDy +brjar (4220)

If the solution is calculated in the order of increasing i and j, two points (i — 1, j)
and (i, j — 1) have been visited before the solution at point (i, j) is calculated, as shown
in Fig. 4.26. Therefore, the latest values at these two visited points are not used in
Eq. (4.220) in the current iteration step. For this reason, the Jacobi method is not
efficient. Improvement can be made using the Gauss-Seidel iteration method, which
replaces ¢,(,01),- and ¢i(,9)1 in Eq. (4.220) by the latest values:

¢:(}) (ﬂW¢’l(1)17 + aS¢(1) 1T “E¢z+1/ + aN¢t(/+1 +b)/ap (4.221)

Old values

i+l e—1/

W

L i T
(i Dl {‘J}:L (i + J}:\

\ (i~ 1)
&
P \ 7
X |NEW values

Figure 4.26 Calculation sequence in Jacobi and Gauss-Seidel methods.

-

4.5.3 ADI iteration method

Alternating Direction Implicit (ADI) iteration method splits or factorizes the 2-D or
3-D algebraic equation in different directions, and then solves the resulting equations
using the TDMA method line by line. The ADI iteration method has many vari-
ants (Hageman and Young, 1981). As an example, a simple 2-D ADI method
is presented here. For the algebraic equation (4.219), the following ADI iteration
method, which has two fractional steps along ¢ and j lines as shown in Fig. 4.27, is
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often used:
12 12 1/2 0 0
—aw${"2) +appl)P — apd ) = as) | +ang))s, + b (4.222)
1 1 1 1/2 12
_aS¢;’I’),1 + anblEll) - aNqblEiil = aW(pi(,/l’,') + aE¢l‘(+/1,,‘) +b (4223>

Egs. (4.222) and (4.223) are implicit in single directions and can be directly solved
using the Thomas algorithm described above. Because the boundary-condition infor-
mation from the two ends of the grid line is transmitted at once to the interior of the
domain, the ADI method converges faster than the Jacobi and Gauss-Seidel iteration
methods.

o Explicit
e e Implicit g
Lj+
(i) }:: (i.j }‘
(-1p  GDl G+1p) G0} (7)) S N))
hj-1 ij-1
(i) l:: (i.j ‘J1t
¥ ¥
X X
(a) Implicit along i-line (b) Implicit along j-line

Figure 4.27 Calculation sequence in ADI method.

Efficiency of the ADI method can be improved by using the value at the new time

level for one of the variables on the right-hand sides of Egs. (4.222) and (4.223). For
(1/2)
ii—1
calculated in the solution of Eq. (4.222) along the j — 1 line, if the sweep is done by
the order of increasing j. The same approach can be applied to Eq. (4.223) along the

i line, in which ¢fi/12/? can be replaced by ¢i(i)1 ; if the sweep is carried out in the order

example, in Eq. (4.222) ¢f(;i ; can be replaced by its latest value ¢; .”%/, which has been

of increasing i.

4.5.4 SIP iteration method

Consider a 2-D problem discretized by a five-point numerical scheme, the algebraic
equations of which are Eq. (4.219). One may write the set of algebraic equations in
matrix form:

AD = b (4.224)

where A is the coefficient matrix, @ is the vector of the unknowns, and b is the vector
of the source terms. If ® is numbered in the order of increasing j and then increasing 7,
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A can be assembled to be a penta-diagonal matrix, as shown in Fig. 4.28, in which
non-zero entries are shaded, and each horizontal set of boxes corresponds to one
grid line.

For the correction vector A® = & — d© one obtains

AADP =R (4.225)

where R is the residual matrix defined as R = b — A®©,

e

n A4, 4, A, || =| 5

W

Figure 4.28 Structure of the matrix for a five-point scheme.

If the matrix A can be completely factorized as the product of a lower triangular
matrix and an upper triangular matrix, Eq. (4.225) can be easily solved. Unfortunately,
this complete LU decomposition usually is not feasible for the penta-diagonal matrix
shown in Fig. 4.28. Nevertheless, this observation leads to the idea of approximating
the matrix A by a matrix M that is the product of a lower triangular matrix L and an
upper triangular matrix U. The LU decomposition of matrix M is shown in Fig. 4.29.
The rules of matrix multiplication give that the product matrix M = LU should be
a seven-diagonal matrix. Two non-zero diagonals in M that correspond to the zero
diagonals of A are shown by dashed lines in Fig. 4.29. The accurate relation should be

M=LU=A+C (4.226)

where C is the remaining matrix of A after the factorization.
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Figure 4.29 Sketch of LU decomposition of matrix M.

In order to make up the difference between A and M, one choice is to let the matrix
C contain just the two non-zero diagonals of M that correspond to the zero diago-
nals of A. This is the standard incomplete LU decomposition method. However, this
method converges slowly. A better choice, which was proposed by Stone (1968), is
to allow C to have non-zero elements on the diagonals corresponding to all seven
non-zero diagonals of LU. C must contain the ‘two extra’ diagonals of M, and the ele-
ments on the remaining diagonals of C are chosen to ensure CA® ~ 0. The resulting
equations relating L and U with A are (see Ferziger and Peric, 1995)

Ly, =Aw, /(1 +asUnjm)

Ls)=As;/(1 +asUg 1)

Lp;=Ap;+as(LwUNj—m + LsjUg1-1) — Lw 1UE j—m, — Ls1UN,11

Un,; = (Any — asLw jUN1—m))/Lpy

Ug,; = (Ag; —asLgyUgy 1)/Lp (4.227)

where Ly, Lg;, and Lp; are the coefficients of matrix L; Uy, and U are the
coefficients of matrix U (the coefficients in the main diagonal are set to be 1 to get the
unique solution in LU decomposition); as is a coefficient less than 1; [ is the index of
points in the matrix A, related to i and j by [ = j + (i — 1)m;; and m; is the number of
points on the j line.

The set of equations (4.227) can be solved in a sequential order beginning at the
southeast corner of the grid. For points next to boundaries, any matrix element that
carries the index of a boundary point is set to be zero.

After L and U are determined, the approximate formulation for Eq. (4.225) is
obtained as

LUA® =R (4.228)
By defining UA® = W, Eq. (4.228) can be split as

LV =R

(4.229)
UAD =V
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The two equations in (4.229) can be solved separately by a direct method. After A®
is calculated, the new values of ® can be obtained conveniently by

oD = o0 4+ A (4.230)

The above five-point SIP method has been extended to solve the algebraic equations
related to seven-point (Leister and Peric, 1994) and nine-point numerical schemes
(Schneider and Zedan, 1981). Because the coefficient matrices of the algebraic
equations resulting from many numerical schemes are or can be approximated as five-,
seven-, or nine-diagonal matrices, the SIP method is often used in computational river
dynamics.

It should be noted that because the approximation used in the SIP method is related
to the discretization of partial differential equations, the SIP method makes little sense
for generic algebraic equations.

4.5.5 Over-relaxation and under-relaxation

After the correction vector A® is calculated, the new values @ can also be obtained
by the relaxation method:

M = 0@ 4 gyAd (4.231)

where oy is the relaxation factor. oy > 1 for over-relaxation, and ay < 1 for under-
relaxation.

The over- and under-relaxation methods can accelerate or decelerate the conver-
gence speed. Over-relaxation is often used in conjunction with the Gauss-Seidel
method, yielding the Successive Over-Relaxation (SOR) method. Under-relaxation
is very useful for nonlinear problems and can avoid divergence.

Faster convergence can be achieved when using an optimum value of «y. However,
because the optimum « value depends on many factors, such as the nature of the
problem, number of grid points, grid spacing, and iteration procedure, there are no
general rules to determine it. Usually, a suitable value of oy can be found by experience
and from exploratory computation for the problem under consideration.



Chapter 5

|-D numerical models

1-D models simulate the flow and sediment transport in the streamwise direction of
a channel without solving the details over the cross-section. They are often applied
in the study of long-term sedimentation problems in rivers, reservoirs, estuaries, etc.
Described in this chapter are approaches and issues regarding 1-D models, such as
channel network routing, decoupled and coupled flow and sediment calculations, non-
uniform total-load transport, equilibrium and non-equilibrium sediment transport,
lateral allocation of bed change, bank erosion, data requirements, and parameter
sensitivity.

5. FORMULATION OF 1-D DECOUPLED FLOW
AND SEDIMENT TRANSPORT MODEL

As discussed in Section 2.2.3, in the case of low sediment concentration, the influence
of sediment on the flow field is negligible, and thus the simulation of the water and
sediment two-phase flow can be simplified as a problem of solving the clear water
flow with sediment transport. Moreover, because the bed usually changes at a much
lower rate than the flow (especially when bed load is the main transport mode), the
bed elevation can be assumed to be “fixed” at each time step, and the flow can be cal-
culated based on the channel geometry estimated at the previous time step. With these
simplifications, the flow and sediment calculations can be performed in a decoupled
manner. Such decoupled calculations are introduced in Sections 5.1-5.3.

5.1.1 Formulation of 1-D clear water flow model
5.1.1.1 1-D hydrodynamic equations

Dynamic wave model

In the 1-D dynamic wave model, open-channel flows are governed by Egs. (2.102) and
(2.104), which are called the St. Venant equations. In the case with side flows (inflow
and/or outflow), these equations are written as

9A 90
— 5.1
a7 + o =1 (5.1)
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00 8 (BO?
8t+8x<A

d
) +gA8—jCS + gASr = qux (5.2)

where x is the spatial coordinate representing the streamwise distance; A is the flow
area; Q is the flow discharge, defined as Q = AU, with U being the flow velocity
averaged over the cross-section; z; is the water stage; 8 is the correction factor for
momentum due to the non-uniformity of streamwise velocity over the cross-section;
q, is the side flow discharge per unit channel length; v, is the velocity of side flows in
the direction of the x-coordinate; and S is the friction slope:

ielte]

Sf KZ

(5.3)

where K is the conveyance. For a simple cross-section, K = AR?/3/n, with R being
the hydraulic radius and 7 the Manning roughness coefficient of the channel. For a
compound cross-section, determining K or # is introduced in Section 5.1.1.4.

Note that “A”, representing the section-averaged quantities in Egs. (2.102)—(2.111),
is omitted hereafter, for simplicity.

Diffusion wave model

The diffusion wave model assumes that the local and convective accelerations in the
momentum equation (5.2) are negligible, thus yielding

0z
gAa—xs + gAS; = qux (5.4)

The continuity equation (5.1) is still used in the diffusion wave model.

The diffusion wave model is more stable than the dynamic wave model, but the
latter is more accurate and can be applied in a wider range of flow conditions. Wu and
Vieira (2002) investigated the errors of the diffusion wave assumption in various cases.
One example was steady flow through a channel contraction, as shown in Fig. 5.1.
The diffusion wave model exhibits errors in the computed water surface profile in the
transition region near the contraction, whereas the two models give identical results
in the upstream and downstream regions with uniform flow. Normally, the relative
errors are less than 10%, if the Froude number is less than 0.5.

Kinematic wave model

For the kinematic wave, the variations in flow velocity and depth are negligible in
comparison with the variation in channel bed elevation, and thus, the momentum
equation (5.2) can be simplified considerably as follows:

S = So (5.5)

where Sy is the channel slope in the longitudinal direction.
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Figure 5.1 Comparison of dynamic and diffusion wave models at channel contraction.

Using the Manning equation, Eq. (5.5) can be rewritten as

A

n

0 = =R (5.6)

The continuity equation (5.1) is still used in the kinematic wave model.
The kinematic wave assumption is generally applicable, if (Dingman, 1984)

gASo/U? > 10 (5.7)

where A represents the length of the channel under study, and U is the average velocity
of uniform flow. Eq. (5.7) implies that the kinematic wave model is valid in steep
channels.

5.1.1.2 Imposition of boundary and initial conditions of flow

To establish a well-posed problem, boundary and initial conditions should be provided
for Egs. (5.1) and (5.2). These dynamic wave equations constitute a hyperbolic system
that has two characteristics:

dx

T _Ct = .
= Ct=U+/gh (5.8)
dx _

EZC =U-—,/gh (5.9)

where U and b are the flow velocity and depth averaged over the cross-section,
respectively.
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For subcritical flow (Fr = U/\/gTJ < 1), the characteristics CT™ > 0 and C~ < 0.
As shown in Fig. 5.2(a), a C* characteristic curve enters from outside to the solution
domain through the inlet, and a C~ characteristic curve enters through the outlet.
To determine the flow properties at the inlet and outlet, information from each char-
acteristic curve entering from outside has to be provided by a boundary condition.
Therefore, a boundary condition should be specified at each of the two boundaries.
Usually, a time series of flow discharge is specified at the inlet, and a time series of
water stage or a stage-discharge rating curve is imposed at the outlet.

For supercritical flow (Fr> 1), two characteristics are positive: C* >0 and C~ > 0.
As shown in Fig. 5.2(b), both C* and C~ characteristic curves enter from outside
through the inlet, and no characteristic curve enters through the outlet. Therefore,
two boundary conditions should be imposed at the inlet, and none is required at the
outlet.

Flow

Inket

{2) Subcritical flow (b} Supercritical flow

Figure 5.2 Characteristic curves of dynamic wave model at inlet and outlet boundaries.

Similarly, it can be derived that the diffusive wave model requires two boundary
conditions, which are specified at the inlet and outlet, respectively. The kinematic wave
model requires only one boundary condition, which is often specified at the inlet.

In addition, the initial water stage and flow discharge in the solution domain should
be given for an unsteady flow simulation.

5.1.1.3 Manning roughness coefficient

The Manning roughness coefficient # accounts for the effect of bed roughness on the
flow field, and its determination is essential to the accuracy of the calculated flow,
sediment transport, and bed change. For a movable bed with sediment grains and
bed forms as roughness elements, the Manning # can be evaluated using one of the
empirical formulas introduced in Section 3.3.3. However, the Manning » generally
depends on a number of factors, including channel size, cross-section shape, channel
alignment, channel meandering and curvature, surface roughness, bed forms, obstruc-
tions, vegetation, sediment transport, temperature, and seasonal changes. Therefore,
it is suggested that the Manning 7 should be calibrated, if gauged water surface profiles
and high water marks are available; otherwise, the Manning 7 values in similar stream
conditions should be used as guides. There are several references available for deter-
mining the Manning 7, e.g., Chow (1959), Fasken (1963), Barnes (1967), and Hicks
and Mason (1991).

In the case of reservoir sedimentation, because the water stage is raised significantly,
bank roughness becomes important and should be considered in the flow calculation.
Usually, the Manning 7 values on banks and bed are different. In addition, due to
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significant deposition, the bed material in the reservoir gradually becomes finer, and
thus the Manning # of the channel bed decreases with time. This can be described
using the movable bed roughness formulas introduced in Section 3.3.3, or using the
following relation proposed by Han et al. (1986):

w2 =m0 = ndH (A — aja) 'V (5.10)

where ng, n, and 7, are the Manning roughness coefficients in the beginning, tran-
sitional period, and equilibrium state of reservoir deposition, respectively; a is the
deposition area accumulated with time at a cross-section; and a, is the final deposi-
tion area when the reservoir reaches equilibrium. The values of 7, can be determined
by referring to those in the downstream alluvial channels with flow and sediment
conditions similar to the equilibrium state of the reservoir.

5.1.1.4 Composite hydraulic properties

If hydraulic properties, such as roughness and conveyance, are non-uniform across the
channel, their composite values need to be computed. The often used methods include
the alpha method, hydraulic radius division method, energy slope division method,
and conveyance method, which are described below.

Alpha method

In the alpha method, the cross-section is divided into panels between coordinate points
(stations), as shown in Fig. 5.3. The divisions between the panels are assumed to be ver-
tical. The cross-section is not distinguished between the main channel and overbanks
in this method.

The flow area A;, wetted perimeter x;, hydraulic radius R;, and conveyance K; of
panel j are calculated by

A = [z — 0.5(zp; + 254110y (5.11)
X = /Gy = 2j00% + AV} (5.12)
R; = Aj/x (5.13)

/

1|kl

Figure 5.3 Representation of cross-section in alpha method.
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K; = AR (5.14)

where z,; is the bed elevation at station j, Ay; is the distance between stations j and
j+ 1, and #; is the Manning roughness coefficient in panel ;.

The composite cross-sectional area of flow is defined as the sum of all panel subareas
and is the true area. The composite velocity is defined as the total discharge divided
by the cross-sectional area, conserving continuity. The composite hydraulic radius is
conveyance-weighted as

M M
R=)"RK; [ Y K; (5.15)
j=1 j=1

where M is the number of the wetted panels.
Because the alpha method ignores the effect of vertical walls, it is not adequate in
situations where vertical sidewalls or steep bank slopes exist.

Division of hydraulic radius

Einstein (1950) proposed a more adequate method for determining the composite
hydraulic properties for the cross-section with rough vertical sidewalls or steep bank
slopes, based on the division of hydraulic radius. This method assumes equal velocity
in all panels, and calculates all hydraulic variables in the normal way, except for the
composite Manning roughness coefficient.

The total shear stress T in the cross-section can be computed as

M
XT = forf (5.16)
=1

where x is the total wetted perimeter, i.e., x = Z,Ai1 Xj» and 1 is the shear stress in
panel ;.
Einstein’s method determines

T =yRS, (5.17)
7 = yR;S (5.18)

Applying the equal velocity assumption and the Manning equation in the entire
cross-section and each panel yields

R = (nU/s;/2)3/2, R = (n,-U/s]}/Z)W2 (5.19)
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Inserting Egs. (5.17)—(5.19) into Eq. (5.16) yields

M 2/3
n=| > xn?x (5.20)
j=1

Division of energy slope

The method based on the division of energy slope originated from Engelund (1966) is
another option for determining the composite hydraulic properties for the cross-section
with rough vertical sidewalls or steep bank slopes. This method gives

T = ]/RSf’/- (5.21)

and applies the equal velocity assumption and the Manning equation in the entire
cross-section and each panel:

Sf = (nU/R**)?,  S;; = (njU/R*3)? (5.22)

Inserting Egs. (5.17), (5.21), and (5.22) into Eq. (5.16) yields the following equation
for the composite Manning 7:

M 172
n= ZX}'”,‘Z/X (5.23)
i=1

Conveyance method

The assumption of equal velocity used in the previous methods, based on the division
of either hydraulic radius or energy slope, is only applicable in simple channels. For
compound channels with floodplains, the flow velocities in the main channel and
floodplains may be significantly different. A more adequate method for determining
the composite hydraulic properties in compound channels is the conveyance method.

The conveyance method divides the cross-section into subsections in such a way that
the equal velocity assumption can be approximately valid in each subsection. Each
subsection can be further divided into panels. The flow area, wetted perimeter, and
conveyance of each subsection can be calculated in the normal way. The conveyances
of all subsections are then summed to provide the total conveyance for the entire cross-
section. For example, the compound cross-section shown in Fig. 5.4 can be divided
into three subsections: main channel, left floodplain, and right floodplain, and the
total conveyance is determined by

5/3 5/3 5/3
ALF + AMC + ARF (5 24)
/3 2/3 2/3 :

K —
2
RLFXLF NMCXMc  PREXRE




182 Computational River Dynamics

‘1 Left floodplain

Right floodplain

1Kl

Main channel

Figure 5.4 Representation of compound cross-section with floodplains.

where the subscript LF denotes the left floodplain, MC the main channel, and RF the
right floodplain.

For each subsection, the Manning # can be determined using the hydraulic radius
or energy slope division method. For example, the Manning # in the main channel is
determined using these two methods as follows:

i=RCB 2/3 i=RCB 12
32
mc=1| Y X/n,-/ Jxme | s mmc=| Y. xm/xmc (5.25)
j=LCB j=LCB

where LCB and RCB represent the main-channel panels adjacent to the left and right
floodplain edges (denoted as LF and RF in Fig. 5.4), respectively.

5.1.1.5 Momentum correction factor

The correction factor B for momentum in Eq. (5.2) is close to 1 for a simple cross-
section. For the compound cross-section shown in Fig. 5.4, B is determined by

L[ aa- L
p= @//Au aa = QU(QLFULF + QmcUmc + QrrUrr)

_ A (K Kiuc | Kie (5.26)
K2 \Arr  Amc  Arr '

5.1.2 Formulation of |-D sediment transport model

5.1.2.1 I1-D non-equilibrium sediment transport equations

For general applications, the transport of non-uniform total load is considered here.
Because the total load can be divided into bed load and suspended load, or into
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bed-material load and wash load, as shown in Fig. 2.3, two total-load modeling
approaches are usually adopted. One is to simulate bed load and suspended load sepa-
rately, while the other is to compute bed-material (total) load directly. Both approaches
have advantages and disadvantages.

I-D bed-load and suspended-load transport model

As described in Section 2.7.1, the non-uniform sediment mixture is divided into a
suitable number of size classes (N). In the case of low sediment concentration, interac-
tions among different size classes are usually ignored and, thus, the transport of each
size class is simulated separately. For each size class, the moving sediment is further
divided into suspended load and bed load. Introducing Eq. (2.132) into Eq. (2.108) and
considering the lateral exchange with banks and tributaries yields the 1-D transport
equation of the kth size class of suspended load:

a (AC d(AUC
t\ Bk dx

(5.27)

where C, and C,;, are the actual and equilibrium (capacity) average concentrations
of the kth size class of suspended load, respectively; « is the adaptation coefficient of
suspended load; g, is the suspended-load side discharge per unit channel length due
to the lateral exchange with banks and tributaries; and B, is the correction coefficient,
which is determined using Eq. (3.135) in general, but may be set to 1 in the simulation
of long-term sedimentation processes.

In analogy to Eq. (2.158), the 1-D bed-load transport equation is

9 0 1
— (Qbk> Q0 _ (Qbsk — Qbr) + qbik (5.28)

at \ Uy ax L

where Qyp, and Oy, are the actual and equilibrium (capacity) transport rates of the
kth size class of bed load, respectively; L is the adaptation length of sediment, defined
in Section 2.6.2; and qyy, is the bed-load side discharge per unit channel length.

The bed-load velocity Uy, needs to be determined using one of the empirical formu-
las described in Section 3.8. However, the storage term, the first term on the left-hand
side of Eq. (5.28), is often ignored in the simulation of long-term sedimentation
processes.

The equilibrium suspended-load concentration and bed-load transport rate can
be determined using the existing formulas described in Sections 3.4 and 3.5. For
convenience, these formulas are written in general forms:

Cuk =06kChs  Qbuk = D1k Qyy, (5.29)

where py, is the sediment availability factor, usually set as the fraction of size class k
in the mixing layer of bed material; Cj is the potential equilibrium concentration for
the kth size class of suspended load; and Qj, is the potential equilibrium transport

rate for the kth size class of bed load. C; and Oj, can be interpreted as the equilibrium



184 Computational River Dynamics

suspended-load concentration and bed-load transport rate of uniform sediment with
the same size as d, taking into consideration, however, the hiding and exposure effects
in non-uniform bed material.

In analogy to Eq. (2.159), the 1-D fractional bed change equation is

Y 1
A=) (ab) = awsB(Cp — Cyp) + = (Qpr — Opsr) (5.30)
t /)y L
where (dA;/01);, is the rate of change in bed area due to size class k.

The total rate of change in bed area, A, /¢, is determined by

N
A, A,
— = —_— 5.31
=2 (), (5.3

k=1

As described in Section 2.7.2, the bed material is divided into layers. The temporal
variation of the mixing-layer bed-material gradation py, is determined by Eq. (2.161),
which is rewritten in the 1-D model as follows:

d(Ambpk) Ay A, dAp
DEmPok) _ (228 om0 32
at at )y TP\ 5 at (5:32)

where A, is the cross-sectional area of the mixing layer, and p}, is p, when dA; /9t —
9A,,/0t > 0 and the fraction of size class k in the second layer of bed material when
0Ay /0t — 0A,,/9t < 0. Accordingly, the bed material sorting equation (2.162) in the
second layer is rewritten as

I (AsubPsbl) — _ Zk (8Am _ 3Ab> (5.33)
ot ot Jt

where pg, is the fraction of size class k in the second layer of bed material, and A, is

the cross-sectional area of the second layer. Note that Eq. (5.33) assumes no exchange

between the second and third layers.

Egs. (5.27)—(5.33) constitute the governing equations of the total-load transport
model that discerns bed load and suspended load. This model provides the ratio of
bed load and suspended load. However, many reliable bed-material load transport
capacity formulas, such as the Ackers-White (1973), Engelund-Hansen (1967), and
Yang (1973) formulas, cannot be used directly in this approach.

I-D bed-material load transport model

When the bed-material (total) load transport is simulated without separating bed
load and suspended load, introducing Eq. (2.149) into Eq. (2.111) and consid-
ering the lateral exchange with banks and tributaries yields the bed-material load
transport equation:

9 Oue 90 _ i . _
8t<,3tkU)+ ox L, Qe = Q)+ de (k=1,2,...,N)  (5.34)
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where Qy, and Qy,, are the actual and equilibrium (capacity) transport rates of the kth
size class of bed-material load, respectively; L; is the adaptation length of bed-material
load; g,y is the side discharge of bed-material load per unit channel length; and By is
the correction factor, which is determined in analogy to Eq. (2.92) but may be set to
1 in the simulation of long-term sedimentation processes.

The sediment transport capacity can be written in the general form:

Ok = Dok Qj (5.35)

where Q7 is the potential equilibrium transport rate for the kth size class of bed-
material load.

Extending Eq. (2.149) to the 1-D model yields the following equation for the
fractional change in bed area:

Ay

, 1
(1 —p) <8t)k = E(th — Ok) (5.36)

The total change in bed area is calculated using Eq. (5.31), while the bed material
sorting is determined using Eqgs. (5.32) and (5.33).

Egs. (5.31)—(5.36) constitute the governing equations of the total-load transport
model that directly computes bed-material load. This model has N less transport
equations than the previous bed-load and suspended-load transport model. Not only
can those aforementioned reliable bed-material load transport capacity formulas be
used, but also many bed-load and suspended-load transport capacity formulas, such
as the Wu et al. (2000b) formulas, can be applied jointly in this approach. However,
it does not provide the ratio of bed load and suspended load.

Note that if L = L; and @ = Uh/(L;ws), the bed-load and suspended-load model
and the bed-material load model give the same results for total sediment discharge, bed
change, and bed-material gradation. This explains why L is found to be approximately
equal to L;, as stated in Section 2.6.2. Because normally Ly > L;, the condition
a = Ub/(L;w;s) can usually be satisfied using Egs. (2.154) and (2.155). For very coarse
sediments, this condition may be violated, but because such sediments move mainly
in bed load, the difference between the two models is small and the bed-material load
model is preferable.

In addition, both models can simulate the transport of wash load by setting the
adaptation coefficient & in Eq. (5.27) to zero and the adaptation lengths in Egs. (5.28)
and (5.34) to be infinitely large. The wash-load size range can be defined using the
bed-material diameter dig or the Rouse number w,/(kU,) < 0.06, as discussed in
Section 3.5.1. The latter method is more convenient for numerical modeling.

Both models can also simulate sediment transport over non-erodible channel beds.
This is often called the hard-bottom problem. On the non-erodible cross-sections,
the sediment transport capacity Oy, in Egs. (5.34) and (5.36) is replaced by
min(Qyup, Ou) , or the sediment transport capacities Q.. and C,; in Egs. (5.27),
(5.28), and (5.30) are replaced by min(Qpyp, Qpr) and min(C,y, Cp), respectively. This
method allows only deposition on the hard-bottom points. It can be easily extended
to 2-D and 3-D models.
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5.1.2.2 [I-D equilibrium sediment transport equations

The assumption of local equilibrium transport described in Section 2.6.1 ignores the
temporal and spatial lags of sediment transport and sets the actual sediment transport
rate to be equal to the equilibrium (capacity) one at each cross-section:

th :Qt*k(U9h’T,B9dkspbk9yssy~--) (k:l,Z,,N) (537)

In the equilibrium transport model, the change in bed area due to size class k is
calculated by

0Ape 004
1—pl )—2% =0
( D) ot + ox

(5.38)

The total change in bed area is calculated by Eq. (5.31) and the bed-material
gradations by Egs. (5.32) and (5.33).

It should be noted that the local equilibrium assumption does not mean that the
sediment transport in the entire channel is at equilibrium. Conversely, the sediment
transport capacities at two consecutive cross-sections may be different under varying
flow and sediment conditions, and thus the channel bed between these two cross-
sections may change according to Eq. (5.38).

5.1.2.3 Characteristics of equilibrium and non-equilibrium
transport models

The equilibrium sediment transport model is simple but may lead to a numerical
difficulty near the inlet with constrained sediment loading. Fig. 5.5 shows the sed-
iment discharge profiles determined by the equilibrium transport model on a finite
difference mesh in cases of erosion (Q;9 = 0) and deposition (Qy0 = 2Q;x). Here, O
is the sediment discharge loaded at the inlet (x = 0), and Qj, is assumed constant in the
entire channel. The sediment discharge at cross-section 1 is specified by the boundary
condition (constraint), while the sediment discharge at cross-section 2 is determined
using Eq. (5.37). If the sediment is strongly over- or under-loaded, the sediment dis-
charges at these two cross-sections will be significantly different, and strong deposition
or erosion will be computed in the first reach. The smaller the grid spacing, the larger
the deposition or erosion rate calculated in this reach. This is physically unreasonable,
and may cause numerical instability. Therefore, the application of the equilibrium sed-
iment transport model should be limited to situations with near-equilibrium loading
at the inlet.

For uniform sediment under steady flow conditions, the non-equilibrium transport
equation (5.34) with constant L; and Q;, and without side discharge has an analytical
solution:

Or = O + (Qro — Qi) exp (—th) (5.39)

Fig. 5.6 illustrates the sediment discharge profiles determined by Eq. (5.39) for the
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Figure 5.6 Sediment discharge profiles in non-equilibrium transport model.

same cases of erosion (Q;0 = 0 ) and deposition (Q;9 = 2Q; ) shown in Fig. 5.5.
The actual sediment discharge does not adjust to the equilibrium one immediately
near the inlet, but after a certain distance downstream. In addition, Fig. 5.6 also
shows that the adaptation length L; is an important parameter in the non-equilibrium
transport model. It essentially determines the sediment discharge profile. At a distance
equal to one adaptation length (x = L;), (O — O+)/(Qz0 — Or) =~ 0.3679.

A comparison of Figs. 5.5 and 5.6 shows that the non-equilibrium transport model is
physically more realistic and can handle the constrained sediment loading more easily
than the equilibrium transport model. In addition, as L; — 0, the exchange term in
Eq. (5.34) becomes dominant; thus, Eq. (5.34) reduces to Eq. (5.37) and the sediment
discharge profiles in Fig. 5.6 become those in Fig. 5.5. This implies that the non-
equilibrium transport model is more general and includes the equilibrium transport
model as a special case.
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5.1.2.4 Boundary and initial conditions of sediment

The fractional sediment discharges for all size classes must be imposed at the inflow
boundary in each time step, but no sediment boundary condition is required at the
outflow boundary in the 1-D model. The initial sediment discharge, channel topog-
raphy, and bed-material gradation should be provided for the simulation of unsteady
sediment transport and channel morphological evolution.

5.2 1-D CALCULATION OF OPEN-CHANNEL FLOW

5.2.1 1-D steady flow calculation

5.2.1.1 Discretization of steady flow equations

For steady open-channel flow without side inflow or outflow, Eq. (5.1) reduces to
90/3x = 0 and leads to a constant flow discharge along the study reach, while
Eq. (5.2) can be rewritten as the energy equation:

12
aax(ﬂQ )+g8zs+gQIQ| o (5.40)

2A2 dx K2

where B’ is the correction factor for kinetic energy due to the non-uniformity of stream-
wise velocity over the cross-section. For the compound cross-section shown in Fig. 5.4,
B’ can be determined using the discharge-weighted average kinetic energy:

1
=ou?

A% (K3 K3 K3
- 25 (S + Ko S s
K ALF AMC ARF

B (OLrU?; + Omc Uy + OrrURp)

where all parameters are the same as those in Eq. (5.26).

Suppose that the computational domain of a single channel is divided into I — 1
reaches by I cross-sections (computational points), as shown in Fig. 5.7. The cross-
sections are numbered 1 through I in the downstream direction. Each cross-section
is represented by an adequate number of points (stations), as shown in Fig. 5.4, with
each point characterized by a pair of values of the distance to the left bank and the
bed elevation. In the longitudinal direction, each reach is characterized by its length.
For a simple channel, the reach length measures the path of the main flow or channel
thalweg. For a compound channel, the flow paths in the main channel and floodplains
may be significantly different, and an average, such as the discharge-weighted average,
of their lengths should be used as the reach length.

Applying the standard step method to discretize Eq. (5.40) yields

BO? Bi 1974 Axiy1/2 (Qi+1|Qi+1| Qi|Qi|)
+2i= ———" 4+ 241+ + (5.42)
2 > 2 > 2 2
284; 28A714 2 Ki K;
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Figure 5.7 Finite difference grid in 1-D channel model.

where Ax;1/2 represents the length of the reach between cross-sections 7 and 7 + 1.
In Eq. (5.42), the friction slope is represented by the arithmetic mean between
cross-sections 7 and i + 1. It can also be represented by the harmonic mean

K? K2
Sty = 2/<Qi+1l|_5i+1| " Qiléil) (5:43)
the geometric mean
. ‘ A\ 12
i1 = (Q‘*;l'_zi’“' Q}?") (5.4

or the conveyance mean

. A 2
Ql+1 + Qz) (5‘45>

Stit1/2 = (Ki+1 e

If the channel cross-section is suddenly expanded or contracted, a local head loss
should be considered and Eq. (5.42) is replaced by

ey ﬂ( Q.Z Ax; . . 10).
'B’QE + g = =L 2’“ +2sit1 + 1;1/2 Q’HLQ’H' + Q"%"
284; 28A7 K K;
B, O '0?
+ Aig1yp [SESEL 'B’Q; (5.46)
2847 284

where Ajy1/2 is the coefficient of local head loss due to channel expansion or
contraction in the reach between cross-sections 7 and i + 1.

5.2.1.2 Solution of discretized steady flow equations

The solution procedure for Eq. (5.42) differs in cases of subcritical and supercritical
flows. For subcritical flow, a flow discharge is usually specified at the inlet and a water
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stage is specified at the outlet. Therefore, the flow discharge in the solution domain can
be calculated easily in a forewater sweep by applying mass continuity, and the water
stage can then be determined by backwater calculation using Eq. (5.42). Because of
its nonlinearity, Eq. (5.42) needs to be solved iteratively.

Define the following function:

B B0, BO? _ L Axip [ Qir1lQigal | QilOil
F = 5 - P + Zs,;.:,.l - Zs,; 2 5 + 5
28A7 284; Ky K;

(5.47)

Because 2,41 and the corresponding A;y1 and Kjy1 at cross-section i + 1 have been
obtained from the previous calculation in the reach between cross-sections 7 + 1 and
i+ 2, or from the given water stage at the outlet, now the problem is determining z; ;
and the corresponding A; and K; by ensuring F = 0. The following bisection method
is often used:

(1) Find a segment [Zj,,e, Zupper] in which the solution of zg; exists, ie.,
FupperFiower < 0, with Fyppe, and Fyyy,, being the values of F corresponding to
Zupper and Zj,,,,0,, respectively;

(2) Set Z,iddie = Zupper + Ziower)/2 and calculate F,,,;44,,, the value of F correspond-
INg t0 Zyiddie;

(3) If Figqre = O (or less than a certain tolerance), Z,,;445 is the solution of z,; and
then stop iteration; otherwise, if F,,z41. Fiower < 0, then set Zypper = Z,id4d1e> and
if FupperFmiddie < 0, then set Zjoer = Zyiiddies

(4) If Zupper — Ziower 1s less than a reasonable tolerance, then set (Zupper + Ziower)/2
to be the solution of z,; and stop iteration; otherwise, repeat from step (2) until
the convergent solution is obtained.

Note that the search in step (1) for the lower and upper bounds Z;,,,., and Z,pe, of
the initial segment where the solution exists can start from either the channel thalweg
elevation or z; ;1. The search starting from the thalweg is upward only, whereas the
search starting from z, ;41 must be conducted upward and downward. The former
search is simpler and can guarantee the solution.

For supercritical flow, both flow discharge and water stage are usually specified
at the inlet. Therefore, the water stage in the solution domain can be determined by
forewater calculation using Eq. (5.42). Similarly, Eq. (5.42) must be solved using an
iteration method, such as the bisection method. The difference is only that z,; and the
corresponding A; and K; are known while z; ;1 and the corresponding A1 and K11
are unknown.

For flow in mixed regimes, the entire computational domain is divided into subdo-
mains according to the flow regimes, and then the previous methods are used to solve
the subcritical and supercritical flows in all subdomains individually. Usually, internal
boundary conditions should be applied in the transition regions between subdomains.
Because the energy equation (5.40) may not be applicable in regions with hydraulic
jumps, internal boundary conditions should be derived from the momentum equation
instead, which may be found in Chow (1959) and HEC (1997).
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5.2.1.3 Treatments for flow at channel confluences
and splits

Fig. 5.8 shows a typical network of channels connected with confluences, splits, and
hydraulic structures. To compute the steady flow in such a channel network, external
boundary conditions at inlets and outlets and internal boundary conditions at channel
confluences, splits, and hydraulic structures have to be imposed. The imposition of
external boundary conditions of flow is introduced in Section 5.1.1.2, and the handling
of hydraulic structures is discussed in Section 5.2.2.4. Treating channel confluences
and splits is discussed here.

Inlet

Figure 5.8 Sketch of a channel network.

Channel confluences

A confluence of two channels is depicted in Fig. 5.9, in which cross-sections 1 and 2
are placed at the ends of the upstream channels (denoted as 1 and 2), and cross-section
3 is at the beginning of the downstream channel (denoted as 3). The flow discharges at
cross-sections 1, 2, and 3 are denoted as Q1, O», and Q3, respectively. The continuity
equation at the confluence reads

0;3=01+O (5.48)

— .
cpannel 1 Mannes 3

c52 53

Figure 5.9 Configuration of channel confluence.
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Applying Eq. (5.46) in the reaches from cross-sections 1 and 2 to 3 yields

B 0% BL03 Axyz ( O3103] | O1101] BL03  BOF
+ 21 = + 23+ + +A -
2042 T T g2 T T T2 K2 P 12gAZ T 2gA2
(5.49)
B,0O3 BL0O3 Axyz [ O31031 | O210:| BLO3 B O3
20 = + 23+ + +A -
2643 2T 2gA3 T2 K2 KZ 2 12gA2 T 20A2
(5.50)

where Axi3 and Axp3 represent the distances from cross-sections 1 and 2 to
3, respectively.

If the flow is subcritical, the water stage zs3 at cross-section 3 is obtained first
by backwater calculation in channel 3. The water stages z51 and z¢) at cross-sections
1 and 2 can then be obtained by solving Egs. (5.49) and (5.50), following the procedure
introduced in Section 5.2.1.2.

As a simplified case, if the distances Ax13 and Ax,3 are very small, the water stages
or energy heads of the three cross-sections at the confluence can be assumed to be
identical. Thus, the calculated water stage at cross-section 3 is specified to cross-
sections 1 and 2 if the flow is subcritical.

If the flow is supercritical, the forewater calculations are carried out in channels
1 and 2 down to cross-sections 1 and 2. The reach controlling the flow at the confluence
has a larger specific force Az; + BQU/g (Chow, 1959). Here, % is the depth from the
water surface to the centroid of the flow area. The forewater calculation is made from
the controlling upstream cross-section down to cross-section 3.

Channel splits

A split of one channel to two channel branches is depicted in Fig. 5.10, in which cross-
section 1 is placed at the end of the upstream channel (denoted as 1), and cross-sections
2 and 3 are at the beginnings of the downstream channels (denoted as 2 and 3). The
continuity equation at the channel split reads

02+03=01 (5.51)

Channgl | ————ip

e

Figure 5.10 Configuration of channel split.
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Applying Eq. (5.46) in the reaches from cross-section 1 to cross-sections 2 and 3 yields

B O 8,03 Axyp (O2102] | Q1]01] B05  BO7
+z = + 20 + + + 2 -
2gA2 TN T ga2 T T T T R2 K2 1212gA2 ~ 2gA2
(5.52)
B0 ;03 Axyz Q31031 | Q1]01] B03  BO7
+z = + 23 + + + 2 -
2gA2 TN T ga2 T T T T k2 K2 P 12gAT  2gA2
(5.53)

where Ax1> and Axy3 represent the lengths of the two reaches.

If the flow is subcritical, the water stages zs» and zs3 at cross-sections 2 and 3 are
determined first by backwater calculations in channels 2 and 3. The water stage z¢1
at cross-section 1 can then be obtained by solving Egs. (5.52) and (5.53). However,
because the ratio of flow discharges Q» and Q3 is unknown, the following iteration
procedure is needed:

(1) Assume the flow discharges Q> and Q3 that satisfy the continuity equation (5.51);

(2) Determine the water stages zs) and zs3 at cross-sections 2 and 3 through backwater
calculations in channels 2 and 3, respectively;

(3) Calculate the water stage at cross-section 1, denoted as z.,, from cross-section 2
using Eq. (5.52), according to the procedure in Section 5.2.1.2;

(4) Calculate the water stage at cross-section 1, denoted as 2|, from cross-section 3
using Eq. (5.53), according to the procedure in Section 5.2.1.2;

(5) If |2y — 2l | is less than a reasonable tolerance, then set (z/; +2,)/2 as the water
stage zs1 at cross-section 1, and stop iteration; otherwise, repeat from step (2) by
reducing QO and increasing Q3 if 2; > 2/}, or increasing Q> and reducing Q3 if

2,y < zJ;, until a convergent solution is obtained.

If the lengths Ax1, and Axq3 are very small, the water stages of the three cross-
sections at the split can be set the same. However, an iteration method similar to the
one described above is still needed to determine the ratio of flow discharges in the two
downstream channels.

If the flow is supercritical, the forewater calculation is carried out in channel 1
down to cross-section 1. The water stages at cross-sections 2 and 3 are calculated by
performing forewater calculations from cross-section 1 to cross-sections 2 and 3 using
Egs. (5.52) and (5.53), respectively. In order to determine the ratio of flow discharges
Q> and Q3, an additional equation is needed. The momentum balance equation at the
split is usually used. More details can be found in HEC (1997).

5.2.2 |1-D unsteady flow calculation

5.2.2.1 Discretization of unsteady flow equations

The governing equations for unsteady open-channel flows are the St. Venant equations
(5.1) and (5.2). However, a variety of forms of these equations have been used in the
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literature. For example, Wu and Vieira (2002) simplified Eq. (5.2) to the following
form, by ignoring the momentum contribution from side flows and dividing by the

flow area A:
9 (O\ @
at (A) T ox

where the correction factor B’ is not exactly the same as the momentum correction
factor B in Eq. (5.2). By comparing Egs. (5.40) and (5.54), it is recognized that 8’ is
similar in these two equations and thus can be determined using Eq. (5.41).

The numerical solution of the St. Venant equations is a classic problem in com-
putational river dynamics. Mahmood and Yevjevich (1975) and Cunge et al. (1980)
described some of the historical developments. One of the most widely used schemes is
the Preissmann (1961) scheme, based on two computational points in two time levels,
as presented in Eqs. (4.34)—(4.36). Its application to Egs. (5.1) and (5.54) yields

12 azs
<’32§2 ) +g5s +5 =0 (5.54)

v 1- w 0
(A:ff A — Al + E(Q?ﬂl - o/h
QIH Op) =6y )T} + (1 =g
- (1 - 9) wa,i—&-l + (1 - 1#)611,,-] =0 (555)
v(Q Ol 1oy (O or
AR AL At \ ATt AY
2
Lo | A (Q?If) ! (Q?“)
1 1
Ax |2 \ATY 2 \A7T
2
n 1-06 ﬂl/:l_l ?_;,_1 IBM Qn + eig(zn{l _ zn{l)
Ax | 2 \ A7, 2 \Ar Ax “SiHL T
1-0)
+ Txg(z;l,iﬂ — ) +0glYRS; L, + (1= yR)SF]
+ (1= 0)glYrSF, y + (1 = YR)S},1=0 (5.56)

where 0 and ¥ are the temporal and spatial weighting factors in the Preissmann scheme,
as shown in Fig. 4.5; and ¥ is the spatial weighting factor for friction slope in the
case of low flow depth, as described in Section 5.2.2.6.

5.2.2.2 Local linearization of discretized unsteady flow
equations

Egs. (5.55) and (5.56) constitute a nonlinear system that needs to be solved iteratively.
During the iteration process, the following relations are expected:
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AL = AY + Broh; (5.57)
O/t = OF +50; (5.58)
where * denotes the estimates at the last iteration step, 8/ is the water stage (flow
depth) increment, §Q is the flow discharge increment, and B is the channel width at

the water surface.
Substituting Egs. (5.57) and (5.58) into Eq. (5.55) yields

v v

1-— 0 0
2y Bir1dhiv + 733‘5}71' + 09 — 80

K(Al-i-l Al — 1/I(A* A} — 7(Qz+1 O}

(QZH Op) +6lwqfl + (1 — g
+ (1 - 9) qu,iH + (1 - w)qzl] (559>
Eq. (5.59) can be written as
a;i8h; + b;8Q; + ¢idhiy1 + d;i8Qiy1 = pi (5.60)

where a; = (1 — ¢)B} /At , b = —0/Ax, ¢; = Y B} 1/At d; = 0/Ax, and

‘l/ n 1- ‘// * n * *
pi= (A1+l A — 7 A - 4D - E@m -0

<Ql+1 OP) +6lvq) Tl + (1 =g

+ (1 — 9) V)i + 1= ¥)q)]

To linearize the discretized momentum equation, the following relations based on
the first-order Taylor series expansion in terms of §» and §Q are used:

z;"i“ =2} +8h;i (5.61)
(QFhH? = (O))* +20780; (5.62)

1 1 2 K\ *
KL T K @3 (%), 63

210%| 285 (0K
n+1 * i
: §0; — — | &h; .64
sz Sf,z + (K?)z Q K* <8z5>, (5.64)
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+1
A DO L

AT = (A*)ZSIO (5.65)

2
o' or\*, 29; 2(01)’B;
(f“’“) :(A:‘) AT Tay 366

ﬂ{n+1 — ﬂ(* (5.67)

1 1

Substituting Egs. (5.61)—(5.67) into the discretized momentum equation (5.56)
yields the locally linearized form:

a;(ﬁh,‘ + b;(SQ,‘ + C§3hi+1 + dl/'SQi+1 = p; (5.68)
where
1— * B* 0 1% * ZB* 0 * K\*
a;:— le l_,.iM_ig_z@(l_ )
At (AH?  Ax (AP Ax 0zs /) ;
1—y 1 6 B*QOr 1071
b = — LU=yl — i
i At A;k Ax (A;k)z + ( wR)g (K;")Z’
= I// Qz+l i+1 iﬁl/*l(g>k 1)2B;k+1 + = Qg zgw l+1 <8K> .
T A (AZH)Z Ax  (Af )3 Ax Kj‘H 025 ) i1’
1 *
d; = v - 19121 + 20yRrg lQ’+1|2; and
At Az+1 A‘x (Az+1) (KH—I)
ot (L D) 1o (0O
’ Afn ALy ) T A \ar T

/% k 2 *
0 | B Qi (Q )
ax | 2 \ay, ) T2\ &
2
10 B (Qh) B (Q”)
ax | 2 \ar, ) "2 \a

. (I1-0)g n
- E(ZS,H] — Z;k,,') T T Ax Rsi+l — zs,i)
— 0gLYRS},yy + (1 — YRS,
— (1= 0)glYRS],, + (1= yROS],]
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Note that the momentum equation (5.2) in the dynamic wave model and its
simplification Eq. (5.4) in the diffusion wave model can also be discretized using
the Preissmann implicit scheme and linearized locally using Egs. (5.61)—(5.67), and
the resulting equations can be written as Eq. (5.68) with different coefficients. The
detailed derivation is left to interested readers.

5.2.2.3 Solution of discretized unsteady flow equations

Algorithm for a single channel

As shown in Fig. 5.7, a single channel is segmented to I — 1 reaches with I cross-
sections. The pentadiagonal matrix of Egs. (5.60) and (5.68) is solved by successively
applying a double sweep algorithm, which is often called the Thomas algorithm.

A linear relationship between the unknowns §b; and §Q; is assumed to be of the

type:
3Q; = Siéhi + T; (5.69)
Substituting Eq. (5.69) into Egs. (5.60) and (5.68) and eliminating 85; yields
8Qit1 = Siv18hit1 + Tipq (5.70)
where S;11 and Tjy1 are recurrence coefficients:

(a; + b,‘S,‘)Cé — (61: + b;Si)Ci

(a; + b;S))d; — (a; + bS;)d;
(@i + b:S) (p; — biTi) — (a; + biS) (pi — biT))
(a; + bl‘S,’)d;— — (d; + b;Si)di

(5.71)

Siv1 =

(5.72)

T =

In the first (forward) sweep, Eqs. (5.71) and (5.72) are applied recursively, with i
varying from 1 to I — 1. To perform this sweep, S1 and T at cross-section 1 (inlet) are
derived from the upstream boundary condition. For simplicity, the case of subcritical
flow is considered here. Therefore, Qﬁ‘“ is known by the given discharge hydrograph

at the inlet, and the recurrence coefficients S; and T; read
$1=0, Ty=0Q"-01 (5.73)
Substituting Eq. (5.69) into Eq. (5.60) yields

i — biT) — (cidhit1 + disQit1)

Sh; =
a; + b;S;

(5.74)

Therefore, in the second (return) sweep, 8h; and §Q; can be calculated using
Egs. (5.74) and (5.69) recursively, with i from I — 1 to 1.
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To perform the second sweep, the values of §h; and §Qr at cross-section I (outlet)
are derived from the downstream boundary condition, which can be a time series
of water stage, a stage-discharge rating curve, etc. If the water-stage time series is

specified, zf}“l is known and the stage increment at cross-section I is

shy =2t — 2% (5.75)

and the discharge increment §Qj can then be determined using Eq. (5.69).

If a measured stage-discharge rating curve, Q =/f(z), is specified at the out-
let, a discretized equation can be obtained by applying the first-order Taylor series
expansion:

501- Shshi =1~ 0 (5.76)

and the stage increment at point I can then be derived from Egs. (5.69) and (5.76) as

T+ QO — f*

Sh; =
"7 dfjdz - S

(5.77)

In the outlet located in a nearly prismatic channel with a positive slope (downslope),
the flow can be assumed to be uniform; thus, a relation of O = K(zs)+/So exists, in
which K is the conveyance and Sy is the channel slope. In analogy to Eq. (5.77), the
following equation for the stage increment at point I can be derived:

T+ Q; —K*V/S
 J/SodK*/dz; — S

shy (5.78)

If the outlet is controlled by an in-stream structure, such as spillway or weir, a free
overfall flow exists; thus, a stage-discharge rating curve O = f(zs) can be obtained
using the critical flow condition near the brinkpoint, and then Eq. (5.77) can be
applied.

If a flood or tidal wave propagation is concerned, the outflow boundary must also
be non-reflective and able to damp out the waves. This type of outflow boundary
condition may be found in Hinatsu (1992) and others.

Therefore, the aforementioned two sweeps constitute an iteration step, yielding
8h and §Q. z¥ and O* are then updated by z¥ + 8h and O* + §Q. The iteration is
stopped when the solutions for z¥ and O* have converged (84 — 0 and §Q — 0). The
converged z* and Q* are eventually given to 27! and Q"*1.

Algorithm for a dendritic channel network

A dendritic (or tree-like) channel network includes tributaries and/or distributaries
without any loop. The previous double sweep algorithm can still be applied in the



|1-D numerical models 199

solution of unsteady flows in this type of channel network, provided that a certain
computational order is respected.

A dendritic network of three channels, shown in Fig. 5.11, is used as illustration.
Suppose that the forward sweep starts from point 1 of channel A, at which a boundary
condition, such as the time series of flow discharge or water stage, is given. The
recurrence coefficients are calculated along channel A using Egs. (5.71) and (5.72). At
the last point of channel A, the following relation is obtained:

80am = Samdbam + Tam (5.79)

where the subscript A denotes channel A, and M denotes the last point in channel A.

Chﬂ“r'el B [ i
N 2
2

Figure 5.1 Dendritic network with three channels.

The forward sweep in channel B is also carried out from the first to the last point.
A boundary condition should be given at the first point, while the following relation
is obtained at the last point, N:

80BN = Sp,NShp N+ TBN (5.80)

where the coefficients Sg x and Tp N are determined using Eqgs. (5.71) and (5.72).

Now, let us consider how to handle the junction. For convenience, the three cross-
sections at the junction are located very close together. Therefore, it can be assumed
that the water stages at the three cross-sections are equal, and the flow discharge
at the downstream cross-section is equal to the sum of those at the two upstream
cross-sections:

+1 +1 +1
TAM = ZBN = ZsCol (5.81)
O = O3 + OF N (5.82)

Egs. (5.81) and (5.82) are the compatibility conditions at the junction. Substituting
Egs. (5.58) and (5.61) into Eqgs. (5.81) and (5.82) yields

Sham —8hc1 = Zicq — Ziam (5.83)

(ShB,N — (Shc’] = Z;kc’l - Z:B,N (584)
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8Qc1 —80am — 380N =04+ O n — Qi (5.85)

Substituting Egs. (5.79) and (5.80) into Eq. (5.85) and then using the expressions
for ham and 8hp N obtained from Egs. (5.83) and (5.84) yields

8O0c,1 =Sc,18hc1 + Tca (5.86)

where Sc1 =3S8am+ SBN, and Tci = QZ,M + QZ,N — Q?Z,l + SA,M(Z;kC’l — Z:A,M) +
SB,N(Z:C,l - sz,N) + Tam+ TpN.

The forward sweep can then be carried out from the first to the last point in channel C
using Egs. (5.71) and (5.72).

The return sweep starts from the last point of channel C, at which a boundary con-
dition is specified. The stage and discharge increments at the last point are determined
using Egs. (5.75)—(5.78), and at the intermediate points using Eqs. (5.69) and (5.74).
At the end of the return sweep in channel C back to the junction, the stage increment
8hc,1 is calculated using Eq. (5.74), and the discharge increment §Qc,1 is determined
using Eq. (5.86). Next, the stage increments §h4 pm and 8hp N are determined using
Egs. (5.83) and (5.84), and the discharge increments § Q4 m and 8Qp N are computed
using Egs. (5.79) and (5.80). Finally, the return sweep can be carried out along both
channels A and B.

It should be noted that the equal water stage condition (5.81) may be replaced with
the equal energy level condition at the junction:

nt+1y 2 ntly 2 1y 2
1 1 Qim\ _ an L b QN _ L L Qeh
zsA,M 2g AZ-S&I = sz,N 2g A§+I\1[ - zsC,l Zg A}é+ll

(5.87)

which can be expanded in terms of 84 and §Q and used to substitute Eqs. (5.83)
and (5.84).

Algorithm for a looped channel network

A “looped” channel network is shown in Fig. 5.12. The difference between “den-
dritic” and “looped” channel networks is that there is only one possible flow path
from a given point to another in a dentritic network, while there are usually sev-
eral such flow paths in a looped network. The previous double sweep algorithm
cannot be applied directly to the solution of unsteady flows in looped channel net-
works. The looped solution algorithm described by Cunge ez al. (1980) is often used
instead. In this algorithm, the term “node” is used to represent the junction of several
flow paths that originate from either other nodes or boundary points. For exam-
ple, the nodes in the channel network shown in Fig. 5.12 are A, B, C, and D. The
points (cross-sections) between two nodes in each channel are defined as intermediate
points.
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\ Channel AD

Figure 5.12 Looped channel network.

Consider the channels AB, AC, and AD, which are connected to node A in Fig. 5.12.
Suppose that there are L computational points along channel AB, M points along
channel AC, and N points along channel AD. For the reach between points i and i+ 1
in a channel, e.g., AB, Egs. (5.60) and (5.68) can be obtained. Eliminating §Q; 1 from
them yields

8hiy1 = Ciz18hi + Di4180; + Eiyq (5.88)

where Ciy1 = —(dja; — d;a))/(d)c; — dic), Diy1 = —(d,b; — d;b)/(d}c; — dic]), and
Eip1 = (d)p;i — dip))/(dc; — d;c)).
Suppose that the following relation exists at point i + 1 of channel AB:

8Qit1 = Fiy18hiy1 + Gig1 + Hip18hp (5.89)
Substituting Eq. (5.89) into Egs. (5.60) and (5.68), and eliminating Ab;;1 yields
50; = Fish; + G + Hishy, (5.90)
with

Fi = —[ai(c; + d;Fiy1) — a;(c; + d;Fi11)]/
[bi(c; + d;Fiy1) — bi(ci + diFiy1)] (5.91)
Gi = [(pi — diGiz1)(c; + d;Fiy1) — (p; — d;Giy1)(ci + diFit1)]1/
[bi(c; + diFix1) — bi(ci + diFiz1)] (5.92)

H; = —Hj1ldi(c; + d;Fi11) — d(ci + diFit1)1/
[bi(c; + diFiz1) — bi(ci + diFiz1)] (5.93)
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The recurrence coefficients Fr_1, Gr_1, and Hy _1 are obtained by eliminating §Qr
from Egs. (5.60) and (5.68) in the reach between points L — 1 and L. Therefore, the
coefficients F, G, and H can be computed using Egs. (5.91)—(5.93) in the first sweep
from node B to node A, consequently yielding

801,48 = F1,4B8h 1,48 + G1,4B + H1,4B5h1 (5.94)
where 801, 4p denotes the discharge increment at point 1 of channel AB; and Fy 43,

G1,4B, and Hj ap are recurrence coefficients known from Egs. (5.91)—(5.93).

Similarly, a sweep from node C to node A along channel AC gives
801,4c = Fiacéhi,ac + Giac + Hiacdhum (5.95)
and a sweep from node D to node A along channel AD gives
801,4ap = F1,ap8h1,4p + G1,ap + H1,aD8hN (5.96)

The compatibility conditions of discharge continuity and equal water stages at node
A are written as follows:

J
1 1
a@™H +) 0t =0 (5.97)
=1
z:?:llzz:‘{g=...=z;’1+,l.1=__,=z;’1‘f]1 (5.98)

where j is the index of the channels that emanate from node A, ] is the total number
of such channels and ] = 3 for node A in Fig. 5.12, and g1 (") is the external inflow
(or outflow) to node A at time #"+1.

Applying the Taylor series expansion to Egs. (5.97) and (5.98) yields

J J

Q@+ 01 +) 801,;=0 (5.99)
j=1 j=1

81’)1,1 :5/’}1,2 =... =8/’J1,,‘= ...:51’11,] (5.100)

Substituting Egs. (5.94)—(5.96) and (5.100) into Eq. (5.99) yields a linear algebraic
equation in terms of | + 1 unknowns:

£(8ha, b1, 8hy,8hN) = 0 (5.101)

Eq. (5.101) is derived based on node A. Performing the above procedure for all
nodes in the network eventually leads to a system of linear equations for the stage
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increments 8b at all nodes as unknowns:
[S1{8h} = {b} (5.102)

where [S] is the coefficient matrix with m x m elements, {8h} is the vector of m
unknowns, and {b} is the vector with m elements holding all free terms. Here, m
is the total number of nodes.

The system represented by Eq. (5.102) can be solved using a matrix inversion tech-
nique. Once the stage increments are solved at the nodes, Eqs. (5.94)—(5.96) are used
to determine the discharge increments at the ends of each channel, and Egs. (5.88) and
(5.89) are used to compute 8h; 1 and §Q;+1 for all intermediate points in a generalized
return sweep.

In principle, Eq. (5.102) can be solved using any matrix inversion technique. How-
ever, because the matrix may be quite large, a direct inversion computation can be
expensive. An iterative inverse computation may also have trouble when the matrix
loses diagonal dominance. The block tri-diagonal matrix solution technique suggested
by Mahmood and Yevjevich (1975) has been found to be very efficient in the solution
of equation system (5.102). The details can be found in that reference.

5.2.2.4 Treatment of hydraulic structures as internal
boundaries

Because of their complexity, it is almost impossible to simulate the detailed flow pat-
terns around in-stream hydraulic structures, such as culverts, bridge crossings, drop
structures, weirs, sluice gates, spillways, and measuring flumes, using a 1-D model.
Simplifications must be made to obtain a feasible solution. The storage effect of the
flow at a hydraulic structure is usually neglected, so the same flow discharge is imposed
at its upstream and downstream ends:

Oup = Qdown (5.103)

which can be expanded as

SQMP = 8Qdown = QZown - Q;,ktp (5.104)

The water stage at the hydraulic structure is often determined using a stage-discharge
relation, which is related to whether the flow is upstream or downstream controlled.
The upstream control flow is treated as a free overfall flow that is critical, while the
downstream control flow is treated as an orifice-like flow. For the upstream control
flow, the critical flow condition implies

O =A.|g=c (5.105)

where A, and B, are the area and top width of flow at the structure, respectively. Both
are functions of flow depth. Thus, the following general stage-discharge relation can
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be established:

O = f@sup) (5.106)
The first-order Taylor series expansion of Eq. (5.106) reads

of

azS,up

50 —

Shyp = [* — O (5.107)

For the downstream control flow, the following relation of orifice-like flow is
usually used:

0= A\/Zg(zs,up — Zs,down) (5.108)
Ky

where K is the coefficient of energy loss at the hydraulic structure.
Because it cannot handle the situation of 25,y < 2 down> Eq. (5.108) is reformu-
lated as

Ki QlO|

Rsup — Zs,down = Z A2 (5.109)

which is then expanded as

K O*1O%|
Shup - (Shdou/n = —Z;k’up + zj,down + E e

(5.110)

Note that the stage and discharge increments originated from the term on the right-
hand side of Eq. (5.109) are ignored in Eq. (5.110). They may be included for the sake
of completion.

A dam structure may have various flow passage facilities, such as spillways, sluice
gates, and power generators. The flows through these facilities may be free overflow
and/or under control. Thus, the stage-discharge rating relation for a dam structure
may be Egs. (5.106), (5.108), or a combination of them.

In addition, the water stage or flow discharge measured at a dam and other structures
can be used as the internal condition. If a time series of the water stage is known:

Zsup = Zs(t) (5.111)
the stage increment at the upstream point is determined by
Shup = 2ty — 2ty (5.112)
If a time series of the flow discharge is known:

Qup = 0(1) (5.113)
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the discharge increment at the upstream point is

8Qup = Q" — OF (5.114)

Eq. (5.104) and one of Egs. (5.107), (5.110), (5.112), and (5.114) are used to
determine the flow at a hydraulic structure. Eq. (5.104) can be written in the form
of Eq. (5.60), with the coefficients being a; = 0, b; = 1, ¢, = 0, d; = —1, and
pi = Ofpun — Qip- Egs. (5.107), (5.110), (5.112), and (5.114) can be written as
Eq. (5.68). The coefficients are: a; = —df /0zsup, b, = 1, ¢; = 0, d; = 0, and
p; =" — Q" for Eq. (5.107); a; = 1, b; = 0, ¢; = —1, d; = 0, and p; = —=z,,, +
z* + K1 O*|0*|/(2gA*?) for Eq. (5.110); a,=1,b,=0,c =0,d =0, and

s,down
b= z;’:,rf} —z{,p forEq. (5.112);anda; = 0,b; = 1,¢; = 0,d; = 0,and p; = ol O
for Eq. (5.114). Thus, Egs. (5.104), (5.107), (5.110), (5.112), and (5.114) can be
intrinsically incorporated into the solution algorithm.
It should be noted that described above are the general methods for considering
hydraulic structures in a 1-D channel network model. For specific hydraulic structures,
empirical stage-discharge relations may be used (see Wu and Vieira, 2002).

5.2.2.5 Stability of Preissmann scheme for unsteady flow
equations

The numerical stability of the Preissmann scheme for the St. Venant equations was
studied by Lyn and Goodwin (1987) and Venutelli (2002). Lyn and Goodwin’s findings
are introduced below.

Egs. (5.1) and (5.2) are written as

oF oF
—+M—=0b> 5115
at + ax ( )
where F = (u,h), M is the coefficient matrix, and b is the vector of inhomoge-
neous terms.

Appling the Preissmann scheme (4.34)—(4.36) to discretize Eq. (5.115) and lineariz-
ing the discretized equation locally yields

YE = Fio) + (= ) ET = B+ rMolo (B —
+ (1 = 6)(F/,; — F)] = bAt (5.116)

where 7 = At/Ax, and M) is the coefficient matrix of M at locally uniform state.
The Fourier component, § = 8, (@A=94%) corresponding to F is governed by

YO = o) + (=)@ — 8 + rMolo s — 87t

+ 1 -6)6 —8)1=0 (5.117)
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The growth factor of § in Eq. (5.117) is

rcp

f=1-—
1//+n%1+rck0

(5.118)

where £ = 72 5 = ¢/°%% and ¢;, is a characteristic wave speed of the system.

For the homogeneous problem, the von Neumann condition for numerical stability

is || < 1, which implies
1\ 1 1
(-1 L (o) s

where C, is the Courant number, defined as C, = rcy.

When C, > 0, the stability condition (5.119) is schematically shown in Fig. 5.13. The
Preissmann scheme is unconditionally stable in the quarter of § > 1/2 and ¢ > 1/2,
and unconditionally unstable in the quarter of § < 1/2 and ¥ < 1/2. In the other two
quarters, the stability depends on the Courant number. Usually, ¥ = 1/2 is used for
better accuracy regarding space. This leads to the conclusion that for unconditional
stability — i.e., stable for all Courant numbers — it is necessary that 6 > 1/2. If
¥ # 1/2, the stability will depend on the sign of C,, or equivalently, on the direc-
tion of travel of a characteristic wave. Because of this, ¥ # 1/2 should be used with
caution in situations where characteristics travel in both directions, particularly where
characteristic directions may change. As described by Meselhe and Holly (1993) and
Kutija and Hewett (2002), the Preissmann scheme may encounter numerical instabil-
ity in the transition between supercritical and subcritical flow regimes. This may be
avoided by using some newly developed schemes, such as that proposed by Kutija and
Hewett (2002). Some schemes for dam-break flow simulation introduced in Section
9.1 may also be used in the simulation of mixed-regime flows.

1.0
Conditionally Unconditionally
srable stable
B 05
Unconditionally Cenditionally
unstable stable
0.0
0.0 0.5 1.0

Figure 5.13 Regions of stability in y — 6 plane when C, > 0.



|-D numerical models 207

5.2.2.6 Auxiliary treatments for unsteady flow calculation

Representation of friction slope

The friction slope in Eq. (5.2) may be represented in various ways, such as arithmetic
mean, harmonic mean, geometric mean, and conveyance mean (French, 1985), as
expressed in Egs. (5.42)—(5.45) for a steady flow model. For an unsteady flow model,
the arithmetic mean friction slope is introduced in Eq. (5.56), and the conveyance
mean friction slope is given as

[ORQ + (A — YR QI+ (L - O)[YROY, + (1 — ¥y 0]
P otk + (= v K T+ (1= 0)[yrK?,, + (1 — yR)K?]

(5.120)

The harmonic and geometric mean friction slopes are left to interested readers.

Small flow depth

Computational difficulties arise when the flow depth becomes small. As the flow depth
approaches zero, the conveyance and flow discharge go to zero, and thus the friction
slope becomes indeterminate. This was explained well by Cunge et al. (1980). Meselhe
and Holly (1993) showed that the characteristic curves are vertical and do not intersect
when the flow depth is zero; consequently, a solution does not exist.

Cunge et al. (1980) proposed and Meselhe and Holly (1993) developed further
an approach for handling the dry-bed problem. The basic idea is to switch the
weighting for friction slope from central (g = 0.5, highest accuracy) to upstream
(0 < ¥r < 0.5). In a diffusive wave model, Langendoen (1996) related the weighting
factor to the flow depth as

¥r = min(0.5, ah) (5.121)

where the coefficient a &~ 0.7 and the exponent b ~ 0.35.

In the author’s experience, Eq. (5.121) may fail and ¥z = 0 is occasionally necessary
to ensure stable solutions when using the dynamic wave model. One of the best choices
is to try several values of ¥r and find the value closest to 0.5 that allows a stable
solution for a specific case.

Storage effect of still water zones

Still waters, or very slow flows, exist in sudden expansions, appendix channels, ponds,
or small lakes that are connected to the main stream. These still water zones do not
have significant momentum exchange with the main stream, but their storages may
affect the main flow. To consider the storage effect, the continuity equation (5.1) is
substituted by

A+ A ad
% + 99 =q (5.122)
t ox
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where Ay is the cross-sectional area of still water zones, and A is the cross-sectional
area of main flow. The momentum equation (5.2) or (5.54) is not changed, in which
only the main flow area A is used.

5.3 1-D CALCULATION OF SEDIMENT TRANSPORT

5.3.1 1-D equilibrium sediment transport model

The sediment continuity equation (5.38) is used to determine bed change in the equi-
librium sediment transport model. For uniform sediment in a rectangular channel, it
becomes

0z | 0q:
1-p)—2+ =0 5.123
(1 —=p) 5 T oy ( )

where z;, is the bed elevation, and g is the sediment transport rate per unit channel
width. As demonstrated in Eq. (5.37), g; is determined using a sediment transport
capacity formula.

Many numerical schemes have been used to discretize Eq. (5.123). Saiedi (1997)
summarized some of them. For example, applying the Preissmann scheme expressed
as Egs. (4.35) and (4.36) to Eq. (5.123) yields

YAz 1+ (L —)Az; 1
(1 = pl) =" 0@ —ah
+ 1 =0)(qri — i) =0 (5.124)

where Az;,; is the change in bed elevation at cross-section 7 in time step At, i.e.,
Azp; = szl -2 The spatial and temporal weighting factors in Eq. (5.124) were
given various values, e.g., ¥ = 0.5 by Cunge and Perdreau (1973).

De Vries (1981) adopted a Lax-type scheme for the bed change term and an explicit

central difference scheme for the gradient of sediment discharge:

1
=t fatt = [ = v, + 2+ 40 |}

1
+ m(q?,iﬂ - 4.1 =0 (5.125)

where vy, is a weighting factor, which can enhance numerical stability but may
introduce numerical diffusion. A small value should be used for .

Gessler (1971) and Thomas (1982) used the forward difference scheme for the bed
change term and the central difference scheme for the gradient of sediment discharge:

AZb,,‘
At

1
(1= pp,) + m(qziﬂ - qZ,;l) =0 (5.126)



|1-D numerical models 209

Because of its special link between bed change and sediment discharge, Eq. (5.123)
can be easily solved using the finite volume method on a staggered grid, in which
sediment discharge is stored at cell faces and bed change is stored at cell centers.
Integrating Eq. (5.123) over the control volume in Fig. 4.14 yields

Azpp
At

(1- p;n) Axp + Qte — Qtaw = 0 (5.127)

where g, and g; ,, are the sediment discharges at faces e and w and can be determined
using the first-order upwind scheme or the QUICK scheme introduced in Section 4.3.1.

The calculations at each time step are executed as follows: (a) compute flow using
the steady or unsteady flow model introduced in Section 5.2; (b) determine sediment
discharge using an empirical sediment transport formula; (c) calculate bed change
using one of Eqgs. (5.124)—(5.127); and (d) update channel geometry. In addition,
bed material sorting is also calculated for non-uniform sediment transport. This is
introduced in Sections 5.3.2 and 5.3.3.

5.3.2 |-D quasi-steady non-equilibrium sediment
transport model

5.3.2.1 Representation of hydrographs

Denote the characteristic length, time, and velocity of fluvial processes in an open chan-
nelas A, T,and U. If T > A /U, the time-derivative terms in the St. Venant equations
(5.1) and (5.2) and sediment transport equations (5.27), (5.28), and (5.34) can be omit-
ted. Therefore, the fluvial processes can be simulated using a step-wise quasi-steady
model. As demonstrated in Fig. 5.14, the continuous time series of flow discharge,
water stage, and sediment discharge are represented by step functions that are con-
structed with the corresponding representative quantities over a suitable number of

Qneasi-seeady hydrograph
800 veavesrnsr Unstgady hydrograph

Flow discharge (m's')
B2

g

20 30 40 50
Time {day)

o
=

Figure 5.14 Representation of hydrographs in quasi-steady model.
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time intervals. At each time interval, the flow and sediment transport are assumed to
be steady, but the bed change and bed material sorting are still calculated, and thus
the temporal evolution of channel morphology is simulated.

The time intervals are generally used as time steps in the calculation of bed change
and bed material sorting, and should thus be restricted by the stability criteria of
the sediment transport model. In addition, the time intervals should be defined in
such a way that the temporal variations of flow discharge, water stage, and sediment
discharge are well represented. This means that shorter intervals should be used for
high flow periods and longer intervals may be used for low flow periods. Normally,
the time intervals can be hours or days.

5.3.2.2 Discretization of quasi-steady sediment transport
equations

As discussed in Section 5.1.2.1, two approaches may be used in the simulation of total-
load transport. The approach that computes bed load and suspended load separately
is adopted here.

Under steady flow conditions, the suspended-load and bed-load transport equations
(5.27) and (5.28) without side sediment discharges are written as

dQCy) _

0 B(Cy — Cp) (5.128)
dx
d
S"k 7 (Qbet =~ Qu) (5.129)
X

Egs. (5.128) and (5.129) are first-order ordinary differential equations. They can
be discretized using many numerical schemes, such as the Euler scheme, central dif-
ference scheme, and the Runge-Kutta method. Han (1980) established the following
exponential difference scheme for Eq. (5.128), based on its analytical solution:

awgBit12A%xi412
Cryit1 = Cukyit1 + (Cri = Cup,) exp(— T ‘/ - )
Qit1/2
Qit1/2
+ (Curi — Cupyiv1)
*k,i wkyi+1 (stkBi+1/2Axi+l/2
B; Ax;
x [1 - exp(—““’sk . ’*“2)} (5.130)
Qit12

The Han scheme (5.130) is very stable, but it is not strictly conservative. However,
many tests have shown that it has good accuracy.

Similarly, Eq. (5.129) can be discretized using the following exponential difference
scheme:

Axiv12
Opk,it1 = Qbsk,iv1 + (Qpk,i — Opuk,i) €XP <_1L/>

L AXit1)2
+ (bt — Qi) 3 [1 - exp(—’“/)} (5.131)
Xi+1/2



|-D numerical models 211

Egs. (5.130) and (5.131) do not involve time, but they are applied at time level 7+ 1
in the computation of channel morphological evolution.
The bed change equation (5.30) is discretized as

AApp,it1 Obk,it1 = Obsk,it1
(1= p) =0 = 0w Bi1(Crig1 — Capig1) + — o
At L
(5.132)
where AApy ;11 is the change in bed area due to size class k at time step At.
The total change in bed area, AA 1, is calculated by
N
AApivi =Y AApgin (5.133)
k=1
and the bed elevation is updated by
1
Tt = Risr T Aty (5.134)

where j is the point index in the cross-section, and Az ;1 ; is the local change in
bed elevation obtained by allocating the bed area change AA;; ; along the cross-
section. For a uniform allocation, Az, ;1 ; = AAp;1/Biy1. More allocation options
are discussed in Section 5.3.5.

The bed material sorting equations (5.32) and (5.33) in the mixing and second layers
are discretized as

n n *1 n+1 n
bl AApkivt + AL i 1Phrivr T Pok it Aozt — Az — AAbiv1)

Porit1 = n+1
Am,i+1
(5.135)
n n w1 n+1 n
w1 Aabin1Pepkint ~ Pokipt @rint = Aivr = Apiv1) (5.136)
Poppjiv1 = n+1 )
sub,i+1

. . 1 .
where PZZ,m is ka,iH if AAp 11 +AL 1 = AZ:iH and p?b/e,iﬂ if AAp i1 +A 1 <
+1

it

The bed-material gradations in other subsurface layers are calculated according to
mass conservation, if there is exchange between them.

The bed-material gradation py;, in Eq. (5.29) can be treated explicitly or implicitly.
If the implicit scheme is used, the discretized sediment equations (5.130)—(5.136) can
be solved in a coupled form, using the direct method proposed by Wu (1991). This
coupled solution procedure is not presented here, because a similar one is introduced
in the next subsection.
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5.3.3 1-D unsteady non-equilibrium sediment transport
model

5.3.3.1 Discretization of unsteady sediment transport
equations

For simplicity, the bed-material load transport model introduced in Section 5.1.2.1 is
adopted here. Applying the Preissmann scheme to discretize the total-load transport
equation (5.34) yields (Wu et al., 2004a)

n+1 n+1
v ( Qi1 Qi ) Ml ( Qi i )
+1 +1 n n +17+1 n n
At \ g* u” U At BLEIur .U’

thyi+1 " i+1 thyi+1~i+1 th,i thyi i
0 n+1 n+1 1-6 n n
+ E(th,iﬂ - th,i )+ W(th,iﬁ-l o th,i)
+1 +1 +1 +1
0 Q?k,i—ﬂ - Q?*k,m 1 Q?k,i - Q:l*k,i
+0|v [+ +d- w)ﬁ
ti+1 t,i
nk e Y] . nk e Y .
Si+1 Sit1 K o
+(1—6)|:1// 1 Z+Ln xR, 1+ +(1_w) 1 an j£3 li|
ti+1 t,i
=0 i + (=G + A=W+ 1= ¥)g),]
(5.137)
which can be written as
Qi = Q! + 300 + Ol + con (5.138)
where
14 0 O
=—F———+-—+—
1 11 1
Bl Uiy At Ax Ly,
1-vy 0 01 —1)
)= """ _——
N — 1
ppilurtiae  Ax LY,
v 1-6 1-0)y
c3 = — —
i1 Ui AL Ax LY
Y 11— 1-6  (1-0)1-1y)
t’;w.Uf’At Ax L:”i
Qn_zl‘ n-ﬁ/;ll Qn i n i
Cop = OY — 2 01— Y) =2 4 (1 — )y 2L 4 (1 - 0)(1 — y)—
:li+1 Lt i Lt,i+1 Lt,i

+OVqE + 00 =g+ A= 0v gy + (1 =01 =gy,

In order to satisfy sediment continuity, the sediment exchange terms in Egs. (5.34)
and (5.36) should be discretized using the same scheme. Thus, the bed change
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equation (5.36) is discretized as

n+1 n+1 n n
1 , AApkiv _ Qth,iH - Qt*k,i+1 1-9 thi+1l Qt*k,i—H
(A —p) = = o + (1 =6~
ti+1 t,i+1

(5.139)

The total change in bed area is calculated using Eq. (5.133), the bed elevation
is updated using Eq. (5.134), and the bed-material gradations are determined using
Egs. (5.135) and (5.136).

5.3.3.2 Solution of discretized unsteady sediment transport
equations

Decoupled sediment calculation

A decoupled procedure for solving the discretized sediment transport, bed change, and
bed material sorting equations can be established, if the bed-material gradation py;, in
Eq. (5.35) is treated explicitly:

n+1 o 141
Qt*k,i—l—l = pbk,i+1th,i+1 (5.140)

The sediment quantities at cross-section i + 1 are then obtained in the following
sequence:

5
6

Compute pz;:}“ using Eq. (5.135), and

(1) Compute QZE:‘H using Eq. (5.140) with the known Pppists
(2) Calculate Q?kfiil using Eq. (5.138);

(3) ComputeAAyy ;11 using Eq. (5.139);

(4) Calculate AAy ;11 using Eq. (5.133);

(

(

)
)
)
) Update the cross-section topography using Eq. (5.134), and calculate the bed-
material gradations in the subsurface layers.

Once the sediment discharges at the inlet have been determined using boundary con-
ditions, the forewater calculation of sediment transport can be performed cross-section
by cross-section, following the procedure laid out above. This decoupled procedure
is very simple but may be subject to non-physical phenomena, such as numerical
oscillation and negative bed-material gradation.

The decoupled sediment calculation is usually decoupled from the flow calculation.
Therefore, the entire flow and sediment calculations are fully decoupled.

Coupled sediment calculation

A coupled procedure for solving the discretized sediment equations described above
can be established, if the bed-material gradation p;; in Eq. (5.35) is treated implicitly:

n+1 _ antl *n+1
Ottt = Porir1 Dttt (5.141)
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This coupled solution procedure can eliminate those non-physical phenomena that
exist in the decoupled procedure. However, the set of discretized sediment equations
should be solved simultaneously. An iteration method is normally needed, and then the
computational effort will be significantly increased. To avoid this, the direct solution
method proposed by Wu (1991) can be used (Wu et al., 2004a), as described below.

For convenience, Eq. (5.138) is written as

1 1
Orir = ek Qliiir + eor (5.142)

+1 +1 ~
where ¢, = G‘W(ClL?zH)’ eor = (2Qu; + 300, +eaQf; + cpp)/ers and ¢ is
+1 +1
cor Without OwQ:’*k i1 Zi+1'

Eq. (5.139) is written as
AApivr = HOYTLy = HO i + ok (5.143)

where f1 = o = 0At/[(1 —pm)Lt T1)s and fop = (1— Q)AIE(QZW}+l - Q:l*k,i+1)/
[(1 - pm)Lt l+1]
Inserting Egs. (5.141) and (5.142) into Eq. (5.143) yields

AApkisr = (frex — PR Ot + (freor + for) (5.144)

and then substituting Eq. (5.1335) into Eq. (5.144) leads to

1
(f2 = Frew QL Pl i (freo + fo) Aty
AAbk,i+1 = AAh,i+1 nt+ 1 sn+1
A z+1 + (fZ flek)th i1 Am’,qr] + (fZ - flek)th,,'+1

+1 +1

(fa — flek)Q:/:l,i+1[pbk i1 Amit Ot A — Aliin)]
- 1
m,i+1 + (fl - flek)Q;k[Z;‘:,l

(5.145)

Summing Eq. (5.145) over all size classes and using Eq. (5.133) yields the following
equation for the total change in bed area:

+p +1
AAh _ Z (fZ _flek)Q;k/:lH»l pbk 1+1Am i+1 +pbk z+1(A:ln i+1 Anm,i+1)]
J+1 — Y T 1
k=1 A mit1 T (2 = flek)Qj/:jH

+i (freok + fo) Apyt s /
AL+ (- f1ek)Qf/Z;Z:1

1
N (fa - flek)QTZjﬂpbk i+1

+1 1
mi+1 + (- f1ek)Q;‘,Z;r+1

(5.146)
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The discretized sediment equations are then directly solved in the following
sequence:

1) ComputeAA, ;1 using Eq. (5.146);
2) Calculate AApy ;41 using Eq. (5.145);
3) Compute pzz,}“ using Eq. (5.135);

(1)
(2)
(3)
(4) Calculate QZ:ZZ,H using Eq. (5.141);
(5)
(6)

Compute Q:‘/jllﬂ using Eq. (5.142), and
6) Update the cross-section topography using Eq. (5.134), and calculate the bed-

material gradations in the subsurface layers.

However, the coupled sediment calculation is still decoupled from the flow
calculation so that the entire flow and sediment calculation procedure is in a
semi-coupled form.

The above direct solution method can also be used in the bed-load and suspended-
load transport model in Section 5.3.2, by writing Eqgs. (5.130)—(5.132) as Egs. (5.142)
and (5.143) with Cgir1, Cirit1> Ophiti> and Qpupir1 as unknowns and deriv-
ing an equation similar to Eq. (5.146) to compute the total bed change AA,; ¢
directly.

5.3.3.3 Stability of Preissmann scheme for sediment
transport equation

Neglecting the influence of the source term, the error in the sediment transport rate
determined using Eq. (5.138) is governed by

a8 = 287t + c387 + cad] (5.147)
where 67 is the Fourier component of the error at point i and time level 7, defined

as 87 = V"%, with V" and o being its amplitude and wave number, respectively.
Inserting this definition expression into Eq. (5.147) yields the growth factor:

Vn+l io Ax
;e _e ta (5.148)
yn Clewa )

The coefficients of Eq. (5.138) satisfy that ¢; > 0 and ¢y 4¢3+ ¢4 < ¢ at the locally
uniform state. Supposing ¢, c3, and c4 > 0 yields

C3etoAx +c4 —ioc Ax

1 eiUAx -

c3 + cqe

c3 +c
4 < 3 4
1 — Cze—wa

e )

Ir| = <1 (5.149)

which means that the von Neumann stability condition is satisfied. At the locally
uniform state, in which U and L; are constant in each element, the constraints ¢, c3,
and ¢4 > 0 imply
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v 1-vy } :
1-— , <6<1 h
ma"{ C+vD, C—d-wb,J =" =" "
C,
maX{O,l — } <¢y=<l1 (5.150)
D,

where C, is the Courant number UA#/Ax; and D, is a scale factor of non-equilibrium

sediment transport, defined as D, = UA¢/L,. Note that B; is set to 1 here.
Condition (5.150) is sufficient but not necessary for the numerical stability of

Eq. (5.138).If L; <« Ax, D, > C,, then ¥ and 6 should be given values close to 1.

5.3.3.4 Advantages of the coupled sediment calculation
procedure

Stabilities of explicit and implicit schemes for bed-material gradation

The decoupled and coupled sediment calculation procedures are compared by analyz-
ing the stabilities of the explicit and implicit schemes for the bed-material gradation
in Eq. (5.35). For convenience, Egs. (5.140) and (5.141) are replaced by

Ot =10+ (L= 0 1050 (5.151)

where 6, is the temporal weighting factor for bed-material gradation: = 1 for the
implicit scheme (coupled calculation procedure), and 0 for the explicit scheme
(decoupled calculation procedure).

Inserting Egs. (5.142), (5.143), and (5.151) into Eq. (5.135) yields the equation for
the bed-material gradation in the mixing layer:

PZZJH (A:lnt}l — A1 — DAy, i+1*>i21’é,i+1
AL+ (- e 0, Ol gl
[Ag, i1 — (2 = fien) (1 = 0 Q50T L 17
Al + (= fen 8Ot
fieok + for
T i1 (2 — flek)OPQ:/Z;r_,_l1

(5.152)

To simplify the analysils, it is assumed that A%l ~ A” . For deposition, usually
+ . .
AApiy1 + A} = AL then Pprivt = Phiv1s and the bed-material gradation
error, 8, is governed by

5+ At = Ay — (h—fieg) (1 — GP)Q:’Z;;ll

=§" - pre]| (5.153)
Am i1 T (f2 = flek)QPth Ji+1
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Numerical stability requires 7 = [§”1/8” < 1|, which implies that for the implicit
scheme,

0(1 —ep) Q"L At

tk,i+1 1
= AApip1 — 24070 (5.154)

A= ppLiH, i m,it

and for the explicit scheme,
0(1 —ep) Q7T L At
; tk;;:ll = ZAZ:‘L —AApi (5.155)
a- pm)Lt,i—H
n+1

For erosion, usually AA, ;11 + A} ;| <A then Dphiv1 19 the bed-material

myi+1°
gradation in the second layer, the influence of which is assumed to be negligible on
the numerical stability of the bed-material gradation in the mixing layer. Thus, the

bed-material gradation error is governed by

gt _ gutimant = (2= frep - 0O

1 1
AN+ (= ey O

(5.156)

from which it is known that the implicit scheme is unconditionally stable, and the
stability condition for the explicit scheme is

0(1 — ep) O Ar

thyi+1 1
1 - p/ )Ln+1 = Zt,i—&-l +Afn’i+1 (5157)
m

t,i+1

By definition, the mixing layer should be thicker than the change in bed elevation,
i.e., A%l > |AAp|. Because e, < 1, the stability condition (5.154) for the implicit
scheme is automatically satisfied; conditions (5.155) and (5.157) require upper limits
for the time step At in the explicit scheme. It is evident that the implicit scheme is
much more stable than the explicit scheme.

Requirement of non-negative bed-material gradation

In calculating bed-material gradation, negative values may occur under certain
conditions. Of course, this is a non-physical phenomenon and must be eliminated.

The condition pZZ}.H > 0 for Eq. (5.152) implies that

freor + fox + (A1 — (2 = fre) (1= 6) O L 107 11

+ (A%L - :ln,i-H - AAb,iH)PZZ,,-H >0 (5.158)
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and then

*,
freor + for + A it @hr i1 = Piiivt)

AApiyg < Artl oy

it Vit
+1
00— e = 6O AP i (5.159)
A=y LTh Ppkivt

Because the last term on the right-hand side of inequality (5.159) is negative but
vanishes when 6, = 1, the implicit scheme allows for larger time steps than the
explicit scheme. After considering the stability conditions of the Preissmann scheme
for sediment transport equation, condition (5.159) for the implicit scheme can be
easily satisfied. One of the safest treatments is to impose § = 1, |AA,| < A%F! and
Al ~ A7 Cwhich is a sufficient but not necessary condition.

Sensitivity of bed-material gradation to mixing layer thickness

Assuming AZLL = A, .11 = Amir1 in Eq. (5.152) and differentiating pZZ’}H with

respect to Ay, ;11 yields

+1 +1 2
Wit Wi _ Amiv1 -
A m,it1 =1 0Am,i+1 o0 LAmirt +fi(l— et |

(5.160)

The gradient 3p}; ! )
unit change in mixing layer thickness. Eq. (5.160) shows that the implicit scheme has

smaller apng} +1/ 9A,.i+1 and is thus less sensitive to A, ;11 than the explicit scheme.

/A, i+1 represents the change in bed-material gradation per

5.3.4 Treatments for sediment transport in
channel networks

If a channel network is concerned, the sediment transport at channel confluences
and splits, as well as hydraulic structures, needs to be treated specially. At hydraulic
structures such as culverts, drop structures, weirs, and measuring flumes, erosion is not
allowed; thus, the beds are fixed and the sediment discharges are constant through
them. For bridge crossings, 1-D models are able to simulate the bed change due to
channel contraction, but not the local scour due to 3-D flow features. However, the
maximum local scour depth and volume can be estimated using empirical functions.

In analogy to the flow calculation described in Section 5.2.1.3, the sediment trans-
port at a channel confluence or split can generally be computed by applying Eqgs.
(5.130) and (5.131) or Eq. (5.137). For this computation, the downstream cross-
section at the confluence or the upstream cross-section at the split needs to be divided
into two parts. This approach was successfully used by Wu (1991) in a quasi-steady
model. However, a simpler approach, which is described below, may be used if the
three cross-sections at the confluence or split are located very close together.
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For the confluence shown in Fig. 5.9, the suspended-load concentration Cy 3 and
bed-load transport rate Qyy 3 at cross-section 3 can be calculated using the following
mass balance equations:

Cr3 = (Q1Ce1 + 02Ci2)/ 03 (5.161)
Obk3 = Opr,1 + Qb2 (5.162)

where Cp, 1 and C, are the suspended-load concentrations and Qp 1 and Qpp are
the bed-load transport rates at cross-sections 1 and 2, respectively, which are known
from the previous calculations in channels 1 and 2.

For the split shown in Fig. 5.10, the following mass balance equations exist:

Q2C,2 + 0O3C,3 = 01Cp 1 (5.163)
Opk2 + Oprz = Opr1 (5.164)

which, however, cannot uniquely determine Cp,, Cp3, Opr2, and Qpp 3 without
additional relations. For suspended load, the ratio of Cp, ; and Cp, 3 can be determined
using Ding and Qiu’s (1981) method. Fig. 5.15 depicts the vertical distribution of
suspended-load concentrations entering cross-sections 2 and 3. The bed elevations of
these two cross-sections are denoted as z;, and z;,3, and their water stages are assumed
to be z;. Suppose that cross-section 2 is in the main branch channel, i.e., z;; < 2p3-
It is assumed that the sediment concentration at cross-section 3 corresponds to the
upper layer above z;3 in the distribution curve of cross-section 2. Therefore, the ratio
of Cg, and Cp 3 can be approximated as
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Figure 5.15 Sediment concentrations at channel split.
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where f3(2) is the Rouse distribution of suspended-load concentration, and § is the
thickness of the bed-load zone at cross-section 2.

Then, C;, and Cp 3 can be determined using Egs. (5.163) and (5.165).

The determination of bed-load transport rates Qpr» and Qpy 3 has not been well
investigated, due to the complexity. Their ratio may be assumed to be approxi-
mately equal to that of bed-load transport capacities Qp.z2 and Qp,p 3 at cross-
sections 2 and 3:

Ovk2 _ Obxk

Opk3  Obuk3

and Qpg» and Qpyp 3 can then be determined using Eqgs. (5.164) and (5.166).
Note that Egs. (5.161)—(5.166) can be applied in both quasi-steady and unsteady
sediment transport models.

(5.166)

5.3.5 Lateral allocation of bed change in
1-D model

A 1-D model provides only the lumped change in bed area, AA, at a cross-section. In
order to acquire a reasonable prediction for long-term river morphological evolution,
AAy, must be allocated appropriately to the local change in bed elevation, Az, , along
the cross-section at each time step. The obtained Az, is used to update the cross-section
geometry, as expressed in Eq. (5.134).

The simplest method is the uniform distribution of bed change along the cross-
section, except for water edges, where the bed change may be zero. Wu (1991)
suggested a slight modification of this method, assuming uniform deposition and ero-
sion for wide channels and horizontal deposition and uniform erosion for narrow
channels, as shown in Fig. 5.16. This method is more adequate for suspended load
(fine sediments) than for bed load (coarse sediments), because the suspended-load con-
centration tends to be relatively uniform along the cross-section while the bed load
usually moves in strips.

Deposited
bed

Figure 5.16 Allocation of bed change in cross-section: (a) wide channel and (b) narrow channel.

A more general method, used by Chang (1988), allocates deposition and erosion
along the cross-section by a power function of excess shear stress:

(tp — )"

A =
b N (- Ay

AA, (5.167)
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where 15, is the local bed shear stress, determined by 1, = yhS, with b being the local
flow depth; 7. is the critical shear stress, which is given zero in the case of deposition;
m is an exponent; y is the cross-stream coordinate; and B is the channel width at the
water surface.

The value of m is generally between 0 and 1; it essentially affects the pattern
of bed change distribution. A small value means a fairly uniform distribution of
Az, along the cross-section, while a larger value gives a less uniform distribution
of Az,. In Chang’s model, the value of m is determined at each time step, such
that a correction in the channel bed profile will result in the most rapid movement
toward uniformity in power expenditure, or linear water surface profile, along the
channel.

Eq. (5.167) is only applied in straight channels. For curved channels, the following
curvature-weighting relation is used to adjust the cross-section:

(tp — )" /7

A =
b S T — Ay

AA, (5.168)

where 7 is the coordinate along the radius of channel bend.

Similar relations can be obtained by replacing the excess shear stress 7, — 7, in
Egs. (5.167) and (5.168) with the excess velocity U — U..

A simplification can be made by setting 7. = 0 and S to be constant along the
cross-section. Thus, Eq. (5.167) becomes

LA
Y phmAy

A more complicated method for lateral allocation of bed change is the stream tube
model proposed by Yang et al. (1998). The entire cross-section is divided into several
stream tubes, and a 1-D model is adopted to simulate the flow, sediment transport, and
bed change in each stream tube. This technique is more like a quasi-two-dimensional
approach. The shape of the cross-section is adjusted according to the assumption of
minimum stream power.

In addition, the change in bed elevation due to the consolidation of cohesive bed
material needs to be considered. This is discussed in Section 11.1.6.

Az = AA, (5.169)

5.3.6 1-D simulation of bank erosion and channel
meandering

5.3.6.1 |-D bank erosion model

Stream bank erosion occurs due to channel degradation, toe erosion, mass failure,
seepage flow, weathering, etc. Channel bed degradation increases bank heights, and
lateral erosion undercuts bank toes. Both processes make banks steeper and more
unstable. Seepage flow and weathering may aggravate these processes. Once the
stability criterion is exceeded, a bank mass failure event occurs and the bank top
retreats. The failed bank material is first piled on the bed near the bank toe and then
washed away by flow. Thus, bank erosion can significantly affect sediment balance
and channel morphology in rivers.
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Fluvial erosion at bank toes

The fluvial (particle-by-particle) erosion at bank toes directly influences channel bed
width and bank angle, and causes bank instability with respect to mass failure under
gravity. Arulanandan et al. (1980) proposed an empirical formula to compute the
fluvial erosion of cohesive bank material:

dw 1 (T — 1,
E B E ( Tee ) 170

where dw/dt is the lateral erosion rate near the bank toe (m-min~1); 7 is the flow
shear stress (dynes-cm~2) applied on the bank toe, determined by t = yRS; 7., is
the critical shear stress (dynes - cm™2) for bank toe erosion, related to water and soil
properties; s is the unit weight of the soil (kN'-m™3); and 7 is the initial rate of soil
erosion (g - cm2min~ 1), given by r = 0.0223 7., exp(—0.137,,).

The eroded bank material is treated as side inflow in sediment transport equations
(5.27), (5.28), and (5.34).

Bank mass failure

Depending on bank geometry, water table, surface runoff, seepage, vegetation, and
soil properties, channel banks may fail by various mechanisms, which may be planar
(e.g., Osman and Thorne, 1988; Simon et al., 2000), rotational (Osman, 1985), can-
tilever (Thorne and Tovey, 1981), or piping- or sapping-type (Hagerty, 1991). Planar
and rotational failures usually occur on the homogeneous, non-layered banks, whereas
cantilever failures usually happen on the layered banks. Piping- or sapping-type failures
most likely occur on the heterogeneous banks, where seepage flow is often observed.
A stability analysis of planar failures is introduced below, while those for other failure
types can be found in relevant references.

Osman and Thorne (1988) analyzed the planar failure shown in Fig. 5.17. It
is assumed that the failure plane intersects the bank toe. The factor of safety is
defined as

fo= " (5.171)

where F; and F, are the driving and resisting forces, respectively:

[{2 2 2
. Vs V4 H .
E, =W — . Ja _ 5.172
d esinp 2 ( tan g8 tana) sin f ( )

b _ (H=y)C (Hz—yi H"?
= — i _—

sin 8 2 tan tan o

)Cosﬁtanq’) (5.173)
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Figure 5.17 Sketch of planar bank failure.

where W; is the weight of failure block, C is the soil cohesion (kPa), ¢ is the soil
friction angle (degrees), « is the angle of bank slope, y, is the depth of tension crack
(m), and B is the angle of failure plane. The failure angle is determined by

B= ; {tan_l [3(1 - Ktzc)tana] +¢} (5.174)

with K. being the ratio of the observed tension crack depth to the bank height.
Once a mass failure is predicted (fs < 1), the retreat distance of the bank top, A,
and the volume of the failure block, V/, are determined by

H— H’
A=Y (5.175)
tan g tan o
1 H2 _yé H/Z
V= = _Jd 5.176
f 2( tan 8 tan o ( )

Simon et al. (2000) proposed a more sophisticated bank stability and toe erosion
model, which considers wedge-shaped bank failures with distinct bank material layers
and user-defined bank geometry. Their model is able to incorporate the root rein-
forcement and surcharge effects of six vegetation species, including willows, grasses,
and large trees, and simulate saturated and unsaturated soil strengths, taking into
consideration the effect of pore-water pressure. The details can be found in Simon
et al. (2000).
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5.3.6.2 [1-D channel meandering model

Simulating channel meandering processes using a 1-D numerical model is quite
difficult, because of the strongly three-dimensional features of flow and sediment
transport in meandering channels. However, ignoring the channel meandering pro-
cesses may induce significant errors in the simulation of long-term flow and sediment
transport in alluvial channels. Therefore, many investigators have studied this prob-
lem and proposed empirical or semi-empirical methods to account for the influence of
channel meandering on sediment transport.

From a computational point of view, one needs to know the flow path and its
potential change during the simulation using a 1-D model. One approach is to adopt
empirical relations to calculate the flow path of a meandering channel under given
flow and sediment conditions. Some channel regime theories may be used.

The other approach is to use meandering migration models, which may be kinematic
or dynamic. The kinematic migration models relate the migration rate to channel
width, curvature, etc. Examples are Ferguson (1983) and Howard and Knutson
(1984). The dynamic migration models solve the simplified dynamic equation of flow
to estimate the flow properties in the meandering channel, and relate the bank erosion
rate to the excess velocity or shear stress at the outer bank. Examples can be found in
Johannesson and Parker (1989) and Odgaard (1989).

Because of the truly three-dimensional flows and highly complex soil properties in
meandering channels, most of the current 1-D channel meandering models are only
applicable in simple cases. Further study on this problem is needed.

5.3.7 Overall procedure for |1-D decoupled flow and
sediment calculations

The individual modeling components in the fully decoupled and semi-coupled models,
which decouple flow and sediment calculations, have been introduced in previous
sections. The overall calculation procedure for the 1-D decoupled unsteady model
consists of the following steps:

(1) Calculate the unsteady flow using the Preissmann scheme and the double sweep
method based on initial channel geometry;

(2) Calculate sediment transport, bed change, and bed material sorting from upstream
to downstream, using the known flow conditions;

(3) Determine the bed change due to bed material consolidation, if needed;

(4) Correct channel geometry by allocating the bed change along the cross-section;

(5) Calculate bank erosion and mass failure, if needed, and

(6) Return to step (1) and conduct the calculations for the next time step, based on
the new channel geometry, until all time steps are finished.

The calculation procedure for the 1-D decoupled quasi-steady model is almost the
same as the above procedure, except that the standard step method is used for the
quasi-steady flow calculation in step (1) and the time interval (in hours or days) used
in the quasi-steady model is usually longer than the time step (in minutes) used in the
unsteady model.
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5.4 1-D COUPLED CALCULATION OF FLOW
AND SEDIMENT TRANSPORT

Fluvial processes in a river consist of simultaneous motions of water and sediment. Any
change in flow conditions may be associated with a variation in sediment transport and
channel topography, and vice versa. Thus, the decoupled flow and sediment transport
models introduced in Sections 5.1-5.3 have limitations and are only applicable in
the case of weak or mild sediment transport. In the case of strong sediment trans-
port, a coupled model should be used, to take into account the interactions between
flow and sediment transport. How to couple the flow and sediment calculations is
introduced below.

5.4.1 1-D coupled flow and sediment transport
equations

In general, 1-D unsteady sediment-laden flows are described by Egs. (2.126) and
(2.127), which are rewritten below to consider side flows:

d(pA)  9(pQ) dAp

— = Nl
or ™ + pp ;= Pl (5.177)
3(0Q) pBQO* 925
A— A/o — ASs = 17
o +8x< ol L +zg Py +pg S = poqvx  (5.178)

where p is the density of the water and sediment mixture in the water column, deter-
mined by p = pr(1 = Cy) + psC;, with C; being the volumetric concentration of
sediment; and pg is the density of the water and sediment mixture from tributaries
and banks.

The effect of alluvial bed roughness is accounted for through the dependence of the
Manning roughness coefficient on flow and sediment conditions:

n=f(U,B,h,1p,dso,...) (5.179)

which can be one of the formulas introduced in Section 3.3.3.

Sediment transport, bed change, and bed material sorting equations are the same
as those introduced in Section 5.1.2.1. For simplicity, the bed-material load transport
model is presented here. The governing equations include the total-load transport
equation (5.34), bed change equations (5.31) and (5.36), mixing-layer bed mate-
rial sorting equation (5.32), and sediment transport capacity (5.35). Note that
Eq. (5.33) should also be included, but it is not listed here because the bed material
sorting in subsurface layers can be computed separately. In addition, the sedi-
ment settling velocity is related to sediment concentration, but it can be set as an
intermediate variable.

The system described above has 4N +4 equations that are used to determine 4N +4
unknowns: A, Q, n, 0A;/0t, (0Ap/08) ks O 5 Ok and ppp (K =1,2,...,N).
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5.4.2 Discretization of coupled flow and sediment
transport equations

Like Egs. (5.1) and (5.2), Egs. (5.177) and (5.178) can be solved numerically, using the
Preissmann scheme for common flows, as described below, or using shock-capturing
schemes for dam-break and overtopping flows, as discussed in Section 9.2.

Applying the Preissmann scheme to Egs. (5.177) and (5.178) yields

v ( n+1 n+l A
Pit1 t+1 pl+1

w n+1An+1 ,OZnA?)

-0
1 1 1 1
+ Aix(p’”jl Q?:l - P;H_ an+ )+ Tx(Pﬁ1Q?+1 —p; O

14 1-vy
+ — 5 Pbi+1 AAb i+1+ pbzAAbz

At At
— 0Lyl + (A = wpit

-1 - 9)[wp0,i+1q7,,‘+1 + (1 - w)Po’iqzi] =0 (5.180)
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where (0A)) = 01yl AT + (=)o T AT+ (L= 0)[Wpl ATy + (1= y) o)
A, (Abp)IE = O AT L+ (L= AT B+ (L= 0) W AL b+ (=)
A 1, and (poqux)}yy = Ovmp il a) ity + (= vegt a1+ (- 6)

(V00,1419 ;41 V%1 + (L= ¥)0g ;q7,0% 1
The Manning roughness coefficient relation (5.179) is treated as

n+1 n+1 pn+l pnt+l _ntl n+1
z+1 - f(UH—l ’BH—l ’hH—l 4 bz+1’d50 i+1° ) (5182)
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The discretizations of sediment transport, bed change, and bed material sorting
equations remain unchanged. The resulting equations include the dicretized sed-
iment transport equation (5.137), the discretized fractional bed change equation
(5.139), the discretized total bed change equation (5.133), the discretized bed mate-
rial sorting equation (5.135), and the implicitly treated sediment transport capacity
equation (5.141).

Flow equations (5.180)—(5.182) and sediment equations (5.133), (5.135), (5.137),
(5.139), and (5.141) can be solved in either iteratively or fully coupled form, as
described in the next subsection.

5.4.3 Solution of discretized coupled flow
and sediment transport equations

Iteratively coupled solution procedure

Iteratively coupled models can be found in Holly et al. (1990). In such models, all
the flow and sediment calculations are divided into two loops. The first loop is the
“flow loop,” which solves flow equations (5.180) and (5.181) using the latest esti-
mates of sediment discharge, bed elevation, and bed-material gradation. Egs. (5.180)
and (5.181) are locally linearized by using Ah and AQ as unknowns. The Manning
coefficient #”*1, mixture density pl-’fl] , and bed change AAy ;1 in these two equations
are set as intermediate variables and replaced with the latest estimates 7*, o/, ;, and
AAZ,H—l’ which are determined using Eq. (5.182), related to sediment concentration,
and determined by the sediment model, respectively. The locally linearized equations
can be written as Egs. (5.60) and (5.68), and solved using the algorithms described in
Section 5.2.2.

The second loop is the “sediment loop,” which solves Egs. (5.133), (5.135), (5.137),
(5.139), and (5.141) to estimate sediment discharge, bed change, and bed-material gra-
dation. These equations can be solved using the direct solution method described in
Section 5.3.3.

To obtain a simultaneous solution of flow and sediment transport, these two loops

are coupled through the following iteration procedure:

(1) Load the imposed boundary conditions, such as mainstream and tributary water
and sediment inflows, and downstream water stage;

(2) Calculate water stage, flow discharge, and other flow parameters, using the latest
estimates of Manning #, flow density, and bed elevation;

(3) Compute sediment discharge, bed change, and bed-material gradation, using the
calculated flow conditions;

(4) Estimate new Manning #n, flow density, and bed elevation, using the computed
flow and sediment quantities, and

(5) Repeat steps (2)—(4) iteratively until the successive estimates of bed elevation,
Manning #, etc., no longer change.

This iteratively coupled solution procedure can take into account interactions
between flow and sediment transport, indirectly giving a simultaneous solution. As a
simplified case, the flow and sediment models described in Sections 5.2.2 and 5.3.3
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il

can be treated as “flow loop” and “sediment loop,’
using this iteration procedure.

respectively, and then coupled

Fully coupled solution procedure

Fully coupled models can be found in Lyn and Goodwin (1987), Holly and Rahuel
(1990), Correia et al. (1992), and Yeh et al. (1995). In particular, Holly and
Rahuel (1990) proposed a fully coupled procedure for calculating non-uniform sed-
iment transport, which is herein extended to solve Egs. (5.133), (5.135), (5.137),
(5.139) (5.141), and (5.180)—(5.182). To reduce the effort of matrix inversion
required in the fully coupled solution procedure, these equations are re-organized
as follows.
Inserting Eqgs. (5.135) and (5.141) into Eq. (5.139) yields
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(5.183)

and then summing Eq. (5.183) over all size classes and using Eq. (5.133) yields

N
1
AApiv1 = Z ’k,i+1QZL+1 + sit1 (5.184)
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Inserting Egs. (5.139) and (5.141) into Eq. (5.135) yields
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Substituting Eq. (5.184) into the discretized continuity equation (5.180) yields
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Substituting Eqgs. (5.141), (5.184), and (5.185) into the discretized sediment
transport equation (5.137) yields

n+1 n+1
[ Qlkeis1 Qi N 1-y [ Quy %Y
3k = At Ign+1 Ul n u» At ﬂn+1Uin+1 n _U;a

thyi+1 "~ i+1 th,i+1 7 i+1 th,i tk,i
0 n+1 n+1 1-06 n n 91// n+1
+ ?x(gtk,i-ﬂ - th,i )+ Ax (th,i+1 - tk,i) + pntl th,i+l
t,i+1
N
+1 +1 +1
— | i1 QU+ st | Do i1 Oty +sivt | +8rist | Qi
k=1
o1 —y) a
— n+1 n+1 n+1 ) ) wn41
W th’,' - ek,ith’i +fk,i Zrk,ith’i +8i | + 8k th,i
t,i k=1
no Qn ) Qn = Q" .
+(1-6) " tk,z+1Ln txk,i+1 +d- V) tk,i = txk,i
ti+1 t,i

— Oty + (A=W = A=Wy, + A —¥)g), 1 =0
k=1,2,...,N) (5.188)

For the channel with I — 1 reaches shown in Fig. 5.7, the system of equations
(5.186)—(5.188) has (2 + N)(I — 1) equations, which are used to determine (2 + N)I
unknowns: A, Q, and Qy, (k =1,2,...,N). The system is closed by imposing 2 + N
boundary conditions. For simplicity, the Manning roughness coefficient and flow
density are treated as intermediate variables. An alternative treatment for flow density
may be to remove it from the left-hand sides of Egs. (5.177) and (5.178), as described
in Section 9.2.

Egs. (5.186)—(5.188) can be solved by many methods. The following Newton-
Raphson solution procedure is given as an example, which is almost the same as
that used by Holly and Rahuel (1990).

The Newton-Raphson correction equations for each reach are written in the
following matrix form:

[Li{ Wi} + [Ril{8Wit1} +{Si} =0 (5.189)

where {§ W;} is the vector of unknown corrections to the 2 + N primary variables: §A;,
80Qi, 80+1,i, 802, - .., and 8OyN ;5 {S;} is the known vector of functions Fq, F2, and
F3;, defined in Eqs. (5.186)—(5.188); and [L;] and [R;] are the matrices of Jacobian
derivatives with (2 + N) x (2 + N) elements, e.g.,

0F1/0A;  0F1/0Q; 0F1/dQn,; --- 0F1/00mN,
0F/0A;  0F2/0Q; 0F/00n,; -+ 0F2/00iN,
(L] = 0F31/0A; 0F31/0Q; 0F31/004n,; --- 0F31/00N,
1=
OFsN/0A; 0F3N/0Q; 0F3N/00n, --- 0F3N/0Q:N,

(5.190)
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[Li1, [R;], and {S;} are evaluated using the latest estimates of primary variables. To
determine the matrices [L;] and [R;], the derivatives of each function (Fi, Fy, Fap)
with respect to each primary dependent variable (A, O, Oy) at two ends of each reach
are required. The derivatives with respect to auxiliary variables are transformed into
the primary-variable derivatives through chain-rule expansion. The dependence of the
Manning 7 and flow density on primary variables should be considered.

The equation system (5.189) for all reaches and the associated boundary conditions
are solved using a block-bidiagonal algorithm. Suppose that there is a relation of the
form:

[Ei{sW1} + [H{sWi} +{Gi} =0 (5.191)
Then deriving {§ W;} from Eq. (5.189) and substituting it into Eq. (5.191) yields
[Eiv1 W1} + [Hip1 oW1} + {Gip1} =0 (5.192)

where the coefficient matrices are

[Eiv1] = [E;] (5.193)
[His1] = —[H]ILi17 R} (5.194)
{Giy1) = —[HAILA 1S} + {G)) (5.195)

Comparing Egs. (5.189) and (5.192) ati = 1 resultsin [E2] = [L1], [H2] = [R1], and
{G2} = {S1}. The forward sweep can then be carried out using Egs. (5.193)—(5.195)
fromi=2,4,...,1. Atthe end of the forward sweep, the following relation is obtained:

[EfN{6W1} + [HI{6Wi} +{G1} =0 (5.196)

The boundary conditions at upstream and downstream points can be linearized
locally and written in the vector form:

[al{8 W1} + [BISW )+ {y} =0 (5.197)
Eliminating {§ W1} from Eqgs. (5.196) and (5.197) yields
(8W1} = [—[«llE/17 IH + (B I EN~ G} — (v}) (5.198)

Once {§ W]} is determined, the remaining unknown vectors can be obtained by the
“return-sweep” inversion of Eq. (5.189):

(8W;) = —[Li1 YRS Wig1) — [L1(S:) (5.199)

It can be seen from Egs. (5.193)—(5.195), (5.198), and (5.199) that this algorithm
requires (I — 1) inversions of a (2 + N) x (2 + N) matrix for each iteration step.
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After A, O, and Qy,;, are solved, the sediment transport capacity, Manning 7, bed
change, and bed-material gradation can be calculated using Egs. (5.141), (5.182),
(5.184), and (5.183), respectively.

As compared to the iteratively coupled procedure, the fully coupled procedure is
much more complicated. In particular, if channel network routing, bank erosion, and
bed material consolidation need to be considered, the fully coupled procedure becomes
cumbersome and tedious.

5.4.4 )ustification of decoupled and coupled models

Decoupled flow and sediment transport models have been widely used in the solution of
many real-life engineering problems. They are relatively easy to implement, and their
results may be justified due to different time scales in flow and sediment transport
and the use of empirical formulas for bed roughness and sediment transport capacity.
Most of the criticisms against the decoupled models are related to the equilibrium
sediment transport model. The application of the non-equilibrium transport model
and Wu’s (1991) coupling procedure for non-uniform sediment transport simulation
has significantly enhanced the numerical stability of the decoupled flow and sediment
transport models. However, it is true that the applicability of the decoupled models is
restricted due to the assumption of low sediment concentration and small bed change
at each time step.

The coupled models take into account the physical coupling of water and sediment
phases, so that they should be more reasonable and could be applied in a wider range of
flow and sediment conditions. The coupled models are usually more stable and can use
larger time steps than the decoupled models (Saiedi, 1997; Cao et al., 2002). However,
the implementation of the coupled models, especially the fully coupled models for
non-uniform sediment transport in looped channel networks, is very complicated.
Their efficiency may be offset by the required effort of iteration and matrix inversion.
Furthermore, because the time step for flow calculation is usually smaller than that
for sediment calculation, solving the nonlinear flow system might become a bottleneck
and restrain the efficiency of the coupled models.

It is diffficult to give a quantitative criterion as to when the decoupled models are
acceptable. Generally, in the lower flow regime with low sediment concentration,
the decoupled models are applicable; otherwise, the coupled models should be used.
Because the sediment concentration is usually low in most natural rivers, the decoupled
models can still play an important role in river engineering analysis.

5.5 DATA REQUIREMENTS OF I-D MODEL

The following data are commonly required by 1-D models. They are also required by
2-D and 3-D models, with higher spatial resolutions.

Study domain

The study domain usually covers the channel reach of interest and additional tran-
sition reaches in upstream and downstream. Its inlets and outlets should be located
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near gauge stations or control structures where measured flow and sediment data are
available for determination of boundary conditions.

Combputational grid

The study channel is represented by a suitable number of cross-sections. Each pair
of consecutive cross-sections defines a reach between them. For a channel network,
the cross-sections at channel confluences, splits, and hydraulic structures should be
arranged according to the requirements of the used model.

Channel topography

Each cross-section is represented by finite points (stations), as shown in Figs. 5.3 and
5.4. The bed elevations and the distances to the left bank at all points should be
measured. The reach lengths between cross-sections are also needed.

If hydraulic structures are involved, their geometries and hydraulic conditions
should be provided.

Manning roughness coefficient

The Manning 7 is usually estimated using measured flow data. Empirical formulas may
be used if no measurement data are available. The # values in streams with similar
flow and sediment conditions may be used as reference.

Sediment particle properties

The specific gravity and shape factor of sediment particles should be measured. For
most natural sands (quartz sands), the specific gravity is about 2.65, and the Corey
shape factor is about 0.7.

The sediment size range should cover all sizes of bed load, suspended load, bed
material, and bank material existing in the study domain. Wash load is sometimes
also included. The entire size range is divided into a suitable number of size classes.
The representative diameters and upper and lower bounds for all size classes should
be determined.

Bed-material size and gradation

The initial bed-material gradation must be given for a realistic computation of stream
behavior, particularly for determining scour and stability conditions. If only deposition
is expected, such as sedimentation in reservoirs, the initial bed-material gradation is
less important.

The bed-material porosity is also needed.

Bank-material properties

If bank erosion and mass failure are considered, bank-material properties, such as
density and size composition, should be determined. For a cohesive bank, the cohesion
and friction angle of the bank material, as well as the critical shear stress for bank toe
erosion, are also needed.
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Boundary conditions

Boundary conditions include inflow water discharge, water stage (at inlet or outlet
depending on the flow regime), and inflow sediment discharge and size composi-
tion. The chosen time series of flow and sediment data should represent the average
hydrological cycle in the study domain. Usually, the time series should be long
enough and include high, intermediate, and low water years, with various recurrence
frequencies.

Historical data

Historical measurement data of flow properties, sediment discharges, channel mor-
phological changes, etc., should be collected and analyzed for better understanding of
the study problem and calibration of the numerical model.

5.6 MODEL SENSITIVITY TO INPUT PARAMETERS

Out of all the model parameters, the adaptation length (coefficient) and mixing layer
thickness are least understood and must be prescribed empirically in the sediment
transport models described in Sections 5.3.2 and 5.3.3. Therefore, the concern here is
to analyze the influence of these parameters on the model results. This analysis was
performed in three typical cases by Wu and Vieira (2002), using the semi-coupled
model described in Section 5.3.3.

Case |. Channel degradation

The experiments performed by Ashida and Michiue (1971) for bed degradation and
armoring processes due to clear water flow downstream of a dam were simulated. The
experimental flume was 20 m long and 0.8 m wide. The flume bed was filled with
non-uniform sediment with a median size of 1.5 mm and a standard deviation of 3.47.
Clear water was pumped into the entrance of the flume at a constant discharge. In
simulated experimental run 6, the flow discharge was 0.0314 m3s~!, and the initial
bed slope was 0.01. The computational grid consisted of 40 elements with an equal
spacing of 0.5 m, and the time step was 10 s. The experiments started from a flat bed.
In order to account for the development of bed forms in the simulation, the bed form
height was assumed to vary linearly with time. The Manning roughness coefficient for
the fully developed bed was about 0.023. The bed-material porosity was calculated
using the Komura (1963) formula. The sediment transport capacity was calculated
using the Wu et al. (2000b) formula.

The sensitivity of the model results to the adaptation length was investigated using
various functions L; = 7.3h, L; = t, and L; = 1+ 0.5¢ while keeping the mixing layer
thickness constant as dsg, the median size of the parent sediment mixture. Here, b is
the flow depth in meters, and # is the time in hours. Fig. 5.18 compares the measured
and calculated bed scour depths at 7, 10, and 13 m upstream of the weir. The trends of
intensive scour in the initial period and weak scour in the final equilibrium stage were
reproduced well. The function L; = 7.3h provides the best results for the bed scouring
process, especially regarding the time to reach the equilibrium state. The results for
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Figure 5.18 Bed scour depths using different adaptation lengths (Ashida and Michiue’s Run 6).
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L; =tand L, = 1+ 0.5¢ are also very close to the measured data, showing that the
calculated scour depth is not very sensitive to L;.

The influence of the mixing layer thickness on the calculated scour depth was exam-
ined by changing its value from dsg to 2ds0, while keeping the adaptation length at
7.3bh. Fig. 5.19 shows that the thicker the mixing layer, the larger the equilibrium scour

o
""""" - ¥ 13 m o weir
0.06 -.------"'_‘-__‘-"F--"-----
E h 10 m to weir
E
%
";'?’-"-04 """" 7 m to weir
a
8
0.02
®  Measured at 7 m to weir
4 Measured at 10 m
v Measuredat 13 m
Caleulared, . = ds
: ====» Calculated, &, = 2dss
0 40 ™ g
Tirne {min}

Figure 5.19 Bed scour depths using different mixing layer thicknesses §,,
(Ashida and Michiue’s Run 6).
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depth. The time to reach equilibrium increases as the mixing layer thickness increases.
The choice of the mixing layer thickness is particularly important in the case of bed
scour and armoring.

Case 2. Channel aggradation

The channel aggradation experiments performed by Seal ez al. (1995) were calculated.
The experimental setup is shown in Fig. 5.20. The flume was 45 m long and 0.305 m
wide, with an initial bed slope of 0.002. The tailgate was kept at a constant height,
so that an undular hydraulic jump was produced at the downstream end of the main
gravel deposit. The input sediment was a weakly bimodal mixture comprising a wide
range of sizes, from 0.125 to 64 mm. Due to sediment overloading, an aggradational
wedge developed and its front gradually moved downstream while the upstream bed
elevation continued to rise. In simulated experimental run 2, the water discharge was
0.049 m3s~1, the sediment feed rate was 5.65 kg-min~!, and the tailgate water stage
was 0.45 m.

Sediment
feeding

Free
averfall

Gravel deposit Sand

“£ _q5|.n *

Figure 5.20 Sketch of channel aggradation experiments of Seal et al. (1995).

The model sensitivity to the adaptation length L; was analyzed by specifying L; as
0.5 m, 2 m, and 7.3h while setting the mixing layer thickness as half the dune height.
Here, b is the average flow depth over the wedge from the inlet to the gravel deposit
front, and 7.3h is approximately equal to 1 m. Fig. 5.21 compares the measured and
predicted bed profiles at various times, and the water surface profiles at the final
stage. The bed profiles were reproduced well, and the hydraulic jump downstream
of the gravel deposit front was predicted qualitatively. It is shown that L; has little
influence on the height and celerity of the gravel deposit front, as well as the top slope
of the wedge. The only significant impact is on the slope of the deposit front. The
longer the adaptation length, the gentler the front slope.

Fig. 5.22 shows the calculated bed profiles when the mixing layer thickness was
given as dsg, 6dso, and half the dune height and the adaptation length was kept at
0.5 m. The differences between the calculated bed profiles are very small. As the mixing
layer thickness increases six times, the deposit front moves downstream by only 1.3%.
The model is much less sensitive to the mixing layer thickness in the deposition case
than in the previous erosion case.
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Imicial bed

Bed surfsce measured at 4 he
[a] Bed surface measured at 16 br
: Bed surface measured at 32.4 bhr

Water purface mesiused 31 324 hre
= Calgulaged, Mixing thickneis: dy,
""" Caleulated, Mixing thickness: 6,
= Calculared, Mixing thickness: 8,54

=
2]

=
>

‘Water surface at 32.4 hr]

=
-

Bed at 4 hr

Bed and water surface elevations {m)
=
Pl

0 0 0 30 40
Distance downstream of inlet (m)

Figure 5.22 Bed profiles using different mixing layer thicknesses (Run 2).

Case 3. Sedimentation in the Danjiangkou Reservoir

The Danjiangkou Reservoir was constructed on the Hanjiang River, China, in 1968.
Because the tributary Danjiang River joins the Hanjiang River just upstream of the
dam, the Danjiangkou Reservoir has two branches with nearly equivalent storage
capacities, as shown in Fig. 5.23. Although there are water and sediment exchanges
between the two branches during flood seasons, the interactions are negligible for the
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Figure 5.23 Sketch of Danjiangkou Reservoir.

study of the sedimentation process in the reservoir because the confluence is very close
to the dam.

The sedimentation process in the Hanjiang River branch was simulated. The com-
putational domain included a 188 km long reach in the main stream from the Baihe
Hydrology Station to the dam, and a 12 km long reach in the tributary Duhe River,
which joins the Hanjiang River 157 km upstream of the dam. Sixty-one cross-sections
were distributed along the main stream and four cross-sections in the tributary. The
simulation period encompassed 13 years, from 1968 to 1980. The Manning roughness
coefficient and bed-material porosity were estimated using measurement data. The
sediment transport capacity was determined using the Wu ef al. (2000b) formula. The
flocculation of fine sediments (d < 0.01 mm) was considered using the Migniot (1968)
relation, which is described in Section 11.1.2.

Fig. 5.24 shows the calculated and measured annual sediment depositions in differ-
ent years, while Fig. 5.25 shows the calculated and measured longitudinal distributions
of sediment deposition accumulated from 1968 to 1979. In order for the influence of
the adaptation coefficient o on the amounts of deposition to be investigated, it was
given four constant values: 0.25, 0.5, 1.0, and 2.5, and calculated using the Armanini-
di Silvio (1988) method. The values 0.5 and 1.0 and the Armanini-di Silvio method
provide good predictions. In particular, the results obtained using the Armanini-di
Silvio method and the constant value of 1.0 for « are very close.

The effect of the mixing layer thickness was also verified by specifying it as half the
dune height and two constant values of 0.05 and 0.25 m. The calculated deposition
amounts and longitudinal distributions are not sensitive to the mixing layer thickness,
as found in Case 2. The simulation results are not shown here.

In summary, in the case of channel degradation, the computed equilibrium scour
depth and bed-armoring process are not particularly sensitive to the adaptation length
(coefficient), but are affected by the mixing layer thickness. In the case of channel
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Figure 5.25 Longitudinal distributions of sediment deposition using different «.

aggradation, the simulated bed profiles are insensitive to both adaptation length
(coefficient) and mixing layer thickness. However, this conclusion is based on the
model of Wu and Vieira (2002), which adopts a coupled calculation procedure for
sediment. Generally, the model sensitivity and reliability depend on the numerical
schemes, calculation procedures, and empirical formulas used.






Chapter 6

2-D numerical models

If the vertical (or lateral) variations of flow and sediment quantities in a water body are
sufficiently small or can be determined analytically, their variations in the horizontal
plane (or longitudinal section) can be approximately described by a depth-averaged
(or width-averaged) 2-D model. Presented in this chapter are the governing equations,
boundary conditions, and numerical solutions of the depth-averaged and width-
averaged 2-D models of flow and sediment transport in open channels, as well as
the enhancement of the depth-averaged 2-D model to account for the effects of helical
flow on fluvial processes in curved and meandering channels.

6.1 DEPTH-AVERAGED 2-D SIMULATION OF FLOW
IN NEARLY STRAIGHT CHANNELS

6.1.1 Governing equations

For shallow water flows with low sediment concentration, the depth-averaged 2-D
hydrodynamic equations are Eqs. (2.79), (2.82), and (2.83). In the case of nearly
straight channels, the dispersion momentum transports due to the vertical non-
uniformity of flow velocity are combined with the turbulent stresses, so these equations
are rewritten as

abh  a(hU, a(hU
ah  ahUy Uy _

0 (6.1)
at ox ay
d(hUy) | 3(hUE)  3(hUyUy) 32s  13(hTxy) 10(hTyy)
ot T ax T oy =gt T 3y
1
+ ;(Tsx — Thx) +fcl7Uy (6.2)
2
d(hUy) N d(hU,Uy) N a(hU3) _ —gh% N 19(hTy) N 19(hTyy)
at ax ay ay p 0x p dy

1
+ ;(Tsy - Tby) — fchUsx (6.3)

where x and y are the horizontal Cartesian coordinates (not necessarily along the
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longitudinal and transverse directions); and 7, and 7, are the bed shear stresses,
determined by

Thx = pcrmpUs,JUZ + U, 1y = peymy Uy, [UZ 4 U} (6.4)

where ¢; = gn?/h'/3, with n being the Manning roughness coefficient of the channel
bed; and m,, is the bed slope coefficient defined in Eq. (2.82). For a movable bed
with sediment grains and bed forms, the Manning # can be evaluated using one of
the empirical formulas introduced in Section 3.3.3; however, 7 is in general treated
as a calibrated parameter because of its complexity, as discussed in Section 5.1.1.3.
In addition, one may set the bed slope coefficient 72, as 1 and lump its effect into the
Manning #.

Note that unlike the 1-D model, the depth-averaged 2-D model can simulate the
effects of large-scale roughness structures, such as channel contraction, expansion,
and curvature, on the flow field, using fine meshes. In addition, the depth-averaged
2-D model accounts for the effect of channel banks through boundary conditions
and considers the effect of horizontal turbulent diffusion through the eddy viscosity.
Therefore, the values of Manning # in the 1-D and 2-D models are not exactly the
same.

In Egs. (6.2) and (6.3), 7o and 75y represent the forces acting on the water surface,
usually caused by wind driving:

2 2 2 2
Tsx = Palfa UWi”dsx\/Uwind,x + Uwind,y > Tsy = Pafa UWi”dsy\/Uwind,x + Uwind,y

(6.5)

where U,jndx and Uying, are the x- and y-components of wind velocity, p, is the air
density, and ¢, is the friction coefficient at the water surface.

The last terms in Egs. (6.2) and (6.3) represent the Coriolis force due to the rotation
of the earth. The Coriolis coefficient f; is determined by

fe =2wsing (6.6)

where @ is the rotation velocity of the earth in radians per second, and ¢ is the latitude
degree of the water body of interest.

The Coriolis and wind driving forces are important in large water bodies, such as
coastal waters, estuaries, and large lakes, but they are usually negligible in inland
rivers.

The stresses Tjj (i,j = x,y), which include both viscous and turbulent effects, are
determined using the Boussinesq assumption:

aU. 2

Tox =2p(v +v1) 8xx - gpk
oU aU.
Ty = Tyx = p(v +v1) ( ayx + 8;)
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ou, 2
Tyy =2p(v+ ‘)t)Tyy - gpk (6.7)

where v is the kinematic viscosity of water, and v; is the eddy viscosity that needs to be
determined using a turbulence model. Introduced below are the choices for determining
s, including the depth-averaged parabolic model, modified mixing length model, and
three depth-averaged linear k-¢ turbulence models.

Averaging the parabolic eddy viscosity equation (2.49) over the flow depth yields

v = a1 Uysh (6.8)

where a1 is an empirical coefficient. Theoretically, a1 should be equal to /6. However,
it has been given various values in practice, because of the anisotropic structures of
turbulence in horizontal and vertical directions and the effects of dispersion. According
to experiments by Elder (1959), a1 is about 0.23 for the longitudinal turbulent diffu-
sion in laboratory channels. For transverse turbulent diffusion, Fischer et al. (1979)
proposed that a1 is about 0.15 in laboratory channels and 0.6 (0.3-1.0) in irregular
waterways with weak meanders.

Eq. (6.8) is applicable in the region of main flow. Because the influence of horizontal
shear is ignored, significant errors may arise when Eq. (6.8) is applied in regions close
to rigid sidewalls. Improvement can be achieved through a combination of Eq. (6.8)
and Prandtl’s mixing length theory:

v = (@oUab)? + @25)2 (6.9)

where |S| = [2(0U/3x)* +2(3Uy/3y)? + (34U, /3y + dU, /3x)*1'/; a is an empirical
coefficient similar to @y in Eq. (6.8) and has a value of about «/6; and [}, is the
horizontal mixing length, determined using I/, = « min(y, ¢,,b), with y" being the
distance to the nearest wall and ¢,, an empirical coefficient ranging between 0.4 and
1.2 (Wu et al., 2004b).

Rastogi and Rodi (1978) established a depth-averaged k-¢ turbulence model through
depth-integration of the 3-D standard k-¢ model. The eddy viscosity v; is still deter-
mined by Eq. (2.54), whereas the depth-averaged turbulent energy k and its dissipation
rate ¢ are calculated using the following transport equations:

ok ok ok 9 (v 0k a9 (v ok

B, 20, S 2 S () L () b Py - (6.10

ot T e Ty ax(akax)+8y(ak8y>+ e+ Py —e (6.10)
de e de d [ vy de d (v de e g2
AN s NN § R (e A8 A (e e P+ Puy— cor
8t+ x8x+ Y9y ox (ag 8x>+8y (os 8y>+6£1k k+ Leb 2%

(6.11)

where Py is the production of turbulence due to the horizontal velocity gradients,
defined as P, = 14|S|%; and Py, and P, are the source terms, including all terms
originating from non-uniformity of vertical profiles. The main contribution to Py
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and P,;, stems from significant vertical velocity gradients near the bottom of the water
body. These terms are related to the bed shear velocity by P, = cf_l/sz/h and

P, = cgpcezc}/zc;sM U /h?. The standard values of coefficients c,, cc1, ¢e2, 0%, and

o are listed in Table 2.3, while the coefficient c.r is given 3.6 for experimental cases
and 1.8 for field cases (Rodi, 1993).

In analogy to Rastogi and Rodi’s depth-averaged standard k-¢ turbulence model,
Wu et al. (2004b) adopted the concepts in the non-equilibrium k-¢ turbulence model
of Chen and Kim (1987) and the RNG k-¢ turbulence model of Yakhot ez al. (1992) in
the depth-averaged 2-D simulation of shallow water flows. The k and ¢ equations are
the same as Egs. (6.10) and (6.11), with coefficients ¢, c¢1, ¢e2, 0, and o, re-evaluated
according to Table 2.3.

A comparison conducted by Wu et al. (2004b) shows that all five depth-averaged
turbulence models described above can give reliable predictions for simple flows, but
for complex flows, the three k-¢ turbulence models generally provide more accurate
results than the two zero-equation turbulence models. Among the three k-¢ turbulence
models, the non-equilibrium and RNG versions perform somewhat better than the
standard version for recirculation flows.

6.1.2 Boundary conditions

Rigid wall boundary conditions

Near a rigid wall, which may be a bank or island as shown in Fig. 6.1, the flow is
quite complex. A very thin viscous sublayer exists near a smooth wall, while roughness
elements on a rough wall affect the flow significantly. Because the velocity gradient
is quite high there, it is of high cost to resolve the flows in the viscous sublayer and
around individual roughness elements. A wall-function approach is often used instead.
The first grid point or cell center (denoted as P) adjacent to the wall is placed outside
the viscous sublayer and above the roughness elements, and the resultant wall shear

— . . - .
stress 7, is related to the flow velocity Up at point P by

T =—hoUp (6.12)

Inler Chutler

Right bank

Figure 6.1 A typical horizontal 2-D computational domain.
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where 1, is a coefficient. In the k-¢ turbulence models, A,, is determined by A,, =
pci“kll,/z/c/ln(Ey;S) with y} = c,l/4kll)/2yp/v. This relation of A,, is derived using the
log-law of velocity near the wall and the first relation in Eq. (6.15). Eq. (6.12) is
applied in the region of 11.6 < y} <~ 300. In the zero-equation turbulence models,
because the turbulent energy k is not solved, A, is determined by A, = pu,«/ In(Ey})
with y} = u,yp/v. Here, yp is the distance from the wall to point P, u, is the shear
velocity on the wall defined as u, = +/7,,/p, and E is a roughness parameter. For a
smooth wall, E is about 8.432. For a rough wall, E is related to the roughness Reynolds
number k& = u,k;/v by (Cebeci and Bradshaw, 1977)

E = exp[«(Bg — AB)] (6.13)

where k; is the equivalent roughness height on the wall, By is an additive constant of
5.2,and AB is a function of k;:

0 ki <2.25
AB = { (Bo— 8.5+ LInk{)sin[0.4258(Ink} — 0.811)] 2.25 <k} < 90
By —8.5+ 1 Ink} ki =90

(6.14)

In the k-¢ turbulence models, the turbulent energy and its dissipation rate at point
P are specified as (Rodi, 1993)

2 3
kP — Uy Uy

s €p=
c,l/z KYp

(6.15)

which are derived by assuming that the local equilibrium of turbulence prevails near
the wall.

However, the turbulent energy kp may also be obtained by actually solving the
k equation in the control volume near the wall, with the turbulence generation and
dissipation rates specified as

2 31432
Ppp=—2, ep=L "0 (6.16)
KUYyp kyp

The water level near a rigid wall is usually assumed to have a zero gradient in the
direction normal to the boundary.

Inflow and outflow boundary conditions

As described in Section 5.1.1.2, for subcritical flow, a boundary condition is needed
at each inlet and outlet in order to derive a well-imposed solution for Egs. (6.1)-(6.3),
while for supercritical flow, two boundary conditions should be specified at each inlet.
For the sake of simplicity, only the subcritical flow case is considered below.
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The inflow boundary condition is usually a time series of flow discharge. However, a
lateral distribution of velocity at the inlet is required in the depth-averaged 2-D model.
The streamwise (resultant) velocity U at each computational point of the inlet located
in a nearly straight reach may be assumed to be proportional to the local flow depth,
i.e., U o« b". Here, r is an empirical exponent; » ~ 2/3 for uniform flow. A small
r value means a fairly uniform distribution of velocity along the inlet cross-section.

Therefore, for a given total inflow discharge O(= fé; Uhdy'), U is determined by

B
U= Qh’// b dy’ (6.17)
0

where B is the channel width at the water surface, and y’ is the transverse coordinate.

The inflow velocity direction must also be specified; it essentially determines the
two components of velocity in the x- and y-directions at each point of the inlet.

The boundary condition at the outlet may be a time series of the measured water
stage, a stage-discharge rating curve measured or generated using the uniform or
critical flow condition, or a non-reflective wave condition, depending on the out-
let configurations. For tidal flow, the tidal level may also be determined using the
major astronomical constituents of tide in the study reach.

If a k-¢ turbulence model is used, boundary conditions should be given for the
turbulent energy and its dissipation rate at the inlet and outlet. At the inlet that is
located in a nearly straight reach and far from hydraulic structures, the turbulence can
be assumed to be at equilibrium; thus, Egs. (6.10) and (6.11) are simplified to

Pp, — € =0 (6.18)

&2
P, _552](# =0 (6.19)

m

yielding
Uz Ul
kin =~ i = 2 (6.20)
cerc,l "¢ ¢ hin

where the subscript “in” denotes the quantities at the inlet.

At the outflow boundary, located in a reach with simple geometry and far from
hydraulic structures, the gradients of flow velocity, turbulent energy, and dissipation
rate can be given zero.

6.1.3 Numerical solutions

Unlike the Navier-Stokes equations described in Section 4.4, the shallow water
equations (6.1)—(6.3) have a stronger linkage between velocity and pressure (water
level), due to the appearance of flow depth in the depth-integrated continuity equation.
It is apparently easier to solve Eqs. (6.1)—(6.3), as h, Uy, and U, can be calculated by
these three equations, respectively. However, special care is still needed in handling
the convection and pressure gradient terms. Either a staggered grid approach or Rhie
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and Chow’s (1983) momentum interpolation technique on the non-staggered grid is
adopted. An upwind scheme is often used to discretize the convection terms. When the
central difference scheme is used, artificial dissipations or TVD limiters are often used
to suppress potential numerical oscillations. Some of these methods are used to simu-
late dam-break and overtopping flows, as discussed in Section 9.1. Described in this
subsection are the SIMPLE(C) algorithm, the projection method, and the vorticity-
based method, which are widely used in the simulation of common open-channel
flows.

6.1.3.1 SIMPLE(C) algorithm

Discretization of governing equations

In the curvilinear coordinate system, Egs. (6.1)—(6.3), (6.10), and (6.11) can be written
in the following tensor notation form:

0 a N —lol
%(thfﬁ) + % (P/?]”m¢ — hTyJej ] 3é§;n> = h]Sy (6.21)

where ¢ stands for 1, Uy, Uy, k, and e, depending on the equation considered;
Ly = p(v+ v/op) is the diffusivity of the quantity ¢; Sy is the source term in the
equation of ¢, including the cross-derivative diffusion terms; | is the Jacobian of
the transformation between the Cartesian coordinate system x; (x1=x, x,=y) and the
curvilinear coordinate system &, (§1 =&, & =n); it,,=a"U;; and o/ =0&,,/dx;.

As described in Section 4.4, the primary variables can be arranged in a staggered
or non-staggered (collocated) pattern. The staggered grid approach for the depth-
averaged 2-D model can be found in Lu and Zhang (1993) and Kim ez al. (2003),
whereas the non-staggered grid approach is applied here.

Eq. (6.21) is integrated over the control volume shown in Fig. 4.21. The convection
terms can be discretized using one of the following schemes: hybrid, exponential,
QUICK, HLPA or SOUCUP, presented in Section 4.3.1.1. The normal-derivative
diffusion terms are usually discretized using the central difference scheme. The time-
derivative term is discretized using the first-order backward scheme (4.23) or the
three-level implicit scheme (4.43) and treated in analogy to Eq. (4.126). The discretized
momentum equations give velocities Ui"’;,“l (i =1,2) at cell center P as

1
Ut = | X aunt e Su | Dl - ot + DR - ph)
P \I=w,E,S,N
(6.22)

where D} = h;“ (]ozl.1 An)p/ay, Di2 = h;’,ﬂ (]ozi2 AE)p/at, and p is the pressure defined
as p = pgzs.

The relations of the velocity and pressure corrections in the depth-averaged 2-D
model are similar to Egs. (4.190), (4.191), (4.194), (4.195), and (4.202)—(4.204).

Thus, they are not repeated here.
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The depth-integrated continuity equation (6.1) is discretized as

pn+1 —

t
P Pp—8 (F, — Fy + F, — Fy) (6.23)

AAp

where AAp is the area of the cell centered by P; and F, F,,, F,,, and F; are the convection
fluxes across cell faces e, w, n, and s, defined as

Fu = (ph) (Joi! An), UL (6.24)
Fo = (ph){*! (Jof 88): UL (6.25)

It seems that the pressure (water level) can be calculated from the discretized
continuity equation (6.23), but in fact node-to-node oscillations may exist on
the non-staggered grid if the fluxes at the cell faces are linearly interpolated
from the quantities stored at the cell centers, as explained in Section 4.4. To
avoid this, Wenka (1992), Ye and McCorquodale (1997), and Minh Duc (1998)
applied Rhie and Chow’s (1983) momentum interpolation technique to evaluate
the variable values at the cell faces from the quantities at the cell centers in the
depth-averaged simulation of open-channel flows. In the formulations of Ye and
McCorquodale (1997) and Minh Duc (1998), the pressure correction was defined
as p' = p"t1 — p”, which forms an explicit algorithm for pressure. To form a
semi-implicit algorithm, which allows for longer time steps, the pressure correc-
tion was defined as p’ = p"*! — p* by Wu (2004). Wu’s formulation is introduced
below.

Using Rhie and Chow’s (1983) momentum interpolation procedure as described in
Section 4.4.4 yields the flux correction equations (4.196) and (4.197). For the depth-
averaged 2-D SIMPLE algorithm, the coefficients al\}/ and ag in these equations are
derived as

iy = a(ph)p (JAw (e , Ol + 3,03 ) (6.26)

g = o, (ph){H (JAE)s(e] OF ; + 3,03 ) (6.27)

where O}, = [(1 = fop)/apy + fop/aslbis ™ Jo] Anw; OF, = [(1 — fi,p)/als +
fy,p/as1h*t (Ja? Ag)g; and a%y, and a%g stand for 4% when Eq. (6.22) is applied in
the control volumes centered by W and S, respectively.

For the depth-averaged 2-D SIMPLEC algorithm, the coefficients al‘}, and als)

are determined by Egs. (6.26) and (6.27) with Q}w and Q%S replaced by Q}w and
Q%S defined in Egs. (4.203) and (4.204).

Inserting Egs. (4.196) and (4.197), as well as two similar equations for F, and F,,,
into Eq. (6.23) yields the pressure correction equation:

i = iy + it + i + ol +5 (629
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where ah = Y IWESN a + AAp/(gAt), Sp = —(ph — PR AAp/(gAL) — (Ff — Fi, +
F — F¥), and F}, and F¥ are the fluxes determined using Egs. (6.24) and (6.25) in
terms of the approximate velocities U}, abd U ..

Implementation of boundary conditions

Near a rigid wall, the control volume is shown in Fig. 6.2. The velocity at point S,
which is located on the wall, is non-slip and has a value of zero. When the x-momentum
equation is integrated over this control volume, as demonstrated in Eq. (4.130), the
convection flux should be zero and the shear stress 7y, is determined using Eq. (6.12)
at face s. This shear stress is moved into the source term, thus yielding a zero coefficient
ag* in Eq. (6.22).

When the y-momentum equation is integrated over the control volume in Fig. 6.2,
the convection flux and the normal stress 7,y at face s should be zero. Thus, the

coefficient azy in Eq. (6.22) is zero as well.

/,
/ / 3
I, «‘" ———
e R i T T T *"t/*/r TS '\, rrn e

Figure 6.2 Control volume near rigid wall.

Because the flux F; is zero, the pressure correction at face s is not needed and,
naturally, alg in Eq. (6.28) becomes zero. The pressure (water level) at the boundary
point S can be extrapolated from the values at adjacent internal points.

As mentioned in Section 6.1.2, there are two approaches for handling & and ¢ at
the wall boundary. One approach directly specifies the values of k and ¢ at center
P in Fig. 6.2, according to Eq. (6.15). The other approach solves the k equation at
the control volume near the wall. When the k equation is integrated over this control
volume, the convection flux at face s and the coefficient a’§ are set to zero, but the
turbulence generation and dissipation rates at center P are given by Eq. (6.16).

At the inlet, the control volume is shown in Fig. 6.3(a), with face w being on the
inflow side. For the specified total flow discharge Q, Eq. (6.17) cannot directly give
a unique value for the inflow flux at each cell, due to the fact that the flow depth is
also unknown. Iteration is usually needed. At first, a pressure is assumed at face w so
that the inflow velocity and flux can be uniquely obtained using Eq. (6.17). Because
the inflow flux is thereby obtained, the flux correction at face w is zero, and thus the
pressure correction equation becomes

ity = il + el + depl + 5, (629)
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Inflow Outflow
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Figure 6.3 Control volumes near (a) inlet and (b) outlet.

where af, = af. +a +al; + AAp/(gAt), and S, = —(p} — P AAp/(gAt) — (Ff — Fyy +
F} — F?). The flow calculation can then be carried out over all internal points. After
the internal pressure field has been obtained, the pressure at the w-face of each inlet
cell can be extrapolated from the pressure values at adjacent internal points and a new
inflow flux can then be obtained using Eq. (6.17). The above procedure is repeated
until a convergent solution is obtained.

The turbulent energy and its dissipation rate can be directly specified at the center of
the control volume near the inlet, according to Eq. (6.20). However, as an alternative,
their fluxes may also be specified at the inflow face. When the relevant equation is
integrated over the control volume near the inlet, the specified flux is moved into the
source term and the coefficient at the inflow face is set to zero.

At the outlet, the pressure (water level) is specified for the subcritical flow. It may
be specified at either the center or the outflow face of the control volume shown in
Fig. 6.3(b). In the former case, the pressure correction should be zero at center P. In the
latter case, an imaginary computational point (noted as E) without a control volume
is set up at the outflow face, at which the pressure correction is zero. The pressure
correction equation at point P is Eq. (6.28), but the coefficient ag needs to be specially
treated, as it cannot be determined in analogy to Eq. (6.26). The former approach is
easier to implement.

The flow velocity, turbulent energy, and dissipation rate at the outlet can be extrap-
olated from the values at adjacent internal points. When the relevant differential
equation is integrated over the control volume shown in Fig. 6.3(b), the diffusion

flux at the outlet (face e) is zero due to the quantity’s zero gradient; because the con-

vection terms are usually discretized using an upwind scheme, the coefficient aﬁ may

actually be zero.

6.1.3.2 Projection method

Semi-implicit projection method

Casulli (1990) proposed a semi-implicit finite difference method for solving 2-D
shallow water equations (6.1)—(6.3). The staggered grid shown in Fig. 4.24 is used.
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The velocity divergence in the continuity equation as well as the bed friction and
water level gradient terms in the momentum equations are discretized implicitly,
while the other terms are discretized explicitly. The basic semi-implicit algorithm is
formulated as

o =i (b f12 Uiy = Pl Ui,
_ g h’f,H/ZU% P RN ii eI (6.30)
Uiy = FUin) - g?x(z?’;fl,/ =2l = Al Untl g (631)
U;ll,1+1/2 =FUy; 112 — g%(z;’;;.{rl _ zzzil) BN Uy 4 (632)
where F(UY, . » ) and F(U7, ;) include all the remaining terms in the discretized

momentum equations, and y = gn? /U2 + U%/b4/3.
Substituting Egs. (6.31) and (6.32) into Eq. (6.30) yields

2 no no
o _g At hz+1/2,7 ( ntl n+1) _ hl—l/Z,/ Lt )
Zs i 1+ Virjrl/z,;‘At st s,i 1+ Vin—l/z,;‘At $5bs] syi—1,]
2 n n
_gAt b1 ("1 T - P12 Ll
Ay? |1+ J/:Hl/zAt it~ s 1+ Vitl;‘fl/zAt shi St
at [ Pl b p,
= —— | — L FU" ) — L FU, )
Sl Ax |:1 ¥ yirjrl/l,/At X,i+1/2,7 14+ yin—l/z,/At x,i—1/2,j
At h?;’+1/2 b?'—l/z
—— | —=————FWU, 1) — — H7s R, i1/2) (6.33)
Ay |:1 + yitlj+1/2At Vsbsj+1/ 1+ yiftjfl/ZAt Vb —1/

Eq. (6.33) constitutes a linear five-diagonal system of equations for water level.
Because h > 0, this system is symmetric and positive definite and thus can be solved
efficiently using many methods, such as the preconditioned conjugate gradient method
(see Casulli, 1990).

The calculation procedure for this semi-implicit algorithm consists of the following
steps: (i) calculate F(U” ) and F(U”" ”H/z) (ii) solve Eq. (6.33) to obtain 2t

¥ S 2
and (iii) calculate UZ;+1/2; and Uy”H/2 using Eqgs. (6.31) and (6.32). This algorithm
can be considered an extension of Chorin’s (1968) projection method described in
Section 4.4.

A von Neumann analysis of this semi-implicit algorithm indicates that its stability
depends only on the choice of difference operator F. Casulli (1990) suggested a
Eulerian-Lagrangian approach. Generally speaking, many other schemes can also be
used, but typically, an upwind scheme should be used for the convection terms.

Note that because the flow depth and velocity are evaluated at different time levels,
the discretized continuity equation (6.30) is not strictly conservative. However, this
semi-implicit algorithm has been shown to be computationally efficient.

Li+1/2,)
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Pressure-correction projection method

Jia et al. (2002) developed a depth-averaged 2-D model based on the projection
method. The partially staggered grid shown in Fig. 6.4 is used. The pressure is
defined at the cell centers, while both velocities U, and U, are at the cell cor-
ners. The governing equations are solved using the efficient element method (Wang
and Hu, 1993). The convection terms in the momentum equations are discretized
using the upwind interpolation scheme introduced in Section 4.2.4.2, while the other
spatial derivative terms are discretized using the interpolation schemes (4.97) and
(4.98). The time-derivative terms are discretized using the Euler scheme. The fol-
lowing pressure-correction method is used to achieve the coupling of velocity and
pressure.

Figure 6.4 Partially staggered grid used by Jia et al. (2002).
The discretized momentum equations are arranged as

— — - At
Ul =U"+ AtG —FV(p" +7) (6.34)

where 6 includes all the remaining terms in Egs. (6.2) and (6.3); p is the water density,
which is assumed to be constant; p is the pressure, defined as p = pgzs; and p’ is the
pressure correction, defined by

pn+1 — pn +p/ (6.35)

The intermediate velocity is denoted as

U= U"+ AtG——Lvp (6.36)
0
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Subtracting Eq. (6.36) from Eq. (6.34) yields

— — At
Ut = Ut - 7Vp/ (6.37)
Substituting Eq. (6.37) into Eq. (6.1) yields
b - A A
W v b = Avry — Alyp vy =0 (6.38)
at P p

Neglecting the last term on the left-hand side of Eq. (6.38) and applying 9h/0t =
(b1 — by /At = p'/(pgAt) yields the following Poisson equation for pressure
correction:

(1 — ghAEV2)p = —pg AtV - (hU™) (6.39)

Eq. (6.39) is solved using the efficient element method for the Laplace operator on
the left-hand side and the finite volume method for the term on the right-hand side.
The resulting algebraic equations are solved using the SIP method.

The calculation procedure starts with calculating ﬁ*, using Eq. (6.36) with the
known pressure p”. Eq. (6.39) is then solved to obtain the pressure correction. Pressure
and velocity at time level # + 1 are obtained using the correction equations (6.35) and
(6.37), respectively.

Because the pressure correction is defined by Eq. (6.35), the time step length is some-
what limited. This limitation can be relaxed by using p”*! = p* +p’, as demonstrated
in Section 6.1.3.1. This modification requires p” in Eq. (6.36) to be replaced by p*
and a term of p” — p* to be added on the right-hand side of Eq. (6.39). Iteration is
needed in the solution of the modified equations, but the time step can be longer and
the mass balance is less affected by the omission of the last term on the left-hand side
of Eq. (6.38), as p’ — 0 through the iteration.

6.1.3.3 Stream function and vorticity method

Stream function and vorticity equations

As described in Section 4.4.5, the stream function and vorticity method is highly
convenient for solving the 2-D Navier-Stokes equations of incompressible flows. How-
ever, its application in the depth-averaged 2-D model is not straightforward, because
the definition of stream function in Eq. (4.207) is not valid for the depth-integrated
continuity equation (6.1). Wu et al. (1995) redefined the stream function and extended
the stream function and vorticity method to the depth-averaged 2-D model for steady
open-channel flows.

The governing equations for the depth-averaged 2-D steady shallow water flows are
written as

a(hUy) N a(hU,) _

0 (6.40)
0x ay
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aU. U d 10T 10T.

Ut Uyt = g 20y J 0 T
dx ay ox p 0x o dy oh

Uy |y Uy _ Bz 10Ty 10Ty Ty

dx ” 9y 8 dy p Ox p 0y ob

(6.41)

U, (6.42)

Corresponding to Eq. (6.40), the stream function ¥ in the depth-averaged 2-D model
is defined by

10 19
Up= L2V Uy=—z% (6.43)

The vorticity is still defined as

_ Uy il

Q= (6.44)

0x ay

Therefore, the following stream-function equation is obtained by inserting Eq. (6.43)
into Eq. (6.44):

2y o2y 1oboy  1dbay
L - T hQ 4
ox2  9y*  hdxodx  hoy dy (6.43)

Cross-differentiating Eqs. (6.41) and (6.42) with respect to y and x and subtracting
them yields the vorticity equation:

(U,  a(UyQ)
+ =
ax ay

Bl o Bl oQ

= [(u + w)] +— [(u + v»] +So  (6.46)
ox ox ay ay

where

v 97 Uy 9U. v, (90U, U
e (52 (5 ) 5 (5 )
ax ay ay ax daxdy \ 9y ox

vy (aZUy +232Uy aZUx> vy (282Ux 92U, N aZUy)

ax \ 9x2 ay2 | oxay | oy \T axz | 9yr | oxdy
_ 0 (T} O (T
ax \ ph dy \ ph

Similarly, differentiating Eq. (6.41) with respect to x and Eq. (6.42) with respect
to y and adding them together leads to the following Poisson equation for the
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water level:

32 32 S
ok e (6.47)
ax2  9yr g

where

2 2
o __ (U _zaUme_ auy _u, 82Ux+82Uy
< dx dy odx ay ax2  3xdy
U,  9*U 1 (3T Ty  3°T
~Uy |t =)+ - e
0x0dy ay o\ ox 0x0y ay
S0 (B 12 (T
pdx \ b pdy \h

The stream function, vorticity, and water level equations (6.45)—(6.47) are appar-
ently more complicated than Eqgs. (6.40)—(6.42), but they are still typical partial dif-
ferential equations and easy to solve. In addition, the mass is conserved automatically,
and the difficulty in solving Eq. (6.40) is avoided.

Note that because the definition of stream function in Eq. (6.43) is not valid for
Eq. (6.1), the aforementioned stream function and vorticity method cannot be used
for the depth-averaged 2-D simulation of unsteady flows. However, it can be used
in steady and quasi-steady cases. In particular, it can be used in the stepwise quasi-
steady model for the long-term simulation of flow and sediment transport to reduce
computational effort (Wu et al., 1995).

Boundary conditions for stream function and vorticity

For the river reach shown in Fig. 6.1, the stream function is set to zero on the left bank
and Q on the right bank. Here, Q is the total flow discharge. The stream function
along the island should have a constant value. The gradient of stream function along
the flow direction at the outlet is set to zero. Corresponding to Eq. (6.17), the stream
function at the inlet can be determined by

Y y B
P = / Uhdy' = O / b *dy / / b dy (6.48)
0 0 0

where the transverse coordinate y’ starts from the left bank.

The water level is given at the outlet, as usual in the case of subcritical flow. The
water level at the inlet should be extrapolated from the values at adjacent internal
points. The water level gradient in the direction normal to rigid wall boundaries, such
as banks and islands, can be set to zero.

The vorticity at the boundaries can be determined using Eq. (6.44), with the velocity
derivatives calculated using the following one-sided schemes:
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oU Uwr — U
x| _ x,2 x,1 (6.49)
ay |1 Ay
8Ux _ _3Ux,l + 4Ux,2 - Ux,3 (6 50)
ay | 2Ay '

or other higher-order approximations.

6.1.4 Wetting and drying techniques

In the calculation of flows in open channels with sloped banks, sand bars, and islands,
the water edges change with time, and some part of the domain might be dry. A number
of methods have been reported in the literature to handle this problem. They may be
classified into two groups. One group tracks the moving water edges and adjusts the
computational mesh to cover the wet domain. This group can use the boundary-fitted
grid at each time (iteration) step and achieve better accuracy around the water edges.
However, it results in complicated codes and perhaps requires more computational
effort. The other group uses the fixed grid that covers the largest wet domain and
treats dry nodes as part of the solution domain. The latter group includes the “small
imaginary depth,” “freezing,” “porous medium,” and “finite slot” methods.

The “small imaginary depth” method uses a threshold flow depth (a low value, such
as 0.02 m in natural rivers and 0.001 m in experimental flumes) to judge drying and
wetting at each time step. If the flow depth at a node is larger than the threshold value,
this node is considered to be wet, and if the flow depth is lower than the threshold value,
this node is dry. The dry nodes are assigned zero velocity. The water edges between
the dry and wet areas can be treated as internal boundaries, at which the wall-function
approach may be applied. The dry nodes can be excluded from the computation in an
explicit algorithm, but must usually be included in an implicit algorithm. In the latter
case, the “freezing” method is often adopted.

The “freezing” method also adopts a threshold flow depth to judge wetting and
drying in the computational domain. At dry nodes, the Manning 7 or the coefficient
ap in Eq. (6.22) is given a very large value, such as 103; therefore, the calculated
velocity is zero and the water level does not change (as it is frozen). The “freez-
ing” method can include dry nodes in an implicit algorithm. However, it should be
noted that the water level gradient may induce false flow motions at the dry nodes.
To avoid this problem, a horizontal water level profile at the dry nodes may be
assumed.

The “porous medium” method (Ghanem, 1995; Khan, 2000) assumes that the bed
at the dry nodes is a porous medium and the flow can extend into the dry bed. Based on
a specified minimum depth criterion, either the St. Venant or groundwater equations
are applied at a particular computational point. The “finite slot” method proposed by
Tao (1984) is similar to the “porous medium” method. In the “finite slot” method, a
dry node is cut into two slots (with infinitesimal width and infinite depth) parallel to
the x- and y-coordinates, respectively, in which the water is assumed to move. Thus,
the water depth is kept positive artificially, even if the bed is dry. Different momentum
equations are used at the dry nodes in the “porous medium” and “finite slot” methods,
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but the continuity equation at the dry nodes in both methods can be written as
b -
f§+v.(bU)=0 (6.51)

where f is the storativity in the “porous medium” method, or the slot width in the
“finite slot” method. The slot width is given as

g0 + (1 — g9)e?@—) 7 <z
= 0o+ ( 0) s <% (6.52)
1 s> 2

where 2y, is the bed elevation; g is the slot width, with a value between 0.02 and 0.05
when zs <« 2p; and a is a coefficient, which is usually larger than 2.0.

6.2 DEPTH-AVERAGED 2-D SIMULATION OF SEDIMENT
TRANSPORT IN NEARLY STRAIGHT CHANNELS

6.2.1 Governing equations

As described in Section 5.1.2.1, sediment transport can be simulated by computing
bed load and suspended load separately, or bed-material (total) load jointly. The
depth-averaged 2-D sediment transport equations in both approaches are given
below.

Bed-load and suspended-load transport model

The governing equations of the bed-load and suspended-load transport model in
general situations were described in Section 2.7. For nearly straight channels,
the dispersion terms in the suspended-load transport equation (2.157) are usually
combined with the diffusion terms, thus yielding

d(hCr/Bs) ~ 3(hUxCp)  3(hUyCy) ] aCk> a 9Cy
=— [ E..h— — | Es,h—=
ot T T dy ax \ ™" ax +8y =7 dy

+awg(Cy —Cp) (k=1,2,...,N)
(6.53)

where E; ¢ and E, are the horizontal effective diffusion (mixing) coefficients of sed-
iment in the x- and y-directions, respectively. If the dispersion effect is negligible,
Ex and Eq, are close to the turbulent diffusivity &5 and can thus be related to the
eddy viscosity v;. In general, the effective diffusivities depend on the flow, sediment,
and channel conditions, and may have different values in the longitudinal and trans-
verse directions. Their evaluation may refer to the methods for the horizontal effective
diffusivities of heat and salinity introduced in Section 12.1.3.
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The bed-load transport and bed change of size class k are governed by Egs. (2.158)
and (2.159), which are written below for convenience:

0(qpk/up) | 0@pxqpr) | d@bydne) _ 1
at ax dy L

Qbsk — 9bk) (6.54)

azp

, 1
1 -p,) (at)k = awg(Cp — Cyp) + Z(Qbk — qbsk) (6.55)

and the total rate of change in bed elevation is determined by Eq. (2.160). Note that
the bed load is assumed to move along the direction of bed shear stress if the effect
of bed slope in ignored; thus, the direction cosines of bed-load movement in a nearly
straight channel are given by ap, = Uy/U and oy, = Uy/U with U = | /U} + U3,
according to Eq. (6.4). The effect of bed slope on bed-load transport is discussed in
Section 6.3.4.

To close the set of equations (6.53)—(6.55), the equilibrium suspended-load concen-

tration C,;, and the bed-load transport rate gy, need to be determined using empirical
formulas, which can generally be written as

Coak =06kChs  Absk = Pordyy (6.56)

where Cj is the potential equilibrium concentration of the kth size class of suspended
load, g7, is the potential equilibrium transport rate of the kth size class of bed load,
and py, 1s the fraction of size class k in the mixing layer of the bed material.

The multiple-layer bed material sorting model introduced in Section 2.7.2 is applied
here. For example, the bed-material gradation in the mixing layer is determined by

d@mpbpk) _ [ 9zp « (9m  02p
ot _<8t )k+pbk<at at) (6.57)

Bed-material load transport model

The bed-material (total) load transport equation can be obtained by summing
Egs. (6.53) and (6.54) and using Eq. (2.149) for the sediment exchange at the bed.
The resulting equation is written as

3 (/’Jctk> + 3(hUthk) " 3(hUthk) _ i [Esxha(rskctk)]
at \ B ax ay ax ’ ax
d (g, C
* 35 [Eyb“;y*)} + a0 (Cru = Cp) (k=1,2,...,N)  (6.58)

where C; and C,, are the actual and equilibrium (capacity) depth-averaged
concentrations of the kth size class of bed-material load, respectively; B, is the correc-
tion factor determined using Eq. (2.92); a; is the adaptation coefficient of bed-material
load, defined as a; = (Uh)/(L;ws) with L; being the adaptation length; and ry;, is the
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ratio of the suspended load to the bed-material load, C,/C,,. To close Eq. (6.58),
can be approximated by 7y, = C,/C,,- If the suspended load is dominant, 7, is close
to 1 and may be lumped into the diffusivity E.

The bed change is determined by

a
(1= (%2) = awu(Ca - G (6.59)
t/k

If the bed load is dominant, 7, is close to 0 and the diffusion term in Eq. (6.58) can
be ignored, thus yielding

8 ‘Izk 3(ottxqtk) a(atyqtk) 1
ot = —(druk — 6.60
ot (/BtkU> + ax T dy I, (Grsk — dtk) ( )

where g, and gy, are the actual and equilibrium (capacity) transport rates of the kth
size class of bed-material load, respectively; and oz, and a4y, are the direction cosines
of bed-material load transport. Accordingly, the bed change is determined by

0zp

/ N
a—mmmk—h@k%m (6.61)

The bed-material load transport capacity is determined using an equation similar to
Eq. (6.56), and the bed material sorting is simulated using the previous multiple-layer
model.

Because the bed-load and suspended-load model can cover the bed-material model
in the numerical solution sense, only issues regarding the former model are introduced
in the next subsections.

6.2.2 Boundary and initial conditions

Wall boundary conditions

At banks and islands, the bed-load transport rate and the suspended-load concentra-
tion gradient are set to zero:

9C,

—_— = 6.62
oy =0 (6.62)

qpr =0,
where # is the coordinate in the direction normal to the boundary.

Inflow boundary conditions

In the depth-averaged 2-D sediment transport simulation, the sediment discharge must
be given at each point of the inflow boundary. In an unsteady case, a time series of
the inflow sediment discharge is needed. For non-uniform sediment transport, the
size distribution of the inflow sediment is also needed. Once the (fractional) bed-load
and suspended-load discharges Oy, and Qg have been given, they may be distributed
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laterally along the inlet located in a nearly straight reach by

_ OQpegh™ _ Oggh”

= s sk = (6.63)
f()B thb dy/ fOB thde’

bk

where g, qpp, and gy, are the flow, bed-load, and suspended-load discharges per unit
channel width at each point; and 7, and 7 are empirical exponents. Note that Eq. (6.63)
assumes qp, X gh™ and g, o gh's.

Outflow boundary conditions

At the outflow boundary, calculating the bed load does not require any boundary con-
dition, in principle. The suspended-load concentration gradient in the flow direction
is set to zero:

9Ck =0 (6.64)
as
where s is the coordinate in the flow direction.

Note that at a tidal boundary, the flow may go in and out alternately. The sediment
transport rate needs to be provided during a flood tide (inflow), and the suspended-
load concentration gradient in the flow direction is given zero during an ebb tide
(outflow).

Initial conditions

The initial channel geometry, suspended-load concentration, and bed-load transport
rate are required. The initial bed-material gradation in the entire solution domain
must be given for the simulation of non-uniform sediment transport; it is particularly
important for scour and channel stability analysis.

6.2.3 Numerical solutions

6.2.3.1 Discretization of sediment transport equations

Sediment transport equations can be discretized using the numerical methods intro-
duced in Chapter 4. The finite volume method is chosen here as an example. The
suspended-load transport equation (6.53) is written as Eq. (6.21) in the curvilinear
coordinate system and discretized as

+1 ot
AAp (h;é Cii el

At gl n

_ C ~n+1 Cn+1 C n+1 C ~n+1
>_aWCk’ +agCp +asCg +anCy
sk,P sk,P

- agCZ}l + awg, AAP(CZ/::}) - CZ}l) + Sck,p
(6.65)
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where ag, agy, afl, aSC, and ag are coefficients; and S, p includes the cross-derivative

diffusion terms.

The bed-load transport equation (6.54) is integrated over the control volume shown
in Fig. 4.21, with the convection terms discretized using the first-order upwind scheme
or the QUICK scheme. The discretized bed-load transport equation is

n+1 n
AAp (9pk,p  Dbk,p
> 5 _ 49 n+l q n+1 q n+1 q n+l g _n+l
At \att " = 4w pk,w T 9EDpk,E T 45pk,s T INDoe,N ~ 9PDbk,p
bk,P ,

AAp
S G i) (6.66)

Egs. (6.65) and (6.66) can be iteratively solved using the Gauss-Seidel, ADI, or SIP
method.

Note that the coefficient a§ in the discretized suspended-load transport equation
(6.65) includes the term F, — F,, + F,, — Fg, as shown in Eq. (4.135). This term can
be treated using the discretized continuity equation (6.23) for better stability. How-
ever, the coefficient a?) in the discretized bed-load transport equation (6.66) cannot
be treated thus. An alternative is to define a quantity Cy, = gy /(Ub), substitute this
relation into Eq. (6.54), and discretize the new bed-load transport equation in terms of
Cypp, as the dependent variable. The coefficient ap in the resulting discretized equation
has the term F, — F,, + F,, — F;, which can then be treated using Eq. (6.23).

To ensure mass conservation, the discretizations of the exchange terms in the bed
change equation (6.55) and in the suspended-load and bed-load transport equations
(6.53) and (6.54) should be consistent. Thus, Eq. (6.55) is discretized as

awg, At
(i - ClD+

At
1 = p/ k,P (qn+1 n+1 ) (667)
m

Azppp = 1—p. )L bk,P qb*k,P
m
where Az, is the change in bed elevation due to the kth size class of sediment at time
step At.
After the fractional change in bed elevation has been calculated, the total change is
obtained as

N
Azpp =Y Azpp (6.68)
k=1
and the bed elevation is then updated by
G =2+ Aapp (6.69)

The bed material sorting equation (6.57) is discretized as

1
il Azppp + SZ,PPZ/Q,I) + Pzz’p(‘sfnfp - 5:1”,1) — Az, p)
pbk,P = P (6.70)

m,P
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where p}’  is defined as pj}, ,, the fraction of size class k in the mixing layer of bed

material if Az, p+ 6] p > 6:’;}1, and as the fraction of size class k in the second layer

if Azpp+ 8 p < 8ty

6.2.3.2 Solution of discretized sediment transport equations

Fully decoupled model

Like the 1-D sediment transport model in Section