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Preface

Rivers, as part of the nature, have been a focus of human activities since the beginning
of civilization. Through engineering practices, such as flood control, water supply,
irrigation, drainage, channel design, river regulation, navigation improvement, power
generation, environment enhancement, and aquatic habitat protection, humans have
come to understand more about rivers and established basic principles and analytical
methodologies for river engineering. With the help of computation and information
techniques, numerical modeling of flow and sediment transport in rivers has improved
greatly in recent decades and been applied widely as a major research tool in solving
river engineering problems. These advances motivated me to write this book on the
physical principles, numerical methods, and engineering applications of computational
river dynamics.

Most of the topics included in this book have been the central theme of my research
work. I developed a simple 1-D quasi-steady sediment transport model for my bach-
elor’s degree in 1986, a width-averaged 2-D unsteady open-channel flow model in
my master’s thesis in 1988, and an integrated 1-D and depth-averaged 2-D sediment
transport model under quasi-steady flow conditions in my Ph.D. dissertation in 1991
at the Department of River Engineering, Wuhan University of Hydraulic and Electric
Engineering, China. In 1995–1997, I established a 3-D sediment transport model at
the Institute for Hydromechanics, University of Karlsruhe, supported by the Alexander
von Humboldt Foundation, Germany. Since 1997, I have revisited 1-D and 2-D mod-
els and developed a 1-D channel network model and a depth-averaged 2-D model for
unsteady flow and non-uniform sediment transport at the National Center for Com-
putational Hydroscience and Engineering, University of Mississippi, USA, through a
Specific Research Agreement between the USDA Agricultural Research Service and the
University of Mississippi. I have also reviewed sediment transport theories, established
several sediment transport formulas, and developed models for dam-break fluvial pro-
cesses, vegetation effects, cohesive sediment transport, and contaminant transport. All
these model developments and studies contributed to this book.

This book is intended primarily as a reference book for river scientists and engineers.
It is also useful for professionals in hydraulic, environmental, agricultural, and geo-
logical engineering. It can be used as a textbook for civil engineering students at the
graduate level.

My fascination with river engineering and computational river dynamics began
with my first supervisor, Prof. Jianheng Xie. Later I learned a great deal about tur-
bulence models and computational techniques in CFD from Prof. Wolfgang Rodi.
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I also would like to acknowledge Prof. Sam S.Y. Wang for his long-term support and
encouragement. I am greatly indebted to these three scientists.

I sincerely thank Drs. Mustafa S. Altinakar, Xiaobo Chao, George S. Con-
stantinescu, Blair Greimann, Eddy J. Langendoen, Wolfgang Rodi, Steve H. Scott,
F. Douglas Shields, Jr., Pravi Shrestha, Dalmo A. Vieira, Thomas Wenka, Keh-Chia
Yeh, Xinya Ying, and Tingting Zhu for reviewing this book. I also thank my colleagues
in Wuhan, Karlsruhe, and Ole Miss and my friends all over the world for their care
and encouragement.

I would like to thank Taylor & Francis for publishing this book. In particular, many
thanks are due to Dr. Germaine Seijger and Mr. Lukas Goosen for their professional
handling of this project, Ms. Maartje Kuipers for designing the cover, Mrs. Shyamala
Ravishankar and her team for carefully typesetting the manuscript, and the Anthony
Rowe Ltd for printing it. I also thank my assistants Dr. Zhiguo He and Miss Podjanee
Inthasaro for their help in proofreading of this book.
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Weiming Wu
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Notations

Symbol Meaning

A Cross-sectional area of flow in 1-D model
Ab Bed area at the cross-section
B Channel width at the water surface
b Flow width at height z in width-averaged 2-D model
C Depth-, width- or section-averaged suspended-load concentration

Contaminant concentration
Cd Drag coefficient of sediment particle or vegetation
Cd , Cs, Ct Concentrations of dissolved, sorbed, and total contaminants
Ch Chezy coefficient
Ct Depth- or cross-section-averaged concentration of total load
C∗ Depth- or cross-section-averaged equilibrium suspended-load concentration
c Local sediment concentration
cb, cb∗ Actual and equilibrium near-bed suspended-load concentrations
cv0, cv local and depth-averaged concentrations of vegetation
D Diameter of vegetation stem
Db, Eb Near-bed deposition and entrainment fluxes of sediment
Dsx , Dsy Dispersion fluxes of suspended load
Dxx , Dxy , Dyx , Dyy Dispersion transports of momentum
d Sediment diameter
d50 Median diameter of sediment mixture
dk Sediment diameter of size class k
dm Arithmetic mean diameter of sediment
�Fd , �fd Drag forces on vegetation
Fw , Fs, Fb, . . . Fluxes across cell faces
Fi External force per unit volume
fc Coriolis coefficient
g Gravitational acceleration
h Flow depth
hv Vegetation height
J Jacobian determinant
K Conveyance of channel
k Turbulent kinetic energy



xii Notations

Symbol Meaning

ks Equivalent (effective) roughness height
Subscript k Sediment size class index

Associated with turbulent kinetic energy
L, Lt Adaptation length of sediment
lm Mixing length
Na Vegetation density
n Manning roughness coefficient
Pk Production of turbulence by shear
p Pressure
p′ Pressure correction
pbk Bed-material gradation in mixing layer
p′

m Porosity of sediment deposit
Q Flow discharge
Qb, Qb∗ Actual and equilibrium bed-load transport rates
Qt , Qt∗ Actual and equilibrium total-load transport rates
q Unit flow discharge
qb, qb∗ Actual and equilibrium unit bed-load transport rates
q1, qblk , qslk , qtlk Side discharges of flow and sediment
R Hydraulic radius of channel
Rb Hydraulic radius of channel bed
Rs Hydraulic radius of vegetated bed
S Source term
Sf Energy slope, friction slope
T Temperature or transport stage number
Txx , Txy , Tyx , Tyy Depth-averaged stresses
t Time
U(Û) Depth- or section-averaged flow velocity
Ux , Uy Depth-averaged flow velocities in x- and y-directions
Ux , Uz (Ũx , Ũz) Width-averaged flow velocities in x- and z-directions
Uc Critical average velocity for incipient motion
U∗ bed shear velocity
ub, Ub Bed-load velocities
ui(ux , uy , uz) Flow velocities in xi(x, y, z) directions
ûm(ûξ , ûη , ûζ ) Flow velocities in ξm(ξ , η, ζ ) directions
x, y Horizontal Cartesian coordinates
xi i-coordinate in the Cartesian coordinate system
z Vertical coordinate above a datum (or bed)
zb Bed surface elevation
zs Water surface elevation
α Adaptation coefficient of sediment
αbx , αby Direction cosines of bed-load movement
β Correction factor for momentum
βs, βt Correction factors for suspended and total loads
χ Wetted perimeter at the cross-section
� Sand dune height
�AP Area of the control volume centered at P
�t Time step
�x, �y Grid spacings
�zb, �Ab Changes in bed elevation and area
δ Thickness of bed-load layer
δij Kronecker delta



Notations xiii

Symbol Meaning

δm Mixing layer thickness
δh, δQ Increments of water stage and flow discharge
ε Dissipation rate of turbulent energy
εs Turbulent diffusivity of sediment
φr Repose angle of sediment
γ Specific weight of water and sediment mixture
γf , γs Specific weights of water and sediment
κ Von Karman constant
λ Darcy-Weisbach friction factor
µ, ν Dynamic and kinematic viscosities of water
νt Turbulent or eddy viscosity
π Circumference-diameter ratio ≈ 3.14159
� Shields number
�c Critical Shields number
θ , ψ Temporal, spatial weighting factors
ρ Density of water and sediment mixture
ρ0 Density of flow density at water surface
ρb Density of water and sediment mixture at bed surface layer
ρd Dry density of sediment deposit
ρf , ρs Densities of water and sediment
σs Schmidt number
τ , τij Shear stresses
τb, τ ′

b Bed shear stress, grain shear stress
τc Critical shear tress for incipient motion
τce Critical shear stress for erosion
τs Wind driving force at the water surface
ωs Sediment settling velocity
ωsf Floc settling velocity
ξ , η, ζ Logical or curvilinear coordinates





Chapter 1

Introduction

1.1 OVERVIEW OF RIVER ENGINEERING

The origin of river engineering dates back to ancient times. According to historical
records, the Chinese began building levees along the Yellow River about six thou-
sand years ago. Approximately around the same period, irrigation systems and flood
control structures were constructed in Mesopotamia, and also some ten centuries
later in Egypt. During the Renaissance period, the observation of water flow and
sediment transport was carried out by the Italian artist and engineer Leonardo da
Vinci (1452–1519). Since then, scientists and engineers have performed a great num-
ber of studies on rivers, and constructed dams, levees, dikes, bridges, river training
works, navigation facilities, and water supply facilities along rivers. This section briefly
highlights the key issues in river engineering.

River dynamics

The study on the flow, sediment transport, and channel evolution processes in rivers
began centuries ago, but river dynamics emerged as a distinct discipline of science
and technology only after M. P. DuBoys established a bed-load formula in 1879 and
H. Rouse proposed a function for the vertical distribution of suspended sediment in
1937. River dynamics deals with river flow and sediment problems, such as turbu-
lent flow in alluvial channels, movable bed roughness, sediment settling, incipient
motion, transport, deposition, and erosion. River dynamics also incorporates the
study of fluvial processes, including river pattern classification, channel evolution
laws, and regime theory. It provides physical principles and analysis methods for river
engineering.

Flood control and mitigation

Flood is one of the biggest disasters rivers can cause. A river system is usually in
balance – to a certain degree – with the hydrological and geological conditions of its
basin. When the amount of runoff generated from uplands due to overwhelming rain-
fall exceeds the transport and storage capacity of the river system, the flow will overtop
or break banks and flood neighboring areas. Owing to thousands of years’ struggling
against flood threats, humans have developed many flood control technologies, such
as levees, river training works, storage areas, and diversion structures. Levees are one
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of the major measures used to control flood in many rivers. River training works, such
as spur-dikes, weirs, and bank revetments, are often constructed to control the flow
and protect banks and levees. Flood storage areas, such as reservoirs, lakes, deten-
tion ponds, and floodplains, help detain the flood propagation speed and reduce the
peak of the flood. Diversion areas or channels are usually designated for emergency
purposes when flood threatens the safety of backbone structures and key areas. As a
new technology, flood forecasting and warning systems have been established in many
regions to mitigate the flood disaster.

Reservoir sedimentation

Sediment deposition reduces the storage capacity and life span of reservoirs. With
time, the deposition will extend upstream and submerge more land, while sediments,
especially coarse particles, will be detained by reservoirs, causing erosion in down-
stream channels. The deposition and erosion processes and the ultimate equilibrium
profiles in reservoirs and downstream channels are topics of concern. After reservoirs
reach equilibrium states, their efficiency in terms of flood control, power genera-
tion, and sediment detention may be significantly reduced, and then problems with
dam decommission and rehabilitation and their impacts on the environment become
important.

Sediment control in low-head hydro-projects

Low-head hydro-projects include low dams, sluice gates, spillways, power generation
facilities, water diversion structures, water intake structures, and navigation facili-
ties. Because the reservoirs formed by low dams are small, sediment transport and
morphological evolution in the reservoirs and downstream channels reach new equi-
librium states relatively quickly. The appropriate design of sluice gates, spillways, and
power generators can prevent coarse sediments from entering into turbines. In princi-
ple, navigation and water intake structures should be placed at locations such as the
outer bank of the channel bend where less sediment deposition occurs. Flows around
hydro-projects should be controlled with certain river training works. Sometimes it
may be necessary to dredge and flush the deposits.

River restoration

Because of the impact of human activities or the variation of natural environment con-
ditions, river systems change their forms through bed aggradation, degradation, and
bank migration. These changes may be undesirable. For example, channel meander-
ing and main flow displacement may cause land loss, bridge failure, levee breach, and
difficulty in water intake. Serious erosion and deposition may impair aquatic habi-
tats. Once adverse impacts occur, training, mitigation, and restoration are needed to
change river systems to more favorable stable states.

Protection of structure foundations

In-stream structures, such as bridge piers, abutments, spur-dikes, and weirs, change the
flow significantly and may induce considerable erosion. Erosion also occurs due to jet
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impingement at the downstream of sluice gates, spillways, and overfalls. Local erosion
is the major reason for the failures of many structures. Because of the complexity of the
processes involved, the prediction and prevention of local erosion around structures
are very challenging.

Sediment problems in estuaries

Morphodynamic processes under the actions of river runoff, tidal flow, and wave
currents in estuaries are extremely complex. A large amount of fine-grained cohesive
sediments coming from rivers are deposited in estuarine regions, forming mouth bars
and reducing the flow depth in navigation channels. Salinity intrusion intensifies the
deposition of cohesive sediments and affects the water quality. Fine-grained sediments
also enter harbors and cause significant deposition there. Training works and dredging
are necessary to maintain the navigation channels.

Watershed management

Water bodies, such as rivers, lakes, and reservoirs, receive water runoff and sediment
load from uplands. Serious erosion in the uplands increases the downstream sediment
load, causing sedimentation and reducing the storage and transport capacities of down-
stream river systems. Conversely, a reduction in the erosion of uplands decreases the
downstream sediment supply, causing channel degradation, headcutting, and bank
instability. Rational watershed management is essential for both uplands and river
systems.

Sediment-related environmental problems

Environmental quality is an important global issue. Wastes from industry and agricul-
ture impair not only the water quality, but also the sediment quality in the receiving
river systems. Sediments, especially clay and silt, are associated with the transport of
many pollutants. The impaired sediments also accumulate on the channel bed with
time, and later become a major source of pollution through resuspension.

1.2 ROLE OF COMPUTATIONAL SIMULATION
IN RIVER ENGINEERING ANALYSIS

River flow and sediment transport are among the most complex and least understood
processes or phenomena in nature. It is very difficult to find analytical solutions for
most problems in river engineering, and it is very tedious to obtain numerical solutions
without the help of high-speed computers. Therefore, before the 1970s, many river
engineering problems had to be solved through field investigations and laboratory
physical models (also called scale models). With the recent advancements in computer
technology, computational models have been greatly improved and widely applied to
solve real-life problems. One-dimensional (1-D) models have been used in short- and
long-term simulations of flow and sediment transport processes in rivers, reservoirs,
and estuaries. Two-dimensional (2-D) and three-dimensional (3-D) models have been
used to predict in more detail the morphodynamic processes under complex flow



4 Computational River Dynamics

conditions in curved and braided channels and around river training works, bridge
piers, spur-dikes, and water intake structures.

Physical modeling and computational simulation are the two major tools used in
river engineering analysis. Both have their advantages and disadvantages. Physical
modeling can provide directly visible results, but it is expensive and time-consuming.
Because the flow, sediment transport, and bed change processes in rivers are very
complicated, it is difficult to ensure similarity between a physical model and its proto-
type. Errors may arise due to distortions of model scale and variations in experimental
environments such as temperature. Computational simulation gives direct, real-scale
predictions without any scale distortion and is cost-effective. However, the reliability
of computational simulation relies on how well the physical processes are mathemat-
ically described through governing equations, boundary conditions, and empirical
formulas; how accurately the differential governing equations are discretized using
numerical schemes; how effectively the discretized algebraic equations are solved using
direct or iterative solution methods; and whether the numerical solution procedures
are correctly coded using computer languages. If the mathematical description is unrea-
sonable, the numerical discretization incorrect, the solution method ineffective, or if
the computed code has bugs, the results from a numerical model cannot be trusted.
Because many empirical formulas are used to close the mathematical problems, the
applicability of computational simulation is still somehow limited. Before a numerical
model can be applied to a real-life project, it needs to be verified and validated using
analytical solutions and data measured in laboratories and fields.

To solve a real-life engineering problem correctly and effectively, the integration of
field investigation, physical modeling, and computational simulation is needed. Field
investigation is the first thing to do for a comprehensive understanding of the problem.
It provides the necessary hydrologic and sediment information on the study domain
and boundary conditions, which are required in both physical modeling and com-
putational simulation. It also provides data to calibrate physical and computational
models. If the study reach is not long, either physical modeling or computational sim-
ulation can be chosen to analyze the problem. The most cost-effective method is to use
physical models to study a few scenarios and collect enough data to calibrate compu-
tational models, and then use the calibrated computational models to analyze more
scenarios. If the study reach is too long, 1-D numerical models are often used in the
entire reach; they provide boundary conditions for 2-D and 3-D numerical models as
well as physical models for detailed analyses in important subreaches.

1.3 SCOPE, PROBLEMS, AND STRATEGIES
OF COMPUTATIONAL RIVER DYNAMICS

Computational river dynamics is a branch of computational fluid dynamics (CFD). It
solves river engineering problems using numerical methods. River flow is an incom-
pressible flow; therefore, many successful numerical methods developed in CFD can
be applied here. However, river flow has a free surface and movable bed, which make
computational river dynamics relatively complicated and difficult. Many assumptions
and empirical formulas must be used to close the mathematical systems, and the
approximate solutions sought may not be unique. Thus, computational river dynamics
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is an engineering science rather than applied mathematics. Not only must a successful
numerical modeler possess knowledge about numerical techniques, but he or she must
also have enough experience in river engineering.

In computational river dynamics, the flow, sediment transport, and morphological
change processes in rivers are described by a set of coupled, non-linear algebraic and
differential equations that usually cannot be solved in closed form. The analysis of
river morphodynamic phenomena thus requires an approximation process, the end
result of which is a field of discrete property values at a finite number of locations
(“points” or “nodes”) distributed over the study domain. The general procedure for
developing a computational model consists, essentially, of the following steps:

(1) Conceptualize the complicated physical phenomena of study, with the necessary
simplifications and assumptions that express our understanding of the nature
of the system and its behavior (e.g., dimensionality; steady, quasi-steady, or
unsteady; laminar or turbulent; subcritical, supercritical, or mixed; gradually
or rapidly varied flow; fixed or movable bed; bed load, suspended load, or total
load; low or high sediment concentration; uniform or multiple sediment sizes;
equilibrium or non-equilibrium transport; cohesive or non-cohesive; bank ero-
sion; channel meandering; contaminants; solution domain; initial and boundary
conditions);

(2) Describe the physical phenomena of study using a set of algebraic and differential
equations that are subject to the conservation laws of mass, momentum, and
energy;

(3) Divide the study domain into a mesh of points, finite volumes, or finite elements
corresponding to the used numerical methods;

(4) Discretize the differential equations to equivalent algebraic equations by introduc-
ing ‘trial functions’, held to approximate the exact solution locally;

(5) Solve the coupled algebraic equations, which are subject to case-specific boundary
conditions, using an iteration or elimination algorithm to find the property values
at the grid points, and

(6) Code the established solution procedures using computer languages, such as
FORTRAN, C, or C++, and package the model with a graphical user interface for
pre- and post-processing, if possible.

The major problems in computational river dynamics include:

(1) Adequacy of the (simplified) conceptual models representing the complicated real
system and its behavior;

(2) Realism of the mathematical models describing the complex hydrodynamic and
morphodynamic processes that cannot be represented exactly (e.g., turbulence,
bed roughness, and the interaction between flow and sediment), and reliability of
the empirical formulas used to close the mathematical systems;

(3) Ability to generate adequate meshes over complex domains;
(4) Accuracy and consistency of numerical approximations;
(5) Numerical stability and computational efficiency of solution methods;
(6) Correctness of computer coding, and
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(7) Reliability of numerical solutions and applicability of computational models in
different situations.

To insure the quality of the simulation results, a computational model of flow and
sediment transport should be verified and validated before application in solving real-
life problems. Model verification and validation usually follow three steps (Wang and
Wu, 2005):

(1) Verification by Analytic Solutions. The agreement between analytic and numeri-
cal solutions certifies the correctness of the mathematical formulation, numerical
methods, and computer programming. It can also determine errors of numerical
solution quantitatively.

(2) Validation by Laboratory Experiments. Because laboratory experiments con-
ducted in controlled environments can eliminate many unnecessary complications,
the numerical model should be able to reproduce the same physical phenomena
measured in laboratories.

(3) Validation by Field Measurements. One portion of the field data should be used
to calibrate the physical parameters in the model, and the remaining data can
be used to determine whether the computational model can simulate the real-life
problem. Researchers must realize that the numerical results may only approx-
imately agree with the measured data, because the computational model only
represents a simplified version of the physical processes in natural rivers. How-
ever, the realistic trend of spatial and temporal variations should be predicted
correctly.

The application of a computational model to the solution of a real-life problem
involves the following five major tasks:

(1) Data Preparation. Data should be collected and analyzed to understand the phys-
ical processes of study, determine initial and boundary conditions, estimate model
parameters, and calibrate the model. The required data should include, but are
not limited to, geomorphic, hydrological, hydraulic, and sediment information,
largely depending on the model used and the study case. They can be obtained via
in-situ field survey and from historical records.

(2) Estimation of Model Parameters. Model parameters can be classified as numerical
and physical. Numerical parameters, such as time step, grid spacing, number of
size classes, and relaxation coefficient, result from numerical discretization and
solution methods. They should be determined by considering the accuracy the
study problem requires and the stability of the numerical schemes used. Phys-
ical parameters can be subdivided into two groups. One group represents the
physical properties of water and sediment, such as water density, viscosity, sedi-
ment density, particle size, particle shape factor, and bed-material porosity. These
physical properties can be measured. The other group results from the concep-
tualization of physical processes and represents the characteristics of flow and
sediment transport, including channel roughness coefficient, sediment transport
capacity, sediment adaptation length, and mixing layer thickness. These physical
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process parameters are often calibrated using measured data or determined using
empirical formulas.

(3) Model Calibration. The computational model should be calibrated using the avail-
able data measured in the study reach to insure that the aforementioned parameters
are estimated correctly, that the empirical formulas are chosen appropriately, and
that the observed physical processes are generally well reproduced by the model.
The calibrated model can then be applied to predict the physical processes in
various scenarios.

(4) Interpretation of Simulation Results. Because sediment transport models are
highly empirical and the model development and application processes are not
infallible, engineering judgment should be used in the interpretation of simu-
lation results. Consulting with model developers, senior scientists, and local
engineers who are familiar with the study channel can enhance confidence in
the end results. In addition, efficiently grouping important results using attrac-
tive graphs and tables permits an easy understanding and communication among
model developers, users, and report readers.

(5) Analysis of Uncertainties. Sources of uncertainties include model conceptualiza-
tion, boundary conditions, model parameters, and data. Uncertainties may be
reduced by using a more adequate model, selecting appropriate boundary condi-
tions, calibrating model parameters carefully, and collecting more reliable data.
Sensitivity analysis and stochastic modeling may also be conducted to resolve
uncertainties.

As described above, the development and application of a computational model
is a long process consisting of many steps. The accuracy and reliability of the end
results rely on manipulations at every step. The developer should approximate the
physical processes reasonably via the mathematical model, derive and code the numer-
ical discretization and solution methods correctly, and verify and validate the model
thoroughly. The user should prepare the data carefully, estimate model parameters
correctly, necessarily calibrate the model, reasonably interpret results, and consider
possible uncertainties.

1.4 CLASSIFICATION OF FLOW AND SEDIMENT
TRANSPORT MODELS

Flow and sediment transport models can be classified in various ways, as described
below.

According to their dimensionality, flow and sediment transport models are classified
as 1-D, vertical 2-D, horizontal 2-D, and 3-D. Flow and sediment transport in natural
rivers are usually 3-D phenomena, which should be more realistically simulated using
3-D models. However, 3-D models are more time-consuming. Therefore, 1-D and
2-D models have been established via simplifications, such as section-, depth-, and
width-averaging, to achieve feasible solutions in engineering practices. 1-D models
study the longitudinal profiles of the cross-section-averaged properties of flow and
sediment transport in rivers. The vertical 2-D models, which may be idealized or
width-averaged, study the (width-averaged) properties of flow and sediment transport
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in the longitudinal section. Because of the complexity of channel geometries, the width-
averaged 2-D models are preferable to the idealized vertical 2-D models in natural
situations. The horizontal 2-D models, which also are often called depth-averaged
2-D models, study the horizontal distributions of the depth-averaged quantities of
flow and sediment. 1-D models are widely applied in the simulation of long-term
sedimentation processes in long channels, 3-D models are often used in local fields
with strong 3-D features, and 2-D models are in between them.

Based on flow states, flow and sediment transport models are often categorized as
steady, quasi-steady, or unsteady. Steady models do not include the time-derivative
terms in flow and sediment transport equations, but consider temporal changes in
bed elevation and bed-material gradation. Quasi-steady models divide an unsteady
hydrograph into many time intervals, each of which is represented by a steady flow
discharge. Quasi-steady models are often used in the simulation of long-term fluvial
processes in rivers, but they cannot be used in cases with strong unsteadiness, such as
tidal flow in estuaries and flash floods in small watersheds. Unsteady models are more
general and can be used to simulate unsteady fluvial processes as well as steady and
quasi-steady processes.

As for the number of sediment size classes simulated, sediment transport models can
be uniform (single-sized) or non-uniform (multiple-sized). Uniform sediment models
represent the entire sediment mixture using a single-sized class, whereas non-uniform
sediment models divide the sediment mixture into a number of size classes and study
the behavior of each size class. Because sediments in natural rivers are usually non-
uniform in size and experience interaction among different size classes, non-uniform
sediment models are more realistic.

In accordance with sediment transport modes, sediment transport models are often
grouped as bed-load, suspended-load, and total-load models. Many early developed
models considered only bed-load or suspended-load transport. Because sediment may
change from bed load to suspended load or vice versa depending on flow conditions,
total-load models are more preferable.

Based upon sediment transport states, sediment transport models are classified as
equilibrium (saturated) and non-equilibrium (unsaturated). In many of the early mod-
els, it is assumed that the actual sediment transport rate is equal to the capacity of
flow carrying sediment at equilibrium conditions at each computational point (cross-
section or vertical line). The models based on this local equilibrium assumption are
called equilibrium transport models. However, alluvial river systems always change in
time and space due to many reasons; therefore, absolute equilibrium states rarely exist
in natural conditions. The local equilibrium assumption is not realistic, particularly
in cases of strong erosion and deposition. Non-equilibrium sediment transport mod-
els renounce this assumption and adopt transport equations to determine the actual
bed-load and suspended-load transport rates. Non-equilibrium transport models are
being more widely applied in river engineering these days.

In terms of numerical methods, flow and sediment transport models are categorized
as finite difference, finite volume, finite element, finite analytic, or efficient element
models. Since each of these numerical methods has its advantages and disadvantages,
numerical models based on all them exist in the literature. The choice of a specific
model depends on the nature of the problem, the experience of the modeler, and the
capacity of the computer being used.
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Depending on the calculation procedure, flow and sediment transport models can be
classified as fully decoupled, semi-coupled, or fully coupled. Fully decoupled models
ignore the influence of sediment transport and bed change on the flow field by assuming
a low sediment concentration and a small bed change, and calculate the flow and
sediment transport separately at each time step. Fully coupled models compute all
the flow and sediment quantities simultaneously. Semi-coupled models calculate some
quantities in coupled form and the others separately. For example, flow and sediment
modules may be decoupled, whereas sediment transport, bed change, and bed material
sorting in the sediment module may be coupled. Because flow, sediment, and bed
material always interact with each other in an alluvial river system, fully coupled
models are more general and physically reasonable, whereas the applicability of fully
decoupled and semi-coupled models is limited. However, coupled models are more
sophisticated and may require more computational effort than decoupled models. In
addition, the results from decoupled models may be justified due to the difference in
time scales of flow and sediment transport and the use of empirical formulas for bed
roughness and sediment transport capacity. Fully decoupled and semi-coupled models
are still used by many investigators.

Depending on how to conceptualize sediment, sediment transport models can be
discerned as particulate and continuous-medium models. Particulate models treat sed-
iment as a group of particulate entities and describe the movement of single particles,
whereas continuous-medium models assume sediment as a kind of pseudo-continuous
medium. The assumption of continuous-medium models is only valid when the char-
acteristic size of the sediment particles is much shorter than the characteristic length
of the processes of study and the volume under consideration has enough sediment
particles. Apparently, particulate models are not limited in this way. From a strictly
theoretical point of view, particulate models should be preferred. However, because of
the limitations of computer capacity, considerable difficulties are encountered in the
simulation of the behavior of millions or even billions of irregularly shaped particles
that may collide randomly. In reality, particulate models are only feasible when the
sediment concentration is extremely low. Therefore, continuous-medium models are
more widely applied in the study of sediment transport in rivers. A typical continuous-
medium model is the diffusion model that is most often used for suspended-load
transport.

1.5 COVERAGE AND FEATURES OF THIS BOOK

The subjects of this book include physical principles, numerical methods, model clo-
sures, and application examples in computational river dynamics. It is organized into
twelve chapters.

Chapter 1 provides a general overview of computational river dynamics and the
arrangement of this book. Chapter 2 introduces the mathematical descriptions of
flow, sediment transport, and morphological change processes in rivers. Chapter 3
presents the fundamentals of sediment transport. Chapter 4 introduces the numerical
techniques widely used to solve open-channel flows with sediment transport, such as
the finite difference method and the finite volume method. These methods are applied
and extended in the remaining chapters of this book. Chapter 5 describes the 1-D
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modeling approaches that are widely used in computational river dynamics. Chapter 6
explains the depth-averaged and width-averaged 2-D models for flow and sediment
transport. It also includes a discussion of the enhancement of the depth-averaged 2-D
model in order to take the effects of secondary flows in curved channels into account.
Chapter 7 illustrates the 3-D modeling approaches for turbulent flow, general sediment
transport in rivers, and local scour around in-stream hydraulic structures. Chapter 8
covers the general techniques used to integrate and couple various models, such as
domain decomposition; the coupling of 1-D, 2-D, and 3-D channel models; and the
integration of channel and watershed models. Chapters 9−12 introduce several special
topics related to river engineering, such as dam-break fluvial processes, vegetation
effects on fluvial processes, cohesive sediment transport, and contaminant transport.

This book is one of the first to present a complete picture of the physical principles
and numerical methods used in computational river dynamics. It covers the funda-
mentals of flow and sediment transport in rivers, including many newly developed
non-uniform sediment transport formulas. It is unique in presenting multidimen-
sional numerical models, including 1-D, depth-averaged 2-D, width-averaged 2-D, and
3-D models, as well as integration and coupling of these models. It introduces many
recently developed numerical methods for solving open-channel flows, such as the
SIMPLE(C) algorithms with Rhie and Chow’s momentum interpolation method on
non-staggered grids, the projection method, and the extended stream function and
vorticity method. It presents state-of-the-art sediment transport modeling approaches,
such as non-equilibrium transport models, non-uniform total-load transport mod-
els, and semi-coupled and coupled procedures for flow and sediment calculations.
It includes many engineering applications, such as reservoir sedimentation, channel
erosion (due to dam construction), channel widening and meandering, local scour
around in-stream hydraulic structures, vegetation effects on channel morphodynamic
processes, and cohesive sediment transport.



Chapter 2

Mathematical description of f low
and sediment transport

This chapter presents a mathematical basis for computational river dynamics,
including definition of water and sediment properties, sediment diffusion the-
ory, Reynolds-averaged flow and sediment transport equations and their
turbulence closures, derivation of 1-D and 2-D model equations from 3-D model
equations, formulation of equilibrium and non-equilibrium sediment transport mod-
els, and equations of non-uniform sediment transport and bed material sorting.

2.1 PROPERTIES OF WATER AND SEDIMENT

2.1.1 Properties of water

Density and specif ic weight of water

Water density, ρf , is the mass of water per unit volume, often in kg · m−3 (kilograms
per cubic meter) in the international unit (SI) system. It is 1,000 kg · m−3 at 4◦C and
varies slightly with temperature, as shown in Table 2.1.

The specific weight of water, γf , is the weight of water per unit volume, often in
N · m−3 (Newtons per cubic meter). It is related to the water density by

γf = ρf g (2.1)

where g is the gravitational acceleration and equals about 9.80665 m · s−2 (meters per
square second).

Viscosity of water

Water deforms under the action of shear. The dynamic viscosity of water, µ, is the
constant of proportionality relating the shear stress, τ , to the deformation rate, du/dz,
as follows:

τ = µdu
dz

(2.2)

where u is the flow velocity, and z is the coordinate normal to the flow direction.
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Table 2.1 Density and viscosity of water

Temperature (◦C) Density (kg · m−3) Dynamic viscosity (N · s · m−2) Kinematic viscosity (m2s−1)

0 1000 1.79 × 10−3 1.79 × 10−6

5 1000 1.51 × 10−3 1.51 × 10−6

10 1000 1.31 × 10−3 1.31 × 10−6

15 999 1.14 × 10−3 1.14 × 10−6

20 998 1.00 × 10−3 1.00 × 10−6

25 997 8.91 × 10−4 8.94 × 10−7

30 996 7.97 × 10−4 8.00 × 10−7

35 994 7.20 × 10−4 7.25 × 10−7

40 992 6.53 × 10−4 6.58 × 10−7

The kinematic viscosity of water, ν, is the ratio of the dynamic viscosity to the
water density:

ν = µ

ρf
(2.3)

The units often used for viscosities µ and ν are N · s · m−2 and m2s−1, respectively.
Water viscosity is directly related to molecular interactions. It decreases as water

temperature increases, as shown in Table 2.1. For common temperatures in rivers, the
kinematic viscosity can be approximated by

ν = (1.785 − 0.0584T + 0.00116T2 − 0.0000102T3)× 10−6m2s−1 (2.4)

where T is the temperature in ◦C (degrees Celsius).

2.1.2 Properties of sediment

2.1.2.1 Physical properties of single particles

Density and specif ic weight of sediment

Sediment density, ρs, is the mass of sediment per unit volume, often in kg · m−3.
It depends on the material of sediment. The density of quartz particles is about
2,650 kg · m−3 and does not vary significantly with temperature. In most natural rivers,
the density of sediment can be assumed to be constant.

The specific weight of sediment, γs, is the weight of sediment per unit volume, often
in N · m−3. It is related to the sediment density by

γs = ρsg (2.5)

Due to the buoyancy effect, the specific weight of sediment particles submerged in
water is lighter than the actual specific weight exposed to air. According to Archimedes’
principle, the specific weight of submerged sediment is the difference between the
specific weights of sediment and water, γs − γf .
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The specific gravity of sediment, G, is the ratio of the specific weights of sediment
and water at a standard reference temperature that is commonly set at 4◦C. The specific
gravity of quartz particles is

G = γs

γf
= ρs

ρf
= 2.65 (2.6)

Particle size and grade scale

Sediment particle size may be represented by nominal diameter, sieve diameter, and
fall diameter. The nominal diameter, d, is defined as the diameter of a sphere that has
the same volume as the given particle, i.e.,

d = 3

√
6V
π

(2.7)

where V is the volume of the sediment particle, and π is the circumference-diameter
ratio (≈3.14159). The SI units often used for sediment size are mm (millimeters) and
m (meters).

A sediment particle may be considered as an ellipsoid. Denote a, b, and c as its
diameters in the longest, the intermediate, and the shortest mutually perpendicular
axes, respectively. Thus, as an approximation, the particle volume may be estimated
as V ≈ πabc/6, and then substituting this formula into Eq. (2.7) yields the following
relation for the nominal diameter:

d ≈ 3
√

abc (2.8)

The sieve diameter is the length of the side of a square sieve opening through which
the given particle will just pass. It is approximately equal to the intermediate diameter
b. The sieve diameter is slightly smaller than the nominal diameter. For naturally worn
sediment particles over the range of about 0.2 to 20 mm, the sieve diameter is approxi-
mately 0.9 times the nominal diameter on average (U. S. Interagency Committee, 1957;
Raudkivi, 1990).

The standard fall diameter is the diameter of a sphere that has a specific gravity
of 2.65 and has the same terminal settling velocity as the given particle in quiescent,
distilled water at a temperature of 24◦C.

Sediment size may be measured by calipers, by optical methods, by photographic
methods, by sieving, or by sedimentation methods (Vanoni, 1975; Simons and Senturk,
1992). For coarse particles, such as boulders, cobbles, and coarse gravel, size may be
determined by direct measurement of the volume or the diameters a, b, and c in
the longest, the intermediate, and the shortest axes, which are usually converted to
the nominal diameter by Eq. (2.7) or (2.8). For fine gravel and sand, size may be
determined by sieving or visual accumulation tube. For silt and clay, size is measured
by hydraulic settling methods, such as the pipet method, bottom withdrawal method,
and hydrometer method. The fall diameter is often obtained by these methods for silt
and clay.
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Table 2.2 Sediment grade scale

Class Size range (mm) Class Size range (mm)

Very large boulders 4,000–2,000 Very coarse sand 2–1
Large boulders 2,000–1,000 Coarse sand 1–0.5
Medium boulders 1,000–500 Medium sand 0.5–0.25
Small boulders 500–250 Fine sand 0.25–0.125

Very fine sand 0.125–0.062
Large cobbles 250–130 Coarse silt 0.062–0.031
Small cobbles 130–64 Medium silt 0.031–0.016

Fine silt 0.016–0.008
Very coarse gravel 64–32 Very fine silt 0.008–0.004
Coarse gravel 32–16 Coarse clay 0.004–0.002
Medium gravel 16–8 Medium clay 0.002–0.001
Fine gravel 8–4 Fine clay 0.001–0.0005
Very fine gravel 4–2 Very fine clay 0.0005–0.00024

The aforementioned boulders, cobbles, gravel, sand, silt, and clay are classi-
fied based on the grade scale listed in Table 2.2, which is commonly used in river
engineering. Each class may be further divided into several subclasses.

Shape factor

The shape of sediment particles in natural rivers is very irregular. It is often described
by the Corey shape factor:

Sp = c√
ab

(2.9)

The Corey shape factor of naturally worn particles is usually about 0.7.

2.1.2.2 Bulk properties of sediment mixtures

Size distribution

A mixture that consists of sediment particles with non-uniform sizes can be represented
by a suitable number of size classes. Each size class, numbered as k, is defined by the
lower and upper bound diameters and represented by a characteristic diameter, dk. If
the lower and upper bound diameters of size class k are denoted as dlk and duk, the
characteristic diameter may be determined using dk = √

dlkduk, dk = (dlk + duk)/2,
or dk = (dlk + duk +√dlkduk)/3.

The fraction, pk, of each size class is the ratio of its weight (volume or number) to
the total weight (volume or number) of the mixture, ranging from 0 to 1. It should be
noted that pk is also often defined by percent, ranging from 0 to 100.

The size distribution (composition, gradation) of a sediment mixture can be mea-
sured by sieving analysis. It is often represented by the frequency histogram (pyramid)
and cumulative size frequency curve.The histogram is constructed by plotting the sizes
representing size class intervals on the abscissa and the actual percent (by weight, vol-
ume or number) of the total sample contained in each size class on the ordinate, as
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Figure 2.1 Size distribution: (a) histogram and (b) cumulative frequency curve.

shown in Fig. 2.1(a).The cumulative size frequency curve shows the percent of mate-
rial finer than a given sediment size in the total sample, as shown in Fig. 2.1(b). For a
sediment mixture with a normal size distribution, the cumulative size frequency curve
is a straight line on the normal probability paper.

Characteristic diameters

The median diameter, d50, is the particle size at which 50% by weight of the sample
is finer. Likewise, d10 and d90 are the particle sizes at which 10% and 90% by weight
of the sample are finer, respectively. The diameters d10, d50, and d90 can be read from
the cumulative size frequency curve, as shown in Fig. 2.1(b).

The arithmetic mean diameter is determined by

dm =
N∑

k=1

pkdk/100 (2.10)

where pk is by percent, and N is the total number of size classes.
The geometric mean diameter is given by

dg = dp1/100
1 · dp2/100

2 · . . . · dpN/100
N (2.11)

Uniformity

The uniformity of a sediment mixture can be described by the standard deviation:

σg =
(

d84.1

d15.9

)1/2

(2.12)

or the gradation coefficient:

Gr = 1
2

(
d84.1

d50
+ d50

d15.9

)
(2.13)
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where d15.9 and d84.1 are the particle sizes at which 15.9% and 84.1% by weight of
the sample are finer, respectively. For a normal size distribution, σg = d84.1/d50 =
d50/d15.9.

Kramer (1935) defined a uniformity parameter as the ratio of the mean sizes of the
two portions in the cumulative size frequency curve separated by d50:

M =
50∑

Ak=0

pkdk

/
100∑

Ak=50

pkdk (2.14)

where Ak is the cumulative percentage of sediment finer than size dk.
For uniform sediment, M = 1. A smaller value of M corresponds to a more non-

uniform sediment mixture.

Porosity and dry density

A sediment deposit is a porous material and has voids among solid particles. Its
porosity, p′

m, is a measure of the volume of voids per unit volume of the deposit:

p′
m = Vv

Vv + Vs
(2.15)

where Vv and Vs are the volumes of voids and solids, respectively.
The dry density, ρd, and dry specific weight, γd, of a sediment deposit are the mass

and weight of the solids per unit total volume. They are related to the porosity by

ρd = ρs(1 − p′
m), γd = γs(1 − p′

m) (2.16)

Han et al. (1981) proposed the following semi-empirical formula to calculate the
initial porosity of a uniform sediment deposit:

p′
m =

⎧⎨⎩1 − 0.525
(

d
d+4δ1

)3
d < 1 mm

0.3 + 0.175e−0.095(d−d0)/d0 d ≥ 1 mm
(2.17)

where d is the sediment size in mm; d0 is a reference size, set to be 1 mm; and δ1 is
the thickness of the water film attaching to sediment particles, given a value of about
0.0004 mm.

In a non-uniform sediment deposit, fine particles probably fill the voids among
coarse particles. Han et al. (1981) investigated this filling phenomenon and proposed
a method for the overall porosity of the deposit. However, their method is relatively
complicated and inconvenient to use. If a sediment deposit is composed of only fine
particles or if its size range is narrow, the filling phenomenon is negligible and the
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overall porosity can be calculated using the Colby (1963) method:

1
1 − p′

m
=

N∑
k=1

pk

1 − p′
mk

(2.18)

where pk is the fraction of the kth size class in the sediment deposit; and p′
mk is the

porosity of size class k, which can be calculated using Eq. (2.17) or another method.
Komura (1963) proposed an empirical formula for the initial porosity of a sediment

deposit:

p′
m = 0.245 + 0.0864

(0.1d50)0.21 (2.19)

where d50 is the median diameter of the deposit (mm).
Wu and Wang (2006) revalidated the Komura formula (2.19) using extensive

laboratory and field data, as shown in Fig. 2.2. It can be seen that the Komura formula
is quite close to the trend of the data set, slightly underestimating the dry density for
sand and gravel and overestimating it for silt and coarse clay. The Han et al. formula
has more errors. A more accurate curve was obtained in Fig. 2.2 and expressed as

p′
m = 0.13 + 0.21

(d50 + 0.002)0.21 (2.20)

where d50 is in mm.
In addition, the porosity and dry density of a fine-grained sediment deposit may

vary with deposit depth and residence time due to consolidation. This is discussed in
Section 11.1.6.

Figure 2.2 Initial dry density of deposit as function of median diameter (Wu and Wang, 2006).
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Repose angle

The repose angle is the angle, with respect to the horizontal, of the slope formed by
sediment particles submerged in water under incipient sliding conditions. According
to laboratory experiments by Tianjing University (see Zhang et al., 1989), the repose
angle, φr, is related with sediment size as follows:

φr = 32.5 + 1.27d (2.21)

where φr is in degrees, and d is in mm. Eq. (2.21) was calibrated using the data in the
sediment size range between 0.2 and 4.4 mm.

The repose angle is also related to other properties of sediment particles, such as
density, shape, gradation, compaction, and material. It may range from 30◦ to 42◦
for non-cohesive sediment particles. More discussion on the repose angles of various
sediments can be found in Simons and Senturk (1992).

2.1.2.3 Definition of sediment loads

All sediment particles moving with flowing water are called total load. The total load
can be divided into bed load and suspended load as per sediment transport mode or
bed-material load and wash load as per sediment source, as depicted in Fig. 2.3.

Figure 2.3 Definition of sediment loads.

The bed load consists of sediment particles that slide, roll, or saltate in the layer
several particle sizes above the bed surface. It usually accounts for 5–25% of the total
load for fine particles and more for coarse particles in natural rivers.

The suspended load is composed of sediment particles that move in suspension in
the water column above the bed-load layer. Its weight is continuously supported by the
turbulence of flow.

The bed-material load is made up of moving sediment particles that are found in
appreciable quantities in the channel bed. It constantly exchanges with the bed material
and has significant contribution to the channel morphology.
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The wash load is comprised of moving sediment particles that are derived from
upstream sources other than the channel bed. It is not found in appreciable quantities
in the bed. It is finer than the bed-material load and rarely exchanges with the bed
material. Einstein (1950) defined wash load as the grain size of which 10% of the
bed material mixture is finer.

It should be noted that the definition of wash load and bed-material load depends
on flow and sediment conditions. Some wash load in upstream channels may become
bed-material load in downstream channels due to the weakening of flow strength.
Some sediment particles are wash load in the main channel but may be bed-material
load in flood plains.

By definition, the bed-material load is the sum of bed load and suspended load. So
is the wash load. However, the wash load consists of fine particles that move mainly
in suspension, and thus dividing it into bed load and suspended load does not make
much sense in practice.

2.1.3 Properties of the water and sediment mixture

Fig. 2.4 shows a sketch of a mixture consisting of a volume of water, Vw, and a
volume of sediment, Vs. It is termed as “mixture” for short. Sediment concentration is
defined as

c = Vs

Vw + Vs
or �c = γsVs

γf Vw + γsVs
(2.22)

where c is the concentration by volume, and �c is the concentration by weight (mass).
They are related by �c = Gc/[1 + (G − 1)c]. Both them are unitless. In addition,
sediment concentration is sometimes given by weight or mass per unit volume of the
mixture (N · m−3 or kg · m−3), which is obtained by γsc or ρsc. It is also given in parts
per million by weight (ppm), which is equivalent to 106�c.

Note that the volumetric sediment concentration c is used in this book, except where
stated otherwise.

Figure 2.4 Sketch of the water and sediment mixture.
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The density of the mixture, ρ, is determined by

ρ = ρf (1 − c)+ ρsc (2.23)

and the specific weight of the mixture is correspondingly given by γ = ρg.
The velocity of the mixture, ui, is defined as

ui = 1
ρ

[ρf (1 − c)uf i + ρscusi] (2.24)

where uf i is the i-component of water velocity, usi is the i-component of sediment
velocity, and i denotes three spatial directions (= 1, 2, 3).

2.2 GOVERNING EQUATIONS OF WATER AND SEDIMENT
TWO-PHASE FLOW

Because the stochastically averaged properties of a group of sediment particles are
mainly concerned in river engineering, sediment is often assumed to be a kind of
continuous medium. Two mathematical models can be used to describe the water
and sediment two-phase flow based on this assumption. One is the two-fluid model
that considers water and sediment as two fluids and establishes the continuity and
momentum equations for each phase. The other is the diffusion model that consid-
ers the movement of sediment particles as a phenomenon of diffusion in the water
flow and hence establishes the continuity and momentum equations for the water-
sediment mixture and the transport (diffusion) equation for sediment particles. The
two-fluid model is more general, from which the diffusion model can be derived, as
described by Wu and Wang (2000). Detailed discussions on the two-fluid model can
also be found in Soo (1967), Ni et al. (1991), Liu (1993), and Greimann and Holly
(2001). However, the two-fluid model is not introduced here because it is quite com-
plex. The flow and sediment transport equations used in this book are based on the
diffusion model.

2.2.1 Hydrodynamic equations

Applying the mass and momentum conservation laws leads to the continuity and
momentum equations for the instantaneous movement of the water-sediment mixture.
These equations are written in Cartesian tensor notations as follows:

∂ρ

∂t
+ ∂(ρui)

∂xi
= 0 (2.25)

∂(ρui)

∂t
+ ∂(ρuiuj)

∂xj
= Fi − ∂p

∂xi
+ ∂τij
∂xj

(2.26)

where t is the time; xi is the i-coordinate in the Cartesian coordinate system; p is the
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pressure of the mixture; τij (i, j = 1, 2, 3) are the stresses of the mixture; and Fi is the
i-component of the external force on the mixture, such as gravity.

Note that the spatial direction indices i and j are subject to Einstein’s summation
convention: Subscript (or superscript) repeated twice in any product or quotient of
terms is summed over the entire range of values of that subscript (or superscript). For
example, aijbj =∑3

j=1 aijbj = ai1b1 + ai2b2 + ai3b3 in the 3-D system.
According to numerous experimental studies, the water-sediment mixture with low

sediment concentration (less than about 200 kg · m−3) is a kind of Newtonian fluid,
the constitutive relation of which is given by the Navier-Poisson law:

τij = 2µmDij − 2
3
µmDkkδij (2.27)

where µm is the dynamic viscosity of the mixture; Dij is the tensor of deformation rate,
defined as Dij = (∂ui/∂xj + ∂uj/∂xi)/2; and δij is the Kronecker delta, with δij = 1
when i = j and δij = 0 when i 	= j.

When the sediment concentration is high, the mixture becomes a non-Newtonian
fluid, such as Bingham fluid. The relation between shear stress and deformation rate
for the one-directional shear flow of Bingham fluid is written as

τ13 = τB + ηdu
dz

(2.28)

where τ13 is the shear stress, τB is the yield stress, and η is the plastic viscosity.
Extending Eq. (2.28) to the multi-directional shear flow yields the general constitu-

tive relation of Bingham fluid (Prager, 1961; Wu and Wang, 2000):

τij =
(

2µm + τB

I1/2
2

)(
Dij − 1

3
Dkkδij

)
(2.29)

where I2 = 1
2 (DijDij − 1

3D2
kk), and µm is η.

The single-directional shear flow field can be divided into two zones by τ13 ≥ τB and
τ13 < τB. Eq. (2.28) is only applicable to the zone of τ12 ≥ τB. Similarly, Eq. (2.29) is
valid in the zone of τijτij ≥ 2τ2

B for the multi-directional shear flow.

2.2.2 Sediment transport equation

Sediment transport is governed by the following mass balance equation:

∂c
∂t

+ ∂(usic)
∂xi

= 0 (2.30)

Because the sediment velocity usi is not a dependent variable in the diffusion model,
Eq. (2.30) is rewritten as

∂c
∂t

+ ∂(uic)
∂xi

= − ∂

∂xi
[(usi − ui) c] (2.31)
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where usi −ui is the “diffusion” velocity of sediment in the mixture. It can be related to
the interphase velocity difference uf i −usi by usi −ui = −ρf (1 − c)(uf i − usi)/ρ, based
on Eq. (2.24). Wu and Wang (2000) derived a differential equation for the interphase
velocity difference uf i − usi from the momentum equations of the two-fluid model,
but the derived equation is complex and inconvenient to use. For fine sediments, the
particle inertia or the lag between (local) flow and sediment movement is very small,
and nearly no relative motion exists except for the settling due to gravity; thus, the
following relation is assumed:

usi − ui = −ωsmδ3i (2.32)

where ωsm the settling velocity of sediment particles in the water-sediment mix-
ture, and the subscript “3” in δ3i denotes the vertical direction defined by
gravity.

Substituting Eq. (2.32) into the sediment transport equation (2.31) yields the closed
sediment transport equation:

∂c
∂t

+ ∂(uic)
∂xi

= ∂

∂xi
(ωsmcδ3i) (2.33)

2.2.3 Simplif ication in the case of low sediment
concentration

If the sediment concentration is low, ρ ≈ ρf ≈ constant, 1 − c ≈ 1, µm ≈ µ,
and ωsm is close to ωs, the settling velocity of a single particle in clear water. Then
the continuity equation (2.25) and momentum equation (2.26) of the mixture can be
simplified to

∂ui

∂xi
= 0 (2.34)

∂ui

∂t
+ ∂(uiuj)

∂xj
= 1
ρ

Fi − 1
ρ

∂p
∂xi

+ 1
ρ

∂τij

∂xj
(2.35)

and the constitutive relation (2.27) of Newtonian fluid can be written as

τij = µ
(
∂ui

∂xj
+ ∂uj

∂xi

)
(2.36)

Substituting Eq. (2.36) into Eq. (2.35) leads to the following Navier-Stokes equation
widely used in the single-phase fluid mechanics for laminar flows or instantaneous
motions of turbulent flows:

∂ui

∂t
+ ∂(uiuj)

∂xj
= 1
ρ

Fi − 1
ρ

∂p
∂xi

+ µ
ρ

∂2ui

∂xj∂xj
(2.37)
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The sediment transport equation (2.33) can be further simplified to

∂c
∂t

+ ∂(uic)
∂xi

= ∂

∂xi
(ωscδ3i) (2.38)

In principle, Eq. (2.38) is applicable only for fine sediments and low concentrations
(see Greimann and Holly, 2001). It is commonly accepted that if the sediment size is
finer than 1 mm and the sediment concentration is lower than 0.1 by volume, Eq. (2.38)
can be approximately used.

In summary, the water and sediment two-phase flow model in the case of low sedi-
ment concentration can be simplified to the model of clear water flow with sediment
transport. Because the sediment concentration usually is not high in most natural
rivers, the simplified diffusion model has been widely adopted in river dynamics.

2.3 TIME-AVERAGED MODELS OF TURBULENT FLOW
AND SEDIMENT TRANSPORT

2.3.1 Mean movement equations

Eqs. (2.34), (2.37), and (2.38), which are the exact equations for instantaneous
motions of flow and sediment, cannot be solved directly in most cases, because of
limited computer capacity. Since engineers usually are not interested in the details of the
turbulent fluctuating motions, how to describe and solve the mean motions of turbulent
flow is important in practice. As suggested by Osborne Reynolds, the instantaneous
quantity of a variable φ can be divided into mean and fluctuating quantities as

φ = φ̄ + φ′ (2.39)

where “−” denotes the mean quantity, and “′” denotes the fluctuating quantity. The
mean quantity is defined as

φ̄ = 1
T

∫ t+T

t
φ dτ (2.40)

where T is the time period considered, which should be much longer than the
fluctuation period of turbulence, as shown in Fig. 2.5.

The fluctuating quantity satisfies

(φ′) = 1
T

∫ t+T

t
φ′ dτ = 0 (2.41)

Reynolds-averaging Eqs. (2.34), (2.37), and (2.38) yields the mean continuity and
momentum equations of flow and the mean transport equation of sediment:

∂ūi

∂xi
= 0 (2.42)
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Figure 2.5 Reynolds’ time-averaging procedure.

∂ūi

∂t
+ ∂(ūiūj)

∂xj
= 1
ρ

F̄i − 1
ρ

∂p̄
∂xi

+ µ
ρ

∂2ūi

∂xj∂xj
− ∂u

′
iu

′
j

∂xj
(2.43)

∂ c̄
∂t

+ ∂(ūi c̄)
∂xi

= ∂

∂xi
(ωsc̄δ3i)− ∂u

′
ic

′

∂xi
(2.44)

where u′
iu

′
j is the correlation between the fluctuating velocities in the xi- and

xj-directions, and u′
ic

′ is the correlation between the fluctuating sediment concentra-
tion and velocity in the xi-direction. Physically, −ρu′

iu
′
j represents the momentum

transport due to turbulent motions; it is called the turbulent or Reynolds stress.
−u′

ic
′ is the turbulent sediment flux, representing the sediment transport due to

turbulence.
The set of equations (2.42)–(2.44) is not closed, due to the appearance of high-order

correlation terms. In the next subsections, methods are introduced briefly to close
this equation set on the levels of zero-, one-, and two-equation turbulence models.
A detailed review can be found in Rodi (1993).

2.3.2 Zero-equation turbulence models

Boussinesq’s eddy viscosity concept is widely used to model the turbulent or Reynolds
stresses in Eq. (2.43). This concept assumes that, in analogy to the viscous stresses in
Eq. (2.36), the turbulent stresses are proportional to the mean velocity gradients:

−u′
iu

′
j = νt

(
∂ūi

∂xj
+ ∂ūj

∂xi

)
− 2

3
kδij (2.45)

where νt is the turbulent or eddy viscosity; and k is the turbulent kinetic energy, defined
as k = u′

iu
′
i/2. In contrast to the molecular viscosity ν, the eddy viscosity νt is not a
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fluid property but strongly depends on the state of turbulence, perhaps varying largely
in time and space. In most flow regions, the eddy viscosity is much larger than the
molecular viscosity; thus, the latter usually is negligible.

In direct analogy to the turbulent momentum transport, the turbulent sediment flux
is assumed to be proportional to the gradient of sediment concentration:

−u′
ic

′ = εs ∂ c̄
∂xi

(2.46)

where εs is the turbulent diffusivity of sediment. εs is often related to the eddy viscosity
by εs = νt/σc, with σc being the Schmidt number (between 0.5 and 1.0), which is
discussed in detail in Section 3.5.1.

Note that the last term of Eq. (2.45) can be combined with the pressure-gradient
term when Eq. (2.45) is inserted into the momentum equation (2.43). Therefore, the
appearance of k in Eq. (2.45) does not necessitate the determination of it, and the set of
equations (2.42)–(2.44) is closed using relations (2.45) and (2.46). Then the problem
becomes how to determine the eddy viscosity. The eddy viscosity is usually assumed to
be proportional to the velocity scale û and the length scale Lm of (large-scale) turbulent
motions:

νt ∝ ûLm (2.47)

One of the zero-equation turbulence models widely used for the eddy viscosity is
the Prandtl mixing length model, which postulates that the velocity scale û for two-
dimensional shear flows is equal to the mean-velocity gradient times the mixing length,
thus yielding

νt = l2m

∣∣∣∣∂ū∂z
∣∣∣∣ (2.48)

where lm is the mixing length. Commonly used relations are: lm = κz for boundary
layer flows, and lm = κz√(1 − z/h) for open-channel flows, in which κ is the von
Karman constant, z is the distance to the wall boundary or the bed, and h is the
flow depth.

The mixing length model is suitable for flows where turbulence is in local equi-
librium, rather than where the convective and/or diffusive transport of turbulence is
important. Generally, the mixing length model is often used for simple shear-layer
flows where lm can be specified empirically. It is rarely used for rapidly varied flows,
such as recirculating flows, in channels with complex geometry, due to difficulties in
specifying lm.

Another often used zero-equation turbulence model is the parabolic eddy visco-
sity model:

νt = κU∗z
(
1 − z

h

)
(2.49)

where U∗ is the bed shear velocity.
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Eq. (2.49) may be derived by substituting the log distribution of flow velocity along
the flow depth and the relation lm = κz√(1 − z/h) into Eq. (2.48). Therefore, model
(2.49) can be seen as a special case of model (2.48).

2.3.3 One-equation turbulence models

In the often used one-equation turbulence model, the eddy viscosity is determined using
the Kolmogorov-Prandtl expression, which adopts

√
k as the velocity scale and reads

νt = c′
µ

√
kLm (2.50)

where c′
µ is a coefficient of about 0.084.

Unlike the mixing length model, the one-equation turbulence model uses a trans-
port equation to determine the turbulent energy k and, in turn, the fluctuating
velocity scale. The transport equation of k can be derived in exact form from the
continuity and Navier-Stokes equations. For high Reynolds numbers, this equation
reads

∂k
∂t

+ ∂

∂xi
(ūik) = − ∂

∂xi

⎡⎣u′
i

(
u′

ju
′
j

2
+ p′
ρ

)⎤⎦− u′
iu

′
j
∂ūi

∂xj
− ν ∂u

′
i

∂xj

∂u′
i

∂xj
(2.51)

The three terms on the right-hand side of Eq. (2.51) represent the diffusion, produc-
tion, and dissipation of k, respectively. To close this equation, the diffusion term is
treated in analogy to Eq. (2.46), and the dissipation term is determined as cDk3/2/Lm,
thus yielding the modeled k equation:

∂k
∂t

+ ∂

∂xi
(ūik) = ∂

∂xi

(
νt

σk

∂k
∂xi

)
+ Pk − cD

k3/2

Lm
(2.52)

where Pk is the production of turbulence by shear, defined as Pk = −u′
iu

′
j∂ūi/∂xj; σk

is a coefficient of about 1.0; and cD is a coefficient, usually set as cD ≈ 0.08/c′
µ.

For the turbulence in a state of local equilibrium, its production is equal to dissipa-
tion, and then Eq. (2.52) can be simplified as νt(∂ū/∂z)2 − cDk3/2/Lm = 0 in the case
of shear flows. By using Eqs. (2.48) and (2.50), the following relation can be derived
(Rodi, 1993):

Lm

lm
= c1/4

D

c′3/4
µ

(2.53)

Therefore, Lm can be determined using simple empirical formulas similar to those
for the mixing length lm.
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2.3.4 Two-equation turbulence models

Linear k-ε turbulence models

Because of difficulties in specifying the length scale of turbulence in complex flows, the
one-equation turbulence model described above has limitations. Thus, a differential
equation for the length scale is often added, which in conjunction with the velocity scale
equation constitute a two-equation turbulence model. The widely used two-equation
models include the k-ε turbulence models, which replace the length scale with the
dissipation rate ε = ν∂u′

i/∂xj · ∂u′
i/∂xj and assume

νt = cµ
k2

ε
(2.54)

where cµ is a coefficient.
The k equation (2.52) is rewritten as

∂k
∂t

+ ∂

∂xi
(ūik) = ∂

∂xi

(
νt

σk

∂k
∂xi

)
+ Pk − ε (2.55)

An exact ε equation can be derived from the continuity and Navier-Stokes equations,
but it includes several terms that have little known physical meanings and have to be
modeled drastically (Rodi, 1971). The final modeled ε equation is expressed as

∂ε

∂t
+ ∂

∂xi
(ūiε) = ∂

∂xi

(
νt

σε

∂ε

∂xi

)
+ ε

k
(cε1Pk − cε2ε) (2.56)

where σε, cε1, and cε2 are coefficients.
Launder and Spalding (1974) suggested a set of values for the coefficients: cµ = 0.09,

cε1 = 1.44, cε2 = 1.92, σk = 1.0, and σε = 1.3, as listed in Table 2.3. The k-ε model
using this set of coefficients is often called the standard k-ε turbulence model.

However, the standard k-εmodel overpredicts the spread rate of axisymmetric jet by
about 30% (Rodi, 1993) and underpredicts the flow reattachment length downstream
of a backward-facing step by 15–20% (Abe et al., 1994). Many modifications of it
have been suggested in the literature. Several examples are given below, and more can
be found in Rodi (1993) and other references.

In the standard k-ε model, the ε equation is modeled drastically and may have
limitations. Chen and Kim (1987) added a second time scale of the production
range of turbulence kinetic energy spectrum and modified the ε equation to consider

Table 2.3 Coefficients in linear k-ε turbulence models

k-ε Model cµ cε1 cε2 σk σε

Standard 0.09 1.44 1.92 1.0 1.3
Non-equilibrium 0.09 1.15 + 0.25Pk/ε 1.90 0.8927 1.15
RNG 0.085 1.42 − η(1 − η/η0)/(1 + βη3) 1.68 0.7179 0.7179
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non-equilibrium between turbulence generation and dissipation. The modified k and
ε equations are still formulated as Eqs. (2.55) and (2.56), with a functional form of
the coefficient cε1 as cε1 = 1.15 + 0.25Pk/ε. The other coefficients are recalibrated
as cµ = 0.09, cε2 = 1.90, σk = 0.8927, and σε = 1.15. The modified model is
called the non-equilibrium k-ε turbulence model, which has been tested in the case
of recirculating flows with improved performance over the standard version (Shyy
et al., 1997).

Yakhot et al. (1992) rederived the ε equation using the renormalized group (RNG)
theory. One new term was introduced to take into account the highly anisotropic fea-
tures of turbulence, usually associated with regions of large shear, and to modify the
viscosity accordingly. This term was claimed to improve the simulation accuracy of
the RNG k-ε turbulence model for highly strained flows. It can be included in the coef-
ficient cε1 by cε1 = 1.42−η(1−η/η0)/(1+βη3). Here, β = 0.015, η= (2SijSij)

1/2k/ε,
Sij = (∂ūi/∂xj + ∂ūj/∂xi)/2, and η0 = 4.38. The other coefficients are cµ = 0.085,
cε2 = 1.68, σk = 0.7179, and σε = 0.7179, as listed in Table 2.3.

The standard k-ε turbulence model is restricted to high-Reynolds-number flows
and is not applicable in the viscous sublayer near a wall. Jones and Launder (1972)
proposed a low-Reynolds-number k-ε turbulence model, and later many investigators,
e.g., Chien (1982) and Abe et al. (1994), suggested revisions. Usually, a damping
function is introduced in the eddy viscosity equation (2.54) to mimic the direct effect of
molecular viscosity on the shear stress, while two damping functions are multiplied to
the production and destruction terms in the equation (2.56) to increase the magnitude
of ε (for additional dissipation) near the wall and to incorporate the low Reynolds
number effect on the decay of isotropic turbulence, respectively. Expressions of these
damping functions and their performance can be found in Srikanth and Majumdar
(1992) and Abe et al. (1994).

All the above k-ε turbulence models based on the Boussinesq assumption are often
called linear k-ε turbulence models. In addition to them, another frequently used
two-equation model is the k-ω turbulence model established by Wilcox (1993) by
replacing the length scale with the specific dissipation rate ω. Because ω is related to ε
by ω = ε/(β∗k) with β∗ = 0.09, the k-ω model is similar to the standard k-ε model,
with different coefficients. Its details are left to interested readers.

Nonlinear k-ε turbulence models

The Boussinesq assumption, which adopts an isotropic eddy viscosity concept for all
Reynolds stresses, fails for flows with sudden changes in mean-strain rate or with
“extra” strain rates, e.g., curved flows, because the Reynolds stresses adjust to such
changes at a rate unrelated to the mean flow processes. Lumley (1970), Rodi (1976),
Saffman (1976), Wilcox and Rubesin (1980), and Speziale (1987) derived more general
relations for the Reynolds stresses. For example, the relation of Speziale (1987) reads

τij

ρ
= 2νtSij − 2

3
kδij + 4CDc2

µ

k3

ε2

(
SikSkj − 1

3
SmkSkmδij

)
+ 4CEc2

µ

k3

ε2

(
Ŝij − 1

3
Ŝkkδij

)
(2.57)
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where τij are the Reynolds stresses, Ŝij = ∂Sij/∂t+ūk∂Sij/∂xk−Skj∂ūi/∂xk−Ski∂ūj/∂xk,
and CD = CE = 1.68.

Rodi (1976) assumed that the transport of turbulent stresses is proportional to the
transport of turbulent energy, thus simplifying the full Reynolds stress equation to an
algebraic expression:

τij = −ρk

[
2
3
δij + (1 − γ )(Pij − 2

3Pkδij)

Pk − (1 − c1)ε

]
(2.58)

where γ and c1 are coefficients; and Pij is the stress production, defined as Pij =
−u′

iu
′
k∂uj/∂xk − u′

ju
′
k∂ui/∂xk.

Eqs. (2.57) and (2.58) include the Boussinesq approximation as leading terms and
need to be coupled with a k-ε model. Thus, they are often called nonlinear k-ε tur-
bulence models. Speziale showed model (2.57) yields more accurate predictions for
the Reynolds normal stress in turbulent channel flows and homogenous shear flows
than the standard k-ε turbulence model. For example, for a unidirectional uniform
duct flow, the standard k-ε model predicts τzz − τyy = 0, whereas the nonlinear k-ε
turbulence model yields

τzz − τyy = ρCDc2
µ

k3

ε2

[(
∂ū
∂z

)2

−
(
∂ū
∂y

)2
]

(2.59)

As a result, the nonlinear k-ε turbulence model (2.57) is able to simulate the
turbulence-driven secondary flows (Speziale, 1987; Pezzinga, 1994). So is Rodi’s
algebraic stress model (2.58).

2.3.5 Other turbulence models and simulations

A more advanced turbulence model is the Reynolds stress model, in which the trans-
port equations of u′

iu
′
j are derived in exact form from the continuity and Navier-Stokes

equations and modeled to obtain a closed system (see Rodi, 1993). The large eddy
simulation (LES) and direct numerical simulation (DNS) of turbulent flows have
also advanced recently in CFD. However, the Reynolds stress model, LES, and DNS
have been little tested so far and are not yet in use for practical applications in river
engineering.

2.4 DERIVATION OF 1-D AND 2-D FLOW AND SEDIMENT
TRANSPORT EQUATIONS

Because of the limitation of computer capacity, solving a full 3-D model is time-
consuming; this was particularly true several decades ago. Thus, the development of
1-D and 2-D models has been an important task in computational river dynamics
(e.g., de Saint Venant, 1871; Kuipers and Vreugdenhil, 1973). The derivation of



30 Computational River Dynamics

1-D and 2-D model equations from 3-D model equations via section-, depth-, and
width-integrating (averaging) approaches is introduced in this section.

Before deriving the spatially-integrated models, let us introduce the 3-D flow and
sediment transport equations and the associated boundary conditions at the water
surface, channel bottom, and banks. In the Cartesian coordinate system shown in
Fig. 2.6, the 3-D continuity and momentum equations (2.42) and (2.43) of flow with
low sediment concentration are rewritten as

∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
= 0 (2.60)

∂ux
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2
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+ 1
ρ
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(2.63)

where x (= x1) and y (= x2) are the horizontal coordinates; z (= x3) is the vertical
coordinate above a datum; ux, uy, and uz are the components of mean velocity in the
x-, y- and z-directions; τxx, τxy, . . . , and τzz are the stresses (including both molecular
and turbulent effects); and Fx, Fy, and Fz are the components of the resultant external
force in the x-, y- and z-directions. As gravity is assumed to be the only external force,
Fx = Fy = 0 and Fz = −ρg.

Note that the bar “-”, denoting time-averaged quantities, is omitted in Eqs. (2.60)–
(2.63) for simplicity.

For gradually varied (shallow water) flows, the inertia and diffusion effects in the
vertical momentum equation (2.63) are usually neglected, yielding the hydrostatic
pressure equation:

∂p
∂z

= −ρg (2.64)

Under the assumption of constant ρ along the depth, Eq. (2.64) has an analytic
solution:
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Figure 2.6 Configuration of flow and sediment transport.

p = pa + ρg(zs − z) (2.65)

where zs is the water surface elevation, and pa is the atmospheric pressure at the water
surface. A constant pa is assumed here for a short river reach.

Substituting Eq. (2.65) into Eqs. (2.61) and (2.62) yields the x- and y-momentum
equations for gradually varied flows:
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(2.66)
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Because the channel bed and banks generally vary in much lower speed than the
flow, the following non-slip condition is applied at these solid boundaries:

ubx = 0, uby = 0, ubz = 0 (2.68)

The water surface is a free moving boundary, the location of which is part of the
solution. For a particle on the free surface, its location (x, y, z) can be described by

z = zs(x, y, t) (2.69)
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and it moves with the free surface, i.e.,

dx
dt

= uhx,
dy
dt

= uhy,
dz
dt

= uhz (2.70)

where uhx, uhy, and uhz are the components of flow velocity at the water surface in
the x-, y- and z-directions. Thus, differentiating Eq. (2.69) with respect to t leads to
the following kinematic condition of free surface:

∂zs

∂t
+ uhx

∂zs

∂x
+ uhy

∂zs

∂y
= uhz (2.71)

The three-dimensional sediment transport equation (2.44) closed using Eq. (2.46)
is rewritten as
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)
(2.72)

In general, Eq. (2.72) is approximately applicable to all sediment loads (if fine
enough) in the entire water column. However, because bed load and suspended load
behave differently, the water column is often divided into two zones: a bed-load zone
from the bed elevation zb to zb + δ and a suspended-load zone from zb + δ to zs,
as shown in Fig. 2.6. Here, δ is the thickness of the bed-load zone, which is usually
assumed to be about twice the sediment diameter (Einstein, 1950) or half the bed-form
height.

The net vertical sediment flux across the water surface should be zero and, thus, the
suspended-load boundary condition at the water surface is

(
εs
∂c
∂z

+ ωsc
)

z=zs

= 0 (2.73)

There are usually two approaches to specify the suspended-load boundary condition
at the interface between the suspended-load and bed-load zones. One approach is to
assume the near-bed suspended-load concentration to be at equilibrium:

c|z=zb+δ = cb∗ (2.74)

where cb∗ is the equilibrium (capacity) sediment concentration at the interface.
The other approach is to assume that the near-bed sediment entrainment flux is at

the capacity of flow picking up sediment under the considered flow conditions and
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bed sediment configurations:

Eb = −εs ∂c
∂z

∣∣∣∣
z=zb+δ

= ωscb∗ (2.75)

where Eb is the entrainment flux of sediment at the interface. Correspondingly, the
deposition flux at the interface is defined as Db = ωscb, in which cb is the suspended-
load concentration at the interface between the suspended-load and bed-load zones.
Note that Eb and Db are defined per unit area of horizontal plane rather than bed
surface; the bed surface may be curved, whereas Eb and Db are along the vertical
direction.

Eqs. (2.74) and (2.75) are often called “concentration” and “gradient” boundary
conditions, respectively. Eq. (2.74) is applicable for equilibrium sediment transport at
the interface, while Eq. (2.75) is applicable for both equilibrium and non-equilibrium
sediment transports. In particular, for equilibrium transport, Db = Eb and Eq. (2.75)
becomes Eq. (2.74). Therefore, Eq. (2.75) is more general than Eq. (2.74). More
discussions about the near-bed suspended-load boundary condition are given in
Sections 2.5.2 and 7.3.1.

2.4.1 Depth-averaged 2-D model equations

Depth-averaged hydrodynamic equations

The depth-averaged quantity � of a three-dimensional variable φ is defined by

� = 1
h

∫ zs

zb

φ dz (2.76)

Integrating the continuity equation (2.60) over the flow depth yields∫ zs

zb

∂ux

∂x
dz +

∫ zs

zb

∂uy

∂y
dz +

∫ zs

zb

∂uz

∂z
dz = 0 (2.77)

which is reformulated using the Leibniz integral rule as

∂

∂x

∫ zs

zb

uxdz − uhx
∂zs

∂x
+ ubx

∂zb

∂x
+ ∂

∂y

∫ zs

zb

uydz − uhy
∂zs

∂y
+ uby

∂zb

∂y

+ uhz − ubz = 0 (2.78)

Substituting boundary conditions (2.68) and (2.71) into Eq. (2.78) leads to the
depth-integrated 2-D continuity equation:

∂h
∂t

+ ∂(hUx)

∂x
+ ∂(hUy)

∂y
= 0 (2.79)

where Ux and Uy are the depth-averaged quantities of local velocities ux and uy, defined
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by Eq. (2.76). Note that ∂h/∂t in Eq. (2.79) may be replaced by ∂zs/∂t, because the
bed change is omitted.

Integrating the x-momentum equation (2.66) over the flow depth yields

∫ zs

zb

∂ux

∂t
dz +

∫ zs

zb

∂(u2
x)

∂x
dz +

∫ zs

zb

∂(uyux)

∂y
dz +

∫ zs

zb

∂(uzux)

∂z
dz

= −g
∫ zs

zb

∂zs

∂x
dz + 1

ρ

∫ zs

zb

∂τxx

∂x
dz + 1

ρ

∫ zs

zb

∂τxy

∂y
dz + 1

ρ

∫ zs

zb

∂τxz

∂z
dz (2.80)

and then applying the Leibniz rule to this equation yields

∂

∂t

(∫ zs

zb

uxdz
)

− uhx
∂zs

∂t
+ ubx

∂zb

∂t
+ ∂

∂x

(∫ zs

zb

u2
xdz
)

− u2
hx
∂zs

∂x
+ u2

bx
∂zb

∂x

+ ∂

∂y

(∫ zs

zb

uyuxdz
)

− uhyuhx
∂zs

∂y
+ ubyubx

∂zb

∂y
+ uhzuhx − ubzubx

= −gh
∂zs

∂x
+ 1
ρ

∂

∂x

(∫ zs

zb

τxxdz
)

− 1
ρ
τxx,s

∂zs

∂x
+ 1
ρ
τxx,b

∂zb

∂x

+ 1
ρ

∂

∂y

(∫ zs

zb

τxydz
)

− 1
ρ
τxy,s

∂zs

∂y
+ 1
ρ
τxy,b

∂zb

∂y
+ 1
ρ
(τxz,s − τxz,b) (2.81)

Substituting boundary conditions (2.68) and (2.71) into Eq. (2.81) results in the
depth-integrated x-momentum equation:

∂(hUx)

∂t
+ ∂(hU2

x)

∂x
+ ∂(hUyUx)

∂y
= −gh

∂zs

∂x
+ 1
ρ

∂[h(Txx + Dxx)]
∂x

+ 1
ρ

∂[h(Txy + Dxy)]
∂y

+ 1
ρ
(τsx − τbx)

(2.82)

where Txx and Txy are the depth-averaged normal and shear stresses; Dxx and Dxy
account for the dispersion momentum transports due to the vertical non-uniformity of
velocity, defined as Dxx = −ρh

∫ zs

zb
(ux − Ux)

2dz and Dxy = −ρh
∫ zs

zb
(ux − Ux)(uy − Uy)

dz; τsx is the x-component of shear force per unit horizontal area, usually due to
wind driving at the water surface, defined as τsx = τxz,s − τxx,s∂zs/∂x − τxy,s∂zs/∂y;
and τbx is the x-component of bed shear force per unit horizontal area, defined as
τbx = τxz,b − τxx,b∂zb/∂x − τxy,b∂zb/∂y. Note that τbx may be written as τbx = mb�τbx,
in which �τbx is the x-component of bed shear force per unit bed surface area, and mb
is the bed slope coefficient defined as mb = [1 + (∂zb/∂x)2 + (∂zb/∂y)2]1/2.
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Similarly, integrating Eq. (2.67) over the flow depth leads to the depth-integrated
y-momentum equation:

∂(hUy)

∂t
+ ∂(hUxUy)

∂x
+ ∂(hU2

y )

∂y
= −gh

∂zs

∂y
+ 1
ρ

∂[h(Tyx + Dyx)]
∂x

+ 1
ρ

∂[h(Tyy + Dyy)]
∂y

+ 1
ρ
(τsy − τby)

(2.83)

where Tyx and Tyy are the depth-averaged shear and normal stresses; Dyx and Dyy
account for the dispersion momentum transports due to the vertical non-uniformity of
velocity, defined as Dyx = Dxy and Dyy = −ρh

∫ zs

zb
(uy − Uy)

2dz; τsy is the y-component
of wind shear force per unit horizontal area at the water surface; and τby is the y-
component of bed shear force per unit horizontal area.

The depth-averaged stresses Tij(i, j = x, y) can be related to the gradients of the
depth-averaged velocities by the Bossinesq assumption similar to Eq. (2.45) in a tur-
bulence model, such as the depth-averaged k-ε turbulence model proposed by Rastogi
and Rodi (1978). However, there is not a general method to handle the dispersion
terms Dij. Dij are not related to turbulence, but both Dij and Tij represent momentum
transports as effective stresses. In nearly straight channels, the dispersion transports
are usually combined with the turbulent stresses. In curved channels, secondary flows,
especially the helical flow, play an important role in fluvial processes, and thus the
dispersion transports become important and should be taken into account through
additional model closures. This is discussed in Section 6.3.

Depth-averaged sediment transport equations

Unlike the depth-averaged quantities defined by Eq. (2.76), the depth-averaged
suspended-load concentration, C, is defined by

C = 1
(h − δ)Us

∫ zs

zb+δ
uscdz (2.84)

where Us is the streamwise depth-averaged velocity, and us is the local flow velocity
projected to the streamwise direction. By definition, Us = ∫ zs

zb+δ usdz/(h − δ), but Us

is approximately set as the resultant depth-averaged velocity U =
√

U2
x + U2

y at each

horizontal point.
Integrating the three-dimensional sediment transport equation (2.72) over the

suspended-load zone leads to∫ zs

zb+δ
∂c
∂t

dz +
∫ zs

zb+δ
∂(uxc)
∂x

dz +
∫ zs

zb+δ
∂(uyc)
∂y

dz +
∫ zs

zb+δ
∂(uzc)
∂z

dz −
∫ zs

zb+δ
∂(ωsc)
∂z

dz

=
∫ zs

zb+δ

[
∂

∂x

(
εs
∂c
∂x

)]
dz +

∫ zs

zb+δ

[
∂

∂y

(
εs
∂c
∂y

)]
dz +

∫ zs

zb+δ

[
∂

∂z

(
εs
∂c
∂z

)]
dz

(
2.85

)
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By applying the Leibniz integral rule and boundary conditions (2.68), (2.71), (2.73),
and (2.75) to Eq. (2.85) and assuming that the bed-load zone is very thin, i.e., δ � h,
the depth-integrated suspended-load transport equation is obtained:

∂

∂t

(
hC
βs

)
+ ∂(hUxC)

∂x
+ ∂(hUyC)

∂y

= ∂

∂x

[
h
(
εs
∂C
∂x

+ Dsx

)]
+ ∂

∂y

[
h
(
εs
∂C
∂y

+ Dsy

)]
+ Eb − Db (2.86)

where βs is a correction factor for suspended load:

βs =
∫ zs

zb+δ
uscdz

/(
Us

∫ zs

zb+δ
cdz
)

(2.87)

Note that the coefficient βs in Eq. (2.86) should not be zero; otherwise, no suspended
load moves. βs should also appear in the diffusion terms in Eq. (2.86), but it is lumped
into the diffusivity εs for simplicity. However, if the depth-averaged sediment con-
centration C is defined using Eq. (2.76) rather than (2.84), βs should appear in the
convection terms rather than the storage term, i.e.,

∂(hC)
∂t

+ ∂(βshUxC)
∂x

+ ∂(βshUyC)
∂y

= ∂

∂x

[
h
(
εs
∂C
∂x

+ Dsx

)]
+ ∂

∂y

[
h
(
εs
∂C
∂y

+ Dsy

)]
+ Eb − Db (2.88)

It should be clarified that defining the depth-averaged suspended-load concentration
C by Eq. (2.76) results in the unit suspended-load discharge qs = βsUhC, while the
definition (2.84) yields qs = UhC. If mass balance is respected, either definition can
be used. The definition (2.84) is adopted in this book, except where stated otherwise.

The coefficient βs is actually the ratio of the depth-averaged sediment and flow
velocities and accounts for the temporal lag between flow and suspended-load trans-
port in the depth-averaged 2-D model. As demonstrated later, βs also appears in the
1-D model. However, this lag due to difference between the depth-averaged flow and
sediment velocities can be automatically taken into account in the 3-D (or vertical
2-D) model, which directly uses the local flow velocity and sediment concentration as
dependent variables. The evaluation of βs is discussed in Section 3.8.

Dsx and Dsy in Eq. (2.86) are called dispersion sediment fluxes, which account for
the dispersion effect due to the non-uniform distributions of flow velocity and sediment
concentration over the flow depth, defined as Dsx = −1

h

∫ zs

zb
(ux − Ux)(c − C)dz and

Dsy = −1
h

∫ zs

zb
(uy − Uy)(c − C)dz. In nearly straight channels, the dispersion fluxes

may be combined with the (turbulent) diffusion fluxes, with εs replaced by a mixing
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coefficient to represent the diffusion and dispersion effects together. In curved chan-
nels, the dispersion fluxes become important and need to be modeled, as discussed in
Section 6.3.

Integrating the three-dimensional sediment transport equation (2.72) over the bed-
load zone leads to the bed-load mass balance equation:

(1 − p′
m)
∂zb

∂t
+ ∂(δcδ)

∂t
+ ∂(αbxqb)

∂x
+ ∂(αbyqb)

∂y
= Db − Eb (2.89)

where p′
m is the porosity of bed material at the bed surface, cδ is the average volumetric

concentration of sediment at the bed-load zone, qb is the bed-load transport rate by
volume per unit time and width (m2s−1), and αbx and αby are the direction cosines of
bed-load movement. The bed load is usually assumed to move along the direction
of bed shear stress but may be affected by secondary flows in curved channels and
gravity in channels with steep bed and bank slopes.

The first term on the left-hand side of Eq. (2.89) represents the bed change, which
results from the exchange between moving sediment and bed material. The second term
accounts for the storage effect. In general, the average bed-load concentration cδ is
related to the bed-load transport rate qb and velocity ub by cδ = qb/(δub), thus yielding

(1 − p′
m)
∂zb

∂t
+ ∂

∂t

(
qb

ub

)
+ ∂(αbxqb)

∂x
+ ∂(αbyqb)

∂y
= Db − Eb (2.90)

Because the bed-load velocity ub is usually slower than the flow velocity, Eq. (2.90)
accounts for the temporal lag between flow and bed-load transport.

Summing Eqs. (2.86) and (2.90) leads to the overall sediment balance equation:

(1 − p′
m)
∂zb

∂t
+ ∂

∂t

(
hCt

βt

)
+ ∂qtx

∂x
+ ∂qty

∂y
= 0 (2.91)

where Ct is the depth-averaged concentration of total load; qtx and qty are the total-
load fluxes: qtx = αbxqb + hUxC − εsh∂C/∂x − hDsx and qty = αbyqb + hUyC −
εsh∂C/∂y − hDsy; and βt is a correction factor for total load, related to βs and ub by

βt = hCt

hC/βs + qb/ub
= 1

rs/βs + (1 − rs)U/ub
(2.92)

where rs is the ratio of suspended load to total load.

2.4.2 Width-averaged 2-D model equations

Fig. 2.7 shows the configuration of a cross-section. The width-averaged quantity �̃ of
a three-dimensional variable φ is defined by

�̃ = 1
b

∫ b2

b1

φdy (2.93)
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Figure 2.7 Configuration of cross-section.

where b1 and b2 are the y-coordinate values of two banks; and b = b2 − b1, i.e.,
the flow width at height z. Note that x and y are herein set along the longitudinal
and transverse directions of the channel, respectively, for deriving the width-averaged
2-D and 1-D model equations. However, this arrangement is not necessary in the
depth-averaged 2-D and 3-D models.

Integrating the three-dimensional continuity equation (2.60) along the y-coordinate
axis over the flow width yields

∫ b2

b1

∂ux

∂x
dy +

∫ b2

b1

∂uy

∂y
dy +

∫ b2

b1

∂uz

∂z
dy = 0 (2.94)

and applying the Leibniz integral rule and the non-slip boundary condition at banks
to this equation yields the width-integrated continuity equation of flow:

∂(bŨx)

∂x
+ ∂(bŨz)

∂z
= 0 (2.95)

where Ũx and Ũz are the width-averaged velocities in the x- and z-directions, defined
by Eq. (2.93).

In a similar manner, integrating the x- and z-momentum equations (2.61) and (2.63)
over the flow width leads to the width-integrated momentum equations:

∂(bŨx)

∂t
+ ∂(bŨ2

x)

∂x
+ ∂(bŨzŨx)

∂z
= −1

ρ
b
∂p̃
∂x

+ 1
ρ

∂[b(T̃xx + D̃xx)]
∂x

+ 1
ρ

∂[b(T̃xz + D̃xz)]
∂z

− 1
ρ
(m1τx1 + m2τx2)

(2.96)
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∂(bŨz)

∂t
+ ∂(bŨxŨz)

∂x
+ ∂(bŨ2

z )

∂z
= −bg − 1

ρ
b
∂p̃
∂z

+ 1
ρ

∂[b(T̃zx + D̃zx)]
∂x

+ 1
ρ

∂[b(T̃zz + D̃zz)]
∂z

− 1
ρ
(m1τz1 + m2τz2)

(2.97)

where p̃ and T̃ij(i, j = x, z) are the width-averaged pressure and stresses, respec-
tively; D̃ij are the dispersion momentum transports due to the lateral non-uniformity

of flow velocity, defined as D̃xx = −ρb
∫ b2

b1
(ux − Ũx)

2dy, D̃xz = D̃zx = −ρb
∫ b2

b1

(ux − Ũx)(uz − Ũz)dy, and D̃zz = −ρb
∫ b2

b1
(uz − Ũz)

2dy; τxl and τzl(l = 1, 2) are the
shear stresses in the x- and z-directions on the two bank surfaces; and ml are the bank
slope coefficients, defined as ml = [1 + (∂bl/∂x)2 + (∂bl/∂z)2]1/2.

For gradually varied flows, the effects of inertia, diffusion, and dispersion in the
vertical momentum equation (2.97) can be neglected, yielding the hydrostatic pressure
equation (2.65). The x-momentum equation (2.96) is then turned to

∂(bŨx)

∂t
+ ∂(bŨ2

x)

∂x
+ ∂(bŨzŨx)

∂z
= −gb

∂ z̃s

∂x
+ 1
ρ

∂[b(T̃xx + D̃xx)]
∂x

+ 1
ρ

∂[b(T̃xz + D̃xz)]
∂z

− 1
ρ
(m1τx1 + m2τx2)

(2.98)

where z̃s is the laterally-averaged water surface elevation.
Integrating Eq. (2.72) over the flow width leads to the width-integrated suspended-

load transport equation:

∂(bC̃)
∂t

+ ∂(bŨxC̃)
∂x

+ ∂(bŨzC̃)
∂z

− ∂(bωsC̃)
∂z

= ∂

∂x

[
b

(
εs
∂C̃
∂x

+ D̃sx

)]
+ ∂

∂z

[
b

(
εs
∂C̃
∂z

+ D̃sz

)]
+ Sc (2.99)

where C̃ is the width-averaged concentration of suspended load; D̃sx and D̃sz are
the dispersion fluxes, defined as D̃sx = −1

b

∫ b2

b1
(ux − Ũx)(c − C̃)dy and D̃sz = −1

b∫ b2

b1
(uz − Ũz)(c − C̃)dy; and Sc includes the sediment exchange at banks and the side

discharge from tributaries.
The bed-load zone is so thin that it is not necessary to consider the vertical variation

of sediment concentration in this zone. The width-integrated bed-load transport is
determined using the 1-D transport equation introduced in the next subsection.
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2.4.3 Section-averaged 1-D model equations

The cross-section-averaged quantity �̂ of a three-dimensional variable φ is defined by

�̂ = 1
A

∫∫
A
φdA = 1

A

∫ zs

zb

∫ b2

b1

φdydz (2.100)

where A is the flow area in the cross-section, as shown in Fig. 2.7.
Integrating the 3-D continuity equation (2.60) over the cross-section leads to

∫ zs

zb

∫ b2

b1

∂ux

∂x
dydz +

∫ zs

zb

∫ b2

b1

∂uy

∂y
dydz +

∫ zs

zb

∫ b2

b1

∂uz

∂z
dydz = 0 (2.101)

which is reformulated to the following 1-D continuity equation by applying the Leibniz
rule, the non-slip condition (2.68) at the channel bed and banks, and the kinematic
condition (2.71) at the water surface:

∂A
∂t

+ ∂(AÛ)
∂x

= 0 (2.102)

where Û is the flow velocity averaged over the cross-section, defined by Eq. (2.100).
Integrating the 3-D momentum equation (2.66) over the cross-section yields the 1-D

momentum equation:

∂(AÛ)
∂t

+ ∂(AÛ2)

∂x
= −gA

∂ z̃s

∂x
+ 1
ρ

∂[A(T̂xx + D̂xx)]
∂x

+ 1
ρ
(Bτ̂sx − χτ̂bx)

(2.103)

where T̂xx is the normal stress averaged over the cross-section, D̂xx is the dispersion
momentum transport, B is the channel width at the water surface, χ is the wetted
perimeter, τ̂sx is the wind driving force per unit horizontal area at the water surface,
and τ̂bx is the shear force per unit area of bed and bank surfaces.

The turbulent stress term in Eq. (2.103) is usually ignored, because it is much weaker
than the convection term. The dispersion term is often combined with the convection
term by introducing a correction factor. In inland rivers, the wind driving force usually
is negligible. Therefore, the resulting 1-D momentum equation is

∂(AÛ)
∂t

+ ∂(β̂AÛ2)

∂x
= −gA

∂ z̃s

∂x
− 1
ρ
χτ̂bx (2.104)

where β̂ is the correction factor for momentum, defined as β̂ = ∫∫Au2dA/(AÛ2), with
u being the streamwise flow velocity in the 3-D model.
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The average suspended-load concentration, Ĉ, at the cross-section is defined as

Ĉ = 1

AsÛ

∫∫
As

ucdA (2.105)

where c is the local suspended-load concentration, and As is the flow area in the
suspended-load zone, as shown in Fig. 2.7. It is often assumed that As ≈ A. Integrating
Eq. (2.72) over the suspended-load zone leads to the 1-D suspended-load transport
equation:

∂

∂t

(
AĈ

β̂s

)
+ ∂

∂x
(AÛĈ) = ∂

∂x

(
Aεs
∂Ĉ
∂x

)
+ B(Êb − D̂b) (2.106)

where Êb and D̂b are the width-averaged sediment entrainment and deposition fluxes at
the interface between the suspended-load and bed-load zones, and β̂s is the correction
factor for suspended load:

β̂s =
∫∫

As

ucdA
/(

Û
∫∫

As

cdA
)

(2.107)

Note that no dispersion term appears in Eq. (2.106), due to the definition of Ĉ in
Eq. (2.105). However, if Ĉ is defined by Eq. (2.100), a dispersion term should appear
in Eq. (2.106). Normally, the diffusion term in Eq. (2.106) is ignored, yielding

∂

∂t

(
AĈ

β̂s

)
+ ∂(AÛĈ)

∂x
= B(Êb − D̂b) (2.108)

Integrating Eq. (2.72) over the bed-load zone yields the 1-D bed-load mass balance
equation:

(1 − p′
m)
∂Ab

∂t
+ ∂(AδCδ)

∂t
+ ∂Qb

∂x
= B(D̂b − Êb) (2.109)

where ∂Ab/∂t is the rate of change in bed area; Ab is the cross-sectional area of the
bed above a reference datum, as shown in Fig. 2.7; Aδ is the cross-sectional area of
the bed-load zone; Qb is the bed-load transport rate at the cross-section; and Cδ is the
laterally-averaged bed-load concentration.

In analogy to Eq. (2.90), by using Cδ = Qb/(AδUb), Eq. (2.109) can be rewritten as

(1 − p′
m)
∂Ab

∂t
+ ∂

∂t

(
Qb

Ub

)
+ ∂Qb

∂x
= B(D̂b − Êb) (2.110)

where Ub is the laterally-averaged velocity of bed load.
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Summing Eqs. (2.108) and (2.110) leads to the 1-D mass balance equation of
total load:

(1 − p′
m)
∂Ab

∂t
+ ∂

∂t

(
AĈt

β̂t

)
+ ∂(AÛĈt)

∂x
= 0 (2.111)

where Ĉt is the total-load concentration averaged over the cross-section, defined as
Ĉt = (Qb + AsÛĈ)/(AÛ); and β̂t is a correction factor for total load, related to β̂s
and Ub by β̂t = AĈt/(AĈ/β̂s + Qb/Ub) = 1/[rs/β̂s + (1 − rs)Û/Ub], which is similar
to Eq. (2.92).

2.4.4 Effects of sediment transport and bed change
on flow

Recall that the aforementioned 1-D, 2-D, and 3-D hydrodynamic equations ignore
the effects of flow density and bed change by assuming that the sediment con-
centration is low and that the bed varies much more slowly than the flow. This
assumption is not valid for high shear flows with strong sediment transport. In
addition, the flow density varies with salinity, temperature, and other factors.
In general, the 3-D hydrodynamic equations with a variable flow density ρ are
Eqs. (2.25) and (2.26), which are rewritten in the Cartesian coordinate system shown
in Fig. 2.6 as

∂ρ

∂t
+ ∂(ρux)

∂x
+ ∂(ρuy)

∂y
+ ∂(ρuz)

∂z
= 0 (2.112)

∂(ρux)

∂t
+ ∂(ρu2

x)

∂x
+ ∂(ρuyux)

∂y
+ ∂(ρuzux)

∂z
= Fx − ∂p

∂x
+ ∂τxx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z

(2.113)

∂(ρuy)

∂t
+ ∂(ρuxuy)

∂x
+ ∂(ρu2

y)

∂y
+ ∂(ρuzuy)

∂z
= Fy − ∂p

∂y
+ ∂τyx

∂x
+ ∂τyy

∂y
+ ∂τyz

∂z

(2.114)

∂(ρuz)

∂t
+ ∂(ρuxuz)

∂x
+ ∂(ρuyuz)

∂y
+ ∂(ρu2

z )

∂z
= Fz − ∂p

∂z
+ ∂τzx

∂x
+ ∂τzy

∂y
+ ∂τzz

∂z

(2.115)

Like Eq. (2.63), the z-momentum equation (2.115) can be simplified to the hydro-
static pressure equation (2.64) for gradually varied (shallow water) flows. When
the flow density is variable in the vertical direction, Eq. (2.64) has the following
solution:

p = pa +
∫ zs

z
ρgdz (2.116)
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Substituting Eq. (2.116) into Eqs. (2.113) and (2.114) and assuming a constant pa
yields

∂(ρux)

∂t
+ ∂(ρu2

x)

∂x
+ ∂(ρuyux)

∂y
+ ∂(ρuzux)

∂z
= −ρ0g

∂zs

∂x
− g

∫ zs

z

∂ρ

∂x
dz

+ ∂τxx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
(2.117)

∂(ρuy)

∂t
+ ∂(ρuxuy)

∂x
+ ∂(ρu2

y)

∂y
+ ∂(ρuzuy)

∂z
= −ρ0g

∂zs

∂y
− g

∫ zs

z

∂ρ

∂y
dz

+ ∂τyx

∂x
+ ∂τyy

∂y
+ ∂τyz

∂z
(2.118)

where ρ0 is the flow density at the water surface.
Integrating Eqs. (2.112), (2.117), and (2.118) over the flow depth leads to the

depth-integrated 2-D flow equations:

∂
(
ρh
)

∂t
+ ∂(ρhUx)

∂x
+ ∂(ρhUy)

∂y
+ ρb

∂zb

∂t
= 0 (2.119)

∂(ρhUx)

∂t
+ ∂(ρhU2

x)

∂x
+ ∂(ρhUyUx)

∂y
= −ρgh

∂zs

∂x
− 1

2
gh2 ∂ρ

∂x
+ ∂[h(Txx + Dxx)]

∂x

+ ∂[h(Txy + Dxy)]
∂y

+ τsx − τbx (2.120)

∂(ρhUy)

∂t
+ ∂(ρhUxUy)

∂x
+ ∂(ρhU2

y )

∂y
= −ρgh

∂zs

∂y
− 1

2
gh2 ∂ρ

∂y
+ ∂[h(Tyx + Dyx)]

∂x

+ ∂[h(Tyy + Dyy)]
∂y

+ τsy − τby (2.121)

where ρb is the density of the water-sediment mixture in the bed surface layer, deter-
mined by ρb = ρf p′

m +ρs(1 − p′
m), with p′

m being the porosity of the surface-layer bed
material. Note that in the derivation of Eqs. (2.119)–(2.121), it is assumed that the
flow density is constant along the flow depth but varies horizontally.

Integrating Eqs. (2.112), (2.113), and (2.115) over the flow width yields the width-
integrated 2-D equations of flow with a density varying in the longitudinal section:

∂(ρb)
∂t

+ ∂(ρbŨx)

∂x
+ ∂(ρbŨz)

∂z
= 0 (2.122)

∂(ρbŨx)

∂t
+ ∂(ρbŨ2

x)

∂x
+ ∂(ρbŨzŨx)

∂z
= −b

∂p̃
∂x

+ ∂[b(T̃xx + D̃xx)]
∂x

+ ∂[b(T̃xz + D̃xz)]
∂z

− (m1τx1 + m2τx2)

(2.123)
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∂(ρbŨz)

∂t
+ ∂(ρbŨxŨz)

∂x
+ ∂(ρbŨ2

z )

∂z
= −ρbg − b

∂p̃
∂z

+ ∂[b(T̃zx + D̃zx)]
∂x

+ ∂[b(T̃zz + D̃zz)]
∂z

− (m1τz1 + m2τz2)

(2.124)

By applying the hydrostatic pressure assumption, the vertical momentum equation
(2.124) can be simplified to Eq. (2.116), and then the streamwise momentum
equation (2.123) is turned to

∂(ρbŨx)

∂t
+ ∂(ρbŨ2

x)

∂x
+ ∂(ρbŨzŨx)

∂z
= −

(
ρ0bg

∂ z̃s

∂x
+ gb

∫ zs

z

∂ρ

∂x
dz
)

+ ∂[b(T̃xx + D̃xx)]
∂x

+ ∂[b(T̃xz + D̃xz)]
∂z

− (m1τx1 + m2τx2) (2.125)

Integrating Eqs. (2.112) and (2.117) over the cross-section yields the general 1-D
equations of flow with a longitudinally variable density:

∂(ρA)
∂t

+ ∂(ρAÛ)
∂x

+ ρb
∂Ab

∂t
= 0 (2.126)

∂

∂t
(ρAÛ)+ ∂

∂x

(
ρβAÛ2

)
= −ρgA

∂ z̃s

∂x
− 1

2
gAhp

∂ρ

∂x
− χτ̂bx (2.127)

where hp = ∫ B
0 h2

2ddy/A, with h2d being the local flow depth.
Note that the effect of sediment concentration on the flow field is taken into account

in Eqs. (2.112)–(2.127) through the density of the water-sediment mixture defined in
Eq. (2.23). The effect of bed change is considered in the 1-D and depth-averaged 2-D
models by including the bed change terms in Eqs. (2.119) and (2.126), whereas this
is done in the width-averaged 2-D and 3-D models by specifying the near-bed fluxes
and changing the computational domains at the bed boundary.

2.5 NET EXCHANGE FLUX OF SUSPENDED LOAD NEAR BED

2.5.1 Exchange model using near-bed capacity
formula

In the depth-averaged 2-D (or 1-D) model, the near-bed sediment exchange flux
Db − Eb in the suspended-load transport equation must be modeled, because the near-
bed concentration cb is not a dependent variable to be solved. The deposition flux
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Db (= ωscb) is usually determined by relating cb to the depth-averaged suspended-
load concentration C through cb = αcC, in which αc is the adaptation or recovery
coefficient.

The entrainment flux Eb (= ωscb∗) can be determined by directly using an empirical
formula for the near-bed suspended-load transport capacity cb∗. The net exchange flux
thus reads

Db − Eb = αcωsC − ωscb∗ (2.128)

Examples of this model can be found in Spasojevic and Holly (1990) and Minh
Duc (1998).

The coefficient αc in non-equilibrium sediment transport states is little known and
very difficult to determine theoretically. It is often approximately evaluated using
the Rouse, Lane-Kalinske, or another distribution of suspended-load concentration
introduced in Section 3.5.1, established under equilibrium conditions. For example,
the use of the Rouse distribution yields (Minh Duc, 1998)

αc = (h − δ)/∫ h

δ

(
h − z

z
δ

h − δ
)ωs/κU∗

dz (2.129)

Lin (1984) proposed the following relation for αc:

αc = 3.25 + 0.55 ln
(
ωs

κU∗

)
(2.130)

which was used by Spasojevic and Holly (1990).

2.5.2 Exchange model using average capacity formula

The entrainment flux Eb can also be determined by relating cb∗ to the equilibrium
(capacity) depth-averaged suspended-load concentration C∗ through cb∗ = αc∗C∗,
in which αc∗ is the adaptation coefficient under the equilibrium condition and
C∗ is determined using an empirical formula. Therefore, the net exchange flux is
determined by

Db − Eb = αcωsC − αc∗ωsC∗ (2.131)

In the equilibrium sediment transport state, αc = αc∗, but in a non-equilibrium state,
αc 	= αc∗. Because equilibrium is acquired through exchange between bed material and
moving sediment near the bed, the sediment in the lower layer near the bed usually
reaches equilibrium more promptly than the sediment in the upper layer near the water
surface. In other words, the relative difference between the actual and equilibrium
sediment concentrations in the lower layer is usually smaller than that in the upper
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layer. Therefore, one may expect that for erosion, C/cb ≤ C∗/cb∗ and αc ≥ αc∗; for
deposition, C/cb ≥ C∗/cb∗ and αc ≤ αc∗.

However, the difference between αc and αc∗ is often assumed to be negligible, for
simplicity. Thus, the net exchange flux can be determined by (Han, 1980; Wu, 1991)

Db − Eb = αωs(C − C∗) (2.132)

where α is a new adaptation coefficient.
Equating Eqs. (2.131) and (2.132) leads to αωs(C−C∗) = αcωsC−αc∗ωsC∗ and then

α = αc + (αc − αc∗)
C∗

C − C∗
(2.133)

α = αc∗ + (αc − αc∗)
C

C − C∗
(2.134)

When erosion occurs, αc ≥ αc∗ and C < C∗; when deposition occurs, αc ≤ αc∗ and
C > C∗. Substituting these relations into Eqs. (2.133) and (2.134) results in α ≤ αc
and α ≤ αc∗. Therefore, the coefficient α in Eq. (2.132) is usually less than the two
coefficients αc and αc∗ in Eq. (2.131) (Wu, 1991).

Galappatti and Vreugdenhil (1985) derived a function for α through an approxi-
mate analytical integration of the pure vertical 2-D convection-diffusion equation of
suspended load. They used the “concentration” boundary condition (2.74), which
assumes equilibrium sediment transport near the bed. Armanini and di Silvio (1986)
argued that the “concentration” boundary condition may result in large errors for
fine sediments. They derived a different function for α through the integration of
Galappatti and Vreugdenhil by specifying the “gradient” boundary condition (2.75).
In addition, Armanini and de Silvio performed a sensitivity analysis of the approxi-
mate solutions by applying the procedure of Galappatti and Vreugdenhil directly to
the transport (cu) instead of to the concentration (c). Armanini and de Silvio’s function
can be approximated as

1
α

= a
h

+
(
1 − a

h

)
exp
[
−1.5

(a
h

)−1/6 ωs

U∗

]
(2.135)

where a is the thickness of the bottom layer, defined as a = 33z0 = 33h/exp
(1 + κCh/

√
g), in which z0 is the zero-velocity distance in the logarithmic velocity

distribution, and Ch is the Chezy resistance coefficient of the channel. The thickness
of the bottom layer has the order of magnitude of the grain diameter when the bed is
flat, and the order of magnitude of the bed form height in the presence of bed forms.

Zhou and Lin (1998) also established a formula for α using the analytical solutions of
the pure vertical 2-D convection-diffusion equation of suspended load with constant
diffusivity in steady, uniform flow. They adopted the analytical solution with the
“concentration” boundary condition for erosion case, and that with the “gradient”
boundary condition for deposition case. The coefficient α is determined by

α = R
4

+ σ
2
1

R
(2.136)
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where R = 6ωs/(κU∗), and σ1 is the first positive root of the following
equations:

tg(σ ) = −σ
R

(for erosion), 2ctg(σ ) = 2σ
R

− R
2σ

(for deposition) (2.137)

Eq. (2.136) represents two curves for α in cases of erosion and deposition, respec-
tively, as plotted in Fig. 2.8. The difference between these two curves is significant
for small Rouse numbers ωs/(κU∗), but gradually decreases as the Rouse number
increases. It should be noted that because the “concentration” boundary condition is
used, the curve for erosion case may have large errors for fine sediments (small Rouse
numbers), as discussed by Armanini and di Silvio (1986).

Figure 2.8 Relation between adaptation coefficient and Rouse number.

Armanini and di Silvio’s function, Eq. (2.135) with a/h = 0.017 is also plotted in
Fig. 2.8. It is shown that for small Rouse numbers Eq. (2.135) is close to Zhou and
Lin’s curve for deposition case, and as the Rouse number increases, the difference
between Eqs. (2.135) and (2.136) increases. It is also shown that the values of α given
by these two methods are always larger than 1.

It should be noted that Eqs. (2.135) and (2.136) were derived for a pure vertical 2-D
case under many assumptions and simplifications. Their application in natural rivers
should be done with caution, because the adaptation coefficient α is affected by many
other factors, as discussed in Section 2.5.3.

2.5.3 Complexity of adaptation coeff icient of
sediment

Effect of cross-sectional shape

The value of α in the 1-D model is related to the cross-sectional shape. This is
demonstrated by the following analysis suggested by Zhou and Lin (1998).



48 Computational River Dynamics

Width-integrating the steady depth-averaged 2-D suspended-load transport equ-
ation leads to ∫ B

0
Uh
∂C
∂x

dy = −
∫ B

0
αωs(C − C∗)dy (2.138)

and the 1-D formulation of Eq. (2.138) is

ÛH
∂Ĉ
∂x

= −α1dωs(Ĉ − Ĉ∗) (2.139)

where H, Û, Ĉ, and Ĉ∗ are the flow depth, velocity, actual and equilibrium suspended-
load concentrations averaged over the cross-section, respectively; and α1d is the
adaptation coefficient in the 1-D model.

The equilibrium depth-averaged suspended-load concentration at each vertical line
may be determined using the Zhang (1961) formula introduced in Section 3.5.3:

C∗ = K∗

(
U3

ghωs

)m

(2.140)

where K∗ is a coefficient, and m is an exponent.
In analogy to Eq. (2.140), the actual depth-averaged suspended-load concentration

at each vertical line is assumed to have the relation:

C = K

(
U3

ghωs

)m

(2.141)

where K is a coefficient similar to K∗.
The depth-averaged flow velocity at each vertical line is assumed to be proportional

to the local flow depth:

U ∝ hr (2.142)

where r is an exponent and has a value of 2/3 if the Manning equation is used.
Substituting relations (2.140)–(2.142) into Eq. (2.138) and comparing the resulting

equation with Eq. (2.139) leads to (Zhou and Lin, 1998)

α1d =
∫ B

0 hr+1dy
∫ B

0 αh(3r−1)mdy

B
∫ B

0 h(3r−1)m+r+1dy
(2.143)

Eq. (2.143) shows that α1d is related to the cross-sectional shape and varies with
exponents m and r. After α has been determined using Eq. (2.136), α1d can be calcu-
lated using Eq. (2.143). As an approximation, α may be assumed to be constant along
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the channel width, thus yielding

α1d

α
= λα =

∫ B
0 hr+1dy

∫ B
0 h(3r−1)mdy

B
∫ B

0 h(3r−1)m+r+1dy
(2.144)

where λα is considered as a correction factor to account for the influence of cross-
sectional shape. Normally, λα is in the range of 0.25–1.0.

Effects of other factors

The settling velocity ωs in Eqs. (2.72) and (2.132) is often set as that of a single
particle in quiescent, distilled water. This is valid if the sediment concentration is very
low, but in general the effect of sediment concentration on ωs should be considered.
Moreover, ωs considers only the actions of drag force and submerged weight in still
water. In reality, sediment particles also experience other forces exerted by moving
water (Li, 1993; Wu and Wang, 2000). In particular, the Saffman (1965) lift force,
which might be important near the bed where the velocity gradient is high, may reduce
the settling velocity. These effects should be lumped in the adaptation coefficient α,
if no corrections are made to the settling velocity. This usually leads to reduction in
α values.

In addition, the above analyses of α consider only the flat bed without bed forms.
Bed forms often exist in natural rivers and affect the sediment exchange near the bed
and, in turn, the values of α. However, this effect is little understood. The bed-load
layer may become thicker because of bed forms, so that reduction in α values may be
expected based on Eq. (2.129) or (2.135).

Therefore, the adaptation coefficient α lumps the effects of many factors on sediment
transport. Tests in many rivers and reservoirs conducted by Han (1980) and Wu (1991)
suggest that α is about 1 for strong erosion, 0.5 for mild erosion and deposition, and
0.25 for strong deposition in 1-D models. These values differ from those (larger than
1) predicted by Eqs. (2.129), (2.130), (2.135), and (2.136), but they are qualitatively
reasonable if these corrections due to the effects of cross-sectional shape, sediment
concentration, Saffman lift force, and bed forms are considered. However, these values
are given for reference only, and calibrating α using measurement data is preferable
for a specific case study.

2.6 EQUILIBRIUM AND NON-EQUILIBRIUM SEDIMENT
TRANSPORT MODELS

2.6.1 Formulation of equilibrium transport model

Each of the 1-D, 2-D, and 3-D sediment transport models described in Section 2.4
has only two governing equations, namely the suspended-load transport equation and
the bed-load mass balance equation, but there are three unknowns: suspended-load
concentration, bed-load transport rate, and bed change rate. Thus, one more equation
is required to close each model. Most of the first sediment transport models adopt the
assumption of local (instantaneous) equilibrium for bed-load transport, which assumes
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that the actual bed-load transport rate is equal to the transport capacity under the
equilibrium condition at every computational point (cross-section or vertical line), i.e.,

qb = qb∗(U, h, τ , d, γs, . . .) (2.145)

where qb∗ is the equilibrium (capacity) bed-load transport rate, which can be
determined using an empirical formula introduced in Section 3.4.

Eq. (2.145) can be used to close the 1-D, 2-D, and 3-D sediment transport models.
For example, the depth-averaged 2-D model is closed using Eq. (2.145) for bed-load
transport rate, Eq. (2.86) for suspended-load concentration, and Eq. (2.90) or (2.91)
for bed change. This approach is often called the equilibrium (or saturated) sediment
transport model.

2.6.2 Formulation of non-equilibrium transport model

Because of variations in flow conditions and channel properties, the sediment trans-
port in natural rivers usually is not in states of equilibrium. Sediment cannot reach new
equilibrium states instantaneously, due to the temporal and spatial lags between flow
and sediment transport. Therefore, the assumption of local equilibrium transport is
usually unrealistic and may have significant errors in cases of strong erosion and depo-
sition. A more realistic and general approach is the non-equilibrium (or unsaturated)
sediment transport model, which is described below.

For only suspended-load transport, the bed change is attributed to the net sediment
flux at the lower boundary of the suspended-load zone and thus determined by

(1 − p′
m)
∂zb

∂t
= Db − Eb

= αωs(C − C∗) (2.146)

For only bed-load transport, Bell and Sutherland (1983) proposed a loading law
based on their analysis of laboratory tests:

∂qb

∂x
= Kl(qb∗ − qb)+ qb

qb∗
∂qb∗
∂x

(2.147)

where Kl is the loading-law coefficient. However, because Eq. (2.147) is an observation
of steady bed-load transport, its application to unsteady total-load sediment transport
is not straightforward. In addition, the last term on the right-hand side of Eq. (2.147)
lacks a physical basis. Daubert and Lebreton (1967), Wellington (1978), Nakagawa
and Tsujimoto (1980), Phillips and Sutherland (1989), and Thuc (1991) used the
following more general bed-load exchange model near the bed:

(1 − p′
m)
∂zb

∂t
= 1

Lb
(qb − qb∗) (2.148)

where Lb is the adaptation length of bed load. Eq. (2.148) is based on theoretical
reasoning similar to that of Einstein (1950) but for bed load at a non-equilibrium state.
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On the right-hand side of Eq. (2.148), qb/Lb and qb∗/Lb represent the deposition and
entrainment rates of bed load, respectively.

Wu et al. (2000a) extended relation (2.148) to the total-load transport when bed
load is dominant. However, for general cases in which bed load and suspended
load are equivalently important, Wu (2004) suggested the following relation for
bed change:

(1 − p′
m)
∂zb

∂t
= 1

Lt
(qt − qt∗) (2.149)

where Lt is the adaptation length of total load; and qt and qt∗ are the actual and
equilibrium (capacity) total-load transport rates: qt = qb + UhC and qt∗ = qb∗ +
UhC∗.

The term on the right-hand side of Eq. (2.149) was also adopted by Armanini and di
Silvo (1988) for the exchange flux between the bed-load layer and the bed. Eq. (2.149)
can be conveniently used in models that compute total (bed-material) load transport
without discerning bed load and suspended load. When suspended load and bed load
are calculated separately, Eq. (2.149) may be rewritten as

(1 − p′
m)
∂zb

∂t
= αtωs(C − C∗)+ 1

Lt
(qb − qb∗) (2.150)

where αt is the adaptation coefficient of total load: αt = (Uh)/(Ltωs).
Because the bed-load layer usually is very thin, it can be assumed that α ≈ αt.

Thus, substituting Eq. (2.150) into Eq. (2.90) yields the bed-load transport equation
(Wu, 2004):

∂

∂t

(
qb

ub

)
+ ∂(αbxqb)

∂x
+ ∂(αbyqb)

∂y
= 1

Lt
(qb∗ − qb) (2.151)

An alternative is to use Eqs. (2.146) and (2.148) to compute the bed changes due
to suspended load and bed load, respectively, and then sum them to obtain the bed
change due to total load, i.e.,

(1 − p′
m)
∂zb

∂t
= Db − Eb + 1

L
(qb − qb∗) (2.152)

Note that Lb in Eq. (2.148) is replaced by the adaptation length L in Eq. (2.152).
L is approximately equal to Lt in general cases and reduces to Lb in the case of
bed load. However, Lt and L are noted differently in this book for use of Lt
in bed-material load models and L in models computing bed load and suspended
load separately. Further discussion on the relation between Lt and L is given in
Section 5.1.2.1.

Eq. (2.152) is written in a general form, so that it can be used in the 1-D, 2-D, and
3-D models that compute bed load and suspended load separately. Substituting it into
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Eq. (2.90) yields the following bed-load transport equation:

∂

∂t

(
qb

ub

)
+ ∂(αbxqb)

∂x
+ ∂(αbyqb)

∂y
= 1

L
(qb∗ − qb) (2.153)

which is similar to Eq. (2.151) except that Lt is replaced by L.
By using Eq. (2.153) for bed-load transport, Eq. (2.86) for suspended-load transport,

and Eq. (2.152) or the overall sediment continuity equation (2.91) for bed change, the
depth-averaged 2-D sediment transport model is closed. Similar closures can be derived
for the 1-D, width-averaged 2-D, and 3-D models, which are explained in detail in
Chapters 5–7.

2.6.3 Adaptation length of sediment

The adaptation length is a characteristic distance for sediment to adjust from
non-equilibrium to equilibrium transport. It is a very important parameter in the
non-equilibrium sediment transport model. For suspended load, the adaptation length
Ls is calculated by

Ls = Uh
αωs

(2.154)

where α is the adaptation coefficient described in Section 2.5.
For bed load, the adaptation length Lb has been given significantly different values

in the literature. Bell and Sutherland (1983) found that Lb was a function of time t in
an experimental case of bed degradation downstream of a dam due to clear water
inflowing. In numerical modeling studies, Nakagawa and Tsujimoto (1980), Phillips
and Sutherland (1989), Thuc (1991), and Wu et al. (2000a) set Lb as the average
saltation step length of sand on the bed for laboratory cases, whereas Rahuel et al.
(1989) and Fang (2003) gave much larger values, such as one or two times the grid
spacing for field cases.

One reason for the aforementioned differences in values of Lb is that the bed-load
movement is closely associated with bed forms, which are usually on a small scale
in laboratory experiments and on a larger scale in natural rivers. Naturally, Lb may
take the value related to the length scale of the dominant bed form (Wu et al., 2004a;
Wu, 2004). For example, in Bell and Sutherland’s (1983) experiments of channel
degradation due to clear water, the transport of sediment (mainly bed load) was sig-
nificantly influenced by the scour hole near the flume inlet, and thus the adaptation
length was related to the dimension of the scour hole as a function of time t. In the case
where the bed is mainly covered by sand ripples, which usually occurs in laboratory
experiments, Lb may take the average saltation step length of sand or the length of
sand ripples, as adopted by Nakagawa and Tsujimoto (1980), Phillips and Sutherland
(1989), Thuc (1991), and Wu et al. (2000a). If sand dunes are the dominant bed form,
Lb may take the length of sand dunes, which is about 5–10 times the flow depth. If
alternate bars are the dominant bed form, Lb may take the length of alternate bars,
which is about 6.3 times the channel width (Yalin, 1972).
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On the other hand, considering numerical accuracy and sometimes stability in the
solution of bed-load transport equation, e.g., Eq. (2.153), the grid spacing should
be (several times) smaller than the adaptation length. However, because of limited
computer capacity, the grid spacing has to be given large values (sometimes much
larger than the length of the dominant bed form) in field cases, and to obtain feasible
solutions, Lb is hence set to one or two times the grid spacing (Rahuel et al., 1989;
Fang, 2003). This treatment perhaps is the choice under certain circumstances, but it
may give grid-dependent solutions.

Because bed-material load is a combination of bed load and suspended load, its
adaptation length can be given the larger of Lb and Ls (Wu et al., 2004a):

Lt = max {Lb, Ls} (2.155)

or a weighted average of Lb and Ls:

Lt = (1 − rs)Lb + rsLs (2.156)

where rs is the ratio of suspended load to bed-material (total) load.
In cases where bed load and suspended load coexist, Ls is usually larger than Lb,

and thus Eq. (2.155) gives α = αt, which is required in the derivation of Eq. (2.151).
Therefore, Eq. (2.155) was used by Wu (2004) in many cases. However, because Lb
and α are usually treated as calibrated parameters, the difference between Eqs. (2.155)
and (2.156) is not important.

Because wash load does not have significant exchange with the bed, its adaptation
coefficient α and length L can be set to be zero and infinitely large, respectively.

It should be pointed out that because the values of Lb and α vary by case, the methods
discussed above and in Section 2.5 are only empirical guidance for evaluating these
two parameters. Their calibration using available measurement data is recommended
to obtain more reliable results for real-life problems. Sensitivities of sediment transport
models to these parameters are demonstrated in Sections 5.6 and 9.2.

2.7 TRANSPORT AND SORTING OF NON-UNIFORM SEDIMENT
MIXTURES

2.7.1 Non-uniform sediment transport

In the case of non-uniform sediment transport, moving sediment particles collide and
interact; bed sediment particles experience the hiding and exposure effects, because
fine particles are more likely to be hidden and coarse particles have more chance to be
exposed to flow. However, if the sediment concentration is low, interactions among the
moving sediment particles are usually negligible, so that each size class of the moving
sediment mixture can be assumed to have the same transport behavior as uniform
sediment. This assumption is adopted in this book, except where stated otherwise. As
an example, a depth-averaged 2-D non-uniform sediment transport model based on it
is presented below.
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As described in Section 2.1.2.2, the non-uniform sediment mixture is divided
into N size classes. Under the assumption of low sediment concentration,
Eq. (2.86) is applied to determine the transport of each size class of sus-
pended load:

∂

∂t

(
hCk

βsk

)
+ ∂(hUxCk)

∂x
+ ∂(hUyCk)

∂y

= ∂

∂x

[
h
(
εs
∂Ck

∂x
+ Dsxk

)]
+ ∂

∂y

[
h
(
εs
∂Ck

∂y
+ Dsyk

)]
+ αωsk(C∗k − Ck)

(k = 1, 2, . . . , N) (2.157)

where subscript k is the sediment size class index; Ck and C∗k are the actual and equi-
librium (capacity) depth-averaged concentrations of the kth size class of suspended
load, respectively; Dsxk and Dsyk are the dispersion fluxes; βsk is the correction factor
defined by Eq. (2.87) for size class k; and ωsk is the settling velocity of the kth size
class of sediment.

Note that the size class index k in this book is not subject to Einstein’s summation
convention.

Extending Eq. (2.153) for the transport of each size class of bed load yields

∂

∂t

(
qbk

ubk

)
+ ∂(αbxqbk)

∂x
+ ∂(αbyqbk)

∂y
= 1

L
(qb∗k − qbk) (2.158)

where qbk and qb∗k are the actual and equilibrium (capacity) transport rates of the kth
size class of bed load, respectively, and ubk is the bed-load velocity.

Note that the values of α and L may vary with size classes. However, for simplicity,
they are not explicitly noted with the subscript k, because they are often treated as
calibrated parameters and each is given the same value for all size classes in most cases.

Extending Eq. (2.152) for the fractional bed change yields

(1 − p′
m)

(
∂zb

∂t

)
k

= αωsk(Ck − C∗k)+ 1
L
(qbk − qb∗k) (2.159)

where (∂zb/∂t)k is the rate of change in bed elevation due to size class k.
The total rate of change in bed elevation, ∂zb/∂t, is determined by

∂zb

∂t
=

N∑
k=1

(
∂zb

∂t

)
k

(2.160)

Note that even though the sediment concentration is assumed to be low, the hiding
and exposure phenomena in non-uniform bed materials always exist. However, these
phenomena affect only the entrainment of sediment from the bed. Such effects are
accounted for through the fractional sediment transport capacities C∗k and qb∗k. This
is discussed in Sections 3.4–3.6.
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2.7.2 Bed material sorting

The size gradation (composition) of bed material may vary along the vertical direction
due to historical sedimentation. To consider this variation, the bed material above
the nonerodible layer is often divided into multiple layers, as shown in Fig. 2.9. The
top layer is the mixing layer. All sediment particles in the mixing layer are subject to
exchange with those moving with flow, i.e., entraining from the mixing layer to the
water column or depositing from the water column to the mixing layer. The second
layer is a subsurface layer. More underlying subsurface layers can be added, if needed.
However, the sediment particles in the subsurface layers do not directly exchange with
the moving particles.

Figure 2.9 Multiple-layer model of bed material sorting.

The mixing layer concept was adopted by Hirano (1971), Bayazit (1975), Karim
and Kennedy (1982), Rahuel et al. (1989), Armanini and di Silvio (1988), Wu (1991),
and van Niekerk et al. (1992). The temporal variation of the bed-material gradation
in the mixing layer can be determined by (Wu, 1991; also see Wu, 2004)

∂(δmpbk)

∂t
=
(
∂zb

∂t

)
k

+ p∗
bk

(
∂δm

∂t
− ∂zb

∂t

)
(2.161)

where δm is the mixing layer thickness; pbk is the fraction of the kth size class of bed
material contained in the mixing layer; and p∗

bk is pbk when ∂zb/∂t − ∂δm/∂t ≥ 0 and
the fraction of the kth size class of bed material contained in the second layer when
∂zb/∂t − ∂δm/∂t < 0.

The first term on the right-hand side of Eq. (2.161) represents the exchange between
moving sediment and bed material, while the last term accounts for the exchange
between the mixing and second layers, due to rise or descent of the lower bound of
the mixing layer.

The bed-material gradation in the second layer is calculated by

∂(δspsbk)

∂t
= −p∗

bk

(
∂δm

∂t
− ∂zb

∂t

)
(2.162)
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where δs is the second layer thickness, and psbk is the fraction of the kth size class of
bed material contained in the second layer.

Eq. (2.162) assumes no exchange between the second and third layers. This is
physically right. In addition, changing the layer thickness or moving the layer divi-
sions up or down during the simulation may induce numerical mixing of sediment
between layers and thus should be avoided, except that the division between the
mixing and second layers may change due to variations in flow, sediment, and bed
conditions.

Rahuel et al. (1989) treated the bed-load layer and the mixing layer together as an
active layer in a 1-D bed-load model, and Spasojevic and Holly (1990; 1993) extended
this concept to 2-D and 3-D total-load models. The sediment balance in the active layer
is described as

(1 − p′
m)
∂(δmpbk)

∂t
+ ∇ · �qbk + Ebk − Dbk − (1 − p′

m)p
∗
bk

(
∂δm

∂t
− ∂zb

∂t

)
= 0

(2.163)

where Dbk and Ebk are the deposition and entrainment fluxes of the kth size class of
sediment at the lower bound of the suspended-load zone.

It can be seen that Eq. (2.163) is the sum of Eqs. (2.158), (2.159), and (2.161), with
only the storage term in Eq. (2.158) omitted.

2.7.3 Mixing layer thickness

The mixing layer thickness is related to the time scale under consideration (Bennett and
Nording, 1977; Rahuel et al., 1989; Wu, 1991). If a very short, nearly instantaneous
time scale is considered, the mixing layer should be a thin bed surface layer containing
particles susceptible to entrainment due to a momentary increase in the local bed shear
stress. This is called the instantaneous mixing layer. If the time scale is longer, e.g.,
in the order of magnitude of the time it takes for a bed form (ripple or dune) to
traverse its own wavelength, the mixing layer can be the order of magnitude of the
bed form height. If the time scale is much longer, e.g., in the order of magnitude of
the computational time step, the mixing layer includes the layer of material eroded
or deposited and the instantaneous mixing layer.

Since the sand dune height is generally relative to the flow depth, Karim and
Kennedy (1982) evaluated the mixing layer thickness as 0.1–0.2 times the flow
depth. Borah et al. (1982) determined the mixing layer thickness under armoring
conditions by

δm = dL

(1 − p′
m)pbm

(2.164)

where dL is the smallest size of the sediment particles that are immobile, and pbm is
the fraction of all the immobile particles in the mixing layer.



Mathematical description of flow and sediment transport 57

Van Niekerk et al. (1992) related the mixing layer thickness to the dimensionless
bed shear stress as follows:

δm = 2d50
τ ′

b

τc50
(2.165)

where d50 is the median size of bed material in the mixing layer, τ ′
b is the skin friction

component of bed shear stress, and τc50 is the critical shear stress for incipient motion
corresponding to d50.

Wu and Vieira (2002) set the mixing layer thickness as the larger of half the sand
dune height and twice the sediment size:

δm = max [0.5�, 2d50] (2.166)

where � is the sand dune height, which can be calculated using the van Rijn (1984c)
formula.

The mixing layer thickness is an important parameter in non-uniform sediment
transport models. The sensitivity of model results to it is demonstrated in Section 5.6.





Chapter 3

Fundamentals of sediment transport

Introduced in this chapter are basic theories and empirical formulas of sediment
transport, which are essentially used to close the mathematical models of flow,
sediment transport, and morphological change in alluvial rivers. Some of them can be
found in Graf (1971), Vanoni (1975), Chien and Wan (1983), Chang (1988), Zhang
et al. (1989), Raudkivi (1990), Simons and Senturk (1992), Julien (1995), and Yang
(1995). However, many recently developed non-uniform sediment transport formulas
are particularly included here.

3.1 SETTLING OF SEDIMENT PARTICLES

3.1.1 General considerations

Settling or fall velocity is the average terminal velocity that a sediment particle attains
in the settling process in quiescent, distilled water. It is related to particle size, shape,
submerged specific weight, water viscosity, sediment concentration, etc.

A sediment particle experiences gravity, buoyant force, and drag force during its
settling. Its submerged weight, which is the difference between the gravity and buoyant
force, is expressed as

Ws = (ρs − ρ)ga1d3 (3.1)

where d is the sediment size, a1d3 is the volume of the sediment particle, and a1 has
a value of π/6 for a spherical particle. Note that ρ is actually given as the pure water
density ρf because a single particle (or low concentration) is considered.

The drag force is the result of the tangential shear stress exerted by the fluid (skin
drag) and the pressure difference (form drag) on the particle. It is written in the general
form:

Fd = Cdρa2d2ω
2
s

2
(3.2)

where Cd is the drag coefficient, ωs is the settling velocity, a2d2 is the projected area
of the particle on the plane normal to the direction of settling, and a2 has a value of
π/4 for a spherical particle.
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The drag force should be equal to the submerged weight in the terminal stage of
settling, yielding

ωs =
(

a1

a2

2
Cd

ρs − ρ
ρ

gd
)1/2

(3.3)

3.1.2 Settling velocity of spherical particles

In the laminar (streamline) settling region (i.e., the particle Reynolds number Re =
ωsd/ν < 1.0), Stokes derived the drag force on a spherical particle by solving the
Navier-Stokes equations without inertia terms. The derived drag coefficient is

Cd = 24
Re

(3.4)

Inserting Eq. (3.4) into Eq. (3.3) leads to the Stokes law for the settling velocity of
spherical particles:

ωs = 1
18
ρs − ρ
ρ

g
d2

ν
(3.5)

where ωs and d are in m · s−1 (meters per second) and m (meters), respectively.
Oseen (1927) solved the Navier-Stokes equations, including some inertia terms, and

obtained the following relation:

Cd = 24
Re

(
1 + 3

16
Re

)
(3.6)

Goldstein (1929) found a relatively complete solution of Oseen’s approximation as
follows:

Cd = 24
Re

(
1 + 3

16
Re − 19

1280
R2

e + 71
20480

R3
e + · · ·

)
(3.7)

Eq. (3.7) is valid for Re up to 2.0. Beyond this range, the drag coefficient usually
has to be determined by experiments rather than theoretical solutions. Rouse (1938)
summarized the available experimental data and obtained the relation between Cd and
Re shown in Fig. 3.1, which can be used to determine Cd and, in turn, the settling
velocity of spherical particles.

Fig. 3.1 shows that when Re > 1, 000 — i.e., in the turbulent settling region — the
drag coefficient is no longer related to the particle Reynolds number and has a value
of about 0.45, thus yielding

ωs = 1.72
√
ρs − ρ
ρ

gd (3.8)
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Figure 3.1 Relation between Cd and Re for spheres.

3.1.3 Settling velocity of sediment particles

Sediment particles in natural rivers, which usually have irregular shapes and rough
surfaces, exhibit differences in settling velocity in comparison with spherical parti-
cles. Rubey (1933) derived the following formula for the settling velocity of natural
sediment particles:

ωs = F

√(
ρs

ρ
− 1
)

gd (3.9)

where F = 0.79 for particles larger than 1 mm settling in water with temperatures
between 10 and 25◦C. For smaller grain sizes, F is determined by

F =
[

2
3

+ 36ν2

gd3 (ρs/ρ − 1)

]1/2

−
[

36ν2

gd3(ρs/ρ − 1)

]1/2

(3.10)

Zhang (1961; also see Zhang and Xie, 1993) assumed the drag force on a sediment
particle in the transition between laminar and turbulent settling regions as

Fd = C1ρνdωs + C2ρd2ω2
s (3.11)

where C1 and C2 are coefficients. Based on many laboratory data, Zhang obtained
the formula for the settling velocity of naturally worn sediment particles:
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ωs =
√(

13.95
ν

d

)2 + 1.09
(
ρs

ρ
− 1
)

gd − 13.95
ν

d
(3.12)

The Zhang formula can be used in a wide range of sediment sizes from laminar to
turbulent settling regions. It can be simplified to Eq. (3.5) with a coefficient of 1/25.6 in
the laminar settling region, and to Eq. (3.8) with a coefficient of 1.044 in the turbulent
settling region.

Van Rijn (1984b) suggested the use of the Stokes law, Eq. (3.5), in computing the
settling velocity for sediment particles smaller than 0.1 mm, the Zanke (1977) formula
for particles from 0.1 to 1 mm:

ωs = 10
ν

d

⎧⎨⎩
[

1 + 0.01
(
ρs

ρ
− 1
)

gd3

ν2

]1/2

− 1

⎫⎬⎭ (3.13)

and the following formula for particles larger than 1 mm:

ωs = 1.1
[(
ρs

ρ
− 1
)

gd
]1/2

(3.14)

In fact, the formulas of Rubey, Zhang, and Zanke have the same formulation with
different coefficients. Similar formulas were also proposed by Cancharov (1954; see
Cheng, 1997), Sha (1965), Graf (1971), Hallermeier (1981), Raudkivi (1990), Julien
(1995), and Ahrens (2000). In general, the drag coefficient can be approximated by
(Cheng, 1997)

Cd =
[(

M
Re

)1/n

+ N1/n

]n

(3.15)

where M, N, and n are coefficients. Table 3.1 lists the values of these three coefficients
given by different investigators for naturally worn sediment particles. The coefficient
M was given a value of 24 by Rubey (1933), Zanke (1977), and Julien (1995), and
values between 32–34 by Zhang (1961), Raudkivi (1990), and Cheng (1997). The tests
against measurement data performed by Cheng have shown that for natural sediment
particles the values of 32–34 for M give better predictions than the value of 24. Note
that the latter corresponds to the Stokes law, Eq. (3.5), for spherical particles. Rubey
gave the coefficient N a value of 2.1, which significantly underestimates the settling
velocity for coarse sediment particles.

Cheng (1997) used M = 32, N = 1, and n = 1.5, and derived the following formula
for the settling velocity of naturally worn sediment particles:

ωs = ν
d

(√
25 + 1.2D2∗ − 5

)1.5

(3.16)

where D∗ = d[(ρs/ρ − 1)g/ν2]1/3.
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Table 3.1 Values of M, N, and n

Author M N n

Rubey (1933) 24 2.1 1
Zhang (1961) 34 1.2 1
Zanke (1977) 24 1.1 1
Raudkivi (1990) 32 1.2 1
Julien (1995) 24 1.5 1
Cheng (1997) 32 1 1.5

Eqs. (3.9), (3.12), (3.13), and (3.16) are valid for naturally worn sediment particles,
the Corey shape factors of which usually are about 0.7. Krumbein (1942), Corey
(1949), McNown et al. (1951), Wilde (1952), and Schulz et al. (1954) experimentally
investigated the effect of particle shape on settling velocity. Based on these experiments,
the Subcommittee on Sedimentation of the U.S. Interagency Committee on Water
Resources (1957) recommended a series of curves shown in Fig. 3.2 to determine the
settling velocity of sediment particles for given particle size, Corey shape factor, and
water temperature. However, this graphical relation is inconvenient to use, because
several interpolations must be conducted to obtain the sought solution. In addition,
all the data used in the calibration were in the range of Re > 3, and the relation was
extended to the range of Re < 3 based on the assumption that it approaches the Stokes
law, Eq. (3.5), for spheres.

Romanovskii (1972) also performed experiments to investigate the effect of particle
shape on settling velocity and obtained a relation of settling velocity with particle size

Figure 3.2 Relation of fall velocity with particle size, shape factor, and temperature
(U.S. Interagency Committee, 1957).
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and shape factor in the turbulent settling region. Dietrich (1982) proposed an empirical
formula to determine the settling velocity of sediment from laminar to turbulent settling
regions, considering the effects of sediment size, density, shape factor, and roundness
factor. However, the roundness factor used in the Dietrich formula is rarely measured
in practice, and his formula is very complicated and relatively difficult to use. Jimenez
and Madsen (2003) simplified the Dietrich formula, but still graphically related two
coefficients to the shape factor.

For more generality and convenience to use, Wu and Wang (2006) calibrated the
coefficients M, N, and n in Eq. (3.15) as follows by using the natural sediment settling
data of Krumbein (1942), Corey (1949), Wilde (1952), Schulz et al. (1954), and
Romanovskii (1972):

M = 53.5e−0.65SP, N = 5.65e−2.5SP, n = 0.7 + 0.9SP (3.17)

where SP is the Corey shape factor defined in Eq. (2.9). Fig. 3.3 compares the measured
drag coefficients and those calculated using Eq. (3.15) with coefficients determined
by Eq. (3.17). Because the data in Fig. 3.3 were in the range of Re > 3, the trend
of the Cd − Re relation in the range of Re < 3 was determined using the data sets of
Zegzhda, Arkhangel’skii, and Sarkisyan compiled by Cheng (1997). Because naturally
worn sediment particles were used in these three sets of experiments, their Corey shape
factors were assumed to be 0.7. The relationship between Cd and Re in the range of
these data is shown in Fig. 3.4.

It should be noted that when SP = 1.0, the proposed Eq. (3.15) with coefficients
determined by Eq. (3.17) deviates from the relation of spheres obtained by Rouse
(1938). The reason is that the naturally worn sediment particles with a Corey shape

Figure 3.3 Drag coefficient as function of Reynolds number and particle shape (Wu and Wang, 2006).
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Figure 3.4 Drag coefficient as function of Reynolds number for naturally worn sediment particles
(SP = 0.7 ) (Wu and Wang, 2006).

factor of 1.0 may not be exactly spherical, and other factors, such as particle surface
roughness, also affect the settling process.

Inserting Eq. (3.15) into Eq. (3.3) yields the general relation of settling velocity (Wu
and Wang, 2006):

ωs = Mν
Nd

⎡⎣√1
4

+
(

4N
3M2 D3∗

)1/n

− 1
2

⎤⎦n

(3.18)

Note that the sediment size d in Eq. (3.18) should be the nominal diameter (in
meters), on which the drag coefficient Cd in Fig. 3.3 was based.

Eq. (3.18) is applied with coefficients M, N, and n determined using Eq. (3.17). It is
an explicit relation of settling velocity with sediment size and shape factor; thus, it can
be easily used. The predictions using Eq. (3.18) and the curves recommended by the
U.S. Interagency Committee (1957) are compared in Fig. 3.5. Here, the temperature
is 24◦C, the Corey shape factors are in the range of 0.3–0.9, and the sediment sizes
are between 0.2 and 64 mm. It can be seen that these two methods give very close
predictions. The average deviation between them is about 2.75%. However, larger
deviations are expected for fine sediments (less than 0.2 mm in diameter). The reason,
which has been mentioned above, is that the U.S. Interagency Committee’s curves
approach the Stokes law, Eq. (3.5), that might result in 30% error for the settling
velocity of natural sediment particles as shown in Fig. 3.4. Eq. (3.18) has been validated
using measurement data and should have better accuracy than the U.S. Interagency
Committee’s curves for fine sediment particles.

In addition, Wu and Wang (2006) compared more than ten sediment settling veloc-
ity formulas, and found that the formulas of Zhang (1961), Hallermeier (1981),
Dietrich (1982), Cheng (1997), Ahrens (2000), Jimenez and Madsen (2003), and
Wu and Wang (2006) have comparable and reasonable reliabilities for predicting the
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Figure 3.5 Comparison of Eq. (3.18) and the method of U.S. Interagency Committee
(Wu and Wang, 2006).

settling velocity of naturally worn sediment particles (with a Corey shape factor of
about 0.7). The average errors normally are less than 9%. If the shape factor is con-
cerned, the formula of Wu and Wang is more convenient and has better accuracy on
average.

3.1.4 Inf luence of sediment concentration
on settling velocity

The settling velocity of a sediment particle in turbid water is influenced by the presence
of other particles. Experiments have shown that when the sediment concentration is
high, the settling velocity in turbid water is strongly reduced in comparison with that
in clear water. This effect, known as hindered settling, is largely caused by the return
flow of water induced by the settling of sediment. According to Richardson and Zaki
(1954), the sediment settling velocity in turbid water, ωsm, can be determined by

ωsm = (1 − c)nωs (3.19)

where ωs is the settling velocity in clear water, c is the volumetric sediment concen-
tration, and n is an empirical exponent that varies from 4.9 to 2.3 for Re = ωsd/ν
increasing from 0.1 to 1000. For particles in the range of 0.05 to 0.5 mm under normal
flow conditions, the coefficient n is about 4.

Based on his and McNown and Lin’s (1952) experiments, Oliver (1962) proposed
a formula for ωsm:

ωsm = (1 − 2.15c)(1 − 0.75c0.33)ωs (3.20)
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Sha (1965) proposed a similar formula:

ωsm =
(

1 − c

2
√

d50

)n

ωs (3.21)

where n = 3 according to the experimental data for sediment with a diameter of
0.01 mm.

For cohesive sediments, the settling process is more complex. This is discussed in
Section 11.1.3.

3.2 INCIPIENT MOTION OF SEDIMENT

3.2.1 Equilibrium of a single sediment particle at
incipient motion

Consider sediment particles on the channel bed, as shown in Fig. 3.6. The forces acting
on them include the drag force FD, lift force FL, and submerged weight Ws. If the
sediment particles are cohesive, a cohesion force also exists. However, quantification
of the cohesion force is quite difficult because it is related to the physical and chemical
properties of water and sediment. For simplicity, only non-cohesive sediment particles
are considered here, so that the cohesion force is excluded.

Figure 3.6 Forces on a sediment particle on the bed.

As the flow strength increases, the sediment particles on the bed will start moving.
This is termed as “incipient motion.” The modes of incipient motion can be sliding,
rolling, and saltating. In the case of rolling, the force balance for a sediment particle
at incipient motion can be expressed as

−k1dWs + k2dFD + k3dFL = 0 (3.22)

where k1d, k2d, and k3d are the distances from the lines of action of forces Ws, FD,
and FL to the point of pivot.
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The drag and lift forces acting on the particle are usually determined by

FD = CDa2d2ρ
u2

b

2
(3.23)

FL = CLa3d2ρ
u2

b

2
(3.24)

where ub is the bottom flow velocity acting on the particle; a2d2 and a3d2 are the
projected areas of the particle on the planes normal to the flow direction and the
vertical direction, respectively; and CD and CL are the drag and lift coefficients, related
to particle shape, position on the bed, etc.

Inserting Eqs. (3.1), (3.23), and (3.24) into Eq. (3.22) yields the critical bottom
velocity for sediment incipient motion:

ubc =
(

2k1a1

k2a2CD + k3a3CL

ρs − ρ
ρ

gd
)1/2

(3.25)

3.2.2 Incipient motion criteria for a group
of sediment particles

Eq. (3.25) is a criterion for the incipient motion of an individual particle on the bed. For
a group of sediment particles, there are two approaches to determine the threshold
criterion of incipient motion: stochastic and deterministic. The stochastic approach
considers the sediment incipient motion as a random phenomenon due to the stochas-
tic properties of turbulent flow and sediment transport. This approach usually does
not adopt a threshold value of sediment transport rate as the criterion at which the sed-
iment particles start moving. The pioneer using the stochastic approach for sediment
transport is Einstein (1942, 1950).

The deterministic approach usually adopts a certain amount of sediment particles in
motion as the incipient motion criterion. Theoretically, a zero bed-load transport rate
should be used, but this is not meaningful in practice. Numerous experiments have
shown that even when the flow strength is much weaker than the critical condition
proposed by Shields (1936), there are still some sediment particles moving on the bed.
Kramer (1935) defined three types of motion of bed material: weak movement (only
a few particles are in motion on the bed), medium movement (the grains of mean
diameter begin to move), and general movement (all the mixture is in motion). How-
ever, his criterion is only qualitative and difficult to use. Therefore, several low levels
of bed-load transport rate were suggested as the quantitative critical condition for
incipient motion — for instance, qb∗ = 14 cm3m−1min−1 by Waterways Experiment
Station, U.S. Army Corps of Engineers, and qb∗/(ρsdωs) = 0.000317 by Han and
He (1984). Yalin (1972) also proposed a quantitative criterion related to the number
of particles moving on the bed. For a non-uniform sediment mixture, the threshold
criterion for incipient motion is more complex because of interactions among different
size classes. Parker et al. (1982) suggested the following threshold condition for the
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incipient motion of non-uniform sediment particles on gravel beds:

W∗
k = qb∗k(ρs/ρ − 1)

pbk(ghSf )
1/2hSf

= 0.002 (3.26)

where W∗
k is a dimensionless bed-load transport rate, qb∗k is the volumetric transport

rate per unit width for the kth size class of bed load, pbk is the fraction by weight of
the kth size class in bed material, h is the flow depth, and Sf is the energy slope.

3.2.3 Incipient motion of uniform sediment particles

Critical average velocity

Using Eq. (3.25) and the power-law distribution of velocity

u = m + 1
m

( z
h

)1/m
U (3.27)

yields the critical average velocity for sediment incipient motion:

Uc = K
(
ρs − ρ
ρ

gd
)1/2 (h

d

)1/m

(3.28)

where Uc is the critical velocity averaged over the cross-section or flow depth (m · s−1),
and K is the coefficient determined by experiments. For example, Shamov (1959; see
Zhang and Xie, 1993) used m = 6 and K = 1.14, while Zhang (1961) used m = 7
and K = 1.34.

The similarity between Eqs. (3.3) and (3.28) yields the following formula for the
critical average velocity (Yang, 1973):

Uc

ωs
=
{

0.66 + 2.5/[log(U∗d/ν)− 0.06] 1.2 < U∗d/ν < 70
2.05 U∗d/ν ≥ 70

(3.29)

where U∗ is the bed shear velocity.

Critical shear stress

Using Eq. (3.25) and the logarithmic distribution of velocity

u = 5.75U∗ log
(

30.2
zχs

ks

)
(3.30)

yields

τc

(γs − γ )d = 2k1a1

k2a2CD + k3a3CL

1[
5.75 log(30.2zdχs/ks)

]2 (3.31)
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where τc is the critical shear stress for sediment incipient motion, zd is the height at
which the bottom velocity acts on the particle, ks is the bed roughness height, and
χs is a correction factor related to the roughness Reynolds number ksU∗/ν in general
situations and has a value of 1 for a hydraulic rough bed.

Because CD, CL, and χs are related to flow conditions, Eq. (3.31) can be rewritten as

τc

(γs − γ )d = f (U∗d/ν) (3.32)

Eq. (3.32) was first proposed by Shields (1936). The dimensionless parameter
τc/[(γs − γ )d], denoted as �c, is often called the critical Shields number. Shields drew
a curve of �c and Re∗ = U∗d/ν using his experimental data. However, the original
Shields curve did not have any measurement data in the range of small Re∗. Therefore,
many investigators, such as Yalin and Karahan (1979) and Chien and Wan (1983),
modified the original Shields curve using wider ranges of data. Fig. 3.7 shows the
Shields curve modified by Chien and Wan.

Because the relation between�c and Re∗ in Fig. 3.7 is not explicit, iteration is needed
to obtain the critical shear stress for a given sediment size. However, an explicit relation
between �c and the non-dimensional particle size D∗ = d[(ρs/ρ − 1)g/ν2]1/3 can be
obtained from Fig. 3.7. It is approximated by (Wu and Wang, 1999)

τc

(γs − γ )d =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.126D−0.44∗ , D∗ < 1.5
0.131D−0.55∗ , 1.5 ≤ D∗ < 10
0.0685D−0.27∗ , 10 ≤ D∗ < 20
0.0173D0.19∗ , 20 ≤ D∗ < 40
0.0115D0.30∗ , 40 ≤ D∗ < 150
0.052, D∗ ≥ 150

(3.33)

where τc and d are in N · m−2 and m, respectively.

Figure 3.7 Shields curve modified by Chien and Wan (1983).
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3.2.4 Incipient motion of non-uniform sediment
particles

Interactions exist among different size classes of a non-uniform sediment mixture on
the bed. Coarse particles have higher chances of exposure to flow, while fine particles
are more likely sheltered by coarse particles. Therefore, it is necessary to consider the
effect of this hiding and exposure mechanism on non-uniform sediment transport. The
widely used approach is to introduce correction factors into the existing formulas of
uniform sediment incipient motion and transport, as discussed below.

Qin formula

Qin (1980) proposed the following formula for the incipient motion of non-uniform
sediment particles:

Uck = 0.786
(

h
d90

)1/6
√
γs − γ
γ

gdk

(
1 + 2.5m

dm

dk

)
(3.34)

where Uck is the critical average velocity for the incipient motion of size class k of
bed material (m · s−1), dk is the diameter of size class k(m), dm is the arithmetic mean
diameter of bed material (m), and m represents the compactness of non-uniform bed
material:

m =
{

0.6, ηd < 2
0.76059 − 0.68014/(ηd + 2.2353), ηd ≥ 2

where ηd = d60/d10. A formula similar to Eq. (3.34) was also proposed by Xie and
Chen (1982; see Zhang and Xie, 1993).

Methods of Egiazaroff and others

Egiazaroff (1965), Ashida and Michiue (1971), Hayashi et al. (1980), and Parker et al.
(1982) developed formulas to determine the incipient motion of non-uniform sedi-
ment particles by introducing correction factors as functions of the non-dimensional
sediment size dk/dm or dk/d50. The Egiazaroff formula can be written as

�ck

�c
=
[

log 19
log(19dk/dm)

]2

(3.35)

where �ck = τck/[(γs − γ )dk], with τck being the critical shear stress for the incipient
motion of particle dk in bed material; and �c can be interpreted as the critical Shields
number corresponding to dm. �c was given 0.06 by Egiazaroff. This value is too large
in general. Misri et al. (1984) found that �c should be 0.023–0.0303.
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Ashida and Michiue (1971) modified the Egiazaroff formula as

�ck

�c
=
{ [log 19/log(19dk/dm)]2 dk/dm ≥ 0.4

dm/dk dk/dm < 0.4
(3.36)

and Hayashi et al. (1980) proposed a similar modification:

�ck

�c
=
{ [log 8/log(8dk/dm)]2 dk/dm ≥ 1

dm/dk dk/dm < 1
(3.37)

The formulas proposed by Parker et al. (1982) and others can be written as

�ck = �c50

(
dk

d50

)−m

(3.38)

where�c50 is the critical Shields number corresponding to the medium size d50 of bed
material, and m is an empirical coefficient between 0.5–1.0.

Method of Wu et al.

Consider a mixture of sediment particles with various diameters on the bed, as shown
in Fig. 3.8. For simplicity, the sediment particles are assumed to be spheres. The drag
and lift forces acting on a particle depend on how it is resting on the bed, i.e., whether
it is hidden by other particles or exposed to flow. Its position on the bed can be
represented by its exposure height �e, which is defined as the difference between the
apex elevations of it and the upstream particle. If �e > 0, the particle is considered to
be at an exposed state; if �e < 0, it is at a hidden state. For a particle with diameter
dk in the bed surface layer, the value of �e is in the range between −dj and dk. Here,
dj is the diameter of the upstream particle. Because the sediment particles randomly
distribute on the bed, �e is a random variable. �e is herein assumed to have a uniform
probability distribution function:

f =
{

1/(dk + dj), −dj ≤ �e ≤ dk

0, otherwise
(3.39)

The probability of particles dj staying in front of particles dk is assumed to be the
fraction, pbj, of particles dj in bed material. Therefore, the probabilities of particles
dk hidden and exposed due to particles dj are obtained from Eq. (3.39) as follows:

phk,j = pbj
dj

dk + dj
(3.40)

pek,j = pbj
dk

dk + dj
(3.41)
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Figure 3.8 Definition of exposure height of bed material.

The total hidden and exposed probabilities, phk and pek, of particles dk are then
obtained by summing Eqs. (3.40) and (3.41) over all size classes, respectively:

phk =
N∑

j=1

pbj
dj

dk + dj
(3.42)

pek =
N∑

j=1

pbj
dk

dk + dj
(3.43)

where N is the total number of particle size classes in the non-uniform sediment
mixture.

A relation phk + pek = 1 exists. For uniform sediment particles, phk = pek = 0.5,
which means the hidden and exposed probabilities are equal. In a non-uniform sed-
iment mixture, pek ≥ phk for coarse particles, and pek ≤ phk for fine particles.
This can be demonstrated with a simple example. For a sediment mixture with two
size classes d1 = 1 mm, pb1 = 0.4 and d2 = 5 mm, pb2 = 0.6, one can obtain
ph1 = 0.7 > pe1 = 0.3, ph2 = 0.3667 < pe2 = 0.6333. It is shown that more coarse
particles are exposed and more fine particles are hidden.

By using the hidden and exposed probabilities, a hiding and exposure correction
factor is defined as (Wu et al., 2000b)

ηk =
(

pek

phk

)−m

(3.44)

where m is an empirical parameter. The criterion for sediment incipient motion
proposed by Shields (1936) is then modified as

τck

(γs − γ )dk
= �c

(
pek

phk

)−m

(3.45)

where�c = 0.03 and m = 0.6, which are calibrated using laboratory and field data, as
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Figure 3.9 Comparison of measured and calculated critical shear stresses (Wu et al., 2000b).

shown in Fig. 3.9. The measured critical shear stresses in Fig. 3.9 were determined using
Eq. (3.26) as the reference transport threshold. The agreement between measurements
and predictions is generally good.

3.2.5 Incipient motion of sediment particles
on slopes

For a sediment particle on a sloped bed or bank, its incipient motion is affected not
only by the drag and lift forces, but also by the component of gravity along the slope.
Brooks (1963) suggested the following method to determine the critical shear stress
τcϕ for the incipient motion of sediment on a sloped bed:

τcϕ

τc
= − sin ϕ sin θs

tanφr
+
√

cos2 ϕ − sin2 ϕ cos2 θs

tan2 φr
(3.46)

where ϕ is the slope angle with positive values for downslope beds, θs is the angle
between the flow direction and the horizontal line of the slope, and φr is the repose
angle.

Van Rijn (1989) also suggested a method to determine τcϕ :

τcϕ = k1k2τc (3.47)

where k1 is the correction factor for the streamwise-sloped bed (in the flow direc-
tion), determined by k1 = sin(φr − ϕL)/sinφr; and k2 is the correction factor for
the sideward-sloped bed (normal to the flow direction), determined by k2 =
cosϕT

√
1 − tan2 ϕT/tan2 φr. Here, ϕL and ϕT are the slope angles in the flow and

sideward directions, respectively.
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3.3 MOVABLE BED ROUGHNESS IN ALLUVIAL RIVERS

3.3.1 Bed forms in alluvial rivers

Bed forms in alluvial rivers are closely related to flow conditions. As the flow strength
increases, a stationary flat bed may evolve to sand ripples, sand dunes, moving plane
bed, anti-dunes, and chutes/pools (Richardson and Simons, 1967; Zhang et al., 1989),
as shown in Fig. 3.10. This process is explained below in more detail:

Figure 3.10 Bed forms in alluvial rivers (Zhang et al., 1989).

(a) In the stage of stationary flat bed, the flow is weak and only a small amount of
sediment particles move on the bed.

(b) As the flow strength increases, more and more sediment particles participate in
motion, and sand ripples occur. The generation of sand ripples mainly depends
on the stability of the movable bed under the action of turbulent shear flow. Their
dimension is highly related to the bed-material size d, and they are about 100 d
in length and 50–100 d in height.

(c) Due to the effect of large-scale flow eddies, bed shear stress decreases and increases,
and sediment deposits and erodes at alternate patterns, thus resulting in generation
of sand dunes on the bed. In the upstream slope of a sand dune, flow acceleration
usually causes sediment erosion; in the downstream slope, flow deceleration and
separation cause sediment deposition. Therefore, the sand dunes migrate down-
stream in certain shapes. Their dimension is highly related to the flow depth h.
They are usually about 5–10 h long and 0.1–0.5 h high.

(d) When the flow strength continually increases, sediment particles may be suspended
and transported far downstream; thus, sand dunes are washed out, and the bed
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may become plane again. Although the bed is plane, sediment particles are still
moving on the bed.

(e) Further increase in flow strength will induce anti-dunes. In the anti-dune stage,
the flow Froude number usually is larger than 1, and the sediment movement
is strongly influenced by the free surface flow. While water and sediment move
downstream, the bed and water surface waves actually propagate upstream in
phase. They may break like sea surfs or subside as standing waves.

(f) Chutes and pools occur at relatively large slopes, with high flow velocities and
sediment concentrations. Sediment particles move intensively in this stage.

The stationary flat bed, ripples, and dunes are usually called the lower flow regime,
while the moving plane bed, anti-dunes, and chutes/pools are called the upper flow
regime. Anti-dunes and chutes/pools are mostly observed in laboratory flumes but
rarely found in natural rivers.

In addition, other large-scale bed forms, such as point bars, alternate bars, and
islands, often exist in natural rivers. They are usually generated by channel meandering,
expansion, and contraction as well as tributary confluence. Their dimensions are thus
related to channel width, depth, curvature, etc.

3.3.2 Division of grain and form resistances

For a channel bed with sand grains and bed forms (such as sand ripples and dunes),
the bed shear stress, τb, may be divided into the grain (skin or frictional) shear stress,
τ ′

b, and the form shear stress, τ ′′
b :

τb = τ ′
b + τ ′′

b (3.48)

The bed shear stress is usually calculated by

τb = γRbSf (3.49)

where Rb is the hydraulic radius of the channel bed.
Einstein (1942) suggested the division of the hydraulic radius Rb into two parts R′

b
and R′′

b, corresponding to the grain and form roughnesses, and determined the grain
and form shear stresses as

τ ′
b = γR′

bSf , τ ′′
b = γR′′

bSf (3.50)

The assumption of equal velocity: U = R2/3
b S1/2

f /n, U = R′2/3
b S1/2

f /n′, and U =
R′′2/3

b S1/2
f /n′′ yields R′

b = Rb(n′/n)3/2 and R′′
b = Rb(n′′/n)3/2. Here, U is the average

flow velocity, n is the Manning roughness coefficient of channel bed, and n′ and n′′
are the Manning coefficients corresponding to the grain and form roughnesses, respec-
tively. Therefore, from these two relations and Eqs. (3.49) and (3.50), the following
relations for the grain and form shear stresses are obtained:

τ ′
b =

(
n′

n

)3/2

τb, τ ′′
b =

(
n′′

n

)3/2

τb (3.51)
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Eq. (3.51) is similar to the method adopted by Meyer-Peter and Mueller (1948). It
should be noted that the grain roughness coefficient n′ can be calculated using several
methods, such as n′ = d1/6/21.5 (Strickler, 1923), n′ = d1/6

90 /26 (Meyer-Peter and

Mueller, 1948), n′ = d1/6
65 /24 (Patel and Ranga Raju, 1996), and n′ = d1/6

50 /20 (Li and
Liu, 1963; Wu and Wang, 1999). Here, the units of sediment sizes and n′ are m
and s · m−1/3, respectively.

Inserting Eq. (3.51) into Eq. (3.48) leads to

n3/2 = (n′)3/2 + (n′′)3/2 (3.52)

Unlike the above Einstein’s method, Engelund (1966) suggested the division of the
bed shear stress according to the energy slope and determined the grain and form shear
stresses as

τ ′
b = γRbS′

f , τ ′′
b = γRbS′′

f (3.53)

where S′
f and S′′

f are the parts of the energy slope corresponding to the grain and form
roughnesses, respectively.

Applying the equal velocity assumption and the Manning equations U = R2/3
b S1/2

f /

n, U = R2/3
b S′1/2

f /n′, and U = R2/3
b S′′1/2

f /n′′ yields S′
f = Sf (n′/n)2 and S′′

f = Sf (n′′/n)2.
Then substituting these two relations into Eq. (3.53) and using Eq. (3.49) results in

τ ′
b =

(
n′

n

)2

τb, τ ′′
b =

(
n′′

n

)2

τb (3.54)

Inserting Eq. (3.54) into Eq. (3.48) leads to

n2 = (n′)2 + (n′′)2 (3.55)

Note that the exponents are 3/2 in Eq. (3.52), but 2 in Eq. (3.55). However, both
Einstein’s and Engelund’s methods give the following relation for the Chezy coefficient:

1

C2
h

= 1

C′2
h

+ 1

C′′2
h

(3.56)

where Ch is the total Chezy coefficient; and C′
h and C′′

h are the fractional Chezy
coefficients corresponding to the grain and form roughnesses, respectively.

3.3.3 Movable bed roughness formulas

Einstein and Barbarossa (1952), Engelund and Hansen (1967), and Alam and Kennedy
(1969) proposed empirical methods for separately calculating the grain and form resis-
tances to flow. Li and Liu (1963), Richardson and Simons (1967), and Wu and Wang
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(1999) suggested direct calculation of the total roughness coefficient of a movable
bed. Van Rijn (1984c) and Karim (1995) established empirical relations to predict the
height of bed forms and then the roughness coefficient on a movable bed. Brownlie
(1983) proposed a formula to determine the flow depth rather than the roughness
coefficient in an alluvial river. The van Rijn, Karim, and Wu-Wang formulas are
introduced below as examples.

Van Rijn formula

Van Rijn (1984c) established a relation for the sand-dune height, �, as shown in
Fig. 3.11 and expressed as

�

h
= 0.11

(
d50

h

)0.3

(1 − e−0.5T)(25 − T) (3.57)

where T is the non-dimensional excess bed shear stress or the transport stage number,
defined as T = (U′∗/U∗cr)

2 − 1; U′∗ is the effective bed shear velocity related to grain
roughness, determined by U′∗ = Ug0.5/C′

h, with C′
h = 18 log(4h/d90) ; U∗cr is the

critical bed shear velocity for sediment incipient motion, given by the Shields diagram;
and d50 and d90 are the characteristic diameters of bed material.

Figure 3.11 Relation of sand-dune height (van Rijn, 1984c).

In van Rijn’s method, the length of sand dunes is set as λd = 7.3h, the grain
roughness is 3d90, and the form roughness is 1.1�(1 − e−25�/λd ). Therefore, the
effective bed roughness is calculated by means of

ks = 3d90 + 1.1�(1 − e−25�/λd ) (3.58)

and the Chezy coefficient is then computed by
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Ch = 18 log
(

12Rb

ks

)
(3.59)

where Rb is determined using Vanoni and Brooks’ (1957) method.

Karim formula

Karim (1995) proposed the following formula to determine the Manning roughness
coefficient on a movable bed:

n = 0.037d0.126
50

(
1.20 + 8.92

�

h

)0.465

(3.60)

where n is in s · m−1/3; d50 is in m; and h is the hydraulic depth, which is the flow
area divided by water surface width. The graphical relation between � and U∗/ωs is
shown in Fig. 3.12. In the range of 0.15 < U∗/ωs < 3.64, � is determined by

�

h
= −0.04 + 0.294

(
U∗
ωs

)
+ 0.00316

(
U∗
ωs

)2

− 0.0319
(

U∗
ωs

)3

+ 0.00272
(

U∗
ωs

)4

(3.61)

where ωs is the settling velocity of sediment particles with size d50.
Eq. (3.61) was calibrated using experimental data reported by Guy et al. (1966) and

field data measured in the Missouri River.

Figure 3.12 Relative roughness height as function of U∗/ωs (Karim, 1995).
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Wu-Wang formula

The Manning roughness coefficient n for a movable bed is often related to the bed
sediment size d by

n = d1/6

An
(3.62)

where An is a roughness parameter related to bed-material size composition, particle
shape, bed forms, flow conditions, etc.

For a stationary flat bed covered with uniform sediment particles, Strickler (1923)
suggested An = 21.1. Here, the units of n and d are s · m−1/3 and m, respectively.
For a stationary flat bed with non-uniform sediment particles, d is usually set as the
median size d50, and An is about 20 (Li and Liu, 1963; Zhang and Xie, 1993; Wu and
Wang, 1999). If the sediment particles with slightly irregular shapes are tightly placed
on the bed, An may have a larger value up to 24 (i.e., lower resistance to flow). If the
sediment particles with rather irregular shapes are loosely placed on the bed, An has a
smaller value between 17 and 20. In addition, if d is set as d65 or d90 rather than d50,
An has a value of 24 (Patel and Ranga Raju, 1996) or 26 (Meyer-Peter and Mueller,
1948), respectively.

For a movable bed with sand waves, the effect of bed forms on An should be included.
Li and Liu (1963) proposed a relation of An ∼ U/Uc for natural rivers:

An =
{

20(U/Uc)
−3/2 1 < U/Uc ≤ 2.13

3.9(U/Uc)
2/3 U/Uc > 2.13

(3.63)

However, Eq. (3.63) does not agree with most of the flume and field data used in the
test performed by Wu and Wang (1999). To improve this shortcoming, Wu and Wang
established a relation between An/(g1/2Fr1/3) and τ ′

b/τc50, as shown in Fig. 3.13. Here,
Fr is the Froude number U/

√
gh. The values of An/(g1/2Fr1/3) decrease, and then,

increase as τ ′
b/τc50 increases. Physically, this trend represents the fact that sand ripples

and dunes are formed first, and then, washed away gradually. For the convenience of
users, the relation between An/(g1/2Fr1/3) and τ ′

b/τc50 in the range of 1 ≤ τ ′
b/τc50 ≤ 55

is approximated by

An

g1/2Fr1/3 = 8[1 + 0.0235(τ ′
b/τc50)

1.25]
(τ ′

b/τc50)1/3
(3.64)

The critical shear stress τc50 in Eq. (3.64) is calculated using the Shields curve mod-
ified by Chien and Wan (1983), and the grain shear stress τ ′

b is calculated using

Eq. (3.51), with n′ calculated by n′ = d1/6
50 /20 and τb by Eq. (3.49). The bed hydraulic

radius Rb is determined using Williams’ (1970) method: Rb = h/(1 + 0.055h/B2), in
which B is the channel width.



Fundamentals of sediment transport 81

Figure 3.13 Relation between An/(g1/2Fr1/3) and τ ′
b/τc50 (Wu and Wang, 1999).

3.3.4 Comparison of movable bed roughness
formulas

The movable bed roughness formulas of Li and Liu (1963), van Rijn (1984c), Karim
(1995), and Wu and Wang (1999) were tested against 4,376 sets of flume and field data
collected by Brownlie (1981). These data sets were measured by many investigators
in several decades, covering flow discharges of 0.00263–28825.7 m3s−1, flow depths
of 0.04–17.3 m, flow velocities of 0.2–3.32 m · s−1, bed slopes of 0.00002–0.067,
sediment median diameters of 0.011–76.1 mm, and sediment size standard deviations
up to 9.8. Table 3.2 compares the measured and predicted flow depths. It can be
seen that the van Rijn, Karim, and Wu-Wang formulas almost have the same level
of reliability for predicting the flow depth. As compared with the Li-Liu formula, the
Wu-Wang formula has much improvement.

Table 3.2 Comparison of measured and predicted
flow depths

Error range % of calculated flow depths in error range

Li-Liu van Rijn Karim Wu-Wang

±10% 21.8 44.0 41.0 41.5
±20% 41.8 77.9 74.9 75.9
±30% 58.8 91.4 91.0 94.4

3.4 BED-LOAD TRANSPORT

Laboratory experiments and field measurements have revealed that the sediment trans-
port rate (or concentration) at an equilibrium state in a steady, uniform flow, which
is often termed as the sediment transport capacity or the capacity of flow-carrying
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sediment, is a function of flow conditions and sediment properties. A variety of such
functions for bed load, suspended load, and bed-material load have been established
in the literature. Some of them are introduced in Sections 3.4–3.6.

3.4.1 Total transport rate of bed load

Many investigators — e.g., Duboys (1879), Schoklitsch (1930), Meyer-Peter and
Mueller (1948), Bagnold (1966, 1973), Dou (1964), Graf (1971), Yalin (1972),
Engelund and Fredsøe (1976), and van Rijn (1984a) — established formulas to cal-
culate the total transport rate of bed load. The following formulas are presented as
examples.

Meyer-Peter-Mueller formula

Meyer-Peter and Mueller (1948) related the bed-load transport rate to the excess grain
shear stress:

qb∗
γs
√
(γs/γ − 1)gd3

m

= 8

[
(k/k′)3/2γRSf

(γs − γ )dm
− 0.047

]3/2

(3.65)

where qb∗ is the bed-load transport rate by weight per unit time and width (N · m−1s−1);
dm is the arithmetic mean diameter of the bed sediment mixture (m); k is the reciprocal
of the Manning roughness coefficient n of channel bed; k′ is the reciprocal of the
Manning coefficient n′ due to grain roughness, calculated by k′ = 26/d1/6

90 ; and R is
the hydraulic radius of the channel (m).

Bagnold formula

Bagnold (1966, 1973) related the sediment transport rate to the stream power τbU
and derived a bed-load transport formula:

qb∗ = ρs

ρs − ρ
τbU
tanα

U∗ − U∗c

U∗

⎛⎝1 −
5.75U∗ log

(
0.37h

nd

)
+ ωs

U

⎞⎠ (3.66)

where qb∗ is by weight per unit time and width (N · m−1s−1), τb is in N · m−2, tanα is
the friction coefficient of about 0.63, nd is the average height of acting force during a
saltation, d is the sediment size (m), and n = 1.4(U∗/U∗c)

0.6.

Dou formula

Dou (1964) also established an empirical formula for bed-load transport rate based
on the stream power concept:

qb∗ = K0
ρs

ρs − ρ τb(U − U′
c)

U
gωs

(3.67)
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where qb∗ is by mass per unit time and width (kg · m−1s−1), U′
c is the critical average

velocity for sediment particles to cease motion, and K0 is an empirical coefficient with
a value of 0.01 for sand.

Eq. (3.67) can also be used to determine bed-material load, for which K0 = 0.1 as
calibrated using Gilbert’s data.

Yalin formula

Yalin (1972) analyzed the bed-load velocity and weight and then established the
following bed-load formula:

qb∗
γsdU∗

= 0.635s
[
1 − 1

as
ln(1 + as)

]
(3.68)

where qb∗ is by weight per unit time and width (N · m−1s−1), s = (�−�c)/�c, a =
2.45

√
�c(γ /γs)

0.4, and � is the Shields number τb/[(γs − γ )d].

Engelund-Fredsøe formula

Engelund and Fredsøe (1976) related the bed-load transport rate to the bed-load
velocity and the probability for bed material to start moving, and obtained

�b = 11.6(�−�c)
(√
�− 0.7

√
�c

)
(3.69)

where �b = qb∗/[γs
√
(γs/γ − 1)gd3], and qb∗ is by weight per unit time and width

(N · m−1s−1).

Van Rijn formula

Van Rijn (1984a) determined bed load as

qb∗ = 0.053
(
ρs − ρ
ρ

g
)0.5 d1.5

50 T2.1

D0.3∗
(3.70)

where qb∗ is by volume per unit time and width (m2s−1), D∗ is the particle parameter
defined in Eq. (3.16), and T is the transport stage number defined in Eq. (3.57).
Eq. (3.70) was calibrated using data with a size range of 0.2–2 mm.

In addition, several bed-material load formulas, such as those of Ackers and White
(1973) and Engelund and Hansen (1967), can be used to calculate the bed-load trans-
port rate for coarse sediments. Yang (1984) modified his 1973 bed-material load
formula for gravel transport, which is primarily in bed load.

Note that the bed-load formulas introduced above calculate the transport rate of
uniform bed load or the total transport rate of non-uniform bed load as a single size
class. Thus, they may be used for narrowly graded sediment mixtures.
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3.4.2 Fractional transport rate of bed load

The pioneering research on the fractional transport rate of non-uniform sediment is
attributed to Einstein (1950). After that, Ashida and Michiue (1972), Parker et al.
(1982), Misri et al. (1984), Samaga et al. (1986a), Bridge and Bennett (1992), Patel
and Ranga Raju (1996), and Wu et al. (2000b) proposed several methods to calculate
the fractional transport rate of non-uniform bed load. Hsu and Holly (1992) proposed
a method to compute the size composition of non-uniform bed load by considering the
probability and availability of moving sediment. Some of these methods are introduced
below.

Einstein formula

Einstein (1942, 1950) considered the probability of sediment transport due to the
fluctuation of turbulent flow and established sediment transport functions based on
fluid mechanics and probability theory. His bed-load function is graphically shown
in Fig. 3.14 and expressed as

1 − 1√
π

∫ (1/7)�∗k−2

−(1/7)�∗k−2
e−t2

dt = 43.5�∗k

1 + 43.5�∗k
(3.71)

where �∗k = qb∗k/[pbkγs

√
(γs/γ − 1)gd3

k], and �∗k = ξbY(β2/β2
x )�, in which qb∗k

is the bed-load transport rate of size class k by weight per unit time and width, � =
(γs − γ )dk/(γR′Sf ), ξb and Y are the hiding and pressure correction factors for non-
uniform sediment, β = log 10.6, and βx = log(10.6X/�s). R′ is the hydraulic radius
due to grain roughness, determined using Einstein’s movable bed roughness method.
�s is the apparent roughness of bed surface, and �s = ks/χs, with ks = d65 and χs

Figure 3.14 Einstein’s (1950) bed-load function compared with uniform sediment data.



Fundamentals of sediment transport 85

being the correction coefficient defined in Eq. (3.31). X is the characteristic grain size
of bed material, defined as X = 0.77�s if �s/δ > 1.8 and X = 1.39δ if �s/δ ≤ 1.8,
with δ being the laminar sublayer thickness (= 11.6ν/U′∗).

Parker et al. formula

Based on the equal mobility concept, Parker et al. (1982) developed a gravel transport
function, as shown in Fig. 3.15, in which the dimensionless bed-load transport rate
W∗

k is defined in Eq. (3.26) and the dimensionless shear stress θk is

θk = hSf

(ρs/ρ − 1)dkτ
∗
rk

(3.72)

where τ ∗
rk = 0.0875d50/dk, with d50 being the subpavement size.

Figure 3.15 Gravel transport function of Parker et al. (1982).

Since all grain sizes are assumed to have approximately equal mobility, only one
grain size, the subpavement size d50, is used to characterize the bed-load transport
rate as

W∗
k =

{
0.0025 exp[14.2(θ50 − 1)− 9.28(θ50 − 1)2] 0.95 < θ50 < 1.65
11.2(1 − 0.822/θ50)

4.5 θ50 ≥ 1.65
(3.73)
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where θ50 is the dimensionless shear stress defined in Eq. (3.72) corresponding to the
subpavement size d50. This formula was verified using field data with sediment sizes
ranging from 18 to 28 mm.

Considering the fact that the bed-load transport in gravel-bed rivers is accomplished
by means of mobilization of grains exposed on the bed surface rather than substrate
particles, Parker (1990) transformed Eq. (3.73) into a surface-based relation. The
details can be found in his paper.

Hsu and Holly’s method

The method proposed by Hsu and Holly (1992) first determines the size distribution
of the transported sediment and then the total transport rate. The fraction of each size
class in the transported material is postulated to be proportional to the joint probability
of two factors: (1) its mobility under the prevailing hydraulic conditions, and (2) its
availability on the bed surface (active layer).

If the fluctuation of flow velocity is assumed to have the Gaussian probability
distribution, the mobility of size class k is derived as

Pmo,k = 1

σ
√

2π

∫ ∞

Uck/U−1
exp

(
− x2

2σ 2

)
dx (3.74)

where U is the mean velocity of flow; Uck is the incipient velocity of size class k, deter-
mined using the Qin (1980) formula (3.34) modified by recalibrating the coefficient
0.786 as 1.5; and σ is the standard deviation of the normalized fluctuating velocity
U′/U and has a value of about 0.2.

The availability of size class k is equivalent to its fractional representation on the
bed surface (active layer), pbk. Thus, the fraction of size class k in the transported
material is

pk = Pmo,k pbk∑dmax

dmin
Pmo,k pbk

(3.75)

After the size distribution of the transported material is obtained, the mean size dmt
and mean incipient velocity Uct are calculated. The total bed-load transport rate can
then be evaluated using any appropriate predictor. The Shamov formula was suggested
and modified as

qb∗ = 12.5
√

dmt

(
U − Uc min

)( U
Uct

)3 (
dmt

h

)1/4

(3.76)

where qb∗ is the total transport rate of bed load per unit channel width (kg · m−1s−1),
and Uc min is the incipient velocity of the smallest size class (m · s−1).

Methods of Ranga Raju and his co-workers

Ranga Raju and his co-workers (Misri et al., 1984; Samaga et al., 1986a; Patel
and Ranga Raju, 1996) extended the Paintal (1971) uniform bed-load formula to



Fundamentals of sediment transport 87

computing the fractional transport rate of non-uniform bed load. Based on the assump-
tion that the motion of fine particles is dominated by the lift force while the motion
of coarse particles is by the drag force, Misri et al. (1984) proposed a semi-theoretical
hiding-exposure correction factor. This correction factor was revised subsequently by
Samaga et al. (1986a) and Patel and Ranga Raju (1996). In the latest version published
by Patel and Ranga Raju, the bed-load function is shown in Fig. 3.16, in which the
dimensionless bed-load transport rate and the effective shear stress are

�bk = qb∗k

pbkγs

√
(γs/γ − 1)gd3

k

(3.77)

τeff = ξbτ ′
b (3.78)

where τ ′
b = γR′

bSf , R′
b = (Un′/S1/2

f )3/2, n′ = d1/6
65 /24, and ξb is the hiding-exposure

correction factor for the effective shear stress determined by

Cmξb = 0.0713(Csτ
′
∗k)

−0.75144 (3.79)

with τ ′
∗k = τ ′

b/[(γs − γ )dk],
log Cs = −0.1957 − 0.9571 log(τ ′

b/τc)− 0.1949[log(τ ′
b/τc)]2

+ 0.0644[log(τ ′
b/τc)]3,

Figure 3.16 Fractional bed-load function (Patel and Ranga Raju, 1996).
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Cm =
{

1.0, M > 0.38
0.7092 log M + 1.293, 0.05 <M ≤ 0.38

where M is the Kramer uniformity coefficient, and τc is the critical shear stress for the
arithmetic mean size dm.

Wu et al. formula

Wu et al. (2000b) related the bed-load transport rate to the non-dimensional excess
grain shear stress Tk = τ ′

b/τck − 1, with τck and τ ′
b determined using Eqs. (3.45) and

(3.51), respectively. The established relation for the fractional transport rate of non-
uniform bed load is graphically shown in Fig. 3.17 and expressed as

�bk = 0.0053

[(
n′

n

)3/2
τb

τck
− 1

]2.2

(3.80)

where �bk = qb∗k/[pbk

√
(γs/γ − 1)gd3

k], qb∗k is by volume per unit time and width

(m2s−1), n′ = d1/6
50 /20, and n is the Manning roughness coefficient of channel bed.

Note that the hiding and exposure effect in non-unifrom bed material is accounted for
through τck determined using Eq. (3.45).

Eq. (3.80) was verified by using laboratory data for non-uniform bed load mea-
sured by Samaga et al. (1986a), Liu (1986), Kuhnle (1993), and Wilcock and
McArdell (1993), as well as field data from five natural rivers: the Susitna, Chulitna,

Figure 3.17 Relation of fractional bed-load transport rate (Wu et al., 2000b).
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Black, Toutle, and Yampa Rivers compiled by Williams and Rosgen (1989). In each
set of the selected field data, flow and sediment parameters were measured at the same
time, and the bed-load rate and bed-material size composition were averaged from
multiple samples across the same cross-section. These data sets cover a wide range of
flow and sediment conditions, with flow discharges up to 2,800 m3s−1 and sediment
sizes from 0.062 to 128 mm.

3.4.3 Comparison of bed-load formulas

Because of the complexity of sediment transport processes, all existing sediment trans-
port formulas are empirical or semi-empirical. Large discrepancies may exist among
these formulas when they are applied in real-life engineering. Therefore, evaluation of
their performances in various situations is very important.

Comparison of bed-load formulas using single-fraction data

Chien (1980; also see Chien and Wan, 1983) compared the formulas of Einstein
(1942), Meyer-Peter and Mueller (1948), Bagnold (1966), and Yalin (1972) with
measured data, as shown in Fig. 3.18. For weak sediment transport (�∗ > 2),
the Yalin formula underpredicts the bed-load transport rate, and other formulas
provide reasonably good predictions. The Meyer-Peter-Mueller formula seems to pre-
dict better than the Einstein formula in the weak transport stage, but the situation
is reversed in the middle transport stage. However, for strong sediment transport
(�∗ < 2), the predictions of these formulas are significantly different. Because in
this range bed load and suspended load are very difficult to discern, and the mea-
sured data may have large errors, it is hard to judge which formula is better (Chien,
1980).

Figure 3.18 Comparison of bed-load formulas (Chien, 1980).
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Wu et al. (2000b) compared their bed-load transport formula (3.80) and the
formulas of Meyer-Peter and Mueller (1948), Bagnold (1966), and Engelund and
Fredøse (1976) against 1,345 sets of uniform bed-load data. These data were selected
from Brownlie’s (1981) compilation by limiting the standard deviation of bed mate-
rial σ < 1.2, the Shields number � > 0.055, and the Rouse number ωs/κu∗ > 2.5.
They were observed in several decades by many investigators, covering flow dis-
charges of 0.00094–297 m3s−1, flow depths of 0.01–2.56 m, flow velocities of
0.086–2.88 m · s−1, surface slopes of 0.0000735–0.0367, and sediment sizes of
0.088–28.7 mm. None of them was used to calibrate the Wu et al. formula. As shown
in Table 3.3, the Wu et al. formula provides the best results.

Many other investigators, such as Yang (1984) and van Rijn (1984a), have also
compared bed-load transport formulas. The conclusions are usually different because
different data have been used. However, it has been shown that the existing formulas
have better predictions for flume data than for field data. The reasons are that the bed-
load transport is more complex and the measurement instruments are less efficient in
natural rivers. As recognized by van Rijn (1984a), it is hardly possible to predict the
bed-load transport rate with accuracy less than a factor of 2. Perhaps his remark is
useful for sediment engineers to judge the prediction capability of the existing sediment
transport formulas.

Table 3.3 Calculated versus measured transport rates of uniform bed load

Error range % of calculated transport rates in error range
Engelund-Fredøse Bagnold Meyer-Peter-Mueller Wu et al.

0.8 ≤ r ≤ 1.25 21.4 21.4 21.3 38.7
0.667 ≤ r ≤ 1.5 37.4 38.9 39.4 59.3
0.5 ≤ r ≤ 2 54.1 57.2 66.2 80.1

Note: r is the ratio of calculated and measured transport rates.

Comparison of bed-load formulas using multi-fraction data

Ribberink et al. (2002) tested the performances of several multi-fraction bed-load
transport formulas, including the Parker (1990) formula, the Wu et al. (2000b) for-
mula, the Ackers-White (A&W, 1973) formula with the hiding-exposure correction
factors of Day (1980) and Proffitt and Sutherland (P&S, 1983) (to be introduced in
Section 3.6.2), and the Meyer-Peter-Mueller (MP&M, 1948) formula with the hiding-
correction factors of Egiazaroff (1965) and Ashida and Michiue (A&M, 1972). The
“single-size” Engelund-Hansen (E&H, 1967) and van Rijn (1984a) formulas without
any hiding and exposure correction were added as reference. The data used cover the
bed-load transport of widely graded sediment mixtures in the lower Shields regime.
The results are summarized in Table 3.4 and expressed in mean under- or overesti-
mation scores (factor n over/underestimation gives a score of 1/n). Separate scores are
made for the predicted total transport rate and mean transported diameter, and an
average score for both.

Of all the compared multi-fraction formulas, the Wu et al. (2000b) formula gives
the highest scores, followed by the Ackers-White formula with the hiding-exposure
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Table 3.4 Verification scores of multi-fraction bed-load formulas
(Ribberink et al., 2002)

Formula Score for Score for Average
transport rate mean diameter score

Wu et al. 0.43 0.86 0.64
E&H 0.34 0.63 0.49
A&W + Day 0.37 0.59 0.48
Parker (surface) 0.23 0.73 0.48
A&W + P&S 0.34 0.49 0.42
Van Rijn 0.18 0.54 0.36
MP&M + Egiaz. 0.26 0.34 0.30
MP&M + A&M 0.29 0.29 0.29

correction factor of Day (1980). Surprisingly, also the Engelund-Hansen formula,
which was not developed for multi-fraction use for widely graded sediment mixtures,
is the second-best formula in the list. All the Meyer-Peter-Mueller formulas give the
worst scores, mainly due to many cases with zero predicted transport rate.

3.5 SUSPENDED-LOAD TRANSPORT

3.5.1 Vertical distribution of suspended-load
concentration

For equilibrium sediment transport under steady, uniform flow conditions, the
suspended-load transport equation (2.72) is simplified to

−∂(ωsc)
∂z

= ∂

∂z

(
εs
∂c
∂z

)
(3.81)

By using the sediment condition (2.73) at the water surface, Eq. (3.81) is further
simplified to

ωsc + εs ∂c
∂z

= 0 (3.82)

The diffusion coefficient εs is often assumed to be proportional to the eddy viscosity
of turbulent flow. By using Eq. (2.49), a parabolic distribution of εs can be obtained:

εs = 1
σs
κU∗z

(
1 − z

h

)
(3.83)

where σs is the Schmidt number, related to sediment size, concentration, etc. Note that
z is defined here as the vertical coordinate above the bed, for simplicity.

With εs determined using Eq. (3.83) with constant ωs and σs along the flow depth,
Eq. (3.82) can be solved to derive the following vertical distribution of suspended-load
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concentration:

c
cb∗

=
(

h/z − 1
h/δ − 1

) σsωs
κU∗

(3.84)

where δ is the reference level near the bed, and cb∗ is the sediment concentration
at δ. Eq. (3.84), which was first derived by Rouse (1937), is called the Rouse
distribution.

Fig. 3.19 shows the profile of suspended-load concentration calculated using
Eq. (3.84) with σs = 1. One can see that the calculated concentration is zero at
the water surface and tends to be infinitely large as z is close to the bed. These are
not physically reasonable. Therefore, the reference level δ is usually set at a certain
height — e.g., 2d, 0.05h, and half the dune height — above the bed rather than directly
at the bed.

Zhang (1961) derived a distribution function of suspended-load concentration by
using the eddy viscosity determined from the mixing length measured by Nikuradse
in uniform pipe flow:

lm
h

= 0.14 − 0.08η2 − 0.06η4 (3.85)

where lm is the mixing length, h is the radius of pipe or the flow depth, and η = 1−z/h.

Figure 3.19 Distribution of suspended-load concentration.
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The derived distribution function is

c
cb∗

= exp
{
ωs

κU∗
[f (η)− f (ηb)]

}
(3.86)

where ηb = 1 − δ/h, and

f (η) = 2 arctan
√
η + ln

1 + √
η

1 − √
η

+
√

2
a3/2

[
ln
η + √

2aη + a√
a2 + η2

+ arctan

(
1 +

√
2η
a

)
− arctan

(
1 −

√
2η
a

)]

with a = 1.526.
The Zhang distribution is shown in Fig. 3.19 as dashed lines. It improves the sedi-

ment concentration near the water surface, but the formulation is more complicated
and inconvenient to use.

Lane and Kalinske (1941) assumed σs = 1 and averaged the sediment diffusivity in
Eq. (3.83) over the flow depth as

ε̄s = κ
6

U∗h (3.87)

and then introduced this value into Eq. (3.82) and derived

c
cb∗

= exp
[
− 6ωs

κU∗

(
z − δ

h

)]
(3.88)

Van Rijn (1984b) also derived a vertical distribution of suspended-load concentra-
tion using the following two-layer relation of sediment diffusivity:

εs =
{
κU∗

(
1 − z/h

)
z/σs z/h < 0.5

0.25κU∗h/σs z/h ≥ 0.5
(3.89)

In the case of small concentration (c < cb∗ < 0.001), the van Rijn distribution is

c
cb∗

=
{ [(h/z − 1)/(h/δ − 1)]r z/h < 0.5
(h/δ − 1)−r exp[−4r(z/h − 0.5)] z/h ≥ 0.5

(3.90)

where r = ωs/(κU∗).
The parameter ωs/(κU∗) is called the suspension or Rouse number. Physically, the

Rouse number represents the effect of gravity (ωs) against the effect of turbulent diffu-
sion (κU∗). When the Rouse number is larger, the effect of gravity is stronger and the
distribution of sediment concentration along the flow depth is less uniform. When the
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Rouse number is smaller, the effect of turbulent diffusion is stronger and the distribu-
tion of sediment concentration is more uniform. It can be seen from Fig. 3.19 that when
the Rouse number is larger than about 5.0, the relative concentration of suspended
load is very small, and thus ωs/(κU∗) ≈ 5.0 can be used as the critical condition
for suspension. When the Rouse number is less than about 0.06, the suspended-
load concentration almost uniformly distributes along the flow depth, and thus
ωs/(κU∗) ≈ 0.06 may be used as a condition to divide wash load and bed-material load.

Brush et al. (1962), Matyukhin and Prokofyev (1966), and Majumdar and Carstens
(1967) experimentally showed that for fine particles σs ∼= 1, and for coarse par-
ticles σs > 1. However, Einstein and Chien (1954) obtained the relation between
ωs/(κU∗) and σsωs/(κU∗) shown in Fig. 3.20 by comparing the measured suspended-
load distribution with Eq. (3.84), and suggested that σs should be smaller than 1. This
contradiction might be due to differences in flow and sediment conditions in which
the data were measured.

Figure 3.20 Relation between ωs/(κU∗) and σsωs/(κU∗) (Einstein and Chien, 1954).

Van Rijn (1984b) proposed a formula to determine the Schmidt number σs:

1
σs

= 1 + 2
(
ωs

U∗

)2

for 0.1 <
ωs

U∗
< 1 (3.91)

The von Karman constant has a value of about 0.4 for clear water flow and is a
function of the depth-averaged concentration, settling velocity, and bed shear velocity
for sediment-laden flow (Einstein and Chien, 1955). Yalin and Finlayson (1972)
introduced a damping factor for the von Karman constant:

κm = φκκ (3.92)
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where κ is the von Karman constant for clear water flow, and κm is the one for
sediment-laden flow. Van Rijn (1984b) determined the damping factor as

φκ = 1 +
(

c
c0

)0.8

− 2
(

c
c0

)0.4

(3.93)

where c is the local sediment concentration (by volume), and c0 is the maximum
sediment concentration (= 0.65).

3.5.2 Near-bed concentration of suspended load

Empirical formulas were established by Engelund and Fredsøe (1976), Smith and
McLean (1977), van Rijn (1984b), Celik and Rodi (1988), Zyserman and Fredsøe
(1994), and Cao (1999) for the near-bed concentration of single-sized suspended load,
and by Einstein (1950), Garcia and Parker (1991), and Hu and Wang (1999) for
the near-bed fractional concentration of multi-sized (non-uniform) suspended load.
The Einstein, van Rijn, and Zyserman-Fredsøe formulas are introduced below as
examples.

Einstein formula

Einstein (1950) set the reference level of suspended-load concentration at two grain
diameters above the channel bed and related the near-bed concentration of suspended
load to the bed-load transport rate qb∗k as follows:

cb∗k = 1
11.6

qb∗k

δU′∗
(3.94)

where cb∗k is the concentration of the kth size class of suspended load at the reference
level δ (by weight per unit volume), and U′∗ is the skin friction velocity.

Van Rijn formula

Van Rijn (1984b) set the reference level δ at the equivalent roughness height ks or half
the bed-form height and established

cb∗ = 0.015
d50T1.5

δD0.3∗
(3.95)

where cb∗ is the volumetric concentration of suspended load at the reference level, and
T and D∗ are defined in Eqs. (3.57) and (3.70).

Zyserman-Fredsøe formula

Zyserman and Fredsøe (1994) set the reference level at two grain diameters above the
bed and determined the near-bed volumetric concentration of suspended load as



96 Computational River Dynamics

cb∗ = 0.331(�′ − 0.045)1.75

1 + 0.72(�′ − 0.045)1.75 (3.96)

where �′ = U′2∗ /[(ρs/ρ − 1)gd].
Two issues regarding the aforementioned formulas of near-bed suspended-load con-

centration should be pointed out. One is that the suspended-load concentration near
the channel bed is very difficult to measure at the present time and has to be extrapo-
lated from those measured in the upper flow layer with the aid of an assumed vertical
distribution of sediment concentration. The accuracy and reliability of this analysis
highly depend on the used distribution function of sediment concentration near the
bed. The often used Rouse distribution is not reliable near the bed, and some later
modifications introduced in Section 3.5.1 do not improve much indeed. Therefore, the
calibration of these formulas using direct measurement data near the bed should be
carried out in the future.

The other issue is that the near-bed concentration is defined at different reference
levels in different formulas. Each formula should be applied only at the height where
the near-bed concentration is defined. This makes comparison of these formulas very
difficult. For sediment transport modeling, it is more convenient to set the reference
level at the interface between the bed-load and suspended-load layers.

3.5.3 Suspended-load transport rate

Einstein’s method

Einstein’s (1950) method determines the suspended-load transport rate by integrating
the product of local sediment concentration ck and flow velocity u over the suspended-
load zone from δ(= 2d) to h:

qs∗k =
∫ h

δ

ckudz (3.97)

where qs∗k is the transport rate of the kth size class of suspended load.
Using the Rouse distribution of sediment concentration (σs = 1 ) and the logarithmic

distribution of flow velocity in Eq. (3.30) (replacing U∗ by U′∗ ) yields

qs∗k =
∫ h

δ

cb∗k

(
h/z − 1
h/δ − 1

) ωsk
κU∗ ∗ 5.75U′∗ log

(
30.2

z
�s

)
dz

= 11.6U′∗cb∗kδ

[
2.303 log

(
30.2h
�s

)
∗ I1k + I2k

]
(3.98)

where I1k = 0.216 ζ
rk−1
b

(1−ζb)rk
∫ 1
ζb
(

1−ζ
ζ
)rkdζ , and I2k = 0.216 ζ

rk−1
b

(1−ζb)rk
∫ 1
ζb
(

1−ζ
ζ
)rk ln ζdζ ,

with ζ = z/h, ζb = δ/h, rk = ωsk/(κU∗), and �s is defined in Eq. (3.71).
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Inserting Eq. (3.94) into Eq. (3.98) leads to

qs∗k = qb∗k

[
2.303 log

(
30.2h
�s

)
∗ I1k + I2k

]
(3.99)

The fractional transport rate of bed-material load is then obtained by qt∗k =
qb∗k + qs∗k.

Einstein’s method is an important contribution to sediment research. However, it is
laborious because numerical integrations are involved and U′∗ is determined using his
movable bed roughness formula that needs to be solved iteratively. Many tests have
shown that Einstein’s method can provide reasonable results for narrowly graded
sediment mixtures, but not for those widely graded (Misri et al., 1984; Samaga et al.,
1986a&b). Modifications were proposed by several investigators, such as Colby and
Hembree (1955), Toffaletti (1968), and Shen and Hung (1983). Van Rijn (1984b)
also established a similar method to calculate the suspended-load transport rate using
Eq. (3.97) with his distribution function (3.90) and near-bed concentration formula
(3.95).

Bagnold formula

Based on his stream power concept, Bagnold (1966) established the following formula
to calculate the suspended-load transport rate:

qs∗ = 0.01
ρs

ρs − ρ
τbU2

ωs
(3.100)

where qs∗ is the suspended-load transport rate by weight per unit time and width
(N · m−1s−1).

Zhang formula

Based on the energy balance of sediment-laden flow, Zhang (1961; also see Zhang
and Xie, 1993) derived the relation between suspended-load transport capacity C∗ and
parameter U3/(gRωs), as shown in Fig. 3.21, using measured data from the Yangtze
River, the Yellow River, etc. Here, C∗ is the average suspended-load concentration
(kg · m−3). One may write the Zhang formula as Eq. (2.140) with variable coefficients
K∗ and m. For convenience, Guo (2002) approximated the C∗ ∼ U3/(gRωs) curve in
Fig. 3.21 by the following equation:

C∗ = 1
20

(
U3

gRωs

)1.5/⎡⎣1 +
(

1
45

U3

gRωs

)1.15
⎤⎦ (3.101)

Wu and Li (1992) extended the Zhang formula to determine the fractional concen-
tration of non-uniform suspended load as C∗k = pbkC∗

k. Here, pbk is the bed-material
gradation, and C∗

k is the potential equilibrium concentration of size class k determined
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Figure 3.21 Relation of C∗ and U3/(gRωs) (Zhang, 1961).

by the C∗
k ∼ U3/(gRωsk) curve calibrated using multiple-sized sediment data. How-

ever, Wu and Li’s (1992) method does not explicitly consider the hiding and exposure
effect among non-uniform sediment particles.

Wu et al. formula

Based on Bagnold’s (1966) stream power concept, Wu et al. (2000b) related the
suspended-load transport rate to the rate of energy available in the alluvial system and
to the resistance to sediment suspension. The former was expressed as τU, and the
latter was accounted for by the settling velocity ωs and the critical shear stress τc. Here,
τ is the shear stress on the wetted perimeter of the cross-section: τ = γRSf . Through
dimensional analysis, the independent parameter (τ/τc − 1)U/ωs was derived. By
using the laboratory data of non-uniform suspended load measured by Samaga et al.
(1986b) and two sets of field data in the Yampa River and the Yellow River, the
relation between the fractional suspended-load transport rate qs∗k and the parameter
(τ/τck − 1)U/ωsk was established. It is shown in Fig. 3.22 and expressed as

�sk = 0.0000262
[(
τ

τck
− 1
)

U
ωsk

]1.74

(3.102)

where �sk = qs∗k/[pbk

√
(γs/γ − 1)gd3

k], with qs∗k being the suspended-load trans-

port rate by volume per unit time and width (m2s−1); and τck is determined using
Eq. (3.45), which takes into account the hiding and exposure effect in non-uniform
sediment transport. The sediment settling velocity ωsk is calculated using the Zhang
formula (3.12).
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Figure 3.22 Relation of fractional suspended-load transport rate (Wu et al., 2000b).

3.6 BED-MATERIAL LOAD TRANSPORT

Bed-material load is the sum of bed load and suspended load. Therefore, one may
either separately calculate the bed-load and suspended-load transport rates, or directly
calculate the bed-material load transport rate. Examples of the former approach are
the methods of Einstein (1950), van Rijn (1984a & b), and Wu et al. (2000b), which
are introduced in Sections 3.4 and 3.5. Examples of the latter approach are Laursen’s
(1958), Engelund and Hansen’s (1967), Ackers and White’s (1973), Yang’s (1973),
and Karim’s (1998) methods, which are introduced below.

3.6.1 Total transport rate of bed-material load

Laursen formula

The Laursen (1958) formula divides a sediment mixture into size classes and calculates
the total average concentration of bed-material load as

Ct∗ = 0.01γ
N∑

k=1

pk

(
dk

h

)7/6 ( τ ′
b

τck
− 1
)

f
(

U∗
ωsk

)
(3.103)

where Ct∗ is the sediment concentration by weight per unit volume; pk is the fraction
of the kth size class of available sediment material; N is the total number of size classes;
τck is the critical shear stress for the incipient motion of sediment size dk, given by the
Shields diagram; and τ ′

b is the bed shear stress due to grain roughness, determined
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using the Manning-Strickler equation:

τ ′
b = ρU2

58

(
d50

h

)1/3

(3.104)

The function f (U∗/ωs) in Eq. (3.103) is given as two different curves for bed load
and bed-material load, as shown in Fig. 3.23. Therefore, the Laursen formula can be
used to determine either bed load or bed-material load.

Note that the Laursen formula can provide the sediment concentration for each size
class, but it is generally used to determine only the total sediment concentration. It has
good reliability for fine sediments.

Figure 3.23 Function f (U∗/ωs) in the Laursen (1958) formula.

Engelund-Hansen formula

Using Bagnold’s stream power concept and the similarity principle, Engelund and
Hansen (1967) established the following sediment transport formula:

f ′�t = 0.1�5/2 (3.105)

where f ′ is the friction factor, defined as f ′ = 2gRSf /U2;�t = qt∗/[γs
√
(γs/γ − 1)gd3],

with qt∗ being the bed-material load transport rate by weight per unit time and width;
� is the Shields number τb/[(γs − γ )d] ; and d is the median fall diameter of bed
material.

Strictly speaking, the Engelund-Hansen formula should be applied to dune-bed
streams in accordance with the similarity principle. However, many tests have shown
that it can be applied to the upper flow regime with particle size greater than 0.15 mm
(Chang, 1988).
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Yang formula

Yang (1973, 1984) related the bed-material load transport to the unit stream power
as follows:

log Ct∗ = M + N log
(

USf

ωs
− UcSf

ωs

)
(3.106)

where Ct∗ is the sediment concentration in parts per million (ppm) by weight, Uc is
determined using Eq. (3.29), and M and N are coefficients. For sand (d ≤ 2 mm)

M = 5.435 − 0.286 log
ωsd
ν

− 0.457 log
U∗
ωs

N = 1.799 − 0.409 log
ωsd
ν

− 0.314 log
U∗
ωs

(3.107)

and for gravel (2 mm < d < 10 mm)

M = 6.681 − 0.633 log
ωsd
ν

− 4.816 log
U∗
ωs

N = 2.784 − 0.305 log
ωsd
ν

− 0.282 log
U∗
ωs

(3.108)

Ackers-White formula

The transport of coarse sediments, which are mainly in bed load, is attributed to the
stream power corresponding to the grain shear stress, τ ′

bU, while the transport of fine
sediments, which are mainly in suspended load, is related to the turbulence intensity
and in turn the total stream power, τbU. Based on this concept, Ackers and White
(1973) proposed a mobility factor of sediment transport:

Fgr = Un∗
[(γs/γ − 1)gd]1/2

[
U√

32 log(10h/d)

]1−n

(3.109)

and related the bed-material load to this mobility factor as follows:

Ggr = Ct∗h
dγs/γ

(
U∗
U

)n

= �
(

Fgr

Ac
− 1
)m

(3.110)

where Ct∗ is the sediment concentration by weight, � is an empirical coefficient, m
is an empirical exponent, n is the transition exponent, and Ac may be interpreted as
the critical value of Fgr for sediment incipient motion. Coefficients �, Ac, m, and n
were related to the dimensionless grain diameter D∗ = d[(ρs/ρ − 1)g/ν2]1/3, as listed
in Table 3.5, based on best-fit curves of laboratory data with sediment sizes greater
than 0.04 mm and Froude numbers less than 0.8.
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Table 3.5 Coefficients of the Ackers-White formula

D∗ ≥ 60 1 < D∗ < 60

n = 0.0 n = 1.00 − 0.56 log D∗
Ac = 0.17 Ac = 0.23D−1/2∗ + 0.14
m = 1.50 m = 9.66D−1∗ + 1.34
� = 0.025 log� = −3.53 + 2.86 log D∗ − (log D∗)2

Many tests have shown that the Ackers-White formula overpredicts the transport
rate for fine sediments (smaller than 0.2 mm).

3.6.2 Fractional transport rate of bed-material load

Modif ied Ackers-White formula (Day, 1980; Proff itt and Sutherland, 1983)

Day (1980) and Proffitt and Sutherland (1983) extended the Ackers-White (1973)
formula to calculate the fractional bed-material load transport rate:

Ggr,k = �
(

Fgr,k

Ac
− 1
)m

(3.111)

where

Fgr,k = ηk
Un∗

[(γs/γ − 1)gdk]1/2
[

U√
32 log(10h/dk)

]1−n

, Ggr,k = Ct∗kh
pbkdkγs/γ

(
U∗
U

)n

with Ct∗k being the sediment concentration by weight of size class k, and ηk the hiding
and exposure correction factor. Day’s correction factor is

ηk = 1
0.4(dk/dA)−0.5 + 0.6

(3.112)

where dA is the reference diameter, determined by

dA

d50
= 1.6

(
d84

d16

)−0.28

(3.113)

Proffitt and Sutherland’s correction factor reads

ηk =

⎧⎪⎨⎪⎩
0.40, dk/du ≤ 0.075
0.53 log(dk/du)+ 1.0, 0.075 < dk/du ≤ 3.7
1.30, dk/du > 3.7

(3.114)

where du is the reference diameter used by Proffitt and Sutherland (1983).
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SEDTRA module (Garbrecht et al., 1995)

The SEDTRA module (Garbrecht et al., 1995) calculates the fractional sediment trans-
port rates using three established transport formulas: the Laursen (1958) formula for
size classes from 0.01 to 0.25 mm, the Yang (1973) formula for size classes from 0.25
to 2.0 mm, and the Meyer-Peter-Mueller (1948) formula for size classes from 2.0 to
50.0 mm. The total concentration of sediment Ct∗ is calculated by

Ct∗ =
∑

k

pkCt∗k (3.115)

where Ct∗k is the sediment concentration of size class k; and pk is the fraction of the
kth size class of available sediment, usually set as the bed-material gradation.

In order to account for the hiding and exposure effect in non-uniform bed material,
the sediment size dek, used to calculate the critical flow strength for the incipient motion
of each size class, is adjusted using the following equation (Kuhnle, 1993; Wilcock,
1993; Garbrecht et al., 1995):

dek = dk

(
dk

dm

)−x

(3.116)

where dm is the mean diameter of bed material; and x is an empirical parameter,
determined by x = 1.7/Bm, with Bm being a bimodality parameter (Wilcock, 1993):

Bm =
(

dc

df

)1/2∑
pm (3.117)

where dc and df are the representative diameters of coarse and fine modes, respectively;
and pm is the portion of the sediment mixture contained in the two modes.

When Bm is less than 1.7, x = 1, and for high values of Bm, x approaches zero.
Table 3.6 lists the values of x recommended by Kuhnle et al. (1996). The mixture
names for Wilcock and Southard’s (1988) data refer to the standard deviation of bed
material, and those for Kuhnle’s (1993) data refer to the percentage of gravel in bed
material, e.g., SG25 for the mixture with 25% gravel and 75% sand.

The SEDTRA module takes the advantages of the three formulas used and thus
performs well in general; however, these formulas may not transit smoothly in the

Table 3.6 Values of x recommended by Kuhnle et al. (1996)

Mixture name Reference dm (mm) Mixture type Bm x

SG10 (lab.) Kuhnle (1993) 0.616 Bimodal 2.49 0.7
SG25 (lab.) Kuhnle (1993) 0.927 Bimodal 2.60 0.7
SG45 (lab.) Kuhnle (1993) 1.454 Bimodal 2.73 0.6
1/2 ψ (lab.) Wilcock & S. (1988) 1.82 Unimodal 0.67 1.0
ψ (lab.) Wilcock & S. (1988) 1.85 Unimodal 0.37 1.0
Goodwin Creek Kuhnle (1993) 1.189 Bimodal 3.10 0.5
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case of low sediment transport, because they adopt different criteria for incipient
motion.

Karim formula

Karim (1998) related the availability of sediment to the areal fraction of bed material,
and established the following formula for the fractional transport rate of bed-
material load:

qt∗k√
(γs/γ − 1)gd3

k

= 0.00139

[
U√

(γs/γ − 1)gdk

]2.97 (
U∗
ωsk

)1.47

pakηk

(3.118)

where qt∗k is in m2s−1; pak is the areal fraction of bed material, related to the volumetric
fraction of bed material, pbk, by

pak = pbk

dk

/⎛⎝ N∑
k=1

pbk

dk

⎞⎠ (3.119)

and ηk is the hiding and exposure correction factor:

ηk = C1

(
dk

d50

)C2

(3.120)

where d50 is the median size of bed material; and C1 and C2 are coefficients:

C1 = 1.15ωs50/U∗ (3.121)

C2 = 0.60ωs50/U∗ (3.122)

with ωs50 being the settling velocity for d50.
Eqs. (3.121) and (3.122) show that C1 and C2 increase as ωs50/U∗ increases. This

suggests that the coarser the sediment mixture, the stronger the hiding and exposure
effect. This is physically reasonable. However, the correction factor in Eq. (3.121) is
not equal to 1 for uniform sediment, so that Eq. (3.118) may be significantly different
from the original uniform sediment transport formula.

3.6.3 Comparison of bed-material load formulas

Many investigators — e.g., Vanoni (1975), Alonso (1980), Brownlie (1981), Shen
and Hung (1983), van Rijn (1984b), Nakato (1990), and Woo and Yoo (1991) —
have compared the existing formulas for the total and fractional transport rates of
bed-material load using extensive flume and field data. Several examples are briefly
introduced below. More details can be found in relevant publications.
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Alonso (1980) tested eight formulas, including those of Ackers and White (1973),
Engelund and Hansen (1967), Laursen (1958), Yang (1973), Bagnold (1966), Meyer-
Peter and Mueller (1948), Yalin (1972), and the combination of the Meyer-Peter-
Mueller bed-load formula and the Einstein (1950) suspended-load formula (denoted
as MPME), using 225 sets of flume data and 40 sets of field data. Alonso limited
his comparisons against those field data where bed-material load could be measured
by special facilities to avoid the uncertainty of unmeasured load. Table 3.7 shows
the discrepancies of the selected formulas. The Yang (1973), Ackers-White (1973),
Engelund-Hansen (1967), and Laursen (1958) formulas are more reliable.

Table 3.7 Comparison of sediment transport formulas (Alonso, 1980)

Formula Ratio of predicted and measured discharges
Flume data with Flume data with Field data
h/d ≥ 70 (177 sets) h/d < 70 (48 sets) (40 sets)

Mean σ % in 0.5–2 Mean σ % in 0.5–2 Mean σ % in 0.5–2

Ackers-White 1.34 1.29 73.0 1.12 0.52 89.6 1.27 0.68 87.8
Engelund-H. 0.73 0.68 51.1 0.75 0.50 66.7 1.46 0.56 82.9
Laursen 0.81 0.51 71.4 1.04 0.99 79.2 0.65 0.48 56.1
MPME 3.11 2.75 42.1 1.34 1.04 66.7 0.83 1.02 58.5
Yang 0.99 0.60 79.8 0.90 0.51 85.4 1.01 0.39 92.7
Bagnold 0.85 2.50 20.8 1.53 1.14 45.8 0.39 0.26 32.0
Meyer-Peter-M. 0.40 0.49 18.5 1.03 0.83 72.9 0.24 0.09 0
Yalin 1.62 4.08 32.6 1.92 1.65 64.6 2.59 1.62 46.3

Note: σ = standard deviation, and % in 0.5–2 means percentage of data in error range of 0.5–2.

Brownlie (1981) compared fourteen formulas. The discrepancies resulting from
these formulas are shown in Fig. 3.24. The median and 16th and 84th percentile values
in the figure are based on the approximation of a log-normal distribution of errors.
The Brownlie (1981), Ackers-White (1973), and Engelund-Hansen (1967) formulas
provide good results for the data sets used in the comparison.

Woo and Yoo (1991) tested ten sediment transport formulas using the data carefully
selected from Brownlie’s (1981) compilation. Fig. 3.25 presents the discrepancy ratios
of the calculated and measured sediment discharges. The Engelund-Hansen (1967),
Ackers-White (1973), and van Rijn (1984a & b) formulas are more reliable than
other compared formulas.

The author compared the Engelund-Hansen (1967), Ackers-White (1973), Yang
(1973, 1984), and Wu et al. (2000b) formulas as well as the SEDTRA module (Gar-
brecht et al., 1995) against 1,859 sets of uniform bed-material load data selected from
Brownlie’s (1981) compilation by limiting the standard deviation of bed material σ <
1.2 and the Shields number � > 0.055. These data cover flow discharges of 0.00094–
297 m3s−1, flow depths of 0.01–2.56 m, flow velocities of 0.086–2.88 m · s−1, surface
slopes of 0.0000735–0.0367, and sediment sizes of 0.088–28.7 mm. None of them
was used to calibrate the Wu et al. formulas (3.80) and (3.102). The discrepan-
cies between the calculated and measured bed-material transport rates are listed in
Table 3.8. All these five formulas have comparable reliability for uniform bed-material
load transport rate.
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Figure 3.24 Comparison of sediment transport formulas (Brownlie, 1981).

Figure 3.25 Comparison of sediment transport formulas (Woo and Yoo, 1991).

The author tested the Wu et al. (2000b) formula, the modified Ackers-White for-
mula (Proffitt and Sutherland, 1983), the modified Zhang formula (Wu and Li, 1992),
the Karim (1998) formula, and the SEDTRA module for fractional bed-material load.
Because the modified Zhang formula is only for the fractional discharge of suspended
load, it was combined with Eq. (3.80) to obtain the fractional discharge of bed-material
load. The non-uniform sediment data collected by Toffaletti (1968) were used, includ-
ing experimental data observed by Nomicos, Einstein-Chien, and Vanoni-Brooks, and
field data in the Rio Grande, Middle Loup, Niobrara, and Mississippi Rivers. In order
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Table 3.8 Calculated versus measured transport rates of uniform bed-material load for
Brownlie’s data (Wu and Wang, 2003)

Error range % of calculated transport rates in error range
Ackers- White Yang Engelund-Hansen SEDTRA Wu et al.

0.8 ≤ r ≤ 1.25 37.3 33.4 33.6 36.6 40.4
0.667 ≤ r ≤ 1.5 57.9 56.6 55.4 59.1 62.7
0.5 ≤ r ≤ 2 82.4 76.6 77.0 78.1 81.3

Note: r = calculation/measurement.

Table 3.9 Comparison of fractional bed-material load formulas

Error range % of calculated transport rates in error range
Modified Ackers-W. Karim Modified Zhang SEDTRA Wu et al.

0.5 ≤ r ≤ 2 5.6 42.7 48.1 56.9 57.9
0.33 ≤ r ≤ 3 11.1 63.5 67.9 73.1 76.1
0.25 ≤ r ≤ 4 20.8 73.3 80.7 80.9 85.2

to avoid the deficiency in the measurement of suspended load close to river bed, the
used field data were selected by limiting the height of the lowest measurement point to
be within 0.2 m (0.4 m in some of the Mississippi River data) above the bed. These data
cover flow discharges up to 21,600 m3s−1, flow depths up to 17.5 m, and sediment
sizes from 0.062 to 1 mm. Table 3.9 lists the discrepancies between the calculated
and measured fractional discharges of non-uniform bed-material load. The Wu et al.
formula and SEDTRA module perform better.

As shown in Tables 3.8 and 3.9, multi-fraction sediment transport formulas usually
have larger discrepancies than single-fraction formulas. This is because interactions
exist among different size classes in non-uniform bed materials, and it is difficult to
ensure all size classes at equilibrium states during measurements. Due to the fact that
the possible discrepancy of any existing sediment transport formula may exceed two
or three folds, verification using the data measured at the study site or similar sites
prior to application is recommended.

3.7 SEDIMENT TRANSPORT OVER STEEP SLOPES

Because channel slopes in most natural rivers are very gentle, the effect of gravity on
sediment transport is usually ignored. However, this effect is significant and should
be considered if longitudinal and/or transverse slopes are steep. Several methods
considering this effect are described below.

Nakagawa et al. formula

Nakagawa et al. (1986) established a formula to determine the pickup rate of sediment
particles on a steep side slope:
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ps

√
d

(ρs/ρ − 1)g
= 0.03G∗�

(
1 − 0.7��c

�

)3

(3.123)

where ps is the pickup rate, defined as the probability density per unit time for a
sediment particle to be dislodged from the bed; and G∗ and � are coefficients:

G∗ = sin(βd + δd)+ kLµs

1 + kLµs
(3.124)

� = µs cos θn − sin θn cosβd

µsG∗
(3.125)

where µs is the static friction factor, with a value of about 0.7; kL is the drag and
lift force ratio, which is about 0.85; θn is the transverse slope angle; δd represents the
deflection angle of the flow velocity vector from the longitudinal direction; and βd
is the angle of the sediment movement (resultant force) direction measured from the
p-axis defined along the wetted perimeter.

Damgaard et al. formula

Damgaard et al. (1997) modified the Meyer-Peter-Mueller (1948) bed-load formula
(3.65) to consider the effect of gravity in longitudinal slopes. The modified formula is
written as

�b = 8(�−�cϕ)
3/2fslope (3.126)

where �b = qb∗/[γs

√
(γs/γ − 1)gd3

50], � is the Shields number τb/[(γs − γ )d50], and
�cϕ is the critical Shields number on sloped beds determined by

�cϕ

�c
= sin(φr − ϕ)

sinφr
(3.127)

where φr is the repose angle; ϕ is the bed slope angle, with positive values for downslope
beds; and �c is the critical Shields number on the horizontal bed, calculated using the
following algebraic representation of the Shields curve suggested by Soulsby (1996):

�c = 0.24
D∗

+ 0.055(1 − e−D∗/50) (3.128)

with D∗ = d50[(ρs/ρ − 1)g/ν2]1/3.
The parameter fslope is a correction factor, determined by

fslope =
{

1 −φr < ϕ ≤ 0
1 + 0.8(�c/�)

0.2(1 −�cϕ/�c)
1.5+�/�c 0 < ϕ < φr

(3.129)
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Wu’s method

Many sediment transport formulas, such as those of van Rijn (1984a & b) and Wu
et al. (2000b), can be expressed as qb = f (τ ′

b/τc) or f (τb/τc). Two approaches may
be used to consider the effect of bed slope in this group of formulas. One is to correct
the critical shear stress τc using the method of Brooks (1963) or van Rijn (1989).
A disadvantage of this approach is that when the bed slope angle is close to the repose
angle, the corrected critical shear stress usually goes to zero and, thus, the calculated
sediment transport rate perhaps tends to be infinite. This situation should be limited.
The other approach is to add the streamwise component of gravity to the grain shear
stress τ ′

b or the bed shear stress τb without modifying τc so that the situation of zero
critical shear stress can be avoided. The effective tractive force τbe (Wu, 2004) is thus
determined by

τbe = τ ′
b + λs

aπ
6
(ρs − ρ)gd sin ϕ (3.130)

where a is a coefficient related to the shape and location of sediment particles, and λs
is a friction factor. Note that τ ′

b may be replaced by τb in Eq. (3.130), depending on
the formula considered.

Because the friction factor λs is difficult to determine, Eq. (3.130) is not ready for
use. In the case where the bed slope angle ϕ is equal to the repose angle φr , sediment
particles will start moving (τbe = τc ) even without any hydraulic action (τ ′

b = 0). Using
this condition, one can derive λs = τc/[ aπ

6 (ρs − ρ)gd sinφr]. Inserting this relation into
Eq. (3.130) yields

τbe = τ ′
b + τcsin ϕ/sinφr (3.131)

The coefficients λs and a are replaced by the critical shear stress τc and the repose
angle φr, which are easier to evaluate. However, the test performed by Wu (2004) using
the experimental data of Damgaard et al. (1997) shows that Eq. (3.131) is adequate
for negative (up) slopes, but for positive (down) slopes the following modification is
needed:

τbe = τ ′
b + λ0τcsin ϕ/sinφr (3.132)

where λ0 is a coefficient. λ0 may consider the difference in τc on horizontal, upslope,
and downslope beds; it is related to flow and sediment conditions as well as bed
slope. When the above correction is applied to the Wu et al. (2000b) bed-load
and suspended-load transport formulas (3.80) and (3.102), λ0 has the following
form (Wu, 2004):

λ0 =
{

1 ϕ ≤ 0
1 + 0.22(τ ′

b/τc)
0.15e2sin ϕ/sinφr ϕ > 0

(3.133)
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3.8 TEMPORAL LAGS BETWEEN FLOW AND SEDIMENT
TRANSPORT

Sediment transport exhibits temporal lags with flow due to flow and sediment velocity
difference and bed form development. In particular, such lags become significant for
coarse sediment transport under strongly unsteady flow conditions (e.g., Bell, 1980;
Tsujimoto et al., 1988; Phillips and Sutherland, 1990; Song and Graf, 1997; de Sutter
et al., 2001; Wu et al., 2006).

Lag between f low and suspended-load transport

There is a lag between the local flow and suspended-load velocities. This has been
observed experimentally by Muste and Patel (1997) and discussed in detail by Cheng
(2004). A two-phase flow model (Wu and Wang, 2000; Greimann and Holly, 2001)
can be used to describe this local velocity lag in general situations. However, according
to the experimental observations of Muste and Patel (1997), the local streamwise
velocity of suspended load with a diameter of 0.23 mm is less than the local flow
velocity by as much as 4%; this local velocity difference is negligible in comparison
with the depth-averaged flow and suspended-load velocity difference (Wu et al., 2006).
Thus, the local velocity lag may be ignored, and only the depth-averaged velocity lag
is discussed below.

The concentration-weighted velocity of suspended load can be defined as

Used =
∫ h

δ

uscdz

/∫ h

δ

cdz (3.134)

which is actually the overall velocity of suspended load from a depth-averaging point
of view. Therefore, the correction factor βs defined in Eq. (2.87) also is the ratio of
the depth-averaged suspended-load and flow velocities:

βs = Used/U (3.135)

where U is the depth-averaged flow velocity.
Because higher sediment concentration corresponds to smaller flow velocity near

the channel bottom while lower sediment concentration corresponds to larger flow
velocity in the upper flow layer, βs normally is less than 1 and Used ≤ U. By using
the logarithmic distribution of flow velocity, u = U{1 + √

g[1 + ln(z/h)]/(Chκ)},
and the Rouse distribution of suspended-load concentration introduced in Section
3.5.1 with the reference level set at 0.01h, Wu et al. (2006) obtained the relation
of βs with the Rouse number ωs/(κU∗) and the Chezy coefficient Ch, as shown
in Fig. 3.26. It can be seen that βs decreases as the Rouse number increases and
the Chezy coefficient decreases. For fine sediments, βs is close to 1 and the lag
between the depth-averaged flow and sediment velocities can be ignored. However,
for coarse sediments, this lag can be up to 50% of the flow velocity and should be
considered.
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Figure 3.26 Factor βs as function of the Rouse number and the Chezy coefficient
(Wu et al., 2006).

Lag between f low and bed-load transport

Bed load usually moves by rolling, sliding, and saltating, depending on flow and sed-
iment conditions. Saltation is the dominant mode of bed-load transport, while rolling
(and to a lesser extent, sliding) occurs only near the threshold of entrainment and
between individual saltation jumps (Bridge and Dominic, 1984). Van Rijn (1984a)
investigated the characteristics of particle saltation and determined the bed-load
velocity as

ub√
(ρs/ρ − 1)gd

= 1.5T0.6 (3.136)

where T is the transport stage number defined in Eq. (3.57).
The van Rijn formula (3.136) was verified by Wu et al. (2006) using three sets

of experimental data measured by Francis (1973), Luque and van Beek (1976), and
Lee and Hsu (1994). In the experiments of Francis (1973), the sediment used was
7.5 mm water-worn gravel, and multi-exposure photographs of grains were obtained
to show the trajectories and then determine the bed-load velocity. The experiments
of Luque and van Beek (1976) were performed in a closed rectangular channel at
different surface slopes and using different bed materials. Photographs were taken
at regular intervals to measure the mean rate of bed-load transport. The data from
these experiments with 0.9 and 1.8 mm sands and 3.3 mm gravel were selected. Lee
and Hsu (1994) measured the instantaneous saltation trajectories of sand particles
with sizes of 1.36 and 2.47 mm in a slope-adjustable recirculating flume by a real-
time flow visualization technique. These three groups of data were used to recalibrate
the bed-load velocity formula of van Rijn (1984a). Fig. 3.27 shows the new curve,
in which the transport stage parameter T is defined as T = τb/τc − 1, with τb being
the total bed shear stress measured in the three experiments where no significant bed
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Figure 3.27 Bed-load velocity as function of transport stage parameter (Wu et al., 2006).

forms developed. The new curve can be expressed as Eq. (3.136) with 1.64T0.5 on the
right-hand side.

Fig. 3.27 and Eq. (3.136) show that the lag between flow and bed-load velocities
increases as sediment size increases.

Lag between f low and bed form development

It has been recognized that a temporal lag exists between flow and bed form devel-
opment, but this lag has rarely been investigated experimentally and numerically.
A simple empirical impulse response model was suggested by Phillips and Sutherland
(1990) to quantify this lag. The interested reader may refer to it. More generally, the
development of bed forms and, in turn, the associated temporal lag can be simulated
using a vertical 2-D or 3-D model if the selected computational mesh is fine enough
(much finer than the lengths and heights of the bed forms simulated). However, this
kind of simulation requires a powerful computer and an advanced numerical model.



Chapter 4

Numerical methods

River engineering problems are usually governed by nonlinear differential equations
in irregular and movable domains, most of which have to be solved using numerical
methods. Introduced in this chapter are the discretization methods for 1-D, 2-D, and
3-D problems on fixed and moving grids, the solution strategies for the Navier-Stokes
equations, and the solution methods of algebraic equations. Some of these can be
found in Patankar (1980), Hirsch (1988), Fletcher (1991), Ferziger and Peric (1995),
Shyy et al. (1996), etc.

4.1 CONCEPTS OF NUMERICAL SOLUTION

4.1.1 General procedure of numerical solution

Consider the problem in a domain of a ≤ x ≤ b shown in Fig. 4.1, governed by a
differential equation

L( f ; x) = S (4.1)

with boundary conditions

f |x=a = fa, f |x=b = fb (4.2)

where L is the differential operator, f is the function to be determined, x is the spatial
coordinate, and S is the source term.

To acquire a numerical solution, the study domain is first represented by a finite
number of points, denoted as x1, x2, . . . , and xN , which constitute the computational
grid (mesh). Here, x1 = a and xN = b. The distance between two consecutive points,
�x, is the grid size or spacing.

Eq. (4.1) is discretized on the computational grid using a numerical method.
A discrete equation Ld is then established to approximate the differential equation
at each grid point:

Ld(f̂ ; xi) = Si (i = 2, . . . , N − 1) (4.3)
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Figure 4.1 Example of numerical solution.

where f̂ is the approximate solution of f , which is subject to boundary conditions:

f̂1 = fa, f̂N = fb (4.4)

where f̂1 and f̂N are the values of f̂ at x = x1 and xN , respectively.
The system of algebraic equations consisting of discrete equations (4.3) and bound-

ary conditions (4.4) is used to determine the approximate solution (f̂1, f̂2, . . . , f̂N) on
the computational grid. A direct or iterative solution method may be adopted to solve
the algebraic equations. The obtained approximate solution is a discrete function,
which is shown as solid circles in Fig. 4.1.

The quality of the approximate solution usually relies on the computational grid
used, the discretization method for the governing equation, and the solution method
for the discretized equations.

4.1.2 Properties of numerical solution

The most important properties of numerical solution are accuracy, consistency,
stability, and convergence. A brief overview of these terms is given below. Complete
descriptions can be found in Hirsch (1988), Fletcher (1991), etc.

Accuracy

Numerical accuracy refers to how well a discretized equation approximates to the
differential equation. Eq. (4.3) is said to have an accuracy of mth-order of �x, if the
residual (error) is proportional to �xm:

RL = L( f ; xi)− Ld( f̂ ; xi) = O(�xm) (4.5)

The residual term on the right-hand side of Eq. (4.5) can be obtained with the Taylor
series expansion method. However, it is usually difficult to judge the overall accuracy
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for a complex model system, because the governing equations and boundary conditions
may be discretized using numerical schemes with different accuracies. An alternative
method to analyze the accuracy is through the computation of solution errors on a
series of meshes with grid spacings of �x, 2�x, 3�x, etc. The root-mean-square error
for the solution on each grid is defined as

Rf =
{[

N∑
i=1

(fi − f̂i)
2

]/
N

}1/2

(4.6)

The error Rf is related to the grid spacing�x, as shown in Fig. 4.2. This relationship
can be represented by

Rf = a�xm (4.7)

where a is a nearly constant coefficient. The value of m can be determined from the
series of Rf and �x pair values using a regression method.

Figure 4.2 Relation between Rf and �x.

Performing the above numerical accuracy analysis requires that the exact solution
be known in advance. This is not feasible for most problems in river engineering.
However, the prescribed solution forcing (PSF) method (Dee et al., 1992) can be used
instead. The PSF method substitutes the unknown function f in Eq. (4.1) by a known
function p. The new equation for p has the form:

L(p; x) = S∗ (4.8)

where S∗ is the new source term, which might be different from S because p may not
be the exact solution of Eq. (4.1). Note that it is preferable that the function p satisfies
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boundary conditions (4.2); however, for complex problems, this may be difficult, and
one may use the values of p at boundaries as boundary conditions for solving Eq. (4.8).

Because Eqs. (4.1) and (4.8) have the same formulation except for the source terms,
the same numerical method can be used to solve Eq. (4.8) and find the approximate
solution of p. The above numerical accuracy analysis can then be conducted.

Consistency

The system of discretized equations is considered to be consistent with the original
differential equation if it is equivalent to the differential equation at each grid point
when the grid spacing reduces to zero.

The consistency analysis can be conducted by expanding all nodal values in the dis-
cretized equations as Taylor series about a single point. For consistency, the obtained
expression should be made up of the original partial differential equation and a remain-
der, and the remainder should reduce to zero at each grid point as the grid spacing
reduces to zero.

Stability

Numerical stability is concerned with growth or decay in errors introduced at any
stage of the computational process. In practice, because of limited computer stor-
age, an infinite decimal number is truncated to a finite number of significant figures,
thereby introducing round-off errors. A numerical algorithm is said to be stable if the
cumulative effect of the errors produced during its application is negligible.

The von Neumann and matrix methods are commonly used for stability analysis
(see Hirsch, 1988; Fletcher, 1991). Both methods can predict whether there will be a
growth in numerical errors including the round-off contamination between the true
solution of the numerical algorithm and the actually computed solution.

Convergence

A solution of the discretized algebraic equations is said to be convergent if the approx-
imate solution approaches the exact solution of the original differential equation for
each dependent variable as the grid spacing reduces to zero. Thus, for problem (4.1),
convergence requires f̂ → f , as �x → 0.

Proving the convergence of a numerical algorithm is generally very difficult, even
for the simplest cases. Nevertheless, for a restricted class of problems, convergence
can be established via the Lax equivalent theorem, which was described as follows
(Richtmyer and Morton, 1967; Fletcher, 1991):

Given a properly posed linear initial value problem and a finite difference approx-
imation to it that satisfies the consistency condition, stability is the necessary and
sufficient condition for convergence.

The Lax equivalent theorem is very useful to show the convergence through
the stability and consistency analyses, which are much easier. However, most of
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the problems in computational river dynamics are nonlinear, so the Lax equivalent
theorem is not always applicable.

In general, the tendency of convergence can be tested by successively refining the
computational grid and computing the root-mean-square error of the solution of each
dependent variable by Eq. (4.6). If Rf → 0 as �x → 0, the numerical solution
is convergent. However, this test shows only the tendency rather than the ultimate
convergence (Rf = 0), because the mesh cannot be infinitely refined and the round-off
errors may increase as the number of grid points increases.

4.1.3 Discretization methods

Widely used discretization methods include finite difference method, finite element
method, finite volume method, finite analytical method, and efficient element method.
The finite difference method discretizes a differential equation by approximating dif-
ferential operators with difference operators at each point. The finite analytical method
discretizes the differential equation using the analytical solution of its locally linearizd
form, and the efficient element method establishes difference operators using interpola-
tion schemes in local elements. Because of their similarity, the finite analytical method
and efficient element method are herein grouped with the finite difference method.
The finite volume method integrates the differential equation over each control vol-
ume, holding the conservation laws of mass, momentum, and energy. In the finite
element method, the differential equation is multiplied by a weight function and inte-
grated over the entire domain, and then an approximate solution is constructed using
shape functions and optimized by requiring the weighted integral to have a minimum
residual.

The algebraic equations resulting from the finite difference and finite volume meth-
ods usually have banded and symmetric coefficient matrices that can be handled
efficiently, whereas the algebraic equations from the finite element method often
have sparse and asymmetric coefficient matrices that require relatively tedious effort
for solution. However, the classic finite difference and finite volume methods adopt
structured, regular meshes and encounter difficulties in conforming to the irregular
domains of river flow, while the finite element method adopts unstructured, irreg-
ular meshes and can conveniently handle such irregular domains. Therefore, it has
been a trend in recent decades to develop the finite difference and finite volume meth-
ods on irregular meshes, which have the grid flexibility of the finite element method
and the computational efficiency of the classic finite difference and finite volume
methods.

The finite difference method and finite volume method are introduced in this book.
The finite element method has also been used in many river models because of its grid
flexibility; however, it is absent from this book due to the author’s limited expertise.
Interested readers are encouraged to consult other references, such as Chung (1978),
Fletcher (1991), and Zienkiewicz and Taylor (2000).

One suggestion to new model developers and users is that any numerical method
may have its advantages and disadvantages, and subjectivity may prevent you from
becoming more successful. You should learn the basic properties — such as accuracy,
stability, convergence, and efficiency — of the method that you are going to use and
know how to take advantage of its strengths and avoid its weaknesses.
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4.2 FINITE DIFFERENCE METHOD

4.2.1 Finite difference method for 1-D problems

4.2.1.1 Taylor-series formulation of f inite difference
schemes

Fig. 4.3 shows the 1-D computational grid used in the finite difference method. The
values of function f at x = xi+1 and x = xi−1 can be expanded as Taylor series about
the point x = xi:

fi+1 = fi +
(
∂f
∂x

)
i
�x + 1

2

(
∂2f
∂x2

)
i

�x2 + 1
6

(
∂3f
∂x3

)
i

�x3 + · · · (4.9)

fi−1 = fi −
(
∂f
∂x

)
i
�x + 1

2

(
∂2f
∂x2

)
i

�x2 − 1
6

(
∂3f
∂x3

)
i

�x3 + · · · (4.10)

where �x = xi+1 − xi or �x = xi − xi−1. �x is assumed to be uniform on the entire
computational grid for convenience in the following analyses.

Figure 4.3 1-D finite difference grid.

Ignoring the high-order terms in Eq. (4.9), the first derivative of function f can be
approximated as (

∂f
∂x

)
i
≈ fi+1 − fi

�x
(4.11)

Eq. (4.11) is called the forward difference scheme. Similarly, from Eq. (4.10), the
backward difference scheme can be obtained as(

∂f
∂x

)
i
≈ fi − fi−1

�x
(4.12)

Subtracting Eqs. (4.9) and (4.10) yields the central difference scheme for the first
derivative: (

∂f
∂x

)
i
≈ fi+1 − fi−1

2�x
(4.13)

Summing Eqs. (4.9) and (4.10) yields the central difference scheme widely used for
the second derivative: (

∂2f
∂x2

)
i

≈ fi−1 − 2fi + fi+1

�x2 (4.14)
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The forward and backward difference schemes (4.11) and (4.12) are first-order
accurate, whereas the central difference schemes (4.13) and (4.14) are second-order
accurate. They are bases for many widely used difference schemes.

4.2.1.2 Discretization of 1-D steady problems

Numerical schemes often used in the discretization of 1-D steady problems include the
central, upwind, and exponential difference schemes, which are introduced below.

Central and upwind difference schemes

Consider the 1-D steady convection-diffusion equation:

u
df
dx

= εc d2f
dx2 + S (4.15)

where u is the velocity; and εc is the diffusion coefficient, which is positive.
Applying the central difference schemes (4.13) and (4.14) to the convection and

diffusion terms in Eq. (4.15), respectively, yields

u
fi+1 − fi−1

2�x
= εc fi−1 − 2fi + fi+1

�x2 + Si (4.16)

The central difference scheme (4.14) is adequate for discretizing the diffusion term.
However, the use of the central difference scheme (4.13) for the convection term may
result in numerical oscillations. Upwind difference schemes are usually preferred for
the convection term. The first-order upwind scheme uses the backward or forward
difference scheme for the convection term, depending on whether the velocity u is
positive or negative, i.e.,

u
(
∂f
∂x

)
i
=

⎧⎪⎨⎪⎩
u

fi − fi−1

�x
(u ≥ 0)

u
fi+1 − fi

�x
(u < 0)

(4.17)

Applying the upwind scheme (4.17) to the convection term and the central difference
scheme (4.14) to the diffusion term in Eq. (4.15) yields

⎧⎪⎪⎨⎪⎪⎩
u

fi − fi−1

�x
= εc fi−1 − 2fi + fi+1

�x2 + Si (u ≥ 0)

u
fi+1 − fi

�x
= εc fi−1 − 2fi + fi+1

�x2 + Si (u < 0)
(4.18)

Exponential difference scheme

Assuming constant u, εc, and S in the segment xi−1 ≤ x ≤ xi+1 and imposing boundary
conditions f = fi−1 at x = xi−1 and f = fi+1 at x = xi+1, one obtains the following
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analytic solution of Eq. (4.15) in this segment:

f − fi−1 − (x − xi−1)Si/u
fi+1 − fi−1 − (xi+1 − xi−1)Si/u

= exp[(x − xi−1)u/εc] − 1
exp[(xi+1 − xi−1)u/εc] − 1

(4.19)

Imposing f = fi at x = xi in Eq. (4.19) yields

fi − fi−1 − Si�x/u
fi+1 − fi−1 − 2Si�x/u

= exp(−P/2)
exp(P/2)+ exp(−P/2)

(4.20)

where P is the Peclet number, defined as P = u�x/εc, which represents the relative
importance of convection and diffusion effects.

Eq. (4.20) can be rewritten as

aPfi = aWfi−1 + aEfi+1 + Si (4.21)

where aW = u
2�x exp(P/2)/ sinh(P/2), aE = u

2�x exp(−P/2)/ sinh(P/2), and aP =
aW + aE.

Eq. (4.21) is the exponential difference scheme. It was derived by Lu and Si (1990),
who called it a finite analytic scheme. It is similar to Spalding’s (1972) exponential
scheme based on the finite volume approximation (see Section 4.3.1).

Scheme (4.21) is capable of automatically upwinding and has a diagonally dominant
coefficient matrix. It is very stable. It tends to the upwind difference scheme (4.17) for
a strong convection problem (large P) and to the central difference scheme (4.14) for
a strong diffusion problem (small P).

4.2.1.3 Discretization of 1-D unsteady problems

Time-marching schemes for 1-D unsteady problems include the Euler scheme, leapfrog
scheme, Lax scheme, Crank-Nicholson scheme, Preissmann scheme, characteristic
difference scheme, and Runge-Kutta method. The former five schemes are discussed
below, whereas the others can be found in Abbott (1966), Yeh et al. (1995), Fletcher
(1991), etc.

Euler scheme

Consider the 1-D unsteady convection equation:

∂f
∂t

+ u
∂f
∂x

= S (4.22)

The computational grid in the (x, t) plane for solving Eq. (4.22) is shown in Fig. 4.4.
The simplest scheme for the temporal term in Eq. (4.22) is the two-level difference
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Figure 4.4 Finite difference grid in (x, t) plane.

scheme:

∂f
∂t

= f n+1
i − f n

i

�t
(4.23)

where �t = tn+1 − tn is the time step length, and the superscript n is the time step
index.

Scheme (4.23) can be the forward or backward difference scheme in time. Applying
the forward difference scheme for the time-derivative term in Eq. (4.22) leads to an
explicit scheme:

f n+1
i − f n

i

�t
+ u

f n
i − f n

i−1

�x
= Sn

i (u > 0) (4.24)

whereas applying the backward difference scheme leads to an implicit scheme:

f n+1
i − f n

i

�t
+ u

f n+1
i − f n+1

i−1

�x
= Sn+1

i (u > 0) (4.25)

Note that the convection term in Eqs. (4.24) and (4.25) is discretized using the
upwind scheme (4.17) rather than the central difference scheme for better stability, as
described in Section 4.2.1.2.

The forward difference scheme, with all other terms evaluated at time level tn, is
also known as the Euler method.
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The implicit scheme (4.25) is unconditionally stable, whereas the explicit scheme
(4.24) is stable if

�t ≤ �x/|u| (4.26)

which is called the CFL (Courant-Friedrichs-Lewy) condition.

Leapfrog scheme

Using the central difference scheme (4.13) for both the temporal and spatial terms in
Eq. (4.22) results in the so-called leapfrog scheme:

f n+1
i − f n−1

i

2�t
+ u

f n
i+1 − f n

i−1

2�x
= Sn

i (4.27)

The leapfrog scheme is second-order accurate in time and space. If the CFL condi-
tion (4.26) is satisfied, the leapfrog scheme is neutrally stable. However, the leapfrog
scheme is a three-level scheme, which requires an alternative method for the first
time step.

Lax scheme and Lax-Wendroff scheme

Replacing f n
i in scheme (4.23) by a weighted average value of f n

i−1, f n
i , and f n

i+1 yields
the Lax scheme:

∂f
∂t

=
f n+1
i −

[
ψf n

i + 1
2 (1 − ψ)(f n

i−1 + f n
i+1)
]

�t
(4.28)

where ψ is a spatial weighting coefficient.
Applying the Lax scheme (4.28) for the convection equation (4.22) leads to

f n+1
i −

[
ψf n

i + 1
2 (1 − ψ)(f n

i−1 + f n
i+1)
]

�t
+ u

f n
i+1 − f n

i−1

2�x
= S (4.29)

If ψ = 1 − u2�t2/�x2 and S = 0, the difference equation (4.29) becomes the
Lax-Wendroff scheme, which is second-order accurate in time and space.

For the homogeneous convection-diffusion equation

∂f
∂t

+ u
∂f
∂x

= εc ∂
2f
∂x2 (4.30)

the Lax-Wendroff scheme is

f n+1
i − f n

i

�t
+ u

f n
i+1 − f n

i−1

2�x
=
(
εc + 1

2
u2�t

)
f n
i−1 − 2f n

i + f n
i+1

�x2 (4.31)
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The truncation error of the Lax-Wendroff scheme (4.31) is O(�t2,�x2) as well. Its
stability condition is u2�t2 + 2εc�t ≤ �x2 (see Fletcher, 1991).

Crank-Nicholson scheme

Applying Eq. (4.23) to the time derivative and a weighted average of the central
difference scheme (4.14) between time levels n and n + 1 to the diffusion term in
the 1-D diffusion equation

∂f
∂t

= εc ∂
2f
∂x2 + S (4.32)

yields

f n+1
i − f n

i

�t
= θ

[
εc

f n+1
i−1 − 2f n+1

i + f n+1
i+1

�x2 + Sn+1
i

]

+ (1 − θ)
[
εc

f n
i−1 − 2f n

i + f n
i+1

�x2 + Sn
i

]
(4.33)

where θ is a temporal weighting factor. When θ = 0, Eq. (4.33) is an explicit scheme,
and when θ > 0, Eq. (4.33) is an implicit scheme. For θ = 1/2, Eq. (4.33) is called the
Crank-Nicholson scheme, which is second-order accurate in time and space.

Preissmann scheme

Preissmann (1961) proposed an implicit scheme based on two levels in time and two
points in space, as shown in Fig. 4.5. This scheme replaces the continuous function
f and its time and space derivatives by

f = θ [ψf n+1
i+1 + (1 − ψ)f n+1

i ] + (1 − θ)[ψf n
i+1 + (1 − ψ)f n

i ] (4.34)

Figure 4.5 Computational element in the Preissmann scheme.
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∂f
∂t

= ψ f n+1
i+1 − f n

i+1

�t
+ (1 − ψ) f

n+1
i − f n

i

�t
(4.35)

∂f
∂x

= θ f n+1
i+1 − f n+1

i

�x
+ (1 − θ) f

n
i+1 − f n

i

�x
(4.36)

where θ and ψ are the weighting factors in time and space, respectively. The original
Preissmann scheme adopts ψ = 1/2; thus, Eqs. (4.34)–(4.36) are the generalized
version.

Application of the Preissmann scheme in the 1-D simulation of unsteady open-
channel flows is discussed in detail in Section 5.2.2.

4.2.1.4 High-order difference schemes

The backward and forward difference schemes (4.11) and (4.12) based on two grid
points are the simplest asymmetric difference schemes, and the central difference
schemes (4.13) and (4.14) based on three grid points are the simplest symmetric
difference schemes. To enhance the accuracy of numerical discretization, one may
use more grid points in the difference formulation. For example, the following three-
point and four-point asymmetric difference schemes for the first derivative are derived
using the Taylor series expansion:(

∂f
∂x

)
i
= fi−2 − 4fi−1 + 3fi

2�x
+ O(�x2) (4.37)

(
∂f
∂x

)
i
= fi−2 − 6fi−1 + 3fi + 2fi+1

6�x
+ O(�x3) (4.38)

and the five-point symmetric difference schemes for the first and second derivatives are(
∂f
∂x

)
i
= fi−2 − 8fi−1 + 8fi+1 − fi+2

12�x
+ O(�x4) (4.39)(

∂2f
∂x2

)
i

= −fi−2 + 16fi−1 − 30fi + 16fi+1 − fi+2

12�x2 + O(�x4) (4.40)

By using schemes (4.37) and (4.38), the second-order and third-order upwind
schemes for the convection terms in Eqs. (4.15) and (4.22) can be established
as follows:

u
(
∂f
∂x

)
i
=

⎧⎪⎨⎪⎩
u

fi−2 − 4fi−1 + 3fi

2�x
u ≥ 0

u
−3fi + 4fi+1 − fi+2

2�x
u < 0

(4.41)

u
(
∂f
∂x

)
i
=

⎧⎪⎨⎪⎩
u

fi−2 − 6fi−1 + 3fi + 2fi+1

6�x
u ≥ 0

u
−2fi−1 − 3fi + 6fi+1 − fi+2

6�x
u < 0

(4.42)
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Upwind schemes (4.41) and (4.42) have better accuracy and less numerical diffusion
than the first-order upwind scheme (4.17). However, they may produce numerical
oscillations where the function f varies rapidly.

Using the asymmetric difference scheme (4.37) for the time derivative yields the
three-level implicit scheme:

∂f
∂t

∣∣∣∣n+1

i
= 3f n+1

i − 4f n
i + f n−1

i

2�t
(4.43)

which is second-order accurate in time.
In addition, one may establish high-order schemes based on only two or three grid

points by including the first and second derivatives of the function in difference formu-
lations (Yang and Cunge, 1989; Wu, 1993). One approach is based on the expansion
of f n+1 as a Taylor series about tn:

f n+1
i = f n

i +
m∑

k=1

�tk

k!

(
∂kf

∂tk

)n

i

+ O(�tm+1) (4.44)

For the homogeneous convection equation (4.22) with S = 0 and a constant velocity
u, one can derive ∂kf /∂tk = (−u)k∂kf /∂xk. Substituting this relation into Eq. (4.44)
yields

f n+1
i = f n

i +
m∑

k=1

�tk

k! (−u)k
(
∂kf

∂xk

)n

i

+ O(�tm+1) (4.45)

If the first and second derivatives in Eq. (4.45) are evaluated using the central dif-
ference schemes (4.13) and (4.14), Eq. (4.45) is exactly the Lax-Wendroff scheme.
A fourth-order accurate scheme can be obtained by using the five-point schemes (4.39)
and (4.40) for the first and second derivatives and constructing two fourth-order seven-
point schemes for the third and fourth derivatives in Eq. (4.45). However, to limit
the number of grid points involved, Wu (1993) suggested the following three-point
schemes for these derivatives:(

∂f
∂x

)n

i−1
+ 4
(
∂f
∂x

)n

i
+
(
∂f
∂x

)n

i+1
= 3

f n
i+1 − f n

i−1

�x
+ O(�x4) (4.46)

(
∂2f
∂x2

)n

i

= 2
f n
i−1 − 2f n

i + f n
i+1

�x2 −
(
∂f/∂x

)n
i+1 − (∂f/∂x)ni−1

2�x
+ O(�x4) (4.47)

(
∂3f
∂x3

)n

i

= 15
f n
i+1 − f n

i−1

2�x3 − 3

(
∂f/∂x

)n
i−1 + 8

(
∂f/∂x

)n
i + (∂f/∂x)ni+1

2�x2 + O(�x4)

(4.48)
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(
∂4f
∂x4

)n

i

= 36
f n
i−1 − 2f n

i + f n
i+1

�x4 − 6
(∂f /∂x)ni+1 − (∂f /∂x)ni−1

�x3

− 24
�x2

(
∂2f
∂x2

)n

i

+ O(�x4) (4.49)

Eqs. (4.46)–(4.49) can be derived using the Taylor series expansion. Note that
Eq. (4.46) needs to be solved using a direct or iterative method to compute the first
derivative at each point.

Higher-order (up to eighth-order) difference schemes can be derived by adding the
first and second derivatives at points i − 1 and i + 1 in Eq. (4.45). The approach
described above can also be applied in the derivation of high-order schemes for the
diffusion and convection-diffusion equations by substituting relevant relations for
∂kf /∂tk into Eq. (4.44) (Wu, 1993).

However, the above high-order difference schemes must be treated specially at
boundary points because external points or boundary values for the first and/or
second derivatives are involved. Furthermore, they usually need a uniform mesh that
is difficult to conform to the irregular and movable boundaries of river flow. There-
fore, the numerical schemes of higher than fourth-order accuracy are rarely used in
computational river dynamics.

4.2.2 Finite difference method for multidimensional
problems on regular grids

4.2.2.1 Discretization of multidimensional steady problems

It is straightforward to extend the aforementioned 1-D finite difference schemes to the
discretization of 2-D and 3-D differential equations on regular grids. For example, on
the rectangular grid shown in Fig. 4.6, applying the upwind difference scheme (4.17)
for the convection terms and the central difference scheme (4.14) for the diffusion
terms in the 2-D steady convection-diffusion equation

ux
∂f
∂x

+ uy
∂f
∂y

= εc
(
∂2f
∂x2 + ∂

2f
∂y2

)
+ S (4.50)

yields

Gxi,j + Gyi,j = εc
(

fi−1,j − 2fi,j + fi+1,j

�x2 + fi,j−1 − 2fi,j + fi,j+1

�y2

)
+ Si,j (4.51)

where �x and �y are the grid spacings in the x- and y-directions, respectively; Gxi,j is
set as ux(fi,j − fi−1,j)/�x when ux ≥ 0 and ux(fi+1,j − fi,j)/�x when ux < 0; and Gyi,j
is uy(fi,j − fi,j−1)/�y when uy ≥ 0 and uy(fi,j+1 − fi,j)/�y when uy < 0.
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Figure 4.6 2-D finite difference grid.

To apply the exponential difference scheme (4.21), one can rearrange Eq. (4.50) as(
ux
∂f
∂x

− εc ∂
2f
∂x2

)
+
(

uy
∂f
∂y

− εc ∂
2f
∂y2

)
= S (4.52)

Discretizing the convection and diffusion terms with the exponential difference
scheme (4.21) in the x- and y-directions, respectively, yields

aPfi,j = aWfi−1,j + aEfi+1,j + aSfi,j−1 + aNfi,j+1 + Si,j (4.53)

where

aW = ux

2�x
exp(Px/2)/sinh(Px/2), aE = ux

2�x
exp(−Px/2)/sinh(Px/2),

aS = uy

2�y
exp(Py/2)/sinh(Py/2), aN = uy

2�y
exp(−Py/2)/sinh(Py/2), (4.54)

aP = aW + aE + aS + aN

with Px = ux�x/εc and Py = uy�y/εc.

Scheme (4.53) is also called the five-point hybrid finite analytic scheme (Li and
Yang, 1990; Lu and Si, 1990). Chen and Li (1980) derived the analytic solution for
Eq. (4.50) with constant velocity, diffusivity, and source term at the nine-point cluster
shown in Fig. 4.6 and established a nine-point finite analytic scheme. The nine-point
analytic scheme also has the capability of automatically upwinding and is very stable.
The details can be found in Chen and Li (1980).
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4.2.2.2 Discretization of multidimensional unsteady
problems

The important issue for discretizing 2-D and 3-D unsteady problems is how to arrange
spatial difference operators in different directions or fractional steps. Widely used
approaches include the full-domain implicit (or explicit) method, alternating direction
implicit method, and operator splitting method.

Full-domain implicit (or explicit) method

The full-domain implicit (or explicit) method discretizes all spatial derivatives in 2-D
and 3-D differential equations at the same time level. For example, extending Eq.
(4.33) to the 2-D diffusion equation

∂f
∂t

= εc
(
∂2f
∂x2 + ∂

2f
∂y2

)
+ S (4.55)

yields

f n+1
i,j − f n

i,j

�t
= εcθ

(
f n+1
i−1,j − 2f n+1

i,j + f n+1
i+1,j

�x2 + f n+1
i,j−1 − 2f n+1

i,j + f n+1
i,j+1

�y2

)

+ εc(1 − θ)
(

f n
i−1,j − 2f n

i,j + f n
i+1,j

�x2 + f n
i,j−1 − 2f n

i,j + f n
i,j+1

�y2

)
+ Sn+θ

i,j

(4.56)

When θ = 0, Eq. (4.56) is explicit in both x- and y-directions; its sufficient and
necessary stability condition is r = εc�t/h2 ≤ 1/4, if �x = �y = h. When θ = 1,
Eq. (4.56) is implicit in both x- and y-directions and unconditionally stable; however,
the discretized equation at each grid point involves five unknowns and usually needs
to be solved by an iteration method.

Alternating direction implicit method

The alternating direction implicit (ADI) method was proposed by Peaceman and
Rachford (1955). It usually divides the computation into two or three steps and
discretizes the spatial derivatives implicitly in only one direction at each step.

Consider a 2-D partial differential equation:

∂f
∂t

= Lxf + Lyf (4.57)

where Lx and Ly are differential operators in the x- and y-directions. The correspond-
ing two-step ADI difference equations can be written as⎧⎪⎪⎪⎨⎪⎪⎪⎩

f n+1/2 − f n

�t/2
= �xf n+1/2 +�yf n

f n+1 − f n+1/2

�t/2
= �xf n+1/2 +�yf n+1

(4.58)
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where �x and �y are the spatial difference operators of Lx and Ly, respectively. In
the first step, the operator Lx is approximated implicitly, while Ly is approximated
explicitly. In the second step, Lx is treated explicitly, while Ly is treated implicitly.

For example, the ADI scheme for the 2-D diffusion equation (4.55) is

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f n+1/2
i,j − f n

i,j

�t/2
= εc(δxxf n+1/2

i,j + δyyf n
i,j)+ Sn+1/2

i,j

f n+1
i,j − f n+1/2

i,j

�t/2
= εc(δxxf n+1/2

i,j + δyyf n+1
i,j )+ Sn+1

i,j

(4.59)

where δxx and δyy are the central difference operators corresponding to the second
derivatives ∂2/∂x2 and ∂2/∂y2, respectively.

The ADI scheme (4.59) is unconditionally stable. Because only a 1-D difference
equation with three unknowns needs to be solved at each step, it is simpler than the
full-domain implicit difference equation (4.56).

Operator splitting method

The operator splitting method was proposed by Yanenko (1971) and others. It
splits the differential equation into several operators and then treats each operator
separately.

Consider a differential equation:

∂f
∂t

= L1f + L2f (4.60)

where L1 and L2 are spatial operators. The corresponding difference equation is
written as

f n+1 − f n

�t
= �1f n+1 +�2f n+1 (4.61)

where �1 and �2 are the difference operators of L1 and L2, respectively.
Eq. (4.61) can be split as

⎧⎪⎪⎨⎪⎪⎩
f n+1/2 − f n

�t
= �1f n+1/2

f n+1 − f n+1/2

�t
= �2f n+1

(4.62)

Note that the operator splitting method can be used for 1-D, 2-D, and 3-D
problems. In other words, operators L1 and L2 in Eq. (4.60) can be one-, two-,
or three-dimensional.

The consistency of the operator splitting method for linear differential equations
has been proven, but not yet for nonlinear differential equations. However, extensive
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numerical tests have shown that it can provide satisfactory results for many practical
nonlinear problems.

The advantage of the operator splitting method is that each operator can be handled
with an appropriate method specific to that operator. However, boundary conditions
may be difficult to implement, and the overall accuracy is hard to judge even though
high-order schemes might be used for every operator.

4.2.3 Finite difference method for multidimensional
problems on curvilinear grids

River flow problems usually have irregular and even movable domains. When the
classic finite difference method on regular grids is used to solve these problems, diffi-
culties may arise near boundaries. However, boundary conditions are essential to the
properties of the solution. Therefore, the finite difference method on fixed and moving
curvilinear grids has been established in the past decades via coordinate transformation
and interpolation, as described below.

4.2.3.1 Governing equations in generalized coordinate
system

In general, the unsteady coordinate transformation from the Cartesian coordinate
system (xi, t) to a moving, curvilinear coordinate system (ξm, τ ) can be written as{

xi = xi(ξm, τ) (i = 1, 2, 3; m = 1, 2, 3)
t = τ (4.63)

where ξ1, ξ2, and ξ3(= ξ , η, ζ ) are the coordinates, and τ is the time in the curvilinear
system.

Coordinate transformation (4.63) includes time and hence can be applied to both
fixed and movable grids (Wu, 1996a; Shyy et al., 1996). Its Jacobian matrix is

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂x1

∂ξ1

∂x2

∂ξ1

∂x3

∂ξ1
0

∂x1

∂ξ2

∂x2

∂ξ2

∂x3

∂ξ2
0

∂x1

∂ξ3

∂x2

∂ξ3

∂x3

∂ξ3
0

∂x1

∂τ

∂x2

∂τ

∂x3

∂τ
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.64)

and Jacobian determinant is J = |B|. For a monotonic and reversible coordinate trans-
formation, the Jacobian determinant should be non-zero and have finite bounds, i.e.,
0 < J < + ∞.

Denoteαm
i = ∂ξm/∂xi and β i

m = ∂xi/∂ξm. Thenαm
i and ∂ξm/∂t can be determined by

αm
i = Mi

m

J
,
∂ξm

∂t
= M4

m

J
(4.65)
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where Mi
m (i = 1, 2, 3) and M4

m are the cofactors of β i
m and ∂t/∂ξm in the Jacobian

matrix B, respectively.
Under coordinate transformation (4.63), the first and second derivatives of function

f are given by

∂f
∂t

= ∂f
∂τ

+ ∂ξm
∂t
∂f
∂ξm

(4.66)

∂f
∂xi

= αm
i
∂f
∂ξm

(4.67)

∂2f
∂xi∂xj

= αm
i
∂

∂ξm

(
αn

j
∂f
∂ξn

)
(4.68)

and the substantial derivative is

Df
Dt

= ∂f
∂t

+ ui
∂f
∂xi

= ∂f
∂τ

+ ûm
∂f
∂ξm

(4.69)

where ui and ûm are the velocities in the (xi, t) and (ξm, τ ) coordinate systems,
respectively. They are related as follows:

ûm = ∂ξm
∂t

+ αm
i ui, ui = ∂xi

∂τ
+ β i

mûm (4.70)

Note that like the Cartesian coordinate index i, the curvilinear coordinate index m
is also subject to Einstein’s summation convention.

In the (ξm, τ ) coordinate system, the continuity and Navier-Stokes equations of
incompressible flows are

∂J
∂τ

+ ∂(Jûm)

∂ξm
= 0 (4.71)

∂ui

∂τ
+ ûm

∂ui

∂ξm
= Fi − 1

ρ
αm

i
∂p
∂ξm

+ 1
ρ
αm

j
∂τij

∂ξm
(4.72)

and the scalar transport equation is

∂c
∂τ

+ ûm
∂c
∂ξm

= αm
j
∂

∂ξm

(
αn

j εc
∂c
∂ξn

)
+ S (4.73)

where c is a scalar quantity, such as mass concentration and temperature.

4.2.3.2 Typical coordinate transformations

Boundary-f itted coordinate transformation

A boundary-fitted coordinate transformation was adopted by Thompson et al. (1985)
to simulate flows around physical bodies. In the 2-D case shown in Fig. 4.7,
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Figure 4.7 Boundary-fitted coordinate transformation.

the coordinate transformation between physical domain (x, y) and logical domain
(ξ , η) is governed by the Poisson equations:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂2ξ

∂x2 + ∂
2ξ

∂y2 = P(ξ , η)

∂2η

∂x2 + ∂
2η

∂y2 = Q(ξ , η)

(4.74)

where P and Q are source terms, which essentially determine the grid density
and smoothness.

Because the grid in the physical domain is unknown, it is inconvenient to solve the
equation set (4.74). Exchanging the independent and dependent parameters yields the
corresponding equations for x and y with respect to ξ and η:

⎧⎪⎪⎨⎪⎪⎩
A
∂2x
∂ξ2 − 2B

∂2x
∂ξ∂η

+ C
∂2x
∂η2 + J2

(
P
∂x
∂ξ

+ Q
∂x
∂η

)
= 0

A
∂2y
∂ξ2 − 2B

∂2y
∂ξ∂η

+ C
∂2y
∂η2 + J2

(
P
∂y
∂ξ

+ Q
∂y
∂η

)
= 0

(4.75)

where A = (∂x/∂η)2+(∂y/∂η)2, B = ∂x/∂ξ ·∂x/∂η+∂y/∂ξ ·∂y/∂η, and C = (∂x/∂ξ)2+
(∂y/∂ξ)2. Because the grid in the logical domain is prescribed, the two equations in
(4.75) can be solved conveniently.

The Jacobian determinant J of the coordinate transformation is

J = ∂x
∂ξ

∂y
∂η

− ∂x
∂η

∂y
∂ξ

(4.76)

Under coordinate transformation (4.74), the first derivatives of f are

∂f
∂x

= α1
1
∂f
∂ξ

+ α2
1
∂f
∂η

(4.77)

∂f
∂y

= α1
2
∂f
∂ξ

+ α2
2
∂f
∂η

(4.78)
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where

α1
1 = J−1 ∂y

∂η
, α2

1 = −J−1 ∂y
∂ξ

, α1
2 = −J−1 ∂x

∂η
, α2

2 = J−1 ∂x
∂ξ

(4.79)

The second derivatives are

∂2f
∂x2 = α1

1α
1
1
∂2f
∂ξ2 + 2α1

1α
2
1
∂2f
∂ξ∂η

+ α2
1α

2
1
∂2f
∂η2 +

(
α1

1
∂α1

1

∂ξ
+ α2

1
∂α1

1

∂η

)
∂f
∂ξ

+
(
α1

1
∂α2

1

∂ξ
+ α2

1
∂α2

1

∂η

)
∂f
∂η

(4.80)

∂2f
∂x∂y

= α1
1α

1
2
∂2f
∂ξ2 + (α1

1α
2
2 + α2

1α
1
2)
∂2f
∂ξ∂η

+ α2
1α

2
2
∂2f
∂η2

+
(
α1

1
∂α1

2

∂ξ
+ α2

1
∂α1

2

∂η

)
∂f
∂ξ

+
(
α1

1
∂α2

2

∂ξ
+ α2

1
∂α2

2

∂η

)
∂f
∂η

(4.81)

∂2f
∂y2 = α1

2α
1
2
∂2f
∂ξ2 + 2α1

2α
2
2
∂2f
∂ξ∂η

+ α2
2α

2
2
∂2f
∂η2 +

(
α1

2
∂α1

2

∂ξ
+ α2

2
∂α1

2

∂η

)
∂f
∂ξ

+
(
α1

2
∂α2

2

∂ξ
+ α2

2
∂α2

2

∂η

)
∂f
∂η

(4.82)

Local coordinate transformation on f ixed grids

The previous boundary-fitted coordinate transformation can provide high-quality
numerical grids with global properties, such as orthogonality and smoothness. How-
ever, two partial differential equations need to be solved in the entire domain.
A simpler method for handling irregular boundary problems is the local coordinate
transformation that is based on only individual elements.

Suppose a 2-D physical domain is represented by a quadrilateral grid, and the nine-
point quadrilateral isoparametric element shown in Fig. 4.8 is used as the basic element
(Wu and Li, 1992; Wang and Hu, 1993). At each element all nine points are numbered
1 through 9 and the 5th point is the central point. This irregular element is converted
into a rectangle by the following coordinate transformation:

x =
9∑

k=1

xkϕk(ξ , η), y =
9∑

k=1

ykϕk(ξ , η) (4.83)

where xk and yk are the coordinate values of the kth point in the (x, y) coordinate
system; and ϕk(k = 1, 2, . . . , 9) are the interpolation functions, which are quadratic
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Figure 4.8 2-D local coordinate transformation.

and satisfy ϕk(ξj, ηj) = δkj and
∑9

k=1 ϕk = 1. They are written as

ϕk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(ξξk + ξ2)(ηηk + η2)/4 k = 1, 3, 7, 9

(ξξk + ξ2)(1 − η2)/2 k = 4, 6

(1 − ξ2)(ηηk + η2)/2 k = 2, 8

(1 − ξ2)(1 − η2) k = 5

(4.84)

Differentiating coordinate transformation (4.83) with respect to ξ and η leads to

∂x
∂ξ

=
9∑

k=1
xk
∂ϕk

∂ξ
,
∂x
∂η

=
9∑

k=1
xk
∂ϕk

∂η
,

∂y
∂ξ

=
9∑

k=1
yk
∂ϕk

∂ξ
,
∂y
∂η

=
9∑

k=1
yk
∂ϕk

∂η
,

(4.85)

and

∂2x
∂ξ2 =

9∑
k=1

xk
∂2ϕk

∂ξ2 ,
∂2x
∂ξ∂η

=
9∑

k=1

xk
∂2ϕk

∂ξ∂η
,
∂2x
∂η2 =

9∑
k=1

xk
∂2ϕk

∂η2 ,

∂2y
∂ξ2 =

9∑
k=1

yk
∂2ϕk

∂ξ2 ,
∂2y
∂ξ∂η

=
9∑

k=1

yk
∂2ϕk

∂ξ∂η
,
∂2y
∂η2 =

9∑
k=1

yk
∂2ϕk

∂η2 .

(4.86)

The Jacobian determinant is Eq. (4.76). The first and second derivatives are given
by Eqs. (4.77), (4.78), and (4.80)–(4.82).

For a 3-D problem, the volume formed by twenty-seven points shown in Fig. 4.9
is adopted as the basic element. This irregular element is turned into a cube by the
following coordinate transformation between the physical domain (x, y, z) and the
logical domain (ξ , η, ζ ):

x =
27∑

k=1

xkϕk(ξ , η, ζ ), y =
27∑

k=1

ykϕk(ξ , η, ζ ), z =
27∑

k=1

zkϕk(ξ , η, ζ ) (4.87)
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Figure 4.9 3-D local coordinate transformation.

where xk, yk, and zk are the coordinate values of the kth point in the (x, y, z) coordinate
system, and ϕk(k = 1, 2, . . . , 27) are interpolation functions (Wu, 1996b):

ϕk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ξξk + ξ2)(ηηk + η2)(ζ ζk + ζ 2)/8 k = 1, 3, 7, 9, 19, 21, 25, 27
(1 − ξ2)(ηηk + η2)(ζ ζk + ζ 2)/4 k = 2, 8, 20, 26
(ξξk + ξ2)(1 − η2)(ζ ζk + ζ 2)/4 k = 4, 6, 22, 24
(ξξk + ξ2)(ηηk + η2)(1 − ζ 2)/4 k = 10, 12, 16, 18
(1 − ξ2)(1 − η2)(ζ ζk + ζ 2)/2 k = 5, 23
(1 − ξ2)(ηηk + η2)(1 − ζ 2)/2 k = 11, 17
(ξξk + ξ2)(1 − η2)(1 − ζ 2)/2 k = 13, 15
(1 − ξ2)(1 − η2)(1 − ζ 2) k = 14

(4.88)

Note that the local coordinate transformations (4.83) and (4.87) do not specify
how to generate the computational grid. The grid can be generated by either the
boundary-fitted coordinate method or another more arbitrary method. However, to
ensure a monotonic coordinate transformation, the angles between ξ , η, and ζ grid
lines should be away from 0◦ and 180◦ in the physical space. It is preferable that the
angles are between 45◦ and 135◦.

Local coordinate transformation on moving grids

The local coordinate transformations (4.83) and (4.87) on fixed grids can be extended
to moving grids. For a 2-D case, for example, the physical domain is represented
by a boundary-fitted quadrilateral grid at each time or iteration step. Because the
grid adapts to the changing boundaries, the coordinate values of each grid point are
functions of time, i.e., xk = xk(τ ) and yk = yk(τ ), as shown in Fig. 4.10. Therefore,
the local coordinate transformation at each element reads (Wu, 1996a)

x =
9∑

k=1

xk(τ )ϕk(ξ , η), y =
9∑

k=1

yk(τ )ϕk(ξ , η), t = τ (4.89)

where ϕk(k = 1, 2, . . . , 9) are the interpolation functions expressed in Eq. (4.84).
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Figure 4.10 Local coordinate transformation on moving grid.

Because coordinate transformation (4.89) is time-dependent, it has relations (4.85)
and (4.86) as well as the following:

∂x
∂τ

=
9∑

k=1

∂xk

∂τ
ϕk,

∂y
∂τ

=
9∑

k=1

∂yk

∂τ
ϕk,

∂t
∂ξ

= 0,
∂t
∂η

= 0,
∂t
∂τ

= 1 (4.90)

The local coordinate transformation is convenient for complex movable bound-
ary problems. Because at each time (or iteration) step the used grid conforms to
the physical domain, the complex irregular and movable boundaries can be resolved
effectively.

Stretching coordinate transformation

The stretching coordinate transformation, which is also called the σ -coordinate
transformation, is an algebraic example of the unsteady coordinate transformation
introduced in Section 4.2.3.1. If the boundaries are simple and vary gradually, the
physical domain can be expanded or contracted along one or more directions by
the stretching coordinate transformation, so that a fixed, regular logical domain is
obtained. For example, for 2-D gradually varied open-channel flows, the stretching
coordinate transformation shown in Fig. 4.11 is often used, which is expressed as

⎧⎪⎨⎪⎩
ξ = x

ζ = z − zb

h
H

τ = t

(4.91)

where h is the width of the physical domain, either the flow depth or channel width;
H is the width of the logical domain; and zb is the distance from the lower boundary
to the x axis. For the vertical 2-D case, zb and h are the bed elevation and flow depth
and vary with x and t.
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Figure 4.11 Stretching coordinate transformation.

Stretching coordinate transformation (4.91) has the following analytic relations:

∂x
∂ξ

= 1,
∂x
∂ζ

= 0,
∂x
∂τ

= 0,

∂z
∂ξ

= ∂zb

∂ξ
+ ζ

H
∂h
∂ξ

,
∂z
∂ζ

= h
H

,
∂z
∂τ

= ∂zb

∂τ
+ ζ

H
∂h
∂τ

, (4.92)

∂t
∂ξ

= 0,
∂t
∂ζ

= 0,
∂t
∂τ

= 1,

and

∂ξ

∂x
= 1,

∂ξ

∂z
= 0,

∂ξ

∂t
= 0,

∂ζ

∂x
= −H

h
∂zb

∂x
− ζ

h
∂h
∂x

,
∂ζ

∂z
= H

h
,

∂ζ

∂t
= −H

h
∂zb

∂t
− ζ

h
∂h
∂t

, (4.93)

∂τ

∂x
= 0,

∂τ

∂z
= 0,

∂τ

∂t
= 1.

The 2-D stretching coordinate transformation (4.91) can be easily extended to the
3-D case by adding one stretching function in the third direction. Because analytic
transformation relations exist in the entire domain, it is very convenient to solve
the transformed governing equations in the fixed, regular logical domain. However,
this stretching coordinate transformation is inconvenient for the complex boundary
problems that do not have analytic transformation relations.

4.2.3.3 Discretization of the transformed equations

As mentioned above, the irregular (and/or moving) physical domain or element is
converted to a regular logical domain or element under coordinate transformations
(4.74), (4.83), (4.87), (4.89), and (4.91). Therefore, many classic finite difference
schemes based on regular grids can be used to solve the transformed equation on the
regular logical domain or element. For example, the convection-diffusion equation
(4.50) in the (x, y) coordinate system can be converted to the following form in the
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(ξ , η) coordinate system by these coordinate transformations:

ûξ
∂f
∂ξ

+ ûη
∂f
∂η

= εξξ ∂
2f
∂ξ2 + εηη ∂

2f
∂η2 + S∗ (4.94)

where ûξ = α1
1ux + α1

2uy, ûη = α2
1ux + α2

2uy, εξξ = εc(α
1
1α

1
1 + α1

2α
1
2), εηη =

εc(α
2
1α

2
1 + α2

2α
2
2), and

S∗ = S + 2εc(α1
1α

2
1 + α1

2α
2
2)
∂2f
∂ξ∂η

+ εc
(
α1

1
∂α1

1

∂ξ
+ α2

1
∂α1

1

∂η
+ α1

2
∂α1

2

∂ξ
+ α2

2
∂α1

2

∂η

)
∂f
∂ξ

+ εc
(
α1

1
∂α2

1

∂ξ
+ α2

1
∂α2

1

∂η
+ α1

2
∂α2

2

∂ξ
+ α2

2
∂α2

2

∂η

)
∂f
∂η

.

The transformed equation (4.94) is still a convection-diffusion equation, which can
be easily discretized using the upwind difference scheme (4.17), exponential difference
scheme (4.21), or another scheme on the rectangular logical domain or element. For
example, using the exponential difference scheme (4.21) for ûξ ∂f /∂ξ − εξξ ∂2f /∂ξ2

and ûη∂f /∂η − εηη∂2f /∂η2 in Eq. (4.94) yields Eq. (4.53) with coefficients (Wu,
1996b):

aW = ûξ
2�ξ

exp(Pξ /2)/sinh(Pξ /2), aE = ûξ
2�ξ

exp(−Pξ /2)/sinh(Pξ /2),

aS = ûη
2�η

exp(Pη/2)/sinh(Pη/2), aN = ûη
2�η

exp(−Pη/2)/sinh(Pη/2), (4.95)

aP = aW + aE + aS + aN ,

and the source term replaced by S∗. Here, Pξ = ûξ�ξ/εξξ and Pη = ûη�η/εηη, with
�ξ and �η being the grid lengths in the (ξ , η) system. For the local element shown in
Fig. 4.8, �ξ = �η = 1.

4.2.4 Interpolation method

4.2.4.1 Isoparametric interpolation method on fixed grids

At the nine-point isoparametric element shown in Fig. 4.8, the function f can be
approximated by interpolation:

f =
9∑

k=1

fkϕk (4.96)

where fk are the values of f on grid points, and ϕk are the interpolation functions given
in Eq. (4.84).
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The following difference schemes for the first and second derivatives of f can be
derived from Eq. (4.96) (Wu, 1996b):

∂f
∂x

=
9∑

k=1

akfk,
∂f
∂y

=
9∑

k=1

bkfk (4.97)

∂2f
∂x2 =

9∑
k=1

ckfk,
∂2f
∂y2 =

9∑
k=1

dkfk (4.98)

where ak, bk, ck, and dk are coefficients:

ak = α1
1
∂ϕk

∂ξ
+ α2

1
∂ϕk

∂η
, bk = α1

2
∂ϕk

∂ξ
+ α2

2
∂ϕk

∂η
,

ck = α1
1α

1
1
∂2ϕk

∂ξ2 + 2α1
1α

2
1
∂2ϕk

∂ξ∂η
+ α2

1α
2
1
∂2ϕk

∂η2 +
(
α1

1
∂α1

1

∂ξ
+ α2

1
∂α1

1

∂η

)
∂ϕk

∂ξ

+
(
α1

1
∂α2

1

∂ξ
+ α2

1
∂α2

1

∂η

)
∂ϕk

∂η
,

and

dk = α1
2α

1
2
∂2ϕk

∂ξ2 + 2α1
2α

2
2
∂2ϕk

∂ξ∂η
+ α2

2α
2
2
∂2ϕk

∂η2 +
(
α1

2
∂α1

2

∂ξ
+ α2

2
∂α1

2

∂η

)
∂ϕk

∂ξ

+
(
α1

2
∂α2

2

∂ξ
+ α2

2
∂α2

2

∂η

)
∂ϕk

∂η
.

Eqs. (4.97) and (4.98) can be applied to any point in the local element. For example,
for the central point 5, one can obtain ak, bk, ck, and dk by specifying ξ = η = 0.

The isoparametric interpolation formula (4.96) can be extended to the 3-D case using
the interpolation functions (4.88) based on the 27-point element shown in Fig. 4.9, and
similar difference schemes for the 3-D first and second derivatives can be easily derived.

Note that the difference schemes (4.97) are similar to the central difference scheme
(4.13); thus, they are not as adequate for strong convection problems as the exponen-
tial difference scheme (4.95) and the upwind interpolation method introduced in the
next subsection.

4.2.4.2 Upwind interpolation method on fixed grids

Wang and Hu (1993) analytically solved the following convection-diffusion equation
with constant velocity, diffusivity, and source term in the 1-D local element shown
in Fig. 4.12:

û
df
dξ

= εξ d2f
dξ2 + S∗ (4.99)

and derived the upwind interpolation functions:



140 Computational River Dynamics

Figure 4.12 1-D local element.

c1 = 1
2T

{(2ePξ − e−P − eP)+ T[1 − ξ(R + 1)]}

c3 = 1
2T

{(2ePξ − e−P − eP)+ T[1 − ξ(R − 1)]} (4.100)

c2 = 1 − c1 − c3

where T = e−P +eP −2, R = (eP −e−P)/T, P is the Peclet number defined as P = û/εξ ,
û is the local velocity, and εξ is the diffusion coefficient.

Fig. 4.13 shows the behavior of the upwind interpolation functions at various Peclet
numbers. It can be seen that these functions become more asymmetric as the Peclet
number increases, i.e., when convection becomes more dominant. This upwind feature
stabilizes this interpolation method in the simulation of strong convection problems.

The upwind interpolation functions in 2-D and 3-D cases can be obtained by apply-
ing Eq. (4.100) in every direction. For example, the upwind interpolation functions
for the 2-D element shown in Fig. 4.8 are constructed by

ϕk = ci(ξ)cj(η) (4.101)

where k is corresponding to the pair of i and j according to Table 4.1.

Figure 4.13 Upwind interpolation functions.

This upwind interpolation method is called the efficient element method by Wang
and Hu (1993). It has been used in hydrodynamic modeling by Jia and Wang (1999).
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Table 4.1 Relation between k and (i, j)

k 1 2 3 4 5 6 7 8 9
(i, j) (1, 1) (2, 1) (3, 1) (1, 2) (2, 2) (3, 2) (1, 3) (2, 3) (3, 3)

4.2.4.3 Interpolation method on moving grids

For a moving grid, Eq. (4.96) can still be used to interpolate the function f at the
element shown in Fig. 4.10 at each time step. Consequently the spatial derivatives of
f are discretized by schemes (4.97) and (4.98), while the time derivative is discretized
as (Wu, 1996a)

(
∂f
∂t

)
5

= f n+1
5 − f n

5

�τ
+

9∑
k=1

ekf n+θ
k (4.102)

where ek is the difference coefficient, defined as ek = (
∂ξ
∂t
∂ϕk
∂ξ

+ ∂η
∂t
∂ϕk
∂η
)5; �τ is the

time step length; and θ is an index: = 0 for explicit schemes and = 1 for implicit
schemes.

The second term on the right-hand side of scheme (4.102) appears due to grid
movement.

4.3 FINITE VOLUME METHOD

4.3.1 Finite volume method for 1-D problems

4.3.1.1 Discretization of 1-D steady problems

Consider the 1-D steady, homogeneous convection-diffusion equation, which is
written in conservative form as

d
dx
(ρuφ) = d

dx

(
�

dφ
dx

)
(4.103)

where φ is the quantity to be determined, and � is the diffusion coefficient. � is
related to εc in Eq. (4.15) by � = ρεc. Note that the flow density ρ is included
in Eq. (4.103) to consider its possible changes due to sediment, temperature,
salinity, etc.

Fig. 4.14 shows the commonly used 1-D finite volume grid. For a grid point P, the
point on its west side or in the negative x direction is denoted as W , and the point on
its east side or in the positive x direction is denoted as E. The further west and east
points are WW and EE, respectively. The control volume (cell) for point P is embraced
by two faces w and e, which are located midway (not absolutely necessary) between
W and P and between P and E, respectively.
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Figure 4.14 1-D finite volume grid.

Integrating Eq. (4.103) over the control volume centered at point P shown in
Fig. 4.14 yields

(ρuφ)e − (ρuφ)w =
(
�

dφ
dx

)
e
−
(
�

dφ
dx

)
w

(4.104)

To complete the discretization, the convection flux ρuφ and diffusion flux �dφ/dx
at faces w and e are determined using the schemes described below.

Central scheme

The central scheme adopts a piecewise linear profie for φ, as shown in Fig. 4.15. Thus,
the values of φ at cell faces are given as the average of two neighboring nodal values:

φw = 1
2
(φP + φW ), φe = 1

2
(φE + φP) (4.105)

and the diffusion fluxes are determined by(
�

dφ
dx

)
w

= �w(φP − φW )

�xw
,
(
�

dφ
dx

)
e

= �e(φE − φP)

�xe
, (4.106)

where �xw and �xe are the distances from W to P and from P to E, respectively.

Figure 4.15 Piecewise linear profie in central scheme.
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Substituting Eqs. (4.105) and (4.106) into Eq. (4.104) yields

1
2
(ρu)e(φE + φP)− 1

2
(ρu)w(φP + φW ) = �e(φE − φP)

�xe
− �w(φP − φW )

�xw

(4.107)

The values of ρ, u, and � at faces w and e can be obtained by interpolation of their
values at points W , P, and E. This is to be discussed in the end of Section 4.3.2 for
general situations. The discretized equation (4.107) is reformulated as

aPφP = aWφW + aEφE (4.108)

where aW , aP, and aE are coefficients:

aW = Dw + Fw/2
aE = De − Fe/2 (4.109)

aP = aW + aE + (Fe − Fw)

with F = ρu and D = �/�x.
Integrating the 1-D continuity equation over the control volume shown in Fig. 4.14

leads to Fe = Fw, which is not introduced here in detail. Therefore, Fe − Fw can be
eliminated from the expression of aP in Eq. (4.109).

Because the coefficients in Eq. (4.109) could become negative and |aP| < |aE|+ |aW |
when |F| > 2D (or |P| > 2), the central scheme may result in unrealistic solutions;
see also Section 4.2.1.2. Here, P is the Peclet number, defined in Eq. (4.20) or as
F/D. The numerical oscillations for the central scheme at large Peclet numbers are
due to the assumption that the convected property of φ at a cell face is given the aver-
age of its values at two neighboring points. Schemes that overcome this problem are
upwind scheme (Courant et al., 1952), exponential scheme (Spalding, 1972), hybrid
upwind/central scheme (Spalding, 1972), QUICK scheme (Leonard, 1979), SOUCUP
(Zhu and Rodi, 1991), HLPA scheme (Zhu, 1991), etc., as discussed below.

Upwind scheme

In the upwind scheme, the formulation of the diffusion flux remains unchanged. For
the convection flux the value of φ at face w is set as its value at the upwind adjacent
grid point, as shown in Fig. 4.16, thus yielding

φw =
{
φW , if Fw ≥ 0
φP, if Fw < 0

(4.110)

which can be rewritten as

Fwφw = φW max(Fw, 0)− φP max(−Fw, 0) (4.111)

An expression similar to Eq. (4.111) can be derived for the convection flux at
face e. When Eq. (4.105) is replaced by this concept, the coefficients of the discretized
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Figure 4.16 Stepwise profie in upwind scheme.

equation (4.108) become

aW = Dw + max(Fw, 0)

aE = De + max(−Fe, 0) (4.112)

aP = aW + aE + (Fe − Fw)

It is evident that no negative coefficients would arise in Eq. (4.112). Thus, the
solution will always be physically realistic. However, the upwind scheme is only first-
order accurate and has strong numerical diffusion.

Hybrid scheme

As mentioned above, the central scheme is second-order accurate, but it may encounter
difficulties when |F| > 2D; while the upwind scheme can solve these difficulties
although it is only first-order accurate. Combining these two schemes leads to a hybrid
scheme, which has the advantages of both schemes. The concept is that when |F| ≤ 2D,
the central scheme is used, and when |F| > 2D, the upwind scheme is used. Thus, the
coefficient aW for the hybrid scheme is

aW =

⎧⎪⎨⎪⎩
Fw, if Pw > 2
Dw + Fw/2, if −2 ≤ Pw ≤ 2
0 if Pw < −2

(4.113)

where Pw is the Peclet number at face w. The resulting discretized equation can then
be written as Eq. (4.108) with coefficients:

aW = max(Fw, Dw + Fw/2, 0)

aE = max(−Fe, De − Fe/2, 0) (4.114)

aP = aW + aE + (Fe − Fw)
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Exponential scheme

As discussed in Section 4.2.1.2, if ρu and � are assumed to be constant, Eq. (4.103)
has an exact solution. If a domain 0 ≤ x ≤ L is considered, with boundary conditions
φ = φ0 at x = 0 and φ = φL at x = L, the solution of Eq. (4.103) is

φ − φ0

φL − φ0
= exp(ρux/�)− 1

exp(ρuL/�)− 1
(4.115)

Define the total flux I = ρuφ−�dφ/dx. Using the exact solution (4.115) as a profie
between points P and E, as shown in Fig. 4.17, yields the expression for Iw:

Iw = Fw

[
φW + φW − φP

exp(Pw)− 1

]
(4.116)

Substituting Eq. (4.116) and a similar expression for Ie into Eq. (4.104) leads to

Fe

[
φP + φP − φE

exp(Pe)− 1

]
− Fw

[
φW + φW − φP

exp(Pw)− 1

]
= 0 (4.117)

which can be written as Eq. (4.108) with coefficients:

aW = Fw exp(Fw/Dw)

exp(Fw/Dw)− 1

aE = Fe

exp(Fe/De)− 1
(4.118)

aP = aW + aE + (Fe − Fw)

The exponential scheme (4.117) is based on the formulation first presented by
Spalding (1972). It is similar to the exponential difference scheme introduced in
Section 4.2.1.2.

Figure 4.17 Sketch of exponential scheme.
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QUICK scheme

As shown in Fig. 4.18, QUICK (Quadratic Upwind Interpolation for Convective Kine-
matics) scheme, proposed by Leonard (1979), approximates the face value φw by fitting
a parabolic curve through the values of φ at points WW , W , and P when Fw ≥ 0, and
at W , P, and E when Fw < 0:

φw =

⎧⎪⎪⎨⎪⎪⎩
−1

8
φWW + 3

4
φW + 3

8
φP Fw ≥ 0

3
8
φW + 3

4
φP − 1

8
φE Fw < 0

(4.119)

A similar expression can be derived for the value of φ at face e. The interpolation
scheme (4.119) has a third-order truncation error.

The QUICK scheme is widely applied, but it may have numerical oscillations where
the function φ changes sharply.

Figure 4.18 Quadratic profie in QUICK scheme.

SOUCUP scheme

SOUCUP (Composite Second-Order Upwind/Central Difference/First-Order Upwind)
scheme was proposed by Zhu and Rodi (1991). When Fw ≥ 0, the SOUCUP scheme
approximates the face value φw as

φw =

⎧⎪⎨⎪⎩
1.5φW − 0.5φWW 0 ≤ φ̂W ≤ 0.5

0.5(φP + φW ) 0.5 < φ̂W ≤ 1
φW otherwise

(4.120)

where φ̂W = (φW − φWW )/(φP − φWW ).
Fig. 4.19 shows the relation between φ̂W and φ̂w for the SOUCUP scheme. When

0 ≤ φ̂W ≤ 0.5,φw is approximated by the second-order upwind scheme. When 0.5 <
φ̂W ≤ 1,φw is determined by the central scheme. When φ̂W < 0 or φ̂W > 1,φw is
approximated by the first-order upwind scheme.
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Figure 4.19 Relation between φ̂W and φ̂w for SOUCUP scheme.

HLPA scheme

HLPA (Hybrid Linear/Parabolic Approximation) scheme was proposed by Zhu
(1991). When Fw ≥ 0, the HLPA scheme approximates the face value φw as

φw = φW + γw(φP − φW )
φW − φWW

φP − φWW
(4.121)

where γw = 1 if 0 ≤ φ̂W ≤ 1; otherwise, γw = 0. φ̂W is defined in Eq. (4.120).

Figure 4.20 Relation between φ̂W and φ̂w for HLPA scheme.
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Fig. 4.20 shows the relation between φ̂W and φ̂w for the HLPA scheme. When
0 ≤ φ̂W ≤ 1,φw is approximated by the parabolic function through three points
(0, 0), (0.5, 0.75), and (1, 1). When φ̂W < 0 or φ̂W > 1,φw is approximated by the
first-order upwind scheme. Note that the point (0.5, 0.75) is the intersect point of
the QUICK scheme, central scheme, and second-order upwind scheme in the (φ̂W , φ̂w)
plane.

The SOUCUP and HLPA schemes have good performance for convection-dominated
problems.

4.3.1.2 Discretization of 1-D unsteady problems

Integrating the 1-D unsteady, heterogeneous convection-diffusion equation

∂(ρφ)

∂t
+ ∂

∂x
(ρuφ) = ∂

∂x

(
�
∂φ

∂x

)
+ S (4.122)

over the control volume centered at point P shown in Fig. 4.14 yields

∂(ρφ)

∂t
�xP + (ρuφ)e − (ρuφ)w =

(
�
∂φ

∂x

)
e
−
(
�
∂φ

∂x

)
w

+ S�xP (4.123)

where �xP is the length of the control volume.
Applying the backward difference scheme (4.23) for the time-derivative term, one

of the numerical schemes introduced in Section 4.3.1.1 for the convection fluxes, and
the central difference scheme for the diffusion fluxes in Eq. (4.123) yields

(ρφ)n+1
P − (ρφ)nP
�t

�xP = aWφ
n+1
W + aEφ

n+1
E − aPφ

n+1
P + S�xP (4.124)

The source term in Eq. (4.124) can be linearized as

S�xP = SU + SPφ
n+1
P (4.125)

where SU and SP are coefficients. The linearization formulation (4.125) should be a
good representation of the S ∼ φ relationship, and SP must be nonpositive (Patankar,
1980).

The final form of the discretized equation is

a′
Pφ

n+1
P = aWφ

n+1
W + aEφ

n+1
E + S′

U (4.126)

where

a′
P = aP + ρn+1

P �xP/�t − SP, S′
U = SU + ρn

Pφ
n
P�xP/�t (4.127)
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Similarly, one can apply the three-level implicit scheme (4.43) for the time-derivative
term in Eq. (4.123). The resulting discretized equation is Eq. (4.126) with

a′
P = aP + 1.5ρn+1

P �xP/�t − SP, S′
U = SU + (2ρn

Pφ
n
P − 0.5ρn−1

P φn−1
P )�xP/�t

(4.128)

4.3.2 Finite volume method for multidimensional
problems on fixed grids

Discretization of 2-D transport equation

The 2-D transport equation in the fixed, curvilinear coordinate system is written in
conservative form as

∂

∂t
(ρJφ)+ ∂

∂ξ

(
ρJûξφ − �Jα1

j α
1
j
∂φ

∂ξ

)
+ ∂

∂η

(
ρJûηφ − �Jα2

j α
2
j
∂φ

∂η

)
= JS

(4.129)

where ûξ and ûη are the components of flow velocity in the ξ - and η-directions, which
are related to the velocity components ux and uy in the Cartesian coordinate system
by ûξ = α1

1ux + α1
2uy and ûη = α2

1ux + α2
2uy. Note that the source term S includes the

cross-derivative terms but excludes the second derivatives of coordinates (curvature
terms) that are very sensitive to grid smoothness.

The computational domain is discretized into a finite number of control volumes
(cells) by a computational grid. The grid may be the body-fitted grid generated by Eq.
(4.74) or another more arbitrary grid. One of the commonly used methods for the
control volume setup is shown in Fig. 4.21. The grid lines are identified as cell faces,
and the computational point is placed at the geometric center of each control volume.
The control volume centered at point P is embraced by four faces w, s, e, and n, which
are the linear segments between cell corners nw, sw, se, and ne. It is connected with
four adjacent control volumes centered at points W , E, S, and N. Here, W denotes
the west or the negative ξ direction, E the east or the positive ξ direction, S the south
or the negative η direction, and N the north or the positive η direction.

Integrating the transport equation (4.129) over the control volume shown in
Fig. 4.21 yields

ρn+1
P φn+1

P − ρn
Pφ

n
P

�t
(J�ξ�η)P +

(
ρJûξφ − �Jα1

j α
1
j
∂φ

∂ξ

)n+1

e
�ηe

−
(
ρJûξφ − �Jα1

j α
1
j
∂φ

∂ξ

)n+1

w
�ηw +

(
ρJûηφ − �Jα2

j α
2
j
∂φ

∂η

)n+1

n
�ξn

−
(
ρJûηφ − �Jα2

j α
2
j
∂φ

∂η

)n+1

s
�ξs = S(J�ξ�η)P (4.130)

where �ηw,�ηe,�ξs, and �ξn are the widths of faces w, e, s, and n in the (ξ , η)
coordinate system; and �ξP and �ηP are the lengths of the control volume centered
at P in the ξ - and η-directions.
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Figure 4.21 Typical 2-D control volume.

The numerical schemes previously introduced for the 1-D case can be extended to
determine the convection and diffusion fluxes at faces w, e, s, and n. For example,
inserting the exponential scheme (4.116) into Eq. (4.130) leads to

ρn+1
P φn+1

P − ρn
Pφ

n
P

�t
�AP + Fe

[
φn+1

P + φn+1
P − φn+1

E

exp(Fe/De)− 1

]

− Fw

[
φn+1

W + φn+1
W − φn+1

P

exp(Fw/Dw)− 1

]
+ Fn

[
φn+1

P + φn+1
P − φn+1

N

exp(Fn/Dn)− 1

]

− Fs

[
φn+1

S + φn+1
S − φn+1

P

exp(Fs/Ds)− 1

]
= S�AP (4.131)

where �AP = (J�ξ�η)P is the area of the control volume at point P; Fw, Fe, Fs, and
Fn are the convection fluxes at cell faces w, e, s, and n, respectively, approximated by
the midpoint integral rule as follows:

Fw = ρn+1
w (J�η)wûn+1

ξ ,w , Fe = ρn+1
e (J�η)eû

n+1
ξ ,e ,

Fs = ρn+1
s (J�ξ)sûn+1

η,s , Fn = ρn+1
n (J�ξ)nûn+1

η,n ; (4.132)

and Dw, De, Ds, and Dn are the diffusion parameters:

Dw = (�Jα1
j α

1
j �η)w/�ξw, De = (�Jα1

j α
1
j �η)e/�ξe,

Ds = (�Jα2
j α

2
j �ξ)s/�ηs, Dn = (�Jα2

j α
2
j �ξ)n/�ηn. (4.133)
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The final discretized transport equation is written as

ρn+1
P φn+1

P − ρn
Pφ

n
P

�t
�AP = aWφ

n+1
W + aEφ

n+1
E + aSφ

n+1
S + aNφ

n+1
N − aPφ

n+1
P + b

(4.134)

where

aW = Fw exp(Fw/Dw)

exp(Fw/Dw)− 1
, aE = Fe

exp(Fe/De)− 1
,

aS = Fs exp(Fs/Ds)

exp(Fs/Ds)− 1
, aN = Fn

exp(Fn/Dn)− 1
, (4.135)

aP = aW + aE + aS + aN + (Fe − Fw + Fn − Fs), and b = S�AP.

The term Fe −Fw +Fn−Fs in the coefficient aP can be treated by using the discretized
continuity equation introduced in Section 4.4.

In fact, �AP and the quantities F and D at cell faces in Eqs. (4.132) and (4.133)
can be evaluated using only the parameters in the Cartesian coordinate system without
involving the increments�ξ and�η (Peric, 1985; Zhu, 1992a). The area of the control
volume is calculated by

�AP = 1
2

|(xne − xsw)(ynw − yse)− (xnw − xse)(yne − ysw)| (4.136)

The convection fluxes at faces w and s are determined by

Fw = ρn+1
w (J�η)wûn+1

ξ ,w = ρn+1
w (b1

1ux + b1
2uy)

n+1
w

Fs = ρn+1
s (J�ξ)sûn+1

η,s = ρn+1
s (b2

1ux + b2
2uy)

n+1
s (4.137)

where b1
1 = Jα1

1�η ≈ (∂y/∂η)�η, b1
2 = Jα1

2�η ≈ −(∂x/∂η)�η, b2
1 = Jα2

1�ξ ≈
−(∂y/∂ξ)�ξ , and b2

2 = Jα2
2�ξ ≈ (∂x/∂ξ)�ξ according to Eq. (4.79). The difference

equations for bm
i at center P and faces w and s of the control volume shown in Fig.

4.21 are:

b1
1P = yn − ys, b1

1w = ynw − ysw, b1
1s = yP − yS,

b1
2P = xs − xn, b1

2w = xsw − xnw, b1
2s = xS − xP,

b2
1P = yw − ye, b2

1w = yW − yP, b2
1s = ysw − yse,

b2
2P = xe − xw, b2

2w = xP − xW , b2
2s = xse − xsw. (4.138)

The diffusion parameters at faces w and s are computed by

Dw = (�Jα1
j α

1
j �η)w/�ξw = �w(b1

1b1
1 + b1

2b1
2)w/�Aw

Ds = (�Jα2
j α

2
j �ξ)s/�ηs = �s(b2

1b2
1 + b2

2b2
2)s/�As (4.139)
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where �Aw = (J�ξ�η)w = (�AW +�AP)/2, and �As = (J�ξ�η)s = (�AS +
�AP)/2.

Note that only formulations for the quantities at faces w and s are given in Eqs.
(4.137)–(4.139). The reason is that the face e of each cell is the face w of the next cell
on the east side, and the face n of each cell is the face s of the next cell on the north
side. The quantities at each cell face need to be calculated only once. This ensures the
quantities across cell faces to be consistent.

Discretization of 3-D transport equation

The 3-D transport equation in the fixed, curvilinear coordinate system is written in
conservative form as

∂

∂t
(ρJφ)+ ∂

∂ξ

(
ρJûξφ − �Jα1

j α
1
j
∂φ

∂ξ

)
+ ∂

∂η

(
ρJûηφ − �Jα2

j α
2
j
∂φ

∂η

)
+ ∂

∂ζ

(
ρJûζ φ − �Jα3

j α
3
j
∂φ

∂ζ

)
= JS (4.140)

where ûξ , ûη, and ûζ are the components of flow velocity in the ξ -, η-, and ζ -directions,
related to the velocity components ux, uy, and uz in the Cartesian coordinate system
by ûξ = α1

1ux +α1
2uy +α1

3uz, ûη = α2
1ux +α2

2uy +α2
3uz, and ûζ = α3

1ux +α3
2uy +α3

3uz.
Fig. 4.22 shows the 3-D control volume centered at point P, which is embraced by

six faces w, e, s, n, b, and t. The cell faces are identified by the grid lines, and the point
P is placed at the geometric center of the cell. Compared to the 2-D case, point P is
connected to two more points B (bottom) and T (top) in the ζ direction. Integrating
Eq. (4.140) in this control volume leads to

ρn+1
P φn+1

P − ρn
Pφ

n
P

�t
(J�ξ�η�ζ)P +

(
ρJûξφ − �Jα1

j α
1
j
∂φ

∂ξ

)n+1

e
�ηe�ζe

−
(
ρJûξφ − �Jα1

j α
1
j
∂φ

∂ξ

)n+1

w
�ηw�ζw +

(
ρJûηφ − �Jα2

j α
2
j
∂φ

∂η

)n+1

n
�ξn�ζn

−
(
ρJûηφ − �Jα2

j α
2
j
∂φ

∂η

)n+1

s
�ξs�ζs +

(
ρJûζ φ − �Jα3

j α
3
j
∂φ

∂ζ

)n+1

t
�ξt�ηt

−
(
ρJûζ φ − �Jα3

j α
3
j
∂φ

∂ζ

)n+1

b
�ξb�ηb = S(J�ξ�η�ζ)P (4.141)

The backward difference scheme (4.23) is used to discretize the time-derivative term,
and the numerical schemes introduced in Section 4.3.1 are employed for the convection
and diffusion fluxes, thus yielding

ρn+1
P φn+1

P − ρn
Pφ

n
P

�t
�VP = aWφ

n+1
W + aEφ

n+1
E + aSφ

n+1
S + aNφ

n+1
N

+ aBφ
n+1
B + aTφ

n+1
T − aPφ

n+1
P + b (4.142)
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Figure 4.22 Typical 3-D control volume.

where �VP is the volume of the cell centered at point P, defined as �VP =
( J�ξ�η�ζ)P.

If the exponential scheme is used, the coefficients in Eq. (4.142) are

aW = Fw exp(Fw/Dw)

exp(Fw/Dw)− 1
, aE = Fe

exp(Fe/De)− 1
,

aS = Fs exp(Fs/Ds)

exp(Fs/Ds)− 1
, aN = Fn

exp(Fn/Dn)− 1
, (4.143)

aB = Fb exp(Fb/Db)

exp(Fb/Db)− 1
, aT = Ft

exp(Ft/Dt)− 1
,

aP = aW + aE + aS + aN + aB + aT

+ (Fe − Fw + Fn − Fs + Ft − Fb), and b = S�VP

where

Fw = ρn+1
w (J�η�ζ)wûn+1

ξ ,w , Fe = ρn+1
e (J�η�ζ)eû

n+1
ξ ,e ,

Fs = ρn+1
s (J�ξ�ζ)sûn+1

η,s , Fn = ρn+1
n (J�ξ�ζ)nûn+1

η,n ,
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Fb = ρn+1
b (J�ξ�η)bûn+1

ζ ,b , Ft = ρn+1
t (J�ξ�η)t û

n+1
ζ ,t , (4.144)

and

Dw = (�Jα1
j α

1
j �η�ζ)w/�ξw, De = (�Jα1

j α
1
j �η�ζ)e/�ξe,

Ds = (�Jα2
j α

2
j �ξ�ζ)s/�ηs, Dn = (�Jα2

j α
2
j �ξ�ζ)n/�ηn, (4.145)

Db = (�Jα3
j α

3
j �ξ�η)b/�ζb, Dt = (�Jα3

j α
3
j �ξ�η)t/�ζt.

Like the 2-D case, �VP and the quantities F and D at cell faces in Eqs. (4.144)
and (4.145) can be calculated using only the parameters in the Cartesian coordinate
system, and the final discretized equation does not involve the increments �ξ , �η,
and �ζ (Peric, 1985; Zhu, 1992b). This is demonstrated below.

Kordulla and Vinokur (1983) suggested a method to calculate the volume of a
3-D cell. As shown in Fig. 4.23, the cell with points A, B, . . . , and H as its eight vertices
is decomposed into six tetrahedra, all containing the same diagonal joining points A
and H. The volume of the tetrahedron with vertices A, E, G, and H can be calculated as

�V1 = 1
6

|(−→
AE × −→

AG) · −→
AH| (4.146)

Thus, the volume of the total cell is

�V = 1
6

∣∣∣∣[(−→
AE × −→

AG
)

+
(−→

AF × −→
AE
)

+
(−→

AG × −→
AC
)

+
(−→

AB × −→
AF
)

+
(−→

AC × −→
AD
)

+
(−→

AD × −→
AB
)]

· −→
AH

∣∣∣∣ (4.147)

It is of interest to note that the above method of calculating cell volumes ensures
the conservation of space, i.e., the sum of all cell volumes gives exactly the total
volume of the solution domain. This is a necessary condition for guaranteeing the true
conservation of transported quantities (Zhu, 1992b).

The convection fluxes at faces w, s, and b are determined by

Fw = ρn+1
w (J�η�ζ)wûn+1

ξ ,w = ρn+1
w (b1

1ux + b1
2uy + b1

3uz)
n+1
w

Fs = ρn+1
s (J�ξ�ζ)sûn+1

η,s = ρn+1
s (b2

1ux + b2
2uy + b2

3uz)
n+1
s (4.148)

Fb = ρn+1
b (J�ξ�η)bûn+1

ζ ,b = ρn+1
b (b3

1ux + b3
2uy + b3

3uz)
n+1
b

where b1
i = Jα1

i �η�ζ , b2
i = Jα2

i �ξ�ζ , and b3
i = Jα3

i �ξ�η (i = 1, 2, 3). The
coefficients αm

i and, in turn, bm
i can be calculated using Eq. (4.65) and the cofac-

tors of β i
m in the Jacobian matrix B in Eq. (4.64). For example, using b1

1 =
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Figure 4.23 Volume of a 3-D cell.

(∂y/∂η ∂z/∂ζ − ∂y/∂ζ ∂z/∂η)�η�ζ and discretizing the coordinate derivatives at cell
center P yields

b1
1P = (yn − ys)(zt − zb)− (yt − yb)(zn − zs) (4.149)

Following this procedure, one can derive the discretized equations for all bm
i at cell

center P and faces w, s, and b, which are not introduced here.
The diffusion parameters are

Dw = (�Jα1
j α

1
j �η�ζ)w/�ξw = �w(b1

1b1
1 + b1

2b1
2 + +b1

3b1
3)w/�Vw

Ds = (�Jα2
j α

2
j �ξ�ζ)s/�ηs = �s(b2

1b2
1 + b2

2b2
2 + b2

3b2
3)s/�Vs (4.150)

Db = (�Jα3
j α

3
j �ξ�η)b/�ζb = �b(b

3
1b3

1 + b3
2b3

2 + b3
3b3

3)b/�Vb

where �Vw = (J�ξ�η�ζ)w = (�VW +�VP)/2, �Vs = (J�ξ�η�ζ)s =
(�VS +�VP)/2, and �Vb = (J�ξ�η�ζ)b = (�VB +�VP)/2.

In addition, the values of parameters, such as velocity, density, and diffusivity, at
cell faces need to be interpolated from their values at adjacent cell centers. The often
used method is linear interpolation. For example, the quantities of φ at faces w, s, and
b are computed by linear interpolation between the values at two adjacent cell centers
of each face as follows:

φw = fx,PφP + (1 − fx,P)φW

φs = fy,PφP + (1 − fy,P)φS (4.151)

φb = fz,PφP + (1 − fz,P)φB
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where fx,P, fy,P, and fz,P are the interpolation factors, defined as fx,P = �lwW/

(�lPw +�lwW ), fy,P = �lsS/(�lPs +�lsS), and fz,P = �lbB/(�lPb +�lbB), with
�lwW , �lPw, �lsS, �lPs, �lbB, and �lPb being the lengths of linear segments wW ,
Pw, sS, Ps, bB, and Pb, respectively.

4.3.3 Finite volume method for multidimensional
problems on moving grids

The transport equation in the moving, curvilinear coordinate system (ξm, τ ) can be
written in conservative form as

∂

∂τ
(ρJφ)+ ∂

∂ξm

(
ρJûmφ − �Jαm

j α
m
j
∂φ

∂ξm

)
= JS (4.152)

where ûm (m = 1, 2 or 1, 2, 3) are the velocity components in the (ξm, τ) system,
defined in Eq. (4.70).

Compared with Eq. (4.129) or (4.140) on fixed grids, Eq. (4.152) has additional
terms related to the moving grid. In particular, ûm include the term ∂ξm/∂t that is
related to the grid moving velocity. These terms can be eliminated for a steady problem,
but they should be considered for an unsteady problem.

Because the grid is moving, it needs to be generated repeatedly. Like the dis-
cretization of governing equations, the grid generation can be treated explicitly or
implicitly. In the explicit treatment, the grid is generated before the solution of govern-
ing equations at every time step, whereas in the implicit treatment, the grid generation
is coupled with the solution of governing equations.

The control volume in the moving grid system can still be arranged as Fig. 4.21
or 4.22 at every time step. For a 2-D case, integrating Eq. (4.152) over the control
volume, moving the cross-derivative diffusion terms into the source term, and then
using the numerical schemes described in Section 4.3.1.1 to determine the convection
and normal-derivative diffusion terms on cell faces yields the following discretized
equation (Wu, 1996a):

ρn+1
P �An+1

P φn+1
P − ρn

P�An
Pφ

n
P

�τ
= aWφ

n+1
W + aEφ

n+1
E + aSφ

n+1
S

+ aNφ
n+1
N − aPφ

n+1
P + b (4.153)

Because of grid movement, the control volume area �AP varies with time. The
coefficients in Eq. (4.153) are evaluated in the same way as for the fixed grid in
Section 4.3.2.

4.4 NUMERICAL SOLUTION OF NAVIER-STOKES EQUATIONS

For incompressible flows, the momentum (Navier-Stokes) equations link the velocity
to the pressure gradient, while the continuity equation is just an additional constraint
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on the velocity field without directly linking to the pressure. Because of such a weak
linkage, the convergence and stability of a numerical solution of the Navier-Stokes
equations depend largely on how the pressure gradient and velocity are evaluated.
Storing the variables at the geometric center of the control volume coupled with the
use of linear interpolation for internodal variation usually leads to non-physical node-
to-node (checkerboard) oscillations. One approach for eliminating such oscillations is
to use the staggered grid, as adopted in Harlow and Welch’s (1965) MAC (Marker
and Cell) method, Chorin’s (1968) projection method, and Patankar and Spalding’s
(1972) SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm. The
other approach is to use the momentum interpolation technique proposed by Rhie and
Chow (1983) based on the non-staggered grid. In addition, the stream function and
vorticity approach is also useful for solving the 2-D Navier-Stokes equations.

4.4.1 Primitive variables: MAC formulation
on staggered grid

The 2-D Navier-Stokes equations (2.34) and (2.35) with a constant flow density are
written in the Cartesian coordinate system as

∂ux

∂x
+ ∂uy

∂y
= 0 (4.154)

∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
= 1
ρ

Fx − 1
ρ

∂p
∂x

+ 1
ρ

∂τxx

∂x
+ 1
ρ

∂τxy

∂y
(4.155)

∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
= 1
ρ

Fy − 1
ρ

∂p
∂y

+ 1
ρ

∂τyx

∂x
+ 1
ρ

∂τyy

∂y
(4.156)

The MAC method first proposed by Harlow and Welch (1965) solves the Navier-
Stokes equations on the staggered rectangular grid, which stores the variables ux, uy,
and p at different grid points, as shown in Fig. 4.24. The continuity equation (4.154)
is discretized as

Dn+1
i,j = un+1

x,i+1/2,j − un+1
x,i−1/2,j

�x
+ un+1

y,i,j+1/2 − un+1
y,i,j−1/2

�y
= 0 (4.157)

where Dn+1
i,j is the dilatation of the cell (i, j).

The momentum equations (4.155) and (4.156) are discretized as

un+1
x,i+1/2,j = un

x,i+1/2,j + Fn
i+1/2,j − �t

ρ�x
(pn+1

i+1,j − pn+1
i,j ) (4.158)

un+1
y,i,j+1/2 = un

y,i,j+1/2 + Gn
i,j+1/2 − �t

ρ�y
(pn+1

i,j+1 − pn+1
i,j ) (4.159)

where Fn
i+1/2,j and Gn

i,j+1/2 include the convection and diffusion terms in the momen-
tum equations (4.155) and (4.156) discretized by the finite difference schemes
introduced in Section 4.2.
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Figure 4.24 Staggered grid in MAC method.

Substituting Eqs. (4.158) and (4.159) into (4.157) leads to the discretized Poisson
equation for the pressure:

pn+1
i+1,j − 2pn+1

i,j + pn+1
i−1,j

�x2 + pn+1
i,j+1 − 2pn+1

i,j + pn+1
i,j−1

�y2

= ρDn
i,j

�t
+ ρ

�t

(
Fn

i+1/2,j − Fn
i−1/2,j

�x
+ Gn

i,j+1/2 − Gn
i,j−1/2

�y

)
(4.160)

In Eq. (4.160) Dn
i,j/�t may be interpreted as a discretization of −(∂D/∂t)i,j with

Dn+1
j,k = 0. Thus, the pressure solution resulting from Eq. (4.160) is such as to allow

the discretized continuity equation (4.157) to be satisfied at time level n + 1.
Eq. (4.160) can be solved by using an iterative or direct method. Once it is solved,

substituting the obtained pn+1 into Eqs. (4.158) and (4.159) permits un+1
x and un+1

y to
be calculated. Because Eqs. (4.158) and (4.159) are explicit algorithms, the maximum
time step for a stable solution is restricted by (Peyret and Taylor, 1983)

0.25(|ux| + |uy|)2�t Re ≤ 1 and �t/(Re�x2) ≤ 0.25 (4.161)

with the assumption of �x = �y. Re is the Reynolds number.

4.4.2 Primitive variables: projection formulation
on staggered grid

The projection method first proposed by Chorin (1968) solves the transport equations
to predict intermediate velocities and then project these velocities onto a space of
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divergence-free field. Write the Navier-Stokes equations as

∂u
∂t

+ (u · ∇)u = F − 1
ρ

∇p + ν�u (4.162)

∇ · u = 0 (4.163)

where u is the velocity vector; F is the external force; ∇ is the divergence or gradient
operator, defined as ∇ = ix∂/∂x+ iy∂/∂y+ iz∂/∂z, with ix, iy, and iz being unit vectors
in the x-, y-, and z-axes in the Cartesian coordinate system; and � is the Laplace
operator, defined as � = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2.

The projection method consists of two steps in time. The first step computes the
intermediate velocity field u∗ by omitting the pressure term from the momentum
equation:

u∗ − un

�t
+ (un · ∇)un = F + ν�u∗ (4.164)

The second step projects u∗ to the space of divergence-free field to obtain un+1:

⎧⎨⎩un+1 = u∗ − �t
ρ

∇pn+1

∇ · un+1 = 0
(4.165)

Substituting the first equation into the second equation in (4.165) yields a Poisson
equation for the pressure:

�t
ρ
�pn+1 = ∇ · u∗ (4.166)

To solve Eq. (4.166), the following boundary condition is often applied:

∂pn+1

∂n
= 0 (4.167)

where n denotes the direction normal to the boundary.
In the projection method, Eqs. (4.162) and (4.163) are usually discretized on a

staggered grid (such as the MAC grid in Fig. 4.24). The convection terms are commonly
discretized using an upwind scheme, and the diffusion terms can be discretized using
the central difference scheme.

Various variants of the projection method have been proposed in the literature to
solve the shallow water equations and the Navier-Stokes equations. Some of them are
introduced in Chapters 6 and 7.
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4.4.3 Primitive variables: SIMPLE(C) formulation on
staggered grid

SIMPLE algorithm

In the finite volume method, the 2-D Navier-Stokes equations are usually written in
conservative form as

∂ρ

∂t
+ ∂(ρux)

∂x
+ ∂(ρuy)

∂y
= 0 (4.168)

∂(ρux)

∂t
+ ∂(ρu2

x)

∂x
+ ∂(ρuyux)

∂y
= Fx − ∂p

∂x
+ ∂τxx

∂x
+ ∂τxy

∂y
(4.169)

∂(ρuy)

∂t
+ ∂(ρuxuy)

∂x
+ ∂(ρu2

y)

∂y
= Fy − ∂p

∂y
+ ∂τyx

∂x
+ ∂τyy

∂y
(4.170)

Note that the flow density ρ may vary with sediment concentration, temperature,
salinity, etc.

Fig. 4.25(a) shows the staggered grid used in the SIMPLE algorithm of Patankar and
Spalding (1972). For simplicity, a rectangular grid is used here. The control volume
for the x-momentum equation is shown in Fig. 4.25(b). Applying the finite volume
discretization introduced in Section 4.3.2 to Eq. (4.169) in this control volume leads
to the following discretized equation for ux,e:

au
e un+1

x,e =
∑

l

au
l un+1

x,l + Su + Ae(p
n+1
P − pn+1

E ) (4.171)

where Ae is the width of face e, i.e., �ye. Note that the index l sweeps over all four ux
neighbors outside the control volume in Fig. 4.25(b).

As explained in Eq. (4.126), in the case of unsteady flow the discretized time-
derivative term is split and added to the source term Sui and the coefficient au

e .
Therefore, Eq. (4.171) can be used for both steady and unsteady flows.

The control volume for the y-momentum equation is shown in Fig. 4.25(c). The
discretized equation for uy,n can be written as

av
nun+1

y,n =
∑

l

av
l un+1

y,l + Sv + An(p
n+1
P − pn+1

N ) (4.172)

where An = �xn.
Once the pressure field is given, the discretized momentum equations (4.171) and

(4.172) can be solved. However, the pressure field is still to be determined. In an
iterative solution process, a pressure field p∗ is first guessed and then an approximate
velocity field is obtained using the following equations:

au
e u∗

x,e =
∑

l

au
l u∗

x,l + Su + Ae(p∗
P − p∗

E) (4.173)
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Figure 4.25 Staggered grid in SIMPLE algorithm: (a) sketch of global grid, (b) control volume for ux ,
(c) control volume for uy , and (d) control volume for p.

av
nu∗

y,n =
∑

l

av
l u∗

y,l + Sv + An(p∗
P − p∗

N) (4.174)

The approximate velocities u∗
x and u∗

y do not satisfy the continuity equation. Hence,
the pressure correction p′ and velocity corrections u′

x and u′
y are defined as

p′ = pn+1 − p∗ (4.175)

u′
x = un+1

x − u∗
x, u′

y = un+1
y − u∗

y (4.176)

Subtracting Eq. (4.173) from Eq. (4.171) and neglecting the term
∑

l au
l u′

x,l yields
the u′

x-equation:

u′
x,e = de(p′

P − p′
E) (4.177)

where de = Ae/au
e .
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In a similar manner, the u′
y-equation is derived by subtracting Eqs. (4.172) and

(4.174) as

u′
y,n = dn(p′

P − p′
N) (4.178)

where dn = An/av
n.

The control volume for the pressure is shown in Fig. 4.25(d), over which the
continuity equation (4.168) can be integrated as

ρn+1
P − ρn

P

�t
�x�y + [(ρux)

n+1
e − (ρux)

n+1
w ]�y + [(ρuy)

n+1
n − (ρuy)

n+1
s ]�x = 0

(4.179)

Inserting Eqs. (4.176)–(4.178) into Eq. (4.179) leads to the discrete equation for p′:

ap
Pp′

P = ap
Wp′

W + ap
Ep′

E + ap
Sp′

S + ap
Np′

N + bp (4.180)

where ap
W = ρn+1

w dw�y, ap
E = ρn+1

e de�y, ap
S = ρn+1

s ds�x, ap
N = ρn+1

n dn�x, ap
P =

ap
W + ap

E + ap
S + ap

N , and bp = −(ρn+1
P − ρn

P)�x�y/�t − (ρn+1
e u∗

x,e − ρn+1
w u∗

x,w)�y−
(ρn+1

n u∗
y,n − ρn+1

s u∗
y,s)�x.

The computation is performed in the following sequence:

(1) Guess the pressure field p∗;
(2) Solve the momentum equations (4.173) and (4.174) to obtain u∗

x and u∗
y;

(3) Calculate p′ using (4.180);
(4) Calculate p using Eq. (4.175);
(5) Calculate un+1

x and un+1
y using Eqs. (4.176)–(4.178);

(6) Treat the corrected pressure p as a new guessed pressure p∗, and repeat the
procedure from step 2 to 6 until a converged solution is obtained, and

(7) Conduct the calculation of the next time step if unsteady flow is concerned.

SIMPLEC algorithm

Because the term
∑

l au
l u′

x,l is neglected in the derivation of Eq. (4.177), the pressure
is not exactly solved in the aforementioned SIMPLE algorithm. Several algorithms,
such as SIMPLER (SIMPLE Revised, Patankar, 1980), PISO (Issa, 1982), and SIM-
PLEC (SIMPLE Consistence, van Doormaal and Raithby, 1984), have been proposed
to improve this. Van Doormaal and Raithby (1984) have reported that significant
savings on computation time can be achieved by the SIMPLEC algorithm in several
applications, as compared to the SIMPLE and SIMPLER algorithms. Therefore, the
SIMPLEC algorithm is introduced below.

The full velocity correction equation reads

au
e u′

x,e =
∑

l

au
l u′

x,l + Ae(p′
P − p′

E) (4.181)
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To introduce a consistent approximation, the term
∑

l au
l u′

x,e is subtracted from
both sides of Eq. (4.181), yielding

⎛⎝au
e −

∑
l

au
l

⎞⎠u′
x,e =

∑
l

au
l (u

′
x,l − u′

x,e)+ Ae(p′
P − p′

E) (4.182)

Assuming that all u′
x,k are of the same order of magnitude as u′

x,e, the first term on
the right-hand side of Eq. (4.182) can be omitted, thus yielding the new u′

x-equation
at face e as

u′
x,e = d̃e(p′

P − p′
E) (4.183)

where d̃e = Ae/(au
e −∑l au

l ).
In a similar manner, the new u′

y-equation at face n is derived as

u′
y,n = d̃n(p′

P − p′
N) (4.184)

where d̃n = An/(av
n −∑l av

l ).
Substituting Eqs. (4.176), (4.183), and (4.184) into Eq. (4.179) leads to the pressure

correction equation (4.180) with de, dw, dn, and ds replaced by d̃e, d̃w, d̃n, and d̃s,
respectively.

The SIMPLEC and SIMPLE algorithms have almost the same computational
sequence. Therefore, they can be implemented easily together in a computer code.

Note that both SIMPLE and SIMPLEC algorithms ignore terms in the derivation of
the pressure correction equation. This is not essential, because the pressure correction
equation is only an intermediate algorithm that leads to the correct pressure field,
without directly affecting the final solution. As long as a converged solution is obtained
(p′ → 0), all formulations of the p′ equation will give the same final solution (Pantakar,
1980, p.128).

4.4.4 Primitive variables: SIMPLE(C) formulation on
non-staggered grid

The non-staggered grid, also called the collocated grid, stores all variables on the same
set of grid points. Many terms in the discretized equations on the non-staggered grid
are identical, and the number of coefficients that must be computed and stored is
minimized. Thus, the non-staggered grid approach has simpler computer codes and
handles complex domains more easily than the staggered grid approach, especially in
3-D situations. However, the non-staggered grid encountered difficulties in the cou-
pling of pressure and velocity, as well as numerical oscillations in the pressure field;
thus, it had rarely been used for the computation of incompressible flows, until Rhie
and Chow (1983) proposed the momentum interpolation technique. This interpo-
lation technique improved the pressure-velocity coupling on the non-staggered grid.
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The works of Peric (1985), Majumdar (1988), and Ferziger and Peric (1995) fur-
ther popularized the non-staggered grid. The SIMPLE and SIMPLEC algorithms
based on the non-staggered grid with the momentum interpolation technique are
introduced below.

SIMPLE algorithm

The conservative form of the 2-D Navier-Stokes equations in the curvilinear grid
system reads

∂

∂τ
(ρJ)+ ∂

∂ξm
(ρJûm) = 0 (4.185)

∂

∂τ
(ρJui)+ ∂

∂ξm

(
ρJûmui − �Jαm

j α
m
j
∂ui

∂ξm

)
= − ∂

∂ξm
(Jαm

i p)+ JS (4.186)

where S includes the cross-derivative diffusion terms and the external forces.
Discretizating the momentum equation (4.186) in the control volume shown in

Fig. 4.21 yields the following equation for velocities ui,P (i = 1, 2):

un+1
i,P = 1

au
P

⎛⎝ ∑
l=W ,E,S,N

au
l un+1

i,l + Sui

⎞⎠+ D1
i (p

n+1
w − pn+1

e )+ D2
i (p

n+1
s − pn+1

n )

(4.187)

where D1
i = (Jα1

i �η)P/a
u
P, and D2

i = (Jα2
i �ξ)P/a

u
P. Note that the values of p at faces

w, e, s, and n are calculated by linear interpolation between two adjacent points, as
expressed in Eq. (4.151).

In analogy to Eq. (4.126), Eq. (4.187) can be used for both steady and unsteady
flows.

After an under-relaxation is introduced to stabilize the iterative solution process,
Eq. (4.187) is rewritten as (Majumdar, 1988)

un+1
i,P = αu[Hi,P + D1

i (p
n+1
w − pn+1

e )+ D2
i (p

n+1
s − pn+1

n )] + (1 − αu)uo
i,P

(4.188)

where Hi,P = (∑l=W ,E,S,N au
l un+1

i,l + Sui)/au
P, and uo

i,P are the old values of un+1
i,P in the

previous iteration step.
Because the pressure is unknown, a pressure field p∗ is guessed, and then the

approximate values of the velocities are obtained by

u∗
i,P = αu[H∗

i,P + D1
i (p

∗
w − p∗

e)+ D2
i (p

∗
s − p∗

n)] + (1 − αu)uo
i,P (4.189)

Subtracting Eq. (4.189) from Eq. (4.188) and neglecting the terms Hi,P − H∗
i,P leads

to the relation of velocity and pressure corrections at cell center:

un+1
i,P = u∗

i,P + αu[D1
i (p

′
w − p′

e)+ D2
i (p

′
s − p′

n)] (4.190)
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and the pressure correction has the following relation:

pn+1 = p∗ + p′ (4.191)

The momentum interpolation technique proposed by Rhie and Chow (1983)
calculates the values of ui at face w as

u∗
i,w = αu[(1 − fx,P)G1∗

i,PW + fx,PG1∗
i,P] + αu[(1 − fx,P)/au

PW + fx,P/au
P]

× (Jα1
i �η)w(p

∗
W − p∗

P)+ (1 − αu)[(1 − fx,P)uo
i,W + fx,Puo

i,P] (4.192)

where G1∗
i,P = H∗

i,P + D2
i (p

∗
s − p∗

n), and G1∗
i,PW and au

PW are the values of G1∗
i,P and au

P
for the neighboring control volume centered at point W .

Similarly, the values of ui at face s are calculated by

u∗
i,s = αu[(1 − fy,P)G2∗

i,PS + fy,PG2∗
i,P] + αu[(1 − fy,P)/au

PS + fy,P/au
P]

× (Jα2
i �ξ)s(p

∗
S − p∗

P)+ (1 − αu)[(1 − fy,P)uo
i,S + fy,Puo

i,P] (4.193)

where G2∗
i,P = H∗

i,P + D1
i (p

∗
w − p∗

e), and G2∗
i,PS and au

PS are the values of G2∗
i,P and au

P for
the neighboring control volume centered at point S.

Subtracting Eqs. (4.192) and (4.193) from their counterparts for un+1
i,w and un+1

i,s

under the pressure field pn+1 and neglecting the terms G1∗
i,P − G1

i,P, G2∗
i,P − G2

i,P, etc.,
leads to

un+1
i,w = u∗

i,w + αuQ1
i,w(p

′
W − p′

P) (4.194)

un+1
i,s = u∗

i,s + αuQ2
i,s(p

′
S − p′

P) (4.195)

where Q1
i,w = [(1 − fx,P)/au

PW + fx,P/au
P](Jα1

i �η)w, and Q2
i,s = [(1 − fy,P)/au

PS + fy,P/au
P]

(Jα2
i �ξ)s.

Using the definition (4.132) of the fluxes at cell faces yields

Fw = F∗
w + ap

W (p
′
W − p′

P) (4.196)

Fs = F∗
s + ap

S(p
′
S − p′

P) (4.197)

where ap
W = αuρ

n+1
w (Jα1

i �η)wQ1
i,w, ap

S = αuρ
n+1
s (Jα2

i �ξ)sQ
2
i,s, and F∗

w and F∗
s are

the fluxes determined using Eq. (4.132) in terms of the approximate velocities u∗
i,w

abd u∗
i,s.

Integrating the continuity equation (4.185) over the control volume shown in
Fig. 4.21 and discretizing the time-derivative term with the backward difference
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scheme yields

ρn+1
P − ρn

P

�τ
�AP + Fe − Fw + Fn − Fs = 0 (4.198)

Substituting Eqs. (4.196) and (4.197) and two similar equations for the fluxes at
faces e and n into Eq. (4.198) leads to the equation for pressure correction:

ap
Pp′

P = ap
Wp′

W + ap
Ep′

E + ap
Sp′

S + ap
Np′

N + Sp (4.199)

where ap
P = ap

W +ap
E+ap

S +ap
N , and Sp = −(ρn+1

P − ρn
P)�AP/�τ−(F∗

e − F∗
w + F∗

n − F∗
s ).

The computation procedure of the SIMPLE algorithm on the non-staggered grid is
similar to that on the staggered grid, as introduced in Section 4.4.3.

SIMPLEC algorithm

Following Van Doormaal and Raithby (1984), the term
∑

au
ku′

i,k is kept in the
derivation of Eq. (4.190), thus yielding

au
Pu′

i,P = αu

∑
l=E,W ,N,S

au
l u′

i,l + αuau
P[D1

i (p
′
w − p′

e)+ D2
i (p

′
s − p′

n)] (4.200)

The term αu
∑

au
l u′

i,P is then subtracted from both sides of Eq. (4.200), yielding

⎛⎝au
P − αu

∑
l=E,W ,N,S

au
l

⎞⎠u′
i,P = αu

∑
l=E,W ,N,S

au
l (u

′
i,l − u′

i,P)

+ αuau
P[D1

i (p
′
w − p′

e)+ D2
i (p

′
s − p′

n)] (4.201)

Assuming that all u′
i,k are of about the same order as u′

i,P and neglecting the first
term on the right-hand side of Eq. (4.201) leads to

un+1
i,P = u∗

i,P + αu[D̃1
i (p

′
w − p′

e)+ D̃2
i (p

′
s − p′

n)] (4.202)

where D̃m
i = Dm

i /(1 − αu
∑

l=E,W ,N,S au
l /a

u
P), m = 1, 2.

Using the momentum interpolation technique introduced above, the velocity
corrections at cell faces w and s are derived as

un+1
i,w = u∗

i,w + αuQ̃1
i,w(p

′
W − p′

P) (4.203)

un+1
i,s = u∗

i,s + αuQ̃2
i,s(p

′
S − p′

P) (4.204)
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where Q̃1
i,w = Q1

i,w/[1−αu(1−fx,P)(
∑

l=E,W ,N,S au
l /a

u
p)W−αufx,P(

∑
l=E,W ,N,S au

l /a
u
P)P],

and Q̃2
i,s = Q2

i,s/[1 − αu(1 − fy,P)(
∑

l=E,W ,N,S au
l /a

u
P)S − αufy,P(

∑
l=E,W ,N,S au

l /a
u
P)P].

The fluxes at cell faces are still determined by Eqs. (4.196) and (4.197), and the
pressure correction equation is still written as Eq. (4.199), with Q1

i,w and Q2
i,s replaced

by Q̃1
i,w and Q̃2

i,s.

4.4.5 Stream function and vorticity formulation

In the 2-D case, it is possible to avoid explicit appearance of the pressure in the Navier-
Stokes equations by introducing stream function and vorticity as dependent variables.
The voticity � is defined as

� = ∂uy

∂x
− ∂ux

∂y
(4.205)

Cross-differentiating the ux and uy momentum equations (4.155) and (4.156)
with respect to y and x and then subtracting them yields the transport equation of
vorticity:

∂�

∂t
+ ∂(ux�)

∂x
+ ∂(uy�)

∂y
= ν

(
∂2�

∂x2 + ∂
2�

∂y2

)
(4.206)

Eq. (4.206) is for laminar flows. A similar equation can be derived for turbu-
lent flows.

The stream function ψ is defined by

ux = ∂ψ
∂y

, uy = −∂ψ
∂x

(4.207)

Substituting Eq. (4.207) into the continuity equation (4.154) leads to the following
Poisson equation for stream function:

∂2ψ

∂x2 + ∂
2ψ

∂y2 = −� (4.208)

Eqs. (4.206) and (4.208) replace the continuity and Navier-Stokes equations
(4.154)–(4.156) and constitute the new governing equations. They can be solved
conveniently using the finite difference method, finite volume method, or finite
element method.

Since the pressure does not appear in Eqs. (4.206) and (4.208) and the continuity
equation (4.154) is automatically satisfied, the stream function and vorticity method
is convenient in the 2-D case. However, extension of this method to the 3-D case is
not straightforward and loses the merits of the 2-D version.
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4.5 SOLUTION OF ALGEBRAIC EQUATIONS

After a partial differential equation is discretized using one of the previously introduced
numerical methods, the next task is to solve the resulting algebraic equations. If an
explicit scheme is used for an unsteady problem, only one unknown appears at each
time step, so the calculation can be easily performed step by step. If an implicit scheme
is used for an unsteady problem or a numerical scheme involving more than two
grid points is used for a steady problem, multiple unknowns appear in the algebraic
equations that must be solved together. The implicit scheme is usually more stable and
allows for larger time steps than the explicit scheme, yet its overall efficiency depends
on the method used to solve the algebraic equations.

The algebraic equations can be solved directly or iteratively. Direct methods, such
as the Gaussian elimination, are often used to solve linear algebraic equations; iter-
ation methods are usually used for nonlinear equations, because the coefficients
have to be updated and the equations have to be solved repeatedly. The meth-
ods often used for solving algebraic equations in computational river dynamics are
introduced below.

4.5.1 Thomas algorithm

The Thomas algorithm, also called the double sweep algorithm, is often used to solve
the set of algebraic equations resulting from the use of a three-point implicit finite
difference or finite volume method for a 1-D second-order differential equation. The
algebraic equations at internal points are

aP,iφi = aW ,iφi−1 + aE,iφi+1 + bi (i = 2, 3, . . . , m − 1) (4.209)

and boundary conditions are

aP,1φ1 = aE,1φ2 + b1 (4.210)
aP,mφm = aW ,mφm−1 + bm (4.211)

where m is the total number of grid points.
The set of equations (4.209)–(4.211) can be written in matrix form as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−aP,1 aE,1

aW ,2 −aP,2 aE,2

· · ·
aW ,i −aP,i aE,i

· · ·
aW ,m−1 −aP,m−1 aE,m−1

aW ,m −aP,m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1

φ2

·
φi

·
φm−1

φm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

·
bi

·
bm−1

bm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.212)

which has a tridiagonal coefficient matrix.
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Assuming that φi−1 and φi are related by

φi−1 = ciφi + di (4.213)

and substituting Eq. (4.213) into Eq. (4.209) leads to

φi = ci+1φi+1 + di+1 (4.214)

where

ci+1 = aE,i/(aP,i − ciaW ,i), di+1 = (bi + diaW ,i)/(aP,i − ciaW ,i) (4.215)

Comparing the boundary condition (4.210) with Eq. (4.214) at the first point yields
the coefficients c2 and d2:

c2 = aE,1/aP,1, d2 = b1/aP,1 (4.216)

and then the coefficients ci+1 and di+1 are determined by Eq. (4.215) in the order of
increasing i from 2 to m − 1. This is the forward sweep.

At the last grid point, substituting φm−1 = cmφm + dm into the boundary condition
(4.211) yields

φm = (bm + dmaW ,m)/(aP,m − cmaW ,m) (4.217)

Now all φi can be obtained using Eq. (4.213) in the order of decreasing i from m to
2. This is the backward sweep.

The Thomas algorithm is a direct solution method; it is particularly economical and
requires only 5m − 4 operations (multiplications and divisions) for linear problems.
For non-linear problems, the coefficients and source term in Eq. (4.209) are related to
the solution of φ, so an iteration procedure is needed. At each iteration step, an initial
guess is given to φ at each point, the coefficients and source term are evaluated using
the guessed φ, and then the double sweep calculations are performed to obtain the
new value of φ at each point. This procedure is repeated until a convergent solution
is reached. However, to obtain the convergent solution, it is necessary that

|aP,i| > |aE,i| + |aW ,i| (4.218)

4.5.2 Jacobi and Gauss-Seidel iteration methods

Jacobi and Gauss-Seidel methods solve the algebraic equations point by point in
a certain order. They can be used in the solution of 1-D, 2-D, and 3-D prob-
lems. Consider the following algebraic equation resulting from a 2-D second-order
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differential equation:

aPφi,j = aWφi−1,j + aEφi+1,j + aSφi,j−1 + aNφi,j+1 + b (4.219)

Assume that aP 	= 0. If an initial approximation φ(0) to the solution is chosen, the
Jacobi iteration method gives a new approximation by

φ
(1)
i,j = (aWφ

(0)
i−1,j + aEφ

(0)
i+1,j + aSφ

(0)
i,j−1 + aNφ

(0)
i,j+1 + b)/aP (4.220)

If the solution is calculated in the order of increasing i and j, two points (i − 1, j)
and (i, j −1) have been visited before the solution at point (i, j) is calculated, as shown
in Fig. 4.26. Therefore, the latest values at these two visited points are not used in
Eq. (4.220) in the current iteration step. For this reason, the Jacobi method is not
efficient. Improvement can be made using the Gauss-Seidel iteration method, which
replaces φ(0)

i−1,j
and φ(0)

i,j−1
in Eq. (4.220) by the latest values:

φ
(1)
i,j = (aWφ

(1)
i−1,j + aSφ

(1)
i,j−1 + aEφ

(0)
i+1,j + aNφ

(0)
i,j+1 + b)/aP (4.221)

Figure 4.26 Calculation sequence in Jacobi and Gauss-Seidel methods.

4.5.3 ADI iteration method

Alternating Direction Implicit (ADI) iteration method splits or factorizes the 2-D or
3-D algebraic equation in different directions, and then solves the resulting equations
using the TDMA method line by line. The ADI iteration method has many vari-
ants (Hageman and Young, 1981). As an example, a simple 2-D ADI method
is presented here. For the algebraic equation (4.219), the following ADI iteration
method, which has two fractional steps along i and j lines as shown in Fig. 4.27, is
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often used:

−aWφ
(1/2)
i−1,j + aPφ

(1/2)
i,j − aEφ

(1/2)
i+1,j = aSφ

(0)
i,j−1 + aNφ

(0)
i,j+1 + b (4.222)

−aSφ
(1)
i,j−1 + aPφ

(1)
i,j − aNφ

(1)
i,j+1 = aWφ

(1/2)
i−1,j + aEφ

(1/2)
i+1,j + b (4.223)

Eqs. (4.222) and (4.223) are implicit in single directions and can be directly solved
using the Thomas algorithm described above. Because the boundary-condition infor-
mation from the two ends of the grid line is transmitted at once to the interior of the
domain, the ADI method converges faster than the Jacobi and Gauss-Seidel iteration
methods.

Figure 4.27 Calculation sequence in ADI method.

Efficiency of the ADI method can be improved by using the value at the new time
level for one of the variables on the right-hand sides of Eqs. (4.222) and (4.223). For
example, in Eq. (4.222) φ(0)i,j−1 can be replaced by its latest value φ(1/2)i,j−1 , which has been
calculated in the solution of Eq. (4.222) along the j − 1 line, if the sweep is done by
the order of increasing j. The same approach can be applied to Eq. (4.223) along the
i line, in which φ(1/2)i−1,j can be replaced by φ(1)i−1,j if the sweep is carried out in the order
of increasing i.

4.5.4 SIP iteration method

Consider a 2-D problem discretized by a five-point numerical scheme, the algebraic
equations of which are Eq. (4.219). One may write the set of algebraic equations in
matrix form:

A� = b (4.224)

where A is the coefficient matrix, � is the vector of the unknowns, and b is the vector
of the source terms. If� is numbered in the order of increasing j and then increasing i,
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A can be assembled to be a penta-diagonal matrix, as shown in Fig. 4.28, in which
non-zero entries are shaded, and each horizontal set of boxes corresponds to one
grid line.

For the correction vector �� = �(1) −�(0), one obtains

A�� = R (4.225)

where R is the residual matrix defined as R = b − A�(0).

Figure 4.28 Structure of the matrix for a five-point scheme.

If the matrix A can be completely factorized as the product of a lower triangular
matrix and an upper triangular matrix, Eq. (4.225) can be easily solved. Unfortunately,
this complete LU decomposition usually is not feasible for the penta-diagonal matrix
shown in Fig. 4.28. Nevertheless, this observation leads to the idea of approximating
the matrix A by a matrix M that is the product of a lower triangular matrix L and an
upper triangular matrix U. The LU decomposition of matrix M is shown in Fig. 4.29.
The rules of matrix multiplication give that the product matrix M = LU should be
a seven-diagonal matrix. Two non-zero diagonals in M that correspond to the zero
diagonals of A are shown by dashed lines in Fig. 4.29. The accurate relation should be

M = LU = A + C (4.226)

where C is the remaining matrix of A after the factorization.
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Figure 4.29 Sketch of LU decomposition of matrix M.

In order to make up the difference between A and M, one choice is to let the matrix
C contain just the two non-zero diagonals of M that correspond to the zero diago-
nals of A. This is the standard incomplete LU decomposition method. However, this
method converges slowly. A better choice, which was proposed by Stone (1968), is
to allow C to have non-zero elements on the diagonals corresponding to all seven
non-zero diagonals of LU. C must contain the ‘two extra’ diagonals of M, and the ele-
ments on the remaining diagonals of C are chosen to ensure C�� ≈ 0. The resulting
equations relating L and U with A are (see Ferziger and Peric, 1995)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

LW ,l = AW ,l/(1 + αsUN,l−mj
)

LS,l = AS,l/(1 + αsUE,l−1)

LP,l = AP,l + αs(LW ,lUN,l−mj
+ LS,lUE,l−1)− LW ,lUE,l−mj

− LS,lUN,l−1

UN,l = (AN,l − αsLW ,lUN,l−mj
)/LP,l

UE,l = (AE,l − αsLS,lUE,l−1)/LP,l (4.227)

where LW ,l, LS,l, and LP,l are the coefficients of matrix L; UN,l and UE,l are the
coefficients of matrix U (the coefficients in the main diagonal are set to be 1 to get the
unique solution in LU decomposition); αs is a coefficient less than 1; l is the index of
points in the matrix A, related to i and j by l = j + (i − 1)mj; and mj is the number of
points on the j line.

The set of equations (4.227) can be solved in a sequential order beginning at the
southeast corner of the grid. For points next to boundaries, any matrix element that
carries the index of a boundary point is set to be zero.

After L and U are determined, the approximate formulation for Eq. (4.225) is
obtained as

LU�� = R (4.228)

By defining U�� = �, Eq. (4.228) can be split as{
L� = R

U�� = � (4.229)
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The two equations in (4.229) can be solved separately by a direct method. After��
is calculated, the new values of � can be obtained conveniently by

�(1) = �(0) +�� (4.230)

The above five-point SIP method has been extended to solve the algebraic equations
related to seven-point (Leister and Peric, 1994) and nine-point numerical schemes
(Schneider and Zedan, 1981). Because the coefficient matrices of the algebraic
equations resulting from many numerical schemes are or can be approximated as five-,
seven-, or nine-diagonal matrices, the SIP method is often used in computational river
dynamics.

It should be noted that because the approximation used in the SIP method is related
to the discretization of partial differential equations, the SIP method makes little sense
for generic algebraic equations.

4.5.5 Over-relaxation and under-relaxation

After the correction vector �� is calculated, the new values �(1) can also be obtained
by the relaxation method:

�(1) = �(0) + αφ�� (4.231)

where αφ is the relaxation factor. αφ > 1 for over-relaxation, and αφ < 1 for under-
relaxation.

The over- and under-relaxation methods can accelerate or decelerate the conver-
gence speed. Over-relaxation is often used in conjunction with the Gauss-Seidel
method, yielding the Successive Over-Relaxation (SOR) method. Under-relaxation
is very useful for nonlinear problems and can avoid divergence.

Faster convergence can be achieved when using an optimum value of αφ . However,
because the optimum αφ value depends on many factors, such as the nature of the
problem, number of grid points, grid spacing, and iteration procedure, there are no
general rules to determine it. Usually, a suitable value of αφ can be found by experience
and from exploratory computation for the problem under consideration.



Chapter 5

1-D numerical models

1-D models simulate the flow and sediment transport in the streamwise direction of
a channel without solving the details over the cross-section. They are often applied
in the study of long-term sedimentation problems in rivers, reservoirs, estuaries, etc.
Described in this chapter are approaches and issues regarding 1-D models, such as
channel network routing, decoupled and coupled flow and sediment calculations, non-
uniform total-load transport, equilibrium and non-equilibrium sediment transport,
lateral allocation of bed change, bank erosion, data requirements, and parameter
sensitivity.

5.1 FORMULATION OF 1-D DECOUPLED FLOW
AND SEDIMENT TRANSPORT MODEL

As discussed in Section 2.2.3, in the case of low sediment concentration, the influence
of sediment on the flow field is negligible, and thus the simulation of the water and
sediment two-phase flow can be simplified as a problem of solving the clear water
flow with sediment transport. Moreover, because the bed usually changes at a much
lower rate than the flow (especially when bed load is the main transport mode), the
bed elevation can be assumed to be “fixed” at each time step, and the flow can be cal-
culated based on the channel geometry estimated at the previous time step. With these
simplifications, the flow and sediment calculations can be performed in a decoupled
manner. Such decoupled calculations are introduced in Sections 5.1–5.3.

5.1.1 Formulation of 1-D clear water f low model

5.1.1.1 1-D hydrodynamic equations

Dynamic wave model

In the 1-D dynamic wave model, open-channel flows are governed by Eqs. (2.102) and
(2.104), which are called the St. Venant equations. In the case with side flows (inflow
and/or outflow), these equations are written as

∂A
∂t

+ ∂Q
∂x

= ql (5.1)
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∂Q
∂t

+ ∂

∂x

(
βQ2

A

)
+ gA

∂zs

∂x
+ gASf = qlvx (5.2)

where x is the spatial coordinate representing the streamwise distance; A is the flow
area; Q is the flow discharge, defined as Q = AU, with U being the flow velocity
averaged over the cross-section; zs is the water stage; β is the correction factor for
momentum due to the non-uniformity of streamwise velocity over the cross-section;
ql is the side flow discharge per unit channel length; vx is the velocity of side flows in
the direction of the x-coordinate; and Sf is the friction slope:

Sf = Q|Q|
K2 (5.3)

where K is the conveyance. For a simple cross-section, K = AR2/3/n, with R being
the hydraulic radius and n the Manning roughness coefficient of the channel. For a
compound cross-section, determining K or n is introduced in Section 5.1.1.4.

Note that “∧”, representing the section-averaged quantities in Eqs. (2.102)–(2.111),
is omitted hereafter, for simplicity.

Diffusion wave model

The diffusion wave model assumes that the local and convective accelerations in the
momentum equation (5.2) are negligible, thus yielding

gA
∂zs

∂x
+ gASf = qlvx (5.4)

The continuity equation (5.1) is still used in the diffusion wave model.
The diffusion wave model is more stable than the dynamic wave model, but the

latter is more accurate and can be applied in a wider range of flow conditions. Wu and
Vieira (2002) investigated the errors of the diffusion wave assumption in various cases.
One example was steady flow through a channel contraction, as shown in Fig. 5.1.
The diffusion wave model exhibits errors in the computed water surface profile in the
transition region near the contraction, whereas the two models give identical results
in the upstream and downstream regions with uniform flow. Normally, the relative
errors are less than 10%, if the Froude number is less than 0.5.

Kinematic wave model

For the kinematic wave, the variations in flow velocity and depth are negligible in
comparison with the variation in channel bed elevation, and thus, the momentum
equation (5.2) can be simplified considerably as follows:

Sf = S0 (5.5)

where S0 is the channel slope in the longitudinal direction.
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Figure 5.1 Comparison of dynamic and diffusion wave models at channel contraction.

Using the Manning equation, Eq. (5.5) can be rewritten as

Q = A
n

R2/3S1/2
0 (5.6)

The continuity equation (5.1) is still used in the kinematic wave model.
The kinematic wave assumption is generally applicable, if (Dingman, 1984)

g�S0/U2 > 10 (5.7)

where� represents the length of the channel under study, and U is the average velocity
of uniform flow. Eq. (5.7) implies that the kinematic wave model is valid in steep
channels.

5.1.1.2 Imposition of boundary and initial conditions of f low

To establish a well-posed problem, boundary and initial conditions should be provided
for Eqs. (5.1) and (5.2). These dynamic wave equations constitute a hyperbolic system
that has two characteristics:

dx
dt

= C+ = U +
√

gh (5.8)

dx
dt

= C− = U −
√

gh (5.9)

where U and h are the flow velocity and depth averaged over the cross-section,
respectively.
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For subcritical flow (Fr = U/
√

gh < 1 ), the characteristics C+ > 0 and C− < 0.
As shown in Fig. 5.2(a), a C+ characteristic curve enters from outside to the solution
domain through the inlet, and a C− characteristic curve enters through the outlet.
To determine the flow properties at the inlet and outlet, information from each char-
acteristic curve entering from outside has to be provided by a boundary condition.
Therefore, a boundary condition should be specified at each of the two boundaries.
Usually, a time series of flow discharge is specified at the inlet, and a time series of
water stage or a stage-discharge rating curve is imposed at the outlet.

For supercritical flow (Fr>1), two characteristics are positive: C+>0 and C−>0.
As shown in Fig. 5.2(b), both C+ and C− characteristic curves enter from outside
through the inlet, and no characteristic curve enters through the outlet. Therefore,
two boundary conditions should be imposed at the inlet, and none is required at the
outlet.

Figure 5.2 Characteristic curves of dynamic wave model at inlet and outlet boundaries.

Similarly, it can be derived that the diffusive wave model requires two boundary
conditions, which are specified at the inlet and outlet, respectively. The kinematic wave
model requires only one boundary condition, which is often specified at the inlet.

In addition, the initial water stage and flow discharge in the solution domain should
be given for an unsteady flow simulation.

5.1.1.3 Manning roughness coefficient

The Manning roughness coefficient n accounts for the effect of bed roughness on the
flow field, and its determination is essential to the accuracy of the calculated flow,
sediment transport, and bed change. For a movable bed with sediment grains and
bed forms as roughness elements, the Manning n can be evaluated using one of the
empirical formulas introduced in Section 3.3.3. However, the Manning n generally
depends on a number of factors, including channel size, cross-section shape, channel
alignment, channel meandering and curvature, surface roughness, bed forms, obstruc-
tions, vegetation, sediment transport, temperature, and seasonal changes. Therefore,
it is suggested that the Manning n should be calibrated, if gauged water surface profiles
and high water marks are available; otherwise, the Manning n values in similar stream
conditions should be used as guides. There are several references available for deter-
mining the Manning n, e.g., Chow (1959), Fasken (1963), Barnes (1967), and Hicks
and Mason (1991).

In the case of reservoir sedimentation, because the water stage is raised significantly,
bank roughness becomes important and should be considered in the flow calculation.
Usually, the Manning n values on banks and bed are different. In addition, due to
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significant deposition, the bed material in the reservoir gradually becomes finer, and
thus the Manning n of the channel bed decreases with time. This can be described
using the movable bed roughness formulas introduced in Section 3.3.3, or using the
following relation proposed by Han et al. (1986):

n3/2 = n3/2
e + (n3/2

0 − n3/2
e )(1 − a/ae)

1/4 (5.10)

where n0, n, and ne are the Manning roughness coefficients in the beginning, tran-
sitional period, and equilibrium state of reservoir deposition, respectively; a is the
deposition area accumulated with time at a cross-section; and ae is the final deposi-
tion area when the reservoir reaches equilibrium. The values of ne can be determined
by referring to those in the downstream alluvial channels with flow and sediment
conditions similar to the equilibrium state of the reservoir.

5.1.1.4 Composite hydraulic properties

If hydraulic properties, such as roughness and conveyance, are non-uniform across the
channel, their composite values need to be computed. The often used methods include
the alpha method, hydraulic radius division method, energy slope division method,
and conveyance method, which are described below.

Alpha method

In the alpha method, the cross-section is divided into panels between coordinate points
(stations), as shown in Fig. 5.3. The divisions between the panels are assumed to be ver-
tical. The cross-section is not distinguished between the main channel and overbanks
in this method.

The flow area Aj, wetted perimeter χj, hydraulic radius Rj, and conveyance Kj of
panel j are calculated by

Aj = [zs − 0.5(zb,j + zb,j+1)]�yj (5.11)

χj =
√
(zb,j − zb,j+1)

2 +�y2
j (5.12)

Rj = Aj/χj (5.13)

Figure 5.3 Representation of cross-section in alpha method.
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Kj = AjR
2/3
j /nj (5.14)

where zb,j is the bed elevation at station j, �yj is the distance between stations j and
j + 1, and nj is the Manning roughness coefficient in panel j.

The composite cross-sectional area of flow is defined as the sum of all panel subareas
and is the true area. The composite velocity is defined as the total discharge divided
by the cross-sectional area, conserving continuity. The composite hydraulic radius is
conveyance-weighted as

R =
M∑

j=1

RjKj

/
M∑

j=1

Kj (5.15)

where M is the number of the wetted panels.
Because the alpha method ignores the effect of vertical walls, it is not adequate in

situations where vertical sidewalls or steep bank slopes exist.

Division of hydraulic radius

Einstein (1950) proposed a more adequate method for determining the composite
hydraulic properties for the cross-section with rough vertical sidewalls or steep bank
slopes, based on the division of hydraulic radius. This method assumes equal velocity
in all panels, and calculates all hydraulic variables in the normal way, except for the
composite Manning roughness coefficient.

The total shear stress τ in the cross-section can be computed as

χτ =
M∑

j=1

χjτj (5.16)

where χ is the total wetted perimeter, i.e., χ = ∑M
j=1 χj, and τj is the shear stress in

panel j.
Einstein’s method determines

τ = γRSf (5.17)

τj = γRjSf (5.18)

Applying the equal velocity assumption and the Manning equation in the entire
cross-section and each panel yields

R = (nU/S1/2
f )3/2, Rj = (njU/S

1/2
f )3/2 (5.19)
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Inserting Eqs. (5.17)–(5.19) into Eq. (5.16) yields

n =
⎛⎝ M∑

j=1

χjn
3/2
j /χ

⎞⎠2/3

(5.20)

Division of energy slope

The method based on the division of energy slope originated from Engelund (1966) is
another option for determining the composite hydraulic properties for the cross-section
with rough vertical sidewalls or steep bank slopes. This method gives

τj = γRSf, j (5.21)

and applies the equal velocity assumption and the Manning equation in the entire
cross-section and each panel:

Sf = (nU/R2/3)2, Sf ,j = (njU/R2/3)2 (5.22)

Inserting Eqs. (5.17), (5.21), and (5.22) into Eq. (5.16) yields the following equation
for the composite Manning n:

n =
⎛⎝ M∑

j=1

χjn2
j /χ

⎞⎠1/2

(5.23)

Conveyance method

The assumption of equal velocity used in the previous methods, based on the division
of either hydraulic radius or energy slope, is only applicable in simple channels. For
compound channels with floodplains, the flow velocities in the main channel and
floodplains may be significantly different. A more adequate method for determining
the composite hydraulic properties in compound channels is the conveyance method.

The conveyance method divides the cross-section into subsections in such a way that
the equal velocity assumption can be approximately valid in each subsection. Each
subsection can be further divided into panels. The flow area, wetted perimeter, and
conveyance of each subsection can be calculated in the normal way. The conveyances
of all subsections are then summed to provide the total conveyance for the entire cross-
section. For example, the compound cross-section shown in Fig. 5.4 can be divided
into three subsections: main channel, left floodplain, and right floodplain, and the
total conveyance is determined by

K = A5/3
LF

nLFχ
2/3
LF

+ A5/3
MC

nMCχ
2/3
MC

+ A5/3
RF

nRFχ
2/3
RF

(5.24)
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Figure 5.4 Representation of compound cross-section with floodplains.

where the subscript LF denotes the left floodplain, MC the main channel, and RF the
right floodplain.

For each subsection, the Manning n can be determined using the hydraulic radius
or energy slope division method. For example, the Manning n in the main channel is
determined using these two methods as follows:

nMC =
⎛⎝j=RCB∑

j=LCB

χjn
3/2
j /χMC

⎞⎠2/3

, nMC =
⎛⎝j=RCB∑

j=LCB

χjn2
j /χMC

⎞⎠1/2

(5.25)

where LCB and RCB represent the main-channel panels adjacent to the left and right
floodplain edges (denoted as LF and RF in Fig. 5.4), respectively.

5.1.1.5 Momentum correction factor

The correction factor β for momentum in Eq. (5.2) is close to 1 for a simple cross-
section. For the compound cross-section shown in Fig. 5.4, β is determined by

β = 1
QU

∫∫
A

u2dA = 1
QU
(QLFULF + QMCUMC + QRFURF)

= A
K2

(
K2

LF

ALF
+ K2

MC

AMC
+ K2

RF

ARF

)
(5.26)

5.1.2 Formulation of 1-D sediment transport model

5.1.2.1 1-D non-equilibrium sediment transport equations

For general applications, the transport of non-uniform total load is considered here.
Because the total load can be divided into bed load and suspended load, or into
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bed-material load and wash load, as shown in Fig. 2.3, two total-load modeling
approaches are usually adopted. One is to simulate bed load and suspended load sepa-
rately, while the other is to compute bed-material (total) load directly. Both approaches
have advantages and disadvantages.

1-D bed-load and suspended-load transport model

As described in Section 2.7.1, the non-uniform sediment mixture is divided into a
suitable number of size classes (N). In the case of low sediment concentration, interac-
tions among different size classes are usually ignored and, thus, the transport of each
size class is simulated separately. For each size class, the moving sediment is further
divided into suspended load and bed load. Introducing Eq. (2.132) into Eq. (2.108) and
considering the lateral exchange with banks and tributaries yields the 1-D transport
equation of the kth size class of suspended load:

∂

∂t

(
ACk

βsk

)
+ ∂(AUCk)

∂x
= αωskB(C∗k − Ck)+ qslk (k = 1, 2, . . . , N)

(5.27)

where Ck and C∗k are the actual and equilibrium (capacity) average concentrations
of the kth size class of suspended load, respectively; α is the adaptation coefficient of
suspended load; qslk is the suspended-load side discharge per unit channel length due
to the lateral exchange with banks and tributaries; and βsk is the correction coefficient,
which is determined using Eq. (3.135) in general, but may be set to 1 in the simulation
of long-term sedimentation processes.

In analogy to Eq. (2.158), the 1-D bed-load transport equation is

∂

∂t

(
Qbk

Ubk

)
+ ∂Qbk

∂x
= 1

L
(Qb∗k − Qbk)+ qblk (5.28)

where Qbk and Qb∗k are the actual and equilibrium (capacity) transport rates of the
kth size class of bed load, respectively; L is the adaptation length of sediment, defined
in Section 2.6.2; and qblk is the bed-load side discharge per unit channel length.

The bed-load velocity Ubk needs to be determined using one of the empirical formu-
las described in Section 3.8. However, the storage term, the first term on the left-hand
side of Eq. (5.28), is often ignored in the simulation of long-term sedimentation
processes.

The equilibrium suspended-load concentration and bed-load transport rate can
be determined using the existing formulas described in Sections 3.4 and 3.5. For
convenience, these formulas are written in general forms:

C∗k = pbkC∗
k, Qb∗k = pbkQ∗

bk (5.29)

where pbk is the sediment availability factor, usually set as the fraction of size class k
in the mixing layer of bed material; C∗

k is the potential equilibrium concentration for
the kth size class of suspended load; and Q∗

bk is the potential equilibrium transport
rate for the kth size class of bed load. C∗

k and Q∗
bk can be interpreted as the equilibrium
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suspended-load concentration and bed-load transport rate of uniform sediment with
the same size as dk, taking into consideration, however, the hiding and exposure effects
in non-uniform bed material.

In analogy to Eq. (2.159), the 1-D fractional bed change equation is

(1 − p′
m)

(
∂Ab

∂t

)
k

= αωsB(Ck − C∗k)+ 1
L
(Qbk − Qb∗k) (5.30)

where (∂Ab/∂t)k is the rate of change in bed area due to size class k.
The total rate of change in bed area, ∂Ab/∂t, is determined by

∂Ab

∂t
=

N∑
k=1

(
∂Ab

∂t

)
k

(5.31)

As described in Section 2.7.2, the bed material is divided into layers. The temporal
variation of the mixing-layer bed-material gradation pbk is determined by Eq. (2.161),
which is rewritten in the 1-D model as follows:

∂(Ampbk)

∂t
=
(
∂Ab

∂t

)
k

+ p∗
bk

(
∂Am

∂t
− ∂Ab

∂t

)
(5.32)

where Am is the cross-sectional area of the mixing layer, and p∗
bk is pbk when ∂Ab/∂t −

∂Am/∂t ≥ 0 and the fraction of size class k in the second layer of bed material when
∂Ab/∂t − ∂Am/∂t < 0. Accordingly, the bed material sorting equation (2.162) in the
second layer is rewritten as

∂(Asubpsbk)

∂t
= −p∗

bk

(
∂Am

∂t
− ∂Ab

∂t

)
(5.33)

where psbk is the fraction of size class k in the second layer of bed material, and Asub is
the cross-sectional area of the second layer. Note that Eq. (5.33) assumes no exchange
between the second and third layers.

Eqs. (5.27)–(5.33) constitute the governing equations of the total-load transport
model that discerns bed load and suspended load. This model provides the ratio of
bed load and suspended load. However, many reliable bed-material load transport
capacity formulas, such as the Ackers-White (1973), Engelund-Hansen (1967), and
Yang (1973) formulas, cannot be used directly in this approach.

1-D bed-material load transport model

When the bed-material (total) load transport is simulated without separating bed
load and suspended load, introducing Eq. (2.149) into Eq. (2.111) and consid-
ering the lateral exchange with banks and tributaries yields the bed-material load
transport equation:

∂

∂t

(
Qtk

βtkU

)
+ ∂Qtk

∂x
= 1

Lt
(Qt∗k − Qtk)+ qtlk (k = 1, 2, . . . , N) (5.34)
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where Qtk and Qt∗k are the actual and equilibrium (capacity) transport rates of the kth
size class of bed-material load, respectively; Lt is the adaptation length of bed-material
load; qtlk is the side discharge of bed-material load per unit channel length; and βtk is
the correction factor, which is determined in analogy to Eq. (2.92) but may be set to
1 in the simulation of long-term sedimentation processes.

The sediment transport capacity can be written in the general form:

Qt∗k = pbkQ∗
tk (5.35)

where Q∗
tk is the potential equilibrium transport rate for the kth size class of bed-

material load.
Extending Eq. (2.149) to the 1-D model yields the following equation for the

fractional change in bed area:

(1 − p′
m)

(
∂Ab

∂t

)
k

= 1
Lt
(Qtk − Qt∗k) (5.36)

The total change in bed area is calculated using Eq. (5.31), while the bed material
sorting is determined using Eqs. (5.32) and (5.33).

Eqs. (5.31)–(5.36) constitute the governing equations of the total-load transport
model that directly computes bed-material load. This model has N less transport
equations than the previous bed-load and suspended-load transport model. Not only
can those aforementioned reliable bed-material load transport capacity formulas be
used, but also many bed-load and suspended-load transport capacity formulas, such
as the Wu et al. (2000b) formulas, can be applied jointly in this approach. However,
it does not provide the ratio of bed load and suspended load.

Note that if L = Lt and α = Uh/(Ltωs), the bed-load and suspended-load model
and the bed-material load model give the same results for total sediment discharge, bed
change, and bed-material gradation. This explains why L is found to be approximately
equal to Lt, as stated in Section 2.6.2. Because normally Ls ≥ Lb, the condition
α = Uh/(Ltωs) can usually be satisfied using Eqs. (2.154) and (2.155). For very coarse
sediments, this condition may be violated, but because such sediments move mainly
in bed load, the difference between the two models is small and the bed-material load
model is preferable.

In addition, both models can simulate the transport of wash load by setting the
adaptation coefficient α in Eq. (5.27) to zero and the adaptation lengths in Eqs. (5.28)
and (5.34) to be infinitely large. The wash-load size range can be defined using the
bed-material diameter d10 or the Rouse number ωsk/(κU∗) < 0.06, as discussed in
Section 3.5.1. The latter method is more convenient for numerical modeling.

Both models can also simulate sediment transport over non-erodible channel beds.
This is often called the hard-bottom problem. On the non-erodible cross-sections,
the sediment transport capacity Qt∗k in Eqs. (5.34) and (5.36) is replaced by
min(Qt∗k, Qtk) , or the sediment transport capacities Qb∗k and C∗k in Eqs. (5.27),
(5.28), and (5.30) are replaced by min(Qb∗k, Qbk) and min(C∗k, Ck), respectively. This
method allows only deposition on the hard-bottom points. It can be easily extended
to 2-D and 3-D models.
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5.1.2.2 1-D equilibrium sediment transport equations

The assumption of local equilibrium transport described in Section 2.6.1 ignores the
temporal and spatial lags of sediment transport and sets the actual sediment transport
rate to be equal to the equilibrium (capacity) one at each cross-section:

Qtk = Qt∗k(U, h, τ , B, dk, pbk, γs, γ . . . ) (k = 1, 2, . . . , N) (5.37)

In the equilibrium transport model, the change in bed area due to size class k is
calculated by

(1 − p′
m)
∂Abk

∂t
+ ∂Qtk

∂x
= 0 (5.38)

The total change in bed area is calculated by Eq. (5.31) and the bed-material
gradations by Eqs. (5.32) and (5.33).

It should be noted that the local equilibrium assumption does not mean that the
sediment transport in the entire channel is at equilibrium. Conversely, the sediment
transport capacities at two consecutive cross-sections may be different under varying
flow and sediment conditions, and thus the channel bed between these two cross-
sections may change according to Eq. (5.38).

5.1.2.3 Characteristics of equilibrium and non-equilibrium
transport models

The equilibrium sediment transport model is simple but may lead to a numerical
difficulty near the inlet with constrained sediment loading. Fig. 5.5 shows the sed-
iment discharge profiles determined by the equilibrium transport model on a finite
difference mesh in cases of erosion (Qt0 = 0) and deposition (Qt0 = 2Qt∗). Here, Qt0
is the sediment discharge loaded at the inlet (x = 0), and Qt∗ is assumed constant in the
entire channel. The sediment discharge at cross-section 1 is specified by the boundary
condition (constraint), while the sediment discharge at cross-section 2 is determined
using Eq. (5.37). If the sediment is strongly over- or under-loaded, the sediment dis-
charges at these two cross-sections will be significantly different, and strong deposition
or erosion will be computed in the first reach. The smaller the grid spacing, the larger
the deposition or erosion rate calculated in this reach. This is physically unreasonable,
and may cause numerical instability. Therefore, the application of the equilibrium sed-
iment transport model should be limited to situations with near-equilibrium loading
at the inlet.

For uniform sediment under steady flow conditions, the non-equilibrium transport
equation (5.34) with constant Lt and Qt∗ and without side discharge has an analytical
solution:

Qt = Qt∗ + (Qt0 − Qt∗) exp
(

− x
Lt

)
(5.39)

Fig. 5.6 illustrates the sediment discharge profiles determined by Eq. (5.39) for the
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Figure 5.5 Sediment discharge profiles in equilibrium transport model.

Figure 5.6 Sediment discharge profiles in non-equilibrium transport model.

same cases of erosion (Qt0 = 0 ) and deposition (Qt0 = 2Qt∗ ) shown in Fig. 5.5.
The actual sediment discharge does not adjust to the equilibrium one immediately
near the inlet, but after a certain distance downstream. In addition, Fig. 5.6 also
shows that the adaptation length Lt is an important parameter in the non-equilibrium
transport model. It essentially determines the sediment discharge profile. At a distance
equal to one adaptation length (x = Lt), (Qt − Qt∗)/(Qt0 − Qt∗) ≈ 0.3679.

A comparison of Figs. 5.5 and 5.6 shows that the non-equilibrium transport model is
physically more realistic and can handle the constrained sediment loading more easily
than the equilibrium transport model. In addition, as Lt → 0, the exchange term in
Eq. (5.34) becomes dominant; thus, Eq. (5.34) reduces to Eq. (5.37) and the sediment
discharge profiles in Fig. 5.6 become those in Fig. 5.5. This implies that the non-
equilibrium transport model is more general and includes the equilibrium transport
model as a special case.
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5.1.2.4 Boundary and initial conditions of sediment

The fractional sediment discharges for all size classes must be imposed at the inflow
boundary in each time step, but no sediment boundary condition is required at the
outflow boundary in the 1-D model. The initial sediment discharge, channel topog-
raphy, and bed-material gradation should be provided for the simulation of unsteady
sediment transport and channel morphological evolution.

5.2 1-D CALCULATION OF OPEN-CHANNEL FLOW

5.2.1 1-D steady f low calculation

5.2.1.1 Discretization of steady f low equations

For steady open-channel flow without side inflow or outflow, Eq. (5.1) reduces to
∂Q/∂x = 0 and leads to a constant flow discharge along the study reach, while
Eq. (5.2) can be rewritten as the energy equation:

∂

∂x

(
β ′Q2

2A2

)
+ g
∂zs

∂x
+ g

Q|Q|
K2 = 0 (5.40)

where β ′ is the correction factor for kinetic energy due to the non-uniformity of stream-
wise velocity over the cross-section. For the compound cross-section shown in Fig. 5.4,
β ′ can be determined using the discharge-weighted average kinetic energy:

β ′ = 1
QU2 (QLFU2

LF + QMCU2
MC + QRFU2

RF)

= A2

K3

(
K3

LF

A2
LF

+ K3
MC

A2
MC

+ K3
RF

A2
RF

)
(5.41)

where all parameters are the same as those in Eq. (5.26).
Suppose that the computational domain of a single channel is divided into I − 1

reaches by I cross-sections (computational points), as shown in Fig. 5.7. The cross-
sections are numbered 1 through I in the downstream direction. Each cross-section
is represented by an adequate number of points (stations), as shown in Fig. 5.4, with
each point characterized by a pair of values of the distance to the left bank and the
bed elevation. In the longitudinal direction, each reach is characterized by its length.
For a simple channel, the reach length measures the path of the main flow or channel
thalweg. For a compound channel, the flow paths in the main channel and floodplains
may be significantly different, and an average, such as the discharge-weighted average,
of their lengths should be used as the reach length.

Applying the standard step method to discretize Eq. (5.40) yields

β ′
iQ

2
i

2gA2
i

+ zs,i = β
′
i+1Q2

i+1

2gA2
i+1

+ zs,i+1 + �xi+1/2

2

(
Qi+1|Qi+1|

K2
i+1

+ Qi|Qi|
K2

i

)
(5.42)
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Figure 5.7 Finite difference grid in 1-D channel model.

where �xi+1/2 represents the length of the reach between cross-sections i and i + 1.
In Eq. (5.42), the friction slope is represented by the arithmetic mean between

cross-sections i and i + 1. It can also be represented by the harmonic mean

Sf ,i+1/2 = 2

/(
K2

i+1

Qi+1|Qi+1| + K2
i

Qi|Qi|

)
(5.43)

the geometric mean

Sf ,i+1/2 =
(

Qi+1|Qi+1|
K2

i+1

Qi|Qi|
K2

i

)1/2

(5.44)

or the conveyance mean

Sf ,i+1/2 =
(

Qi+1 + Qi

Ki+1 + Ki

)2

(5.45)

If the channel cross-section is suddenly expanded or contracted, a local head loss
should be considered and Eq. (5.42) is replaced by

β ′
iQ

2
i

2gA2
i

+ zs,i = β
′
i+1Q2

i+1

2gA2
i+1

+ zs,i+1 + �xi+1/2

2

(
Qi+1|Qi+1|

K2
i+1

+ Qi|Qi|
K2

i

)

+ λi+1/2

∣∣∣∣∣β ′
i+1Q2

i+1

2gA2
i+1

− β
′
iQ

2
i

2gA2
i

∣∣∣∣∣ (5.46)

where λi+1/2 is the coefficient of local head loss due to channel expansion or
contraction in the reach between cross-sections i and i + 1.

5.2.1.2 Solution of discretized steady f low equations

The solution procedure for Eq. (5.42) differs in cases of subcritical and supercritical
flows. For subcritical flow, a flow discharge is usually specified at the inlet and a water
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stage is specified at the outlet. Therefore, the flow discharge in the solution domain can
be calculated easily in a forewater sweep by applying mass continuity, and the water
stage can then be determined by backwater calculation using Eq. (5.42). Because of
its nonlinearity, Eq. (5.42) needs to be solved iteratively.

Define the following function:

F = β
′
i+1Q2

i+1

2gA2
i+1

− β
′
iQ

2
i

2gA2
i

+ zs,i+1 − zs,i + �xi+1/2

2

(
Qi+1|Qi+1|

K2
i+1

+ Qi|Qi|
K2

i

)
(5.47)

Because zs,i+1 and the corresponding Ai+1 and Ki+1 at cross-section i + 1 have been
obtained from the previous calculation in the reach between cross-sections i + 1 and
i + 2, or from the given water stage at the outlet, now the problem is determining zs,i
and the corresponding Ai and Ki by ensuring F = 0. The following bisection method
is often used:

(1) Find a segment [Zlower, Zupper] in which the solution of zs,i exists, i.e.,
FupperFlower < 0, with Fupper and Flower being the values of F corresponding to
Zupper and Zlower, respectively;

(2) Set Zmiddle = (Zupper + Zlower)/2 and calculate Fmiddle, the value of F correspond-
ing to Zmiddle;

(3) If Fmiddle = 0 (or less than a certain tolerance), Zmiddle is the solution of zs,i and
then stop iteration; otherwise, if FmiddleFlower < 0, then set Zupper = Zmiddle, and
if FupperFmiddle < 0 , then set Zlower = Zmiddle;

(4) If Zupper − Zlower is less than a reasonable tolerance, then set (Zupper + Zlower)/2
to be the solution of zs,i and stop iteration; otherwise, repeat from step (2) until
the convergent solution is obtained.

Note that the search in step (1) for the lower and upper bounds Zlower and Zupper of
the initial segment where the solution exists can start from either the channel thalweg
elevation or zs,i+1. The search starting from the thalweg is upward only, whereas the
search starting from zs,i+1 must be conducted upward and downward. The former
search is simpler and can guarantee the solution.

For supercritical flow, both flow discharge and water stage are usually specified
at the inlet. Therefore, the water stage in the solution domain can be determined by
forewater calculation using Eq. (5.42). Similarly, Eq. (5.42) must be solved using an
iteration method, such as the bisection method. The difference is only that zs,i and the
corresponding Ai and Ki are known while zs,i+1 and the corresponding Ai+1 and Ki+1
are unknown.

For flow in mixed regimes, the entire computational domain is divided into subdo-
mains according to the flow regimes, and then the previous methods are used to solve
the subcritical and supercritical flows in all subdomains individually. Usually, internal
boundary conditions should be applied in the transition regions between subdomains.
Because the energy equation (5.40) may not be applicable in regions with hydraulic
jumps, internal boundary conditions should be derived from the momentum equation
instead, which may be found in Chow (1959) and HEC (1997).
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5.2.1.3 Treatments for f low at channel conf luences
and splits

Fig. 5.8 shows a typical network of channels connected with confluences, splits, and
hydraulic structures. To compute the steady flow in such a channel network, external
boundary conditions at inlets and outlets and internal boundary conditions at channel
confluences, splits, and hydraulic structures have to be imposed. The imposition of
external boundary conditions of flow is introduced in Section 5.1.1.2, and the handling
of hydraulic structures is discussed in Section 5.2.2.4. Treating channel confluences
and splits is discussed here.

Figure 5.8 Sketch of a channel network.

Channel conf luences

A confluence of two channels is depicted in Fig. 5.9, in which cross-sections 1 and 2
are placed at the ends of the upstream channels (denoted as 1 and 2), and cross-section
3 is at the beginning of the downstream channel (denoted as 3). The flow discharges at
cross-sections 1, 2, and 3 are denoted as Q1, Q2, and Q3, respectively. The continuity
equation at the confluence reads

Q3 = Q1 + Q2 (5.48)

Figure 5.9 Configuration of channel confluence.
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Applying Eq. (5.46) in the reaches from cross-sections 1 and 2 to 3 yields
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where �x13 and �x23 represent the distances from cross-sections 1 and 2 to
3, respectively.

If the flow is subcritical, the water stage zs3 at cross-section 3 is obtained first
by backwater calculation in channel 3. The water stages zs1 and zs2 at cross-sections
1 and 2 can then be obtained by solving Eqs. (5.49) and (5.50), following the procedure
introduced in Section 5.2.1.2.

As a simplified case, if the distances �x13 and �x23 are very small, the water stages
or energy heads of the three cross-sections at the confluence can be assumed to be
identical. Thus, the calculated water stage at cross-section 3 is specified to cross-
sections 1 and 2 if the flow is subcritical.

If the flow is supercritical, the forewater calculations are carried out in channels
1 and 2 down to cross-sections 1 and 2. The reach controlling the flow at the confluence
has a larger specific force Az̄s + βQU/g (Chow, 1959). Here, z̄s is the depth from the
water surface to the centroid of the flow area. The forewater calculation is made from
the controlling upstream cross-section down to cross-section 3.

Channel splits

A split of one channel to two channel branches is depicted in Fig. 5.10, in which cross-
section 1 is placed at the end of the upstream channel (denoted as 1), and cross-sections
2 and 3 are at the beginnings of the downstream channels (denoted as 2 and 3). The
continuity equation at the channel split reads

Q2 + Q3 = Q1 (5.51)

Figure 5.10 Configuration of channel split.
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Applying Eq. (5.46) in the reaches from cross-section 1 to cross-sections 2 and 3 yields

β ′
1Q2

1

2gA2
1

+ zs1 = β
′
2Q2

2

2gA2
2

+ zs2 + �x12

2

(
Q2|Q2|

K2
2

+ Q1|Q1|
K2

1

)
+ λ12

∣∣∣∣∣β ′
2Q2

2

2gA2
2

− β
′
1Q2

1

2gA2
1

∣∣∣∣∣
(5.52)

β ′
1Q2

1

2gA2
1

+ zs1 = β
′
3Q2

3

2gA2
3

+ zs3 + �x13

2

(
Q3|Q3|

K2
3

+ Q1|Q1|
K2

1

)
+ λ13

∣∣∣∣∣β ′
3Q2

3

2gA2
3

− β
′
1Q2

1

2gA2
1

∣∣∣∣∣
(5.53)

where �x12 and �x13 represent the lengths of the two reaches.
If the flow is subcritical, the water stages zs2 and zs3 at cross-sections 2 and 3 are

determined first by backwater calculations in channels 2 and 3. The water stage zs1
at cross-section 1 can then be obtained by solving Eqs. (5.52) and (5.53). However,
because the ratio of flow discharges Q2 and Q3 is unknown, the following iteration
procedure is needed:

(1) Assume the flow discharges Q2 and Q3 that satisfy the continuity equation (5.51);
(2) Determine the water stages zs2 and zs3 at cross-sections 2 and 3 through backwater

calculations in channels 2 and 3, respectively;
(3) Calculate the water stage at cross-section 1, denoted as z′

s1, from cross-section 2
using Eq. (5.52), according to the procedure in Section 5.2.1.2;

(4) Calculate the water stage at cross-section 1, denoted as z′′
s1, from cross-section 3

using Eq. (5.53), according to the procedure in Section 5.2.1.2;
(5) If |z′

s1 − z′′
s1| is less than a reasonable tolerance, then set (z′

s1 + z′′
s1)/2 as the water

stage zs1 at cross-section 1, and stop iteration; otherwise, repeat from step (2) by
reducing Q2 and increasing Q3 if z′

s1 > z′′
s1, or increasing Q2 and reducing Q3 if

z′
s1 < z′′

s1, until a convergent solution is obtained.

If the lengths �x12 and �x13 are very small, the water stages of the three cross-
sections at the split can be set the same. However, an iteration method similar to the
one described above is still needed to determine the ratio of flow discharges in the two
downstream channels.

If the flow is supercritical, the forewater calculation is carried out in channel 1
down to cross-section 1. The water stages at cross-sections 2 and 3 are calculated by
performing forewater calculations from cross-section 1 to cross-sections 2 and 3 using
Eqs. (5.52) and (5.53), respectively. In order to determine the ratio of flow discharges
Q2 and Q3, an additional equation is needed. The momentum balance equation at the
split is usually used. More details can be found in HEC (1997).

5.2.2 1-D unsteady f low calculation

5.2.2.1 Discretization of unsteady f low equations

The governing equations for unsteady open-channel flows are the St. Venant equations
(5.1) and (5.2). However, a variety of forms of these equations have been used in the
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literature. For example, Wu and Vieira (2002) simplified Eq. (5.2) to the following
form, by ignoring the momentum contribution from side flows and dividing by the
flow area A:

∂

∂t

(
Q
A

)
+ ∂

∂x

(
β ′Q2

2A2

)
+ g
∂zs

∂x
+ gSf = 0 (5.54)

where the correction factor β ′ is not exactly the same as the momentum correction
factor β in Eq. (5.2). By comparing Eqs. (5.40) and (5.54), it is recognized that β ′ is
similar in these two equations and thus can be determined using Eq. (5.41).

The numerical solution of the St. Venant equations is a classic problem in com-
putational river dynamics. Mahmood and Yevjevich (1975) and Cunge et al. (1980)
described some of the historical developments. One of the most widely used schemes is
the Preissmann (1961) scheme, based on two computational points in two time levels,
as presented in Eqs. (4.34)–(4.36). Its application to Eqs. (5.1) and (5.54) yields
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where θ andψ are the temporal and spatial weighting factors in the Preissmann scheme,
as shown in Fig. 4.5; and ψR is the spatial weighting factor for friction slope in the
case of low flow depth, as described in Section 5.2.2.6.

5.2.2.2 Local linearization of discretized unsteady f low
equations

Eqs. (5.55) and (5.56) constitute a nonlinear system that needs to be solved iteratively.
During the iteration process, the following relations are expected:
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An+1
i = A∗

i + B∗
i δhi (5.57)

Qn+1
i = Q∗

i + δQi (5.58)

where ∗ denotes the estimates at the last iteration step, δh is the water stage (flow
depth) increment, δQ is the flow discharge increment, and B is the channel width at
the water surface.

Substituting Eqs. (5.57) and (5.58) into Eq. (5.55) yields
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Eq. (5.59) can be written as

aiδhi + biδQi + ciδhi+1 + diδQi+1 = pi (5.60)

where ai = (1 − ψ)B∗
i /�t , bi = −θ/�x, ci = ψB∗

i+1/�t, di = θ/�x, and

pi = − ψ
�t
(A∗

i+1 − An
i+1)−

1 − ψ
�t

(A∗
i − An

i )−
θ

�x
(Q∗

i+1 − Q∗
i )

− 1 − θ
�x

(Qn
i+1 − Qn

i )+ θ [ψqn+1
l,i+1 + (1 − ψ)qn+1

l,i ]
+ (1 − θ)[ψqn

l,i+1 + (1 − ψ)qn
l,i]

To linearize the discretized momentum equation, the following relations based on
the first-order Taylor series expansion in terms of δh and δQ are used:
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β ′n+1
i = β ′∗

i (5.67)

Substituting Eqs. (5.61)–(5.67) into the discretized momentum equation (5.56)
yields the locally linearized form:

a′
iδhi + b′

iδQi + c′
iδhi+1 + d′

iδQi+1 = p′
i (5.68)

where

a′
i = −1 − ψ

�t

Q∗
i B∗

i

(A∗
i )

2 + θ

�x

β ′∗
i (Q

∗
i )

2B∗
i

(A∗
i )

3 − θg
�x

− 2θ(1 − ψR)g
S∗

f ,i

K∗
i

(
∂K
∂zs

)∗

i
;

b′
i = 1 − ψ

�t
1

A∗
i

− θ

�x

β ′∗
i Q∗

i

(A∗
i )

2 + 2θ(1 − ψR)g
|Q∗

i |
(K∗

i )
2 ;

c′
i = − ψ

�t

Q∗
i+1B∗

i+1

(A∗
i+1)

2 − θ

�x

β ′∗
i+1(Q

∗
i+1)

2B∗
i+1

(A∗
i+1)

3 + θg
�x

− 2θψRg
S∗

f ,i+1

K∗
i+1

(
∂K
∂zs

)∗

i+1
;

d′
i = ψ

�t
1

A∗
i+1

+ θ

�x

β ′∗
i+1Q∗

i+1

(A∗
i+1)

2 + 2θψRg
|Q∗

i+1|
(K∗

i+1)
2 ; and

p′
i = − ψ

�t

(
Q∗

i+1

A∗
i+1

− Qn
i+1

An
i+1

)
− 1 − ψ
�t

(
Q∗

i

A∗
i

− Qn
i

An
i

)

− θ

�x

⎡⎣β ′∗
i+1

2

(
Q∗

i+1

A∗
i+1

)2

− β
′∗
i

2

(
Q∗

i

A∗
i

)2
⎤⎦

− 1 − θ
�x

⎡⎣β ′n
i+1

2

(
Qn

i+1

An
i+1

)2

− β
′n
i

2

(
Qn

i

An
i

)2
⎤⎦

− θg
�x
(z∗

s,i+1 − z∗
s,i)−

(1 − θ)g
�x

(zn
s,i+1 − zn

s,i)

− θg[ψRS∗
f ,i+1 + (1 − ψR)S∗

f ,i]
− (1 − θ)g[ψRSn

f ,i+1 + (1 − ψR)Sn
f ,i]
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Note that the momentum equation (5.2) in the dynamic wave model and its
simplification Eq. (5.4) in the diffusion wave model can also be discretized using
the Preissmann implicit scheme and linearized locally using Eqs. (5.61)–(5.67), and
the resulting equations can be written as Eq. (5.68) with different coefficients. The
detailed derivation is left to interested readers.

5.2.2.3 Solution of discretized unsteady f low equations

Algorithm for a single channel

As shown in Fig. 5.7, a single channel is segmented to I − 1 reaches with I cross-
sections. The pentadiagonal matrix of Eqs. (5.60) and (5.68) is solved by successively
applying a double sweep algorithm, which is often called the Thomas algorithm.

A linear relationship between the unknowns δhi and δQi is assumed to be of the
type:

δQi = Siδhi + Ti (5.69)

Substituting Eq. (5.69) into Eqs. (5.60) and (5.68) and eliminating δhi yields

δQi+1 = Si+1δhi+1 + Ti+1 (5.70)

where Si+1 and Ti+1 are recurrence coefficients:

Si+1 = − (ai + biSi)c′
i − (a′

i + b′
iSi)ci

(ai + biSi)d′
i − (a′

i + b′
iSi)di

(5.71)

Ti+1 = (ai + biSi)(p′
i − b′

iTi)− (a′
i + b′

iSi)(pi − biTi)

(ai + biSi)d′
i − (a′

i + b′
iSi)di

(5.72)

In the first (forward) sweep, Eqs. (5.71) and (5.72) are applied recursively, with i
varying from 1 to I −1. To perform this sweep, S1 and T1 at cross-section 1 (inlet) are
derived from the upstream boundary condition. For simplicity, the case of subcritical
flow is considered here. Therefore, Qn+1

1 is known by the given discharge hydrograph
at the inlet, and the recurrence coefficients S1 and T1 read

S1 = 0, T1 = Qn+1
1 − Q∗

1 (5.73)

Substituting Eq. (5.69) into Eq. (5.60) yields

δhi = (pi − biTi)− (ciδhi+1 + diδQi+1)

ai + biSi
(5.74)

Therefore, in the second (return) sweep, δhi and δQi can be calculated using
Eqs. (5.74) and (5.69) recursively, with i from I − 1 to 1.
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To perform the second sweep, the values of δhI and δQI at cross-section I (outlet)
are derived from the downstream boundary condition, which can be a time series
of water stage, a stage-discharge rating curve, etc. If the water-stage time series is
specified, zn+1

s,I is known and the stage increment at cross-section I is

δhI = zn+1
s,I − z∗

s,I (5.75)

and the discharge increment δQI can then be determined using Eq. (5.69).
If a measured stage-discharge rating curve, Q = f (zs), is specified at the out-

let, a discretized equation can be obtained by applying the first-order Taylor series
expansion:

δQI − df
dzs
δhI = f ∗ − Q∗

I (5.76)

and the stage increment at point I can then be derived from Eqs. (5.69) and (5.76) as

δhI = TI + Q∗
I − f ∗

df /dzs − SI
(5.77)

In the outlet located in a nearly prismatic channel with a positive slope (downslope),
the flow can be assumed to be uniform; thus, a relation of Q = K(zs)

√
S0 exists, in

which K is the conveyance and S0 is the channel slope. In analogy to Eq. (5.77), the
following equation for the stage increment at point I can be derived:

δhI = TI + Q∗
I − K∗√S0√

S0dK∗/dzs − SI
(5.78)

If the outlet is controlled by an in-stream structure, such as spillway or weir, a free
overfall flow exists; thus, a stage-discharge rating curve Q = f (zs) can be obtained
using the critical flow condition near the brinkpoint, and then Eq. (5.77) can be
applied.

If a flood or tidal wave propagation is concerned, the outflow boundary must also
be non-reflective and able to damp out the waves. This type of outflow boundary
condition may be found in Hinatsu (1992) and others.

Therefore, the aforementioned two sweeps constitute an iteration step, yielding
δh and δQ. z∗

s and Q∗ are then updated by z∗
s + δh and Q∗ + δQ. The iteration is

stopped when the solutions for z∗
s and Q∗ have converged (δh → 0 and δQ → 0). The

converged z∗
s and Q∗ are eventually given to zn+1

s and Qn+1.

Algorithm for a dendritic channel network

A dendritic (or tree-like) channel network includes tributaries and/or distributaries
without any loop. The previous double sweep algorithm can still be applied in the
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solution of unsteady flows in this type of channel network, provided that a certain
computational order is respected.

A dendritic network of three channels, shown in Fig. 5.11, is used as illustration.
Suppose that the forward sweep starts from point 1 of channel A, at which a boundary
condition, such as the time series of flow discharge or water stage, is given. The
recurrence coefficients are calculated along channel A using Eqs. (5.71) and (5.72). At
the last point of channel A, the following relation is obtained:

δQA,M = SA,MδhA,M + TA,M (5.79)

where the subscript A denotes channel A, and M denotes the last point in channel A.

Figure 5.11 Dendritic network with three channels.

The forward sweep in channel B is also carried out from the first to the last point.
A boundary condition should be given at the first point, while the following relation
is obtained at the last point, N:

δQB,N = SB,NδhB,N + TB,N (5.80)

where the coefficients SB,N and TB,N are determined using Eqs. (5.71) and (5.72).
Now, let us consider how to handle the junction. For convenience, the three cross-

sections at the junction are located very close together. Therefore, it can be assumed
that the water stages at the three cross-sections are equal, and the flow discharge
at the downstream cross-section is equal to the sum of those at the two upstream
cross-sections:

zn+1
sA,M = zn+1

sB,N = zn+1
sC,1 (5.81)

Qn+1
C,1 = Qn+1

A,M + Qn+1
B,N (5.82)

Eqs. (5.81) and (5.82) are the compatibility conditions at the junction. Substituting
Eqs. (5.58) and (5.61) into Eqs. (5.81) and (5.82) yields

δhA,M − δhC,1 = z∗
sC,1 − z∗

sA,M (5.83)

δhB,N − δhC,1 = z∗
sC,1 − z∗

sB,N (5.84)
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δQC,1 − δQA,M − δQB,N = Q∗
A,M + Q∗

B,N − Q∗
C,1 (5.85)

Substituting Eqs. (5.79) and (5.80) into Eq. (5.85) and then using the expressions
for δhA,M and δhB,N obtained from Eqs. (5.83) and (5.84) yields

δQC,1 = SC,1δhC,1 + TC,1 (5.86)

where SC,1 = SA,M + SB,N , and TC,1 = Q∗
A,M + Q∗

B,N − Q∗
C,1 + SA,M(z∗

sC,1 − z∗
sA,M)+

SB,N(z∗
sC,1 − z∗

sB,N)+ TA,M + TB,N .
The forward sweep can then be carried out from the first to the last point in channel C

using Eqs. (5.71) and (5.72).
The return sweep starts from the last point of channel C, at which a boundary con-

dition is specified. The stage and discharge increments at the last point are determined
using Eqs. (5.75)–(5.78), and at the intermediate points using Eqs. (5.69) and (5.74).
At the end of the return sweep in channel C back to the junction, the stage increment
δhC,1 is calculated using Eq. (5.74), and the discharge increment δQC,1 is determined
using Eq. (5.86). Next, the stage increments δhA,M and δhB,N are determined using
Eqs. (5.83) and (5.84), and the discharge increments δQA,M and δQB,N are computed
using Eqs. (5.79) and (5.80). Finally, the return sweep can be carried out along both
channels A and B.

It should be noted that the equal water stage condition (5.81) may be replaced with
the equal energy level condition at the junction:

zn+1
sA,M + 1

2g

(
Qn+1

A,M

An+1
A,M

)2

= zn+1
sB,N + 1

2g

(
Qn+1

B,N

An+1
B,N

)2

= zn+1
sC,1 + 1

2g

(
Qn+1

C,1

An+1
C,1

)2

(5.87)

which can be expanded in terms of δh and δQ and used to substitute Eqs. (5.83)
and (5.84).

Algorithm for a looped channel network

A “looped” channel network is shown in Fig. 5.12. The difference between “den-
dritic” and “looped” channel networks is that there is only one possible flow path
from a given point to another in a dentritic network, while there are usually sev-
eral such flow paths in a looped network. The previous double sweep algorithm
cannot be applied directly to the solution of unsteady flows in looped channel net-
works. The looped solution algorithm described by Cunge et al. (1980) is often used
instead. In this algorithm, the term “node” is used to represent the junction of several
flow paths that originate from either other nodes or boundary points. For exam-
ple, the nodes in the channel network shown in Fig. 5.12 are A, B, C, and D. The
points (cross-sections) between two nodes in each channel are defined as intermediate
points.
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Figure 5.12 Looped channel network.

Consider the channels AB, AC, and AD, which are connected to node A in Fig. 5.12.
Suppose that there are L computational points along channel AB, M points along
channel AC, and N points along channel AD. For the reach between points i and i +1
in a channel, e.g., AB, Eqs. (5.60) and (5.68) can be obtained. Eliminating δQi+1 from
them yields

δhi+1 = Ci+1δhi + Di+1δQi + Ei+1 (5.88)

where Ci+1 = −(d′
iai − dia′

i)/(d
′
ici − dic′

i), Di+1 = −(d′
ibi − dib′

i)/(d
′
ici − dic′

i), and

Ei+1 = (d′
ipi − dip′

i)/(d
′
ici − dic′

i).

Suppose that the following relation exists at point i + 1 of channel AB:

δQi+1 = Fi+1δhi+1 + Gi+1 + Hi+1δhL (5.89)

Substituting Eq. (5.89) into Eqs. (5.60) and (5.68), and eliminating �hi+1 yields

δQi = Fiδhi + Gi + HiδhL (5.90)

with

Fi = −[ai(c′
i + d′

iFi+1)− a′
i(ci + diFi+1)]/

[bi(c′
i + d′

iFi+1)− b′
i(ci + diFi+1)] (5.91)

Gi = [(pi − diGi+1)(c′
i + d′

iFi+1)− (p′
i − d′

iGi+1)(ci + diFi+1)]/
[bi(c′

i + d′
iFi+1)− b′

i(ci + diFi+1)] (5.92)

Hi = −Hi+1[di(c′
i + d′

iFi+1)− d′
i(ci + diFi+1)]/

[bi(c′
i + d′

iFi+1)− b′
i(ci + diFi+1)] (5.93)
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The recurrence coefficients FL−1, GL−1, and HL−1 are obtained by eliminating δQL
from Eqs. (5.60) and (5.68) in the reach between points L − 1 and L. Therefore, the
coefficients F, G, and H can be computed using Eqs. (5.91)–(5.93) in the first sweep
from node B to node A, consequently yielding

δQ1,AB = F1,ABδh1,AB + G1,AB + H1,ABδhL (5.94)

where δQ1,AB denotes the discharge increment at point 1 of channel AB; and F1,AB,
G1,AB, and H1,AB are recurrence coefficients known from Eqs. (5.91)–(5.93).

Similarly, a sweep from node C to node A along channel AC gives

δQ1,AC = F1,ACδh1,AC + G1,AC + H1,ACδhM (5.95)

and a sweep from node D to node A along channel AD gives

δQ1,AD = F1,ADδh1,AD + G1,AD + H1,ADδhN (5.96)

The compatibility conditions of discharge continuity and equal water stages at node
A are written as follows:

q1(tn+1)+
J∑

j=1

Qn+1
1,j = 0 (5.97)

zn+1
s1,1 = zn+1

s1,2 = . . . = zn+1
s1,j = . . . = zn+1

s1,J (5.98)

where j is the index of the channels that emanate from node A, J is the total number
of such channels and J = 3 for node A in Fig. 5.12, and q1(tn+1) is the external inflow
(or outflow) to node A at time tn+1.

Applying the Taylor series expansion to Eqs. (5.97) and (5.98) yields

q1(tn+1)+
J∑

j=1

Q∗
1,j +

J∑
j=1

δQ1,j = 0 (5.99)

δh1,1 = δh1,2 = . . . = δh1,j = . . . = δh1,J (5.100)

Substituting Eqs. (5.94)–(5.96) and (5.100) into Eq. (5.99) yields a linear algebraic
equation in terms of J + 1 unknowns:

f (δhA, δhL, δhM, δhN) = 0 (5.101)

Eq. (5.101) is derived based on node A. Performing the above procedure for all
nodes in the network eventually leads to a system of linear equations for the stage
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increments δh at all nodes as unknowns:

[S]{δh} = {b} (5.102)

where [S] is the coefficient matrix with m × m elements, {δh} is the vector of m
unknowns, and {b} is the vector with m elements holding all free terms. Here, m
is the total number of nodes.

The system represented by Eq. (5.102) can be solved using a matrix inversion tech-
nique. Once the stage increments are solved at the nodes, Eqs. (5.94)–(5.96) are used
to determine the discharge increments at the ends of each channel, and Eqs. (5.88) and
(5.89) are used to compute δhi+1 and δQi+1 for all intermediate points in a generalized
return sweep.

In principle, Eq. (5.102) can be solved using any matrix inversion technique. How-
ever, because the matrix may be quite large, a direct inversion computation can be
expensive. An iterative inverse computation may also have trouble when the matrix
loses diagonal dominance. The block tri-diagonal matrix solution technique suggested
by Mahmood and Yevjevich (1975) has been found to be very efficient in the solution
of equation system (5.102). The details can be found in that reference.

5.2.2.4 Treatment of hydraulic structures as internal
boundaries

Because of their complexity, it is almost impossible to simulate the detailed flow pat-
terns around in-stream hydraulic structures, such as culverts, bridge crossings, drop
structures, weirs, sluice gates, spillways, and measuring flumes, using a 1-D model.
Simplifications must be made to obtain a feasible solution. The storage effect of the
flow at a hydraulic structure is usually neglected, so the same flow discharge is imposed
at its upstream and downstream ends:

Qup = Qdown (5.103)

which can be expanded as

δQup − δQdown = Q∗
down − Q∗

up (5.104)

The water stage at the hydraulic structure is often determined using a stage-discharge
relation, which is related to whether the flow is upstream or downstream controlled.
The upstream control flow is treated as a free overfall flow that is critical, while the
downstream control flow is treated as an orifice-like flow. For the upstream control
flow, the critical flow condition implies

Q = Ac

√
g

Ac

Bc
(5.105)

where Ac and Bc are the area and top width of flow at the structure, respectively. Both
are functions of flow depth. Thus, the following general stage-discharge relation can



204 Computational River Dynamics

be established:

Q = f (zs,up) (5.106)

The first-order Taylor series expansion of Eq. (5.106) reads

δQ − ∂f
∂zs,up

δhup = f ∗ − Q∗ (5.107)

For the downstream control flow, the following relation of orifice-like flow is
usually used:

Q = A

√
2g(zs,up − zs,down)

KL
(5.108)

where KL is the coefficient of energy loss at the hydraulic structure.
Because it cannot handle the situation of zs,up ≤ zs,down, Eq. (5.108) is reformu-

lated as

zs,up − zs,down = KL

2g
Q|Q|

A2 (5.109)

which is then expanded as

δhup − δhdown = −z∗
s,up + z∗

s,down + KL

2g
Q∗|Q∗|

A∗2 (5.110)

Note that the stage and discharge increments originated from the term on the right-
hand side of Eq. (5.109) are ignored in Eq. (5.110). They may be included for the sake
of completion.

A dam structure may have various flow passage facilities, such as spillways, sluice
gates, and power generators. The flows through these facilities may be free overflow
and/or under control. Thus, the stage-discharge rating relation for a dam structure
may be Eqs. (5.106), (5.108), or a combination of them.

In addition, the water stage or flow discharge measured at a dam and other structures
can be used as the internal condition. If a time series of the water stage is known:

zs,up = zs(t) (5.111)

the stage increment at the upstream point is determined by

δhup = zn+1
s,up − z∗

s,up (5.112)

If a time series of the flow discharge is known:

Qup = Q(t) (5.113)
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the discharge increment at the upstream point is

δQup = Qn+1 − Q∗ (5.114)

Eq. (5.104) and one of Eqs. (5.107), (5.110), (5.112), and (5.114) are used to
determine the flow at a hydraulic structure. Eq. (5.104) can be written in the form
of Eq. (5.60), with the coefficients being ai = 0, bi = 1, ci = 0, di = −1, and
pi = Q∗

down − Q∗
up. Eqs. (5.107), (5.110), (5.112), and (5.114) can be written as

Eq. (5.68). The coefficients are: a′
i = −∂f /∂zs,up, b′

i = 1, c′
i = 0, d′

i = 0, and
p′

i = f ∗ − Q∗ for Eq. (5.107); a′
i = 1, b′

i = 0, c′
i = −1, d′

i = 0, and p′
i = −z∗

s,up +
z∗

s,down + KLQ∗|Q∗|/(2gA∗2) for Eq. (5.110); a′
i = 1, b′

i = 0, c′
i = 0, d′

i = 0, and

p′
i = zn+1

s,up −z∗
s,up for Eq. (5.112); and a′

i = 0, b′
i = 1, c′

i = 0, d′
i = 0, and p′

i = Qn+1−Q∗
for Eq. (5.114). Thus, Eqs. (5.104), (5.107), (5.110), (5.112), and (5.114) can be
intrinsically incorporated into the solution algorithm.

It should be noted that described above are the general methods for considering
hydraulic structures in a 1-D channel network model. For specific hydraulic structures,
empirical stage-discharge relations may be used (see Wu and Vieira, 2002).

5.2.2.5 Stability of Preissmann scheme for unsteady f low
equations

The numerical stability of the Preissmann scheme for the St. Venant equations was
studied by Lyn and Goodwin (1987) and Venutelli (2002). Lyn and Goodwin’s findings
are introduced below.

Eqs. (5.1) and (5.2) are written as

∂F
∂t

+ M
∂F
∂x

= b (5.115)

where F = (u, h), M is the coefficient matrix, and b is the vector of inhomoge-
neous terms.

Appling the Preissmann scheme (4.34)–(4.36) to discretize Eq. (5.115) and lineariz-
ing the discretized equation locally yields

ψ(Fn+1
i+1 − Fn

i+1)+ (1 − ψ)(Fn+1
i − Fn

i )+ rM0[θ(Fn+1
i+1 − Fn+1

i )

+ (1 − θ)(Fn
i+1 − Fn

i )] = b�t (5.116)

where r = �t/�x, and M0 is the coefficient matrix of M at locally uniform state.
The Fourier component, δ = δ∗e−i(ω�t−σ�x), corresponding to F is governed by

ψ(δn+1
i+1 − δni+1)+ (1 − ψ)(δn+1

i − δni )+ rM0[θ(δn+1
i+1 − δn+1

i )

+ (1 − θ)(δni+1 − δni )] = 0 (5.117)
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The growth factor of δ in Eq. (5.117) is

ξ = 1 − rck

ψ + 1
η−1 + rckθ

(5.118)

where ξ = e−iω�t, η = eiσ�x, and ck is a characteristic wave speed of the system.
For the homogeneous problem, the von Neumann condition for numerical stability

is |ξ | ≤ 1, which implies

(
ψ − 1

2

)
1
Cr

+
(
θ − 1

2

)
≥ 0 (5.119)

where Cr is the Courant number, defined as Cr = rck.
When Cr > 0, the stability condition (5.119) is schematically shown in Fig. 5.13. The

Preissmann scheme is unconditionally stable in the quarter of θ ≥ 1/2 and ψ ≥ 1/2,
and unconditionally unstable in the quarter of θ < 1/2 and ψ < 1/2. In the other two
quarters, the stability depends on the Courant number. Usually, ψ = 1/2 is used for
better accuracy regarding space. This leads to the conclusion that for unconditional
stability — i.e., stable for all Courant numbers — it is necessary that θ ≥ 1/2. If
ψ 	= 1/2, the stability will depend on the sign of Cr, or equivalently, on the direc-
tion of travel of a characteristic wave. Because of this, ψ 	= 1/2 should be used with
caution in situations where characteristics travel in both directions, particularly where
characteristic directions may change. As described by Meselhe and Holly (1993) and
Kutija and Hewett (2002), the Preissmann scheme may encounter numerical instabil-
ity in the transition between supercritical and subcritical flow regimes. This may be
avoided by using some newly developed schemes, such as that proposed by Kutija and
Hewett (2002). Some schemes for dam-break flow simulation introduced in Section
9.1 may also be used in the simulation of mixed-regime flows.

Figure 5.13 Regions of stability in ψ − θ plane when Cr > 0.
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5.2.2.6 Auxiliary treatments for unsteady f low calculation

Representation of friction slope

The friction slope in Eq. (5.2) may be represented in various ways, such as arithmetic
mean, harmonic mean, geometric mean, and conveyance mean (French, 1985), as
expressed in Eqs. (5.42)–(5.45) for a steady flow model. For an unsteady flow model,
the arithmetic mean friction slope is introduced in Eq. (5.56), and the conveyance
mean friction slope is given as

Sf =
{
θ [ψRQn+1

i+1 + (1 − ψR)Q
n+1
i ] + (1 − θ)[ψRQn

i+1 + (1 − ψR)Qn
i ]

θ [ψRKn+1
i+1 + (1 − ψR)K

n+1
i ] + (1 − θ)[ψRKn

i+1 + (1 − ψR)Kn
i ]

}2

(5.120)

The harmonic and geometric mean friction slopes are left to interested readers.

Small f low depth

Computational difficulties arise when the flow depth becomes small. As the flow depth
approaches zero, the conveyance and flow discharge go to zero, and thus the friction
slope becomes indeterminate. This was explained well by Cunge et al. (1980). Meselhe
and Holly (1993) showed that the characteristic curves are vertical and do not intersect
when the flow depth is zero; consequently, a solution does not exist.

Cunge et al. (1980) proposed and Meselhe and Holly (1993) developed further
an approach for handling the dry-bed problem. The basic idea is to switch the
weighting for friction slope from central (ψR = 0.5, highest accuracy) to upstream
(0 ≤ ψR ≤ 0.5). In a diffusive wave model, Langendoen (1996) related the weighting
factor to the flow depth as

ψR = min(0.5, ahb) (5.121)

where the coefficient a ≈ 0.7 and the exponent b ≈ 0.35.
In the author’s experience, Eq. (5.121) may fail andψR = 0 is occasionally necessary

to ensure stable solutions when using the dynamic wave model. One of the best choices
is to try several values of ψR and find the value closest to 0.5 that allows a stable
solution for a specific case.

Storage effect of still water zones

Still waters, or very slow flows, exist in sudden expansions, appendix channels, ponds,
or small lakes that are connected to the main stream. These still water zones do not
have significant momentum exchange with the main stream, but their storages may
affect the main flow. To consider the storage effect, the continuity equation (5.1) is
substituted by

∂(A + A0)

∂t
+ ∂Q
∂x

= ql (5.122)
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where A0 is the cross-sectional area of still water zones, and A is the cross-sectional
area of main flow. The momentum equation (5.2) or (5.54) is not changed, in which
only the main flow area A is used.

5.3 1-D CALCULATION OF SEDIMENT TRANSPORT

5.3.1 1-D equilibrium sediment transport model

The sediment continuity equation (5.38) is used to determine bed change in the equi-
librium sediment transport model. For uniform sediment in a rectangular channel, it
becomes

(1 − p′
m)
∂zb

∂t
+ ∂qt

∂x
= 0 (5.123)

where zb is the bed elevation, and qt is the sediment transport rate per unit channel
width. As demonstrated in Eq. (5.37), qt is determined using a sediment transport
capacity formula.

Many numerical schemes have been used to discretize Eq. (5.123). Saiedi (1997)
summarized some of them. For example, applying the Preissmann scheme expressed
as Eqs. (4.35) and (4.36) to Eq. (5.123) yields

(1 − p′
m)
ψ�zb,i+1 + (1 − ψ)�zb,i

�t
+ 1
�x

[θ(qn+1
t,i+1 − qn+1

t,i )

+ (1 − θ)(qn
t,i+1 − qn

t,i)] = 0 (5.124)

where �zb,i is the change in bed elevation at cross-section i in time step �t, i.e.,
�zb,i = zn+1

b,i − zn
b,i. The spatial and temporal weighting factors in Eq. (5.124) were

given various values, e.g., ψ = 0.5 by Cunge and Perdreau (1973).
De Vries (1981) adopted a Lax-type scheme for the bed change term and an explicit

central difference scheme for the gradient of sediment discharge:

(1 − p′
m)

1
�t

{
zn+1

b,i −
[
(1 − ψb) z

n
b,i + ψb

2
(zn

b,i−1 + zn
b,i+1)

]}
+ 1

2�x
(qn

t,i+1 − qn
t,i−1) = 0 (5.125)

where ψb is a weighting factor, which can enhance numerical stability but may
introduce numerical diffusion. A small value should be used for ψb.

Gessler (1971) and Thomas (1982) used the forward difference scheme for the bed
change term and the central difference scheme for the gradient of sediment discharge:

(1 − p′
m)
�zb,i

�t
+ 1

2�x
(qn

t,i+1 − qn
t,i−1) = 0 (5.126)
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Because of its special link between bed change and sediment discharge, Eq. (5.123)
can be easily solved using the finite volume method on a staggered grid, in which
sediment discharge is stored at cell faces and bed change is stored at cell centers.
Integrating Eq. (5.123) over the control volume in Fig. 4.14 yields

(1 − p′
m)
�zb,P

�t
�xP + qt,e − qt,w = 0 (5.127)

where qt,e and qt,w are the sediment discharges at faces e and w and can be determined
using the first-order upwind scheme or the QUICK scheme introduced in Section 4.3.1.

The calculations at each time step are executed as follows: (a) compute flow using
the steady or unsteady flow model introduced in Section 5.2; (b) determine sediment
discharge using an empirical sediment transport formula; (c) calculate bed change
using one of Eqs. (5.124)–(5.127); and (d) update channel geometry. In addition,
bed material sorting is also calculated for non-uniform sediment transport. This is
introduced in Sections 5.3.2 and 5.3.3.

5.3.2 1-D quasi-steady non-equilibrium sediment
transport model

5.3.2.1 Representation of hydrographs

Denote the characteristic length, time, and velocity of fluvial processes in an open chan-
nel as�, T, and U. If T � �/U, the time-derivative terms in the St. Venant equations
(5.1) and (5.2) and sediment transport equations (5.27), (5.28), and (5.34) can be omit-
ted. Therefore, the fluvial processes can be simulated using a step-wise quasi-steady
model. As demonstrated in Fig. 5.14, the continuous time series of flow discharge,
water stage, and sediment discharge are represented by step functions that are con-
structed with the corresponding representative quantities over a suitable number of

Figure 5.14 Representation of hydrographs in quasi-steady model.
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time intervals. At each time interval, the flow and sediment transport are assumed to
be steady, but the bed change and bed material sorting are still calculated, and thus
the temporal evolution of channel morphology is simulated.

The time intervals are generally used as time steps in the calculation of bed change
and bed material sorting, and should thus be restricted by the stability criteria of
the sediment transport model. In addition, the time intervals should be defined in
such a way that the temporal variations of flow discharge, water stage, and sediment
discharge are well represented. This means that shorter intervals should be used for
high flow periods and longer intervals may be used for low flow periods. Normally,
the time intervals can be hours or days.

5.3.2.2 Discretization of quasi-steady sediment transport
equations

As discussed in Section 5.1.2.1, two approaches may be used in the simulation of total-
load transport. The approach that computes bed load and suspended load separately
is adopted here.

Under steady flow conditions, the suspended-load and bed-load transport equations
(5.27) and (5.28) without side sediment discharges are written as

d(QCk)

dx
= αωskB(C∗k − Ck) (5.128)

dQbk

dx
= 1

L
(Qb∗k − Qbk) (5.129)

Eqs. (5.128) and (5.129) are first-order ordinary differential equations. They can
be discretized using many numerical schemes, such as the Euler scheme, central dif-
ference scheme, and the Runge-Kutta method. Han (1980) established the following
exponential difference scheme for Eq. (5.128), based on its analytical solution:

Ck,i+1 = C∗k,i+1 + (Ck,i − C∗k,i) exp
(

−αωskBi+1/2�xi+1/2

Qi+1/2

)
+ (C∗k,i − C∗k,i+1)

Qi+1/2

αωskBi+1/2�xi+1/2

×
[
1 − exp

(
−αωskBi+1/2�xi+1/2

Qi+1/2

)]
(5.130)

The Han scheme (5.130) is very stable, but it is not strictly conservative. However,
many tests have shown that it has good accuracy.

Similarly, Eq. (5.129) can be discretized using the following exponential difference
scheme:

Qbk,i+1 = Qb∗k,i+1 + (Qbk,i − Qb∗k,i) exp
(

−�xi+1/2

L

)
+ (Qb∗k,i − Qb∗k,i+1)

L
�xi+1/2

[
1 − exp

(
−�xi+1/2

L

)]
(5.131)
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Eqs. (5.130) and (5.131) do not involve time, but they are applied at time level n+1
in the computation of channel morphological evolution.

The bed change equation (5.30) is discretized as

(1 − p′
m)
�Abk,i+1

�t
= αωskBi+1(Ck,i+1 − C∗k,i+1)+

Qbk,i+1 − Qb∗k,i+1

L
(5.132)

where �Abk,i+1 is the change in bed area due to size class k at time step �t.
The total change in bed area, �Ab,i+1, is calculated by

�Ab,i+1 =
N∑

k=1

�Abk,i+1 (5.133)

and the bed elevation is updated by

zn+1
b,i+1,j = zn

b,i+1,j +�zb,i+1,j (5.134)

where j is the point index in the cross-section, and �zb,i+1,j is the local change in
bed elevation obtained by allocating the bed area change �Ab,i+1 along the cross-
section. For a uniform allocation, �zb,i+1,j = �Ab,i+1/Bi+1. More allocation options
are discussed in Section 5.3.5.

The bed material sorting equations (5.32) and (5.33) in the mixing and second layers
are discretized as

pn+1
bk,i+1 =

�Abk,i+1 + An
m,i+1pn

bk,i+1 + p∗n
bk,i+1(A

n+1
m,i+1 − An

m,i+1 −�Ab,i+1)

An+1
m,i+1

(5.135)

pn+1
sbk,i+1 =

An
sub,i+1pn

sbk,i+1 − p∗n
bk,i+1(A

n+1
m,i+1 − An

m,i+1 −�Ab,i+1)

An+1
sub,i+1

(5.136)

where p∗n
bk,i+1 is pn

bk,i+1 if�Ab,i+1 +An
m,i+1 ≥ An+1

m,i+1 and pn
sbk,i+1 if�Ab,i+1 +An

m,i+1 <

An+1
m,i+1.

The bed-material gradations in other subsurface layers are calculated according to
mass conservation, if there is exchange between them.

The bed-material gradation pbk in Eq. (5.29) can be treated explicitly or implicitly.
If the implicit scheme is used, the discretized sediment equations (5.130)–(5.136) can
be solved in a coupled form, using the direct method proposed by Wu (1991). This
coupled solution procedure is not presented here, because a similar one is introduced
in the next subsection.
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5.3.3 1-D unsteady non-equilibrium sediment transport
model

5.3.3.1 Discretization of unsteady sediment transport
equations

For simplicity, the bed-material load transport model introduced in Section 5.1.2.1 is
adopted here. Applying the Preissmann scheme to discretize the total-load transport
equation (5.34) yields (Wu et al., 2004a)

ψ

�t

(
Qn+1

tk,i+1

βn+1
tk,i+1Un+1

i+1

−
Qn

tk,i+1

βn
tk,i+1Un

i+1

)
+ 1 − ψ
�t

(
Qn+1

tk,i

βn+1
tk,i Un+1

i

−
Qn

tk,i

βn
tk,iU

n
i

)

+ θ

�x
(Qn+1

tk,i+1 − Qn+1
tk,i )+

1 − θ
�x

(Qn
tk,i+1 − Qn

tk,i)

+ θ
[
ψ

Qn+1
tk,i+1 − Qn+1

t∗k,i+1

Ln+1
t,i+1

+ (1 − ψ)
Qn+1

tk,i − Qn+1
t∗k,i

Ln+1
t,i

]

+ (1 − θ)
[
ψ

Qn
tk,i+1 − Qn

t∗k,i+1

Ln
t,i+1

+ (1 − ψ)
Qn

tk,i − Qn
t∗k,i

Ln
t,i

]
= θ [ψqn+1

tlk,i+1 + (1 − ψ)qn+1
tlk,i ] + (1 − θ)[ψqn

tlk,i+1 + (1 − ψ)qn
tlk,i]

(5.137)

which can be written as

c1Qn+1
tk,i+1 = c2Qn+1

tk,i + c3Qn
tk,i+1 + c4Qn

tk,i + c0k (5.138)

where

c1 = ψ

βn+1
tk,i+1Un+1

i+1 �t
+ θ

�x
+ θψ

Ln+1
t,i+1

c2 = − 1 − ψ
βn+1

tk,i Un+1
i �t

+ θ

�x
− θ(1 − ψ)

Ln+1
t,i

c3 = ψ

βn
tk,i+1Un

i+1�t
− 1 − θ
�x

− (1 − θ)ψ
Ln

t,i+1

c4 = 1 − ψ
βn

tk,iU
n
i �t

+ 1 − θ
�x

− (1 − θ)(1 − ψ)
Ln

t,i

c0k = θψ
Qn+1

t∗k,i+1

Ln+1
t,i+1

+ θ(1 − ψ)
Qn+1

t∗k,i

Ln+1
t,i

+ (1 − θ)ψ
Qn

t∗k,i+1

Ln
t,i+1

+ (1 − θ)(1 − ψ)
Qn

t∗k,i

Ln
t,i

+ θψqn+1
tlk,i+1 + θ(1 − ψ)qn+1

tlk,i + (1 − θ)ψqn
tlk,i+1 + (1 − θ)(1 − ψ)qn

tlk,i

In order to satisfy sediment continuity, the sediment exchange terms in Eqs. (5.34)
and (5.36) should be discretized using the same scheme. Thus, the bed change
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equation (5.36) is discretized as

(1 − p′
m)
�Abk,i+1

�t
= θ

Qn+1
tk,i+1 − Qn+1

t∗k,i+1

Ln+1
t,i+1

+ (1 − θ)
Qn

tk,i+1 − Qn
t∗k,i+1

Ln
t,i+1

(5.139)

The total change in bed area is calculated using Eq. (5.133), the bed elevation
is updated using Eq. (5.134), and the bed-material gradations are determined using
Eqs. (5.135) and (5.136).

5.3.3.2 Solution of discretized unsteady sediment transport
equations

Decoupled sediment calculation

A decoupled procedure for solving the discretized sediment transport, bed change, and
bed material sorting equations can be established, if the bed-material gradation pbk in
Eq. (5.35) is treated explicitly:

Qn+1
t∗k,i+1 = pn

bk,i+1Q∗n+1
tk,i+1 (5.140)

The sediment quantities at cross-section i + 1 are then obtained in the following
sequence:

(1) Compute Qn+1
t∗k,i+1 using Eq. (5.140) with the known pn

bk,i+1;

(2) Calculate Qn+1
tk,i+1 using Eq. (5.138);

(3) Compute�Abk,i+1 using Eq. (5.139);
(4) Calculate �Ab,i+1 using Eq. (5.133);
(5) Compute pn+1

bk,i+1 using Eq. (5.135), and
(6) Update the cross-section topography using Eq. (5.134), and calculate the bed-

material gradations in the subsurface layers.

Once the sediment discharges at the inlet have been determined using boundary con-
ditions, the forewater calculation of sediment transport can be performed cross-section
by cross-section, following the procedure laid out above. This decoupled procedure
is very simple but may be subject to non-physical phenomena, such as numerical
oscillation and negative bed-material gradation.

The decoupled sediment calculation is usually decoupled from the flow calculation.
Therefore, the entire flow and sediment calculations are fully decoupled.

Coupled sediment calculation

A coupled procedure for solving the discretized sediment equations described above
can be established, if the bed-material gradation pbk in Eq. (5.35) is treated implicitly:

Qn+1
t∗k,i+1 = pn+1

bk,i+1Q∗n+1
tk,i+1 (5.141)
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This coupled solution procedure can eliminate those non-physical phenomena that
exist in the decoupled procedure. However, the set of discretized sediment equations
should be solved simultaneously. An iteration method is normally needed, and then the
computational effort will be significantly increased. To avoid this, the direct solution
method proposed by Wu (1991) can be used (Wu et al., 2004a), as described below.

For convenience, Eq. (5.138) is written as

Qn+1
tk,i+1 = ekQn+1

t∗k,i+1 + e0k (5.142)

where ek = θψ/(c1Ln+1
t,i+1), e0k = (c2Qn+1

tk,i + c3Qn
tk,i+1 + c4Qn

tk,i + c′
0k)/c1, and c′

0k is

c0k without θψQn+1
t∗k,i+1/L

n+1
t,i+1.

Eq. (5.139) is written as

�Abk,i+1 = f1Qn+1
tk,i+1 − f2Qn+1

t∗k,i+1 + f0k (5.143)

where f1 = f2 = θ�t/[(1 − p′
m)L

n+1
t,i+1], and f0k = (1 − θ)�t(Qn

tk,i+1 − Qn
t∗k,i+1)/

[(1 − p′
m)L

n
t,i+1].

Inserting Eqs. (5.141) and (5.142) into Eq. (5.143) yields

�Abk,i+1 = (f1ek − f2)p
n+1
bk,i+1Q∗n+1

tk,i+1 + (f1e0k + f0k) (5.144)

and then substituting Eq. (5.135) into Eq. (5.144) leads to

�Abk,i+1 = �Ab,i+1

(f2 − f1ek)Q
∗n+1
tk,i+1p∗n

bk,i+1

An+1
m,i+1 + (f2 − f1ek)Q

∗n+1
tk,i+1

+ (f1e0k + f0k)A
n+1
m,i+1

An+1
m,i+1 + (f2 − f1ek)Q

∗n+1
tk,i+1

−
(f2 − f1ek)Q

∗n+1
tk,i+1[pn

bk,i+1An
m,i+1 + p∗n

bk,i+1(A
n+1
m,i+1 − An

m,i+1)]
An+1

m,i+1 + (f2 − f1ek)Q
∗n+1
tk,i+1

(5.145)

Summing Eq. (5.145) over all size classes and using Eq. (5.133) yields the following
equation for the total change in bed area:

�Ab,i+1 =
⎧⎨⎩−

N∑
k=1

(f2 − f1ek)Q
∗n+1
tk,i+1[pn

bk,i+1An
m,i+1 + p∗n

bk,i+1(A
n+1
m,i+1 − An

m,i+1)]
An+1

m,i+1 + (f2 − f1ek)Q
∗n+1
tk,i+1

+
N∑

k=1

(f1e0k + f0k)A
n+1
m,i+1

An+1
m,i+1 + (f2 − f1ek)Q

∗n+1
tk,i+1

⎫⎬⎭
/

⎡⎣1 −
N∑

k=1

(f2 − f1ek)Q
∗n+1
tk,i+1p∗n

bk,i+1

An+1
m,i+1 + (f2 − f1ek)Q

∗n+1
tk,i+1

⎤⎦ (5.146)
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The discretized sediment equations are then directly solved in the following
sequence:

(1) Compute�Ab,i+1 using Eq. (5.146);
(2) Calculate �Abk,i+1 using Eq. (5.145);
(3) Compute pn+1

bk,i+1 using Eq. (5.135);

(4) Calculate Qn+1
t∗k,i+1 using Eq. (5.141);

(5) Compute Qn+1
tk,i+1 using Eq. (5.142), and

(6) Update the cross-section topography using Eq. (5.134), and calculate the bed-
material gradations in the subsurface layers.

However, the coupled sediment calculation is still decoupled from the flow
calculation so that the entire flow and sediment calculation procedure is in a
semi-coupled form.

The above direct solution method can also be used in the bed-load and suspended-
load transport model in Section 5.3.2, by writing Eqs. (5.130)–(5.132) as Eqs. (5.142)
and (5.143) with Ck,i+1, C∗k,i+1, Qbk,i+1, and Qb∗k,i+1 as unknowns and deriv-
ing an equation similar to Eq. (5.146) to compute the total bed change �Ab,i+1
directly.

5.3.3.3 Stability of Preissmann scheme for sediment
transport equation

Neglecting the influence of the source term, the error in the sediment transport rate
determined using Eq. (5.138) is governed by

c1δ
n+1
i+1 = c2δ

n+1
i + c3δ

n
i+1 + c4δ

n
i (5.147)

where δni is the Fourier component of the error at point i and time level n, defined
as δni = Vneiσxi , with Vn and σ being its amplitude and wave number, respectively.
Inserting this definition expression into Eq. (5.147) yields the growth factor:

r = Vn+1

Vn = c3eiσ�x + c4

c1eiσ�x − c2
(5.148)

The coefficients of Eq. (5.138) satisfy that c1 ≥ 0 and c2 +c3 +c4 ≤ c1 at the locally
uniform state. Supposing c2, c3, and c4 ≥ 0 yields

|r| =
∣∣∣∣∣c3eiσ�x + c4

c1eiσ�x − c2

∣∣∣∣∣ =
∣∣∣∣∣c3 + c4e−iσ�x

c1 − c2e−iσ�x

∣∣∣∣∣ ≤ c3 + c4

c1 − c2
≤ 1 (5.149)

which means that the von Neumann stability condition is satisfied. At the locally
uniform state, in which U and Lt are constant in each element, the constraints c2, c3,
and c4 ≥ 0 imply
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max
{

1 − ψ

Cr + ψDr
,

1 − ψ
Cr − (1 − ψ)Dr

}
≤ θ ≤ 1 with

max
{

0, 1 − Cr

Dr

}
≤ ψ ≤ 1 (5.150)

where Cr is the Courant number U�t/�x; and Dr is a scale factor of non-equilibrium
sediment transport, defined as Dr = U�t/Lt. Note that βtk is set to 1 here.

Condition (5.150) is sufficient but not necessary for the numerical stability of
Eq. (5.138). If Lt � �x, Dr � Cr, then ψ and θ should be given values close to 1.

5.3.3.4 Advantages of the coupled sediment calculation
procedure

Stabilities of explicit and implicit schemes for bed-material gradation

The decoupled and coupled sediment calculation procedures are compared by analyz-
ing the stabilities of the explicit and implicit schemes for the bed-material gradation
in Eq. (5.35). For convenience, Eqs. (5.140) and (5.141) are replaced by

Qn+1
t∗k,i+1 = [θppn+1

bk,i+1 + (1 − θp)pn
bk,i+1]Q∗n+1

tk,i+1 (5.151)

where θp is the temporal weighting factor for bed-material gradation: = 1 for the
implicit scheme (coupled calculation procedure), and 0 for the explicit scheme
(decoupled calculation procedure).

Inserting Eqs. (5.142), (5.143), and (5.151) into Eq. (5.135) yields the equation for
the bed-material gradation in the mixing layer:

pn+1
bk,i+1 =

(An+1
m,i+1 − An

m,i+1 −�Ab,i+1)p
∗n
bk,i+1

An+1
m,i+1 + (f2 − f1ek)θpQ∗n+1

tk,i+1

+
[An

m,i+1 − (f2 − f1ek)(1 − θp)Q∗n+1
tk,i+1]pn

bk,i+1

An+1
m,i+1 + (f2 − f1ek)θpQ∗n+1

tk,i+1

+ f1e0k + f0k

An+1
m,i+1 + (f2 − f1ek)θpQ∗n+1

tk,i+1

(5.152)

To simplify the analysis, it is assumed that An+1
m ≈ An

m. For deposition, usually
�Ab,i+1 + An

m,i+1 ≥ An+1
m,i+1, then p∗n

bk,i+1 = pn
bk,i+1, and the bed-material gradation

error, δ, is governed by

δn+1 = δn
An+1

m,i+1 −�Ab,i+1 − (f2 − f1ek)(1 − θp)Q∗n+1
tk,i+1

An+1
m,i+1 + (f2 − f1ek)θpQ∗n+1

tk,i+1

(5.153)
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Numerical stability requires r = |δn+1/δn ≤ 1|, which implies that for the implicit
scheme,

θ(1 − ek)Q
∗n+1
tk,i+1�t

(1 − p′
m)L

n+1
t,i+1

≥ �Ab,i+1 − 2An+1
m,i+1 (5.154)

and for the explicit scheme,

θ(1 − ek)Q
∗n+1
tk,i+1�t

(1 − p′
m)L

n+1
t,i+1

≤ 2An+1
m,i+1 −�Ab,i+1 (5.155)

For erosion, usually �Ab,i+1 + An
m,i+1 < An+1

m,i+1, then p∗n
bk,i+1 is the bed-material

gradation in the second layer, the influence of which is assumed to be negligible on
the numerical stability of the bed-material gradation in the mixing layer. Thus, the
bed-material gradation error is governed by

δn+1 = δn
An

m,i+1 − (f2 − f1ek)(1 − θp)Q∗n+1
tk,i+1

An+1
m,i+1 + (f2 − f1ek)θpQ∗n+1

tk,i+1

(5.156)

from which it is known that the implicit scheme is unconditionally stable, and the
stability condition for the explicit scheme is

θ(1 − ek)Q
∗n+1
tk,i+1�t

(1 − p′
m)L

n+1
t,i+1

≤ An
m,i+1 + An+1

m,i+1 (5.157)

By definition, the mixing layer should be thicker than the change in bed elevation,
i.e., An+1

m ≥ |�Ab|. Because ek < 1, the stability condition (5.154) for the implicit
scheme is automatically satisfied; conditions (5.155) and (5.157) require upper limits
for the time step �t in the explicit scheme. It is evident that the implicit scheme is
much more stable than the explicit scheme.

Requirement of non-negative bed-material gradation

In calculating bed-material gradation, negative values may occur under certain
conditions. Of course, this is a non-physical phenomenon and must be eliminated.

The condition pn+1
bk,i+1 ≥ 0 for Eq. (5.152) implies that

f1e0k + f0k + [An
m,i+1 − (f2 − f1ek)(1 − θp)Q∗n+1

tk,i+1]pn
bk,i+1

+ (An+1
m,i+1 − An

m,i+1 −�Ab,i+1)p
∗n
bk,i+1 ≥ 0 (5.158)
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and then

�Ab,i+1 ≤ An+1
m,i+1 +

f1e0k + f0k + An
m,i+1(p

n
bk,i+1 − p∗n

bk,i+1)

p∗n
bk,i+1

−
θ(1 − ek)(1 − θp)Q∗n+1

tk,i+1�t

(1 − p′
m)L

n+1
t,i+1

pn
bk,i+1

p∗n
bk,i+1

(5.159)

Because the last term on the right-hand side of inequality (5.159) is negative but
vanishes when θp = 1, the implicit scheme allows for larger time steps than the
explicit scheme. After considering the stability conditions of the Preissmann scheme
for sediment transport equation, condition (5.159) for the implicit scheme can be
easily satisfied. One of the safest treatments is to impose θ = 1, |�Ab| ≤ An+1

m and
An+1

m ≈ An
m, which is a sufficient but not necessary condition.

Sensitivity of bed-material gradation to mixing layer thickness

Assuming An+1
m,i+1 = An

m,i+1 = Am,i+1 in Eq. (5.152) and differentiating pn+1
bk,i+1 with

respect to Am,i+1 yields

(
∂pn+1

bk,i+1

∂Am,i+1

)
θp=1

/(
∂pn+1

bk,i+1

∂Am,i+1

)
θp=0

=
[

Am,i+1

Am,i+1 + f1(1 − ek)Q
∗n+1
tk,i+1

]2

≤ 1

(5.160)

The gradient ∂pn+1
bk,i+1/∂Am,i+1 represents the change in bed-material gradation per

unit change in mixing layer thickness. Eq. (5.160) shows that the implicit scheme has
smaller ∂pn+1

bk,i+1/∂Am,i+1 and is thus less sensitive to Am,i+1 than the explicit scheme.

5.3.4 Treatments for sediment transport in
channel networks

If a channel network is concerned, the sediment transport at channel confluences
and splits, as well as hydraulic structures, needs to be treated specially. At hydraulic
structures such as culverts, drop structures, weirs, and measuring flumes, erosion is not
allowed; thus, the beds are fixed and the sediment discharges are constant through
them. For bridge crossings, 1-D models are able to simulate the bed change due to
channel contraction, but not the local scour due to 3-D flow features. However, the
maximum local scour depth and volume can be estimated using empirical functions.

In analogy to the flow calculation described in Section 5.2.1.3, the sediment trans-
port at a channel confluence or split can generally be computed by applying Eqs.
(5.130) and (5.131) or Eq. (5.137). For this computation, the downstream cross-
section at the confluence or the upstream cross-section at the split needs to be divided
into two parts. This approach was successfully used by Wu (1991) in a quasi-steady
model. However, a simpler approach, which is described below, may be used if the
three cross-sections at the confluence or split are located very close together.
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For the confluence shown in Fig. 5.9, the suspended-load concentration Ck,3 and
bed-load transport rate Qbk,3 at cross-section 3 can be calculated using the following
mass balance equations:

Ck,3 = (Q1Ck,1 + Q2Ck,2)/Q3 (5.161)

Qbk,3 = Qbk,1 + Qbk,2 (5.162)

where Ck,1 and Ck,2 are the suspended-load concentrations and Qbk,1 and Qbk,2 are
the bed-load transport rates at cross-sections 1 and 2, respectively, which are known
from the previous calculations in channels 1 and 2.

For the split shown in Fig. 5.10, the following mass balance equations exist:

Q2Ck,2 + Q3Ck,3 = Q1Ck,1 (5.163)

Qbk,2 + Qbk,3 = Qbk,1 (5.164)

which, however, cannot uniquely determine Ck,2, Ck,3, Qbk,2, and Qbk,3 without
additional relations. For suspended load, the ratio of Ck,2 and Ck,3 can be determined
using Ding and Qiu’s (1981) method. Fig. 5.15 depicts the vertical distribution of
suspended-load concentrations entering cross-sections 2 and 3. The bed elevations of
these two cross-sections are denoted as zb2 and zb3, and their water stages are assumed
to be zs. Suppose that cross-section 2 is in the main branch channel, i.e., zb2 < zb3.
It is assumed that the sediment concentration at cross-section 3 corresponds to the
upper layer above zb3 in the distribution curve of cross-section 2. Therefore, the ratio
of Ck,2 and Ck,3 can be approximated as

Ck,2

Ck,3
=
∫ zs

zb2+δ fk(z)dz∫ zs

zb3
fk(z)dz

(5.165)

Figure 5.15 Sediment concentrations at channel split.
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where fk(z) is the Rouse distribution of suspended-load concentration, and δ is the
thickness of the bed-load zone at cross-section 2.

Then, Ck,2 and Ck,3 can be determined using Eqs. (5.163) and (5.165).
The determination of bed-load transport rates Qbk,2 and Qbk,3 has not been well

investigated, due to the complexity. Their ratio may be assumed to be approxi-
mately equal to that of bed-load transport capacities Qb∗k,2 and Qb∗k,3 at cross-
sections 2 and 3:

Qbk,2

Qbk,3
≈ Qb∗k,2

Qb∗k,3
(5.166)

and Qbk,2 and Qbk,3 can then be determined using Eqs. (5.164) and (5.166).
Note that Eqs. (5.161)–(5.166) can be applied in both quasi-steady and unsteady

sediment transport models.

5.3.5 Lateral allocation of bed change in
1-D model

A 1-D model provides only the lumped change in bed area, �Ab, at a cross-section. In
order to acquire a reasonable prediction for long-term river morphological evolution,
�Ab must be allocated appropriately to the local change in bed elevation, �zb , along
the cross-section at each time step. The obtained�zb is used to update the cross-section
geometry, as expressed in Eq. (5.134).

The simplest method is the uniform distribution of bed change along the cross-
section, except for water edges, where the bed change may be zero. Wu (1991)
suggested a slight modification of this method, assuming uniform deposition and ero-
sion for wide channels and horizontal deposition and uniform erosion for narrow
channels, as shown in Fig. 5.16. This method is more adequate for suspended load
(fine sediments) than for bed load (coarse sediments), because the suspended-load con-
centration tends to be relatively uniform along the cross-section while the bed load
usually moves in strips.

Figure 5.16 Allocation of bed change in cross-section: (a) wide channel and (b) narrow channel.

A more general method, used by Chang (1988), allocates deposition and erosion
along the cross-section by a power function of excess shear stress:

�zb = (τb − τc)m∑
B (τb − τc)m�y

�Ab (5.167)
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where τb is the local bed shear stress, determined by τb = γhS, with h being the local
flow depth; τc is the critical shear stress, which is given zero in the case of deposition;
m is an exponent; y is the cross-stream coordinate; and B is the channel width at the
water surface.

The value of m is generally between 0 and 1; it essentially affects the pattern
of bed change distribution. A small value means a fairly uniform distribution of
�zb along the cross-section, while a larger value gives a less uniform distribution
of �zb. In Chang’s model, the value of m is determined at each time step, such
that a correction in the channel bed profile will result in the most rapid movement
toward uniformity in power expenditure, or linear water surface profile, along the
channel.

Eq. (5.167) is only applied in straight channels. For curved channels, the following
curvature-weighting relation is used to adjust the cross-section:

�zb = (τb − τc)m/r∑
B(τb − τc)m�y/r

�Ab (5.168)

where r is the coordinate along the radius of channel bend.
Similar relations can be obtained by replacing the excess shear stress τb − τc in

Eqs. (5.167) and (5.168) with the excess velocity U − Uc.
A simplification can be made by setting τc = 0 and S to be constant along the

cross-section. Thus, Eq. (5.167) becomes

�zb = hm∑
B hm�y

�Ab (5.169)

A more complicated method for lateral allocation of bed change is the stream tube
model proposed by Yang et al. (1998). The entire cross-section is divided into several
stream tubes, and a 1-D model is adopted to simulate the flow, sediment transport, and
bed change in each stream tube. This technique is more like a quasi-two-dimensional
approach. The shape of the cross-section is adjusted according to the assumption of
minimum stream power.

In addition, the change in bed elevation due to the consolidation of cohesive bed
material needs to be considered. This is discussed in Section 11.1.6.

5.3.6 1-D simulation of bank erosion and channel
meandering

5.3.6.1 1-D bank erosion model

Stream bank erosion occurs due to channel degradation, toe erosion, mass failure,
seepage flow, weathering, etc. Channel bed degradation increases bank heights, and
lateral erosion undercuts bank toes. Both processes make banks steeper and more
unstable. Seepage flow and weathering may aggravate these processes. Once the
stability criterion is exceeded, a bank mass failure event occurs and the bank top
retreats. The failed bank material is first piled on the bed near the bank toe and then
washed away by flow. Thus, bank erosion can significantly affect sediment balance
and channel morphology in rivers.
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Fluvial erosion at bank toes

The fluvial (particle-by-particle) erosion at bank toes directly influences channel bed
width and bank angle, and causes bank instability with respect to mass failure under
gravity. Arulanandan et al. (1980) proposed an empirical formula to compute the
fluvial erosion of cohesive bank material:

dw
dt

= r
γs

(
τ − τce

τce

)
(5.170)

where dw/dt is the lateral erosion rate near the bank toe (m · min−1); τ is the flow
shear stress (dynes · cm−2) applied on the bank toe, determined by τ = γRS; τce is
the critical shear stress (dynes · cm−2) for bank toe erosion, related to water and soil
properties; γs is the unit weight of the soil (kN · m−3); and r is the initial rate of soil
erosion (g · cm−2min−1), given by r = 0.0223τce exp(−0.13τce).

The eroded bank material is treated as side inflow in sediment transport equations
(5.27), (5.28), and (5.34).

Bank mass failure

Depending on bank geometry, water table, surface runoff, seepage, vegetation, and
soil properties, channel banks may fail by various mechanisms, which may be planar
(e.g., Osman and Thorne, 1988; Simon et al., 2000), rotational (Osman, 1985), can-
tilever (Thorne and Tovey, 1981), or piping- or sapping-type (Hagerty, 1991). Planar
and rotational failures usually occur on the homogeneous, non-layered banks, whereas
cantilever failures usually happen on the layered banks. Piping- or sapping-type failures
most likely occur on the heterogeneous banks, where seepage flow is often observed.
A stability analysis of planar failures is introduced below, while those for other failure
types can be found in relevant references.

Osman and Thorne (1988) analyzed the planar failure shown in Fig. 5.17. It
is assumed that the failure plane intersects the bank toe. The factor of safety is
defined as

fs = Fr

Fd
(5.171)

where Fd and Fr are the driving and resisting forces, respectively:

Fd = Wt sin β = γs

2

(
H2 − y2

d

tan β
− H′2

tanα

)
sin β (5.172)

Fr = (H − yd)C
sin β

+ γs

2

(
H2 − y2

d

tan β
− H′2

tanα

)
cosβ tanφ (5.173)
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Figure 5.17 Sketch of planar bank failure.

where Wt is the weight of failure block, C is the soil cohesion (kPa), φ is the soil
friction angle (degrees), α is the angle of bank slope, yd is the depth of tension crack
(m), and β is the angle of failure plane. The failure angle is determined by

β = 1
2

{
tan−1

[
H
H′ (1 − K2

tc) tanα
]

+ φ
}

(5.174)

with Ktc being the ratio of the observed tension crack depth to the bank height.
Once a mass failure is predicted (fs < 1 ), the retreat distance of the bank top, �,

and the volume of the failure block, Vf , are determined by

� = H − yd

tan β
− H′

tanα
(5.175)

Vf = 1
2

(
H2 − y2

d

tan β
− H′2

tanα

)
(5.176)

Simon et al. (2000) proposed a more sophisticated bank stability and toe erosion
model, which considers wedge-shaped bank failures with distinct bank material layers
and user-defined bank geometry. Their model is able to incorporate the root rein-
forcement and surcharge effects of six vegetation species, including willows, grasses,
and large trees, and simulate saturated and unsaturated soil strengths, taking into
consideration the effect of pore-water pressure. The details can be found in Simon
et al. (2000).
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5.3.6.2 1-D channel meandering model

Simulating channel meandering processes using a 1-D numerical model is quite
difficult, because of the strongly three-dimensional features of flow and sediment
transport in meandering channels. However, ignoring the channel meandering pro-
cesses may induce significant errors in the simulation of long-term flow and sediment
transport in alluvial channels. Therefore, many investigators have studied this prob-
lem and proposed empirical or semi-empirical methods to account for the influence of
channel meandering on sediment transport.

From a computational point of view, one needs to know the flow path and its
potential change during the simulation using a 1-D model. One approach is to adopt
empirical relations to calculate the flow path of a meandering channel under given
flow and sediment conditions. Some channel regime theories may be used.

The other approach is to use meandering migration models, which may be kinematic
or dynamic. The kinematic migration models relate the migration rate to channel
width, curvature, etc. Examples are Ferguson (1983) and Howard and Knutson
(1984). The dynamic migration models solve the simplified dynamic equation of flow
to estimate the flow properties in the meandering channel, and relate the bank erosion
rate to the excess velocity or shear stress at the outer bank. Examples can be found in
Johannesson and Parker (1989) and Odgaard (1989).

Because of the truly three-dimensional flows and highly complex soil properties in
meandering channels, most of the current 1-D channel meandering models are only
applicable in simple cases. Further study on this problem is needed.

5.3.7 Overall procedure for 1-D decoupled f low and
sediment calculations

The individual modeling components in the fully decoupled and semi-coupled models,
which decouple flow and sediment calculations, have been introduced in previous
sections. The overall calculation procedure for the 1-D decoupled unsteady model
consists of the following steps:

(1) Calculate the unsteady flow using the Preissmann scheme and the double sweep
method based on initial channel geometry;

(2) Calculate sediment transport, bed change, and bed material sorting from upstream
to downstream, using the known flow conditions;

(3) Determine the bed change due to bed material consolidation, if needed;
(4) Correct channel geometry by allocating the bed change along the cross-section;
(5) Calculate bank erosion and mass failure, if needed, and
(6) Return to step (1) and conduct the calculations for the next time step, based on

the new channel geometry, until all time steps are finished.

The calculation procedure for the 1-D decoupled quasi-steady model is almost the
same as the above procedure, except that the standard step method is used for the
quasi-steady flow calculation in step (1) and the time interval (in hours or days) used
in the quasi-steady model is usually longer than the time step (in minutes) used in the
unsteady model.
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5.4 1-D COUPLED CALCULATION OF FLOW
AND SEDIMENT TRANSPORT

Fluvial processes in a river consist of simultaneous motions of water and sediment. Any
change in flow conditions may be associated with a variation in sediment transport and
channel topography, and vice versa. Thus, the decoupled flow and sediment transport
models introduced in Sections 5.1–5.3 have limitations and are only applicable in
the case of weak or mild sediment transport. In the case of strong sediment trans-
port, a coupled model should be used, to take into account the interactions between
flow and sediment transport. How to couple the flow and sediment calculations is
introduced below.

5.4.1 1-D coupled f low and sediment transport
equations

In general, 1-D unsteady sediment-laden flows are described by Eqs. (2.126) and
(2.127), which are rewritten below to consider side flows:

∂(ρA)
∂t

+ ∂(ρQ)
∂x

+ ρb
∂Ab

∂t
= ρ0ql (5.177)

∂(ρQ)
∂t

+ ∂

∂x

(
ρβQ2

A

)
+ ρgA

∂zs

∂x
+ 1

2
gAhp

∂ρ

∂x
+ ρgASf = ρ0qlvx (5.178)

where ρ is the density of the water and sediment mixture in the water column, deter-
mined by ρ = ρf (1 − Ct) + ρsCt, with Ct being the volumetric concentration of
sediment; and ρ0 is the density of the water and sediment mixture from tributaries
and banks.

The effect of alluvial bed roughness is accounted for through the dependence of the
Manning roughness coefficient on flow and sediment conditions:

n = f (U, B, h, τb, d50, . . . ) (5.179)

which can be one of the formulas introduced in Section 3.3.3.
Sediment transport, bed change, and bed material sorting equations are the same

as those introduced in Section 5.1.2.1. For simplicity, the bed-material load transport
model is presented here. The governing equations include the total-load transport
equation (5.34), bed change equations (5.31) and (5.36), mixing-layer bed mate-
rial sorting equation (5.32), and sediment transport capacity (5.35). Note that
Eq. (5.33) should also be included, but it is not listed here because the bed material
sorting in subsurface layers can be computed separately. In addition, the sedi-
ment settling velocity is related to sediment concentration, but it can be set as an
intermediate variable.

The system described above has 4N +4 equations that are used to determine 4N +4
unknowns: A, Q, n, ∂Ab/∂t, (∂Ab/∂t)k, Qtk , Qt∗k, and pbk (k = 1, 2, . . . , N).
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5.4.2 Discretization of coupled f low and sediment
transport equations

Like Eqs. (5.1) and (5.2), Eqs. (5.177) and (5.178) can be solved numerically, using the
Preissmann scheme for common flows, as described below, or using shock-capturing
schemes for dam-break and overtopping flows, as discussed in Section 9.2.

Applying the Preissmann scheme to Eqs. (5.177) and (5.178) yields
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The Manning roughness coefficient relation (5.179) is treated as

nn+1
i+1 = f (Un+1

i+1 , Bn+1
i+1 , hn+1

i+1 , τn+1
b,i+1, dn+1

50,i+1, . . . ) (5.182)
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The discretizations of sediment transport, bed change, and bed material sorting
equations remain unchanged. The resulting equations include the dicretized sed-
iment transport equation (5.137), the discretized fractional bed change equation
(5.139), the discretized total bed change equation (5.133), the discretized bed mate-
rial sorting equation (5.135), and the implicitly treated sediment transport capacity
equation (5.141).

Flow equations (5.180)–(5.182) and sediment equations (5.133), (5.135), (5.137),
(5.139), and (5.141) can be solved in either iteratively or fully coupled form, as
described in the next subsection.

5.4.3 Solution of discretized coupled f low
and sediment transport equations

Iteratively coupled solution procedure

Iteratively coupled models can be found in Holly et al. (1990). In such models, all
the flow and sediment calculations are divided into two loops. The first loop is the
“flow loop,” which solves flow equations (5.180) and (5.181) using the latest esti-
mates of sediment discharge, bed elevation, and bed-material gradation. Eqs. (5.180)
and (5.181) are locally linearized by using �h and �Q as unknowns. The Manning
coefficient nn+1, mixture density ρn+1

i+1 , and bed change�Ab,i+1 in these two equations
are set as intermediate variables and replaced with the latest estimates n∗, ρ∗

i+1, and
�A∗

b,i+1, which are determined using Eq. (5.182), related to sediment concentration,
and determined by the sediment model, respectively. The locally linearized equations
can be written as Eqs. (5.60) and (5.68), and solved using the algorithms described in
Section 5.2.2.

The second loop is the “sediment loop,” which solves Eqs. (5.133), (5.135), (5.137),
(5.139), and (5.141) to estimate sediment discharge, bed change, and bed-material gra-
dation. These equations can be solved using the direct solution method described in
Section 5.3.3.

To obtain a simultaneous solution of flow and sediment transport, these two loops
are coupled through the following iteration procedure:

(1) Load the imposed boundary conditions, such as mainstream and tributary water
and sediment inflows, and downstream water stage;

(2) Calculate water stage, flow discharge, and other flow parameters, using the latest
estimates of Manning n, flow density, and bed elevation;

(3) Compute sediment discharge, bed change, and bed-material gradation, using the
calculated flow conditions;

(4) Estimate new Manning n, flow density, and bed elevation, using the computed
flow and sediment quantities, and

(5) Repeat steps (2)–(4) iteratively until the successive estimates of bed elevation,
Manning n, etc., no longer change.

This iteratively coupled solution procedure can take into account interactions
between flow and sediment transport, indirectly giving a simultaneous solution. As a
simplified case, the flow and sediment models described in Sections 5.2.2 and 5.3.3
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can be treated as “flow loop” and “sediment loop,” respectively, and then coupled
using this iteration procedure.

Fully coupled solution procedure

Fully coupled models can be found in Lyn and Goodwin (1987), Holly and Rahuel
(1990), Correia et al. (1992), and Yeh et al. (1995). In particular, Holly and
Rahuel (1990) proposed a fully coupled procedure for calculating non-uniform sed-
iment transport, which is herein extended to solve Eqs. (5.133), (5.135), (5.137),
(5.139) (5.141), and (5.180)–(5.182). To reduce the effort of matrix inversion
required in the fully coupled solution procedure, these equations are re-organized
as follows.

Inserting Eqs. (5.135) and (5.141) into Eq. (5.139) yields
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and then summing Eq. (5.183) over all size classes and using Eq. (5.133) yields
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Inserting Eqs. (5.139) and (5.141) into Eq. (5.135) yields
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Substituting Eq. (5.184) into the discretized continuity equation (5.180) yields
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Eq. (5.181) is rewritten as
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Substituting Eqs. (5.141), (5.184), and (5.185) into the discretized sediment
transport equation (5.137) yields
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(k = 1, 2, . . . , N) (5.188)

For the channel with I − 1 reaches shown in Fig. 5.7, the system of equations
(5.186)–(5.188) has (2 + N)(I − 1) equations, which are used to determine (2 + N)I
unknowns: A, Q, and Qtk (k = 1, 2, . . . , N). The system is closed by imposing 2 + N
boundary conditions. For simplicity, the Manning roughness coefficient and flow
density are treated as intermediate variables. An alternative treatment for flow density
may be to remove it from the left-hand sides of Eqs. (5.177) and (5.178), as described
in Section 9.2.

Eqs. (5.186)–(5.188) can be solved by many methods. The following Newton-
Raphson solution procedure is given as an example, which is almost the same as
that used by Holly and Rahuel (1990).

The Newton-Raphson correction equations for each reach are written in the
following matrix form:

[Li]{δWi} + [Ri]{δWi+1} + {Si} = 0 (5.189)

where {δWi} is the vector of unknown corrections to the 2+N primary variables: δAi,
δQi, δQt1,i, δQt2,i, . . . , and δQtN,i; {Si} is the known vector of functions F1, F2, and
F3k defined in Eqs. (5.186)–(5.188); and [Li] and [Ri] are the matrices of Jacobian
derivatives with (2 + N)× (2 + N) elements, e.g.,

[Li] =

⎡⎢⎢⎢⎢⎢⎢⎣
∂F1/∂Ai ∂F1/∂Qi ∂F1/∂Qt1,i · · · ∂F1/∂QtN,i
∂F2/∂Ai ∂F2/∂Qi ∂F2/∂Qt1,i · · · ∂F2/∂QtN,i
∂F31/∂Ai ∂F31/∂Qi ∂F31/∂Qt1,i · · · ∂F31/∂QtN,i

...
...

... · · · ...

∂F3N/∂Ai ∂F3N/∂Qi ∂F3N/∂Qt1,i · · · ∂F3N/∂QtN,i

⎤⎥⎥⎥⎥⎥⎥⎦
(5.190)



1-D numerical models 231

[Li], [Ri], and {Si} are evaluated using the latest estimates of primary variables. To
determine the matrices [Li] and [Ri], the derivatives of each function (F1, F2, F3k)
with respect to each primary dependent variable (A, Q, Qtk) at two ends of each reach
are required. The derivatives with respect to auxiliary variables are transformed into
the primary-variable derivatives through chain-rule expansion. The dependence of the
Manning n and flow density on primary variables should be considered.

The equation system (5.189) for all reaches and the associated boundary conditions
are solved using a block-bidiagonal algorithm. Suppose that there is a relation of the
form:

[Ei]{δW1} + [Hi]{δWi} + {Gi} = 0 (5.191)

Then deriving {δWi} from Eq. (5.189) and substituting it into Eq. (5.191) yields

[Ei+1]{δW1} + [Hi+1]{δWi+1} + {Gi+1} = 0 (5.192)

where the coefficient matrices are

[Ei+1] = [Ei] (5.193)

[Hi+1] = −[Hi][Li]−1[Ri] (5.194)

{Gi+1} = −[Hi][Li]−1{Si} + {Gi} (5.195)

Comparing Eqs. (5.189) and (5.192) at i = 1 results in [E2] = [L1], [H2] = [R1], and
{G2} = {S1}. The forward sweep can then be carried out using Eqs. (5.193)–(5.195)
from i = 2, 4, . . . , I. At the end of the forward sweep, the following relation is obtained:

[EI]{δW1} + [HI]{δWI} + {GI} = 0 (5.196)

The boundary conditions at upstream and downstream points can be linearized
locally and written in the vector form:

[α]{δW1} + [β]{δWI} + {γ } = 0 (5.197)

Eliminating {δW1} from Eqs. (5.196) and (5.197) yields

{δWI} = [−[α][EI]−1[HI] + [β]]−1{[α][EI]−1{GI} − {γ }} (5.198)

Once {δWI} is determined, the remaining unknown vectors can be obtained by the
“return-sweep” inversion of Eq. (5.189):

{δWi} = −[Li]−1[Ri]{δWi+1} − [Li]−1{Si} (5.199)

It can be seen from Eqs. (5.193)–(5.195), (5.198), and (5.199) that this algorithm
requires (I − 1) inversions of a (2 + N)× (2 + N) matrix for each iteration step.
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After A, Q, and Qtk are solved, the sediment transport capacity, Manning n, bed
change, and bed-material gradation can be calculated using Eqs. (5.141), (5.182),
(5.184), and (5.185), respectively.

As compared to the iteratively coupled procedure, the fully coupled procedure is
much more complicated. In particular, if channel network routing, bank erosion, and
bed material consolidation need to be considered, the fully coupled procedure becomes
cumbersome and tedious.

5.4.4 Justification of decoupled and coupled models

Decoupled flow and sediment transport models have been widely used in the solution of
many real-life engineering problems. They are relatively easy to implement, and their
results may be justified due to different time scales in flow and sediment transport
and the use of empirical formulas for bed roughness and sediment transport capacity.
Most of the criticisms against the decoupled models are related to the equilibrium
sediment transport model. The application of the non-equilibrium transport model
and Wu’s (1991) coupling procedure for non-uniform sediment transport simulation
has significantly enhanced the numerical stability of the decoupled flow and sediment
transport models. However, it is true that the applicability of the decoupled models is
restricted due to the assumption of low sediment concentration and small bed change
at each time step.

The coupled models take into account the physical coupling of water and sediment
phases, so that they should be more reasonable and could be applied in a wider range of
flow and sediment conditions. The coupled models are usually more stable and can use
larger time steps than the decoupled models (Saiedi, 1997; Cao et al., 2002). However,
the implementation of the coupled models, especially the fully coupled models for
non-uniform sediment transport in looped channel networks, is very complicated.
Their efficiency may be offset by the required effort of iteration and matrix inversion.
Furthermore, because the time step for flow calculation is usually smaller than that
for sediment calculation, solving the nonlinear flow system might become a bottleneck
and restrain the efficiency of the coupled models.

It is diffficult to give a quantitative criterion as to when the decoupled models are
acceptable. Generally, in the lower flow regime with low sediment concentration,
the decoupled models are applicable; otherwise, the coupled models should be used.
Because the sediment concentration is usually low in most natural rivers, the decoupled
models can still play an important role in river engineering analysis.

5.5 DATA REQUIREMENTS OF 1-D MODEL

The following data are commonly required by 1-D models. They are also required by
2-D and 3-D models, with higher spatial resolutions.

Study domain

The study domain usually covers the channel reach of interest and additional tran-
sition reaches in upstream and downstream. Its inlets and outlets should be located
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near gauge stations or control structures where measured flow and sediment data are
available for determination of boundary conditions.

Computational grid

The study channel is represented by a suitable number of cross-sections. Each pair
of consecutive cross-sections defines a reach between them. For a channel network,
the cross-sections at channel confluences, splits, and hydraulic structures should be
arranged according to the requirements of the used model.

Channel topography

Each cross-section is represented by finite points (stations), as shown in Figs. 5.3 and
5.4. The bed elevations and the distances to the left bank at all points should be
measured. The reach lengths between cross-sections are also needed.

If hydraulic structures are involved, their geometries and hydraulic conditions
should be provided.

Manning roughness coefficient

The Manning n is usually estimated using measured flow data. Empirical formulas may
be used if no measurement data are available. The n values in streams with similar
flow and sediment conditions may be used as reference.

Sediment particle properties

The specific gravity and shape factor of sediment particles should be measured. For
most natural sands (quartz sands), the specific gravity is about 2.65, and the Corey
shape factor is about 0.7.

The sediment size range should cover all sizes of bed load, suspended load, bed
material, and bank material existing in the study domain. Wash load is sometimes
also included. The entire size range is divided into a suitable number of size classes.
The representative diameters and upper and lower bounds for all size classes should
be determined.

Bed-material size and gradation

The initial bed-material gradation must be given for a realistic computation of stream
behavior, particularly for determining scour and stability conditions. If only deposition
is expected, such as sedimentation in reservoirs, the initial bed-material gradation is
less important.

The bed-material porosity is also needed.

Bank-material properties

If bank erosion and mass failure are considered, bank-material properties, such as
density and size composition, should be determined. For a cohesive bank, the cohesion
and friction angle of the bank material, as well as the critical shear stress for bank toe
erosion, are also needed.
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Boundary conditions

Boundary conditions include inflow water discharge, water stage (at inlet or outlet
depending on the flow regime), and inflow sediment discharge and size composi-
tion. The chosen time series of flow and sediment data should represent the average
hydrological cycle in the study domain. Usually, the time series should be long
enough and include high, intermediate, and low water years, with various recurrence
frequencies.

Historical data

Historical measurement data of flow properties, sediment discharges, channel mor-
phological changes, etc., should be collected and analyzed for better understanding of
the study problem and calibration of the numerical model.

5.6 MODEL SENSITIVITY TO INPUT PARAMETERS

Out of all the model parameters, the adaptation length (coefficient) and mixing layer
thickness are least understood and must be prescribed empirically in the sediment
transport models described in Sections 5.3.2 and 5.3.3. Therefore, the concern here is
to analyze the influence of these parameters on the model results. This analysis was
performed in three typical cases by Wu and Vieira (2002), using the semi-coupled
model described in Section 5.3.3.

Case 1. Channel degradation

The experiments performed by Ashida and Michiue (1971) for bed degradation and
armoring processes due to clear water flow downstream of a dam were simulated. The
experimental flume was 20 m long and 0.8 m wide. The flume bed was filled with
non-uniform sediment with a median size of 1.5 mm and a standard deviation of 3.47.
Clear water was pumped into the entrance of the flume at a constant discharge. In
simulated experimental run 6, the flow discharge was 0.0314 m3s−1, and the initial
bed slope was 0.01. The computational grid consisted of 40 elements with an equal
spacing of 0.5 m, and the time step was 10 s. The experiments started from a flat bed.
In order to account for the development of bed forms in the simulation, the bed form
height was assumed to vary linearly with time. The Manning roughness coefficient for
the fully developed bed was about 0.023. The bed-material porosity was calculated
using the Komura (1963) formula. The sediment transport capacity was calculated
using the Wu et al. (2000b) formula.

The sensitivity of the model results to the adaptation length was investigated using
various functions Lt = 7.3h, Lt = t, and Lt = 1+0.5t while keeping the mixing layer
thickness constant as d50, the median size of the parent sediment mixture. Here, h is
the flow depth in meters, and t is the time in hours. Fig. 5.18 compares the measured
and calculated bed scour depths at 7, 10, and 13 m upstream of the weir. The trends of
intensive scour in the initial period and weak scour in the final equilibrium stage were
reproduced well. The function Lt = 7.3h provides the best results for the bed scouring
process, especially regarding the time to reach the equilibrium state. The results for
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Figure 5.18 Bed scour depths using different adaptation lengths (Ashida and Michiue’s Run 6).

Lt = t and Lt = 1 + 0.5t are also very close to the measured data, showing that the
calculated scour depth is not very sensitive to Lt.

The influence of the mixing layer thickness on the calculated scour depth was exam-
ined by changing its value from d50 to 2d50, while keeping the adaptation length at
7.3h. Fig. 5.19 shows that the thicker the mixing layer, the larger the equilibrium scour

Figure 5.19 Bed scour depths using different mixing layer thicknesses δm
(Ashida and Michiue’s Run 6).
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depth. The time to reach equilibrium increases as the mixing layer thickness increases.
The choice of the mixing layer thickness is particularly important in the case of bed
scour and armoring.

Case 2. Channel aggradation

The channel aggradation experiments performed by Seal et al. (1995) were calculated.
The experimental setup is shown in Fig. 5.20. The flume was 45 m long and 0.305 m
wide, with an initial bed slope of 0.002. The tailgate was kept at a constant height,
so that an undular hydraulic jump was produced at the downstream end of the main
gravel deposit. The input sediment was a weakly bimodal mixture comprising a wide
range of sizes, from 0.125 to 64 mm. Due to sediment overloading, an aggradational
wedge developed and its front gradually moved downstream while the upstream bed
elevation continued to rise. In simulated experimental run 2, the water discharge was
0.049 m3s−1, the sediment feed rate was 5.65 kg · min−1, and the tailgate water stage
was 0.45 m.

Figure 5.20 Sketch of channel aggradation experiments of Seal et al. (1995).

The model sensitivity to the adaptation length Lt was analyzed by specifying Lt as
0.5 m, 2 m, and 7.3h while setting the mixing layer thickness as half the dune height.
Here, h is the average flow depth over the wedge from the inlet to the gravel deposit
front, and 7.3h is approximately equal to 1 m. Fig. 5.21 compares the measured and
predicted bed profiles at various times, and the water surface profiles at the final
stage. The bed profiles were reproduced well, and the hydraulic jump downstream
of the gravel deposit front was predicted qualitatively. It is shown that Lt has little
influence on the height and celerity of the gravel deposit front, as well as the top slope
of the wedge. The only significant impact is on the slope of the deposit front. The
longer the adaptation length, the gentler the front slope.

Fig. 5.22 shows the calculated bed profiles when the mixing layer thickness was
given as d50, 6d50, and half the dune height and the adaptation length was kept at
0.5 m. The differences between the calculated bed profiles are very small. As the mixing
layer thickness increases six times, the deposit front moves downstream by only 1.3%.
The model is much less sensitive to the mixing layer thickness in the deposition case
than in the previous erosion case.
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Figure 5.21 Bed profiles using different adaptation lengths (Run 2).

Figure 5.22 Bed profiles using different mixing layer thicknesses (Run 2).

Case 3. Sedimentation in the Danjiangkou Reservoir

The Danjiangkou Reservoir was constructed on the Hanjiang River, China, in 1968.
Because the tributary Danjiang River joins the Hanjiang River just upstream of the
dam, the Danjiangkou Reservoir has two branches with nearly equivalent storage
capacities, as shown in Fig. 5.23. Although there are water and sediment exchanges
between the two branches during flood seasons, the interactions are negligible for the
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Figure 5.23 Sketch of Danjiangkou Reservoir.

study of the sedimentation process in the reservoir because the confluence is very close
to the dam.

The sedimentation process in the Hanjiang River branch was simulated. The com-
putational domain included a 188 km long reach in the main stream from the Baihe
Hydrology Station to the dam, and a 12 km long reach in the tributary Duhe River,
which joins the Hanjiang River 157 km upstream of the dam. Sixty-one cross-sections
were distributed along the main stream and four cross-sections in the tributary. The
simulation period encompassed 13 years, from 1968 to 1980. The Manning roughness
coefficient and bed-material porosity were estimated using measurement data. The
sediment transport capacity was determined using the Wu et al. (2000b) formula. The
flocculation of fine sediments (d < 0.01 mm) was considered using the Migniot (1968)
relation, which is described in Section 11.1.2.

Fig. 5.24 shows the calculated and measured annual sediment depositions in differ-
ent years, while Fig. 5.25 shows the calculated and measured longitudinal distributions
of sediment deposition accumulated from 1968 to 1979. In order for the influence of
the adaptation coefficient α on the amounts of deposition to be investigated, it was
given four constant values: 0.25, 0.5, 1.0, and 2.5, and calculated using the Armanini-
di Silvio (1988) method. The values 0.5 and 1.0 and the Armanini-di Silvio method
provide good predictions. In particular, the results obtained using the Armanini-di
Silvio method and the constant value of 1.0 for α are very close.

The effect of the mixing layer thickness was also verified by specifying it as half the
dune height and two constant values of 0.05 and 0.25 m. The calculated deposition
amounts and longitudinal distributions are not sensitive to the mixing layer thickness,
as found in Case 2. The simulation results are not shown here.

In summary, in the case of channel degradation, the computed equilibrium scour
depth and bed-armoring process are not particularly sensitive to the adaptation length
(coefficient), but are affected by the mixing layer thickness. In the case of channel



1-D numerical models 239

Figure 5.24 Annual sediment depositions using different α.

Figure 5.25 Longitudinal distributions of sediment deposition using different α.

aggradation, the simulated bed profiles are insensitive to both adaptation length
(coefficient) and mixing layer thickness. However, this conclusion is based on the
model of Wu and Vieira (2002), which adopts a coupled calculation procedure for
sediment. Generally, the model sensitivity and reliability depend on the numerical
schemes, calculation procedures, and empirical formulas used.





Chapter 6

2-D numerical models

If the vertical (or lateral) variations of flow and sediment quantities in a water body are
sufficiently small or can be determined analytically, their variations in the horizontal
plane (or longitudinal section) can be approximately described by a depth-averaged
(or width-averaged) 2-D model. Presented in this chapter are the governing equations,
boundary conditions, and numerical solutions of the depth-averaged and width-
averaged 2-D models of flow and sediment transport in open channels, as well as
the enhancement of the depth-averaged 2-D model to account for the effects of helical
flow on fluvial processes in curved and meandering channels.

6.1 DEPTH-AVERAGED 2-D SIMULATION OF FLOW
IN NEARLY STRAIGHT CHANNELS

6.1.1 Governing equations

For shallow water flows with low sediment concentration, the depth-averaged 2-D
hydrodynamic equations are Eqs. (2.79), (2.82), and (2.83). In the case of nearly
straight channels, the dispersion momentum transports due to the vertical non-
uniformity of flow velocity are combined with the turbulent stresses, so these equations
are rewritten as

∂h
∂t

+ ∂(hUx)

∂x
+ ∂(hUy)

∂y
= 0 (6.1)

∂(hUx)

∂t
+ ∂(hU2

x)

∂x
+ ∂(hUyUx)

∂y
= −gh

∂zs

∂x
+ 1
ρ

∂(hTxx)

∂x
+ 1
ρ

∂(hTxy)

∂y

+ 1
ρ
(τsx − τbx)+ fchUy (6.2)

∂(hUy)

∂t
+ ∂(hUxUy)

∂x
+ ∂(hU2

y )

∂y
= −gh

∂zs

∂y
+ 1
ρ

∂(hTyx)

∂x
+ 1
ρ

∂(hTyy)

∂y

+ 1
ρ
(τsy − τby)− fchUx (6.3)

where x and y are the horizontal Cartesian coordinates (not necessarily along the



242 Computational River Dynamics

longitudinal and transverse directions); and τbx and τby are the bed shear stresses,
determined by

τbx = ρcf mbUx

√
U2

x + U2
y , τby = ρcf mbUy

√
U2

x + U2
y (6.4)

where cf = gn2/h1/3, with n being the Manning roughness coefficient of the channel
bed; and mb is the bed slope coefficient defined in Eq. (2.82). For a movable bed
with sediment grains and bed forms, the Manning n can be evaluated using one of
the empirical formulas introduced in Section 3.3.3; however, n is in general treated
as a calibrated parameter because of its complexity, as discussed in Section 5.1.1.3.
In addition, one may set the bed slope coefficient mb as 1 and lump its effect into the
Manning n.

Note that unlike the 1-D model, the depth-averaged 2-D model can simulate the
effects of large-scale roughness structures, such as channel contraction, expansion,
and curvature, on the flow field, using fine meshes. In addition, the depth-averaged
2-D model accounts for the effect of channel banks through boundary conditions
and considers the effect of horizontal turbulent diffusion through the eddy viscosity.
Therefore, the values of Manning n in the 1-D and 2-D models are not exactly the
same.

In Eqs. (6.2) and (6.3), τsx and τsy represent the forces acting on the water surface,
usually caused by wind driving:

τsx = ρacfaUwind,x

√
U2

wind,x + U2
wind,y , τsy = ρacfaUwind,y

√
U2

wind,x + U2
wind,y

(6.5)

where Uwind,x and Uwind,y are the x- and y-components of wind velocity, ρa is the air
density, and cfa is the friction coefficient at the water surface.

The last terms in Eqs. (6.2) and (6.3) represent the Coriolis force due to the rotation
of the earth. The Coriolis coefficient fc is determined by

fc = 2� sin ϕ (6.6)

where� is the rotation velocity of the earth in radians per second, and ϕ is the latitude
degree of the water body of interest.

The Coriolis and wind driving forces are important in large water bodies, such as
coastal waters, estuaries, and large lakes, but they are usually negligible in inland
rivers.

The stresses Tij (i, j = x, y), which include both viscous and turbulent effects, are
determined using the Boussinesq assumption:

Txx = 2ρ(ν + νt)∂Ux

∂x
− 2

3
ρk

Txy = Tyx = ρ(ν + νt)
(
∂Ux

∂y
+ ∂Uy

∂x

)
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Tyy = 2ρ(ν + νt)∂Uy

∂y
− 2

3
ρk (6.7)

where ν is the kinematic viscosity of water, and νt is the eddy viscosity that needs to be
determined using a turbulence model. Introduced below are the choices for determining
νt, including the depth-averaged parabolic model, modified mixing length model, and
three depth-averaged linear k-ε turbulence models.

Averaging the parabolic eddy viscosity equation (2.49) over the flow depth yields

νt = α1U∗h (6.8)

where α1 is an empirical coefficient. Theoretically, α1 should be equal to κ/6. However,
it has been given various values in practice, because of the anisotropic structures of
turbulence in horizontal and vertical directions and the effects of dispersion. According
to experiments by Elder (1959), α1 is about 0.23 for the longitudinal turbulent diffu-
sion in laboratory channels. For transverse turbulent diffusion, Fischer et al. (1979)
proposed that α1 is about 0.15 in laboratory channels and 0.6 (0.3–1.0) in irregular
waterways with weak meanders.

Eq. (6.8) is applicable in the region of main flow. Because the influence of horizontal
shear is ignored, significant errors may arise when Eq. (6.8) is applied in regions close
to rigid sidewalls. Improvement can be achieved through a combination of Eq. (6.8)
and Prandtl’s mixing length theory:

νt =
√
(α0U∗h)2 + (l2h |S̄|)2 (6.9)

where |S̄| = [2(∂Ux/∂x)2 + 2(∂Uy/∂y)2 + (∂Ux/∂y + ∂Uy/∂x)2]1/2; α0 is an empirical
coefficient similar to α1 in Eq. (6.8) and has a value of about κ/6; and lh is the
horizontal mixing length, determined using lh = κmin(y′, cmh), with y′ being the
distance to the nearest wall and cm an empirical coefficient ranging between 0.4 and
1.2 (Wu et al., 2004b).

Rastogi and Rodi (1978) established a depth-averaged k-ε turbulence model through
depth-integration of the 3-D standard k-ε model. The eddy viscosity νt is still deter-
mined by Eq. (2.54), whereas the depth-averaged turbulent energy k and its dissipation
rate ε are calculated using the following transport equations:

∂k
∂t

+ Ux
∂k
∂x

+ Uy
∂k
∂y

= ∂

∂x

(
νt

σk

∂k
∂x

)
+ ∂

∂y

(
νt

σk

∂k
∂y

)
+ Pk + Pkb − ε (6.10)

∂ε

∂t
+ Ux

∂ε

∂x
+ Uy

∂ε

∂y
= ∂

∂x

(
νt

σε

∂ε

∂x

)
+ ∂

∂y

(
νt

σε

∂ε

∂y

)
+ cε1

ε

k
Pk + Pεb − cε2

ε2

k

(6.11)

where Pk is the production of turbulence due to the horizontal velocity gradients,
defined as Pk = νt|S̄|2; and Pkb and Pεb are the source terms, including all terms
originating from non-uniformity of vertical profiles. The main contribution to Pkb
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and Pεb stems from significant vertical velocity gradients near the bottom of the water
body. These terms are related to the bed shear velocity by Pkb = c−1/2

f U3∗/h and

Pεb = cε�cε2c1/2
µ c−3/4

f U4∗/h2. The standard values of coefficients cµ, cε1, cε2, σk, and
σε are listed in Table 2.3, while the coefficient cε� is given 3.6 for experimental cases
and 1.8 for field cases (Rodi, 1993).

In analogy to Rastogi and Rodi’s depth-averaged standard k-ε turbulence model,
Wu et al. (2004b) adopted the concepts in the non-equilibrium k-ε turbulence model
of Chen and Kim (1987) and the RNG k-ε turbulence model of Yakhot et al. (1992) in
the depth-averaged 2-D simulation of shallow water flows. The k and ε equations are
the same as Eqs. (6.10) and (6.11), with coefficients cµ, cε1, cε2, σk, and σε re-evaluated
according to Table 2.3.

A comparison conducted by Wu et al. (2004b) shows that all five depth-averaged
turbulence models described above can give reliable predictions for simple flows, but
for complex flows, the three k-ε turbulence models generally provide more accurate
results than the two zero-equation turbulence models. Among the three k-ε turbulence
models, the non-equilibrium and RNG versions perform somewhat better than the
standard version for recirculation flows.

6.1.2 Boundary conditions

Rigid wall boundary conditions

Near a rigid wall, which may be a bank or island as shown in Fig. 6.1, the flow is
quite complex. A very thin viscous sublayer exists near a smooth wall, while roughness
elements on a rough wall affect the flow significantly. Because the velocity gradient
is quite high there, it is of high cost to resolve the flows in the viscous sublayer and
around individual roughness elements. A wall-function approach is often used instead.
The first grid point or cell center (denoted as P) adjacent to the wall is placed outside
the viscous sublayer and above the roughness elements, and the resultant wall shear

stress
→
τ w is related to the flow velocity

→
UP at point P by

→
τ w = −λw

→
UP (6.12)

Figure 6.1 A typical horizontal 2-D computational domain.
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where λw is a coefficient. In the k-ε turbulence models, λw is determined by λw =
ρc1/4
µ k1/2

P κ/ln(Ey+
P ) with y+

P = c1/4
µ k1/2

P yP/ν. This relation of λw is derived using the
log-law of velocity near the wall and the first relation in Eq. (6.15). Eq. (6.12) is
applied in the region of 11.6 < y+

P <∼ 300. In the zero-equation turbulence models,
because the turbulent energy k is not solved, λw is determined by λw = ρu∗κ/ ln(Ey+

P )

with y+
P = u∗yP/ν. Here, yP is the distance from the wall to point P, u∗ is the shear

velocity on the wall defined as u∗ = √
τw/ρ, and E is a roughness parameter. For a

smooth wall, E is about 8.432. For a rough wall, E is related to the roughness Reynolds
number k+

s = u∗ks/ν by (Cebeci and Bradshaw, 1977)

E = exp[κ(B0 −�B)] (6.13)

where ks is the equivalent roughness height on the wall, B0 is an additive constant of
5.2, and �B is a function of k+

s :

�B =

⎧⎪⎨⎪⎩
0 k+

s < 2.25

(B0 − 8.5 + 1
κ

ln k+
s ) sin[0.4258(ln k+

s − 0.811)] 2.25 ≤ k+
s < 90

B0 − 8.5 + 1
κ

ln k+
s k+

s ≥ 90
(6.14)

In the k-ε turbulence models, the turbulent energy and its dissipation rate at point
P are specified as (Rodi, 1993)

kP = u2∗
c1/2
µ

, εP = u3∗
κyp

(6.15)

which are derived by assuming that the local equilibrium of turbulence prevails near
the wall.

However, the turbulent energy kP may also be obtained by actually solving the
k equation in the control volume near the wall, with the turbulence generation and
dissipation rates specified as

Pk,P = τ2
w

κµy+
P

, εP = c3/4
µ k3/2

P

κyP
(6.16)

The water level near a rigid wall is usually assumed to have a zero gradient in the
direction normal to the boundary.

Inf low and outf low boundary conditions

As described in Section 5.1.1.2, for subcritical flow, a boundary condition is needed
at each inlet and outlet in order to derive a well-imposed solution for Eqs. (6.1)–(6.3),
while for supercritical flow, two boundary conditions should be specified at each inlet.
For the sake of simplicity, only the subcritical flow case is considered below.
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The inflow boundary condition is usually a time series of flow discharge. However, a
lateral distribution of velocity at the inlet is required in the depth-averaged 2-D model.
The streamwise (resultant) velocity U at each computational point of the inlet located
in a nearly straight reach may be assumed to be proportional to the local flow depth,
i.e., U ∝ hr. Here, r is an empirical exponent; r ≈ 2/3 for uniform flow. A small
r value means a fairly uniform distribution of velocity along the inlet cross-section.
Therefore, for a given total inflow discharge Q(=∫ B

0 Uhdy′), U is determined by

U = Qhr
/∫ B

0
h1+rdy′ (6.17)

where B is the channel width at the water surface, and y′ is the transverse coordinate.
The inflow velocity direction must also be specified; it essentially determines the

two components of velocity in the x- and y-directions at each point of the inlet.
The boundary condition at the outlet may be a time series of the measured water

stage, a stage-discharge rating curve measured or generated using the uniform or
critical flow condition, or a non-reflective wave condition, depending on the out-
let configurations. For tidal flow, the tidal level may also be determined using the
major astronomical constituents of tide in the study reach.

If a k-ε turbulence model is used, boundary conditions should be given for the
turbulent energy and its dissipation rate at the inlet and outlet. At the inlet that is
located in a nearly straight reach and far from hydraulic structures, the turbulence can
be assumed to be at equilibrium; thus, Eqs. (6.10) and (6.11) are simplified to

Pkν − εin = 0 (6.18)

Pεν − cε2
ε2in

kin
= 0 (6.19)

yielding

kin = U2
∗in

cε�c1/2
µ c1/4

f

, εin = U3
∗in

c1/2
f hin

(6.20)

where the subscript “in” denotes the quantities at the inlet.
At the outflow boundary, located in a reach with simple geometry and far from

hydraulic structures, the gradients of flow velocity, turbulent energy, and dissipation
rate can be given zero.

6.1.3 Numerical solutions

Unlike the Navier-Stokes equations described in Section 4.4, the shallow water
equations (6.1)–(6.3) have a stronger linkage between velocity and pressure (water
level), due to the appearance of flow depth in the depth-integrated continuity equation.
It is apparently easier to solve Eqs. (6.1)–(6.3), as h, Ux, and Uy can be calculated by
these three equations, respectively. However, special care is still needed in handling
the convection and pressure gradient terms. Either a staggered grid approach or Rhie
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and Chow’s (1983) momentum interpolation technique on the non-staggered grid is
adopted. An upwind scheme is often used to discretize the convection terms. When the
central difference scheme is used, artificial dissipations or TVD limiters are often used
to suppress potential numerical oscillations. Some of these methods are used to simu-
late dam-break and overtopping flows, as discussed in Section 9.1. Described in this
subsection are the SIMPLE(C) algorithm, the projection method, and the vorticity-
based method, which are widely used in the simulation of common open-channel
flows.

6.1.3.1 SIMPLE(C) algorithm

Discretization of governing equations

In the curvilinear coordinate system, Eqs. (6.1)–(6.3), (6.10), and (6.11) can be written
in the following tensor notation form:

∂

∂t
(ρhJφ)+ ∂

∂ξm

(
ρhJûmφ − h�φJαm

j α
m
j
∂φ

∂ξm

)
= hJSφ (6.21)

where φ stands for 1, Ux, Uy, k, and ε, depending on the equation considered;
�φ = ρ(ν + νt/σφ) is the diffusivity of the quantity φ; Sφ is the source term in the
equation of φ, including the cross-derivative diffusion terms; J is the Jacobian of
the transformation between the Cartesian coordinate system xi (x1=x, x2=y) and the
curvilinear coordinate system ξm (ξ1 =ξ , ξ2 =η); ûm =αm

i Ui; and αm
i =∂ξm/∂xi.

As described in Section 4.4, the primary variables can be arranged in a staggered
or non-staggered (collocated) pattern. The staggered grid approach for the depth-
averaged 2-D model can be found in Lu and Zhang (1993) and Kim et al. (2003),
whereas the non-staggered grid approach is applied here.

Eq. (6.21) is integrated over the control volume shown in Fig. 4.21. The convection
terms can be discretized using one of the following schemes: hybrid, exponential,
QUICK, HLPA or SOUCUP, presented in Section 4.3.1.1. The normal-derivative
diffusion terms are usually discretized using the central difference scheme. The time-
derivative term is discretized using the first-order backward scheme (4.23) or the
three-level implicit scheme (4.43) and treated in analogy to Eq. (4.126). The discretized
momentum equations give velocities Un+1

i,P (i = 1, 2) at cell center P as

Un+1
i,P = 1

au
P

⎛⎝ ∑
l=W ,E,S,N

au
l Un+1

i,l + Sui

⎞⎠+ D1
i (p

n+1
w − pn+1

e )+ D2
i (p

n+1
s − pn+1

n )

(6.22)

where D1
i = hn+1

P ( Jα1
i �η)P/a

u
P, D2

i = hn+1
P ( Jα2

i �ξ)P/a
u
P, and p is the pressure defined

as p = ρgzs.
The relations of the velocity and pressure corrections in the depth-averaged 2-D

model are similar to Eqs. (4.190), (4.191), (4.194), (4.195), and (4.202)–(4.204).
Thus, they are not repeated here.
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The depth-integrated continuity equation (6.1) is discretized as

pn+1
P = pn

P − g
�t
�AP

(Fe − Fw + Fn − Fs) (6.23)

where�AP is the area of the cell centered by P; and Fe, Fw, Fn, and Fs are the convection
fluxes across cell faces e, w, n, and s, defined as

Fw = (ρh)n+1
w ( Jα1

i �η)wUn+1
i,w (6.24)

Fs = (ρh)n+1
s ( Jα2

i �ξ)sU
n+1
i,s (6.25)

It seems that the pressure (water level) can be calculated from the discretized
continuity equation (6.23), but in fact node-to-node oscillations may exist on
the non-staggered grid if the fluxes at the cell faces are linearly interpolated
from the quantities stored at the cell centers, as explained in Section 4.4. To
avoid this, Wenka (1992), Ye and McCorquodale (1997), and Minh Duc (1998)
applied Rhie and Chow’s (1983) momentum interpolation technique to evaluate
the variable values at the cell faces from the quantities at the cell centers in the
depth-averaged simulation of open-channel flows. In the formulations of Ye and
McCorquodale (1997) and Minh Duc (1998), the pressure correction was defined
as p′ = pn+1 − pn, which forms an explicit algorithm for pressure. To form a
semi-implicit algorithm, which allows for longer time steps, the pressure correc-
tion was defined as p′ = pn+1 − p∗ by Wu (2004). Wu’s formulation is introduced
below.

Using Rhie and Chow’s (1983) momentum interpolation procedure as described in
Section 4.4.4 yields the flux correction equations (4.196) and (4.197). For the depth-
averaged 2-D SIMPLE algorithm, the coefficients ap

W and ap
S in these equations are

derived as

ap
W = αu(ρh)n+1

w ( J�η)w(α1
1,wQ1

1,w + α1
2,wQ1

2,w) (6.26)

ap
S = αu(ρh)n+1

s ( J�ξ)s(α2
1,sQ

2
1,s + α2

2,sQ
2
2,s) (6.27)

where Q1
i,w = [(1 − fx,P)/au

PW + fx,P/au
P]hn+1

w (Jα1
i �η)w; Q2

i,s = [(1 − fy,P)/au
PS +

fy,P/au
P]hn+1

s (Jα2
i �ξ)s; and au

PW and au
PS stand for au

P when Eq. (6.22) is applied in
the control volumes centered by W and S, respectively.

For the depth-averaged 2-D SIMPLEC algorithm, the coefficients ap
W and ap

S
are determined by Eqs. (6.26) and (6.27) with Q1

i,w and Q2
i,s replaced by Q̃1

i,w and

Q̃2
i,s defined in Eqs. (4.203) and (4.204).
Inserting Eqs. (4.196) and (4.197), as well as two similar equations for Fe and Fn,

into Eq. (6.23) yields the pressure correction equation:

ap
Pp′

P = ap
Wp′

W + ap
Ep′

E + ap
Sp′

S + ap
Np′

N + Sp (6.28)
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where ap
P = ∑l=W ,E,S,N ap

l +�AP/(g�t), Sp = −(p∗
P − pn

P)�AP/(g�t) − (F∗
e − F∗

w +
F∗

n − F∗
s ), and F∗

w and F∗
s are the fluxes determined using Eqs. (6.24) and (6.25) in

terms of the approximate velocities U∗
i,w abd U∗

i,s.

Implementation of boundary conditions

Near a rigid wall, the control volume is shown in Fig. 6.2. The velocity at point S,
which is located on the wall, is non-slip and has a value of zero. When the x-momentum
equation is integrated over this control volume, as demonstrated in Eq. (4.130), the
convection flux should be zero and the shear stress τxy is determined using Eq. (6.12)
at face s. This shear stress is moved into the source term, thus yielding a zero coefficient
aux

S in Eq. (6.22).
When the y-momentum equation is integrated over the control volume in Fig. 6.2,

the convection flux and the normal stress τyy at face s should be zero. Thus, the
coefficient a

uy

S in Eq. (6.22) is zero as well.

Figure 6.2 Control volume near rigid wall.

Because the flux Fs is zero, the pressure correction at face s is not needed and,
naturally, ap

S in Eq. (6.28) becomes zero. The pressure (water level) at the boundary
point S can be extrapolated from the values at adjacent internal points.

As mentioned in Section 6.1.2, there are two approaches for handling k and ε at
the wall boundary. One approach directly specifies the values of k and ε at center
P in Fig. 6.2, according to Eq. (6.15). The other approach solves the k equation at
the control volume near the wall. When the k equation is integrated over this control
volume, the convection flux at face s and the coefficient ak

S are set to zero, but the
turbulence generation and dissipation rates at center P are given by Eq. (6.16).

At the inlet, the control volume is shown in Fig. 6.3(a), with face w being on the
inflow side. For the specified total flow discharge Q, Eq. (6.17) cannot directly give
a unique value for the inflow flux at each cell, due to the fact that the flow depth is
also unknown. Iteration is usually needed. At first, a pressure is assumed at face w so
that the inflow velocity and flux can be uniquely obtained using Eq. (6.17). Because
the inflow flux is thereby obtained, the flux correction at face w is zero, and thus the
pressure correction equation becomes

ap
Pp′

P = ap
Ep′

E + ap
Sp′

S + ap
Np′

N + Sp (6.29)
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Figure 6.3 Control volumes near (a) inlet and (b) outlet.

where ap
P = ap

E +ap
S +ap

N +�AP/(g�t), and Sp = −(p∗
P −pn

P)�AP/(g�t)− (F∗
e −Fw +

F∗
n − F∗

s ). The flow calculation can then be carried out over all internal points. After
the internal pressure field has been obtained, the pressure at the w-face of each inlet
cell can be extrapolated from the pressure values at adjacent internal points and a new
inflow flux can then be obtained using Eq. (6.17). The above procedure is repeated
until a convergent solution is obtained.

The turbulent energy and its dissipation rate can be directly specified at the center of
the control volume near the inlet, according to Eq. (6.20). However, as an alternative,
their fluxes may also be specified at the inflow face. When the relevant equation is
integrated over the control volume near the inlet, the specified flux is moved into the
source term and the coefficient at the inflow face is set to zero.

At the outlet, the pressure (water level) is specified for the subcritical flow. It may
be specified at either the center or the outflow face of the control volume shown in
Fig. 6.3(b). In the former case, the pressure correction should be zero at center P. In the
latter case, an imaginary computational point (noted as E) without a control volume
is set up at the outflow face, at which the pressure correction is zero. The pressure
correction equation at point P is Eq. (6.28), but the coefficient ap

E needs to be specially
treated, as it cannot be determined in analogy to Eq. (6.26). The former approach is
easier to implement.

The flow velocity, turbulent energy, and dissipation rate at the outlet can be extrap-
olated from the values at adjacent internal points. When the relevant differential
equation is integrated over the control volume shown in Fig. 6.3(b), the diffusion
flux at the outlet (face e) is zero due to the quantity’s zero gradient; because the con-
vection terms are usually discretized using an upwind scheme, the coefficient aφE may
actually be zero.

6.1.3.2 Projection method

Semi-implicit projection method

Casulli (1990) proposed a semi-implicit finite difference method for solving 2-D
shallow water equations (6.1)–(6.3). The staggered grid shown in Fig. 4.24 is used.



2-D numerical models 251

The velocity divergence in the continuity equation as well as the bed friction and
water level gradient terms in the momentum equations are discretized implicitly,
while the other terms are discretized explicitly. The basic semi-implicit algorithm is
formulated as

zn+1
s,i,j = zn

s,i,j − �t
�x
(hn

i+1/2,jU
n+1
x,i+1/2,j − hn

i−1/2,jU
n+1
x,i−1/2,j)

− �t
�y
(hn

i,j+1/2Un+1
y,i,j+1/2 − hn

i,j−1/2Un+1
y,i,j−1/2) (6.30)

Un+1
x,i+1/2,j = F(Un

x,i+1/2,j)− g
�t
�x
(zn+1

s,i+1,j − zn+1
s,i,j )−�tγ n

i+1/2,jU
n+1
x,i+1/2,j (6.31)

Un+1
y,i,j+1/2 = F(Un

y,i,j+1/2)− g
�t
�y
(zn+1

s,i,j+1 − zn+1
s,i,j )−�tγ n

i,j+1/2Un+1
y,i,j+1/2 (6.32)

where F(Un
x,i+1/2,j) and F(Un

y,i,j+1/2) include all the remaining terms in the discretized

momentum equations, and γ = gn2
√

U2
x + U2

y /h
4/3.

Substituting Eqs. (6.31) and (6.32) into Eq. (6.30) yields
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�x

[
hn

i+1/2,j

1 + γ n
i+1/2,j�t

F(Un
x,i+1/2,j)−

hn
i−1/2,j

1 + γ n
i−1/2,j�t

F(Un
x,i−1/2,j)

]

− �t
�y

[
hn

i,j+1/2

1 + γ n
i,j+1/2�t

F(Un
y,i,j+1/2)−

hn
i,j−1/2

1 + γ n
i,j−1/2�t

F(Un
y,i,j−1/2)

]
(6.33)

Eq. (6.33) constitutes a linear five-diagonal system of equations for water level.
Because h ≥ 0, this system is symmetric and positive definite and thus can be solved
efficiently using many methods, such as the preconditioned conjugate gradient method
(see Casulli, 1990).

The calculation procedure for this semi-implicit algorithm consists of the following
steps: (i) calculate F(Un

x,i+1/2,j) and F(Un
y,i,j+1/2); (ii) solve Eq. (6.33) to obtain zn+1

s,i,j ;

and (iii) calculate Un+1
x,i+1/2,j and Un+1

y,i,j+1/2 using Eqs. (6.31) and (6.32). This algorithm
can be considered an extension of Chorin’s (1968) projection method described in
Section 4.4.

A von Neumann analysis of this semi-implicit algorithm indicates that its stability
depends only on the choice of difference operator F. Casulli (1990) suggested a
Eulerian-Lagrangian approach. Generally speaking, many other schemes can also be
used, but typically, an upwind scheme should be used for the convection terms.

Note that because the flow depth and velocity are evaluated at different time levels,
the discretized continuity equation (6.30) is not strictly conservative. However, this
semi-implicit algorithm has been shown to be computationally efficient.
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Pressure-correction projection method

Jia et al. (2002) developed a depth-averaged 2-D model based on the projection
method. The partially staggered grid shown in Fig. 6.4 is used. The pressure is
defined at the cell centers, while both velocities Ux and Uy are at the cell cor-
ners. The governing equations are solved using the efficient element method (Wang
and Hu, 1993). The convection terms in the momentum equations are discretized
using the upwind interpolation scheme introduced in Section 4.2.4.2, while the other
spatial derivative terms are discretized using the interpolation schemes (4.97) and
(4.98). The time-derivative terms are discretized using the Euler scheme. The fol-
lowing pressure-correction method is used to achieve the coupling of velocity and
pressure.

Figure 6.4 Partially staggered grid used by Jia et al. (2002).

The discretized momentum equations are arranged as

→
Un+1 = →

Un +�t
→
G −�t

ρ
∇(pn + p′) (6.34)

where
→
G includes all the remaining terms in Eqs. (6.2) and (6.3); ρ is the water density,

which is assumed to be constant; p is the pressure, defined as p = ρgzs; and p′ is the
pressure correction, defined by

pn+1 = pn + p′ (6.35)

The intermediate velocity is denoted as

→
U∗ = →

Un +�t
→
G −�t

ρ
∇pn (6.36)
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Subtracting Eq. (6.36) from Eq. (6.34) yields

→
Un+1 = →

U∗ − �t
ρ

∇p′ (6.37)

Substituting Eq. (6.37) into Eq. (6.1) yields

∂h
∂t

+ ∇ · (h →
U∗)− �t

ρ
h∇2p′ − �t

ρ
∇h · ∇p′ = 0 (6.38)

Neglecting the last term on the left-hand side of Eq. (6.38) and applying ∂h/∂t =
(hn+1 − hn)/�t = p′/(ρg�t) yields the following Poisson equation for pressure
correction:

(1 − gh�t2∇2)p′ = −ρg�t∇ · (h→
U∗) (6.39)

Eq. (6.39) is solved using the efficient element method for the Laplace operator on
the left-hand side and the finite volume method for the term on the right-hand side.
The resulting algebraic equations are solved using the SIP method.

The calculation procedure starts with calculating
→
U∗, using Eq. (6.36) with the

known pressure pn. Eq. (6.39) is then solved to obtain the pressure correction. Pressure
and velocity at time level n + 1 are obtained using the correction equations (6.35) and
(6.37), respectively.

Because the pressure correction is defined by Eq. (6.35), the time step length is some-
what limited. This limitation can be relaxed by using pn+1 = p∗ + p′, as demonstrated
in Section 6.1.3.1. This modification requires pn in Eq. (6.36) to be replaced by p∗
and a term of pn − p∗ to be added on the right-hand side of Eq. (6.39). Iteration is
needed in the solution of the modified equations, but the time step can be longer and
the mass balance is less affected by the omission of the last term on the left-hand side
of Eq. (6.38), as p′ → 0 through the iteration.

6.1.3.3 Stream function and vorticity method

Stream function and vorticity equations

As described in Section 4.4.5, the stream function and vorticity method is highly
convenient for solving the 2-D Navier-Stokes equations of incompressible flows. How-
ever, its application in the depth-averaged 2-D model is not straightforward, because
the definition of stream function in Eq. (4.207) is not valid for the depth-integrated
continuity equation (6.1). Wu et al. (1995) redefined the stream function and extended
the stream function and vorticity method to the depth-averaged 2-D model for steady
open-channel flows.

The governing equations for the depth-averaged 2-D steady shallow water flows are
written as

∂(hUx)

∂x
+ ∂(hUy)

∂y
= 0 (6.40)
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Ux
∂Ux

∂x
+ Uy

∂Ux

∂y
= −g

∂zs

∂x
+ 1
ρ

∂Txx

∂x
+ 1
ρ

∂Txy

∂y
− τbx

ρh
(6.41)

Ux
∂Uy

∂x
+ Uy

∂Uy

∂y
= −g

∂zs

∂y
+ 1
ρ

∂Tyx

∂x
+ 1
ρ

∂Tyy

∂y
− τby

ρh
(6.42)

Corresponding to Eq. (6.40), the stream functionψ in the depth-averaged 2-D model
is defined by

Ux = 1
h
∂ψ

∂y
, Uy = −1

h
∂ψ

∂x
(6.43)

The vorticity is still defined as

� = ∂Uy

∂x
− ∂Ux

∂y
(6.44)

Therefore, the following stream-function equation is obtained by inserting Eq. (6.43)
into Eq. (6.44):

∂2ψ

∂x2 + ∂
2ψ

∂y2 − 1
h
∂h
∂x
∂ψ

∂x
− 1

h
∂h
∂y
∂ψ

∂y
= −h� (6.45)

Cross-differentiating Eqs. (6.41) and (6.42) with respect to y and x and subtracting
them yields the vorticity equation:

∂(Ux�)

∂x
+ ∂(Uy�)

∂y
= ∂

∂x

[
(ν + νt)∂�

∂x

]
+ ∂

∂y

[
(ν + νt)∂�

∂y

]
+ S� (6.46)

where

S� =
(
∂2νt

∂x2 − ∂
2νt

∂y2

)(
∂Ux

∂y
+ ∂Uy

∂x

)
+ 2
∂2νt

∂x∂y

(
∂Uy

∂y
− ∂Ux

∂x

)

+ ∂νt
∂x

(
∂2Uy

∂x2 + 2
∂2Uy

∂y2 + ∂
2Ux

∂x∂y

)
− ∂νt
∂y

(
2
∂2Ux

∂x2 + ∂
2Ux

∂y2 + ∂
2Uy

∂x∂y

)

− ∂

∂x

(
τby

ρh

)
+ ∂

∂y

(
τbx

ρh

)

Similarly, differentiating Eq. (6.41) with respect to x and Eq. (6.42) with respect
to y and adding them together leads to the following Poisson equation for the
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water level:

∂2zs

∂x2 + ∂
2zs

∂y2 = Sz

g
(6.47)

where

Sz = −
(
∂Ux

∂x

)2

− 2
∂Ux

∂y
∂Uy

∂x
−
(
∂Uy

∂y

)2

− Ux

(
∂2Ux

∂x2 + ∂
2Uy

∂x∂y

)

− Uy

(
∂2Ux

∂x∂y
+ ∂

2Uy

∂y2

)
+ 1
ρ

(
∂2Txx

∂x2 + 2
∂2Txy

∂x∂y
+ ∂

2Tyy

∂y2

)

− 1
ρ

∂

∂x

(τbx

h

)
− 1
ρ

∂

∂y

(τby

h

)
The stream function, vorticity, and water level equations (6.45)–(6.47) are appar-

ently more complicated than Eqs. (6.40)–(6.42), but they are still typical partial dif-
ferential equations and easy to solve. In addition, the mass is conserved automatically,
and the difficulty in solving Eq. (6.40) is avoided.

Note that because the definition of stream function in Eq. (6.43) is not valid for
Eq. (6.1), the aforementioned stream function and vorticity method cannot be used
for the depth-averaged 2-D simulation of unsteady flows. However, it can be used
in steady and quasi-steady cases. In particular, it can be used in the stepwise quasi-
steady model for the long-term simulation of flow and sediment transport to reduce
computational effort (Wu et al., 1995).

Boundary conditions for stream function and vorticity

For the river reach shown in Fig. 6.1, the stream function is set to zero on the left bank
and Q on the right bank. Here, Q is the total flow discharge. The stream function
along the island should have a constant value. The gradient of stream function along
the flow direction at the outlet is set to zero. Corresponding to Eq. (6.17), the stream
function at the inlet can be determined by

� =
∫ y′

0
Uhdy′ = Q

∫ y′

0
h1+rdy′

/∫ B

0
h1+rdy′ (6.48)

where the transverse coordinate y′ starts from the left bank.
The water level is given at the outlet, as usual in the case of subcritical flow. The

water level at the inlet should be extrapolated from the values at adjacent internal
points. The water level gradient in the direction normal to rigid wall boundaries, such
as banks and islands, can be set to zero.

The vorticity at the boundaries can be determined using Eq. (6.44), with the velocity
derivatives calculated using the following one-sided schemes:
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∂Ux

∂y

∣∣∣∣
1

= Ux,2 − Ux,1

�y
(6.49)

∂Ux

∂y

∣∣∣∣
1

= −3Ux,1 + 4Ux,2 − Ux,3

2�y
(6.50)

or other higher-order approximations.

6.1.4 Wetting and drying techniques

In the calculation of flows in open channels with sloped banks, sand bars, and islands,
the water edges change with time, and some part of the domain might be dry. A number
of methods have been reported in the literature to handle this problem. They may be
classified into two groups. One group tracks the moving water edges and adjusts the
computational mesh to cover the wet domain. This group can use the boundary-fitted
grid at each time (iteration) step and achieve better accuracy around the water edges.
However, it results in complicated codes and perhaps requires more computational
effort. The other group uses the fixed grid that covers the largest wet domain and
treats dry nodes as part of the solution domain. The latter group includes the “small
imaginary depth,” “freezing,” “porous medium,” and “finite slot” methods.

The “small imaginary depth” method uses a threshold flow depth (a low value, such
as 0.02 m in natural rivers and 0.001 m in experimental flumes) to judge drying and
wetting at each time step. If the flow depth at a node is larger than the threshold value,
this node is considered to be wet, and if the flow depth is lower than the threshold value,
this node is dry. The dry nodes are assigned zero velocity. The water edges between
the dry and wet areas can be treated as internal boundaries, at which the wall-function
approach may be applied. The dry nodes can be excluded from the computation in an
explicit algorithm, but must usually be included in an implicit algorithm. In the latter
case, the “freezing” method is often adopted.

The “freezing” method also adopts a threshold flow depth to judge wetting and
drying in the computational domain. At dry nodes, the Manning n or the coefficient
aP in Eq. (6.22) is given a very large value, such as 1030; therefore, the calculated
velocity is zero and the water level does not change (as it is frozen). The “freez-
ing” method can include dry nodes in an implicit algorithm. However, it should be
noted that the water level gradient may induce false flow motions at the dry nodes.
To avoid this problem, a horizontal water level profile at the dry nodes may be
assumed.

The “porous medium” method (Ghanem, 1995; Khan, 2000) assumes that the bed
at the dry nodes is a porous medium and the flow can extend into the dry bed. Based on
a specified minimum depth criterion, either the St. Venant or groundwater equations
are applied at a particular computational point. The “finite slot” method proposed by
Tao (1984) is similar to the “porous medium” method. In the “finite slot” method, a
dry node is cut into two slots (with infinitesimal width and infinite depth) parallel to
the x- and y-coordinates, respectively, in which the water is assumed to move. Thus,
the water depth is kept positive artificially, even if the bed is dry. Different momentum
equations are used at the dry nodes in the “porous medium” and “finite slot” methods,
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but the continuity equation at the dry nodes in both methods can be written as

f
∂h
∂t

+ ∇ · (h→
U) = 0 (6.51)

where f is the storativity in the “porous medium” method, or the slot width in the
“finite slot” method. The slot width is given as

f =
{
ε0 + (1 − ε0)ea(zs−zb) zs ≤ zb

1 zs > zb
(6.52)

where zb is the bed elevation; ε0 is the slot width, with a value between 0.02 and 0.05
when zs � zb; and a is a coefficient, which is usually larger than 2.0.

6.2 DEPTH-AVERAGED 2-D SIMULATION OF SEDIMENT
TRANSPORT IN NEARLY STRAIGHT CHANNELS

6.2.1 Governing equations

As described in Section 5.1.2.1, sediment transport can be simulated by computing
bed load and suspended load separately, or bed-material (total) load jointly. The
depth-averaged 2-D sediment transport equations in both approaches are given
below.

Bed-load and suspended-load transport model

The governing equations of the bed-load and suspended-load transport model in
general situations were described in Section 2.7. For nearly straight channels,
the dispersion terms in the suspended-load transport equation (2.157) are usually
combined with the diffusion terms, thus yielding

∂(hCk/βsk)

∂t
+ ∂(hUxCk)

∂x
+ ∂(hUyCk)

∂y
= ∂

∂x

(
Es,xh

∂Ck

∂x

)
+ ∂

∂y

(
Es,yh

∂Ck

∂y

)
+ αωsk(C∗k − Ck) (k = 1, 2, . . . , N)

(6.53)

where Es,x and Es,y are the horizontal effective diffusion (mixing) coefficients of sed-
iment in the x- and y-directions, respectively. If the dispersion effect is negligible,
Es,x and Es,y are close to the turbulent diffusivity εs and can thus be related to the
eddy viscosity νt. In general, the effective diffusivities depend on the flow, sediment,
and channel conditions, and may have different values in the longitudinal and trans-
verse directions. Their evaluation may refer to the methods for the horizontal effective
diffusivities of heat and salinity introduced in Section 12.1.3.
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The bed-load transport and bed change of size class k are governed by Eqs. (2.158)
and (2.159), which are written below for convenience:

∂(qbk/ubk)

∂t
+ ∂(αbxqbk)

∂x
+ ∂(αbyqbk)

∂y
= 1

L
(qb∗k − qbk) (6.54)

(1 − p′
m)

(
∂zb

∂t

)
k

= αωsk(Ck − C∗k)+ 1
L
(qbk − qb∗k) (6.55)

and the total rate of change in bed elevation is determined by Eq. (2.160). Note that
the bed load is assumed to move along the direction of bed shear stress if the effect
of bed slope in ignored; thus, the direction cosines of bed-load movement in a nearly

straight channel are given by αbx = Ux/U and αby = Uy/U with U =
√

U2
x + U2

y ,

according to Eq. (6.4). The effect of bed slope on bed-load transport is discussed in
Section 6.3.4.

To close the set of equations (6.53)–(6.55), the equilibrium suspended-load concen-
tration C∗k and the bed-load transport rate qb∗k need to be determined using empirical
formulas, which can generally be written as

C∗k = pbkC∗
k, qb∗k = pbkq∗

bk (6.56)

where C∗
k is the potential equilibrium concentration of the kth size class of suspended

load, q∗
bk is the potential equilibrium transport rate of the kth size class of bed load,

and pbk is the fraction of size class k in the mixing layer of the bed material.
The multiple-layer bed material sorting model introduced in Section 2.7.2 is applied

here. For example, the bed-material gradation in the mixing layer is determined by

∂(δmpbk)

∂t
=
(
∂zb

∂t

)
k

+ p∗
bk

(
∂δm

∂t
− ∂zb

∂t

)
(6.57)

Bed-material load transport model

The bed-material (total) load transport equation can be obtained by summing
Eqs. (6.53) and (6.54) and using Eq. (2.149) for the sediment exchange at the bed.
The resulting equation is written as

∂

∂t

(
hCtk

βtk

)
+ ∂(hUxCtk)

∂x
+ ∂(hUyCtk)

∂y
= ∂

∂x

[
Es,xh

∂(rskCtk)

∂x

]
+ ∂

∂y

[
Es,yh

∂(rskCtk)

∂y

]
+ αtωsk(Ct∗k − Ctk) (k = 1, 2, . . . , N) (6.58)

where Ctk and Ct∗k are the actual and equilibrium (capacity) depth-averaged
concentrations of the kth size class of bed-material load, respectively; βtk is the correc-
tion factor determined using Eq. (2.92); αt is the adaptation coefficient of bed-material
load, defined as αt = (Uh)/(Ltωs) with Lt being the adaptation length; and rsk is the
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ratio of the suspended load to the bed-material load, Ck/Ctk. To close Eq. (6.58), rsk
can be approximated by rsk = C∗k/Ct∗k. If the suspended load is dominant, rsk is close
to 1 and may be lumped into the diffusivity Es.

The bed change is determined by

(1 − p′
m)

(
∂zb

∂t

)
k

= αtωsk(Ctk − Ct∗k) (6.59)

If the bed load is dominant, rsk is close to 0 and the diffusion term in Eq. (6.58) can
be ignored, thus yielding

∂

∂t

(
qtk

βtkU

)
+ ∂(αtxqtk)

∂x
+ ∂(αtyqtk)

∂y
= 1

Lt
(qt∗k − qtk) (6.60)

where qtk and qt∗k are the actual and equilibrium (capacity) transport rates of the kth
size class of bed-material load, respectively; and αtx and αty are the direction cosines
of bed-material load transport. Accordingly, the bed change is determined by

(1 − p′
m)

(
∂zb

∂t

)
k

= 1
Lt
(qtk − qt∗k) (6.61)

The bed-material load transport capacity is determined using an equation similar to
Eq. (6.56), and the bed material sorting is simulated using the previous multiple-layer
model.

Because the bed-load and suspended-load model can cover the bed-material model
in the numerical solution sense, only issues regarding the former model are introduced
in the next subsections.

6.2.2 Boundary and initial conditions

Wall boundary conditions

At banks and islands, the bed-load transport rate and the suspended-load concentra-
tion gradient are set to zero:

qbk = 0,
∂Ck

∂n
= 0 (6.62)

where n is the coordinate in the direction normal to the boundary.

Inf low boundary conditions

In the depth-averaged 2-D sediment transport simulation, the sediment discharge must
be given at each point of the inflow boundary. In an unsteady case, a time series of
the inflow sediment discharge is needed. For non-uniform sediment transport, the
size distribution of the inflow sediment is also needed. Once the (fractional) bed-load
and suspended-load discharges Qbk and Qsk have been given, they may be distributed
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laterally along the inlet located in a nearly straight reach by

qbk = Qbkqhrb∫ B
0 qhrbdy′ , qsk = Qskqhrs∫ B

0 qhrsdy′ (6.63)

where q, qbk, and qsk are the flow, bed-load, and suspended-load discharges per unit
channel width at each point; and rb and rs are empirical exponents. Note that Eq. (6.63)
assumes qbk ∝ qhrb and qsk ∝ qhrs .

Outf low boundary conditions

At the outflow boundary, calculating the bed load does not require any boundary con-
dition, in principle. The suspended-load concentration gradient in the flow direction
is set to zero:

∂Ck

∂s
= 0 (6.64)

where s is the coordinate in the flow direction.
Note that at a tidal boundary, the flow may go in and out alternately. The sediment

transport rate needs to be provided during a flood tide (inflow), and the suspended-
load concentration gradient in the flow direction is given zero during an ebb tide
(outflow).

Initial conditions

The initial channel geometry, suspended-load concentration, and bed-load transport
rate are required. The initial bed-material gradation in the entire solution domain
must be given for the simulation of non-uniform sediment transport; it is particularly
important for scour and channel stability analysis.

6.2.3 Numerical solutions

6.2.3.1 Discretization of sediment transport equations

Sediment transport equations can be discretized using the numerical methods intro-
duced in Chapter 4. The finite volume method is chosen here as an example. The
suspended-load transport equation (6.53) is written as Eq. (6.21) in the curvilinear
coordinate system and discretized as

�AP

�t

(
hn+1

P Cn+1
k,P

βn+1
sk,P

−
hn

PCn
k,P

βn
sk,P

)
= aC

WCn+1
k,W + aC

ECn+1
k,E + aC

S Cn+1
k,S + aC

NCn+1
k,N

− aC
P Cn+1

k,P + αωsk�AP(C
n+1
∗k,P − Cn+1

k,P )+ Sck,P

(6.65)
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where aC
E , aC

W , aC
N , aC

S , and aC
P are coefficients; and Sck,P includes the cross-derivative

diffusion terms.
The bed-load transport equation (6.54) is integrated over the control volume shown

in Fig. 4.21, with the convection terms discretized using the first-order upwind scheme
or the QUICK scheme. The discretized bed-load transport equation is

�AP

�t

(
qn+1

bk,P

un+1
bk,P

−
qn

bk,P

un
bk,P

)
= aq

Wqn+1
bk,W + aq

Eqn+1
bk,E + aq

Sqn+1
bk,S + aq

Nqn+1
bk,N − aq

Pqn+1
bk,P

+ �AP

L
(qn+1

b∗k,P − qn+1
bk,P) (6.66)

Eqs. (6.65) and (6.66) can be iteratively solved using the Gauss-Seidel, ADI, or SIP
method.

Note that the coefficient aC
P in the discretized suspended-load transport equation

(6.65) includes the term Fe − Fw + Fn − Fs, as shown in Eq. (4.135). This term can
be treated using the discretized continuity equation (6.23) for better stability. How-
ever, the coefficient aq

P in the discretized bed-load transport equation (6.66) cannot
be treated thus. An alternative is to define a quantity Cbk = qbk/(Uh), substitute this
relation into Eq. (6.54), and discretize the new bed-load transport equation in terms of
Cbk as the dependent variable. The coefficient aP in the resulting discretized equation
has the term Fe − Fw + Fn − Fs, which can then be treated using Eq. (6.23).

To ensure mass conservation, the discretizations of the exchange terms in the bed
change equation (6.55) and in the suspended-load and bed-load transport equations
(6.53) and (6.54) should be consistent. Thus, Eq. (6.55) is discretized as

�zbk,P = αωsk�t
1 − p′

m
(Cn+1

k,P − Cn+1
∗k,P)+

�t
(1 − p′

m)L
(qn+1

bk,P − qn+1
b∗k,P) (6.67)

where �zbk is the change in bed elevation due to the kth size class of sediment at time
step �t.

After the fractional change in bed elevation has been calculated, the total change is
obtained as

�zb,P =
N∑

k=1

�zbk,P (6.68)

and the bed elevation is then updated by

zn+1
b,P = zn

b,P +�zb,P (6.69)

The bed material sorting equation (6.57) is discretized as

pn+1
bk,P =

�zbk,P + δnm,Ppn
bk,P + p∗n

bk,P(δ
n+1
m,P − δnm,P −�zb,P)

δn+1
m,P

(6.70)
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where p∗n
bk,P is defined as pn

bk,P, the fraction of size class k in the mixing layer of bed

material if �zb,P + δnm,P ≥ δn+1
m,P , and as the fraction of size class k in the second layer

if �zb,P + δnm,P < δ
n+1
m,P .

6.2.3.2 Solution of discretized sediment transport equations

Fully decoupled model

Like the 1-D sediment transport model in Section 5.3, the depth-averaged 2-D sediment
transport model can be solved in a decoupled or coupled form. In the decoupled model,
the bed-material gradation in Eq. (6.56) is treated explicitly:

Cn+1
∗k,P = pn

bk,PC∗n+1
k,P , qn+1

b∗k,P = pn
bk,Pq∗n+1

bk,P (6.71)

The decoupled sediment transport model is usually decoupled from the flow model,
thus yielding a fully decoupled procedure for flow and sediment calculations. The
calculations in the fully decoupled model are executed as follows:

(1) Calculate the flow field;
(2) Calculate Cn+1

∗k and qn+1
b∗k using Eq. (6.71);

(3) Calculate Cn+1
k using Eq. (6.65);

(4) Calculate qn+1
bk using Eq. (6.66);

(5) Determine �zbk and �zb using Eqs. (6.67) and (6.68);
(6) Calculate pn+1

bk using Eq. (6.70);
(7) Update the bed topography using Eq. (6.69) and the bed-material gradations in

the subsurface layers;
(8) Return to step (1) for the next time step until a specified time is reached.

Semi-coupled model

In the semi-coupled model, the flow and sediment calculations are decoupled, but the
three components of the sediment model − sediment transport, bed change, and bed
material sorting − are coupled. To couple the sediment calculations, the bed-material
gradation in Eq. (6.56) is treated implicitly:

Cn+1
∗k,P = pn+1

bk,PC∗n+1
k,P , qn+1

b∗k,P = pn+1
bk,Pq∗n+1

bk,P (6.72)

The discretized suspended-load transport equation (6.65), bed-load transport
equation (6.66), bed change equations (6.67) and (6.68), bed material sorting equation
(6.70), and sediment transport capacity equation (6.72) need to be solved simultane-
ously through iteration. One iteration procedure is to set the bed-material gradation
pn

bk,P as the initial estimate for pn+1
bk,P, and solve the above discretized equations, in the

sequence Eqs. (6.72), (6.65), (6.66), (6.67), (6.68), and (6.70), to obtain a new esti-
mate for pn+1

bk,P. This is repeated until a convergent solution is reached. This iteration
procedure is simple, but the level of coupling among sediment transport, bed change,
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and bed material sorting is relatively low. Therefore, Wu (2004) suggested another
iteration procedure, which is described below.

Substituting Eqs. (6.70) and (6.72) into Eq. (6.67) yields

�zbk,P =
αωsk�tδn+1

m,P Cn+1
k,P +�tδn+1

m,P qn+1
bk,P/L

(1 − p′
m)δ

n+1
m,P + αωsk�tC∗n+1

k,P +�tq∗n+1
bk,P /L

−
[αωsk�tC∗n+1

k,P +�tq∗n+1
bk,P /L][δnm,Ppn

bk,P + (δn+1
m,P − δnm,P)p

∗n
bk,P]

(1 − p′
m)δ

n+1
m,P + αωsk�tC∗n+1

k,P +�tq∗n+1
bk,P /L

+
[αωsk�tC∗n+1

k,P +�tq∗n+1
bk,P /L]p∗n

bk,P

(1 − p′
m)δ

n+1
m,P + αωsk�tC∗n+1

k,P +�tq∗n+1
bk,P /L

�zb,P (6.73)

Summing Eq. (6.73) over all size classes and using Eq. (6.68) yields the following
equation for the total change in bed elevation:

�zb,P =
⎧⎨⎩

N∑
k=1

αωsk�tδn+1
m,P Cn+1

k,P +�tδn+1
m,P qn+1

bk,P/L

(1 − p′
m)δ

n+1
m,P + αωsk�tC∗n+1

k,P +�tq∗n+1
bk,P /L

−
N∑

k=1

[αωsk�tC∗n+1
k,P +�tq∗n+1

bk,P /L][δnm,Ppn
bk,P + (δn+1

m,P − δnm,P)p
∗n
bk,P]

(1 − p′
m)δ

n+1
m,P + αωsk�tC∗n+1

k,P +�tq∗n+1
bk,P /L

⎫⎬⎭
/

⎧⎨⎩1 −
N∑

k=1

[αωsk�tC∗n+1
k,P +�tq∗n+1

bk,P /L]p∗n
bk,P

(1 − p′
m)δ

n+1
m,P + αωsk�tC∗n+1

k,P +�tq∗n+1
bk,P /L

⎫⎬⎭ (6.74)

Thus, the semi-coupled flow and sediment calculations using the suggested iteration
procedure are executed as follows:

(1) Calculate the flow field;
(2) Determine �zb,P using Eq. (6.74) with estimated Cn+1

k and qn+1
bk ;

(3) Compute �zbk,P using Eq. (6.73);
(4) Calculate pn+1

bk using Eq. (6.70);
(5) Determine Cn+1

∗k and qn+1
b∗k using Eq. (6.72);

(6) Calculate Cn+1
k using Eq. (6.65);

(7) Calculate qn+1
bk using Eq. (6.66);

(8) Use the calculated Cn+1
k and qn+1

bk as new estimates and repeat steps (2)–(7) until
the convergent solution is obtained;

(9) Update the bed topography using Eq. (6.69) and the bed-material gradations in
the subsurface layers;

(10) Return to step (1) for the next time step until a specified time is reached.

Eq. (6.74) constitutes a tighter correlation among the unknown sediment variables.
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Therefore, this iteration procedure forms a higher level of coupling for the sediment
model.

Fully coupled model

The depth-averaged 2-D equations of flow, sediment transport, bed change, and bed
material sorting can be solved in an iteratively or fully coupled form, as described in
Section 5.4 on 1-D models. For non-uniform sediment transport, an iteratively coupled
model can be implemented more conveniently than a fully coupled model. The flow
model in Section 6.1 and the sediment model in this section can be designed as flow and
sediment loops, and then a simultaneous solution of flow and sediment transport can
be obtained using the iteration procedure introduced in Section 5.4.3. Such iteratively
coupled 2-D models have been reported by Spasojevic and Holly (1990) and Kassem
and Chaudhry (1998).

More generally, a fully coupled flow and sediment transport model should con-
sider the effects of sediment transport and bed change on the flow field, using
Eqs. (2.119)–(2.121) as the governing equations of flow. However, this type of fully
coupled 2-D model has rarely been applied in practice.

6.2.3.3 Implementation of sediment boundary conditions

The finite difference method approximates boundary conditions using difference
operators. Generally, for Dirichlet boundary conditions, the known values of the
suspended-load concentration and bed-load transport rate are specified at the bound-
ary points and nothing further is necessary. For Neumann or mixed-type boundary
conditions, the gradients must be evaluated using difference schemes, such as the
one-sided schemes similar to (6.49) and (6.50) or higher-order approximations. The
algebraic equations resulting from the discretization of boundary conditions are solved
together with the discretized governing equations at the internal points.

As described in Section 6.1.3.1, the finite volume method usually plugs the sediment
boundary conditions into the transport equations integrated over the control volumes
near boundaries in order to insure mass balance. The details are given below.

Near a rigid sidewall, when the suspended-load and bed-load transport equations are
integrated over the control volume shown in Fig. 6.2, as demonstrated in Eq. (4.130),
the convection and diffusion fluxes at the wall face should be zero, thus yielding a zero
coefficient aφS in the discretized equations.

At the inlet, the suspended-load and bed-load fluxes can be specified at the inflow cell
face, according to Eq. (6.63). When the relevant governing equation is integrated over
the control volume near the inlet shown in Fig. 6.3(a), the specified flux is arranged in
the source term and the coefficient aφW is set to zero. Note that the specified suspended-
load flux is equal to the sum of the convection and diffusion fluxes, and the specified
bed-load flux is equal to the convection flux at the inflow face (w).

At the outlet, the suspended-load concentration and bed-load transport rate can be
extrapolated or copied from the values at adjacent internal points. When the relevant
governing equation is integrated over the control volume shown in Fig. 6.3(b), the
convection terms are usually discretized using an upwind scheme, and the suspended-
load diffusion flux is zero. Thus, the coefficient aφE may actually be zero.
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The bed changes at the inlet and outlet can be calculated using Eq. (6.67). The bed
change along a vertical rigid wall may be extrapolated from the values at adjacent
internal points. The bed change at the water edge near a sloped bank or island may be
set to zero, because the flow depth is almost zero there; however, the bank or island
may deform (collapse) due to the effect of gravity.

Bed-material gradations at boundary points can be calculated using Eq. (6.70) in
analogy to those at internal points.

6.2.4 Examples

Two examples are cited here to demonstrate the verification and application of the
depth-averaged 2-D model.

Case 1. Erosion in a basin due to clear water inf low

The erosion process in a rectangular basin due to clear water inflow from a narrow
channel experimentally investigated by Thuc (1991) was numerically simulated by
Minh Duc et al. (2004) and Wu (2004). The basin was 5 m long and 4 m wide, con-
nected with a 0.2 m wide and 2 m long channel in the upstream and a 1.2 m wide
and 1.0 m long channel in the downstream. The basin bed was covered with a 0.16 m
thick layer of fine sand. The sand had a settling velocity of 0.013 m · s−1. The inflow
velocity in the upstream channel was 0.6 m · s−1, and the water depth at the outlet was
0.15 m during the experiment. The two simulations used similar flow models based
on the finite volume method, with slight difference in pressure correction as described
in Section 6.1.3.1. Both applied the non-equilibrium transport model of bed load and
suspended load described in Section 6.2.1; however, Minh Duc et al. used the sediment
exchange model (2.128), the saltation step length for bed-load adaptation length, and
the van Rijn formulas for sediment transport capacity, while Wu used the sediment
exchange model (2.132), the sand dune length for bed-load adaptation length, and
the Wu et al. (2000b) formulas for sediment transport capacity. The computational
meshes in the basin consisted of 62 × 62 nodes, and the grid spacing around the basin
centerline was refined in each mesh. The time step for sediment calculation was 5 sec

Figure 6.5 Simulated flow field at 4 hr (Wu, 2004).
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and 1 min in the simulations of Minh Duc et al. and Wu, respectively. The Manning
roughness coefficient in the basin was given a value of 0.022 in both simulations.

Fig. 6.5 shows the flow pattern in the basin after 4 hr simulated by Wu. One can
see that two symmetric recirculation eddies appeared. Fig. 6.6 shows the bed elevation
change patterns in the inflow region after 4 hr calculated by two models, and Fig. 6.7
shows the measured and simulated bed elevation changes along the longitudinal cen-
terline. Erosion occurred due to the inflow of clear water, and the eroded sediment
moved downstream and deposited, forming a mound. Wu’s simulation predicted faster
erosion and wider deposition than that of Minh Duc et al. Both simulated maximum
erosion depths are in fairly good agreement with the measured data.

Figure 6.6 Contours of bed elevation change (m) at 4 hr: (a) simulated by Minh Duc et al. (2004) and
(b) simulated by Wu (2004).

Figure 6.7 Measured and simulated bed elevation changes at 4 hr along basin centerline.
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Case 2. Sediment transport in the lower Yellow River

Wu et al. (2006) simulated the flow and sediment transport in the lower Yellow River
during the 1982 flood using the flow model in Section 6.1.3.1 and the semi-coupled
sediment model in Section 6.2.3. The computational domain was the 103 km long
reach between the Huayuankou and Jiahetan gauge stations. The Huayuankou sta-
tion, located 259 km downstream of the Sanmenxia Hydroproject, was set as the inlet.
The computational mesh is shown in Fig. 6.8, and consists of 201 and 21 points in the
longitudinal and transverse directions, respectively. The measured time series of flow
discharge and sediment concentration at Huayuankou, shown in Fig. 6.9(a), were
used as inflow boundary conditions, while the measured time series of water stage
at Jiahetan was used as the outlet boundary condition. The peak flow discharge of
this flood at Huayuankou was 15,300 m3s−1, while the peak sediment concentration
was 66.6 kg · m−3. The sediment was non-uniform, with sizes ranging from 0.002 to
0.18 mm. Five size classes were used to represent the non-uniform sediment mixture.
The Manning roughness coefficient was between 0.009 and 0.015, with bigger values
for the rising stage and smaller values for the falling stage of the flood. The compu-
tational period was from July 30 to August 11, 1982. The time step was 15 minutes.
The adaptation coefficient α was 0.25. The effect of sediment concentration was
considered by modifying the settling velocity of sediment particles according to the
Richardson-Zaki formula (3.19).

Fig. 6.9(b) shows the measured and simulated flow discharges and sediment con-
centrations at Jiahetan (outlet). The simulated results generally agree well with the

Figure 6.8 Computational mesh between Huayuankou and Jiahetan.

Figure 6.9 Flow discharges and sediment concentrations at (a) Huayuankou (inlet) and
(b) Jiahetan (outlet) (Wu et al., 2006).
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measured data. Because of deposition, the simulated peak sediment concentration at
Jiahetan corresponding to the peak flow decreased to 45.57 kg ·m−3, compared to the
measured value of 40.7 kg ·m−3. The time delay between peak flow and sediment con-
centration was 34.5 and 37.5 hr at the inlet and outlet, respectively, and exhibited a
trend of increasing downstream. Fig. 6.10 shows the simulated flow field correspond-
ing to a flow discharge of 4,000 m3s−1 at Huayuankou. The vectors represent the flow
direction and magnitude, while the contours denote the flow depth. It can be seen that
the main flow meanders in the river and interacts with the flow in floodplains. Fig. 6.11
compares the measured and simulated maximum water levels in various stations during
this flood, showing a generally good agreement.

Figure 6.10 Simulated flow field at flow discharge of 4,000 m3s−1 at Huayuankou (Wu et al., 2006).

Figure 6.11 Measured and simulated maximum water levels.
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6.3 DEPTH-AVERAGED 2-D SIMULATION OF FLOW
AND SEDIMENT TRANSPORT IN CURVED
AND MEANDERING CHANNELS

As described in Section 2.4.1, in the derivation of the depth-integrated momentum
and suspended-load transport equations, dispersion terms arise from the split of
three-dimensional quantities into their depth-averaged values and the remainders. For
nearly straight channels, the dispersion terms can be combined with the turbulent
stress/flux terms. However, for curved channels, the dispersion terms are of great
significance, due to the presence of helical flow (Flokstra, 1977). Thus, among the
depth-averaged flow and sediment transport equations introduced in Sections 6.1 and
6.2, the depth-integrated momentum equations (6.2) and (6.3) and suspended-load
transport equation (6.53) are replaced by

∂(hUx)

∂t
+ ∂(hU2

x)

∂x
+ ∂(hUyUx)

∂y
= −gh

∂zs

∂x
+ 1
ρ

∂[h(Txx + Dxx)]
∂x

+ 1
ρ

∂[h(Txy + Dxy)]
∂y

− τbx

ρ
(6.75)
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ρ
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[
h
(
εs
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+ Dsxk

)]
+ ∂

∂y

[
h
(
εs
∂Ck
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+ Dsyk

)]
+ αωsk(C∗k − Ck) (6.77)

where Dij and Dsik(i, j = x, y) are the dispersion momentum transports and sediment
fluxes defined in Eqs. (2.82), (2.83), and (2.86). Note that the wind driving and
Coriolis forces are omitted in Eqs. (6.75) and (6.76), for simplicity.

The helical flow also affects the bed-load transport. Introduced in this section are
the methods used to evaluate the dispersion fluxes in Eqs. (6.75)–(6.77) and account
for the effect of helical flow on the bed load.

6.3.1 Flow properties in curved channels

As shown in Fig. 6.12, the major secondary flow observed in the cross-section of
a channel bend is the helical flow, which exists due to the difference between the
centrifugal forces in the upper and lower flow layers, and points to the outer bank
in the upper layer and to the inner bank in the lower layer. Other secondary flow
cells may also exist. For example, one often appears in the upper corner along the
outer bank due to anisotropic turbulence, and more may exist in trapezoidal and
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Figure 6.12 (a) Coordinate systems and (b) secondary flows in a curved channel.

compound cross-sections; however, they are usually much smaller in size and less
important than the helical flow in a channel bend. Therefore, only the helical flow is
considered here.

Though the main flow is affected by the aforementioned secondary flows, the vertical
distribution of the streamwise flow velocity in curved channels can still be assumed
to follow the logarithmic law (Rozovskii, 1957) or the power law (Zimmermann and
Kennedy, 1978). A function for the vertical distribution of the helical flow velocity
was derived by Rozovskii (1957), but its original formulation is complex and incon-
venient to use. If the Chezy coefficient is larger than 50, the Rozovskii distribution
can be simplified to a linear distribution, which is used here to evaluate the transverse
velocity (Odgaard, 1986):

un = Un + bsI
(
2

z
h

− 1
)

(6.78)

where Un is the depth-averaged cross-stream velocity, un is the local cross-stream
velocity at height z, bs is a coefficient with a value of about 6.0, and I is the intensity
of helical flow. Note that for the sake of simplicity, z is defined here as the vertical
coordinate above the channel bed rather than an arbitrary datum.

Theoretically I = Ush/r at the channel centerline (Rozovskii, 1957; de Vriend,
1977), in which r is the local radius of curvature. De Vriend (1981a) proposed an
equation for approximately determining the helical flow intensity I in the entire bend:
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)
− h
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(
I − βIhUs

r

)
(6.79)

where DI is a coefficient representing the diffusion and dispersion of I, Ta is the
adaptation time of I, and βI is a coefficient that is 1.0 in de Vriend’s original equation
but usually ranges from 1.0 to 2.0.

Eq. (6.79) needs to be solved numerically. This means that one partial differen-
tial equation is added to the set of shallow water equations, and the computational
effort is increased. To avoid this, by neglecting the time-derivative term, convection
terms, longitudinal diffusion term, and other high-order terms, Wu and Wang (2004a)
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simplified Eq. (6.79) to an ordinary differential equation for the helical flow intensity
in the developed regions:

DI

B2

d2I
dη2 = 1

Ta

(
I − βIhUs

r

)
(6.80)

where η is the dimensionless transverse coordinate (y′/B), with η = 0 at the inner bank
and 1 at the outer bank; and B is the channel width at the water surface.

By assuming constant DI, Ta, and source term in Eq. (6.80) and applying boundary
conditions I = 0 at η = 0 and η = 1, a solution for Eq. (6.80) was then derived as
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Eq. (6.81) shows that the cross-stream profile of I is determined by parameters
B, Ta, DI, and βI. Among these parameters, the channel width B is predefined. DI can
be determined using DI = αdU∗h, in which αd is an empirical coefficient. If the radius
of curvature at the channel centerline rc and the average flow velocity U are used to
represent the adaptation length and velocity scales of I, respectively, it can be assumed
that the adaptation time scale Ta = αarc/U. Here, αa is a dimensionless coefficient.
Therefore, the product of Ta and DI can be determined by

TaDI = λtrcn
√

gh5/6 (6.82)

where λt is the product of αa and αd.
Therefore, the helical flow intensity profile along the cross-section is determined

by two parameters: βI and λt. Usually, βI determines the magnitude of I, while λt
determines its lateral distribution. According to calibrations using many laboratory
and field measurements, βI is in the range of 1.0–2.0, and λt has a value of about 3.0.

Fig. 6.13 compares the secondary flow intensity calculated using Eq. (6.81) and
that measured by de Vriend (1981b) in an 180◦ bend with a rectangular cross-section

Figure 6.13 Transverse distribution of secondary flow intensity in de Vriend’s bend
(Wu and Wang, 2004a).
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and a rough bed. The channel width was 1.7 m, and the radius of curvature at the
centerline was 4.25 m. The flow discharge was 0.19 m3s−1, and the overall average
flow depth was about 0.2 m. The Manning roughness coefficient was 0.024. The
measured secondary flow intensity was determined by least-square fitting of Eq. (6.78)
with the secondary flow velocities measured at cross-section 180◦. The helical flow
intensity profile calculated using Eq. (6.81) with λt = 3.0 and βI = 1.5 matches the
general trend of the measurement data. Errors exist in regions close to the sidewalls,
due to the influence of the walls and the possible appearance of the other secondary
flow at the top corner close to the outer wall.

6.3.2 Dispersion of f low momentum

Jin and Steffler (1993) derived differential equations for dispersion momentum
transports from the 3-D moment-of-momentum equations. However, their equations
are complex and require additional computational effort. The simpler approach is
to use algebraic expressions (e.g., Flokstra, 1977). Wu and Wang (2004a) derived a
general algebraic formulation for the dispersion transports, which is introduced below.

By using the power law (3.27) for the streamwise flow velocity and the linear model
(6.78) for the helical flow velocity, the x- and y-components of local velocity in a
curved channel are evaluated as
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where αii are the coefficients of transformation between the (x, y) and (s, n) coordinate
systems shown in Fig. 6.12(a); Us is the depth-averaged velocity in the streamwise
direction; us is the local streamwise velocity at height z; and m is usually about 7.

Substituting Eqs. (6.83) and (6.84) into the definition expressions of dispersion
transports in Eqs. (2.82) and (2.83) leads to
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Note that the dispersion transports can also be derived using the logarithmic law
and another helical flow model. The dispersion terms can be treated as additional
source terms in the momentum equations (6.75) and (6.76).

Physically, the helical flow transfers the upper layer of water, which has stronger
momentum, toward the outer bank and the lower layer of water, which has weaker
momentum, toward the inner bank, and thus shifts the main flow to the outer bank
in the bend. If this effect is ignored, the main flow in a curved channel may not be
simulated correctly. Fig. 6.14 shows the simulated flow patterns in a 270◦ bend, and
Fig. 6.15 compares the measured and simulated velocities at six cross-sections. The
flow was measured by Steffler (1984) in a flume with a flat bed and a rectangular
cross-section. The flume width was 1.07 m, the radius of curvature at the centerline
was 3.66 m, and the bed slope was 0.00083. The Manning n was 0.0125. The inflow
discharge was 0.0235 m3s−1, and the water depth at the outlet was 0.061 m. The
simulations were conducted with and without consideration for the dispersion effects
in the depth-averaged momentum equations (Wu and Wang, 2004a). The parameters
βI and λt were evaluated as 2.0 and 3.0, respectively, using the measurement data of
secondary flow velocity. It can be seen that when the helical flow effect is not taken
into account, the calculated main flow is along the inner wall over the entire bend;
and when the helical flow effect is considered, the main flow shifts from the inner wall
to the outer wall and the accuracy of the simulated flow velocities is much improved.

Figure 6.14 Calculated velocity contours without and with helical flow effect in Steffler’s 270◦ bend
(Wu and Wang, 2004a).
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Figure 6.15 Measured and calculated velocities at cross-sections in Steffler’s bend
(Wu and Wang, 2004a).

6.3.3 Dispersion of suspended load

The distribution of suspended-load concentration along the flow depth can be writ-
ten as

c = Cf (z) (6.88)

where c is the local suspended-load concentration, C is the depth-averaged suspended-
load concentration, and f (z) is a distribution function. By using UshC = ∫ h

δ
uscdz

with the Lane-Kalinske distribution for the suspended-load concentration c and the
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1/me−15ωsζ/U∗dζ . Here, δ is the thickness of the bed-load layer.
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Using relations m+1
m
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f (z)dz ≈ h in Eq. (6. 89) leads to
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the dispersion flux in the x-direction:
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Similarly, the dispersion flux in the y-direction can be derived as

Dsy = UyC − 1
h

∫ h

δ

uycdz ≈ −α22bsIC
1
h

∫ h

δ

(
2

z
h

− 1
)

f (z)dz (6.91)

Using the Lane-Kalinske distribution, the integral in Eqs. (6.90) and (6.91) is
evaluated as∫ h

δ

(
2

z
h

− 1
)

f (z)dz = − m
m + 1

�−1U∗h
15ωs

[
1 + e−15ωs/U∗ − 2U∗

15ωs
(1 − e−15ωs/U∗)

]
(6.92)

As alternatives, one may also use the Rouse distribution for the suspended load and
the logarithmic law for the streamwise flow velocity in the above derivation. This is
left to the interested reader.

6.3.4 Bed-load transport in curved channels

The bed-load movement direction deviates from the main flow direction due to the
helical flow effect. Engelund (1974), Zimmermann and Kennedy (1978), and Odgaard
(1986) proposed empirical formulas for evaluating this deviation. The Engelund
formula is

tan δb = 7
h
r

(6.93)

where δb is the angle between the bed-load movement and main flow directions.
In Odgaard’s method, the direction of bed-load movement is calculated by

tan δbs = uby

ubx
(6.94)

which is equivalent to

αbx = ubx

/√
u2

bx + u2
by , αby = uby

/√
u2

bx + u2
by (6.95)

where ubx and uby are the x- and y-components of bed-load velocity or the flow velocity
near the bed, which can be converted from ubs and ubn determined using Eqs. (6.83)
and (6.84).

The effect of gravity on bed-load transport in a sloped bend is also important.
Kikkawa et al. (1976) derived analytically the lateral bed-load transport affected by
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both helical flow and gravity. Parker (1984) simplified the result of Kikkawa et al. as

qbn

qbs
= tan δb + 1 + αpµc

λsµc

√
�c

�
tan ϕ (6.96)

where qbs and qbn are the bed-load transport rates along the longitudinal and transverse
directions, respectively; ϕ is the lateral inclination of the bed; � is the Shields number;
�c is the critical Shields number = 0.04; µc is the dynamic coefficient of Coulomb
friction; αp is the ratio of lift coefficient to drag coefficient; and λs is a sheltering
coefficient. Kikkawa et al. (1976) evaluated µc, αp, and λs as 0.43, 0.85, and 0.59,
respectively.

Struiksma et al. (1985) and Sekine and Parker (1992) also proposed a similar
relation as

qbn

qbs
= tan δb − βb

∂zb

∂n
(6.97)

where βb is a coefficient. Struiksma et al. (1985) suggested βb = 1/[χ0(U
′
∗)2] with χ0

varying between 1 and 2, while Sekine and Parker (1992) gave βb = 0.75(�c/�)
1/4.

By applying Eq. (3.132) to the x and y directions, Wu (2004) derived a method that
replaces the bed-load transport direction cosines αbx and αby by αbx,e and αby,e:

αbx,e

αby,e
= τ

′
bαbx + λ0τcsin ϕx/sinφr

τ ′
bαby + λ0τcsin ϕy/sinφr

(6.98)

where ϕx and ϕy are the bed angles with the horizontal along x- and y-directions (with
positive values denoting downslope beds), respectively. Eq. (6.98) can also be written
as Eq. (6.97) with βb = λ0(τc/τ

′
b)/ sinφr. Note that τ ′

b in Eq. (6.98) may be replaced
by the total bed shear stress τb if the bed-load transport capacity is determined by
formulas that consider τb as the tractive force for bed-load transport.

The dispersion fluxes in the suspended-load transport equation and the adjustment
of the bed-load transport angle tend to move sediment from the outer bank toward
the inner bank. Therefore, with such enhancements, the depth-averaged 2-D model
can reasonably predict erosion along the outer bank and deposition along the inner
bank. This is demonstrated in the following example.

Wu and Wang (2004a) simulated the sediment transport and morphological change
in an 180◦ bend under unsteady flow conditions, which were experimentally inves-
tigated by Yen and Lee (1995). The width of the flume was 1 m, the radius of
curvature at the centerline was 4 m, and the initial bed slope was 0.002. The flow
hydrograph was triangular. The base flow discharge was 0.02 m3s−1, and the base
flow depth, ho, was 0.0544 m. In the simulated case (Run 4), the peak flow dis-
charge was 0.053 m3s−1, and the duration was 240 min. The peak of the hydrograph
was set at the first third of its duration. The sediment was non-uniform and had a
median diameter of 1.0 mm and a standard deviation of 2.5. The Manning rough-
ness coefficient was given as d1/6

50 /20 in the simulation, with d50 being the median



2-D numerical models 277

size of the bed material in the mixing layer. The two parameters in the helical flow
intensity model (6.81) were set as λt = 3.0 and βs = 1.0. The computational mesh
in the bend reach consisted of 91 and 31 points in the longitudinal and transverse
directions, respectively. The time step was 1 min. Fig. 6.16 compares the measured
and simulated bed change contours in the bend, and Fig. 6.17 shows the lateral pro-
files of the bed changes at four cross-sections. The general patterns of the deeper
channel along the outer wall and the point bar along the inner wall are reproduced
well by the model. The calculated bed changes are in agreement with the measured
data. Without considering the helical flow effect, one cannot obtain such reasonable
results.

Figure 6.16 (a) Measured and (b) calculated bed change contours (�zb/h0) (Wu and Wang, 2004a).

Figure 6.17 Bed changes at cross-sections in Yen and Lee’s (1995) bend (Wu and Wang, 2004a).
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6.3.5 Channel meandering process

To simulate the channel meandering process, a depth-averaged 2-D model must be
capable of: (1) considering the helical flow effect in meandering channels; (2) sim-
ulating bank erosion; and (3) handling the moving boundary problem. Because the
channel meandering process is usually much slower than the sediment transport and
bed change processes, the aforementioned strategies of considering the helical flow
effect in curved channels with fixed banks can be applied in the simulation of flow
and sediment transport in meandering channels.

Erosion mechanisms differ for banks with cohesive and non-cohesive materials. For
a cohesive bank, the bank material fails in blocks. The bank erosion models described
in Section 5.3.6.1 for the 1-D simulation can be extended to the depth-averaged 2-D
simulation. Bank-toe erosion can be computed using the method of Arulanandan et al.
(1980), and mass failures can be calculated using the method of Osman and Thorne
(1988) or Simon et al. (2000). These are not repeated here.

For a non-cohesive bank, the bank material fails in particles. Once the bank slope
exceeds the repose angle, the bank particles will slide to the bank toe and form a new
slope with the repose angle. In the simulation of this sliding process, mass conservation
should be satisfied. The following algorithm is recommended for handling the non-
cohesive bank sliding process. It is also applicable to the sliding of a non-cohesive bed
with a steep slope.

Consider a cluster comprising of the cell centered by point P and eight adjacent
cells, shown in Fig. 6.18(a). If the slope between point P and one of the eight adjacent
points exceeds the repose angle, the bank particles will slide and form a new bank slope
with the repose angle between the two points. Fig. 6.18(b) shows the sliding process
between point P and an adjacent point denoted as i. This process can be described
mathematically by

(zbi +�zbi)− (zbP +�zbP)

�lPi
= ± tanφr (6.99)

where zbP and zbi are the bed elevations at points P and i; �zbP and �zbi are the
changes in bed elevations due to sliding; �lPi is the distance between points P and

Figure 6.18 Non-cohesive bank sliding model: (a) plan view; (b) side view.
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i; and φr is the repose angle. The positive sign on the right-hand side of Eq. (6.99)
is used in the case of downslope from point i to P, i.e., zbi > zbP + �lPi tanφr,
while the negative sign is used in the case of upslope from point i to P, i.e., zbi <

zbP −�lPi tanφr.
Suppose that I points out of the eight adjacent points exceed the sliding criterion.

Eq. (6.99) should be applied to each of these I points. These I points may be divided
into two groups according to whether they form downslopes or upslopes to point
P. Denote Iup as the number of points that form upslopes to point P. Mass balance
between cell P and these Iup cells reads

�zbP�AP +
Iup∑
i=1

�zbi�Ai = 0 (6.100)

where �AP and �Ai are the areas of the cells centered at points P and i, respectively.
The equation set consisting of Eq. (6.99) for all Iup points and the mass balance

equation (6.100) provides a unique solution for �zbi (i = 1, 2, . . . , Iup) and �zbP,
which can be derived as follows.

Eq. (6.99) is rearranged as

�zbi = �zbP + zbP − zbi −�lPi tanφr (6.101)

Inserting Eq. (6.101) into Eq. (6.100) yields

�zbP =
⎡⎣ Iup∑

i=1

�Ai(zbi − zbP +�lPi tanφr)

⎤⎦/⎛⎝�AP +
Iup∑
i=1

�Ai

⎞⎠ (6.102)

Once �zbP has been determined using Eq. (6.102), �zbi (i = 1, 2, . . . , Iup) can then
be obtained from Eq. (6.101).

In the same way, an equation similar to (6.100) can be obtained for mass balance
among the group of points that form downslopes to point P, and the solution for�zbi
and �zbP for this group can then be found.

The above algorithm should be performed by sweeping over the entire domain or
region of interest. Because one sweep may not get the solution for the entire domain,
it must be repeated until all slopes are gentler than the repose angle. Moreover, the
sweeping sequence should be alternated between the positive and negative x and y
directions.

Because of bank erosion, the wetted area varies with time during the channel mean-
dering process. The methods of handling drying and wetting processes described in
Section 6.1.4 can be used here. Either a fixed grid covering the entire area in which
the channel may migrate, or a moving grid that conforms to the migrating channel can
be used. Nagata et al. (2000) and Duan et al. (2001) adopted moving grids. In their
approaches, flow, sediment transport, bed change, and bank erosion are computed
on the old mesh at each time step. After the bank lines have been moved by erosion
and deposition, a new mesh conforming to the new bank lines is created, and the
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flow field and bed topography are interpolated from the old mesh to the new mesh.
Then the computations of flow, sediment transport, bed change, and bank erosion are
continued on the new mesh at the next time step.

Fig. 6.19 shows the channel bank migration process simulated by Duan et al. (2001)
using a depth-averaged 2-D model, which generally agrees with the experimental data
measured by Nagata et al. (2000). Fig. 6.20 shows a simulation example performed
by Duan et al., in which a slightly curved channel develops into a strongly meandering
channel. The results are plausible.

Figure 6.19 Simulated and measured channel migration processes (Duan et al., 2001).

Figure 6.20 Simulated channel meandering process (Duan et al., 2001).

6.4 WIDTH-AVERAGED 2-D MODEL OF FLOW
AND SEDIMENT TRANSPORT

6.4.1 Width-averaged 2-D hydrodynamic model

6.4.1.1 Governing equations

In the width-averaged 2-D model, the open-channel flows with low sediment concen-
tration are governed by Eqs. (2.95)–(2.97), which can be written as follows when the
dispersion momentum transports are combined with the turbulent stresses and “∼”,
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representing the width-averaged quantities, is omitted:

∂(bUx)

∂x
+ ∂(bUz)

∂z
= 0 (6.103)

∂(bUx)

∂t
+ ∂(bU2

x)

∂x
+ ∂(bUzUx)

∂z
= −b

1
ρ

∂p
∂x

+ 1
ρ

∂(bTxx)

∂x
+ 1
ρ

∂(bTxz)

∂z

− 1
ρ
(m1τx1 + m2τx2) (6.104)

∂(bUz)

∂t
+ ∂(bUxUz)

∂x
+ ∂(bU2

z )

∂z
= −bg − b

1
ρ

∂p
∂z

+ 1
ρ

∂(bTzx)

∂x
+ 1
ρ

∂(bTzz)

∂z

− 1
ρ
(m1τz1 + m2τz2) (6.105)

where x is the longitudinal coordinate; z is the vertical coordinate above a datum; Ux
and Uz are the width-averaged flow velocities in the x- and z-directions, respectively;
p is the width-averaged pressure; and Tij (i, j = x, z) are the width-averaged stresses:

Txx = 2ρ(ν + νt)∂Ux

∂x
− 2

3
ρk

Txz = Tzx = ρ(ν + νt)
(
∂Ux

∂z
+ ∂Uz

∂x

)
(6.106)

Tzz = 2ρ(ν + νt)∂Uz

∂z
− 2

3
ρk

where the eddy viscosity νt can be determined using Prandtl’s mixing length model
(2.48), the parabolic model (2.49), or Eq. (2.54) in the linear k-ε turbulence models.
In the width-averaged 2-D k-ε turbulence models, the turbulent energy k and its
dissipation rate ε are determined by

∂k
∂t

+ Ux
∂k
∂x

+ Uz
∂k
∂z

= ∂

∂x

(
νt

σk

∂k
∂x

)
+ ∂

∂z

(
νt

σk

∂k
∂z

)
+ Pk + Pkl − ε (6.107)

∂ε

∂t
+ Ux

∂ε

∂x
+ Uz

∂ε

∂z
= ∂

∂x

(
νt

σε

∂ε

∂x

)
+ ∂

∂z

(
νt

σε

∂ε

∂z

)
+ cε1

ε

k
(Pk + cεlPkl)− cε2

ε2

k

(6.108)

where Pk is the production of turbulence due to shear, defined as Pk = νt[2(∂Ux/∂x)2+
2(∂Uz/∂z)2 + (∂Ux/∂z + ∂Uz/∂x)2]; Pkl accounts for the generation of turbulence due
to bank shear, modeled by Pkl = ckl[(m1τx1 +m2τx2)Ux + (m1τz1 +m2τz2)Uz]/ρ; and
cε1, cε2, ckl, cεl, σk, and σε are coefficients. The values of cε1, cε2, σk, and σε are listed
in Table 2.3, while ckl and cεl are about 1.0 and 1.33, respectively.

If the flow depth is very small in comparison with the flow width, the bank shear
stresses τxi and τzi are negligible; otherwise, they should be approximated by friction
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formulas. In general, the bank shear stresses are determined by

τxl = ρcfwUx

√
U2

x + U2
z , τzl = ρcfwUz

√
U2

x + U2
z (l = 1, 2) (6.109)

where cfw is the friction coefficient.
If Uz � Ux, which is valid for gradually varied flows, the components of bank shear

stresses in the vertical direction are usually ignored, while the longitudinal components
can be related to the total friction force by using Einstein’s division of hydraulic radius
(Wu, 1992):

τx = ρg

 

U |  U |
C2

h

χ

/[(
nb

nw

)3/2

χb + χw

]
(6.110)

where
 

U is the velocity averaged over the cross-section; χb, χw, and χ are the wetted
perimeters of the bed, banks, and entire cross-section, respectively; and nb and nw are
the Manning roughness coefficients for the bed and banks, respectively.

In the case of B = 1 and without bank shear stresses, Eqs. (6.103)–(6.105) reduce
to the idealized vertical 2-D model equations. Because the width-averaged 2-D model
considers the variations of channel width in the longitudinal and vertical directions,
it is more often used in practice than the idealized vertical 2-D model. On the other
hand, the width-averaged 2-D model is an extension of the idealized vertical 2-D
model; therefore, many numerical techniques developed for the idealized vertical 2-D
model can be applied here.

Note that if the lateral expansion or contraction of channel width is too large (larger
than about 7◦), the flow may detach from the two side boundaries and the width-
averaged 2-D model may not be applicable. However, if the side separation zones are
excluded, the width-averaged flow model can still be approximately applied in the
main flow regions.

6.4.1.2 Boundary conditions

At the water surface, the kinematic condition is applied:

∂zs

∂t
+ Uhx

∂zs

∂x
= Uhz (6.111)

where Uhx and Uhz are the x- and z-components of velocity at the water surface.
In the presence of wind, the wind shear force results in a gradient of flow velocity

at the water surface:

∂Us

∂n

∣∣∣∣
z = zs

= τs

ρνt
(6.112)

where Us is the velocity in the tangential direction of water surface, n is the coordinate
along the direction normal to the water surface, and τs is the streamwise component
of wind shear stress.
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At the channel bottom, the wall-function approach is applied. Its implementation in
the finite volume method has been described in Section 6.1.2. In the finite difference
model, Wu (1992) used the logarithmic law at the bottom point P:

Us, P = U∗
κ

ln(Ez+
P ) (6.113)

where E is the roughness parameter, defined in Eq. (6.13); U∗ is the bed shear velocity,

related to the cross-section-averaged velocity
 

U by U∗ = √
g
 

U /Ch; and z+
P = U∗z′

P/ν,
with z′

P being the height above the bed.
At the outlet, a time series of water stage, a stage-discharge rating curve, or a non-

reflective wave condition is applied. The Ux-velocity at the outlet points is usually
extrapolated or copied from adjacent internal points. Vasiliev (2002) suggested that
the vertical velocity component changes linearly from Uz = Ux∂zb/∂x at the bottom
to Uz = ∂zs/∂t at the surface:

Uz = ∂zs

∂t
z − zb

h
+ Ux

∂zb

∂x
zs − z

h
(6.114)

6.4.1.3 Numerical solutions

Hydrostatic pressure model

For gradually varied open-channel flows, the hydrostatic pressure assumption is often
adopted (Blumberg, 1977; Wu, 1992; Edinger et al., 1994; Li et al., 1994; Vasiliev,
2002). Under this assumption, the z-momentum equation (6.105) is simplified to
Eq. (2.64), and the x-momentum equation (6.104) takes the following form:

∂(bUx)

∂t
+ ∂(bU2

x)

∂x
+ ∂(bUzUx)

∂z
= − gb

∂zs

∂x
+ ∂

∂x

(
bνt
∂Ux

∂x

)
+ ∂

∂z

(
bνt
∂Ux

∂z

)
− 1
ρ
(m1τx1 + m2τx2) (6.115)

To overcome the difficulty of handling the free surface, the stretching coordinate
transformation (4.91) is applied, under which Eqs. (6.103) and (6.115) are converted
to (Wu, 1992) (

b + ζ ∂b
∂ζ

)
∂h
∂τ

+ ∂(bhÛξ )
∂ξ

+ h
∂(bÛζ )
∂ζ

= 0 (6.116)
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+ Ûξ

∂(bUx)
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∂ζ
= −gb

∂zs

∂ξ
+ ∂
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∂Ux
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∂
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∂Ux
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)
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(6.117)
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where Ûξ = Ux, and Ûζ = H
h Uz − ζ

h

(
∂h
∂t + Ux

∂h
∂x

)
− H

h Ux
∂zb
∂x . Because only gradually

varied flows are considered here, several high-order terms related to ∂h/∂x and ∂zb/∂x
are neglected in Eq. (6.117) in order to simplify the problem.

Under the coordinate transformation (4.91), the computational domain is turned
to a fixed rectangle with a constant height of H, and the kinematic condition (6.111)
at the free surface is converted to Ûζ = 0. Therefore, many numerical methods may
be used to solve the transformed governing equations (6.116) and (6.117) in the (ξ , ζ )
coordinate system. These methods may be based on a staggered grid (Blumberg, 1977)
or non-staggered grid (Wu, 1992). The staggered grid is used here as an example.

As shown in Fig. 6.21, scalar quantities are defined at the cell centers, while veloc-
ities are arranged in a staggered pattern so that the vertical velocity is defined on
the top and bottom faces of each grid cell and the horizontal velocity is on the two
sides. The water level, which varies only longitudinally, is defined at the cell cen-
ter for each vertical line. On this staggered grid, the continuity equation (6.116) is
discretized as

(
bn+1

i, j + mn+1
i, j hn+1

i ζj

H

)
hn+1

i − hn
i

�τ
+

(
bhÛξ

)n+1

i+1/2, j
− (bhÛξ )

n+1
i−1/2, j

�ξ

+ hn+1
i

(bÛζ )
n+1
i, j+1/2 − (bÛζ )

n+1
i, j−1/2

�ζ
= 0 (6.118)

where m = ∂b/∂z.
Eq. (6.118) is actually used to determine the vertical velocity. To close the problem,

the flow depth needs to be calculated using the free-surface kinematic condition (6.111)
or the 1-D continuity equation. Both methods were compared by Wu (1992), and the
1-D continuity equation was found to be more robust.

Figure 6.21 Staggered grid in vertical 2-D model.
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Non-hydrostatic pressure model

The governing equations in the non-hydrostatic pressure model are Eqs. (6.103)–
(6.105). Some approaches used for solving the 2-D Navier-Stokes equations in
Section 4.4 can be applied here. For example, Karpik and Raithby (1990) proposed the
SIMPLED algorithm, which is a modification of the SIMPLE algorithm on the stag-
gered grid, to solve this set of equations. In analogy to the depth-averaged 2-D model,
the width-averaged 2-D model can also be solved using the SIMPLE(C) algorithms on
the non-staggered grid. The details are not presented here, because the formulations
in both 2-D models are similar.

The stream function and vorticity method can be extended to the width-averaged
2-D model by defining the stream function ψ corresponding to the continuity
equation (6.103) as

Ux = 1
b
∂ψ

∂z
, Uz = −1

b
∂ψ

∂x
(6.119)

and the vorticity as

� = ∂Uz

∂x
− ∂Ux

∂z
(6.120)

Therefore, the following equation for stream function is obtained by inserting
Eq. (6.119) into Eq. (6.120):

∂2ψ

∂x2 + ∂
2ψ

∂z2 − 1
b
∂b
∂x
∂ψ

∂x
− 1

b
∂b
∂z
∂ψ

∂z
= −b� (6.121)

Cross-differentiating Eqs. (6.104) and (6.105) with respect to z and x and
subtracting them yields the vorticity equation:

∂�
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+ ∂(Ux�)

∂x
+ ∂(Uz�)

∂z
= ∂

∂x

[
(ν + νt)∂�

∂x

]
+ ∂

∂z

[
(ν + νt)∂�

∂z

]
+ S�

(6.122)

where S� includes all the remaining terms.
Eqs. (6.121) and (6.122) constitute the governing equations of the width-averaged

2-D stream function and vorticity model. Unlike the depth-averaged 2-D model, the
width-averaged 2-D stream function and vorticity model is applicable to both steady
and unsteady flows.

A special task in the width-averaged 2-D model is handling the free surface. The
techniques introduced in Section 7.1 for the 3-D model can be used here.
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6.4.2 Width-averaged 2-D sediment transport model

In the case of low sediment concentration, applying the width-averaged 2-D transport
equation (2.99) to the non-uniform suspended load yields

∂(bCk)

∂t
+ ∂(bUxCk)

∂x
+ ∂(bUzCk)

∂z
− ∂(bωskCk)

∂z
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∂x

(
bE′

s,x
∂Ck

∂x

)
+ ∂

∂z

(
bE′

s,z
∂Ck

∂z

)
+ Sck (k = 1, 2, . . . , N) (6.123)

where Ck is the width-averaged concentration of the kth size class of suspended load;
and E′

s,x and E′
s,y are the effective diffusion (mixing) coefficients of sediment in the

longitudinal and vertical directions.
At the water surface, the net vertical sediment flux is zero. At the interface between

the bed-load and suspended-load layers, the deposition rate is Dbk = ωskCbk and the
entrainment rate Ebk is

Ebk = −E′
s, z
∂Ck

∂z

∣∣∣∣
z=zb+δ

= ωskCb∗k (6.124)

where Cb∗k is the equilibrium concentration at the interface (reference level) deter-
mined using one of the existing formulas introduced in Section 3.5.2.

In the width-averaged 2-D model, the bed-load transport is in fact a one-dimensional
process, which is determined by Eq. (5.28).

Extending Eq. (2.152) to the width-averaged 2-D model yields the bed change
equation:

(1 − p′
m)

(
∂Ab

∂t

)
k

= Bb(Dbk − Ebk)+ 1
L
(Qbk − Qb∗k) (6.125)

where Bb is the channel width at the interface between the bed-load and suspended-load
zones.

Bed material sorting is simulated using the same multiple-layer model used in the
1-D model. For example, the bed-material gradation of the mixing layer is determined
by Eq. (5.32).

For a well-posed solution to the above set of equations, the vertical distribution of
the suspended-load concentration and the bed-load transport rate for each size class
have to be specified at the inflow boundary, and the suspended-load concentration
gradient in the flow direction is given zero at the outflow boundary.

The width-averaged suspended-load transport equation (6.123) is a typical
convection-diffusion equation, which can easily be solved by applying the numeri-
cal methods introduced in Sections 4.2 and 4.3. The near-bed sediment exchange in
the width-averaged 2-D model is similar to that in the 3-D model. The method for
handling it is discussed in Section 7.3.

Note that the width-averaged 2-D flow and sediment transport models described
above have been applied by Blumberg (1977), Karpik and Raithby (1990), Wu (1992),
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Edinger et al. (1994), Li et al. (1994), Vasiliev (2002), and others in numerous studies.
Though the relevance of such 2-D models to engineering practice becomes less and less
important as 3-D models are more and more popular, knowing how to develop and
use them would help modelers and engineers with more choices. Interested readers
may find application examples in the relevant references.





Chapter 7

3-D numerical models

Flows in curved and braided channels and near in-stream structures usually exhibit
complex three-dimensional features that significantly affect sediment transport and
morphological evolution processes. Realistically simulating these complex near-field
phenomena must rely on 3-D models rather than 1-D or 2-D models. Introduced in
this chapter are 3-D modeling approaches for open-channel flows, sediment transport
in general situations, local scour near in-stream structures, and headcut migration.

7.1 FULL 3-D HYDRODYNAMIC MODEL

7.1.1 Governing equations

As described in Section 2.2.3, the influence of sediment transport on the flow field is
assumed to be negligible in the case of low sediment concentration. However, the bed
sediment affects the flow by forming bed roughness elements, such as particles, ripples,
and dunes. This will be accounted for through bed boundary conditions in the 3-D
model. Therefore, the flow field is determined by the Reynolds-averaged continuity
and Navier-Stokes equations (2.42) and (2.43), which are written in the Cartesian
coordinate system shown in Fig. 2.6 as follows:

∂ui

∂xi
= 0 (7.1)

∂ui

∂t
+ ∂(uiuj)

∂xj
= Fi − 1

ρ

∂p
∂xi

+ 1
ρ

∂τij

∂xj
(7.2)

where ui (i = 1, 2, 3) are the components of mean flow velocity; Fi are the components
of external forces, such as gravity and Coriolis force, per unit volume; p is the mean
pressure; and τij are the stresses, including both viscous and turbulent effects. If
Boussinesq’s eddy viscosity concept is adopted, the stresses are determined by

τij = ρ(ν + νt)
(
∂ui

∂xj
+ ∂uj

∂xi

)
− 2

3
ρkδij (7.3)

The eddy viscosity νt can be determined by the parabolic model, mixing length
model, or linear (standard, non-equilibrium, and RNG) k-ε turbulence models.
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The parabolic model uses Eq. (2.49). The 3-D mixing length model is

νt = l2m|S| (7.4)

where |S̄| = [(∂ui/∂xj + ∂uj/∂xi)∂ui/∂xj]1/2, and lm is the mixing length described in
Section 2.3.2.

In the linear k-ε turbulence models, the eddy viscosity is calculated by Eq. (2.54),
and the turbulent energy k and its dissipation rate ε are determined by Eqs. (2.55)
and (2.56). The turbulent stresses can also be determined using the nonlinear k-ε
turbulence model, algebraic Reynolds stress model, Reynolds stress model, etc. The
details and relevant references can be found in Section 2.3.

7.1.2 Boundary conditions

Water surface

In early developed full 3-D hydrodynamic models, the water surface is treated as a
rigid lid; thus, the computational domain is fixed and the problem is simplified. On
the rigid lid, the normal velocity must be set to zero, and the pressure is no longer
atmospheric. This rigid lid approach encounters difficulties in the case of long river
reach under unsteady flow conditions where the water surface varies in time and space.
Therefore, in several recently developed full 3-D models (e.g., Wu et al., 2000a; Jia
et al., 2001), the variation of water surface is simulated as part of the solution. At
the water surface, the pressure is given the atmospheric value, and the free-surface
kinematic condition (2.71) is applied.

The free surface approach is physically more reasonable than the rigid lid approach.
However, the free surface approach requires more computational effort because the
user must solve a movable boundary problem.

When wind shear appears, the wind driving force is determined using Eq. (6.5).
Note that the wind driving force is added as a source term in the depth-averaged 2-D
model, whereas it is treated as a boundary condition in the 3-D model. In analogy to
Eq. (6.112), a flow velocity gradient that forms a shear stress equating to the wind
driving force is applied near the water surface.

In the absence of wind shear, the net normal fluxes of horizontal momentum and
turbulent kinetic energy at the water surface are set to zero, and the dissipation rate
ε can be calculated using the relation given by Rodi (1993):

ε = k3/2

0.43h
(7.5)

River bed and banks

On the river bed, banks, and other solid boundaries, the wall-function approach
described in Section 6.1.2 is applied. In particular, the movable bed roughness is
quantified by the equivalent roughness height ks. For a stationary flat bed, ks is usually
set to the median diameter d50 of bed material, but in practice, higher values are also
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adopted, e.g., 3d90 by van Rijn (1984c). For a sand-wave bed, ks should be related
to the height of bed forms and can be determined using an empirical formula, such as
Eq. (3.58) proposed by van Rijn. However, the effects of large-scale bed forms, such
as point bars and even sand dunes, can be simulated using fine grids with a 3-D model.
This implies that ks should consider only the roughness elements that are somewhat
smaller than the grid spacing. In addition, the near-wall values of turbulent energy
k and dissipation rate ε are given by Eq. (6.15).

Inf low and outf low boundary conditions

Flow conditions at the inlet can be either the flow discharge or a detailed 3-D
distribution of flow velocity. For a given discharge at the inlet, the cross-stream distri-
bution of the depth-averaged velocity can be determined using Eq. (6.17), and then, the
vertical distribution of local flow velocity can be specified according to the logarithmic
or power law.

The inflow direction should also be specified, which essentially determines three
velocity components at each point of the inlet.

If the inlet is located in a nearly straight reach with simple geometry and far from
hydraulic structures, the turbulent energy and its dissipation rate can be determined
using the relations of Nezu and Nakagawa (1993):

kin = 4.78U2∗e−2z′/h, εin = E1
U3∗
h

(
z′

h

)−1/2

e−3z′/h (7.6)

where z′ is the vertical coordinate above the bed, and E1 is a coefficient related to the
Reynolds number. At moderate Reynolds numbers of 104 to 105, E1 is approximately
equal to 9.8.

The specification of outflow boundary conditions in the 3-D model is similar to
that in 1-D and 2-D models. If the flow is subcritical, the water level is required
at the outlet. The gradients of flow velocity, turbulent energy, and dissipation rate in
the streamwise direction can be set to zero at an outlet located in a reach with simple
geometry and far from hydraulic structures.

7.1.3 Numerical solutions

The 2-D MAC, projection, and SIMPLE algorithms described in Section 4.4 can be
easily extended to solve the full 3-D Navier-Stokes equations (7.1) and (7.2). However,
for open-channel flows, special care has to be taken in handling the free surface.
A number of techniques have been used to solve this moving boundary problem. They
may be grouped under two main categories: surface tracking and volume tracking
(Shyy et al., 1996). A surface tracking method usually adopts a moving (adaptive) grid
in which at least one grid line is along the free surface so that the surface shape is exactly
simulated. Examples of the surface tracking method are given in Sections 7.1.3.2 and
7.1.3.3. A volume tracking method usually uses a fixed grid and defines the shape and
location of the free surface through the volume of fluid at each grid cell. Examples
include the MAC, volume-of-fluid (VOF), and level set methods. The details on the
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level set method can be found in Osher and Sethian (1988), while the MAC and VOF
methods are introduced below.

7.1.3.1 MAC and VOF methods

The general 2-D MAC method of Harlow and Welch (1965) introduced in
Section 4.4.1 can be easily extended to the 3-D case. The numerical discretization
and calculation procedure are not repeated here. The technique of handling the free
surface, which is not included in Section 4.4.1, is described below.

The MAC method adopts a fixed, Eulerian grid, which covers the fluid (water) area
and surrounding void (air) area. The location of fluid within the grid is determined
by a set of marker particles that move with the fluid, as shown in Fig. 7.1. Grid cells
containing markers are considered occupied by fluid, while those without markers are
void. A free surface is defined to exist in any grid cell that contains markers and has at
least one neighboring grid cell that is void. Evolution of the free surface is calculated
by moving the markers with locally interpolated flow velocities. At the free surface,
the air pressure is assigned to all surface cells, and velocity components are assigned
on or immediately outside the surface to satisfy the conditions of incompressibility
and zero shear stress.

Figure 7.1 Computational grid in MAC method.

The MAC method can successfully handle the breakup and coalescence of fluid
masses. The reason is that the markers track fluid volumes rather than surfaces directly.
Surfaces are simply the boundaries of the volumes so that surfaces may appear, merge,
or disappear as volumes break apart or coalesce. However, the MAC method has been
used primarily for 2-D models because it requires considerable memory and CPU time
to accommodate the necessary number of marker particles. Typically, an average of
16 markers in each grid cell is needed to insure an accurate tracking of surfaces under-
going large deformations. In addition, this method is inefficient in regions involving
converging and diverging flows with stagnation points.

To avoid the disadvantages of the MAC method, Hirt and Nichols (1981) proposed
the VOF method, which also employs volume tracking. The VOF method adopts the
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MAC numerical discretization and solution procedure, but uses a continuous function,
the fluid volume fraction f , instead of discrete marker particles to identify the domain
of fluid (Fig. 7.2). The values of f are set to 1 and 0 for the cells with water and air,
respectively. The interfacial cells are then identified as those with fractional values
of f . The volume fraction f is advected with the local flow velocity and governed by
the following kinematic equation:

∂f
∂t

+ ux
∂f
∂x

+ uy
∂f
∂y

+ uz
∂f
∂z

= 0 (7.7)

Figure 7.2 Computational grid in VOF method.

The VOF method has the advantages of the MAC method, but uses less memory and
CPU time. It can also handle very complicated interfacial phenomena, such as droplet
and wave breaking. Furthermore, because this method uses a continuous function, it
does not suffer from the lack of divisibility that discrete markers exhibit.

However, the VOF method has a disadvantage in that it cannot precisely treat the
water surface at which the distribution of volume fraction f has sharp, step-function-
like features. A straightforward numerical approximation cannot be used to solve
Eq. (7.7) because numerical diffusion and dispersion errors may destroy this sharp dis-
tribution. Special care needs to be taken to recover the surface shape. Grid refinements
are sometimes needed along the water surface.

7.1.3.2 SIMPLE algorithm

Numerical discretization

Since the location of water surface is part of the solution and can in general also
change with time, a moving, curvilinear grid that adjusts to the changing free surface
is used. Eqs. (7.1), (7.2), (2.55), and (2.56) can be written as Eq. (4.152) in the moving,
curvilinear coordinate system, with φ standing for 1, ui, k, and ε depending on the
equation considered and ξm (m = 1, 2, 3) being the curvilinear coordinates.
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As discussed in Section 4.4.4, the non-staggered grid is more convenient than
the staggered grid in the 3-D model for flows in channels with complex geometry.
The SIMPLE algorithm on the non-staggered grid used by Peric (1985) and Majum-
dar et al. (1992) for general flows is herein applied to acquire the pressure-velocity
coupling in the solution of open-channel flows (Wu et al., 2000a). The 2-D version of
this SIMPLE algorithm on fixed grid has been described in Section 4.4.4, and its 3-D
extension on moving grid is described below.

The discretized equations are obtained by integrating (4.152) over the control
volume shown in Fig. 4.22. The resulting algebraic equations for velocities un+1

i,P (i = 1,
2, 3) are

un+1
i,P = 1

au
P

⎛⎝ ∑
l=W ,E,S,N,B,T

au
l un+1

i,l + Sui

⎞⎠+ D1
i (p

n+1
w − pn+1

e )

+ D2
i (p

n+1
s − pn+1

n )+ D3
i (p

n+1
b − pn+1

t ) (7.8)

where D1
i = ( Jα1

i �η�ζ)P/a
u
P, D2

i = ( Jα2
i �ξ�ζ)P/a

u
P, and D3

i = ( Jα3
i �ξ�η)P/a

u
P.

The pressure correction is defined in Eq. (4.191). In analogy to Eq. (4.190), the
velocity correction at cell center P in the 3-D case is:

un+1
i,P = u∗

i,P + αu[D1
i (p

′
w − p′

e)+ D2
i (p

′
s − p′

n)+ D3
i (p

′
b − p′

t)] (7.9)

Using Rhie and Chow’s (1983) momentum interpolation technique and the flux
definition in Eq. (4.144) yields the following relations for flux corrections at cell faces:

Fw = F∗
w + ap

W (p
′
W − p′

P) (7.10)

Fs = F∗
s + ap

S(p
′
S − p′

P) (7.11)

Fb = F∗
b + ap

B(p
′
B − p′

P) (7.12)

where F∗
w, F∗

s , and F∗
b are the fluxes in terms of the approximate velocities u∗

i,w, u∗
i,s,

and u∗
i,b; ap

W = αuρ
n+1
w ( Jα1

i �η�ζ)wQ1
i,w, ap

S = αuρ
n+1
s ( Jα2

i �ξ�ζ)sQ
2
i,s, and ap

B = αu

ρn+1
b ( Jα3

i �ξ�η)bQ3
i,b with Q1

i,w = [(1−fx,P)/au
PW+fx,P/au

P]( Jα1
i �η�ζ)w, Q2

i,s = [(1−
fy,P)/au

PS + fy,P/au
P](Jα2

i �ξ�ζ)s, and Q3
i,b = [(1 − fz,P)/au

PB + fz,P/au
P]( Jα3

i �ξ�η)b.

Integrating the 3-D continuity equation over the control volume and discretizing the
time-derivative term by the backward difference scheme yields

ρn+1
P �Vn+1

P − ρn
P�Vn

P

�τ
+ Fe − Fw + Fn − Fs + Ft − Fb = 0 (7.13)

where �τ is the time step in the moving, curvilinear grid system.
Note that the variation of flow density is considered in Eq. (7.13) for more general

applications where its effect needs to be considered (see Section 12.1).
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Substituting Eqs. (7.10)–(7.12) and three similar equations for Fe, Fn, and Ft into
the discretized continuity equation (7.13) results in the following equation for pressure
correction:

ap
Pp′

P = ap
Wp′

W + ap
Ep′

E + ap
Sp′

S + ap
Np′

N + ap
Bp′

B + ap
Tp′

T + Sp (7.14)

where ap
P =∑l=W ,E,S,N,B,T ap

l , and Sp = −(ρn+1
P �Vn+1

P − ρn
P�Vn

P)/�τ − (F∗
e − F∗

w +
F∗

n − F∗
s + F∗

t − F∗
b).

Water level calculation

The water level can be calculated using the free-surface kinematic condition (2.71)
or the 2-D depth-integrated continuity equation (6.1). It can also be determined
using the 2-D Poisson equation of water level proposed by Wu et al. (2000a),
which is expressed as Eq. (6.47) with the term −∂(∂Ux/∂x + ∂Uy/∂y)/∂t added
into the source term Sz in the case of unsteady flows. However, all the depth-
averaged velocities and stresses appearing on the right-hand side of Eq. (6.47) are
determined by depth-integrating the local quantities computed from the present
3-D model.

To the author’s knowledge, the Poisson equation (6.47) is more stable than
the free-surface kinematic condition (2.71) and the 2-D depth-integrated continuity
equation (6.1) in the calculation of water level. However, Eq. (6.47) is valid only for
gradually varied open-channel flows because it is derived under the hydrostatic pres-
sure assumption. Nevertheless, many tests have shown that it can approximately be
applied to rapidly varied flows where no obvious hydraulic jump occurs.

Grid adjustment

In general, to conform to the water surface profile, the computational grid should be
regenerated once the water level changes. If a boundary-fitted grid is used, the Poisson
equations (4.74) need to be solved at each time step. This is relatively time-consuming.
The local coordinate transformation (4.89) on moving grids can be extended to the
3-D case, which may be more efficient. For a channel with simple geometry, the
grid needs to be adjusted in only one or two directions or in part of the domain,
and thus, the grid can be regenerated using simple algebraic methods, such as the
σ -coordinate (4.91).

Once the grid is adjusted, the parameters related to geometry should be updated.

7.1.3.3 Projection method

In analogy to the depth-averaged 2-D model in Section 6.1.3.2, Jia et al. (2001)
developed a 3-D model based on the projection method. The partially staggered grid
shown in Fig. 6.4 is extended to the 3-D case with the pressure stored on the base
grid (cell centers) and velocities ux, uy, and uz on the staggered grid (cell corners). The
governing equations are discretized and solved using the same methods mentioned
in Section 6.1.3.2. The pressure-correction algorithm is slightly modified below to
achieve the coupling of velocity and pressure in the 3-D model.
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The velocity correction is written as follows:

�un+1 = �u∗ − �t
ρ

∇p′ (7.15)

where p′ is defined in Eq. (6.35). The intermediate velocity �u∗ is determined by

�u∗ = �un +�t
→
G −�t

ρ
∇pn (7.16)

with
→
G representing all the remaining terms in the discretized momentum equations.

Substituting Eq. (7.15) into Eq. (7.1) yields

�t
ρ

∇2p′ = ∇ · �u∗ (7.17)

The water level is determined using the kinematic condition (2.71), and the grid is
adjusted in the vertical direction to track the temporal variation of water surface.

7.2 3-D FLOW MODEL WITH HYDROSTATIC PRESSURE
ASSUMPTION

Based on the hydrostatic pressure assumption introduced in Section 2.4, the inertia
and diffusion effects in the vertical momentum equation of gradually varied (shallow
water) flows can be ignored. The resulting 3-D governing equations are written as

∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
= 0 (7.18)
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(7.19)
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+ ∂(uzuy)
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∂zs

∂y
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∂x
+ 1
ρ

∂τyy

∂y
+ 1
ρ

∂τyz

∂z
− fcux

(7.20)

where fc is the Coriolis coefficient, determined by Eq. (6.6).
The hydrostatic pressure assumption simplifies the full three-dimensional hydrody-

namic equations (7.1) and (7.2) significantly. However, this assumption is valid only
for gradually varied flows (bottom slope less than about 5%), and a full 3-D model with
dynamic (non-hydrostatic) pressure should be used for rapidly varied flows around in-
stream structures, such as bridge piers, spur-dikes, and bendway weirs. Nevertheless,
gradually varied flows exist widely in rivers, lakes, estuaries, and coastal waters; thus,
the hydrostatic pressure assumption is often adopted. The 3-D models developed by
Sheng (1983), Wang and Adeff (1986), Blumberg and Mellor (1987), Casulli and
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Cheng (1992), Jankowski et al. (1994), Lin and Falconer (1996), and Shanhar et al.
(2001) are based on this assumption.

Note that in the set of equations (7.18)–(7.20), the water level replaces the pressure in
the momentum equations, but it does not appear in the continuity equation. This weak
linkage between water level and velocity may produce node-to-node (checkerboard)
numerical oscillations if not handled carefully. Approaches used to solve this set of
equations are described below.

7.2.1 Layer-integrated model

The layer-integrated model divides the water depth into a number of layers, as shown
in Fig. 7.3. The layer interfaces are usually horizontal planes with constant altitudes,
and the z-coordinate directs vertically. The thicknesses of the top and bottom layers are
variable to track the temporal and spatial changes in water surface and channel bed.
The grid is staggered with the vertical velocity stored at layer interfaces. Integrating
Eqs. (7.18)–(7.20) over each layer yields (Shanhar et al., 2001)

uz,l+1/2 = uz,l−1/2 − ∂

∂x
(hlux)− ∂

∂y
(hluy) (7.21)
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where hl is the thickness of the lth layer.

Figure 7.3 Configuration of layer-integrated model.
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Reynolds stresses τxx, τxy, τyx, and τyy in Eqs. (7.22) and (7.23) are determined using
the Boussinesq assumption with the eddy viscosity determined by a turbulence model.
The shear stresses at layer interfaces are determined by

τxz = ρνt ∂ux

∂z
, τyz = ρνt ∂uy

∂z
(7.24)

The wind driving force determined by Eq. (6.5) is applied at the water surface, and
the bed shear stress at the channel bottom is determined by

τbx = ρcfbubx

√
u2

bx + u2
by, τby = ρcfbuby

√
u2

bx + u2
by (7.25)

where ubx and uby are the horizontal components of velocity at the bottom layer, and
cfb is the bottom friction coefficient.

The water level can be determined using the kinematic condition (2.71), the depth-
integrated continuity equation (6.1), or the Poisson equation (6.47).

Eqs. (7.21)–(7.23) can be discretized using the finite difference method, finite
element method, or finite volume method. Normally, the convection terms should be
discretized using upwind schemes, and the other spatial derivatives can be discretized
using the central difference schemes or other similar schemes. The time derivatives can
be discretized explicitly or implicitly. Examples of this layer-integrated model can be
found in Lin and Falconer (1996) and Shanhar et al. (2001).

7.2.2 Splitting of internal and external modes

Sheng (1983) and Blumberg and Mellor (1987) developed 3-D models for estuarine and
coastal systems based on the hydrostatic pressure assumption. The significant feature
of these models is the splitting of internal and external modes. The internal mode han-
dles the slower vertical baroclinic flow structures, while the external mode computes
the depth-integrated quantities that are governed by the fast barotropic dynamics.

In Sheng’s model, the momentum equations (7.19) and (7.20) are rewritten as

∂ux

∂t
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∂zs

∂x
+ ∂
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)
+ Bx (7.26)
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(
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∂uy

∂z

)
+ By (7.27)

where Bx and By include all the remaining terms.
As described in Section 2.4.1, vertically integrating Eqs. (7.18)–(7.20) leads to

Eqs. (2.79), (2.82), and (2.83), which are the governing equations of the external
mode. They are rewritten as

∂h
∂t

+ ∂qx

∂x
+ ∂qy

∂y
= 0 (7.28)
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∂qx

∂t
= −gh

∂zs

∂x
+ Dx (7.29)

∂qy

∂t
= −gh

∂zs

∂y
+ Dy (7.30)

where qx and qy are the depth-integrated specific discharges in the x- and y-directions,
and Dx and Dy include all the remaining terms in the momentum equations.

The perturbation (not necessarily infinitesimal) velocities are defined as ûx =
ux − qx/h and ûy = uy −qy/h. Subtracting the vertically-integrated momentum
equations (7.29) and (7.30) from the 3-D momentum equations (7.26) and (7.27)
yields
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Eqs. (7.31) and (7.32) are the governing equations of the internal mode. They do
not contain the surface-slope terms, and thus, a large time step (much larger than the
limit imposed by the gravity wave propagation) may be used in the computation of
the internal mode.

The vertical σ -coordinate transformation (4.91) and a horizontal stretching coor-
dinate transformation are adopted to handle the variation of free surface and the
complexity of horizontal geometry. The water level and velocity are stored on a stag-
gered grid. In the external mode, all terms in the continuity equation (7.28) and the
time-derivative and surface-slope terms in the momentum equations (7.29) and (7.30)
are treated implicitly. The resulting discretized equation system is factorized in the x-
and y-directions and solved consecutively by inversion of tridiagonal matrices. In the
internal mode, Eqs. (7.31) and (7.32) are discretized by a two-level scheme with the
vertical diffusion terms treated implicitly. The vertical implicit scheme is essential, as it
increases the time step significantly. The bottom friction terms are also treated implic-
itly for unconditional numerical stability in shallow water. After the depth-averaged
and perturbation velocities are solved in the external and internal modes, the local
velocities ux and uy are obtained using ux = ûx+qx/h and uy = ûy+qy/h. The vertical
local velocity uz is then determined using the discretized 3-D continuity equation.

In Blumberg and Mellor’s model, the external mode also solves Eqs. (7.28)–(7.30)
to obtain the depth-averaged quantities of tidal motions, but the internal mode directly
solves Eqs. (7.26) and (7.27) to compute the local velocity rather than the perturbation
velocity. Explicit schemes are used in both internal and external modes except that
the vertical diffusion terms in Eq. (7.26) and (7.27) are treated implicitly. Because
numerical stability is controlled by surface gravity waves in the external mode but
by advection and diffusion in the internal mode, the time step in the external mode is
much shorter than that in the internal mode. To enhance the computational efficiency,
a special time-marching strategy is adopted. The external mode solutions are first
obtained with the terms Dx and Dy in Eqs. (7.29) and (7.30) held fixed in time, and
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after a large number of time steps, of the order of 100, an internal mode calculation
is performed. The external mode provides ∂zs/∂x and ∂zs/∂y for insertion into the
internal mode equations, which are then solved with a much longer time step. Once
the vertical structures have been determined, the terms Dx and Dy in Eqs. (7.29) and
(7.30) are updated and another external mode solution begins.

In both models described above, there may be a slow tendency that the vertical
integral of the internal mode velocity differs from the external mode velocity. This
arises because of different truncation errors in each mode. To prevent accumulated
mismatch, the vertical mean of the internal velocity is replaced at every time step by
the external mode velocity.

7.2.3 Projection method

Casulli and Cheng (1992) proposed an algorithm that uses an implicit scheme in the
vertical direction and a semi-implicit scheme in the horizontal directions. The grid is
staggered. The momentum equations (7.19) and (7.20) are rewritten as

∂ux

∂t
+ ADVU + g

∂zs

∂x
= 0 (7.33)

∂uy

∂t
+ ADVV + g

∂zs

∂y
= 0 (7.34)

where ADVU and ADVV include all the remaining terms.
Time differencing of Eqs. (7.33) and (7.34) leads to

un+1
x = F(ux)− g�t

∂zn+1
s

∂x
(7.35)

un+1
y = F(uy)− g�t

∂zn+1
s

∂y
(7.36)

In the above equations, F(ux) and F(uy) represent the solutions to Eqs. (7.33) and
(7.34) at time level n+1 where the contribution from the water surface gradient terms
has been deferred.

The depth-integrated continuity equation is written as

∂zs

∂t
+ ∂

∂x

∫ zs

zb

un+1
x dz + ∂

∂y

∫ zs

zb

un+1
y dz = 0 (7.37)

Substituting the momentum equations (7.35) and (7.36) into Eq. (7.37) and ignoring
the term −g�t2(∂h/∂x · ∂zn+1

s /∂x + ∂h/∂y · ∂zn+1
s /∂y) leads to the Poisson equation

for the water level at time level n + 1:

(1 − gh�t2∇2)zn+1
s = zn

s −�t
[
∂

∂x

∫ zs

zb

F (ux)dz + ∂

∂y

∫ zs

zb

F(uy)dz
]

(7.38)

Eq. (7.38) is symmetric and positive definite and can be solved by many methods.
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7.2.4 SIMPLE algorithm

Eqs. (7.18)–(7.20) can be written as Eq. (4.152) and discretized using the finite volume
method presented in Section 7.1.3.2. Discretizing the momentum equations (7.19) and
(7.20) leads to the following equation for horizontal velocities un+1

i,P (i = 1, 2):

un+1
i,P = 1

au
P

⎛⎝ ∑
l=W ,E,S,N,B,T

au
l un+1

i,l + Sui

⎞⎠+ D1
i (p

n+1
w − pn+1

e )+ D2
i (p

n+1
s − pn+1

n )

(7.39)

where D1
i = (Jα1

i �η�ζ)P/a
u
P, D2

i = (Jα2
i �ξ�ζ)P/a

u
P, and p = ρgzs.

In analogy to Eq. (7.9), the velocity correction at cell center P is as follows:

un+1
i,P = u∗

i,P + αu[D1
i (p

′
w − p′

e)+ D2
i (p

′
s − p′

n)] (7.40)

Suppose that the ζ–grid lines are along the vertical direction and cell faces w and
s are on vertical planes. Using Rhie and Chow’s momentum interpolation technique
and the flux definition in Eq. (4.144) yields the horizontal flux corrections at cell faces
w and s, as described in Eqs. (7.10) and (7.11).

Integrating the 3-D continuity equation over each control volume leads to Eq. (7.13).
Summing it over all control volumes along a vertical grid line and using the boundary
conditions at the water surface and channel bed yields

pn+1
P − pn

P

g�τ
�AP +

K∑
l=1

Fe,l −
K∑

l=1

Fw,l +
K∑

l=1

Fn,l −
K∑

l=1

Fs,l = 0 (7.41)

where K is the total number of control volumes at the vertical grid line, the subscript
l is the control volume index in the vertical direction, and �AP is the area of the
2-D control volume that is obtained by projecting the 3-D control volume onto the
horizontal plane.

Substituting Eqs. (7.10) and (7.11) into Eq. (7.41) leads to the following equation
for pressure correction:

bp
Pp′

P = bp
Wp′

W + bp
Ep′

E + bp
Sp′

S + bp
Np′

N + Sp (7.42)

where bp
W = ∑K

l=1 ap
W ,l, bp

E = ∑K
l=1 ap

E,l, bp
S = ∑K

l=1 ap
S,l, bp

N = ∑K
l=1 ap

N,l, bp
P =

bp
W + bp

E + bp
S + bp

E +�AP/(g�τ), and

Sp = −(p∗
P − pn

P)�AP/(g�τ)−
⎛⎝ K∑

l=1

F∗
e,l −

K∑
l=1

F∗
w,l +

K∑
l=1

F∗
n,l −

K∑
l=1

F∗
s,l

⎞⎠ .

Once the pressure correction is calculated using Eq. (7.42), the horizontal fluxes at
cell faces w and s are corrected using Eqs. (7.10) and (7.11). Because the vertical flux
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at the bottom face of the first cell closest to the bed is zero, the vertical fluxes at the
top faces of all cells along each vertical grid line are determined using Eq. (7.13) by
sweeping from 1 to K. At cell center P, the horizontal velocities are computed using
Eq. (7.39), and the vertical velocity can be calculated from the known vertical fluxes
at faces b and t.

7.3 3-D SEDIMENT TRANSPORT MODEL

7.3.1 Governing equations and boundary conditions

Lin and Falconer (1996), Olsen and Kjellesvig (1998), and Fang and Wang (2000)
developed 3-D suspended-load transport models, whereas Wang and Adeff (1986),
van Rijn (1987), Spasojevic and Holly (1993), Wu et al. (2000a), and Olsen (2003)
established 3-D total-load transport models. In general, a total-load transport model
divides the moving sediment into suspended load and bed load, hence the solution
domain into the bed-load layer with a thickness of δ and the suspended-load layer
with a thickness of h − δ, as shown in Fig. 2.6. Applying Eq. (2.72) to non-uniform
suspended-load transport yields

∂ck

∂t
+ ∂[(uj − ωskδj3)ck]

∂xj
= ∂

∂xj

(
εs
∂ck

∂xj

)
(k = 1, 2, . . . , N) (7.43)

where ck is the local concentration of the kth size class of suspended load, and εs is
the turbulent diffusivity of sediment.

At the water surface, condition (2.73) is written as(
εs
∂ck

∂z
+ ωskck

)
z=zs

= 0 (7.44)

A number of researchers (Wang and Adeff, 1986; Olsen and Kjellesvig, 1998; Olsen,
2003) have used the “concentration” boundary condition (2.74) at the lower limit
of the suspended-load layer for solving Eq. (7.43). This implies that the near-bed
concentration is typically defined as the equilibrium concentration and evaluated using
one of the empirical formulas introduced in Section 3.5.2. However, Celik and Rodi
(1988) suggested that this treatment is inadequate under non-equilibrium conditions.
In general, the “gradient” boundary condition (2.75) should be used at the interface
between the bed-load and suspended-load layers. Van Rijn (1987), Lin and Falconer
(1996), and Wu et al. (2000a) determined the deposition rate as Dbk = ωskcbk and the
entrainment rate as

Ebk = − εs ∂ck

∂z

∣∣∣∣
z=zb+δ

= ωskcb∗k (7.45)

where cb∗k is the equilibrium suspended-load concentration at the interface. Therefore,
the net sediment flux Dbk − Ebk = ωsk(cbk − cb∗k) is prescribed at the interface.
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The bed load is simulated using the equilibrium transport model (Wang and Adeff,
1986; van Rijn, 1987; Spasojevic and Holly, 1993; Olsen, 2003) or the non-
equilibrium transport model (Wu et al., 2000a). As described in Section 2.6, the
non-equilibrium transport model is more adequate. Because the bed-load layer is very
thin, the bed-load transport equation in the 3-D model has the same formulation as
the horizontal 2-D model equation (2.158):

∂(qbk/ubk)

∂t
+ ∂(αbxqbk)

∂x
+ ∂(αbyqbk)

∂y
= 1

L
(qb∗k − qbk) (7.46)

with slight difference in determining the direction cosines αbx and αby of bed-load
transport. Because secondary flows, such as the helical flow in curved channels, can
be simulated somewhat, their effects on sediment transport are automatically taken
into account in the 3-D model when αbx and αby are set as the direction cosines
of the calculated bed shear stress. However, if the bed slope is steep, the effect of
gravity should be considered by adjusting αbx and αby using the methods introduced
in Section 6.3.4.

The bed change is determined by

(1 − p′
m)

(
∂zb

∂t

)
k

= Dbk − Ebk + 1
L
(qbk − qb∗k) (7.47)

or by the overall sediment balance equation:

(1 − p′
m)

(
∂zb

∂t

)
k

+ ∂

∂t

(
qbk

ubk
+
∫ zs

zb+δ
ckdz

)
+ ∂qtkx

∂x
+ ∂qtky

∂y
= 0 (7.48)

where qtkx and qtky are the specific fluxes of total load in the x- and y-directions:

qtkx = αbxqbk +
∫ zs

zb+δ

(
uxck − εs ∂ck

∂x

)
dz

qtky = αbyqbk +
∫ zs

zb+δ

(
uyck − εs ∂ck

∂y

)
dz (7.49)

As compared with Eq. (7.47), Eq. (7.48) more easily ensures mass conservation but
is more complex.

The equilibrium near-bed suspended-load concentration and bed-load transport rate
need to be determined using the empirical relations introduced in Sections 3.4 and 3.5.
In general, these formulas can be written as

cb∗k = pbkc∗
bk, qb∗k = pbkq∗

bk (7.50)

where pbk is the fraction of size class k in the mixing layer of bed material, c∗
bk is

the potential equilibrium concentration of the kth size class of suspended load at the
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interface, and q∗
bk is the potential equilibrium transport rate of the kth size class of

bed load.
The bed material sorting in the 3-D model is handled with the same multiple-

layer approach used in the depth-averaged 2-D model. For example, the bed-material
gradation of the mixing layer is determined by Eq. (6.57).

For a well-posed solution, the bed-load transport rates and suspended-load con-
centrations of all size classes have to be specified at the inflow boundary. If the total
discharges of bed load and suspended load are specified at the inlet, their specific dis-
charges at each vertical grid line of the inlet can be determined using Eq. (6.63), and
then, the vertical distribution of local suspended-load concentration can be determined
according to the Rouse or Lane-Kalinske distribution.

The sediment boundary conditions at solid and outflow boundaries and initial
conditions in the 3-D model are similar to those in the depth-averaged 2-D model.

7.3.2 Discretization of sediment transport equations

To solve the suspended-load transport equation (7.43), the sediment settling term
∂(ωskck)/∂z can be treated as a source term or combined with the vertical convection
term. After considerable testing, Wu et al. (2000a) suggested the former approach
might be better. This term can be evaluated using the central or forward difference
scheme in the vertical direction. The central difference scheme has better accuracy, but
the forward difference scheme has better stability.

Eq. (7.43) can be discretized using the numerical methods introduced in Sections 4.2
and 4.3. The finite volume method is chosen here as an example. The discretized
suspended-load transport equation is

�Vn+1
P cn+1

k,P −�Vn
Pcn

k,P

�t
= aWcn+1

k,W + aEcn+1
k,E + aScn+1

k,S + aNcn+1
k,N

+ aBcn+1
k,B + aTcn+1

k,T − aPcn+1
k,P + Sk,P (7.51)

As presented by Wu et al. (2000a), boundary conditions (7.44) and (7.45) are
implemented by prescribing fluxes at the water and bed surfaces, respectively, which
are depicted in Fig. 7.4. An important choice has to be made as to the reference
level at which the equilibrium concentration c∗b and hence the entrainment rate
Eb are determined. In general, the reference level is set at the top of the bed-load
layer.

To determine the deposition rate Dbk, it is necessary to calculate the concentration
cbk at z = zb + δ from ck values at neighboring grid points. Wu et al. (2000a) assumed
that the concentration distribution between z = zb + δ and the first grid (point 2 in
Fig. 7.4) is governed by the following equation, which is simplified from Eq. (7.43) by
ignoring the storage, convection, and horizontal diffusion effects:

∂

∂z

(
εs
∂ck

∂z
+ ωskck

)
= 0 (7.52)
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Figure 7.4 Control volumes near bed and water surfaces.

which has the following analytical solution:

ck = a1 + a2e−zωsk/εs (7.53)

where a1 and a2 are two constants determined by applying conditions: ck = c2k at
z = z2 (point 2) and ck = cbk at z = zb + δ (interface). Inserting Eq. (7.53) with
the obtained a1 and a2 into Eq. (7.45) yields the following relation for the near-bed
concentration cbk:

cbk = c2k + cb∗k[1 − e−(z2−zb−δ)ωsk/εs ] (7.54)

If z2 − zb − δ is small, Eq. (7.54) may be approximated with the following linear
relation:

cbk = c2k + cb∗k(z2 − zb − δ)ωsk

εs
(7.55)

The bed-load transport equation (7.46) is a 2-D partial differential equation. It is
discretized by integrating over the horizontal 2-D control volume shown in Fig. 4.21
with the values of qb at cell faces given by a first-order or higher-order upwind scheme.
Note that the 2-D control volume is obtained by projecting the 3-D control volume
onto the horizontal plane, as described in Section 7.2.4. The discretized bed-load
transport equation is

�AP

�t

(
qn+1

bk,P

un+1
bk,P

−
qn

bk,P

un
bk,P

)
= bWqn+1

bk,W + bEqn+1
bk,E + bSqn+1

bk,S + bNqn+1
bk,N

− bPqn+1
bk,P + Sbk,P (7.56)
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where �AP is the area of the horizontal 2-D control volume.
The discretized equations (7.51) and (7.56) can be solved using the ADI or SIP

method described in Section 4.5.
It is important to note that as shown in Fig. 7.4, the first control volume near the bed

extends only to z = zb + δ for solving the suspended-load transport equation (7.43),
while it extends to the bed (z = zb) for solving the hydrodynamic equations. It is
cumbersome that the near-bed control volumes for flow and suspended-load calcula-
tions are not identical. A simpler practice is to set the top face of the near-bed control
volume at the lower limit of the suspended-load zone. This means that the bed-load
layer occupies the entire first control volume near the bed, and the computational
domain of suspended load starts from the second control volume. Moreover, the bed-
load transport rate qbk in Eq. (7.46) can be replaced by the sediment concentration
in the bed-load layer: c2k = qbk/(δu2). Here, the subscript “2” denotes the center of
the first control volume in Fig. 7.4, and u2 is the resultant flow velocity at this cell
center. This arrangement allows the bed-load equation (7.56) to be solved together
with the suspended-load equation (7.51) using a 3-D iteration solver.

The bed change equation (7.47) is discretized as

�zbk,P = �t
1 − p′

m

[
Dn+1

bk,P − En+1
bk,P + 1

L
(qn+1

bk,P − qn+1
b∗k,P)

]
(7.57)

If the overall sediment balance equation (7.48) is used to calculate the bed change,
it is integrated in the horizontal 2-D control volume, and the resulting discretized
equation is

�zbk,P = 1
1 − p′

m

(
qn

bk

un
bk

− qn+1
bk

un+1
bk

+
∫ zs

zb+δ
(cn

k − cn+1
k )dz

)

+ �t
(1 − p′

m)�AP
(q̃n+1

tk,w − q̃n+1
tk,e + q̃n+1

tk,s − q̃n+1
tk,n ) (7.58)

where q̃n+1
tk,w, q̃n+1

tk,e , q̃n+1
tk,s , and q̃n+1

tk,n are the total-load fluxes at faces w, e, s, and n.
The total change in bed elevation is determined by

�zb,P =
N∑

k=1

�zbk,P (7.59)

After the bed change is calculated, the bed elevation is updated by

zn+1
b,P = zn

b,P +�zb,P (7.60)

or by the following Lax-type scheme (van Rijn, 1987):

zn+1
b,i,j = (1 − ψx − ψy)zn

b,i,j + ψx

2
(zn

b,i+1,j + zn
b,i−1,j)

+ ψy

2
(zn

b,i,j+1 + zn
b,i,j−1)+�zb,i,j (7.61)
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where ψx and ψy are weighting coefficients, which are positive and satisfy 0 ≤ ψx +
ψy ≤ 1.

As compared with Eq. (7.60), Eq. (7.61) can enhance the stability of the sedi-
ment model, but it may encounter numerical diffusion and mass imbalance. Wu et al.
(2000a) suggested giving the transverse coefficient ψy zero and the longitudinal coeffi-
cient ψx a small value. However, the author’s later work shows that if the adaptation
length L is given properly as recommended in Section 2.6.3, the model stability can
be enhanced and the use of Eq. (7.61) can be avoided.

As described in the depth-averaged 2-D model, the dicretized equation for the bed
material sorting in the mixing layer is Eq. (6.70).

7.3.3 Solution of discretized sediment transport
equations

As demonstrated in 1-D and depth-averaged 2-D models, the bed-material gradation in
Eq. (7.50) can be treated explicitly, and then, a decoupled procedure can be established
to solve the discretized 3-D equations of sediment transport, bed change, and bed
material sorting. The sediment model is often decoupled with the flow model. If the
SIMPLE algorithm is used in the flow model, the fully decoupled calculations are
executed in the following sequence:

1) Start from the initial channel bed and flow field;
2) Solve the momentum equations with the estimated pressure p∗ and then the

pressure and velocity correction equations to obtain pn+1 and un+1
i ;

3) Solve the k- and ε-equations and update the eddy viscosity νt;
4) Calculate the water surface profile and then adjust the grid if any change in water

surface occurs;
5) Treat the obtained pressure pn+1 as a new estimate, return to step (2), and repeat

the above flow calculation until a converged solution is obtained;
6) Calculate cn+1

b∗k and qn+1
b∗k using Eq. (7.50) with the known pn

bk;
7) Calculate cn+1

bk and qn+1
bk using Eqs. (7.51) and (7.56);

8) Calculate �zbk and �zb using Eqs. (7.57) and (7.59);
9) Calculate pn+1

bk using Eq. (6.70);
10) Update the bed topography using Eq. (7.60) and then adjust the grid if any change

in bed elevation occurs;
11) Return to (2) and repeat the above calculations for the next time step until a

specified time is reached.

If the bed-material gradation in Eq. (7.50) is treated implicitly, from Eqs. (7.50),
(7.57), (7.59), and (6.70), one can derive equations similar to (6.73) and (6.74) to
determine the fractional and total bed changes and establish a coupled procedure for
the 3-D calculation of sediment transport, bed change, and bed material sorting. This
coupled sediment model can be decoupled from the flow model to constitute a semi-
coupled model or coupled with the flow model to form a fully coupled model. The
calculation sequences in the 3-D semi-coupled and fully coupled flow and sediment
transport models are similar to those in the depth-averaged 2-D models described in
Section 6.2.3.2. The details are not repeated here.
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7.3.4 Examples

Case 1. Sediment transport in an 180◦ channel bend

The flow, sediment transport, and bed change processes in an 180◦ channel bend inves-
tigated experimentally by Odgaard and Bergs (1988) was simulated by Wu and Wenka
(1998), Wu et al. (2000a), and Zeng et al. (2005) using 3-D models. The channel bend
was 80 m long and 2.44 m wide, connected with 20 m long straight sections upstream
and downstream. The cross-section was trapezoidal with vertical sidewalls, and the
channel bed was filled with a 30 cm thick layer of sand with an initially flat surface.
The sand had a median diameter of 0.3 mm and a geometric standard deviation of
1.45. The experiment was carried out at a discharge of 0.153 m3s−1 with an aver-
age water depth of 0.15 m and average velocity of 0.45 m · s−1. The sediment moved
through the channel mainly as bed load at a rate of 3.7 g · cm−1min−1, as measured
by a bed-load sampler.

Wu and Wenka (1998) and Wu et al. (2000a) used the 3-D flow model introduced in
Section 7.1.3.2 with the standard k-ε turbulence closure, whereas Zeng et al. (2005)
used a 3-D flow model with the k-ω turbulence closure. Wu et al. and Zeng et al.

Figure 7.5 Flow depth contours in an 180◦ bend: (a) measured by Odgaard and Bergs (1988),
(b) calculated by Zeng et al. (2005), (c) calculated by Wu and Wenka (1998), and

(d) calculated by Wu et al. (2000a).
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used two total-load transport models similar to the decoupled model introduced in
Section 7.3, whereas Wu and Wenka used only the bed-load model component. The
computational meshes used by Wu and Wenka (1998) and Wu et al. (2000a) were
the same and had 121, 22, and 15 grid points in the streamwise, lateral, and vertical
directions, respectively. Fig. 7.5 shows the measured and calculated contours of water
depth at the end of the experiment. The morphological developments in the bend
obtained by the three simulations are in fairly good agreement with the measurement.
The maximum depths calculated by Wu and Wenka (1998) and Wu et al. (2000a) were
25.59 and 25.68 cm, respectively, at around 45◦, as compared with the measured value
of 27 cm at the section around 55◦. Both total-load models predicted that the bed load
was about 80% of the total load, so that the results from the bed-load simulation of Wu
and Wenka are not significantly different from those of the two total-load simulations.

Fig. 7.6 displays the secondary flow velocity vectors and streamwise velocity
contours at various cross-sections through the bend calculated by Wu et al. (2000a).

Figure 7.6 Calculated secondary flow velocity vectors and normalized streamwise velocity U/Uin
contours at cross-sections in Odgaard and Bergs’ bend (Wu et al., 2000a).
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This figure also shows clearly how the channel bed developed in the asymptotic
state from a near-trapezoidal shape at the bend entrance to a closely triangular
shape with a scour hole near the outer bank and a point bar near the inner bank
in the bend.

Case 2. Sedimentation in the upstream neighborhood of TGP dam

Fang and Rodi (2000) and Fang and Wang (2000) calculated the flow and sediment
transport processes in the neighborhood of Three Gorges dam on the Yangtze River
in a period of 76 years after the dam started operating. This problem was also investi-
gated in a laboratory experiment at Tsinghua University (1996). Fang and Rodi (2000)
applied the 3-D model described in Sections 7.1.3.2 and 7.3 presented by Wu et al.
(2000a), while Fang and Wang (2000) used a different 3-D model based on the finite
analytic method. Since both simulation results are similar, only those of Fang and
Rodi (2000) are introduced here. As the sediment transport was almost entirely due
to suspended load, only the suspended-load model was used in the calculation. The
computational domain was a 16.7 km long reach upstream of the dam, as shown in
Fig. 7.7. This domain was represented by a numerical grid that had 234, 42, and
22 points in the streamwise, lateral, and vertical directions, respectively. The initial

Figure 7.7 Calculated surface velocity vectors upstream of TGP dam (Fang and Rodi, 2000).
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bed geometry was the natural river. The time series of flow and sediment input at the
inflow section was basically taken the same as in the experiment, but it was somewhat
smoothed by averaging over certain periods. In addition, the experimental water depth
at the downstream boundary (dam) was prescribed.

Fig. 7.7 shows the calculated surface velocities at the beginning and after 76 years of
dam operation. At the beginning, when the natural bed still existed, the flow occupied
the entire calculation domain and obviously was faster in the narrower upstream reach,
and had a lower velocity and a more complex pattern in the vicinity of the dam where
the cross-section was considerably wider. After 76 years, much sediment has deposited
on the sides, and the river flows only in a fairly narrow channel similar to its behavior
before the dam was erected. The changes in the bed and hence the flow in several
selected cross-sections can be seen from Fig. 7.8 where the bed profiles are given for
the year zero and for the 54th year, showing clearly the rise of bed elevation due to
sediment deposition over the years. The figure compares the calculated bed profiles and

Figure 7.8 Simulated and measured surface velocity and bed profiles upstream of TGP dam
(Fang and Rodi, 2000).
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surface velocities with those measured in the laboratory experiment, and the agreement
can be seen to be quite good.

7.4 3-D SIMULATION OF LOCAL SCOUR AROUND
IN-STREAM STRUCTURES

In-stream structures, such as bridge piers, abutments, spur-dikes, sluice gates, spill-
ways, weirs, and headcuts, have considerable potential to cause significant local scour
in their vicinities. The scour not only endangers the channel bed stability, but also
might have devastating effects on the structures. The 3-D numerical models used to
predict the local scour around in-stream structures are introduced here.

7.4.1 Complexity of local scour processes around
in-stream structures

Flows around in-stream structures are truly three-dimensional. Fig. 7.9 shows the flow
pattern around a bridge pier. The boundary-layer flow approaches from upstream to
the pier, and a stagnation pressure establishes in front of the pier. Due to this stagnation
pressure, the water surface increases, forming a bow wave and inducing a downward
flow there. The strong pressure gradient around the pier diverts the downstream flow
laterally. The downward flow and pressure gradient are responsible for the initiation
and development of local scour. If the flow strength increases to a certain level, the
three-dimensional boundary layer at the pier undergoes a separation. A horseshoe-
vortex system forms at the base of the pier and stretches into the downstream direction;
it removes bed material from around the pier and intensifies the local scour. A trailing
wake-vortex system forms behind the pier over the entire flow depth; it increases
the turbulence intensity and consequently enhances sediment transport. However, the
horseshoe and wake vortices diminish their strengths rapidly, and thus, the sediment
transported from around the pier deposits immediately downstream of the scour hole.

Figure 7.9 3-D flow pattern around a bridge pier (Graf and Altinakar, 1998).
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The flow pattern around a bridge abutment (or spur-dike) also involves downward
flow, localized pressure gradient, and vortices, which induce local scour around the
base of the abutment. The obstruction of the flow forms a horizontal vortex starting
at the upstream end and running along the toe of the abutment and a vertical trailing
wake vortex at the downstream end. The horizontal and wake vortices at the abutment
are similar to the horseshoe and wake vortices at the pier.

Fig. 7.10 shows the flow features often existing downstream of weirs, spillways,
sluice gates, and headcuts. Overflow appears in form of a jet and plunges into the
downstream pool, while underflow appears as a submerged or free horizontal jet.
Flow may separate laterally due to the sudden expansion of channel width. Consider-
able scour occurs in the downstream pool. Vortices exist and affect the magnitude of
scour. The sediment eroded from the scour hole may deposit as a mound downstream,
forming an “S” shaped bed profile.

Figure 7.10 Flow over/under a structure.

The total scour around in-stream structures includes three components: (a) general
degradation or aggradation due to natural or man-induced causes in upstream channels
and watershed; (b) contraction scour due to reduction of the flow area by the struc-
tures and approach embankments; and (c) local scour caused by flow acceleration, jet
impingement, and vortices induced by the structures. The contraction scour and local
scour may be clear-water or live-bed (see Fig. 7.11). The clear-water scour indicates
that no sediment comes from the approach reach, or the sediments transported are
so fine that they wash through the reach. In the clear-water scour process, the scour
depth increases gradually and approaches an asymptotic value when the capacity of
transport out of the scour hole is zero. In the live-bed scour, the scour depth increases
rapidly and attains an equilibrium value when the capacity of sediment transport out
of the scour hole is equal to the one into the scour hole. The live-bed scour can be
cyclic in nature, typically scouring during the rising stage of a flood event and refilling
during the falling stage.

In addition, the channel migration in floodplains may affect the scour around bridge
piers and erode abutments, spurs, and embankments by changing the course of main
flow and the flow angle of attack. Debris accumulation and vegetation growth around
structures may also affect the scour significantly.
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Figure 7.11 Clear-water and live-bed scours at bridge piers (Raudkivi and Ettema, 1983).

Traditionally, the maximum scour depths at hydraulic structures are predicted using
empirical formulas calibrated with laboratory experiments and limited field obser-
vations. For example, HEC-18 (Federal Highway Administration, [FHWA], 1995)
adopts the modified CSU equation for the scour at bridge piers and the Froehlich for-
mula for the scour at bridge abutments. More formulas for the local scour at bridge
piers and abutments and downstream of sluice gates and spillways are summarized in
Simons and Senturk (1992), Graf and Altinakar (1998), and others. However, these
formulas usually predict only the maximum scour depth. For detailed information
on the scour processes, numerical modeling should be used. This is discussed in the
following subsections.

7.4.2 Simulation of sediment transport and local scour
near in-stream structures

Because of the complexity of rapidly varied flows and local scour processes around
in-stream structures, only the full 3-D model is suitable for a realistic simulation
of such phenomena. In general, the hydrodynamic equations include the continuity
equation (7.1) and momentum equations (7.2) with a k-ε or more advanced turbulence
closure to simulate the complex turbulent flows near the structures. The governing
equations for sediment transport around in-stream structures are the same as those
in general situations, including the suspended-load transport equation (7.43), bed-
load transport equation (7.46), bed change equation (7.47), and bed material sorting
equation (6.57). The numerical solution methods introduced in Sections 7.1 and 7.3
can be used here to solve these equations. Body-fitted grids are usually required to
obtain accurate solutions.

However, some model parameters, such as sediment transport capacity and adap-
tation length, may be different for gradually and rapidly varied flows. In particular,
the sediment transport capacity of rapidly varied flows is affected by complex flow
features, such as downward flow, horseshoe vortex, localized pressure gradient, and
turbulence intensity. The empirical formulas developed for the sediment transport
capacity of gradually varied flows are not applicable to the local scour case. They
must be modified to consider the complex features of rapidly varied flows.

Olsen and Kjellesvig (1998) and Nagata et al. (2005) demonstrated the feasibility
of applying 3-D models in the local scour simulation, but they did not investigate
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the sediment transport capacity under rapidly varied flow conditions. After having
analyzed the mechanism of local scour at bridge piers, Dou (1997) related the sediment
transport capacity for local scour to the mean flow, downward flow, vorticity, and
turbulence intensity as follows:

C∗ = a1
U3

ghωs
+ a2

|W | − |W |app

U
+ a3

(�−�app)b
U∗

+ a4
i − iapp

ωs
(7.62)

where C∗ is the sediment transport capacity for local scour, U is the depth-averaged
velocity, U∗ is the bed shear velocity, |W | is the magnitude of downward flow, �
is the vorticity, b is the pier width, i is the turbulence intensity, ai (i = 1, 2, 3, 4)
are empirical coefficients, and the subscript “app” denotes the approaching flow
quantities.

In Eq. (7.62), the non-dimensional parameter U3/(ghωs) represents the contribution
of mean flow, which is used in the Zhang formula for general sediment transport
capacity, as introduced in Section 3.5.3. The term (|W | − |W |app)/U represents the
influence of downward flow, (�−�app)b/U∗ accounts for the effect of vorticity, and
(i − iapp)/ωs takes into account the effect of turbulence intensity. Eq. (7.62) considers
the significant factors that affect the local scour process. However, in reality, it is
difficult to use the linear formulation in Eq. (7.62) to reflect all factors reasonably,
and the empirical coefficients ai need to be calibrated extensively.

Based on the analysis of the forces acting on sediment particles near the bed exerted
by rapidly varied flows, Wu and Wang (2005) modified the van Rijn (1984a & b)
formulas (3.70) and (3.95) of equilibrium bed-load transport rate and near-bed
suspended-load concentration for the simulation of local scour by determineing the
transport stage number T with T = τbe/τcr − 1. Here, τbe is the effective tractive force
and τcr is the critical shear stress for sediment incipient motion in rapidly varied flows.
τcr is determined by

τcr = KpKdKgτc (7.63)

where τc is the critical shear stress for sediment incipient motion, determined using the
Shields curve; and Kp, Kd, and Kg are the correction factors for the effects of vertical
dynamic pressure gradient, downward flow, and bed slope, respectively.

Fig. 7.12 depicts the localized dynamic pressure field due to the impingement of a
jet onto a channel bed. This localized dynamic pressure also exists in front of bridge
piers, abutments, and spur-dikes. The gradient of fluid pressure causes a pressure-
difference force on sediment particles, which is also called the general buoyancy. This
pressure-difference force on a single particle is determined by (Liu, 1993)

�fp = −1
6
πd3∇p (7.64)

where d is the particle diameter.
The vertical component of the pressure-difference force changes the effective weight

of sediment in water and, in turn, the critical shear stress required for sediment incipient
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Figure 7.12 Localized dynamic pressure due to jet impingement.

motion. Using Eqs. (7.64) and (3.1) yields the following relation for Kp:

Kp = 1 + 1
(ρs − ρ)g

∂pd

∂z
(7.65)

where pd is the dynamic (non-hydrostatic) pressure. Because the effect of the hydro-
static pressure has already been considered in general sediment transport formulas,
only the effect of the dynamic pressure needs to be considered in Kp.

The downward flow increases the acting area of tractive force on sediment particles
and then decreases the critical shear stress for sediment incipient motion. Therefore,
the correction factor Kd can be determined by

Kd = 1
1 + sin β

(7.66)

where β is the impact angle of flow to the bed, defined as the angle between the
near-bed resultant flow and the bed.

As discussed in Section 3.7, gravity affects the incipient motion of sediment on a
steep slope. The correction factor Kg is defined as

Kg = sin(φr − ϕ)
sinφr

(7.67)

where ϕ is the streamwise bed slope angle with the horizontal (positive values denoting
downslope beds), and φr is the repose angle of submerged bed material. It should be
noted that when the bed slope angle is close to the repose angle, Kg is close to zero.
This must be limited by imposing a small lower bound, such as 0.1, to Kg.
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Eq. (7.67) considers only the effect of bed slope along the flow direction; it was
applied in the simulation of the vertical 2-D headcut migration by Wu and Wang
(2005). For general applications, the effect of bed slope in the direction normal to the
flow can also be added, as shown in Eq. (3.47). However, the side slope affects sedi-
ment transport within the scour hole in two counteractive ways: reducing the critical
shear stress for sediment incipient motion, but tending to move sediment toward the
scour hole center.

The effective tractive force τbe includes the bed shear stress and the horizontal
component of the dynamic-pressure-difference force:

τbe = τ ′
b − aπ

6
d
∂pd

∂s
(7.68)

where τ ′
b is the bed shear stress due to grain roughness, ∂pd/∂s is the streamwise

gradient of dynamic pressure near the bed, and a is a coefficient assumed as 4/π .
Eq. (7.68) is derived by assuming that the shear stress on a sediment particle is τ ′

bd2/a
and determing the dynamic-pressure-difference-force on this particle with Eq. (7.64).

Because the method for computing τ ′
b used by van Rijn (1984a & b) for uniform

flow is not appropriate for rapidly varied flows, τ ′
b is directly set to the bed shear stress

calculated by the flow model. However, to be consistent with the original van Rijn
formulas, the equivalent bed roughness height ks used in the wall-boundary approach
in the flow model is set to the grain roughness 3d90. Because only the grain roughness is
considered, this approach is applicable to situations without bed forms. Usually, most
clear-water scour cases belong to such situations. For more general applications, all
roughness elements may be considered in the wall-boundary approach, and then, the
grain shear stress is separated from the computed total bed shear stress using the
approaches introduced in Section 3.3.2.

In addition, the effect of gravity on sediment transport over a steep slope may be
considered by adding the streamwise component of gravity to the effective tractive
force τbe rather than applying the correction factor Kg to the critical shear stress, as
shown in Eq. (3.132). Thus, Eqs. (7.63) and (7.68) can be modified as

τcr = KpKdτc (7.69)

τbe,i = τ ′
b,i + λ0τc sin ϕi/ sinφr − aπ

6
d
∂pd

∂xi
(i = x, y) (7.70)

In analogy to Eq. (6.98), an equation can be derived from Eq. (7.70) for the bed-load
transport direction cosines αbx,e and αby,e.

If the slope angle in the scour hole is larger than the repose angle of sediment, a
loose bed will collapse due to gravity. This physical phenomenon can be calculated
by adjusting the steeper bed slope to the repose angle according to mass conservation.
The non-cohesive bank or bed sliding algorithm introduced in Section 6.3.5 can be
adopted here.

The approaches presented in Eqs. (7.63) and (7.68)–(7.70) were tested in the sim-
ulation of local scour process at bridge piers by this author using the 3-D flow
model introduced in Section 7.1.3.2 and the sediment transport model introduced in
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Section 7.3. The sediment adaptation length was determined by L = min(0.4t, 7.3h0),
in which t is the elapsed time in hours and h0 is the approach flow depth in meters.
The computational mesh consisted of 43 and 25 points in the transverse and vertical
directions, respectively, and a suitable number of points in the longitudinal direction
depending on the flume length. The plan view of the mesh around a cylindrical pier is
shown in Fig. 7.13. The vertical grid spacing was refined near the bed.

Fig. 7.14 compares the simulated and measured scour holes at a cylindrical bridge
pier for Yanmaz and Altinbilek’s Run 3 with a pier diameter (D) of 6.7 cm, a sediment

Figure 7.13 Computational mesh near a cylindrical pier (plan view).

Figure 7.14 Measured and simulated scour depth contours (m) at a cylindrical pier for
Yanmaz and Altinbilek’s Run 3 at 100 min.
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size of 1.07 mm, a flow discharge of 30 l · s−1, and an approach flow depth of 0.135 m.
The simulated scour depth contours in the hole agree well with those measured. The
simulation predicted deposition downstream of the scour hole, but the measurement
lacked this information. Fig. 7.15 compares the simulated and measured deepest scour
depths varying with time for Yanmaz and Altinbilek’s (1991) Run 3, Ettema’s (1980)
experiment with D = 0.24 m and d50 = 1.9 mm, and the Run 7 (D = 0.91 m, d50 =
2.9 mm) of Sheppard et al. Durations (te) of these three runs were 5, 14.5, and 188 hr,
respectively. Erosion was very intensive at first and then reduced gradually. The erosion
processes were reproduced well by the numerical model.

Figure 7.15 Temporal variation of the deepest scour depth at cylindrical piers.

Tests have also shown that the approach using Eqs. (7.63) and (7.68) for τcr and
τbe and that using Eqs. (7.69) and (7.70) do not have significant difference in terms
of the predicted maximum scour depth at bridge piers. This is due to the fact that the
local scour is induced by other factors, such as downward flow and localized dynamic
pressure gradient. In contrast, the bed slope effect may reduce the predicted local
scour depth because of the inverse bed slope in the downstream of the scour hole. The
results shown in Figs. 7.14 and 7.15 were obtained with the approach using Eqs. (7.63)
and (7.68).

7.4.3 Headcut migration model

A headcut is a vertical or near-vertical drop or discontinuity on the channel bed
of a stream, rill, or gully at which a free overfall flow often occurs, as shown in
Fig. 7.16. The headcut is usually eroded by the action of hydraulic shear, basal sap-
ping, weathering, or a combination of these processes. Headcut erosion can accelerate
soil loss, increase sediment yields in streams, damage earthen spillways, and disturb
bank stability.

De Ploey (1989) and Temple (1992) established empirical formulas by relating the
headcut migration rate to the energy head change at the headcut. The coefficients
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Figure 7.16 Fluvial and geomorphic features of headcut (side view).

in these formulas depend on soil properties, such as void ratio, moisture content,
saturation degree, bulk density, and clay content (Hanson et al., 1997; Wu and Wang,
2005). Kitamura et al. (1999) and Wu and Wang (2005) developed numerical models
to simulate the detailed erosion and migration processes of headcut. The numerical
model of Wu and Wang is introduced below.

The flow model introduced in Section 7.1.3.2 with the standard k-ε turbulence
closure is used to compute the flow in the plunge pool. The jet impingement velocity
and angle are estimated using the empirical formulas proposed by Robinson (1996).

There are three modes of erosion occurring at the headcut. The first mode is the
surficial erosion along the vertical headwall due to the hydraulic shear of flow. The
second mode is the toe erosion due to the development of scour hole in the plunge
pool. After the surficial erosion and toe erosion develop to a certain extent, the head-
wall will exceed the criterion of stability, and a mass failure will occur, which is the
third mode of headcut erosion. In reality, the mass failure occurs periodically, and each
event finishes in a very short period. Its occurrence may be predicted using the stability
models suggested by Barfield et al. (1991) and Robinson and Hanson (1994), which
are similar to that for bank failure shown in Fig. 5.17. However, simulating such a
discontinuous phenomenon using a hydrodynamic model is difficult, as the collapsed
block of soil will strongly disturb the flow field in the plunge pool. For simplicity, a
time-averaged headcut migration model is adopted, as shown in Fig. 7.17.

The erosion rate on the headwall surface due to hydraulic shear, dls/dt (m · s−1), is
determined by (Wu and Wang, 2005)

dls
dt

=
⎧⎨⎩0.0000625

τvm

M
,

τvm

M
< 8

0.00977 − 0.00238
τvm

M
+ 0.000153

(τvm

M

)2
,
τvm

M
≥ 8

(7.71)

where τvm is the maximum shear stress on the headwall surface (pa); M is a material-
dependent parameter, related to the soil bulk density ρ′

b and clay content pc by
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Figure 7.17 Headcut migration due to toe scour.

M = p0.4
c /(1 − ρ′

b/ρs)
2; and ρs is the soil density (kg · m−3). At each time step �t,

Eq. (7.71) gives the headwall retreat length �ls due to hydraulic shear.
The sediment transport in the plunge pool, which is highly affected by the rapidly-

varied jet impinging flow, is simulated using the 3-D model introduced in Section 7.3
with the sediment transport capacity determined using Eqs. (3.70) and (3.95) with the
corrections described in Eqs. (7.63) and (7.68). From this calculation, the bed change
�z2 at the center of the first control volume near the toe of headwall surface at the
time step�t can be obtained, and then, the headcut retreat length due to this toe scour
is given as �lt = �z2/ tanφr, as shown in Fig. 7.17. Here, φr is the repose angle of
sediment. The actual headcut migration length is the larger of �ls and �lt.

The time-averaged model described above simulates the headcut migration caused by
the headwall surficial erosion and toe erosion. These two erosion modes are the main
factors of headcut migration, as they induce the mass failure and wash out the wasted
sediment debris. Therefore, this time-averaged model can acquire the main features of
headcut migration.

The headcut boundary propagates upstream and expands sideward. A moving grid
technique is implemented to capture this moving boundary in the horizontal directions,
combined with the original one to track the water surface change and bed deformation
in the vertical direction. At each time step or iteration step, the computational grid is
adjusted after the calculations of water level, bed deformation, and headcut migration.

The established headcut migration model was tested by Wu and Wang (2005) using
the experiments of Bennett et al. (1997). The experiments were carried out in a flume
5.5 m long. The test part was a cavity 2 m long and 0.165 m wide, filled with 0.25 m
deep soil. The bed slope of the flume was 1%. The used soil was the parent material
of the Ruston silt loam after being crushed and air-dried and consisted of 20.0% clay,
2.9% silt, and 77.1% sand. A preformed 0.025 m high headcut was constructed at
the downstream end of the cavity. Application of simulated rain produced a surface
seal layer to negate any detachment of the soil material by the subsequent overland
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Figure 7.18 Simulated headcut migration process (Run 2) (Wu and Wang, 2005).

Figure 7.19 (a) Steady-state scour hole and (b) brinkpoint migration distance (Run 2)
(Wu and Wang, 2005).

flow. A scour hole developed due to jet impingement, and the headcut migrated
upstream. Fig. 7.18 shows the calculated headcut migration process for experimen-
tal run 2. The scour hole maintained a quasi-steady profile as the headcut migrated
upstream. Figs. 7.19(a) and (b) show the measured and calculated scour hole mor-
phologies and brinkpoint migration distances. The scour hole profile and headcut
migration rate were predicted well.



Chapter 8

Domain decomposition and model
integration

Many problems in river engineering exhibit geometric irregularities and multiple length
and time scales in flow velocity and mass concentration. To handle these characteristics
effectively, the computational domain is often decomposed into subdomains that may
be represented by meshes with different grid densities and topologies, and treated
by models with different dimensions and complexities. The multiblock algorithm,
coupling of 1-D, 2-D and 3-D models, and integration of channel and watershed
models are introduced in this chapter.

8.1 MULTIBLOCK METHOD

8.1.1 General considerations

The multiblock method divides the entire computational domain into blocks, as shown
in Fig. 8.1, and generates the mesh for each individual block independently. The gov-
erning equations are first solved in each block with information exchanged at block
boundaries, and the results in all blocks are then assembled to obtain the global solu-
tion. The multiblock method allows much greater grid flexibility and local refinement
than the single-block method does.

To facilitate the exchange of information, an interface between two adjacent blocks
needs to be constructed. The grids on the blocks can be patched or overlapped around
the interface, as shown in Fig. 8.2, depending on the numerical methods used. On the

Figure 8.1 Sketch of domain decomposition.
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Figure 8.2 Interface arrangements for multiblock grid: (a) patched, (b) simple overlapping, and
(c) complex overlapping.

patched grids, two neighboring blocks are connected at a common grid line without
overlapping, while on the overlapping grids, the blocks can be superimposed arbitrarily
on each other to cover the domain of interest. Compared to the patched grids, the
overlapping grids have more flexibility in grid generation but may be less accurate due
to interpolation errors as information is exchanged between blocks.

The discretization of the governing equations in each block is the same as in a single-
block domain. However, for a complete solution, internal boundary conditions should
be applied at the interfaces. To avoid errors and the generation of spurious numerical
oscillations, the conservation laws should be satisfied at the interfaces. During the
solution process, the information updated at each time or iteration step needs to be
transferred between the blocks. Therefore, the key issues that affect the performance
of the multiblock method are interface treatment and information exchange between
blocks.

8.1.2 Multiblock method for 1-D problems

Let us consider the 1-D steady convection-diffusion problem (4.15) as an example of
the multiblock method (Shyy et al., 1997). For the sake of simplicity, only two grid
blocks are used. The grids in these two blocks are shown in Fig. 8.3. Let φl,i denote the
discrete approximation to φ at the point i (= 1, 2, . . . , Nk) of the component grid block
l (=1, 2). Eq. (4.15) can be discretized using the generic numerical scheme introduced
in Chapter 4 as

aPl,iφl,i = aWl,iφl,i−1 + aEl,iφl,i+1 (8.1)

where aPl,i, aEl,i, and aWl,i are coefficients.
The discretized equations on each block can be solved with a direct or iterative

method. However, boundary conditions have to be provided at the interface to connect
the solutions on the two blocks so that a global solution can be obtained. In the solution
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Figure 8.3 (a) Domain decomposition and (b) grid arrangement in a 1-D model.

of block 1, the boundary value of φ1,N1 is unknown, and in the solution of block 2,
the boundary value of φ2,1 is unknown. They can be interpolated using the values of
φ on the other block by the following interpolation schemes:

φ1,N1 =
L2∑

j=L1

γjφ2,j, 1 ≤ L1 ≤ L2 ≤ N2 (8.2a)

φ2,1 =
M2∑

j=M1

βjφ1,j, 1 ≤ M1 ≤ M2 ≤ N1 (8.2b)

where γj and βj are interpolation coefficients; and L1, L2, M1, and M2 denote the
bounds of the grid points used in the interpolation. The number of points involved
depends on the order of the chosen interpolation formula.

The evaluation of the coefficient aW for the point near the interface on block 2 will
involve some quantities interpolated from block 1. Similarly, the evaluation of aE for
the point near the interface on block 1 will involve some quantities interpolated on
block 2.

With the above interface treatment, an iteration process between the two blocks is
conducted to solve the equations over the entire domain.

8.1.3 Multiblock method for multidimensional problems

Interpolation and conservative correction at the interface

Shyy et al. (1997) introduced a multiblock algorithm to solve the Navier-Stokes
equations using the finite volume method on the staggered grid. It is straightfor-
ward to extend their method to the depth-averaged 2-D flow and sediment transport
model. Fig. 8.4 shows a typical configuration of the interface between two blocks.
For simplicity, the non-staggered grid is used here instead. The interface is set at the
common face of the neighboring coarse and fine control volumes. The coarse and
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Figure 8.4 Interface between blocks for non-staggered FVM grid.

fine grids are extended one layer (or more layers if needed for methods of high accu-
racy) to the adjacent block for the convenience of information transfer and numerical
discretization at the interface.

To solve the flow and sediment transport equations in each block, the boundary
conditions of velocity, pressure (or pressure correction), suspended-load concentra-
tion, and bed-load transport rate are required at the interface. Other variables that
have to be transferred are flow depth, bed level, bed shear stress, sediment trans-
port capacity, bed change, and bed-material gradation. All these variables should
be interpolated from the corresponding points on the adjacent block. The linear
or quadratic interpolation method may be used. However, to obtain continuous
flow and mass fields, the interpolation should satisfy the conservation laws at the
interface.

Fig. 8.5 shows a portion of the interface corresponding to the width of a single
control volume on the coarse grid, and to the width of several control volumes, indexed
from i = 1 to imax, on the fine grid. The conservation law for flow flux reads

Uchclc =
imax∑
i=1

Ufihfilfi (8.3)

where lc is the length of the interface on the coarse grid, hc and Uc are the flow depth
and velocity at lc, lfi is the length of the interface of cell i on the fine grid, and hfi and
Ufi are the flow depth and velocity at lfi. Note that the velocities Uc and Ufi are normal
to the corresponding cell faces.

As information is exchanged from the fine grid to the coarse grid (Fig. 8.5), the
flow flux and, in turn, the flow velocity can be uniquely obtained with Eq. (8.3),
which satisfies the conservation law. However, it is not straightforward to obtain the
flow velocity from the coarse grid to the fine grid. The conservation law (8.3) does
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Figure 8.5 Flow fluxes at interface between coarse and fine grids.

not provide an unique value for Ufi. A distribution has to be assumed to determine
Ufi. As an approximation, Ufi may be first obtained using the linear (or quadratic)
interpolation of the velocity on the coarse grid. The interpolated quantity is denoted
as Ũfi, which may not satisfy the mass conservation law. Then the flow velocity
on the fine grid is scaled so that the obtained total flux is Uchclc. Therefore, Ufi is
calculated by

Ufi = |Ũfi|(Uchclc)

/( imax∑
i=1

|Ũfi|hfilfi

)
(8.4)

The flow velocity on the fine grid determined using Eq. (8.4) satisfies the mass
conservation law, and its distribution is close to the interpolated one.

At the interface between two blocks, the conservation law for suspended load is

UchclcCc =
imax∑
i=1

UfihfilfiCfi (8.5)

and that for bed load is

qbclc =
imax∑
i=1

qbfilfi (8.6)

where Cc and Cfi are the suspended-load concentrations on the coarse and fine
grids, respectively; and qbc and qbfi are the bed-load transport rates per unit width
correspondingly.

Like the flow flux, the suspended-load concentration and bed-load transport rate
can be uniquely, conservatively obtained from the fine grid to the coarse grid, but the
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conservation laws are not satisfied when interpolating these quantities from the coarse
grid to the fine grid. Conservative corrections should be applied. If the interpolated
suspended-load concentration is denoted as C̃fi and the interpolated bed-load transport
rate is q̃bfi, the relevant corrections are

Cfi = C̃fi(UchclcCc)

/( imax∑
i=1

UfihfilfiC̃fi

)
(8.7)

qbfi = q̃bfi(qbclc)

/( imax∑
i=1

q̃bfilfi

)
(8.8)

If a cell face on the coarse grid does not exactly match to an integer number of cell
faces on the fine grid at the interface, the cells on the fine grid can be split into smaller
subcells. The above conservative correction can still be applied in the conversion from
the coarse cell to the subcells on the finer grid.

Interface treatment for governing equations

If the hybrid upwind/center scheme or the exponential scheme is used for discretizing
the convection terms and the center difference scheme for the diffusion terms in the
momentum and scale transport equations on the non-staggered grid, an overlapping
interface with one extended layer on each side of the interface is enough, as shown in
Fig. 8.4. However, if higher-order schemes, such as QUICK and HLPA, are used, more
extended layers on each side may be needed; otherwise, a lower-order scheme has to
be used to substitute the higher-order schemes near the interface. The convection flux
F and diffusion parameter D at the interface are determined using the interpolated
variables, if needed.

As Shyy et al. (1997) described, when solving the pressure-correction equation on
each block, either the flow flux or the pressure correction interpolated from the adja-
cent blocks can be used as the boundary condition. If the interpolated flow flux is
used, as shown in Fig. 8.6(a), the solution of the pressure-correction equation is a
Neumann-type problem, and then the pressure correction is governed by Eq. (6.29) in
the depth-averaged 2-D model. If the interpolated pressure correction is used as the
boundary condition, as shown in Fig. 8.6(b), the problem is of the Dirichlet-type, and
the pressure-correction equation is the same as Eq. (6.28).

For the Dirichlet-type boundary, after Eq. (6.28) is solved, the flow flux F∗
w at the

interface in Fig. 8.6(b) is to be corrected using Eq. (4.196), while for the Neumann-
type boundary, the flow flux Fw at the interface does not need correction.

If the Neumann-type boundary is used on two sides of the interface, the pressure
fields in the neighboring blocks are independent and thus may be discontinuous. On
the other hand, if the Dirichlet-type boundary is used on both sides, the flow flux at the
interface is corrected twice, which may lead to inconsistency and discontinuity in flow
flux. Therefore, special care should be taken in these two cases to ensure continuous
(smooth) pressure and flux fields on two adjacent blocks. One remedy is to use the
Dirichlet-type boundary on one side of the interface and the Neumann-type boundary
on the other side.
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Figure 8.6 Treatment of pressure-correction at the interface.

Solution procedure

After the governing equations are discretized in a multiblock domain, the algebraic
equations on each block can be solved in the same way as for a single block prob-
lem. However, an additional level of iteration among grid blocks must be introduced.
Two different iteration strategies can be established. The first strategy is to form
an outer loop for the iteration among blocks and an inner loop for the iteration
among equations. In the outer loop, information on all relevant variables is trans-
ferred. Denoting the total number of blocks as nb, the procedure of the multiblock
SIMPLE algorithm at each time step is:

for blocks 1 to nb

(1) Guess the pressure field p∗;
(2) Solve the momentum equations to obtain U∗

x and U∗
y ;

(3) Solve the pressure-correction equation to obtain p′;
(4) Calculate pn+1, Un+1

x , and Un+1
y ;

(5) Treat the corrected pressure pn+1 as a new guessed pressure p∗, and repeat the
procedure from step 2 to step 6 until a converged solution is obtained;

(6) Conduct the calculation of sediment transport and bed change, if needed.

end for

The second strategy forms an outer loop for the iteration among equations and an
inner loop among blocks. In the inner loop, information on all relevant variables is
transferred. The corresponding procedure for the multiblock SIMPLE algorithm at
each time step is:

(1) Guess the pressure field p∗, for blocks 1 to nb;
(2) Solve the momentum equations to obtain U∗

x and U∗
y , for blocks 1 to nb;
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(3) Solve the pressure-correction equation to obtain p′, for blocks 1 to nb;
(4) Calculate pn+1, Un+1

x , and Un+1
y , for blocks 1 to nb;

(5) Treat the corrected pressure pn+1 as a new guessed pressure p∗, and repeat the
procedure from step 2 to step 6 until a converged solution is obtained;

(6) Conduct the calculation of sediment transport and bed change, if needed, for
blocks 1 to nb.

In principle, both strategies can be successful. Which one performs better is problem-
dependent. Usually, the first strategy needs less memory than the second strategy,
because the second strategy needs to store the coefficients for all blocks while the first
strategy needs to store the coefficients for only one block.

8.1.4 Efficiency of multiblock method

For a complex problem, the multiblock method requires less computer memory and
has more flexibility for grid generation than the single-block method. The task of
computations in each block can be assigned to a processor and, thus, the multiblock
method can be run on a parallel computer. However, the computations on all blocks
should be synchronized, and the information transferred between processors may not
be the “latest”; thus, some multiblock algorithms designed for serial (single-processor)
computers may not run efficiently on parallel computers. The efficiency depends on
the problem, the method of solving it, and the computer used.

The explicit schemes for an unsteady problem can be easily extended from single
block to multiblock algorithms. Because all operations are performed on data from
the previous time step, all that is needed is to transfer the data at the interface between
neighboring blocks after the completion of each time step. The sequences of operation
are identical when using single block and multiblock methods on either serial or parallel
computers; so are the results. For solving the algebraic equations that result from a
steady problem or from implicit schemes for an unsteady problem, the Jacobi iteration
method at each iteration step only needs the “old” values of the previous iteration
step, which is very similar to the manipulation of explicit schemes in the sense of time
step. Therefore, the explicit schemes and the Jacobi iteration method are very easy to
parallelize, with very efficient speed-up.

On serial computers, the multiblock Gauss-Seidel iteration method has the same
performance as the single-block version, if the sweeping order among blocks is in such
a sequence that the “latest” values of the variable in one block can be used for the
calculation in the adjacent block. For example, if the sweeping order for the point-to-
point iteration in each block is from the lower left point to the lower right point and
thence to the upper left point, the sweeping order among blocks must be also from the
lower left block to the lower right block and thence to the upper left block. However,
the multiblock Gauss-Seidel iteration method cannot be extended straightforwardly
from serial computers to parallel computers, because the “latest” values at the interface
between blocks are not available during the synchronized computations on all the
assigned processors. To solve this problem, a specially designed “red-black” ordering
method is often used (see Golub and Ortega, 1993). On a structured grid, the points
are imaged to be “colored” in the same way as a checkerboard, as shown in Fig. 8.7.
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Figure 8.7 “Red-black” ordering method.

The method consists of two Jacobi steps: black points are updated first, and then the
red points. When the values at black points are updated, only the “old” values at red
points are used, see Eq. (4.219); in the next step, red values are calculated using the
updated black points. This alternate application of the Jacobi method to the two sets
of points produces a method with the same convergence properties as the Gauss-Seidel
method. When applying this “red-black” ordering method on parallel computers, only
the results of the previous step are needed, and thus the computations of new values on
either set of points can be performed in parallel. Communication between processors
working on neighboring blocks takes place twice per iteration step — after each set of
points is updated.

It is not straightforward to extend the TDMA (TriDiagonal-Matrix Algorithm) from
single block to multiple blocks, because it is recursive. This can be demonstrated by
using the 1-D problem shown in Fig. 8.3. If a single block is used for the entire domain,
the boundary-condition information from the ends of the domain is transmitted at once
to the interior through the double sweeps in each iteration step. This results in fast
convergence of iteration. However, if multiple blocks are used for the domain and
a separate TDMA is used in each block, the boundary-condition information at the
ends of the domain is transmitted block by block to the interior; thus, the convergence
speed decreases. To avoid this, one may decompose the computations at each sweep
into multiblocks, and keep the double sweeps over the entire domain.

For a multidimensional problem, the ADI method, which uses alternately the TDMA
in different directions, requires special partition of the solution domain for extension
from single block to multiple blocks. One of the most efficient partitions is shown
in Fig. 8.8. The calculation consists of two steps. In the first step when the implicit
scheme is applied on i-lines and the explicit scheme is on j-lines, the entire domain is
divided into horizontal strips (blocks) that extend along i-lines and end at west and
east boundaries. The TDMA can be used at the strips along i-lines. Similarly, in the
second step when the implicit scheme is applied on j-lines and the explicit scheme is
on i-lines, the entire domain is divided into vertical strips that extend along j-lines and
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end at south and north boundaries. The TDMA can be used at the strips along j-lines.
The sweeping order among the strips in each step is arranged in such a sequence that
the “latest” values at the interface can be transferred from one strip to the next strip.
This multiblock ADI method for a 2-D problem has almost the same efficiency as the
single-block version. However, the domain is divided differently in two steps, which
requires the transpose of the matrices.

The multiblock ADI method shown in Fig. 8.8 can be run on parallel computers.
Its efficiency can be enhanced by applying the “red-black” ordering method among
blocks. The blocks are “colored” as red and black alternately, and the calculation
sequence among blocks follows the two steps similar to those used in the “red-black”
ordered Gauss-Seidel method.

Figure 8.8 Strategy of domain decomposition for ADI method.

The SIP method is recursive, making its extension from single to multiple blocks
less straightforward. One may divide the entire domain into several, such as four sub-
domains shown in Fig. 8.1. The global coefficient matrix is correspondingly split into
a system of diagonal blocks Aii, which contain the elements connecting the points
that belong to the ith subdomain, and off-diagonal blocks Aij (i 	= j), which repre-
sent the interaction of subdomains i and j. Then the SIP method is applied in each
subdomain, while the terms related to the blocks Aij are put in the source term. The
global iteration matrix is selected so that the blocks are decoupled, i.e., Mij = 0 for
i 	= j. Each diagonal block matrix Mii is decomposed into L and U matrices in the
normal way. The multiblock SIP method can be parallelized. However, the informa-
tion on boundary conditions is transmitted more slowly to the interior in a multiblock
domain than in a single-block domain; thus, the convergence speed may deteriorate
with the increase in the number of blocks. The details can be found in Ferziger and
Peric (1995).

In addition, the speed-up of parallel computations also depends on the information
transfer among processors, which is machine-dependent. A detailed analysis of this
problem can be found in Golub and Ortega (1993) and Shyy et al. (1997).



Domain decomposition and model integration 333

8.2 COUPLING OF 1-D, 2-D, AND 3-D MODELS

8.2.1 General considerations

As described in Chapters 6 and 7, the flow and sediment transport in rivers with com-
plex geometries and hydraulic structures should be simulated using 2-D or 3-D models
rather than 1-D models. However, it may not be feasible to use 2-D and 3-D models in
the simulation of the fluvial processes in a long river reach during a long period, because
they require much more computation time than 1-D models. Therefore, it is cost-
effective to couple 1-D, 2-D, and/or 3-D models (McAnally et al., 1986; Wu and Li,
1992; Vieira, 1995; Zhang, 1999). The basic idea is to divide the entire study domain
into subdomains (reaches), and apply a 1-D model in less important subdomains with
simple geometries and a 2-D or 3-D model in more important subdomains with com-
plex geometries. For convenience, the subdomains (reaches) handled by 1-D, 2-D, and
3-D models are herein called 1-D, 2-D, and 3-D subdomains (reaches), respectively.

The concept of coupling 1-D, 2-D, and 3-D models in a generic river system is
illustrated in Fig. 8.9. The upstream portion with dams can be simulated using a
1-D model, thus simplifying the boundary conditions. The broad floodplains can be
calculated adequately using a depth-averaged 2-D model. The portion with bridge
crossing should be simulated using a 3-D model. In the estuary, the stratified flow and
salinity intrusion can be simulated using a width-averaged 2-D or 3-D model. In the
estuary entrance, the interaction between river flow and tidal current is very complex
and should be calculated using a 3-D model. Such a coupled modeling can provide a
feasible solution for the entire river system.

Figure 8.9 Concept of coupling 1-D, 2-D, and 3-D models.

Two approaches have been employed in the literature for combining 1-D, 2-D,
and 3-D models. One approach is to use a simpler (1-D or 2-D) model in the entire
solution domain and a more complex (2-D or 3-D) model in confined subdomains.
The simpler model provides boundary conditions for the more complex model, but
they are not coupled. This approach is called the hybrid modeling (McAnally et al.,
1986). The other approach is to fully couple 1-D, 2-D, and/or 3-D models (Wu and
Li, 1992; Zhang, 1999) by simultenously solving all component models. Because the
fully coupling approach is more general, it is the main concern here. The discretiza-
tion and solution schemes in each subdomain usually are the same as those used in
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a single domain, so that the key issues are handling of the interfaces between subdo-
mains and arrangement of the overall calculations. These are discussed in the next
subsections.

8.2.2 Connection conditions

The solution domain can be partitioned into 1-D, 2-D, and 3-D subdomains in several
ways, depending on its shape. For a relatively narrow channel, the domain is often
divided into reaches as subdomains, as shown in Figs. 8.10(a) and (b). The 3-D model
is applied in the near-field reaches where the flow is strongly three-dimensional, the
1-D model is used in the far-field reaches, and the 2-D model is used in the reaches
between them. For a wide water body, the partition method shown in Fig. 8.10(c) is
often used instead. The 3-D model is applied only in the regions around local structures,
while the 2-D (or 1-D) model is used in the other regions or over the entire domain
providing boundary conditions for the 3-D simulation around local structures. Like the
multiblock method in Section 8.1, the 1-D, 2-D, and 3-D subdomains can be patched or
overlapping at interfaces. For simplicity, only the patched interface is considered here.

Flow and sediment transport should satisfy continuity conditions at the inter-
faces between 1-D, 2-D, and 3-D subdomains, as discussed below (Wu, 1991;
Wu and Li, 1992).

Figure 8.10 Connections among 1-D, 2-D, and 3-D subdomains.

Water level

The water levels at the interfaces should satify

Bzs,1d =
∫ B

0
zs,2ddy =

∫ B

0
zs,3ddy (8.9)
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where zs,1d, zs,2d, and zs,3d are the water levels calculated in the 1-D, 2-D, and 3-D
subdomains, respectively; B is the width of the interface; and y is the coordinate along
the interface.

Eq. (8.9) contains the conditions for connections between 1-D and depth-averaged
2-D models, between depth-averaged 2-D and 3-D models, and between 1-D and
3-D models. The connections with the width-averaged model are left to the interested
reader.

In the 3-D model that solves the full Navier-Stokes equations, the dynamic pres-
sure needs to be provided at the interfaces, whereas the 1-D and depth-averaged 2-D
models assume a hydrostatic pressure distribution there. To overcome this problem,
the interfaces should be located in the regions where the flow varies gradually and the
hydrostatic pressure assumption is valid.

Flow discharge

The flow discharges at the interfaces should satisfy the continuity condition:

Q1d =
∫ B

0
U2dh2ddy =

∫∫
©
�

u3ddydz (8.10)

where Q1d is the flow discharge calculated in the 1-D subdomain, h2d and U2d are
the flow depth and depth-averaged velocity in the 2-D subdomain, u3d is the local
velocity in the 3-D subdomain, � denotes the interface in the 3-D subdomain, and z is
the vertical coordinate.

Flow resistance

The bed shear stresses at the interfaces satisfy

χτb,1d =
∫ χ

0
τb,2ddχ =

∫ χ
0
τb,3ddχ (8.11)

where τb,1d, τb,2d, and τb,3d are the bed shear stresses calculated in the 1-D, 2-D, and
3-D subdomains, respectively; and χ is the wetted perimeter at the interfaces.

In 1-D and 2-D models, the bed shear stress is determined using either the Manning
equation or the log-law approach with the equivalent roughness height. Inserting the
Manning equations for 1-D and 2-D uniform flows into condition (8.11) yields

n2
1d = R4/3

1d

A1dU2
1d

∫ χ
0

n2
2du2

2d

h1/3
2d

dχ (8.12)

where R1d and U1d are the hydraulic radius and the section-averaged flow velocity
calculated in the 1-D reach, respectively; and n1d and n2d are the Manning coefficients
in the 1-D and 2-D models, respectively.

It can be seen from Eq. (8.12) that in order to satisfy condition (8.11) at the interface
between 1-D and 2-D reaches, n1d and n2d may have to be given different values.
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Moreover, the bed shear stress is usually determined using the wall-function
approach in the 3-D model. Thus, condition (8.11) may not be satisfied at the inter-
face between 2-D (1-D) and 3-D reaches. Correction is often needed to satisfy this
condition exactly.

Sediment discharge

The suspended-load and bed-load discharges at the interfaces should satisfy the mass
balance conditions:

Qb,1d =
∫ B

0
qb,2ddy =

∫ B

0
qb,3ddy (8.13)

Q1dC1d =
∫ B

0
U2dh2dC2ddy =

∫∫
©
�

u3dc3ddydz (8.14)

where Qb,1d, qb,2d, and qb,3d are the total and unit bed-load transport rates; and
C1d, C2d, and c3d are the section-averaged, depth-averaged, and local suspended-load
concentrations in the 1-D, 2-D, and 3-D subdomains, respectively.

Sediment transport capacity

Analogously to Eqs. (8.13) and (8.14), the bed-load and suspended-load transport
capacities at the interfaces have relations:

Qb∗,1d =
∫ B

0
qb∗,2ddy =

∫ B

0
qb∗,3ddy (8.15)

Q1dC∗,1d =
∫ B

0
U2dh2dC∗,2ddy =

∫ B

0

1
αc∗

U3dh3dcb∗,3ddy (8.16)

where Qb∗,1d, qb∗,2d, and qb∗,3d are the total and unit equilibrium bed-load transport
rates; C∗,1d, C∗,2d, and cb∗,3d are the section-averaged, depth-averaged, and local
equilibrium suspended-load concentrations in the 1-D, 2-D, and 3-D subdomains;
h3d and U3d are the flow depth and depth-averaged velocity calculated in the 3-D
subdomain; and αc∗ is the adaptation coefficient introduced in Section 2.5.

At the interface between 1-D and 2-D subdomains, assuming C∗,1d = K1d

[U3
1d/(gR1dωs)]m and C∗,2d = K2d[U3

2d/(gh2dωs)]m and substituing these relations
into Eq. (8.16) yields

K1d

K2d
=
∫ B

0 U2dh2d(U
3
2d/h2d)

mdy

Q1d(U
3
1d/R1d)

m
(8.17)

Eq. (8.17) implies that if the same formula is used to determine the suspended-
load transport capacities in 1-D and 2-D models, its coefficients need to be adjusted
to satisfy condition (8.16). At the interface between 2-D and 3-D subdomains, the
situation is even more complicated, because the 3-D model involves the equilibrium
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near-bed suspended-load concentration that is related to local flow features. This is
also true for the bed-load transport capacities at the interfaces between 1-D, 2-D, and
3-D subdomains. Therefore, conservative correction is often made to satisfy conditions
(8.15) and (8.16).

Bed change

The bed changes at the interfaces satisfy

∂Ab,1d

∂t
=
∫ B

0

∂zb,2d

∂t
dy =

∫ B

0

∂zb,3d

∂t
dy (8.18)

where ∂Ab,1d/∂t is the rate of change in bed area calculated in the 1-D subdomain;
and ∂zb,2d/∂t and ∂zb,3d/∂t are the rates of change in bed elevation calculated in the
2-D and 3-D subdomains, respectively.

At the interface between the 1-D and 2-D subdomains, bed change equations (5.36)
and (6.61) show that if the actual discharges and transport capacities of sediment sat-
isfy conditions (8.13)–(8.16) and if the adaptation length has the same value in the
1-D and 2-D domains, the bed changes automatically satisfy condition (8.18) at the
interface. However, to maintain the same cross-sectional geometry at the interface,
the redistribution of the 1-D bed area change along the channel width should result
in the same bed elevation change as that calculated in the 2-D subdomain.

However, because the adapatation length L and coefficient α are often treated as
calibrated parameters (as discussed in Sections 2.5 and 2.6) and different methods
are used to calculate the 2-D and 3-D bed-load and suspended-load transport capac-
ities, difficulties exist in satisfying condition (8.18) at the interface between 2-D and
3-D subdomains. The simplest way to solve this problem is to correct one of the bed
changes calculated in the adjoining two subdomains to make sure both have the same
value at the interface.

Bed-material gradation

The bed-material gradations at the interfaces satisfy

Bpbk,1d =
∫ B

0
pbk,2ddy =

∫ B

0
pbk,3ddy (8.19)

where pbk,1d, pbk,2d, and pbk,3d represent the bed-material gradations calculated in the
1-D, 2-D, and 3-D subdomains, respectively.

It is found from Eqs. (5.32) and (6.57) that if the mixing layer thickness has the
same value in two neighboring subdomains, satisfaction of condition (8.18) for all
size classes will guarantee satisfaction of condition (8.19).

Among all the above connection conditions, conditions (8.9), (8.10), (8.13), and
(8.14) are more essential because they are internal boundary conditions and guarantee
the continuity of flow and sediment transport between subdomains, while the other
conditions affect only locally and can be satisfied by correction. However, there is
a problem in the use of conditions (8.9), (8.10), (8.13), and (8.14). It is straightfor-
ward to convert the calculated water level, flow velocity, bed-load transport rate, and
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suspended-load concentration from 3-D to 2-D and then to 1-D subdomains using
these four conditions, but the reverse conversion is not unique. To solve this problem,
a common practice is to locate the interfaces at nearly straight prismatic channels or
regions far away from hydraulic structures so that the following approximations are
acceptable: the water level can be assumed to have a uniform lateral distribution; the
depth-averaged flow velocity can be determined by Eq. (6.17); the unit transport rates
of bed load and suspended load can be given by Eq. (6.63) at the interface from 1-D
to 2-D subdomains; and the local flow velocity can be assumed to follow the log or
power law and the local suspended-load concentration can be determined using the
Rouse or Lane-Kalinske distribution along the depth at the interface from 2-D to 3-D
subdomains. In addition, if the 2-D and 3-D grid points do not match at the interface,
interpolation and conservative correction are needed in the conversion of 2-D and
3-D quantities.

8.2.3 Calculation procedures

For steady flow in a channel shown in Figs. 8.10(a) and (b), the flow discharges
in all reaches are readily known. For simplicity, only subcritical flow is considered
here. Thus, the calculation may be conducted reach by reach from downstream to
upstream, with the water level at the outlet of each reach provided by the adjacent
downstream reach and the lateral distribution of depth-averaged flow velocity at the
inlets of 2-D and 3-D reaches determined by Eq. (6.17). However, for unsteady flow
in such a channel, the hydrodynamic equations in all reaches are related and should
usually be solved in a coupled manner. Conditions (8.9)–(8.11) should be satisfied at
the interfaces.

For sediment transport in a channel shown in Figs. 8.10(a) and (b) under both
steady and unsteady conditions, the calculation is conducted reach by reach from
upstream to downstream, with the upstream reach providing boundary conditions for
the downstream reach. Conditions (8.13)–(8.16), (8.18), and (8.19) should be satisfied
at the interfaces.

For flow and sediment transport in a wide water body shown in Fig. 8.10(c), the
governing equations in all subdomains should usually be solved together with con-
ditions (8.9), (8.10), (8.13), and (8.14) at the interfaces. In addition to the solution
procedures in individual component models, an iteration loop among subdomains
should be introduced.

The computational time steps allowed by numerical stability in 1-D, 2-D, and 3-D
models are usually different. Therefore, the overall time step should be carefully
selected. One choice is to use the shortest time step allowed by all component models.
The other choice is to use different time steps in different component models and con-
vert the quantities at interfaces in different times by interpolation. The former choice
is less efficient, whereas the latter choice is cumbersome for fully coupling unsteady
1-D, 2-D, and 3-D models.

8.2.4 Examples

Coupled 1-D/2-D/3-D models have been applied in numerous case studies. For exam-
ple, McAnally et al. (1986) used a mixed 2-D/3-D model to study the salinity intrusion
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in New York Harbor. Because most of the harbor is a well-mixed estuary, a depth-
averaged 2-D model was first used to verify the tidal propagation and overall current
velocities, and then a 3-D model was applied using the coefficients from the 2-D
verification as a starting point. This approach worked well since the 2-D model was
used in a large portion of the domain and the 3-D model was only used in a small
region where the flow was highly three-dimensional.

Wu and Li (1992) applied the coupled 1-D and depth-averaged 2-D quasi-steady
model in the study of sedimentation problems in the fluctuating backwater region of
China’s Three Gorges Project (TGP) 30 years after the dam’s construction. The study
domain included a 176 km long reach in the main stream of the Yangtze River and a
13 km long reach in the Jialing River tributary. The entire study domain was divided
into four 1-D reaches and four 2-D reaches. The simulation results were qualitatively
consistent with the physical model results.

Zhang (1999) applied a 1-D unsteady model to simulate the flow and sediment
transport in the channel and a depth-averaged 2-D unsteady model in the offshore
area near the Yellow River mouth, as shown in Fig. 8.11. The coupled simulation gave
plausible results for sediment concentration and bed deformation under the effects of
runoff, tide, and wind-driven currents and waves.

Figure 8.11 Calculated contours of sediment concentration caused by wind surges near the Yellow
River mouth: (a) flood tide and (b) ebb tide (Zhang, 1999).

8.3 INTEGRATION OF CHANNEL AND WATERSHED
MODELS

Human activities, such as urbanization, agricultural practices, vegetative clearing,
dam construction, and river restoration, affect the equilibrium of watershed-channel
systems. Prediction of these impacts at a watershed scale is very important. Tradition-
ally, this prediction has been split into two parts: watershed and channel simulations,
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which compute the rainfall-runoff and soil erosion in upland fields and the flow routing
and sediment transport in channels, respectively. This splitting has practical merits.
However, because channel and watershed are deeply interrelated, watershed and chan-
nel simulations should be integrated for a successful watershed-scale study. The two
parts in the integrated modeling system can complement each other to produce a bet-
ter prediction. Watershed simulation provides a good description of upland runoff
and soil erosion, especially for those ungauged watersheds, while channel simulation
enhances the watershed-scale study by providing more accurate flow routing, sediment
transport, and morphological evolution in channels.

8.3.1 Modeling components

A watershed model can be integrated with a 1-D, 2-D, or 3-D channel model in various
ways. Here, the integration between the channel network model CCHE1D and the
watershed model AGNPS or SWAT, as shown in Fig. 8.12, is used as an example to
illustrate the concepts and methodologies of integration, which can be readily extended
to other models. This integrated watershed-channel modeling system includes three
model components: landscape analysis, watershed simulation, and channel simulation
(Vieira and Wu, 2002), as described below.

Figure 8.12 Integration of channel and watershed models.

Landscape analysis

The landscape analysis tool used here is the Topographic PArameteriZation (TOPAZ)
program (Garbrecht and Martz, 1995), which comprehensively analyzes the raster
Digital Elevation Models (DEM) to segment watersheds, define drainage divides,
identify drainage networks, and parameterize subwatersheds.
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The Deterministic Eight-neighbor (D8) method is used in TOPAZ to determine
the landscape properties for each individual raster cell. The relative slope to each
adjacent raster cell is calculated, and the flow is assigned in the direction of the
steepest slope. After the flow directions are established, upstream drainage areas
are determinedfor each cell. Channels are then defined as those cells with upstream
drainage areas greater than a critical source area (CSA). The CSA represents the
drainage area necessary to produce enough runoff to form a permanent channel.
However, if only the CSA is considered, it is possible to generate a few very short
exterior (source) channels. TOPAZ thus provides an option to remove these spurious
channels by applying a minimum source channel length (MSCL). The defined chan-
nels are further processed to determine the Strahler orders and assign identification
numbers in the channel network. The subwatersheds draining into source nodes and
into the left and right banks of each channel are also identified. The connectivity of
the derived channels and subwatersheds is established and a variety of properties and
parameters of them are deduced, which will be used in the watershed and channel
simulations.

Watershed simulation

The digital representation of the delineated subwatersheds can be used as computa-
tional elements by one of the existing watershed models, such as AGNPS (Agricultural
Non-Point Source model, Bingner and Theurer, 2001) and SWAT (Soil and Water
Assessment Tool, Arnold et al., 1993). The flow, sediment and pollutant loads in each
subwatershed are computed continuously for a series of storm events.

The basic model components in AGNPS and SWAT are hydrology, erosion, sedi-
ment transport, and chemical transport. In the hydrology component, runoff volume
is calculated by the SCS (U.S. Soil Conservation Service) curve number procedure.
Peak flow rate is estimated using empirical equations, which take into account the
effects of drainage area, channel slope, runoff volume, and watershed length-width
ratio. AGNPS uses the Revised Universal Soil Loss Equation (RUSLE) to calculate sed-
iment yield, while SWAT uses the Modified Universal Soil Loss Equation (MUSLE),
in which the rainfall factor is replaced with a runoff factor to predict sediment yield
on an event basis.

The outputs of the watershed model, which consist of daily water runoff and
sediment loads for all subwatersheds, are transferred to the CCHE1D channel network
model as inflow boundary conditions.

Channel simulation

The flow and sediment transport in the channel network are simulated using the 1-D
model CCHE1D (Wu and Vieira, 2002), which is described in Sections 5.2.2 and
5.3.3. The flow and sediment transport equations are discretized using the Preiss-
mann implicit scheme. The discretized flow equations are solved using the Thomas
algorithm, while the discretized sediment transport equations are solved using a direct
method. The runoff and sediment loads from upland fields calculated by the watershed
model are used as inflow discharges at the source nodes or as side discharges at the
internal nodes in the channel network. The effects of in-stream hydraulic structures are
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taken into account by solving the corresponding stage-discharge equations in the flow
model. Bank toe erosion and mass failure are simulated using Osman and Thorne’s
(1988) method. The eroded bank materials are treated as side discharge in the sediment
transport equations. The outputs of the channel model are the runoff and sediment
yields from both uplands and channels, channel morphological changes, etc.

8.3.2 Integration approaches

The three modeling components (landscape analysis, watershed simulation, and chan-
nel simulation) can be integrated in several ways. The first approach is to combine
them into a single modeling system. Such an integrated system is very convenient for
data transfer and manipulation but very expensive to develop. The second approach
is to develop a separate subsystem for each modeling component, with common data
file formats being set up for data transfer between the modeling components. The
third approach is to develop two subsystems: one combines the landscape analysis
and channel simulation, and the other combines the landscape analysis and watershed
simulation. Data transfer is still needed between the two subsystems. In order to make
the two subsystems compatible, the landscape analysis tools used by them should be
identical or very similar. The integration of CCHE1D and AGNPS (or SWAT) adopts
the third approach (Vieira and Wu, 2002).

8.3.3 Scale issues

Time scale

The watershed model uses a daily time step, while the channel model employs a time
step in the order of minutes. It is not efficient to use a common time step for both com-
ponents in the integrated modeling system. The more widely adopted approach uses
different time steps. However, it is needed to convert the daily runoff and sediment
loads calculated by the watershed model to continuous hydrographs for channel sim-
ulation. For runoff, a triangular or gamma-function hydrograph shown in Fig.8.13 is
often used. To define the triangular or gamma-function hydrograph, the base flow dis-
charge (Q0), peak flow discharge (Qp), starting time (t0), and time to peak (tp) should
be provided. The duration (td) is additionally required for the triangular hydrograph,
and a shape factor for the gamma-function hydrogragh. These parameters depend

Figure 8.13 Typical hydrographs: (a) triangular and (b) gamma-function.
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on precipitation, drainage area, land use, land cover, and soil properties. They are
determined by the watershed model.

The daily sediment loads from upland fields can also be converted to the triangular or
gamma-function sedigraphs, by assuming the sediment discharge to be proportional
to the flow discharge. In addition, the watershed model often gives only fractional
loads for clay, silt, and sand. These three size classes perhaps are too few for channel
simulation and need to be subdivided into more size classes.

Space scale

Because the watershed and channel models have different computational domains,
a space scale problem exists in the integrated simulation. Fig. 8.14(a) shows the
configuration commonly used in the watershed model, in which a channel usually
starts from a source node or a junction node and ends at the watershed outlet or
another junction node. The subwatersheds are segmented corresponding to the source
nodes and to the left and right sides of channels. The runoff and sediment loads at
each subwatershed are simulated. However, the channels used in the watershed model
are usually too long to be used as computational elements in the channel model and
thus should be subdivided into shorter reaches by adding more computational points,
as shown in Fig. 8.14(b). This requires subdivision of the runoff and sediment loads
from the subwatersheds to the reaches.

Figure 8.14 Computational domains in watershed and channel models.

There are three ways to subdivide the runoff and sediment loads at subwatersheds.
One is to put all loads on the source node or the junction node, i.e., the first node
of each channel. However, this approach may not be accurate enough. The second
way is to distribute the loads uniformly along the channel length. The third way
is to define the subcatchment for each reach and then distribute the loads accord-
ing to the subcatchment area, as shown in Fig. 8.14(b). The third way is the most
reasonable.



344 Computational River Dynamics

8.3.4 Application to Goodwin Creek Watershed

The integrated watershed-channel simulation was applied in the study of sediment
transport in the Goodwin Creek Experimental Watershed established in 1977 as
a prototype of the much larger Demonstrate Erosion Control (DEC) watersheds
in the US. The drainage area above the watershed outlet was 21.3 km2. Most of
the channels were ephemeral, with perennial flows occurring only in the lower
reaches of the watershed. The sediment transported in the channels ranged from silt
(<0.062 mm) to sand to gravel (<65 mm). TOPAZ was used to delineate a network

Figure 8.15 Thalweg changes in the lower reach of Goodwin Creek.

Figure 8.16 Sediment yields at the outlet of Goodwin Creek Watershed.
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of 19 channels and 138 subbasins from a 30-meter resolution DEM, as illustrated in
Fig. 8.12.

Bingner et al. (1997) used SWAT to simulate the runoff and sediment loads in the
watershed for 1192 storm events from 1978 to 1995. Wu and Vieira (2002) computed
the flow routing, sediment transport, and morphological evolution in the channels
using CCHE1D, with the watershed model results given as inputs. The channel simu-
lation considered the effects of ten in-stream measuring flumes and four box culverts.
Fig. 8.15 shows the calculated and measured thalweg changes in the lower 3-km reach
upstream of the watershed outlet (flume No. 1) from 1978 to 1992. The model repro-
duced well the patterns of erosion and deposition. Fig. 8.16 shows the calculated and
measured sediment yields at the watershed outlet. The level of observed agreement
is good.





Chapter 9

Simulation of dam-break f luvial
processes

Flood due to dam failure can cause catastrophic damage of properties and loss of life.
Prediction of dam-break flow and the associated sediment transport is very impor-
tant for dam operation, flood control, disaster mitigation, water infrastructure safety
assessment, etc. This chapter covers the numerical algorithms developed for simulation
of dam-break and overtopping flows over fixed and movable beds.

9.1 SIMULATION OF DAM-BREAK FLOW
OVER FIXED BEDS

Although the St. Venant (or shallow water) equations were derived based on the
hydrostatic pressure assumption, many studies have revealed that these equations are
approximately applicable to dam-break flow over fixed beds. The 1-D St. Venant
equations (5.1) and (5.2) are written in conservative form as follows:

∂�

∂t
+ ∂F(�)
∂x

= S(�) (9.1)

where �, F(�), and S(�) represent the vectors of unknown variables, fluxes, and
source terms:

� =
[

h

q

]
, F(�) =

[
q

q2/h + gh2/2

]
, S(�) =

[
0

gh(S0 − Sf )

]
(9.2)

where q is the flow discharge per unit channel width; S0 is the bed slope; and Sf is the
friction slope: Sf = n2q|q|/h10/3.

The convection term in Eq. (9.1) can be rewritten as

∂F(�)
∂x

= ∂F(�)
∂�

∂�

∂x
= M

∂�

∂x
(9.3)

where M is the Jacobian matrix:

M =
(

0 1

−q2/h2 + gh 2q/h

)
(9.4)
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Note that the use of primary variables h and q in Eq. (9.2) is restricted in rectangular
channels. However, this arrangement provides convenience for extension of a 1-D
algorithm to the 2-D model.

The 2-D shallow water equations (6.1)–(6.3) are written in the following conserva-
tive form:

∂�

∂t
+ ∂F(�)
∂x

+ ∂G(�)
∂y

= S(�) (9.5)

where �, F(�), G(�), and S(�) represent the vectors of unknown variables, fluxes,
and source terms:

� =
⎡⎢⎣ h

hUx

hUy

⎤⎥⎦ , F(�) =
⎡⎢⎣ hUx

hU2
x + gh2/2

hUxUy

⎤⎥⎦ ,

G(�) =
⎡⎢⎣ hUy

hUxUy

hU2
y + gh2/2

⎤⎥⎦ , S(�) =
⎡⎢⎣ 0

gh(S0x − Sfx)

gh(S0y − Sfy)

⎤⎥⎦ (9.6)

The stress effects are usually omitted in Eq. (9.5) for dam-break flow. The convection
terms can be rewritten as

∂F(�)
∂x

= A
∂�

∂x
,
∂G(�)
∂y

= B
∂�

∂y
(9.7)

where A and B are the Jacobian matrices:

A =
⎡⎢⎣ 0 1 0

gh − U2
x 2Ux 0

−UxUy Uy Ux

⎤⎥⎦ , B =
⎡⎣ 0 0 1

−UxUy Uy Ux

gh − U2
y 0 2Uy

⎤⎦ (9.8)

Many traditional numerical schemes, such as the Preissmann (1961) scheme,
designed for solving the 1-D shallow water equations in common flow situations,
are insufficient for dam-break flow simulation, producing non-physical oscillations.
Numerous numerical schemes based on finite volume, finite difference, and finite ele-
ment methods have been developed recently for simulation of dam-break flow. As an
example, a finite volume approach is introduced here, which uses the non-staggered
grid shown in Fig. 9.1 for the 1-D problem. The computational domain is divided
into I segments. Each segment is a control volume (cell) embraced by two faces. The
primary variables h and q are defined at cell centers and represent the average values
over each cell, while the fluxes are defined at cell faces.

Integrating Eq. (9.1) over the ith control volume yields∫ xi+1/2

xi−1/2

∂�

∂t
dx +

∫ xi+1/2

xi−1/2

∂F(�)
∂x

dx =
∫ xi+1/2

xi−1/2

S(�)dx (9.9)
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Figure 9.1 1-D finite volume mesh.

Applying the Green theorem to Eq. (9.9) and using the Euler scheme for the time
derivative results in the following discretized equation:

�n+1
i = �n

i − �t
�xi
(Fn

i+1/2 − Fn
i−1/2)+�tSn

i (9.10)

where Fn
i+1/2 is the intercell flux at face i + 1/2,�xi is the length of the ith control

volume, �t is the time step, and the superscript n is the time step index.
A rectangular (quadrilateral) or triangular mesh may be used in the numerical

solution of the 2-D shallow water equations. For simplicity, the rectangular mesh
shown in Fig. 9.2 is used here. Integrating Eq. (9.5) over the 2-D control volume
numbered as (i, j) and using the Euler scheme for the time derivative yields the following
discretized equation:

�n+1
i,j = �n

i,j − �t
�xi,j

(Fn
i+1/2,j − Fn

i−1/2,j)−
�t
�yi,j

(Gn
i,j+1/2 − Gn

i,j−1/2)+�tSn
i,j (9.11)

where �xi,j and �yi,j are the lengths of the control volume in the x- and y-directions,
respectively.

Figure 9.2 2-D finite volume mesh.
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The Euler scheme for the time-derivative terms results in simple, explicit time-
marching algorithms in Eqs. (9.10) and (9.11), even though it is only first-order
accurate in time. The accuracy can be enhanced by applying the MacCormack scheme
(Fennema and Chaudhry, 1990), Range-Kutta method, etc.

To complete the discretization in Eqs. (9.10) and (9.11), numerical schemes are
needed to evaluate the intercell fluxes. The often used schemes are the central differ-
ence scheme and MacCormack scheme with artificial diffusion fluxes (e.g., Fennema
and Chaudhry, 1990; Molls and Chaudhry, 1995), approximate Riemann solvers
(Godunov, 1959; Roe, 1981; Osher and Solomon, 1982; Harten et al., 1983; Toro
et al., 1994), TVD (Total Variation Diminishing) schemes (Harten, 1983; Yee, 1987;
Garcia-Navarro et al., 1992; Wang et al., 2000), and upwind flux schemes (Ying et al.,
2004). Some of them are introduced briefly below.

9.1.1 Central difference scheme with artificial
diffusion f lux

If the intercell fluxes are evaluated using the central difference scheme, spurious oscilla-
tions may appear in the solution near regions with sharp gradients and discontinuities
(see Molls and Chaudhry, 1995). To eliminate these oscillations, an artificial diffusion
(and/or dissipation) flux is usually added, thus yielding

Fn
i+1/2 = 1

2
(Fn

i + Fn
i+1)+ Dn

i+1/2 (9.12)

where Dn
i+1/2 is the artificial diffusion flux. Various formulations for Dn

i+1/2 can be
found in the literature. The one suggested by Martinelli and Jameson (1988) consists
of second-order and fourth-order terms:

Dn
i+1/2 = ρ(M)i+1/2[−ε(2)i+1/2(�

n
i+1 − �n

i )+ ε(4)i+1/2(�
n
i+2 − 3�n

i+1 + 3�n
i − �n

i−1)]
(9.13)

where ρ(M) is the spectral radius of the Jacobian matrix M, defined as ρ(M) =
|q|/h +√gh; and ε(2)i+1/2 and ε(4)i+1/2 are non-linear functions:

ε
(2)
i+1/2 = κ(2)max (χi,χi+1), ε

(4)
i+1/2 = max [0, (κ(4) − ε(2)i+1/2)] (9.14)

with κ(2) and κ(4) being coefficients, and χi = |hi−1 − 2hi + hi+1|/(hi−1 + 2hi + hi+1).
In the 2-D case, in analogy to Eq. (9.12), the intercell fluxes are evaluated as

Fn
i+1/2,j = 1

2
(Fn

i,j + Fn
i+1,j)+ ρ(A)i+1/2,j[−ε(2)i+1/2,j(�

n
i+1,j − �n

i,j)

+ ε(4)i+1/2,j(�
n
i+2,j − 3�n

i+1,j + 3�n
i,j − �n

i−1,j)] (9.15a)
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Gn
i+1/2, j = 1

2
(Gn

i, j + Gn
i, j+1)+ ρ(B)i, j+1/2[−ε(2)i,j+1/2(�

n
i,j+1 − �n

i,j)

+ ε(4)i,j+1/2(�
n
i,j+2 − 3�n

i,j+1 + 3�n
i,j − �n

i,j−1)] (9.15b)

where ρ(A) and ρ(B) are the spectral radii of matrices A and B, respectively.

9.1.2 Approximate Riemann solvers

For the 1-D problem, Godunov (1959) suggested determining the intercell fluxes in
Eq. (9.10) as

Fi+1/2 = F(�i+1/2(0)) (9.16)

where �i+1/2(0) is the exact similarity solution �i+1/2(x/t) of the Riemann problem

⎧⎪⎪⎨⎪⎪⎩
∂�

∂t
+ ∂F(�)
∂x

= 0

�(x, 0) =
{

�L, if x < 0
�R, if x > 0

(9.17)

evaluated at x/t = 0.
Solving the exact Riemann problem (9.17) is rather complicated. The frequently

used methods are approximate Riemann solvers. Many of them were developed in
computational aerodynamics (Godunov, 1959; Roe, 1981; van Leer, 1982; Harten
et al., 1983; Osher and Solomon, 1982; etc.) and later adopted in free-surface flow
simulation (Glaister, 1988; Alcrudo and Garcia-Navarro, 1993; Jha et al., 2000; etc.).
Here, the HLL and HLLC approximate Riemann solvers are introduced as examples.
More Riemann solvers were summarized by Toro (2001).

Harten, Lax, and van Leer (HLL, 1983) suggested an approximate Riemann solver
by directly finding an approximation to the intercell flux (9.16). The HLL approach
assumes estimates SL and SR for the smallest and largest signal velocities in the solution
of the Riemann problem (9.17) with data �L = �n

i , �R = �n
i+1 and corresponding

fluxes FL = F(�L), FR = F(�R), as shown in Fig. 9.3. The following HLL numerical
flux is derived by applying the integral form of the conservation laws in appropriate
control volumes:

Fi+1/2 =

⎧⎪⎪⎨⎪⎪⎩
FL if SL ≥ 0

Fhll ≡ SRFL − SLFR + SRSL(�R − �L)

SR − SL
if SL ≤ 0 ≤ SR

FR if SR ≤ 0

(9.18)
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Figure 9.3 Wave structure assumed in HLL approach.

There are several ways to determine the wave speed estimates SL and SR. One choice
was suggested by Toro (2001) as follows:

SL = uL − aLλL, SR = uR + aRλR (9.19)

where uK(K = L, R) is the velocity, aK is the celerity, and λK is given as

λK =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

1
2
(h∗ + hK)h∗

h2
K

if h∗ > hK

1 if h∗ ≤ hK

(9.20)

where h∗ is an estimate for the exact solution of h in the star region and can be
evaluated as

h∗ = 1
2
(hL + hR)− 1

4
(uR − uL)(hL + hR)/(aL + aR) (9.21)

The HLL approximate Riemann solver ignores intermediate waves, such as shear
waves and contact discontinuities, which arise when scalar transport equations are
added to the basic shallow water equations. Toro et al. (1994) proposed a modification
of the HLL scheme to account for the influence of intermediate waves. This new
approach is called the HLLC Riemann solver. Fig. 9.4 illustrates the assumed wave
structure in the HLLC scheme. S∗ denotes the estimate of the speed of the middle wave.
In the exact Riemann solver, S∗ = u∗. Unlike the case in Fig. 9.3, there are two distinct
fluxes in the star region in Fig. 9.4. The HLLC numerical flux is thus determined by

Fi+1/2 =

⎧⎪⎪⎨⎪⎪⎩
FL if SL ≥ 0
F∗L ≡ FL + SL(�∗L − �L) if SL ≤ 0 ≤ S∗
F∗R ≡ FR + SR(�∗R − �R) if S∗ ≤ 0 ≤ SR

FR if SR ≤ 0

(9.22)
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Figure 9.4 HLLC Riemann solver for x-split 2-D shallow water equations.

with the states �∗L and �∗R given by

�∗K = hK

(
SK − uK

SK − S∗

)⎛⎜⎝ 1

S∗
φK

⎞⎟⎠ (9.23)

where φ is the variable representing the scalar quantity.
The wave speed estimates SL and SR are given by Eq. (9.19). The estimate S∗ for the

middle wave speed can be provided as the particle speed u∗ that is estimated below:

u∗ = 1
2
(uL + uR)− (hR − hL)(aL + aR)/(hL + hR) (9.24)

Riemann solvers for the 2-D problem can also be established, but they are usually
very complicated. The often used method is to split the 2-D shallow water equations
(9.5) into two augmented 1-D equations along the x- and y-directions as

⎧⎪⎪⎨⎪⎪⎩
∂�

∂t
+ ∂F(�)
∂x

= Sx(�)

∂�

∂t
+ ∂G(�)

∂y
= Sy(�)

(9.25)

where Sx and Sy are the source terms split from S.
Applying the finite volume discretization scheme (9.10) for Eq. (9.25) yields

�
n+1/2
ij = �n

ij − �t
�xi,j

(Fn
i+1/2, j − Fn

i−1/2, j)+�tSn
xi (9.26a)

�n+1
ij = �

n+1/2
ij − �t

�yi,j
(Gn+1/2

i,j+1/2 − Gn+1/2
i,j−1/2)+�tSn+1/2

yi (9.26b)
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The computation procedure consists of two sweeps. In the first sweep, Eq. (9.26a) is
solved along the i-direction to obtain �

n+1/2
ij from �n

ij; in the second sweep, Eq. (9.26b)

is solved along the j-direction to obtain �n+1
ij from �

n+1/2
ij . Both sweeps have a

common time step, �t. In each sweep, Eq. (9.22) can be applied to evaluate the
intercell fluxes F and G.

The aforementioned splitting scheme is first-order accurate in time. More first-
and second-order accurate splitting schemes can be found in Toro (2001) and other
references.

9.1.3 TVD schemes

9.1.3.1 TVD schemes for scalar problems

Consider a one-dimensional function φ in the domain shown in Fig. 9.1. The total
variation at time level tn is defined as

TV(φn) =
I−1∑
i=1

|φn
i+1 − φn

i | (9.27)

A numerical scheme φn+1
i = H(φn

i−k, . . . ,φn
i , . . . ,φn

i+l) is said to be Total Variation
Diminishing (TVD) if

TV(φn+1) ≤ TV(φn) ∀n (9.28)

A TVD scheme can preserve the monotonicity of the solution. This means that if
the data {φn

i } is monotone, the solution {φn+1
i } by a TVD scheme is monotone in the

same sense (Harten, 1983).
Suppose that numerical schemes written as

φn+1
i = φn

i − Ci−1/2(φ
n
i − φn

i−1)+ Di+1/2(φ
n
i+1 − φn

i ) (9.29)

are used to solve the following equation for the scalar hyperbolic conservation law:

∂φ

∂t
+ ∂f (φ)
∂x

= 0 (9.30)

where f (φ) is the flux. According to Harten (1983), the sufficient conditions for any
scheme written as Eq. (9.29) to be TVD are

Ci−1/2 ≥ 0, Di+1/2 ≥ 0, and 0 ≤ Ci−1/2 + Di+1/2 ≤ 1 (9.31)

Harten (1983), Sweby (1984), and Yee (1987) developed a variety of TVD schemes
that respect conditions (9.31). Most of the TVD schemes are essentially constructed
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by combining high-order and low-order fluxes with a limiter imposed to constrain the
gradients of flux functions and to prevent the formation of local extrema. One typical
approach is given below.

Integrating Eq. (9.30) over the ith control volume in Fig. 9.1 yields the following
general conservative scheme:

φn+1
i = φn

i − �t
�xi
(f n

i+1/2 − f n
i−1/2) (9.32)

The intercell flux f n
i+1/2 is constructed as (see Wang et al., 2000)

f n
i+1/2 = 1

2

{
f n
i + f n

i+1 −
[
�t
�xi
(ai+1/2)

2ϕ(r)+ (1 − ϕ(r))ψ(ai+1/2)

]
�φi+1/2

}
(9.33)

where �φi+1/2 = φn
i+1 − φn

i ; ai+1/2 is the characteristic speed, defined as ai+1/2 =
�fi+1/2/�φi+1/2 when �φi+1/2 	= 0 and ai+1/2 = a(φi) when �φi+1/2 = 0; and
ψ(ai+1/2) is the dissipative function, defined by Harten (1983) as

ψ(ai+1/2) =
{ |ai+1/2|, |ai+1/2| ≥ ε

[(ai+1/2)
2 + ε2]/2ε or ε, |ai+1/2| < ε (9.34)

where ε is a small positive number.
The function ϕ(r) in Eq. (9.33) is a limiter, with r defined as

r = [|ai+1/2−σ | −�t(ai+1/2−σ )2/�xi−σ ]�ϕi+1/2−σ
[|ai+1/2| −�t(ai+1/2)2/�xi]�ϕi+1/2

, σ = sign(ai+1/2) (9.35)

The limiter function ϕ(r) is essential to obtain monotonic solutions. Many limiters
have been published in the literature. For example, ϕ(r) = 0 yields the upwind scheme
that is a first-order TVD scheme. The commonly used limiters in second-order TVD
schemes include Roe’s minmod limiter

ϕ(r) = min mod(1, r) (9.36)

van Leer’s monotonic limiter

ϕ(r) = r + |r|
1 + |r| (9.37)

van Leer’s MUSCL limiter

ϕ(r) = max [0, min (2r, 2), 0.5(1 + r)] (9.38)

and Roe’s superbee limiter

ϕ(r) = max [0, min (2r, 1), min (r, 2)] (9.39)
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9.1.3.2 TVD schemes for St. Venant equations

Many investigators, e.g., Garcia-Navapro et al. (1992) and Wang et al. (2000), have
extended TVD schemes to solve 1-D and 2-D shallow water equations. Here, the
method of Wang et al. (2000) is presented.

For the 1-D problem governed by Eq. (9.1), the eigenvalues of M in Eq. (9.4) are

a1 = q/h −
√

gh, a2 = q/h +
√

gh (9.40)

and the corresponding right eigenvectors are

R1 =
(

1
a1

)
, R2 =

(
1
a2

)
(9.41)

Define ��i+1/2 = �n
i+1 − �n

i , which can be written as

��i+1/2 =
2∑

l=1

αl
i+1/2Rl

i+1/2 (9.42)

where αl
i+1/2 represents the component of ��i+1/2 in the coordinate system Rl

i+1/2.
In analogy to Eq. (9.33), the following intercell flux used in the scheme (9.10) for

solving Eq. (9.1) can be constructed by using Eq. (9.42):

Fn
i+1/2 = 1

2

⎧⎨⎩Fn
i + Fn

i+1

−
2∑

l=1

[
�t
�xi
(al

i+1/2)
2ϕ(r)+ (1 − ϕ(r))ψ(al

i+1/2)

]
αl

i+1/2Rl
i+1/2

⎫⎬⎭
(9.43)

For the 2-D problem, Wang et al. (2000) split Eq. (9.5) into two augmented 1-D
systems similar to Eq. (9.25) along the x- and y-directions. These two 1-D systems are
discretized using a scheme similar to Eq. (9.43) except that the summation is increased
from two to three terms corresponding to the right eigenvectors of matrices A and B
in Eq. (9.8).

9.1.4 WAF schemes

The weighted average flux (WAF) method was first proposed for the Euler equations
by Toro (1989) and then applied to the shallow water equations by Toro (1992)
and others. It is a second-order extension of the Godunov upwind method and
may also be interpreted as a Riemann-problem-based extension of the Lax-Wendroff
method.
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For a wave structure like Fig. 9.3 or 9.4, the basic WAF method gives the intercell
flux as

Fi+1/2 =
N+1∑
k=1

wkF(k)i+1/2 (9.44)

where wk is the weight given by

wk = 1
2
(ck − ck−1) (9.45)

with ck as the Courant number for wave k, ck = Sk�t/�x, c0 = −1, and cN+1 = 1.
Here, Sk is the speed of wave k, and N is the number of conservation laws or the
number of waves in the solution of the Riemann problem. F(k)i+1/2 is the value of the

flux vector F(�(k)i+1/2) in the interval k of length wk shown in Fig. 9.5, and can be
determined using Eq. (9.18) or (9.22). Inserting Eq. (9.45) into Eq. (9.44) yields an
alternative expression:

Fi+1/2 = 1
2
(Fi + Fi+1)− 1

2

N∑
k=1

ck�F(k)i+1/2 (9.46)

where �F(k)i+1/2 = F(k+1)
i+1/2 − F(k)i+1/2 is the flux jump across wave k.

For a linear convection equation, the WAF scheme (9.46) reproduces identically the
Lax-Wendroff method, which is second-order accurate in space and time. Spurious
oscillations in the vicinity of high gradients are expected. Such non-physical oscillations
can be avoided by enforcing the TVD constraint on the scheme. The TVD version of
the WAF scheme is

Fi+1/2 = 1
2
(Fi + Fi+1)− 1

2

N∑
k=1

sign(ck)Ak�F(k)i+1/2 (9.47)

Figure 9.5 Weights in the WAF scheme.
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where Ak is a WAF limiter function. There are various choices for Ak, such as

Ak(r, |ck|) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if r ≤ 0
1 − 2(1 − |ck|)r if 0 < r ≤ 1/2
|ck| if 1/2 < r ≤ 1
1 − (1 − |ck|)r if 1 < r ≤ 2
2|ck| − 1 if r > 2

(9.48)

Ak(r, |ck|) =
{

1 if r ≤ 0
1 − 2(1 − |ck|)r/(1 + r) if r > 0

(9.49)

Ak(r, |ck|) =
{

1 if r ≤ 0
1 − (1 − |ck|)r(1 + r)/(1 + r2) if r > 0

(9.50)

Ak(r, |ck|) =
⎧⎨⎩

1 if r ≤ 0
1 − (1 − |ck|)r if 0 < r ≤ 1
|ck| if r > 1

(9.51)

where r is the ratio of the upwind change to the local change in a scalar quantity f :

r =
⎧⎨⎩�f (k)i−1/2/�f (k)i+1/2 if ck > 0

�f (k)i+3/2/�f (k)i+1/2 if ck < 0
(9.52)

with �f (k)i+1/2 = f (k)i+1 − f (k)i . For the x-split two-dimensional shallow water equations,
f = h for the non-linear waves, and f = v, the tangential velocity component, for the
shear wave. For other passive scalars, f is set as the corresponding state quantities.

The WAF limiter functions (9.48)–(9.51) are entirely equivalent to the conven-
tional superbee limiter, van Leer’s limiter, van Albada’s limiter, and minbee limiter,
respectively (Toro, 2001).

The numerical schemes introduced above have been tested extensively in the litera-
ture. For example, the performances of the central difference scheme (9.12), the HLL
scheme (9.18), the TVD scheme (9.43) with van Leer’s monotonic limiter, and the
TVD WAF scheme (9.47) with van Albada’s limiter are demonstrated in the following
simulation of dam-break flow in a straight rectangular channel with a horizontal bed.
The channel is 1200 m long, and a dam is located at 500 m from the upstream end. The
water in the reservoir is 10 m deep, while the initial downstream water depth is given
as 1 and 0.001 m to test the schemes in cases of wet and dry beds. The dam is assumed
to be instantaneously, completely removed. The channel is set to be sufficiently wide
so that the flow is uniform along the transverse direction and an analytical solution in
the frictionless case can be derived (see Graf and Altinakar, 1998). The Manning n is
set as 0. The longitudinal grid length is 10 m. For the central difference scheme with
artificial diffusion flux, a time step of 0.1 s is used in both wet- and dry-bed cases. For
the HLL, TVD, and TVD WAF schemes, the time step is 0.6 s for the wet-bed case
and 0.3 s for the dry-bed case. Figs. 9.6 and 9.7 compare the calculated water surface
profiles with the analytical solutions at 30 s after dam failure. It can be seen that the
central difference scheme (9.12) with artificial diffusion flux has errors near the vicinity



Figure 9.6 Dam-break waves over a wet bed at an elapsed time of 30 s.

Figure 9.7 Dam-break waves over a dry bed at an elapsed time of 30 s.
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of sharp gradients, which are essentially affected by the coefficients κ(2) and κ(4).
The HLL scheme (9.18) provides a smooth solution with first-order accuracy. The
TVD scheme (9.43) and the TVD WAF scheme (9.47), which are second-order
accurate, provide better results than the central difference scheme and the HLL scheme.

9.1.5 Upwind flux schemes

Ying et al. (2004) proposed an upwind flux scheme to solve the St. Venant equations.
To handle the 1-D dam-break flow in natural rivers, the flow area A and discharge
Q are used as primary variables. The depth gradient and bed slope are combined as
the water surface gradient, which is arranged into the source term. This treatment
can avoid the use of different discretization schemes for the depth gradient and bed
slope terms. The governing equations are still written as Eq. (9.1) with the unknown
variables, fluxes, and source terms:

� =
[

A
Q

]
, F(�) =

[
Q

Q2/A

]
, S(�) =

⎡⎣ 0

−gA
∂zs

∂x
− g

n2Q|Q|
AR4/3

⎤⎦
(9.53)

The mesh system is the same as that shown in Fig. 9.1. Integrating Eq. (9.1) over
the ith control volume yields the discretized equation (9.10). The intercell flux Fn

i+1/2
is evaluated using the first-order upwind method:

Fn
i+1/2 =

[
Qn

i+k

(Qn
i+k)

2/An
i+k

]
(9.54)

where k = 0, if Qi > 0 and Qi+1 > 0; k = 1, if Qi < 0 and Qi+1 < 0; and k = 1/2
for others. Here, the subscript i + 1/2 represents the average of values at grid points
i and i + 1.

The source term in the momentum equation is evaluated as

Si(Q) = −gAn+1
i

[
w1

zn+1
s,i+1−k − zn+1

s,i−k

xi+1−k − xi−k
+ w2

zn+1
s,i+k − zn+1

s,i−1+k

xi+k − xi−1+k

]
− g

n2
i Qn

i |Qn
i |

An
i (R

n
i )

4/3 (9.55)

where w1 and w2 are weighting factors. If w1 = 0.5 and w2 = 0.5, Eq. (9.55)
is equivalent to the central difference scheme for water surface gradient. This may
result in non-physical oscillations. In order to improve numerical accuracy, these
weighting factors are related to the Courant number. One of the relations suggested
by Ying et al. is

w1 = 1 − �t
2
(|Ui+1−k| + |Ui−k|)/(xi+1−k − xi−k)

w2 = �t
2
(|Ui+k| + |Ui−1+k|)/(xi+k − xi−1+k) (9.56)

where U is the flow velocity.
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The performance of the method of Ying et al. is demonstrated in the simulation of
the previous dam-break flow cases shown in Figs. 9.6 and 9.7. The computational time
step is 0.6 and 0.3 s for the wet- and dry-bed cases, respectively. The Ying et al. scheme
and the central difference scheme for water surface gradient are used, i.e., either the
weighting factors w1 and w2 are determined with Eq. (9.56) or both are set as 0.5.
Fig. 9.8 compares the numerical and analytical solutions at 30 s after dam failure. The
Ying et al. scheme for water surface gradient provides better results than the central
difference scheme.

The method of Ying et al. is only first-order accurate, but it is simple and robust.
Extension of it to the solution of the 2-D problem (9.5) can be found in Ying and
Wang (2004).

Figure 9.8 Dam-break waves at 30 s simulated using first-order upwind flux scheme with various
schemes for water surface gradient.

9.1.6 Stability and accuracy of explicit and implicit
schemes

The aforementioned central difference scheme with artificial diffusion fluxes, approx-
imate Riemann solvers, TVD schemes, and upwind flux schemes are built in explicit
algorithms, and thus, the time step should be limited to satisfy the Courant-
Friedrichs-Lewy (CFL) stability condition. In general, the CFL condition for the 1-D
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problem is

|q/h| +√gh
�x

�t < 1 (9.57)

and for the 2-D problem is(
|Ux| +√gh
�x

+ |Uy| +√gh
�y

)
�t < 1 (9.58)

However, the stability of each numerical scheme also may rely on its own formu-
lation, and the longest time step allowed for a stable solution varies among different
schemes.

To relax the restriction on time step imposed by the CFL conditions, Molls and
Chaudhry (1995) adopted the ADI method and Delis et al. (2000) established implicit
TVD schemes for 1-D St. Venant equations. It has been found that longer time steps can
be used in implicit algorithms, and the computational cost may be reduced. However,
implicit schemes may induce numerical diffusion. This is demonstrated in the following
example using the SIMPLEC algorithm

Figure 9.9 Dam-break waves at 30 s simulated using SIMPLEC.
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The SIMPLEC algorithm described in Section 6.1.3.1 is developed primarily to
simulate common open-channel flows, but its superior numerical stability makes it
feasible for simulation of dam-break flow. This is tested by simulating the previ-
ous wet- and dry-bed cases shown in Figs. 9.6 and 9.7. To investigate the effect
of time step on the simulation results, the time step is set as 2.0 and 0.5 s for
the wet-bed case and 0.75 and 0.15 s for the dry-bed case. The hybrid (Spalding,
1972) and SOUCUP (Zhu and Rodi, 1991) schemes are used for the convection
terms. The results are shown in Fig. 9.9. The model reproduces reasonably well
the upstream negative wave and downstream positive wave. The hybrid scheme pro-
duces slightly larger errors in water level than the SOUCUP scheme. One can see
that a smaller time step gives a better prediction. As the time step increases, the
wave front becomes less sharp. This is due to numerical diffusion, which is partic-
ularly significant near regions with sharp gradients. This was also observed in the
implicit method of Delis et al. (2000). There is a trade-off between the time step
length (i.e., computational efficiency) and numerical accuracy when implicit algo-
rithms are used in the simulation of dam-break flow where discontinuities and sharp
gradients exist.

9.2 SIMULATION OF DAM-BREAK FLOW
OVER MOVABLE BEDS

Simulation of dam-break flow over movable beds is much more challenging than that
over fixed beds. One of the problems encountered in the movable-bed case is that
the sediment concentration is so high and the bed varies so rapidly that the effects of
sediment transport and bed change on the flow cannot be ignored. Another problem
is that the sediment transport in the higher flow regime, such as dam-break flow, is
little understood, and the existing sediment transport formulas may not be applicable.

Ferreira and Leal (1998), Fraccarollo and Armanini (1998), and Yang and Greimann
(1999) established movable-bed dam-break flow models. However, some of these
models ignore the effects of sediment transport and bed change on the flow, and
some use the assumption of local equilibrium sediment transport that is no longer
valid in the case of dam-break flow. Fraccarollo and Capart (2002) proposed a
two-layer model of movable-bed dam-break flow in which the clear water in the
upper layer and the mixture of sediment and water in the lower layer are sim-
ulated separately. The applicability of this two-layer model is limited because a
constant sediment concentration is assumed in the lower layer. Capart and Young
(1998), Cao et al. (2004), and Wu and Wang (2007) developed more advanced
models for dam-break flow over movable beds, considering the non-equilibrium
sediment transport and the effects of sediment concentration and bed change on
the flow. However, the sediment exchange model proposed by Capart and Young
does not consider the effect of sediment size, and thus, its applicability is restricted.
The model of Cao et al. (2004) simulates only the suspended-load transport and
needs to be tested quantitatively. Wu and Wang’s model simulates the total-load
transport and has been verified using available experimental data. It is introduced
below.
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9.2.1 Governing equations

Hydrodynamic equations

To account for the interactions among flow, sediment transport, and bed change, the
generalized 1-D shallow water equations (5.177) and (5.178) should be used, which
are written as follows by setting β = 1 and neglecting side flows:

∂(ρA)
∂t

+ ∂(ρQ)
∂x

+ ρb
∂Ab

∂t
= 0 (9.59)

∂

∂t
(ρQ)+ ∂

∂x

(
ρQ2

A

)
+ ρgA

∂zs

∂x
+ 1

2
gAhp

∂ρ

∂x
+ ρg

n2Q|Q|
AR4/3

= 0 (9.60)

The effect of alluvial bed roughness can be accounted for through the dependence
of Manning n on flow and sediment conditions, but constant Manning n values are
adopted here for simplicity. The sensitivity analysis performed by Wu and Wang
(2007) shows that the Manning n affects very little on the model results, and constant
Manning n values in a dam-break event can be justified.

Sediment transport equations

As described in Section 2.1.2.3, the total-load sediment in natural rivers may be divided
into bed load and suspended load as per sediment transport mode or into bed-material
load and wash load as per sediment source. The former approach is adopted here and,
thus, the total-load transport rate, Qt, is computed by

Qt = QCt = QC + Qb (9.61)

where C is the suspended-load volumetric concentration averaged over the cross-
section, and Qb is the bed-load transport rate. The 1-D suspended-load transport
equation (2.108) is written as

∂

∂t
(AC)+ ∂

∂x
(QC) = B(Eb − Db) (9.62)

where Db and Eb are the sediment deposition and entrainment rates at the inter-
face between the bed-load and suspended-load layers, defined as Db = ωsmcb and
Eb = ωsmcb∗ with ωsm being the settling velocity of sediment particles in turbid
water. To consider the effect of sediment concentration, ωsm is determined using the
Richardson-Zaki (1954) formula (3.19), which is written as

ωsm = (1 − Ct)
nωs (9.63)

where ωs is the settling velocity of single particles in clear water, determined using
the Zhang formula (3.12) if no measurement data is provided; and n is an empirical
exponent of about 4.0.
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The near-bed concentration cb is related to the average concentration C by cb = αcC,
as described in Section 2.5.1. Following Cao et al. (2004), αc is determined by

αc = min [α0, (1 − p′
m)/C] (9.64)

where α0 is given a value of 2.0. Note that Eq. (9.64) limits cb up to a maximum value
equal to 1 − p′

m.
The 1-D bed-load transport equation is

∂

∂t

(
Qb

Ub

)
+ ∂Qb

∂x
= 1

L
(Qb∗ − Qb) (9.65)

where Qb∗ is the equilibrium (capacity) bed-load transport rate; Ub is the bed-load
velocity, which can be evaluated using the van Rijn (1984a) formula (3.136) or
Fig. (3.27) but is set to be the flow velocity here for simplicity; and L is the adaptation
length of sediment, determined using Eq. (2.155).

The bed change can be determined by

(1 − p′
m)
∂Ab

∂t
= B(Db − Eb)+ 1

L
(Qb − Qb∗) (9.66)

Empirical formulas

To close the aforementioned sediment transport model, additional empirical formulas
are required to determine the equilibrium bed-load transport rate Qb∗ and suspended-
load near-bed concentration cb∗. The van Rijn (1984a & b) formulas (3.70) and (3.95)
herein are used. However, these formulas, which were calibrated in the lower flow
regime, should be modified for extension to the situation of dam-break flow.

According to the observation of Fraccarollo and Capart (2002), the sediment
concentration in the lower layer near the bed under dam-break flow conditions is very
high (nearly the same as that of bed material). Therefore, Wu and Wang (2007) intro-
duced a correction factor for the transport stage number in the van Rijn (1984a & b)
formulas by replacing the water density with the mixture density near the bed:

τb

τc
= U2

∗b

θc(ρs/ρmb − 1)gd
= kt

U2
∗b

θc(ρs/ρf − 1)gd
(9.67)

where θc is the critical Shields number for sediment incipient motion, determined using
the Shields diagram; ρmb is the density of the water and sediment mixture near the
bed; and kt is the correction factor, expressed as kt = 1 + caρs/[(1 − ca)ρf ], with ca
being a concentration of sediment near the bed. In principle, ca can be related to the
average sediment concentration in the bed-load layer or the depth-averaged suspended-
load concentration, but this usually requires iteration in the sediment module. On the
other hand, the dynamic pressure in the dam-break wave front might affect sediment
entrainment and transport significantly, but it is very difficult to consider this effect
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in the framework of a 1-D model. As an approximation, this effect is lumped into the
correction factor kt in Eq. (9.67). By trial and error, it is found that kt ≈ 1+1.5ρs/ρf is
adequate for the two test cases presented in Section 9.2.3. This value of kt is equivalent
to a value of 0.6 for ca, which qualitatively agrees with the observation of Fraccarollo
and Capart (2002). Because the parameter ca is not included explicitly in this relation
of kt, the solution procedure in the sediment module is simplified significantly.

Note that the reference level for near-bed suspended-load concentration in the orig-
inal van Rijn formula is defined at the equivalent roughness height or half the dune
height, which is not investigated well in the case of dam-break flow. Because the cor-
rection factor kt is a lumped parameter in the modified sediment transport capacity
formulas, this reference level should also be interpreted as an empirical parameter.
For simplicity, the reference level herein is set at max (2d, 0.005h), in which d is the
sediment size. In addition, in the range of high shear stress, the near-bed equilib-
rium concentration of suspended load determined using the van Rijn (1984b) formula
may be larger than 1 − p′

m; this is not physically reasonable and is eliminated in the
simulation by imposing an upper bound of 1 − p′

m to cb∗.

9.2.2 Numerical methods

Eqs. (9.59), (9.60), (9.62), (9.65), and (9.66) constitute a hyperbolic system, which can
be solved numerically using the shock-capturing schemes introduced in Section 9.1.
As an example, the upwind flux scheme is used here.

To establish an explicit algorithm, Eqs. (9.59) and (9.60) are reformulated by
eliminating the flow density on their left-hand sides using the relation ρ = ρf (1 − Ct)+
ρsCt and Eqs. (9.62), (9.65), and (9.66). The derived continuity and momentum
equations are

∂A
∂t

+ ∂Q
∂x

= 1
1 − p′

m

[
B(Eb − Db)+ 1

L
(Qb∗ − Qb)

]
(9.68)
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+ ∂
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= −gA
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1
ρ

∂ρ

∂x
− g

n2Q|Q|
AR4/3

− ρs − ρf

ρ
U
(

1 − Ct

1 − p′
m

)[
B(Eb − Db)+ 1

L
(Qb∗ − Qb)

]
(9.69)

Eqs. (9.68), (9.69), (9.62), and (9.65) are written in conservative form as Eq. (9.1),
in which � and F(�) represent the vectors of unknown variables and fluxes:

� =

⎡⎢⎢⎢⎢⎣
A

Q

AC

Qb/Ub

⎤⎥⎥⎥⎥⎦ , F(�) =

⎡⎢⎢⎢⎢⎣
Q

Q2/A

QC

Qb

⎤⎥⎥⎥⎥⎦ (9.70)

and S(�) includes the remaining terms in each equation.
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Using the finite volume method in Section 9.1, one can derive the discretized
equation (9.10), with the intercell fluxes determined using the first-order upwind
scheme as

Fn
i+1/2 =

⎡⎢⎢⎢⎢⎢⎣
Qn

i(
Qn

i

)2
/An

i

Qn
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Qn

i+1(
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)2
/An

i+1

Qn
i+1Cn

i+1

Qn
b,i+1

⎤⎥⎥⎥⎥⎥⎦ , if Q < 0

(9.71)

The friction term and sediment exchange terms on the right-hand sides of Eqs. (9.68)
and (9.69) are evaluated in a pointwise manner using the values at cell center i, and
the flow density gradient term in Eq. (9.69) is discretized using the central difference
scheme at time level n. The water surface gradient term in Eq. (9.69) is discretized
using the scheme in Eq. (9.55) proposed by Ying et al. (2004).

The bed change equation (9.66) is discretized in time as

�Ab,i = �t
1 − p′

m

[
Bn

i (D
n
b,i − En

b,i)+
1
L
(Qn

b,i − Qn
b∗,i)

]
(9.72)

The numerical solution is obtained through the following steps: (a) Solve the
continuity equation (9.68) to obtain the flow area and, in turn, the water level; (b) Solve
the momentum equation (9.69) to obtain the flow discharge and, in turn, the veloc-
ity; (c) Calculate the equilibrium suspended-load near-bed concentration and bed-load
transport rate; (d) Solve the sediment transport equations (9.62) and (9.65) to obtain
the actual suspended-load concentration and bed-load transport rate; (e) Calculate the
bed change using Eq. (9.72); and (f) Continue steps (a)–(e) for the next time step until
the entire time period is finished.

Because the aforementioned solution procedure is explicit, the computational time
step should be limited by the Courant-Friedrichs-Lewy (CFL) condition for flow com-
putation and additional numerical stability conditions for sediment transport and bed
change computations.

9.2.3 Examples

The movable-bed dam-break flow model described above was verified by Wu and
Wang (2007) using two sets of laboratory experiments performed in Taipei (University
of Taiwan) and Louvain (Université Catholique de Louvain) (Capart and Young, 1998;
Fraccarollo and Capart, 2002). Both experiments concerned small-scale dam-break
waves over movable beds in prismatic channels with rectangular cross-sections. They
differed primarily in the used sediment materials. In the Taipei test, the sediment
particles were artificial spherical pearls covered with a shiny white coating, having
a diameter of 6.1 mm, a density of 1048 kg · m−3, and a settling velocity of about
7.6 cm · s−1. In the Louvain test, the sediment particles were cylindrical PVC pellets
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having a diameter of 3.2 mm, a height of 2.8 mm (hence an equivalent spherical diam-
eter of 3.5 mm), a density of 1540 kg · m−3, and a settling velocity of about 18 cm · s−1.
The test reach in the Taipei experiment was 1.2 m long and 0.2 m wide, and in the
Louvain experiment was 2.5 m long and 0.1 m wide. In both experiments, the upstream
initial water depth, h0, was 0.1 m.

In the numerical simulations for both experiments, a uniform mesh with a grid
spacing of 0.005 m was used, and the time step was 0.001 t0. Here, t0 = (h0/g)1/2 is
the hydrodynamic time scale and has a value of about 0.101 s. To handle the dry-bed
problem, an initial flow depth of 0.0005 m was set in the downstream of the dam.
The sediment porosity was estimated as 0.28 and 0.3 for the Taipei and Louvain tests,
respectively, using Eq. (2.20). The bed-load adaptation length Lb was given as 0.25 m.
The Manning roughness coefficient was set as 0.01 for sidewalls and 0.025 for the
flume bed in both test cases.

According to initial trials using the original van Rijn (1984a & b) sediment trans-
port capacity formulas, the numerical model significantly under-predicts bed erosion
in both cases. With the modification described in Eqs. (9.63) and (9.67), it performs

Figure 9.10 Bed and water surface profiles in Taipei case (Wu and Wang, 2007).
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much better. The water and bed surface profiles at various times in both the Louvain
and Taipei cases simulated using the modified van Rijn formulas are compared with
the measured data in Figs. 9.10 and 9.11. The agreement between simulations and
measurements is fairly good. The erosion magnitudes and wave front locations in
both test cases are predicted well by the numerical model. A hydraulic jump in the
water surface forms around the initial dam site in both test cases. Its location is pre-
dicted reasonably well in the Louvain case, where both simulation and measurement
show that the hydraulic jump propagates upstream. However, the location of the
hydraulic jump in the Taipei case is predicted less accurately. The hydraulic jump
moves upstream in the simulation, but this movement was not clearly observed in the
Taipei experiment.

Sensitivities of the simulation results to model parameters, such as the suspended-
load adaptation coefficient α0, bed-load adaptation length Lb, Manning n, and
correction factor kt, were analyzed (Wu and Wang, 2007). When each parameter
was considered, only it was adjusted, and all other parameters were given the same
values as used in the model testing just described above. Fig. 9.12 shows how the
simulation results respond to adjustment of each parameter for the Taipei case. As α0

Figure 9.11 Bed and water surface profiles in Louvain case (Wu and Wang, 2007).
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Figure 9.12 Sensitivities of model results in Taipei case to (a) adaptation coefficient α0,
(b) adaptation length Lb, (c) Manning n, and (d) coefficient kt (Wu and Wang, 2007).

increases from 2.0 to 4.0 and Lb increases from 0.25 to 0.5 m, the simulated water and
bed surface profiles change locally, especially upstream of the dam site. The influences
of coefficients α0 and Lb on the simulated water and bed surfaces are thus at limited
levels. As the Manning n increases from 0.025 to 0.035, the simulated water and bed
surfaces vary very little, and the wave front slightly slows down. The model results
are not particularly sensitive to variation in the Manning n values. As the correction
factor kt increases from 1 + 1.0ρs/ρf to 1 + 2.0ρs/ρf , the maximum erosion depth
increases by 21%. The evaluation of kt is important to the erosion magnitude. The
test shows that kt = 1 + 1.5ρs/ρf provides reasonable results.

9.3 SIMULATION OF DAM SURFACE EROSION
DUE TO OVERTOPPING FLOW

Flow overtopping earth dams and levees can cause serious erosion and even wash
out the structures. Compared to the dam-break flow case, the sediment transport
and morphological change due to overtopping flow may be less intensive. However,
the overtopping flow is usually in mixed regimes, and the interactions among flow,
sediment transport, and bed change are still appreciable. These should be considered
in the simulation of overtopping flow and the associated erosion process.

Tingsanchali and Chinnarasri (1999) simulated the dam surface erosion process
due to overtopping flow, but their model ignores the effects of sediment transport and
bed change on the flow and uses the assumption of local equilibrium sediment trans-
port. This erosion process herein is simulated using a more advanced model, which
computes the flow using Eqs. (9.59) and (9.60) and the bed-material load transport
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using Eqs. (5.34) and (5.36). The sediment transport capacity is determined using the
Wu et al. (2000b) formulas (3.80) and (3.102) without the correction described in
Eq. (9.67). The numerical algorithm presented in Section 9.2 is used to solve these
equations. In particular, the hydrodynamic equations are solved using the method of
Ying et al. (2004) with slight modification to accommodate the differences between
two sediment transport models. The details are not repeated here.

The model is tested against the experiments of Chinnarasri et al. (2003) on the
dam (dike) surface erosion process due to overtopping flow. The experimental setup
is sketched in Fig. 9.13. The experimental flume was 35 m long and 1 m wide.
A dam across the flume width was located at 17.5 m downstream of the inlet. The
dam was 0.8 m high, and its crest was 0.3 m wide. The upstream and downstream
slopes of the dam were 1V:3H and 1V:2.5H for the simulated experimental run 2.
The dam was made of medium sand with a diameter of 0.86 mm. With a constant
inflow discharge of 1.23 l · s−1, the upstream water level was increased initially to a
desired height (0.03 m above the dam crest) and held by a vertical plate at the crest.
The vertical plate was then instantaneously lifted up to allow overtopping flow to
start. The overtopping flow discharge and erosion rate were small, due to a low water
height above the crest at the beginning, which increased rapidly after a certain period
and then decreased. The dam surface became wavelike in shape as anti-dunes appeared
and moved upstream. The bed-material porosity is estimated as 0.35, the Manning n
is 0.018, and the sediment adaptation length Lt is 0.05 m in the simulation.

A uniform mesh covering the entire flume is used. According to trials using various
grid spacings, the occurrence of anti-dune waves in the simulation depends on the ratio
of grid spacing and adaptation length, �x/Lt. If this ratio is less than about 0.6, anti-
dune waves appear. This implies that the computational mesh should be fine enough
to simulate the anti-dunes. A 1-D model might not capture the anti-dunes accurately,
and the measurement did not quantify them; thus, only the mean flow and sediment
transport patterns are simulated by using a coarse mesh with a grid spacing of 0.05 m
(i.e., �x/Lt = 1).

Fig. 9.14 shows the longitudinal profiles of the simulated water level, Froude
number, and sediment concentration at elapsed times of 30 and 150 s. The flow is
subcritical in the upstream reservoir; it changes to supercritical on the downstream
slope and then to subcritical in the downstream tailwater. A hydraulic jump appears
at the end of the downstream slope. The sediment concentration on the downstream

Figure 9.13 Sketch of overtopping flow over a dam (side view).



Figure 9.14 Water level, Froude number, and sediment concentration on dam surface.

Figure 9.15 Results (Run 2) of turbid- and clear-water models: (a) bed profiles at 30 s,
(b) overtopping flow discharges, (c) reservoir water levels, and (d) erosion rates at dam crest.
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slope is higher at the early stage and becomes lower with time. Fig. 9.15(a) compares
the simulated (solid lines) and measured bed profiles at 30 s, which are in fairly good
agreement. Figs. 9.15(b)–(d) show the simulated and measured overtopping flow dis-
charges, reservoir water levels, and erosion rates at the dam crest during a time period
of 200 s. The erosion process is predicted generally well.

In addition, the “turbid-water” model presented above is compared with the
traditional “clear-water” movable-bed model, in which the effects of sediment concen-
tration and bed change on the flow are neglected by setting ρ as the pure water density
and removing the third term in Eq. (9.59) and the fourth term in Eq. (9.60). Fig. 9.15
shows the simulation results of these two models for Run 2. It can be seen that the
“clear-water” model significantly over-predicts the erosion process. This proves that
the effects of sediment transport and bed change on the flow should be considered in
cases of strong sediment transport and rapid bed change.





Chapter 10

Simulation of f low and sediment
transport in vegetated channels

Vegetation can markedly affect the fluvial processes in streams. To understand and
analyze this, fundamental research and numerical modeling of flow and sediment
transport in vegetated channels have been conducted in recent years. The concepts,
governing equations, and numerical methods of the vegetation effect models are
introduced in this chapter.

10.1 EFFECTS OF VEGETATION ON FLOW
AND SEDIMENT TRANSPORT

10.1.1 Geometric characteristics of vegetation

Vegetation height and diameter

Vegetation is classified to be either flexible or rigid, based on whether it is subject
to deformation by the flow. Herbaceous species, such as grasses, usually are flexible,
whereas woody species, such as trees, usually are rigid. However, it is recognized that
different portions of the plant and the same plant in different stages of its life cycle
can behave in significantly different ways. For example, the stems of trees and shrubs
are often rigid, while their branches, twigs, and leaves are flexible. Saplings usually
act as flexible stems until they mature sufficiently to be able to withstand deformation
by the flow.

Because the shape of vegetation is highly irregular, it is challenging to represent a
vegetation element with simple geometry. As an approximation, a vegetation stem
(such as tree trunk) is often conceptualized as a cylinder with a height, hv, and a
representative diameter, D, as shown in Fig. 10.1. The stem height hv is defined as
the one without any deformation by the flow. Thus, the height of a rigid stem can be
readily measured. However, a flexible stem bends under the shear of flow, as shown
in Fig. 10.2, and its actual height, h′

v, is related to stem properties and flow conditions
(Kouwen and Li, 1980).

The representative diameter D can be related to the stem volume, V , by D =√
4V/πhv. In practice, one may directly measure the stem diameter. Due to the fact

that the diameter of many species (such as shrubs) may change along the height, the
convention of foresters and ecologists suggests that the stem diameter of trees should
be measured at the breast height. As an approximation, the stem diameter may be
measured at hv/4 (Freeman et al., 2000).
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Figure 10.1 (a) Natural vegetation stem and (b) conceptualized cylinder.

Figure 10.2 Flexible stem under flow shear.

Vegetation density

Vegetation density, denoted as Na, is often defined as the number of vegetation ele-
ments per unit area in the horizontal plane. It can be determined by directly counting
the number of vegetation elements or measuring their average spacings, as shown in
Fig. 10.3. Na is related to the longitudinal and transverse average spacings, ls and ln, as

Na = 1
lsln

(10.1)

Projected area of vegetation

The projected area is defined as the frontal area of a vegetation element projected to the
plane normal to the streamwise flow direction. Because vegetation may be emergent
or submerged, as shown in Fig. 10.4, the projected area of the wetted portion is more



Simulation of flow and sediment transport in vegetated channels 377

Figure 10.3 Notation of vegetation spacings (plan view).

Figure 10.4 Vegetation in open channels (side view).

often used. For a rigid stem, the wetted projected area is

Av = αvD min(hv, h) (10.2)

where h is the flow depth, and αv is the shape factor of vegetation and equals 1 for a
rigid cylinder. When the stem is partially submerged, D represents the diameter of the
wetted portion.

For a flexible stem, the wetted projected area is

Av = αvD min(h′
v, h) (10.3)

One may also use Eq. (10.2) for the projected area of a flexible stem by lumping the
factor h′

v/hv into αv.
For vegetation with limbs and leaves shown in Fig. 10.5, the conceptual model of

single cylinder is no longer realistic. In this case, the projected area is often defined
as the blockage area of the limbs and leaves. However, the limbs and leaves deform
under flow shear, and thus the blockage area changes with flow conditions.
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Figure 10.5 Leafy vegetation: (a) without and (b) with flow shear.

For a group of homogeneous vegetation elements, the total projected area per unit
area is defined as the product of the vegetation density and the projected area of
an individual stem, NaAv. However, in natural cases, vegetation elements may be
heterogeneous, and thus the sum of the projected areas of all elements,

∑
i Avi, is

often considered. Here, Avi is the project area of the individual vegetation element
numbered as i.

Vegetation concentration

Consider a control volume extending from the stream bed to the water surface and
holding the mixture of the water and a group of vegetation stems, as shown in Fig. 10.4.
The volumetric concentration of vegetation, cv, is defined as the ratio of the volume
of vegetation to the total volume of the mixture. For homogeneous, rigid vegetation,
cv can be expressed as

cv = Na
πD2 min(hv, h)

4h
(10.4)

Note that cv is the vegetation concentration averaged over the entire flow depth.
Naturally, the local concentration of vegetation in the vegetation layer is defined as

cv0 = Na
πD2

4
(10.5)

For the emergent vegetation shown in Fig. 4(a), cv = cv0, and for the submerged
vegetation shown in Fig. 4(b), cv = cv0hv/h.
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Comparing Eqs. (10.2) and (10.4) leads to a relation between NaAv and cv:

NaAv = 4αvcvh
πD

(10.6)

NaAv and cv have also been used to represent the vegetation density by Shimizu and
Tsujimoto (1994) and Wu and Wang (2004b). To avoid confusion, only Na is called
the vegetation density in this book.

10.1.2 Flow resistance due to vegetation

Drag force on vegetation

The drag force exerted on a vegetation element is expressed as

→
F d = 1

2
CdρAv |Uv|

→
Uv (10.7)

where Cd is the drag coefficient of vegetation element,
→
Uv is the vector of flow velocity

acting on the vegetation element, and |Uv| (or simply written as Uv) is the magnitude

of
→
Uv. For emergent vegetation,

→
Uv is the depth-averaged flow velocity

→
U, while for

submerged vegetation,
→
Uv should be the velocity averaged only over the vegetation

layer, as shown in Fig. 10.4.
Note that the drag force defined in Eq. (10.7) acts on the entire wetted vegetation

height, which may be used in the 1-D and depth-averaged 2-D models. For the analysis
of local flow pattern in a 3-D model, the drag force per unit vegetation height is
defined as

�fd = 1
2

Cdρav |u| �u (10.8)

where �u is the vector of the local flow velocity acting on the vegetation element; and
av is the projected area of the vegetation element per unit height, related to the stem
diameter by av = αvD.

The drag coefficient is the key parameter in Eqs. (10.7) and (10.8). White (1991)
summarized the experimental data of Wieselberger and Tritton, and obtained the drag
coefficient of a single cylinder in an ideal two-dimensional flow as a function of the
Reynolds number. This relation is shown in Fig. 10.6 and approximated by

Cd0 = 1 + 10

R2/3
e

(10.9)

where Cd0 is the drag coefficient for a single cylinder, and Re = UvD/ν. Eq. (10.9) is
in fair agreement with the measurement data up to Re ≈ 2.5×105. More sophisticated
curve-fit formulas for Cd0 can also be found in White (1991). Typically, Cd0 has values
from 1.0 to 1.2 for the Reynolds numbers between 102 – 2.5 × 105.
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Figure 10.6 Drag coefficient for single cylinder (White, 1991).

Li and Shen (1973) investigated the drag coefficient for a group of cylinders with
various setups. They identified four factors that need to be considered to determine the
drag coefficient: (1) flow turbulence, (2) non-uniform velocity profile, (3) free surface,
and (4) blockage. Lindner (1982) suggested that in densely vegetated channels, the first
two of these factors are of minor importance and can be neglected. Lindner extended
the work of Li and Shen, and established the following formula to compute the drag
coefficient Cd for a single cylinder in a group:

Cd =
(

1 + 1.9
D
ln

Cd0

)[
0.2025

(
ls
D

)0.46

Cd0

]
+
(

2ln
ln − D

− 2
)

(10.10)

The two terms on the right-hand side of Eq. (10.10) represent the blockage and free
surface effects, respectively. The experiments were conducted with PVC cylinders of
10 mm in diameter and 150 mm in height.

Based on Lindner’s approach and further experiments, Pasche and Rouve (1985)
presented a semi-empirical iterative process to determine Cd. Many other investigators,
e.g., Klaassen and Zwaard (1974) and Jarvela (2002), suggested the drag coefficient
Cd would have values close to 1.5 for most practical cases.

The drag coefficient Cd in Eq. (10.7) is based on the apparent velocity Uv. According
to Stone and Shen (2002), the drag coefficient Cdm based on the constricted cross-
sectional velocity Uvm shown in Fig. 10.7 is more appropriate than Cd. This is because
Cdm is closer to the drag coefficient of single cylinder and has less variation for a wide
range of values for vegetation density, stem size, and cylinder Reynolds number in
comparison with Cd. The relation between Cd and Cdm is

Cd = Cdm
U2

vm

U2
v

(10.11)
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Figure 10.7 Definitions of Uv and Uvm in a matrix of vegetation elements.

If the vegetation stems with a diameter of D are distributed uniformly in the
lateral direction with a spacing of ln, then Uv = Uvm(1 − D/ln) and Eq. (10.11)
can be written as

Cd = Cdm/(1 − D/ln)2 (10.12)

Furthermore, if the vegetation stems are arranged in a staggered pattern with equal
spacing in both the longitudinal and transverse directions shown in Fig. 10.7, Uv =
Uvm(1 − D

√
Na). Using Eq. (10.5), one can write Eq. (10.11) as

Cd = Cdm/
(
1 −√4cv0/π

)2
(10.13)

Note that the drag force is expected to increase with the velocity squared in
Eq. (10.7). This is valid for rigid vegetation. Eq. (10.7) may still be used to com-
pute the drag force on flexible vegetation, but the projected area should be computed
using the deformed height as expressed in Eq. (10.3) (Tsujimoto and Kitamura, 1998),
or the drag coefficient has to be related to flow conditions. More methods for flexible
vegetation roughness are discussed later in this section.

Roughness of emergent rigid vegetation

Consider a steady, uniform flow in a channel with a plane bed covered with uniformly
distributed emergent, rigid vegetation. For the control volume over a unit bed area
extending from the stream bed to the water surface shown in Fig. 10.4, the total
resistance, τ , consists of the bed shear stress, τb, and the drag force of vegetation,
NaFd:

(1 − cv)τ = (1 − cv)τb + NaFd (10.14)

Note that the factor 1 − cv appears in Eq. (10.14) to account for only the water
column and bed area occupied by the flow. If the vegetation is relatively sparse, 1− cv
is close to 1 and can be eliminated from Eq. (10.14).
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Define the total resistance and the bed shear stress as

τ = ρcf U2 = ρgn2U2

R1/3
s

(10.15)

τb = ρcfbU2 = ρgn2
bU2

R1/3
s

(10.16)

where cf and n are the friction factor and Manning coefficient corresponding to the
total roughness, cfb and nb are the friction factor and Manning coefficient correspond-
ing to the bed roughness, and Rs is the hydraulic radius of the bed with vegetation.
The hydraulic radius Rs has been defined differently in the literature. Many models
simply set Rs as the flow depth h, while Barfield et al. (1979) considered the effect of
vegetation on the flow “eddy size” and suggested the following relation:

Rs = hln
2h + ln

(10.17)

where ln is the lateral spacing of vegetation elements.
Substituting Eqs. (10.7), (10.15), and (10.16) into Eq. (10.14) yields

n2 = n2
b + 1

2g(1 − cv)
CdNaAvR1/3

s (10.18)

For the channel with densely distributed vegetation, the drag of vegetation becomes
the major contributor to the total resistance, and thus the term of nb in Eq. (10.18)
can be eliminated.

Eq. (10.18) does not include the effect of side banks, so it is used only for a wide
channel or in a depth-averaged 2-D model. When the effect of side banks needs to
be considered, Rs in Eq. (10.18) is set as A/Pw, or the following equation derived by
Petryk and Bosmajian (1975) may be used:

n2 = n2
b + 1

2g
Cd

∑
Avi

A

(
A
χ

)4/3

(10.19)

where A is the cross-sectional area of flow, χ is the wetted perimeter, and
∑

Avi is
the total frontal area of vegetation elements blocking the flow per unit channel length.
Note that 1 − cv ≈ 1 and Cd represents an average drag coefficient of all vegetation
elements in Eq. (10.19). If the heterogeneity of vegetation elements is considered, a
variable Cdi should be used for each element.

Eq. (10.19) is applicable to emergent, rigid vegetation distributed relatively uni-
formly in the lateral direction.
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Roughness of submerged rigid vegetation

For submerged, rigid vegetation, the “acting” flow velocity (which should be used for
computing drag) is the average velocity in the vegetation layer, as shown in Fig. 10.4(b).
This velocity can be determined using Stone and Shen’s (2002) method:

Uv = ηvU
(

hv

h

)1/2

(10.20)

where ηv is a coefficient of about 1.0.
Besides the bed shear stress, a shear stress exists at the top of vegetation elements.

The total bottom shear stress can be approximated by

τb = ρcfvU2
v + ρcfu (Uu − Uv)

2 (10.21)

where Uu is the average resultant velocity in the water column above the vegetation
elements, which can be derived by applying the mass continuity equation Uu(h − hv)+
Uvhv = Uh; and cfv and cfu are the friction factors on the channel bed and at the top of
vegetation elements, respectively. However, evaluation of the two coefficients cfv and
cfu is relatively complicated. For simplicity, one may lump them into one parameter,
and determine τb using Eq. (10.16), with Rs given as h or by

Rs = hvln
2hv + ln

+ h − hv (10.22)

Eq. (10.22) reduces to Eq. (10.17) for emergent vegetation (hv = h), to Rs = h
when there is no vegetation (hv = 0), and to Rs ≈ h when the vegetation is sparse,
i.e., ln � 2hv. For densely distributed, submerged vegetation, Eq. (10.16) may not be
as physically realistic as Eq. (10.21). However, in such a case the bed shear becomes
negligible in comparison with the vegetation drag force, and thus the use of Eq. (10.16)
does not induce significant errors in the flow calculation.

Therefore, substituting Eqs. (10.7), (10.15), (10.16), and (10.20) into Eq. (10.14)
yields

n2 = n2
b + 1

2g(1 − cv0)
CdNaAvη

2
v

hv

h
R1/3

s (10.23)

Similarly, Petryk and Bosmajian’s equation (10.19) can be modified for submerged,
rigid vegetation as

n2 = n2
b + 1

2g
Cdη

2
v

h̄v

h

∑
Avi

A

(
A
χ

)4/3

(10.24)

where h̄v represents the averaged height of vegetation elements blocking the flow.
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Roughness of f lexible vegetation

According to Kouwen and Li (1980), the resistance to flow by flexible vegetation in
channels can be determined using a relative roughness approach similar to the widely
accepted resistance relationships developed for rigid roughness in pipes and channels.
Because flexible vegetation bends when subjected to shear, its roughness height is
a function of vegetation properties and flow parameters. The significant vegetation
properties are the stem density M and the flexural rigidity in bending, given by J = EI.
Here, E is the stem’s modulus of elasticity and I is the second moment of inertia of the
stem area. The stem density M is defined as the ratio of the stem count to a reference
number of stems per unit area. The reference number is arbitrary, but for convenience
it is taken to be 1 stem per square meter, thus yielding M = Na. Note that M is
dimensionless.

Based on laboratory experiments on flow over flexible plastic strips, Kouwen and
Li (1980) showed that the roughness height ks would vary as a function of the amount
of drag exerted by the flow and the parameter MEI:

ks = 0.14hv

[
(MEI/τb)

0.25

hv

]1.59

(10.25)

where hv is in meters, τb is in N · m−2, and MEI is in N · m2. Tsujimoto and Kitamura
(1998) conducted numerical analysis using a hydrodynamic model coupled with a can-
tilever beam model describing bending of vegetation, and obtained a similar formula
for the flexible vegetation height under the shear of flow.

Kouwen and Li (1980) suggested the use of the semi-logarithmic resistance equation
to determine the Darcy-Weisbach friction factor λ:

1√
λ

= a + b log
(

R
ks

)
(10.26)

where R is the hydraulic radius of the channel; and a and b are two fitted parameters,
depending on the relative magnitude of the shear velocity U∗ and a critical value U∗crit.
In a numerical model test, Darby (1999) used the form of Hey’s (1979) equation:

1√
λ

= 2.03 log
(

asR
ks

)
(10.27)

where as is a dimensionless shape correction factor, given by as = 11.1(R/hmax)
−0.314,

with hmax being the maximum flow depth in the cross-section.
The key aspect of successful application of Eq. (10.25) appears to lie in the measure-

ment of MEI. This parameter can be measured directly for different species using the
“board drop” test. In this test, a standard wooden board is dropped onto a vegetated
surface to impart a frictional force that deflects the stems in a manner similar to flow-
ing water. The distance between the ground and the bottom edge of the fallen board,
which reflects the ability of the vegetation to resist bending under flow conditions,
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is measured and then used to calculate the parameter MEI from the standard
calibration curves (Kouwen, 1988).

Based on laboratory experiments, Kouwen (1988, also see Temple, 1987) related
the parameter MEI with the vegetation height for growing and dormant grass species,
respectively, as

MEI = 319h3.3
v , MEI = 25.4h2.26

v (10.28)

Application of Eq. (10.28) should be restricted to those grasses that have been
tested, including alfalfa, Bermuda grass, buffalo grass, blue grass, weeping love grass,
Kentucky grass, Serica lespezeda, Sudan grass, and Rhodes grass. Experimental data
encompass stem heights in range of 0.04–1.0 m, MEI values in range of 0.007–212
N · m2, and stem densities (M) in range of 140–11,600.

Apparently Eq. (10.25) is only applicable to submerged flexible vegetation, such
as grasses. Kouwen and Fathi-Maghadam (2000) conducted flume experiments using
coniferous tree sapling and air experiments using large coniferous trees to investigate
the relation between the friction factor and mean flow velocity, and proposed a method
to estimate the friction factor for emergent woody vegetation:

λ = 4.06

(
U√
ξE/ρ

)−0.46
h
hv

(10.29)

where ξ accounts for all aspects of deformation of the plant as a result of an increasing
flow velocity. The parameter ξE is called the “vegetation index”, which is obtained
from the resonant frequency, mass, and height of a tree using a mathematical model
based on the works of Niklas and Moon (1988) and Fathi-Maghadam (1996):

ξE = Nf 2
1

ms

hv
(10.30)

where ms is the total mass, and Nf1 is the natural frequency of the tree. Nf1 is measured
by rigidly mounting the tree, followed by flexing the top of the tree sideways prior to
releasing the tree to swing freely. An accelerometer is attached part way along the stem
to record the frequency of the swings. Table 10.1 lists the average vegetation indices
for four species of coniferous trees measured by Fathi-Maghadam (1996).

Table 10.1 Vegetation indices for coniferous trees
(Fathi-Maghadam, 1996)

Species ξE (N · m−2)

Cedar 2.07
Spruce 3.36
White pine 2.99
Austrian pine 4.54
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For flexible vegetation, such as trees and bushes, the foliage, whether broad or
needle-like, is the major contributor to the total drag. For example, in Jarvela’s (2002)
experiments on willows, the drag coefficient for leafy willows was three to seven times
that of the leafless willows, depending primarily on flow velocity. Considering this
fact, Jarvela (2004) suggested the use of the leaf area index (ila) in determining the
friction factor. The leaf area index is conventionally defined as the ratio of the upper-
side projected area of the leaves in canopy to the area of the surface under the canopy,
i.e., the one-sided area of foliage per unit bed area. The developed relation of the
friction factor for partially submerged vegetation is

λ = 4Cdχ ila

(
U
Uχ

)mχ h
hv

(10.31)

where Cdχ is a species-specific drag coefficient, Uχ is a reference velocity, and mχ is
an exponent. The coefficients in Eq. (10.31) for several species are listed in Table 10.2.

Table 10.2 Coefficients in Eq. (10.31) for various vegetation species (Jarvela, 2004)

Species Cdχ mχ Uχ (m · s−1) ila Data source

Cedar 0.56 −0.55 0.1 1.42 Fathi-Maghadam (1996)
Spruce 0.57 −0.39 0.1 1.31 Fathi-Maghadam (1996)
White pine 0.69 −0.50 0.1 1.14 Fathi-Maghadam (1996)
Austrian pine 0.45 −0.38 0.1 1.61 Fathi-Maghadam (1996)
Willow 0.43 −0.57 0.1 3.2 Jarvela (2002)

Eqs. (10.29) and (10.31) are valid for situations where the trees just cover the channel
bed in plan view. In nature, trees may cover only a part of the bed, or the leaves of
adjoining trees may overlap. As pointed out by Raupach et al. (1980) and confirmed
by Fathi-Maghadam (1996), the pattern or distribution of the trees does not have a
significant effect on the friction factor, but the vegetation density is always a dominant
parameter. Kouwen and Fathi-Maghadam (2000) suggested the following correction
method to consider the effect of vegetation density:

λm = λAtv

At
(10.32)

where λm is the corrected friction factor, λ is the friction factor estimated using
Eq. (10.29) or (10.31), Atv is the total top-view area of the channel covered by trees,
and At is the total top-view area of the channel.

Freeman et al. (2000) conducted experiments on the resistance due to shrubs and
woody vegetation in a large 2.44 m-wide flume and a small 0.46 m-wide flume. A total
of 20 different species of broadleaf deciduous vegetation commonly found in flood-
plains and riparian zones were evaluated. It was observed that the plant leaf mass
trailed downstream forming a streamlined, almost teardrop-shaped profile. The leaf
shape changed with velocity and became more streamlined with increasing veloc-
ity, yielding a significant decrease in the drag coefficient and resistance coefficient
with velocity. On the other hand, the resistance increased with depth for partially
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submerged plants as the blockage area increased with depth until the plants were sub-
merged. The transition between submerged and partially submerged flows occurred
at a depth of about 80 percent of the undeflected plant height. Freeman et al. (2000)
obtained the regression equation for the Manning n in the case of submerged vegetation
(h > 0.8hv):

n = 0.183
(

EAs

ρAvU2∗

)0.183 (hv

h

)0.243

(NaAv)
0.273

(
U∗R
ν

)−0.115 R1/6

√
g

(10.33)

where As is the total cross-sectional area of the stem(s) of an individual plant, measured
at hv/4; E is the modulus of plant stiffness (N · m−2); and Av is the frontal blockage
area of an individual plant, which is approximated by an equivalent rectangular area
of blockage by leaves. It is important to note that the plant characteristics hv, As, and
Av are the initial characteristics of the plants without the effect of flow distortion.

The regression equation for the Manning n in the case of partially submerged
vegetation (h < 0.8hv) is

n = 0.00003487
(

EAs

ρA∗
vU2∗

)0.150 (
NaA∗

v
)0.166

(
U∗R
ν

)0.622 R1/6

√
g

(10.34)

where A∗
v is the blockage area of the portion of the leaf mass submerged.

The experiment conditions for the data used to develop Eqs. (10.33) and (10.34)
were: flow depths from 0.4 to 1.4 m, average flow velocities from 0.15 to 1.1 m · s−1,
n from 0.04 to 0.14, plant heights from 0.20 to 1.52 m, plant widths from 0.076 to
0.91 m, plant densities from 0.53 to 13 plants · m−2, plant moduli of stiffness from
5.3 × 107 to 4.8 × 109 N · m−2, and Reynolds numbers from 1.4 × 105 to 1.6 × 106.

In addition, for vegetation submerged in intermediate flow, Ree and Palmer (1949)
presented a set of curves for the Manning n as a function of UR. For both submerged
and emergent vegetation, Wu et al. (1999) related the drag coefficient and the Manning
n to the Reynolds number and the channel (or friction) slope. The obtained relations
of n ∼ UR or n ∼ (Re, S) vary with vegetation species. These relations can be used to
determine the roughness coefficient in vegetated channels.

10.1.3 Sediment transport capacity in vegetated
channels

How vegetation affects sediment transport is an important issue of concern. Jordanova
and James (2003) experimentally investigated the bed-load transport in a flume cov-
ered with uniformly distributed, emergent, rigid cylindrical metal rods. The rods were
arranged in a staggered pattern, and the median grain size of sediment was 0.45 mm.
Jordanova and James used the method of Li and Shen (1973) to determine the effective
bed shear stress and proposed the following formula for the bed-load transport rate
(kg · s−1m−1) in vegetated channels:

qb = 0.017 (τb − τc)1.05 (10.35)

where τb is the effective bed shear stress (N · m−2).
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Wu et al. (2005) applied the formula of Wu et al. (2000b) to compute the bed load
in vegetated channels, with the effective bed shear stress τb determined by

τb = γRsS (10.36)

where S is the channel slope; and Rs is the hydraulic radius, defined in Eq. (10.17), as
suggested by Barfield et al. (1979). The computed values of bed-load transport rate
were compared with the measured data (Series A, q = 0.0065 m2s−1) of Jordanova
and James (2003), as shown in Fig.10.8. An excellent agreement was observed.

Figure 10.8 Measured and predicted bed-load rates in a vegetated flume.

Okabe et al. (1997) investigated the bed-load transport in a flume covered by
submerged vegetation. They modeled the vegetation using curved, cylindrical silicone
tubes and branched, inclined brass lines. They used a vertical 1-D k-ε turbulent flow
model to determine the effective bed shear stress and applied the formula of Ashida and
Michiue (1972) for the bed-load transport rate in vegetated channels. The agreement
between the measured and predicted values was generally good.

It can be seen from Okabe et al. (1997) and Wu et al. (2005) that bed-load transport
is mainly related to bed shear rather than the drag force exerted on vegetation elements.
If the effective bed shear is used, some existing bed-load formulas developed for non-
vegetated channels can be extended to the case of vegetated channels.

However, the suspended-load transport in vegetated channels has been little investi-
gated. Because vegetation may reduce the mean flow velocity significantly but intensify
the turbulence in a vegetated zone, the effect of vegetation on suspended-load transport
is more complex. More experimental and theoretical studies are needed to quantify this
effect. As an approximation, one may apply some existing suspended load formulas
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established under non-vegetated conditions to vegetated channels. Certainly, this
application should be done with caution.

Moreover, the flow and sediment transport in channels with large-scale leafy
vegetation are strongly three-dimensional. Figs. 10.9(a)–(d) depict the flow and sed-
iment transport in different flow stages, observed qualitatively by Freeman et al.
(2000). The typical velocity profiles in low and moderate flow conditions are shown in
Figs. 10.9(a)–(b), with mild sediment transporting on the bed. When the flow becomes
stronger, the leaf mass or foliage canopy diverts the flow beneath the canopy, as shown
in Fig. 10.9(c). The bottom flow results in significant velocities along the channel bed,
increasing sediment transport and causing scour in open areas. For ground cover veg-
etation with branches and leaves extending to the bed shown in Fig. 10.9(d), local
scour may occur due to three-dimensional vortices that are similar to those typically
associated with scour around bridge piers. These complex phenomena need to be
investigated quantitatively.

Figure 10.9 Flow and sediment transport in channels with leafy vegetation (adapted from
Freeman et al., 2000).

10.2 SIMULATION OF FLOW IN VEGETATED CHANNELS

10.2.1 Governing equations

3-D equations of f low in vegetated channels

Flow around vegetation usually is three-dimensional, unsteady, and turbulent.
However, the mostly considered flow properties in engineering applications are the
time- and space-averaged behaviors rather than the detailed features around individual
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vegetation elements. Time- and space-averaging the Navier-Stokes equations yields the
3-D governing equations for flow in vegetated channels:

∂[ρ(1 − cv0)]
∂t

+ ∂[ρ(1 − cv0)ui]
∂xi

= 0 (10.37)

∂[ρ(1 − cv0)ui]
∂t

+ ∂[ρ(1 − cv0)uiuj]
∂xj

= ρ(1 − cv0)Fi − (1 − cv0)
∂p
∂xi

+ ∂[(1 − cv0)τij]
∂xj

− Nafdi (10.38)

where fdi(i = 1, 2, 3) are the components of drag force per unit vegetation height,
defined in Eq. (10.8); and cv0 is the local volumetric concentration of vegetation,
defined in Eq. (10.5).

Compared with the equations derived by Shimizu and Tsujimoto (1994) and Lopez
and Garcia (2001), Eqs. (10.37) and (10.38) include the vegetation concentration cv0,
which changes in time and space due to the heterogeneity and seasonal growth and
death of vegetation as well as the change of flow conditions. This should be particularly
important in the case of high vegetation density. In the case of low vegetation density,
1 − cv0 ≈ 1 and, thus, Eqs. (10.37) and (10.38) can be simplified as

∂ui

∂xi
= 0 (10.39)

∂ui

∂t
+ ∂(uiuj)

∂xj
= Fi − 1

ρ

∂p
∂xi

+ 1
ρ

∂τij

∂xj
− 1
ρ

Nafdi (10.40)

The stresses τij include the effects of molecular viscosity, turbulence, and non-
uniformity of flow velocity around vegetation elements. The last effect causes
dispersion, which is often combined with the turbulent effect. Thus, the stresses are
calculated using the Boussinesq assumption (7.3), with the eddy viscosity νt deter-
mined by Eq. (2.54) and the turbulent energy k and its dissipation rate ε determined
by (Shimizu and Tsujimoto, 1994)

∂k
∂t

+ uj
∂k
∂xj

= ∂

∂xj

(
νt

σk

∂k
∂xj

)
+ Pk + Pkv − ε (10.41)

∂ε

∂t
+ uj

∂ε

∂xj
= ∂

∂xj

(
νt

σε

∂ε

∂xj

)
+ cε1

ε

k
(Pk + cf εPkv)− cε2

ε2

k
(10.42)

where Pk is the production of turbulence by shear, defined in Eq. (2.52); and
Pkv is the generation of turbulence due to vegetation, determined by Pkv = cfkNa
fdiui/[ρ(1 − cv0)]. Shimizu and Tsujimoto (1994) selected coefficients cfk = 0.07
and cf ε = 0.16 based on calibration, whereas Lopez and Garcia (2001) determined
coefficients cfk = 1.0 and cf ε = 1.33 based on a theoretical argument that cfk should
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be unity if the total turbulence kinetic energy is modeled. More discussion on these two
coefficients is given in Section 10.2.3. The values of other coefficients can be found in
Section 2.3.

Naot et al. (1996) and Neary (2003) applied the algebraic stress model and the k-ω
turbulence model, respectively, in the simulation of flow in vegetated channels. The
details can be found in their papers.

Depth-averaged 2-D equations of f low in vegetated channels

Integrating Eqs. (10.37) and (10.38) over the flow depth yields the depth-integrated
2-D continuity and momentum equations of flow in vegetated channels (Wu and Wang,
2004b):

∂[ρ(1 − cv)h]
∂t

+ ∂[ρ(1 − cv)hUx]
∂x

+ ∂[ρ(1 − cv)hUy]
∂y

= 0 (10.43)

∂[ρ(1 − cv)hUx]
∂t

+ ∂[ρ(1 − cv)hU2
x ]

∂x
+ ∂[ρ(1 − cv)hUyUx]

∂y

= −ρg(1 − cv)h
∂zs

∂x
+ ∂[(1 − cv)h(Txx + Dxx)]

∂x
+ ∂[(1 − cv)h(Txy + Dxy)]

∂y

− (1 − cv)τbx − NaFdx (10.44)

∂[ρ(1 − cv)hUy]
∂t

+ ∂[ρ(1 − cv)hUxUy]
∂x

+ ∂[ρ(1 − cv)hU2
y ]

∂y

= −ρg(1 − cv)h
∂zs

∂y
+ ∂[(1 − cv)h(Tyx + Dyx)]

∂x
+ ∂[(1 − cv)h(Tyy + Dyy)]

∂y

− (1 − cv)τby − NaFdy (10.45)

where Fdx and Fdy are the x- and y-components of the drag force on vegetation
exerted by the flow, defined in Eq. (10.7); and cv is the depth-averaged volumetric
concentration of vegetation, defined in Eq. (10.4).

In the case of low vegetation density, Eqs. (10.43)–(10.45) are simplified as

∂h
∂t

+ ∂(hUx)

∂x
+ ∂(hUy)

∂y
= 0 (10.46)

∂(hUx)

∂t
+ ∂(hU2

x)

∂x
+ ∂(hUyUx)

∂y
= −gh

∂zs

∂x
+ 1
ρ

∂[h(Txx + Dxx)]
∂x

+ 1
ρ

∂[h(Txy + Dxy)]
∂y

− 1
ρ
τbx − 1

ρ
NaFdx (10.47)
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∂(hUy)

∂t
+ ∂(hUxUy)

∂x
+ ∂(hU2

y )

∂y
= −gh

∂zs

∂y
+ 1
ρ

∂[h(Tyx + Dyx)]
∂x

+ 1
ρ

∂[h(Tyy + Dyy)]
∂y

− 1
ρ
τby − 1

ρ
NaFdy (10.48)

The bed shear stresses τbx and τby are determined by Eq. (6.4), with cf = gn2
b/R

1/3
s ,

in which nb is the Manning roughness coefficient of the bed and Rs is the hydraulic
radius defined in Eqs. (10.17) and (10.22) or simply set as the flow depth h.

The depth-averaged stresses Tij are calculated by Eq. (6.7), with the eddy viscosity
νt determined using Eq. (2.54) and the turbulent energy k and its dissipation rate ε
determined by

∂k
∂t

+ Ux
∂k
∂x

+ Uy
∂k
∂y

= ∂

∂x

(
νt

σk

∂k
∂x

)
+ ∂

∂y

(
νt

σk

∂k
∂y

)
+ Pk + Pkv + Pkb − ε (10.49)

∂ε

∂t
+ Ux

∂ε

∂x
+ Uy

∂ε

∂y
= ∂

∂x

(
νt

σε

∂ε

∂x

)
+ ∂

∂y

(
νt

σε

∂ε

∂y

)
+ cε1

ε

k
(Pk + cf εPkν)+ Pεb − cε2

ε2

k
(10.50)

where Pk, Pkb, and Pεb are defined in Eqs. (6.10) and (6.11); and Pkv is the generation of
turbulence due to vegetation, determined by Pkv = cfkNa(FdxUx + FdyUy)/[ρ(1 − cv)].

The dispersion momentum transports Dij due to the non-uniformity of flow velocity
along the flow depth are determined using the models introduced in Section 6.3 for
curved channels, or combined with the turbulent stresses otherwise.

1-D equations of f low in vegetated channels

Integrating Eqs. (10.43) and (10.44) over the channel width yields the 1-D continuity
and momentum equations in vegetated channels:

∂[ρ(1 − cv)A]
∂t

+ ∂[ρ(1 − cv)Q]
∂x

= ρql (10.51)

∂[ρ(1 − cv)Q]
∂t

+ ∂

∂x

[
ρβ(1 − cv)Q2

A

]
+ ρg(1 − cv)A

∂zs

∂x
+ ρg(1 − cv)ASf = ρqlvx

(10.52)

where cv is the volumetric concentration of vegetation averaged the cross-section; and
Sf is the friction slope, including the effects of bed friction and vegetation drag:

Sf = Sfb + B
ρg(1 − cv)A

NaFd = Q|Q|
K2 (10.53)
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where Sfb is the bed friction slope, Fd is the drag force defined in Eq. (10.7), and K is
the conveyance.

When the vegetation concentration cv is small, Eqs. (10.51) and (10.52) can be
simplified as Eqs. (5.1) and (5.2) by eliminating 1 − cv.

If the entire cross-section is covered by nearly uniformly distributed vegetation, the
conveyance K can be determined by

K = A5/3

nχ2/3 (10.54)

where the Manning n accounts for the effects of both channel bed friction and
vegetation drag, and is determined by one of the relations described in Section 10.1.2.

If the cross-section is partially covered by vegetation or the vegetation density varies
along the cross-section, the flow velocity significantly varies in the vegetated and non-
vegetated zones or even in different vegetated zones. Thus, the cross-section needs to
be divided into a suitable number of subsections, either vegetated or non-vegetated.
The conveyance in each subsection is determined by

Kj = A5/3
j

njχ
2/3
j

(10.55)

where Kj, Aj, χj, and nj are the conveyance, flow area, wetted perimeter, and Manning
roughness coefficient of subsection j, respectively. The total conveyance K can be
obtained by summing the conveyances of all subsections as

K =
∑

j

Kj (10.56)

The flow velocity in each subsection is determined using the Manning equation:

Uj =
KjS

1/2
f

Aj
(10.57)

Eqs. (10.51) and (10.52) are iteratively solved together with Eqs. (10.53) and
(10.55)–(10.57) and a relation between the Manning roughness coefficient and flow
conditions introduced in Section 10.1.2. This approach is similar to but more
complicated than that used for compound channels in Section 5.1.1.4.

10.2.2 Numerical solutions

The 1-D, 2-D, and 3-D governing equations can be solved using the numerical methods
described in Chapters 5–7. For example, the 1-D equations (10.51) and (10.52)
can be solved using the Preissmann scheme and the Thomas algorithm described in
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Section 5.2.2, with slight modification to consider the variation of Manning n with
flow conditions.

The depth-averaged 2-D flow equations (10.43)–(10.45) can be solved using the
2-D SIMPLE(C) algorithm in Section 6.1.3.1 by defining the pressure as

p = ρ(1 − cv)gzs (10.58)

and the fluxes at cell faces as

Fw = [ρ(1 − cv)h]n+1
w (Jα1

i �η)wUn+1
i,w (10.59)

Fs = [ρ(1 − cv)h]n+1
s (Jα2

i �ξ)sU
n+1
i,s (10.60)

The details on the 2-D SIMPLE(C) algorithm for flow in vegetated channels can
be found in Wu and Wang (2004b). Similarly, Eqs. (10.37) and (10.38) can be
solved using the 3-D SIMPLE algorithm in Section 7.1.3.2 by replacing ρ with
ρ(1 − cv0).

For low vegetation density, the 3-D equations (10.39) and (10.40) and 2-D
equations (10.46)–(10.48) can be solved directly using the numerical algorithms
developed for flow in non-vegetated channels by arranging the drag force terms as
source terms.

10.2.3 Examples

Numerous verifications and applications of the vegetation effect models can be found
in the literature. Two examples are cited here. One is the simulation of flow in
open channels with rigid, submerged vegetation performed by Shimizu and Tsujimoto
(1994) using a vertical 2-D model with the k-ε turbulence closure. The experiments
were conducted in flumes under uniform flow conditions. The rigid cylinders of equal
height and diameter were placed at equal spacings in a square pattern on smooth flume
beds. Fig. 10.10 shows the measured and simulated mean flow velocities, Reynolds
shear stresses, and streamwise turbulence intensities along the flow depth for the run
with a flow depth of 7.47 cm, a depth-averaged flow velocity of 13.87 cm · s−1, an
energy slope of 0.00213, a vegetation height of 4.1 cm, a vegetation diameter of
0.1 cm, and a vegetation spacing of 1.0 cm. The flow was retarded by vegetation in
the lower layer, and the maximum shear stress and streamwise turbulence intensity
occurred at the top of the vegetation elements. The simulated results are in generally
good agreement with the measured data.

Note that Shimizu and Tsujimoto (1994) calibrated coefficients cfk = 0.07 and
cf ε = 0.16 through the above simulation. Lopez and Garcia (2001) also simulated
the flow over rigid, submerged vegetation under similar conditions and validated the
theoretically-based values cfk = 1.0 and cf ε = 1.33. To clarify this difference, Neary
(2003) re-simulated the case shown in Fig. 10.10 using the k-ω turbulence model. He
found that both sets of cfk and cf ε values give very close predictions for the mean flow
velocity and the Reynolds shear stress, while cfk = 0.07 and cf ε = 0.16 give a better
prediction for the streamwise turbulence intensity than cfk = 1.0 and cf ε = 1.33.
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Figure 10.10 (a) Mean velocities, (b) Reynolds shear stresses, and (c) streamwise turbulence
intensities of flow over submerged vegetation (Shimizu and Tsujimoto, 1994).

However, because the k-ε and k-ω turbulence models usually may not compute the
streamwise turbulence intensity or normal stress accurately, it is necessary to cali-
brate the two coefficients using the measurement data of other quantities, such as
the turbulent energy k, that these turbulence models can handle well. Before this is
done, it is the modeler’s preference to use which set of cfk and cf ε values. To this
author, it is more comfortable to use cfk = 1.0 and cf ε = 1.33 since they are derived
theoretically.

The second example cited here is the simulation of flow around alternate vegetation
zones done by Wu and Wang (2004b) using the depth-averaged 2-D model described
above. The experiments were conducted by Bennett et al. (2002) in a 16.5 m long tilting
recirculating flume. Six semi-circular vegetation zones with an equal spacing of 2.4 m
were distributed alternately to achieve a meandering pattern, as shown in Fig. 10.11(a).
The diameter of the vegetation zones was 0.6 m. The model vegetation was emergent
wooden dowel with a diameter of 3.2 mm, laid out in a staggered pattern in each
vegetation zone. Five vegetation concentrations of 0.04%, 0.2%, 0.6%, 2.5%, and
10% were used. The flow discharge was 0.0043 m3s−1, and the pre-vegetation flow
depth was 0.027 m. The slope of the flume was 0.0004. The surface flow velocity was
measured using the Particle Image Velocimetry (PIV) technique. The computational

Figure 10.11 (a) Plan view and (b) mesh for experiments of Bennett et al. (2002).
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mesh consisted of 461 nodes streamwise and 41 nodes laterally, part of which is shown
in Fig. 10.11(b). The depth- averaged 2-D k-ε turbulence model with cfk = 1.0 and
cf ε = 1.33 was used. The drag coefficient Cd was set as 0.8, 1.0, 1.2, 1.8, and 3.0
for the runs with vegetation concentrations of 0.04%, 0.2%, 0.6%, 2.5%, and 10%,

Figure 10.12 Calculated flow fields around alternate vegetation zones.

Figure 10.13 Measured and calculated velocities around alternate vegetation zones.
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respectively. This is due to that the Reynolds number decreases as the vegetation
concentration increases.

Fig. 10.12 shows the simulated flow vectors for vegetation concentrations of 0.6%,
2.5%, and 10%. It can be seen that the vegetation forced the thread of highest veloc-
ity to meander. The meandering flow pattern became more obvious, as the vegetation
concentration increased. When the vegetation concentration was 10%, a recircula-
tion flow occurred downstream of each vegetation zone. Fig. 10.13 compares the
measured and calculated flow velocities along several cross-sections for the case with
vegetation concentration of 10%. The simulation results and measurement data match
qualitatively well.

10.3 SIMULATION OF SEDIMENT TRANSPORT
IN VEGETATED CHANNELS

10.3.1 Sediment transport models in vegetated
channels

The total load is separated as bed load and suspended load, as shown in Fig. 2.6. The
3-D transport equation of suspended load in vegetated channels is

∂[(1 − cv0)ck]
∂t

+ ∂[(1 − cv0)ujck]
∂xj

− ∂[(1 − cv0)ωskδ3jck]
∂xj

= ∂

∂xj

[
(1 − cv0)εs

∂ck

∂xj

]
(10.61)

where ck is the local concentration of the kth size class of suspended load.
To solve Eq. (10.61), the boundary condition at the water surface is given as

Eq. (7.44), and the deposition and entrainment rates at the lower boundary of the
suspended sediment layer are Dbk = ωskcbk and Ebk = ωskcb∗k.

Integrating Eq. (10.61) over the flow depth yields the depth-averaged 2-D transport
equation of suspended load in vegetated channels:

∂[(1 − cv)hCk/βsk]
∂t

+ ∂[(1 − cv)hUxCk]
∂x

+ ∂[(1 − cv)hUyCk]
∂y

= ∂

∂x

[
h(1 − cv)

(
εs
∂Ck

∂x
+ Dsxk

)]
+ ∂

∂y

[
h(1 − cv)

(
εs
∂Ck

∂y
+ Dsyk

)]
+ αωsk(1 − cv)(C∗k − Ck) (10.62)

where Ck is the depth-averaged concentration of the kth size class of suspended load.
Integrating Eq. (10.62) over the channel width yields the 1-D transport equation of

suspended load in vegetated channels:

∂[(1 − cv)ACk/βsk]
∂t

+ ∂[(1 − cv)AUCk]
∂x

= α(1 − cv)ωskB(C∗k − Ck)+ qlsk (10.63)
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where Ck is the cross-section-averaged concentration of the kth size class of sus-
pended load.

In the 3-D and depth-averaged 2-D models, the transport equation of bed load in
vegetated channels is

∂[(1 − cvb)qbk/ubk]
∂t

+ ∂[αbx(1 − cvb)qbk]
∂x

+ ∂[αby(1 − cvb)qbk]
∂y

= 1
L
(1 − cvb)(qb∗k − qbk) (10.64)

where cvb is the volumetric concentration of vegetation in the bed-load zone.
In the 1-D model, the transport equation of bed load in vegetated channels is

∂[(1 − cvb)Qbk/Ubk]
∂t

+ ∂[(1 − cvb)Qbk]
∂x

= 1
L
(1 − cvb)(Qb∗k − Qbk)+ qlbk

(10.65)

where Qbk is the transport rate of the kth size class of bed load.
For low vegetation density, Eqs. (10.61)–(10.65) can be simplified by eliminating

the vegetation concentration.
The vegetation densities in the water column and channel bed might be different, but

this complexity is ignored in the present models. Therefore, the bed change and bed
material sorting equations in vegetated channels are the same as those in non-vegetated
channels. For example, in the depth-averaged 2-D model, the bed change and the
bed-material gradation in the mixing layer in vegetated channels are determined by
Eqs. (2.159) and (2.161), respectively.

To close the sediment transport models introduced above, the sediment transport
capacities need to be computed using empirical formulas. As described in Section
10.1.3, the work of Okabe et al. (1997) suggests that the Ashida-Michiue (1972)
bed-load formula can be used in vegetated channels. According to Wu et al. (2005),
the Wu et al. (2000b) formula can be extended to determine the sediment transport
capacity in the case of emergent vegetation. In the case of submerged vegetation, the
total bottom shear stress determined using Eq. (10.16) with Eq. (10.22) for Rs includes
both the shears from the bed and at the top of vegetation elements. Considering only
the shear on the bed affects the transport of bed load, the total bottom shear stress
should be modified by multiplying a factor hv/h when the bed-load transport capacity
is computed. This factor hv/h is derived by considering Eq. (10.20) and the first term
on the right-hand side of Eq. (10.21). However, this modification is not necessary in
the 3-D model that directly calculates the bed shear stress.

The aforementioned sediment transport equations in vegetated channels can be
solved by straightforwardly extending the numerical methods presented in Chapters
5–7 for sediment transport models in non-vegetated channels. The factor 1−cv can be
eliminated from the left-hand sides of Eqs. (10.61)–(10.65), or treated by replacing ρ
with ρ(1 − cv) in the finite volume method, as described in Section 10.2.2. The details
can be found in Wu and Wang (2004b) and Wu et al. (2005).
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10.3.2 Examples

Case 1. Bed change around a vegetated island

Experiments on the expansion of a vegetation island due to sedimentation were con-
ducted by Tsujimoto (1998). The island was a non-submerged porous body (5 cm
wide and 25 cm long), located in the center of a 0.4 m wide straight flume with a
sand bed (d = 1.6 mm), as shown in Fig. 10.14. The properties of the model vege-
tation were not reported, but the projected area per unit volume was determined as
0.1 cm−1 in the experiments. The slope of the flume was 1/100, and the flow dis-
charge was 0.003 m3s−1. The morphodynamic process around the vegetation island
was simulated by Tsujimoto (1998) and Wu and Wang (2004b) using depth-averaged
2-D models. The two models used differ in numerical methods and sediment transport
models. Tsujimoto used the Ashida-Michiue (1971) equation for bed load, whereas
Wu and Wang used the Wu et al. (2000b) formula. In Wu and Wang’s simulation, the
mesh consisted of 122 × 44 nodes with a refined grid spacing around the vegetation
island, the time step was 15 seconds, and Cd was set as 3.0.

Figure 10.14 Plan view of Tsujimoto’s (1998) experiments.

Fig. 10.15 compares the measured and calculated bed elevation changes near the
island after 30 minutes for the experimental run in which the inflow sediment dis-
charge was at equilibrium. Deposition happened in front of the island and inside and
behind it, whereas erosion occurred on its two sides. Tsujimoto (1998) predicted the
pattern of deposition and erosion well but the magnitude less accurately. Wu and
Wang (2004b) improved the accuracy, primarily due to the use of different sediment
transport capacity formula. Both simulations suggested the growth of the vegetation
island, as compared to the measurement.

Case 2. Bed change in a bend in the Little Topashaw Creek

The study reach was a deeply-incised sharp bend in the Little Topashaw Creek, North
Central Mississippi, as shown in Fig. 10.16. Five large wood structures made from
felled trees were placed along the outside of the study bend in the summer of 2000 in
order to stabilize the channel and create aquatic habitats (Shields et al., 2004). The
crests of the structures were 1.1 to 3.2 m higher than the bed and were emergent at low
flows and submerged at high flows. Logs running transverse to the flow direction were
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Figure 10.15 Bed changes around vegetated island: (a) measured by Tsujimoto (1998), (b) calculated
by Tsujimoto (1998), and (c) calculated by Wu and Wang (2004).

about 6 m long and were anchored into the bank toe. Acoustic Doppler velocimeters
were used to measure flow depth and vertically-averaged velocity during high flows.

Conditions during the period from June 2000 to June 2001 were numerically sim-
ulated using the depth-averaged 2-D model (Wu et al., 2005). Flow records (15-min
interval) from a gage about 1 km upstream from the study reach were used as the
inflow condition, and water surface elevations recorded by one of the acoustic Doppler
devices were extrapolated to the downstream end of the reach and used as the water
level boundary condition. The bed material in the study reach was quite uniform and
the median size was about 0.26 mm. The Manning roughness coefficient was estimated
as 0.028. The average diameter of the logs was about 0.3 m, and the vegetation con-
centration was about 20%. The shape factor αv was set as 0.5 because the large wood
structures were irregular and inclined. The product of αv and Cd was 2.0, which was
calibrated using the measured flow velocity. The suspended-load adaptation coefficient
αwas set as 0.5, and the bed-load adaptation length Lb was 20 m. The dispersion terms
in the momentum equations and suspended-load transport equation were evaluated
using the algebraic model in Section 6.3, with coefficients βI and λt given 1.0 and 3.0,
respectively. The computational time step was 2 minutes.

Fig. 10.17(a) shows the simulated flow field at a discharge of 42.6 m3s−1, which was
almost the highest flow in the simulation period. The flow was retarded by the large
wood matrices along the left bank and accelerated in the main channel. Fig. 10.18
compares the measured and predicted velocities at locations LTH2A and LTH2B
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Figure 10.16 (a) Map of study site and (b) photo facing upstream in Little Topashaw Creek (contours
represent bed elevation, in m; shaded areas are wood structures).

Figure 10.17 (a) Simulated flow at Q = 42.6 m3s−1 and (b) simulated bed change (m) in 2000–2001.

during a flow event with a peak of 15.5 m3s−1. Instrument LTH2A was secured
to the bed immediately downstream from a large wood structure, while instrument
LTH2B was secured to the bed along the same cross-section but at the centerline of
the base flow channel. Measured velocities were noisy due to turbulent fluctuations,
acoustic interference from floating and suspended trash and debris, and factors internal
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Figure 10.18 Measured and simulated flow velocities with time at LTH2A and LTH2B.

Figure 10.19 Measured and simulated bed profiles at cross-section LTH2.

to the instrument. Due to the large wood structures, the flow velocity at LTH2A was
only about one-third that at LTH2B. Fig. 10.17(b) shows the simulated bed elevation
change contours in the bend, and Fig. 10.19 compares the simulated and measured
bed changes at cross-section LTH2 during the simulation period. Deposition occurred
at the structures along the left (outer) bank, with erosion in the main channel. The
model reproduced the bed change fairly well.



Chapter 11

Cohesive sediment transport
modeling

Fine-grained sediments, such as clay and fine silt, widely exist in rivers, lakes,
reservoirs, estuaries, and coastal waters. They generally exhibit cohesive properties
and undergo a number of complex mechanical, physicochemical, and biochemical pro-
cesses. Fundamentals and methodologies for simulation of cohesive sediment transport
and the associated morphodynamic processes are presented in this chapter.

11.1 COHESIVE SEDIMENT TRANSPORT PROCESSES

11.1.1 General transport patterns

Fig. 11.1 shows the general transport pattern of cohesive sediments in estuaries and
coastal waters. Similar patterns can be found in rivers, reservoirs, and lakes, except
for the effects of salinity and tide. Because of the action of electrostatical forces that
are comparable to or larger than the gravity forces, fine sediment particles may stick
together and form flocs or aggregates when they collide, as shown in Fig. 11.2. This
process is called “flocculation.” The flocs may be transported by convection (due
to river flows, currents, and waves), turbulent diffusion, and gravitational settling.
They may move in suspended load or bed load, depending on their sizes; however,
suspension is usually presumed to be the main transport mode. Variations in flow
conditions may cause sediment erosion and deposition, whereas the settled cohesive
deposits may consolidate, due to gravity and the overlying water pressure.

Figure 11.1 Cohesive sediment transport in estuary.
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Figure 11.2 Schematic diagram of a typical floc (Tsai et al., 1987).

Flocs experience continuous aggregation and disaggregation during their transport.
Finer flocs and single particles may collide and then form larger flocs. On the other
hand, larger flocs may be disaggregated into finer flocs and single particles, due to
high shear or large eddy ejection and sweeping, in particular near the bottom. Under
given flow and sediment conditions, the flocculation and break-up processes may reach
an approximately equilibrium state. The typical size distribution of flocs is shown in
Fig. 11.3, as compared to that of the corresponding dispersed particles. One can see
that the flocs are much coarser than the dispersed particles on average.

Figure 11.3 Typical size distribution of flocs (Krishnappan, 2000).
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11.1.2 Factors affecting f locculation

Flocculation of cohesive sediment particles is affected by sediment size, sediment
concentration, salinity, turbulence intensity, temperature, organic matters, etc.

Sediment size

Experiments have shown that flocculation is negligible for sediment particles larger
than about 0.03 mm, but it becomes stronger as sediment size reduces. Migniot (1968)
defined a flocculation factor as Fω = ωsf /ωsd, in which ωsf and ωsd are the median
settling velocities of flocs and the corresponding dispersed sediment particles, respec-
tively. Migniot measured ωsf and ωsd in a settling column using a large number of
muddy sediment samples with different compositions at a sediment concentration of
10 kg · m−3 and a salinity of 30 ppt. As shown in Fig. 11.4, the flocculation factor Fω
varies with the median size d50 of the dispersed sediment according to

Fω =
(

dr

d50

)nd

(11.1)

where nd = 1.8, and dr is a reference diameter, about 0.0215 mm.

Figure 11.4 Flocculation factor Fω as function of particle d50 (Migniot, 1968).

Qian (1980), Huang (1981), and Dixit et al. (1982) also investigated the flocculation
factor Fω using different sediment samples and obtained Eq. (11.1). As listed in
Table 11.1, the exponent nd in all three studies has almost the same value as that
Migniot observed, while the reference diameter dr exhibits different values perhaps
due to difference in flow, salinity, and sediment conditions among these experiments.

Applying the Stokes law to ωsd in Eq. (11.1), one can find that the floc settling
velocity is approximately 0.15 to 0.6 mm · s−1 and does not vary much with the size
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Table 11.1 Parameters nd and dr of flocculation factor

Authors Experiment conditions nd dr (mm)

Migniot (1968) Muddy sediments, salinity = 30 ppt, 1.8 0.0215
sediment concentration = 10 kg · m−3

Qian (1980) River sediments, 2.0 0.011
sediment concentration = 30 kg · m−3

Huang (1981) Lianyun Harbor mud, salinity = 30 ppt, 1.9 0.022
sediment concentration = 0.08–1.8 kg · m−3

Dixit et al. (1982) No salinity, 1.8 0.012
sediment concentration = 1.2–11 kg · m−3

of the dispersed particles. This range of settling velocity is equivalent to the size range
of medium-to-coarse silt particles.

Sediment concentration

Flocculation is highly related to sediment concentration, as shown in Fig. 11.5 (Thorn,
1981; Mehta, 1986). At low sediment concentrations, as the sediment concentration
increases, the floc settling velocity increases, due to the intensification of flocculation
by increasing the collision probability. As the sediment concentration increases fur-
ther, the floc settling velocity decreases, due to the effect of hindered settling and the
formulation of large floc structures. At very large concentrations, a large number of
particles form large-scale floc matrices and, thus, the floc settling velocity becomes
very small and even reduces to zero temporarily. The water and sediment mixture
tends to be fluidized and becomes a non-Newtonian fluid.

The floc settling velocity in Fig. 11.5 is based on measurements in a settling column
using the mud in saltwater from the Severn Estuary, England (Thorn, 1981). The curve

Figure 11.5 Floc settling velocity as function of sediment concentration (Thorn, 1981; Mehta, 1986).
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can be expressed as

ωsf =
{

k1Cn 0 < C ≤ Cp

ωs0(1 − k2C)β C > Cp
(11.2)

where C is the sediment concentration in kg · m−3; ωs0 is a reference settling velocity;
n,β, k1, and k2 are coefficients; and Cp is the sediment concentration at which the
floc settling velocity turns from an increasing to a decreasing trend in the curve of
ωsf ∼ C. k1 = 0.513, k2 = 0.008, n = 1.29, β = 4.65, ωs0 = 0.0026 m · s−1, and
Cp = 3.5 kg · m−3 for the curve in Fig. 11.5. However, many experiments have shown
that these parameters depend on sediment properties. n ranges from 1 to 2 with a
mean value of 1.3, while β ranges between 3 and 5. Huang (1981) evaluated Cp as
about 1.5 kg · m−3 for the Lianyun Harbor mud, and Li et al. (1994) gave Cp a value
of 3.0 kg · m−3 for the Gironde Estuary mud.

Salinity

As observed by Krone (1962), Owen (1970), Huang (1981), and Yue (1983), salinity
influences flocculation significantly. Most clay particles have a negative charge. In fresh
water, the electrokinetic potential associated with the particles generally is sufficiently
large, and as a result, the particles will repel each other. However, in saline water,
this potential is reduced below a critical value, the electrical layer associated with the
particles collapses; thus, the particles stick together to form flocs, due to the presence of
dominating molecular attractive forces (London-Van der Waals forces), electrostatical
surface forces (double layer), and chemical forces (hydrogen bonds, cation bonds, and
cementation).

Chien and Wan (1983) presented a graphical relation of floc settling velocity and
salinity, which is shown in Fig. 11.6. It can be seen that when salinity is low, the floc

Figure 11.6 Settling velocity as function of salinity (Chien and Wan, 1983).
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settling velocity increases rapidly as salinity increases. However, when salinity exceeds
a certain value, its influence on floc settling becomes very slight.

Turbulence intensity

The turbulence of flow affects flocculation in two different ways (Owen, 1970;
McConnachie, 1991; Haralampides et al., 2003). For low shears, turbulence increases
the chance of collision among sediment particles and thus strengthens flocculation;
for high shears, strong turbulence may break apart the flocs and attentuate floc-
culation. Fig. 11.7 shows the relation between the residual turbidity and stirrer
speed observed by McConnachie (1991) in a Perspex reactor 0.1 m by 0.1 m in
plan view, filled to a depth of 0.1 m. Three types of stirrers were used. It was
found that as the stirrer speed increased, the residual turbidity decreased first and
then increased. Haralampides et al. (2003) performed experiments on the settling
of flocs in a rotating circular flume using sediment samples from the St. Clair
River near Sarnia, Ontario; they observed that the median size d50 of flocs had
a maximum value at the bed shear stress of 0.17 N · m−2 and decreased for shear
stresses above and below 0.17 N · m−2. These experiments have proven that as
the turbulence intensity increases, flocculation will first be strengthened and then
attenuated.

Figure 11.7 Residual turbidity in a Perspex reactor versus stirrer speed (McConnachie, 1991).

Temperature

Temperature affects the thermal motion of ions and, in turn, flocculation. According
to Huang’s (1981) experiments on the settling of flocs using the Lianyun Harbor mud
at temperatures of 6.1, 21.5, and 32◦C, the settling velocity of the flocculated sediment
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is reciprocally proportional to the viscosity of water, i.e.,

ωsfT1

ωsfT2
= µT2

µT1
(11.3)

where µT1 and µT2 are the dynamic viscosities of water at temperatures T1 and T2,
respectively.

In addition, organic matters also have significant influence on flocculation. Organic
matters usually have a positive charge, which enlarges the binding forces among sedi-
ment particles and thus intensifies flocculation. However, quantification of this effect
needs to be investigated further.

11.1.3 Formulas of f loc settling velocity

The Migniot formula (11.1) and the Thorn formula (11.2) can be used to determine
the settling velocity of flocs. However, each of them only considers the effect of a
single factor. Yue (1983) proposed a formula of floc settling velocity that considers
the effects of sediment concentration, size, and non-uniformity, as well as salinity:

ωsf = 0.18ζβ−1/6C3/4
sa C1/3d1/4

50 (11.4)

where Csa is the salinity (ppt), C is the sediment concentration by volume, β = 1+0.14
d−1/2

50 , and ζ = (d80/d20)
1/2.

Eq. (11.4) introduces a monotonous function between the floc settling velocity and
sediment concentration and thus cannot represent the general trend shown in Fig. 11.5.

Lick and Lick (1988) and Gailani et al. (1991) proposed a formula to determine the
floc diameter:

df =
( α0

CG

)1/2
(11.5)

where df is the median diameter of flocs (cm), C is the sediment concentration
(g · cm−3), G is the fluid shear stress (dynes · cm−2), and α0 is an experimentally
determined coefficient. For fine-grained, cohesive sediments in freshwater, α0 = 10−8.

According to Burban et al. (1990), for the same floc diameter, a larger settling
velocity is observed for the floc produced at a higher fluid shear because the effective
density and shape of the floc are affected by the conditions in which it is produced.
Burban et al. proposed a formula for the floc settling velocity ωsf (cm · s−1) based on
experiments on flocculated, cohesive sediments in freshwater:

ωsf = adb
f (11.6)

where a = B1(CG)−0.85, b = −[0.8 + 0.5 log(CG − B2)], B1 = 9.6 × 10−4, and
B2 = 7.5 × 10−6 (Gailani et al., 1991).
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After the floc diameter is calculated using Eq. (11.5), the floc settling velocity can
be determined using Eq. (11.6). Eqs. (11.5) and (11.6) consider the effects of sediment
concentration and flow shear on flocculation. It can be seen that the settling velocity
increases as either C or G increases. It seems that these two equations are applicable
only for low sediment concentrations and low shears.

The formula proposed by Peng (1989) based on the Yangtze Estuary mud consid-
ers the influences of sediment size, sediment concentration, salinity, and turbulence
intensity on flocculation. Zhang (1999) modified the Peng formula for a study in the
Yellow River mouth as

ωsf

ωsd
= 0.274a f (C)

C0.03
sa I0.22

d0.58
50

(11.7)

where I is the turbulence intensity, defined as I = √UhSe/ν with Se being the energy
slope; a is a coefficient between 1 and 1.5 to be calibrated using observed data; and
f (C) is a function of sediment concentration C:

f (C) =
{

C0.48 C ≤ 15 kg · m−3

[15/(C − 14)]0.48 C > 15 kg · m−3 (11.8)

The exponent of salinity in Eq. (11.7) is 0.03, which is very small, as compared
with that in the Yue formula (11.4). Eq. (11.7) introduces a monotonous relation
between floc settling velocity and turbulence intensity. This does not agree with
the observations by Owen (1970), McConnachie (1991), and Haralampides et al.
(2003). The exponent of I should be a variable rather than a constant, and there
should be a threshold value of I at which the exponent of I turns from positive to
negative.

Eqs. (11.4), (11.6), and (11.7) were obtained under certain conditions, and thus,
their applicability should be restricted somehow. For more general applications, the
following formula was suggested by Wu and Wang (2004c):

ωsf

ωsd
= KdKsKsaKt (11.9)

where Kd, Ks, Ksa, and Kt are the correction factors accounting for the influences of
sediment size, sediment concentration, salinity, and turbulence intensity, respectively.
Note that the effect of temperature is considered through ωsd.

Following Migniot (1968), Qian (1980), Huang (1981), and Dixit et al. (1982), one
can evaluate the correction factor Kd as

Kd =
(

dr

d50

)nd

, d50 ≤ dr (11.10)

Eq. (11.10) is only applied to the range of d50 ≤ dr. For d50 > dr, Kd is set as 1.0.
This means that no flocculation occurs for coarse sediments.
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Following Thorn (1981) and Mehta (1986), one can have the following formulation
for the correction factor Ks:

Ks =
{

k1Cn 0 < C ≤ Cp

k(1 − k2C)β C > Cp
(11.11)

where k = k1Cn
p/(1 − k2Cp)

β .
Note that Eq. (11.11) adopts the original formulation of Eq. (11.2), but the

coefficient k1 should be adjusted accordingly. The reason is that the effects of sediment
size, salinity, and turbulence intensity on flocculation are accounted for by three
correction factors in Eq. (11.9), whereas these effects are lumped into k1 in Eq. (11.2).

Fig. 11.8 shows the relation between Ksa and salinity based on Huang’s data for the
Lianyun Harbor mud. The trend can be approximated by

Ksa =
{
(Csa/Csap)

nsa Csa,min < Csa ≤ Csap

1 Csa > Csap
(11.12)

where nsa is an empirical exponent, Csap is the salinity at which the influence of salinity
tends to be saturated, and Csa,min is a small threshold value of salinity above which
Eq. (11.12) is valid.

Figure 11.8 Relation of Ksa and salinity based on Huang’s (1981) data (Wu and Wang, 2004c).

It can be seen from Fig. 11.6 that Csap and nsa are related to sediment concentration.
According to the investigations of Owen (1970), Huang (1981), and Yue (1983), Csap
has a value of about 30 ppt. The approximation curve in Fig. 11.8 is obtained from
Eq. (11.12) with Csap = 28 ppt and nsa = 0.53. The exponent nsa is 0.75 in the Yue
(1983) formula (11.4) and 0.03 in the modified Peng formula (11.7). This difference
may be because their experiments are in different ranges of salinity.
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The correction factor Kt is determined by

Kt =
{

1 + kt1(τb/τp)
nt1 0 < τb ≤ τp

(1 + kt1)(τb/τp)
−nt2 τb > τp

(11.13)

where kt1 is an empirical coefficient, nt1 and nt2 are empirical exponents, τb is the bed
shear stress in N · m−2, and τp is the threshold bed shear stress at which Kt attains the
maximum value.

The first expression of (11.13) gives Kt a value of 1 in quiescent conditions. Accord-
ing to the experiments of Haralampides et al. (2003), τp is about 0.17 N · m−2 at
the maximum floc d50; however, like many other parameters, τp may depend on
the properties of sediment. In accordance with the modified Peng formula (11.7),
nt1 has a value of about 0.165. However, nt2 has not been investigated well. From
McConnachie’s (1991) experiments, nt2 and nt1 might have values close to each other.
Further investigation is needed to quantify kt1, nt1, and nt2.

11.1.4 Deposition of cohesive sediments

Cohesive sediments deposit as flocs as long as the flocs are strong enough to settle
through the bottom region of high shear (Mehta and Partheniades, 1975). Some flocs
may break up as they approach the bed where the shear is stronger and return to the
flow.

Krone (1962) and Mehta and Partheniades (1975) investigated the deposition pro-
cess of fine sediments and proposed formulas to determine the deposition rate. Their
formulas can be written as

Db = αωsf C (11.14)

where α is the deposition probability coefficient between 0 and 1, which is related to
the bed shear stress τb and approximated as (Mehta and Partheniades, 1975)

α =

⎧⎪⎨⎪⎩
1 τb < τbd,min

1 − (τb − τbd,min)/(τbd,max − τbd,min) τbd,min ≤ τb ≤ τbd,max

0 τb > τbd,max

(11.15)

where τbd,min is the critical bed shear stress below which all sediment particles have a
full probability to deposit on the bed, and τbd,max is the critical bed shear stress above
which all sediment particles remain in suspension yielding a zero deposition rate.

The parameters τbd,min and τbd,max are related to sediment properties. According to
Krone (1962), τbd,min = 0, whereas Mehta and Partheniades (1975) found that τbd,min

might be larger than zero (0.2 N · m−2 in their experiments). For the sediment having
uniform properties sampled in the San Francisco Bay, Krone found τbd,max = 0.078
N · m−2 when the initial sediment concentration ranged from 0.3 to 10 kg · m−3. For
the sediment with a broad size distribution, Mehta and Partheniades found that τbd,max

might vary from 0.18 to 1.1 N · m−2.
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11.1.5 Erosion of cohesive sediments

Erosion modes

Erosion of cohesive sediments is affected by flow conditions, sediment properties,
and bed configurations. The first erosion mode is surface or floc erosion, in which
sediment is eroded from the bed in particles, due to the breaking of inter-particle
electrochemical bonds under the action of the flow that exceeds a critical shear stress.
The second mode is mass erosion, in which sediment is eroded in layers, due to bed
failures along planes below the bed surface when the applied shear stress exceeds the
bed bulk strength. The third mode is sediment entrainment due to bed fluidization
followed by the destabilization of the water-sediment interface (Mehta, 1986).

Critical conditions for incipient motion and erosion

The critical velocity or shear stress for erosion (or incipient motion) of cohesive sedi-
ments is related to the properties of bed materials, such as plasticity index, void ratio,
water content, and yield stress, but general accepted relationships are not available,
especially for consolidated muds. Determination of the critical flow conditions must
be based on laboratory or in-situ field tests using the natural muds of study.

Dou (1960) and Zhang (1961) studied the incipient motion of newly deposited
cohesive sediments and proposed several empirical formulas for the critical depth-
average velocity. The Zhang formula is

Uc =
(

h
d

)0.14 (
1.8
γs − γ
γ

gd + 0.000000605
10 + h
d0.72

)1/2

(11.16)

where Uc is the critical depth-averaged velocity for the incipient motion of sediment
(m · s−1), and d is the sediment size in meters. When the sediment size is larger, the last
term on the right-hand side is negligible and Eq. (11.16) reduces to Eq. (3.28), which
is for the incipient motion of non-cohesive sediments.

The newly deposited mud is a kind of Bingham fluid. The critical shear stress for
erosion is related to the yield stress by Migniot (1968) as follows:

U∗c =
⎧⎨⎩0.95τ1/4

B τB < 15

0.50τ1/2
B τB ≥ 15

(11.17)

where U∗c is the critical shear velocity for incipient motion (cm · s−1), and τB is the
Bingham yield stress (dynes · cm−2).

According to many experiments, Otsubo and Muraoko (1988) related the critical
shear stresses for surface erosion (τce1) and mass erosion (τce2) to the yield stress τB as

τce1 = 0.27τ0.56
B , τce2 = 0.79τ0.94

B (11.18)
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Erosion rate

According to Partheniades (1965), the surface erosion rate is a linear function of the
dimensionless excess shear stress:

Eb = M
(
τb − τce

τce

)
(11.19)

where M is the erodibility coefficient, and τce is the critical shear stress for erosion.
Both are related to dry density, mineral composition, organic material, salinity,
temperature, pH value, Sodium Absorption Ratio (SAR), and so on.

However, Raudkivi and Hutchison (1974) and Mehta et al. (1982) established
exponential relations between the surface erosion rate and dimensionless excess shear
stress. The formula of Mehta et al. reads

Eb = E0eα0(τb−τce)/τce (11.20)

where E0 is the value of Eb at τb = τce, and α0 is a coefficient.
Normally, the exponential relation is valid for partly consolidated beds, whereas

the linear relation is valid for fully consolidated beds in which soil properties do not
vary with time and over depth (Ariathurai and Mehta, 1983; Mehta, 1986).

Gailani et al. (1991) and Ziegler and Nisbet (1995) found a power function between
the erosion rate and dimensionless excess shear stress:

Eb = a0

tm
d

(
τb − τce

τce

)n

(11.21)

where a0 is a site-specific coefficient, td is the time after deposition, m is an exponent
of about 2, and n is between 2 and 3. The parameters a0, m, and n are dependent
upon sediment properties and deposition environments.

11.1.6 Consolidation of cohesive bed materials

Consolidation process

Consolidation is a compaction process of deposited materials under the influence of
gravity and water pressure with a simultaneous expulsion of pore water and a gain
in strength of bed materials. According to Hamm and Migniot (1994), consolidation
can be described as a three-stage process. The first stage is the settlement of flocs to
form a particle-supported matrix or fluid mud, which happens perhaps within several
hours of deposition. The second stage is the elimination of interstitial water, which
occurs in one to two days. The third stage is the gelling of clays, which is a very slow
process. According to the degree of consolidation, the deposited mud is classified into
fluid mud, plastic mud, or solid mud. The fluid mud is the unconsolidated deposit,
the plastic mud is the deposit undergoing consolidation, and the solid mud is the older
consolidated deposit.
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The three distinct stages of consolidation were also observed in Nedeco’s (1965)
experiments on the consolidation process of natural mud from Bangkok Bar Channel
in saline water. The mud surface sank linearly with time t in the initial stage, with
t0.5 in the second stage, and with log(t) in the third stage. Several initial suspension
heights and wet sediment densities were tested. It was found that the mud with low
initial density gradually tended to attain the same density as the sample with high initial
density, and the wet sediment density increased toward the bottom of the cylinder,
due to larger pressure in the deeper layer.

The degree of consolidation depends on sediment size, mineralogical composi-
tion, deposit layer thickness, etc. According to van Rijn’s (1989) experiments on
the consolidation process in a layer of pure kaolinite material in saline water, a thin
layer of mud consolidates faster than a thick layer with the same initial concentration
because in the latter case the pore water has a larger travel distance to the mud surface.

Variation of bed density

As experimentally observed by Owen (1975), Dixit (1982), and Hayter (1983), the
dry bed density varies along the depth below the bed surface. The general trend can
be approximated by (Hayter, 1983)

ρd

ρ̄d
= a

(
H − z

H

)m

(11.22)

where ρd is the dry density of bed, ρ̄d is the mean dry density of bed, H is the bed
thickness, z is the depth below the bed surface, and a and m are coefficients dependent
on soil properties and consolidation time.

Fig. 11.9 shows the mean dry bed density varying with consolidation time for
the Avonmouth mud (Owen, 1975), commercial grade kaolinite in salt water
(salinity = 35 ppt) (Parchure, 1980), and kaolinite in tap water (no salinity) (Dixit,

Figure 11.9 Variation of mean bed density with consolidation time (Dixit, 1982).
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1982). Noteworthy is the very rapid increase in ρ̄d in approximately the first 48 hours,
after which the increase was much less rapid, and the almost asymptotic approach to
the final mean bed density, ρ̄d∞. The temporal variation of the mean dry bed density
for all three muds can be approximated by (Hayter, 1983)

ρ̄d

ρ̄d∞
= 1 − aρe−pt (11.23)

where aρ and p are empirical coefficients.
Lane and Koelzer (1953) proposed a formula to determine the dry density of bed

material in the consolidation process, which seems to coincide with the third stage of
consolidation observed in the experiments of Nedeco (1965) and Hamm and Migniot
(1994). The Lane-Koelzer formula is

ρd = ρd0 + β log t (11.24)

where ρd is the dry density (kg · m−3) at time t, ρd0 is the dry density after 1 year of
consolidation, t is the consolidation time (years), and β is a coefficient. ρd0 and β
depend on sediment size and reservoir operation conditions, as given in Table 11.2.

Table 11.2 ρd0 and β in Eq. (11.24) for dry density of reservoir deposits
(Lane and Koelzer, 1953)

Reservoir operation Sand Silt Clay

ρd0 β ρd0 β ρd0 β

Sediment always submerged or 1489 0 1041 91 480 256
nearly submerged

Normally a moderate reservoir 1489 0 1185 43 737 171
drawdown

Normally considerable 1489 0 1265 16 961 96
reservoir drawdown

Reservoir normally empty 1489 0 1313 0 1249 0

Inf luence of consolidation on bed shear strength and erosion rate

Consolidation significantly influences the bed shear strength and, in turn, the erosion
rate. Fig. 11.10 shows the relation between dry bed density and shear strength for stat-
ically deposited beds of the Avonmouth mud observed by Owen (1975). A regression
relation between τce (in N · m−2) and ρd (in kg · m−3) can be obtained as

τce = ςρβd (11.25)

with ς = 6.85 × 10−6 and β = 2.44.
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Figure 11.10 Bed shear strength as function of bed density (Owen, 1975).

Thorn and Parsons (1980) likewise found a power relation between τce and ρd at
the bed surface for the Grangemouth, Belawan, and Brisbane muds in saline water.
They obtained ς = 5.42 × 10−6 and β = 2.28.

Nicholson and O’Connor (1986) approximated the relation between τce and ρd
obtained by Thorn (1981) for the mud from Scheldt, Belgium, as follows:

τce = τce0 + kτ (ρd − ρd0)
nτ (11.26)

where ρd is the dry density of bed material, τce0 and ρd0 are the critical shear stress
and bed density in the initial period of bed formation, kτ is a coefficient of 0.00037,
and nτ is an exponent of about 1.5.

11.2 MULTIPLE-FLOC-SIZE MODEL OF COHESIVE
SEDIMENT TRANSPORT

As described in Section 11.1.1, the size distribution of flocs varies with time, due to
the consecutive aggregation and disaggregation processes. Even for the flocs generated
from uniform dispersed sediment particles, their size distribution is quite non-uniform
and dynamic. For the convenience of analysis, the size distribution of flocs is often
represented by a discrete number of size fractions, as shown in Fig. 11.3. The number
of flocs in size fraction k per unit volume is denoted as nk. The governing equation for
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nk considering the aggregation and disaggregation of flocs is (see Tsai et al., 1987)

∂nk

∂t
+ ∂(uink)

∂xi
− ∂(ωsf ,kδi3nk)

∂xi
= ∂

∂xi

(
εs
∂nk

∂xi

)
+ 1

2

∑
j+l=k

αljβljnlnj

−
∞∑

j=1

αjkβjknjnk +
∑
j>k

γkjnj

−
∑
j<k

γjknk (11.27)

where βij is the frequency function for collision between flocs of size fractions i and
j, αij is the probability of cohesion after collision, and γij is the frequency function of
disaggregation of flocs from size fraction j to i. The second term on the right-hand side
of Eq. (11.27) accounts for the formation of size fraction k by collision of smaller flocs.
The third term quantifies the loss of size fraction k due to collision with other flocs.
The fourth term represents the generation of size fraction k due to disaggregation of
larger flocs. The fifth term denotes the loss of size fraction k due to disaggregation to
smaller flocs.

Particle collision may be caused by Brownian motion, fluid shear, and differential
settling. The original collision theory was due to Smoluchowski (1917), and additional
work was done by Camp and Stein (1943). The frequency function βij for different
collisions is presented below (see Tsai et al., 1987).

For Brownian motion,

βij = 2
3

kT
µ

(di + dj)
2

didj
(11.28)

where k is the Boltzmann constant (1.38×10−23 N · m · ◦K−1), T is the absolute tem-
perature (◦K), µ is the dynamic viscosity of the fluid, and di and dj are the diameters
of the two colliding particles.

For fluid shear,

βij = G
6
(di + dj)

3 (11.29)

where G is the mean velocity gradient in the fluid. For a turbulent fluid, G can
be approximated by (ε/ν)1/2, in which ε is the energy dissipation rate and ν is the
kinematic viscosity of the fluid (Saffman and Turner, 1956).

For differential settling,

βij = πg
72µ

(ρs − ρf )(di + dj)
2(d2

i − d2
j ) (11.30)

Fig. 11.11 shows the frequency functions for particles of different sizes colliding
with a 1-µm particle and a 25-µm particle due to Brownian motion, fluid shear, and
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Figure 11.11 Collision function β versus particle size: (a) collision with a 1 µm particle and
(b) collision with a 25 µm particle (Tsai et al., 1987).

differential settling. The conditions were T = 20◦C (293◦K), G = 200 s−1

(2 dynes · cm−2), ρs = 2650 kg · m−3, and ρf = 1000 kg · m−3. As can be seen, the
Brownian motion is only important for collision of small particles, the differential set-
tling is the main cause for collision of large particles, and the fluid shear is important
for collision of medium particles.

The multiple-floc-size model was tested by Lick and Lick (1988) in simple cases, but
it encounters difficulties in quantification of αij, γij, and the size distribution of flocs
entrained from a cohesive bed.

11.3 SINGLE-FLOC-SIZE MODEL OF COHESIVE
SEDIMENT TRANSPORT

11.3.1 Governing equations

As described in the previous section, it is difficult to simulate the aggregation and diag-
gregation processes using the multiple-floc-size model in the present time. More often
used is the single-floc-size model, which does not resolve the details of aggregation
and disaggregation processes but considers flocculation in a lumped form through a
representative floc settling velocity ωsf that varies with flow and sediment conditions
(Nicholson and O’Connor, 1986; Li et al., 1994; Chen et al., 1999; Le Normant,
2000; Wu and Wang, 2004c).

In the 3-D model, the sediment transport equation is

∂c
∂t

+ ∂(uxc)
∂x

+ ∂(uyc)
∂y

+ ∂(uzc)
∂z

− ∂(ωsf c)

∂z
= ∂

∂x

(
εs
∂c
∂x

)
+ ∂

∂y

(
εs
∂c
∂y

)
+ ∂

∂z

(
εs
∂c
∂z

)
(11.31)
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with the boundary condition at the bed(
ωsf c + εs ∂c

∂z

)
z=zb

= Db − Eb (11.32)

where c is the local sediment concentration; Db is the deposition rate determined using
Eq. (11.14); Eb is the erosion rate determined using one of Eqs. (11.19)–(11.21); and
ωsf is determined using one of Eqs. (11.1), (11.2), (11.4), (11.6), (11.7), and (11.9).

In the depth-averaged 2-D model, the sediment transport equation is

∂(hC)
∂t

+ ∂(hUxC)
∂x

+ ∂(hUyC)
∂y

= ∂

∂x

(
Es,xh

∂C
∂x

)
+ ∂

∂y

(
Es,yh

∂C
∂y

)
+ Eb − Db (11.33)

where C is the depth-averaged sediment concentration.
One can see similarity between Eqs. (7.43) and (11.31) and between Eqs. (6.53) and

(11.33). The width-averaged 2-D and 1-D cohesive sediment transport equations are
similar to Eqs. (6.123) and (5.27), which are not repeated here. The difference between
cohesive and non-cohesive sediment transport models lies in the determination of ωsf ,
Db, and Eb, as well as bed consolidation.

The rate of change in bed elevation, ∂zb/∂t, is determined by

(1 − p′
m)
∂zb

∂t
= Db − Eb (11.34)

Gibson et al. (1967) proposed a theory to describe the bed consolidation process.
The model based on this theory determines the evolution of the void ratio of a soil
layer using the following 1-D equation in the vertical direction at each horizontal
computational point:

∂e
∂t

+
(
ρs

ρf
− 1

)
d
de

(
k

1 + e

)
∂e
∂z′ + ∂

∂z′

(
1
ρf g

k
1 + e

dσ ′

de
∂e
∂z′

)
= 0 (11.35)

where e is the void ratio of bed soil, z′ is the reduced material coordinate deduced
from the vertical coordinate z by δz = δz′(1 + e), k is the permeability, and σ ′ is the
effective stress.

Constitutive relationships for the permeability k and the effective stress σ ′ as func-
tions of the void ratio are needed to close Eq. (11.35). These constitutive relationships
are rarely available; thus, it is difficult to apply this approach in the solution of real-
life problems. Therefore, a simpler approach is often used, in which the evolution of
bed density is determined by empirical functions, such as Eqs. (11.23) and (11.24).

The overall mass of sediment should be conserved in the consolidation process, i.e.,

∂

∂t

∫ zb

z0

ρddz = 0 (11.36)
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where z0 is the elevation of the uncompactable layer of bed material.
By defining the bed thickness as H = zb − zo and the average dry density of the bed

as ρ̄d = ∫ zb

z0
ρddz/H, Eq. (11.36) can be written as

∂

∂t
(Hρ̄d) = 0 (11.37)

The bed change due to consolidation is then determined by

∂H
∂t

= − H
ρ̄d

∂ρ̄d

∂t
(11.38)

11.3.2 Numerical solutions

Numerical discretization

Eqs. (11.31) and (11.33) can be discretized using the same numerical methods as
those for Eq. (7.43) and (6.53). Usually, the time-derivative terms are discretized
using the forward or backward difference scheme to establish an explicit or implicit
time-marching procedure. The convection terms should be discretized using an upwind
scheme, while the diffusion terms are discretized using the central difference scheme or
a similar scheme. The settling term in Eq. (11.31) and the exchange term in Eq. (11.33)
are often treated as source terms. The resulting algebraic equations can be solved using
the Gauss-Seidel, ADI, or SIP method introduced in Section 4.5.

In the 3-D model, the near-bed boundary condition (11.32) can be discretized using
a scheme similar to Eq. (7.54) or (7.55).

The bed change equation (11.34) is discretized in time as

�zb = �t
1 − p′

m
(Db − Eb) (11.39)

Eq. (11.38) can be discretized in time to calculate the bed change due to consoli-
dation. However, to consider the heterogeneous properties of bed materials deposited
in different times, the following multiple-layer model is often used. The bed soil from
the bed surface to the uncompactable layer is divided into a suitable number of layers
in the vertical direction, as shown in Fig. 11.12. Each layer is characterized by its dry
density and residence time. The top layer holds the newly deposited mud, and a bed
formation time (such as 2 hours) may apply to this layer. The evolution of dry densities
at other layers is determined by Eq. (11.23) or (11.24). The mass of sediment at each
layer is conserved during the consolidation process, i.e.,

∂

∂t
(δjρdj) = 0 (11.40)

where δj and ρdj are the thickness and dry density of the jth layer of bed material.
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Figure 11.12 Multiple-layer model of bed consolidation.

Discretizing Eq. (11.40) yields

δn+1
j = δnj

ρn
dj

ρn+1
dj

(11.41)

Then, the overall bed change due to consolidation is calculated as

�zb,c =
J∑

j=1

(δn+1
j − δnj ) =

J∑
j=1

δnj

⎛⎝ ρn
dj

ρn+1
dj

− 1

⎞⎠ (11.42)

where J is the total number of the divided bed material layers.

Calculation procedure

As described in Section 5.1, the flow and sediment calculations may be coupled or
decoupled, depending on the intensity of sediment transport. If the sediment concen-
tration is low and the bed varies slowly, the effect of sediment transport on the flow
is negligible and thus a decoupled model is applicable; otherwise, a coupled model
should be used. However, in the sediment module (or loop), sediment transport, bed
change, and bed consolidation are correlated, and thus it is usually required to solve
them simultaneously in an iteration form. The following calculation procedure is used
by Wu and Wang (2004c):

(1) Initialize flow, salinity, and sediment fields;
(2) Calculate the flow field using a flow solver;
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(3) Solve the salinity transport equation, if needed;
(4) Guess the bed density, etc., and calculate the sediment settling velocity, deposition

rate, and erosion rate;
(5) Solve the sediment transport equation;
(6) Calculate the bed change due to sediment transport;
(7) Calculate the bed consolidation and obtain a new bed density;
(8) Return to step (4) and repeat the iteration until a convergent solution for sediment

transport is obtained;
(9) Adjust the bed topography, and return to step (2) for the next time step.

11.3.3 Examples

Many applications of cohesive sediment transport models can be found in Nicholson
and O’Connor (1986), Li et al. (1994), Chen et al. (1999), Le Normant (2000), Wu
and Wang (2004c), and so on. As one example, the simulation of cohesive sediment
transport in the Gironde Estuary, France, conducted by Wu and Wang (2004c) using
the depth-averaged 2-D model introduced above is cited here. This estuary is partially
mixed and macrotidal, with a tidal period of 12 hours and 25 minutes and a tidal
amplitude of 1.5 to 5 m at the mouth. The simulation domain was about 80 km

Figure 11.13 Sketch of Gironde Estuary, France.
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long, starting from the mouth to the Garonne and Dordogne Rivers (see Fig. 11.13).
The computational mesh was uniform, with a size of 500 m × 250 m for each cell.
The tidal flow and cohesive sediment transport during May 19–22, 1974 were sim-
ulated. To consider the effect of salinity on sediment flocculation, salinity transport
was also simulated using the depth-averaged 2-D model introduced in Section 12.1.
The computational time step was 30 minutes.

The sediment parameters were selected carefully, according to suggestions of Li et al.
(1994). For the sand bottom, extending from the estuary mouth to about 15 km
upstream from Royan, τce was set to be 2.0 N · m−2, and for the reach covered by
cohesive sediments, τce was given values between 1.3 and 1.5 N · m−2. M was given
0.002 kg · m−2s−1. τbd,min was set as zero, and τbd,max was prescribed as 0.3 N · m−2.
Because only a few days of sediment transport were simulated, the consolidation pro-
cess was not considered. The settling velocity was calculated using Eq. (11.9). For
the correction factor of sediment diameter in Eq. (11.10), nd = 1.8 and dr = 0.022
mm, which were calibrated using Migniot’s measurement data. The parameters in the
correction factor of sediment concentration in Eq. (11.11) were k1 = 2.5, k2 = 0.008,
Cp = 3.0 kg · m−3, n = 1.3, and r = 4.65, which were used by Li et al. (1994) except
that the value of k1 was adjusted accordingly. For the correction factor of salinity in
Eq. (11.12), nsa = 0.5 and Csap was given 30 kg · m−3. For the correction factor of
turbulence shear in Eq. (11.13), τp was given 0.17 N · m−2, nt1 and nt2 were 0.165,
and kt1 was 1.5.

Fig. 11.14 shows the simulated flow fields in flood and ebb tides, and Fig. 11.15
shows the simulated and measured water levels and velocities. The amplitudes and
phases of water level and velocity were predicted well by the numerical model. No
obvious phase difference existed between measurement and simulation. Fig. 11.16
shows the sediment transport rate per unit cross-sectional area, i.e., UC, the product
of flow velocity and sediment concentration. The simulated sediment transport rates
match the measured data generally well.

Figure 11.14 Calculated flow patterns in Gironde Estuary (Wu and Wang, 2004c).



Figure 11.15 Measured and calculated water levels and velocities (Wu and Wang, 2004c).

Figure 11.16 Measured and calculated sediment transport rates UC.
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11.4 SIMULATION OF TRANSPORT OF COHESIVE AND
NON-COHESIVE SEDIMENT MIXTURES

When the fraction of clay and fine silt is larger than about 10%, a sediment mixture
composed of cohesive and non-cohesive particles may exhibit cohesive properties. The
flocculation and consolidation of the cohesive particles may affect the erosion, deposi-
tion, and transport of the non-cohesive particles significantly. In particular, when the
fraction of cohesive particles is appreciable and the sediment concentration is high, the
floc structures formed by the cohesive particles will involve the non-cohesive particles.

Interactions between cohesive and non-cohesive particles should be taken into
account in the simulation of the mixed cohesive and non-cohesive sediment trans-
port, but this is difficult because the interaction mechanisms are little understood. In
the case of low sediment concentration, such interactions may be ignored and, thus,
the following modeling framework is often used (Ziegler and Nisbet, 1995; Ziegler
et al., 2000; Wu and Vieira, 2002).

The entire sediment mixture is divided into a suitable number of size classes. The
depth-averaged 2-D transport equation of the kth size class of sediment is

∂(hCk)

∂t
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= ∂
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(
Es,xh

∂Ck

∂x

)
+ ∂

∂y

(
Es,yh

∂Ck

∂y

)
+ Ebk − Dbk (11.43)

where Ck is the depth-averaged concentration of the kth size class of sediment. For
brevity, the 1-D, width-averaged 2-D, and 3-D transport equations are omitted here.

The deposition rate Dbk is determined by

Dbk = αkωsf ,kCk (11.44)

where the coefficient αk is determined using Eq. (11.15) for the cohesive size classes
and the methods introduced in Section 2.5 for the non-cohesive size classes; and ωsf ,k
is the settling velocity of size class k, determined using one of Eqs. (11.1), (11.2),
(11.4), (11.6), (11.7), and (11.9) for the cohesive size classes and one of the formulas
introduced in Section 3.1 for the non-cohesive size classes.

The erosion rate Ebk is determined by

Ebk = pbkE(k)b (11.45)

where pbk is the fraction of size class k in the surface layer of bed material, and E(k)b is
the potential erosion rate of size class k.

If the cohesive portion is dominant in the bed (surface layer), all cohesive and
non-cohesive particles are usually eroded simultaneously in flocs (even blocks) and
have the same potential erosion rate; thus, E(k)b is actually the total erosion rate
and can be determined using an erosion model of cohesive sediments, such as
Eqs. (11.19)–(11.21). If the cohesive portion is not dominant in the bed, the non-
cohesive particles are eroded in dispersed form and the cohesive particles may be
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eroded in flocs. Because there may be hiding, exposure, and armoring among differ-
ent size classes, E(k)b may vary with size classes; it should be determined using the
entrainment models introduced in Section 2.5 for the non-cohesive size classes and
Eqs. (11.19)–(11.21) for the cohesive size classes.

The fractional bed change is determined by

(1 − p′
m)

(
∂zb

∂t

)
k

= Dbk − Ebk (11.46)

The temporal variation of bed-material gradation can be simulated using the
multiple layer model introduced in Section 2.7.2.

The consolidation of non-uniform bed material composed of cohesive and non-
cohesive particles can be determined using Eq. (11.37) or (11.40). However, the
temporal evolution of the dry densities of cohesive size classes should be determined
using Eq. (11.23), (11.24), or a more complex model, while the overall bed dry density
is determined using the Colby formula (2.18) or a similar formula.

The modeling framework introduced above has been applied in many case studies,
including the fine-grained sediment transport in the Watts Bar Reservoir by Ziegler
and Nisbet (1995), the sediment transport dynamics in Thompson Island Pool,
Upper Hudson River by Ziegler et al. (2000), and the sedimentation process in the
Danjiangkou Reservoir by Wu and Vieira (2002) shown in Section 5.6. The Watts Bar
Reservoir case is introduced briefly below as an example.

In the Watts Bar Reservoir (Fig. 11.17), suspended sediment particles ranged from
0.001 to 0.25 mm in size, and clay and silt are dominant (about 90%). Two size

Figure 11.17 Sketch of Watts Bar Reservoir (numbers are sediment loads during 1961–1991
in millions of tons) (Ziegler and Nisbet, 1995).
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Figure 11.18 Bed changes in Watts Bar Reservoir from 1961 to 1991 (Ziegler and Nisbet, 1995).

classes separated by size 0.062 mm were used in the simulation. The settling velocity
was determined using the Burban et al. formula (11.6) for the fine class and estimated
at 5 mm · s−1 for the coarse class. The deposition rate was computed using the Krone
formula and a non-cohesive model for the two size classes. The total erosion rate was
estimated using the Gailani et al. formula (11.21), and the fractional one was then
obtained by Eq. (11.45). The bed consolidation was simulated by a 3-D model. The
sediment loads in major tributaries in a 30-year period from 1961 to 1991 are shown
in Fig. 11.17, and the simulated bed changes in this period are presented in Fig. 11.18.
The simulation and measurement are in generally good agreement.



Chapter 12

Contaminant transport modeling

This chapter presents models for the fate and transport of water-quality constituents,
such as temperature, salinity, dissolved oxygen (DO), nitrogen, phosphorus, carbons,
and toxicants, in aquatic systems. In particular, heat exchange across the water sur-
face, interactions among DO, nitrogen, phosphorus, carbons and phytoplankton in
the eutrophication system, and sorption of contaminants on sediment particles are
discussed.

12.1 HEAT AND SALINITY TRANSPORT MODEL

Water temperature and salinity are among the key environmental conditions that
significantly affect the physical, chemical, and biological processes in aquatic sys-
tems. Thus, the simulation of heat and salinity transport is essential to water quality
modeling.

12.1.1 Governing equations

The presence of heat and salinity may induce stratification and density currents. To
adequately model these effects, the most preferable approach is the 3-D hydrody-
namic model, coupled with heat and salinity transport calculations. As described in
Section 2.4.4, the 3-D hydrodynamic equations are (2.112)–(2.115) with the water
density ρ varying with temperature and salinity. Under the hydrostatic pressure
assumption, the momentum equations (2.113)–(2.115) are simplified to Eqs. (2.117)
and (2.118). A further simplification may be made by assuming the temporal and
spatial variations of water density in the continuity equation (2.112) to be negligible,
yielding (Sheng, 1983; Blumberg and Mellor, 1987)
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where ρ0 is the water density at the water surface, and fc is the Coriolis coefficient.
As a simplified approximation, the width-averaged 2-D model can also be used to

study the stratified flows due to heat and salinity transport in rivers and reservoirs.
The width-averaged 2-D hydrodynamic equations are (2.122)–(2.124) in general.
However, for the vertically well-mixed water bodies, the effect of stratification is
negligible and, thus, the 1-D and depth-averaged 2-D models are applicable. In such
cases, the depth-averaged 2-D shallow water equations are (2.119)–(2.121) and the
1-D equations are (2.126) and (2.127) without the bed change terms. In analogy to
Eq. (12.1), the 1-D and 2-D continuity equations (2.119), (2.122), and (2.126) can be
simplified by ignoring the temporal and spatial variations. The resulting 1-D and 2-D
hydrodynamic equations can also be derived by integrating Eqs. (12.1)–(12.3) over
the cross-section, depth, and width of flow, respectively. The details are left to the
interested reader.

The 3-D heat transport equation is

∂T
∂t

+ ∂(uxT)
∂x

+ ∂(uyT)
∂y

+ ∂(uzT)
∂z

= ∂

∂x

(
εT,x
∂T
∂x

)
+ ∂

∂y

(
εT,y
∂T
∂y

)
+ ∂

∂z

(
εT,z
∂T
∂z

)
+ qT

ρcp
(12.4)

where T is the local temperature (usually in degree Celsius, ◦C), εT,i(i = x, y, z) are
the turbulent diffusivities of heat, cp is the specific heat, and qT is the heat source rate
per unit volume.

The 3-D salinity transport equation is

∂Csa

∂t
+ ∂(uxCsa)

∂x
+ ∂(uyCsa)

∂y
+ ∂(uzCsa)

∂z
= ∂

∂x

(
εsa,x

∂Csa

∂x

)
+ ∂

∂y

(
εsa,y
∂Csa

∂y

)
+ ∂

∂z

(
εsa,z
∂Csa

∂z

)
(12.5)

where Csa is the local salinity (usually in parts per thousand, ppt), and εsa,i(i = x, y, z)
are the turbulent diffusivities of salinity.

The width-integrated 2-D heat and salinity transport equations are

∂(bT)
∂t

+ ∂(bUxT)
∂x

+ ∂(bUzT)
∂z

= ∂

∂x

(
E′

T,xb
∂T
∂x

)
+ ∂

∂z

(
E′

T,zb
∂T
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)

+ 1
ρcp

(
bqT −

2∑
i=1

miqni

)
(12.6)



Contaminant transport modeling 431
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)
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where T and Csa are the width-averaged temperature and salinity, respectively; E′
T,i

and E′
sa,i are the effective diffusivities (mixing coefficients) of heat and salinity in the

longitudinal section, respectively; and qni(i = 1, 2) are the heat fluxes per unit of bank
surface area due to conduction, seepage flow, etc., across the two banks.

The depth-integrated 2-D heat and salinity transport equations are

∂(hT)
∂t

+ ∂(hUxT)
∂x

+ ∂(hUyT)
∂y
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(12.8)
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(12.9)

where T and Csa are the depth-averaged temperature and salinity, respectively; ET,i
and Esa,i are the horizontal effective diffusivities of heat and salinity, respectively; and
JT is the net flux across the water and bed surfaces.

The 1-D heat and salinity transport equations are

∂(AT)
∂t

+ ∂(QT)
∂x

= ∂

∂x

(
ET,LA

∂T
∂x

)
+ 1
ρcp

(
BJT −
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)
(12.10)

∂(ACsa)

∂t
+ ∂(QCsa)

∂x
= ∂

∂x

(
Esa,LA

∂Csa

∂x

)
(12.11)

where T and Csa are the temperature and salinity averaged in the cross-section, respec-
tively; ET,L and Esa,L are the longitudinal effective diffusivities of heat and salinity,
respectively; q̄ni(i = 1, 2) are the average heat fluxes per unit bank surface area due to
conduction, seepage flow, etc., across the two banks; and m̄i(i = 1, 2) are the ratios
of the wetted bank slope lengths to the flow depth.

Water density varies with temperature and salinity. This can be described by the
equation of state (Crowley, 1968):

ρ = 1000 + (28.14 − 0.0735T − 0.00469T2)+ (0.802 − 0.002T)(Csa − 35)

(12.12)

where ρ is in kg · m−3, Csa is in ppt, and T is in ◦C.
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The boundary conditions for heat and salinity transport are similar to those for sed-
iment transport. In an inflow boundary, the values of water temperature and salinity
should be specified. In a wall boundary, the gradient of salinity in the direction normal
to the wall is specified as zero. If the heat exchange across the wall is not considered,
the gradient of water temperature in the direction normal to the wall is zero; however,
a general heat exchange flux model can be applied at the wall boundary. In an outflow
boundary, the gradients of temperature and salinity in the flow direction can be set
as zero.

12.1.2 Effects of buoyancy on vertical turbulent
transport

The vertical turbulent transport of mass, momentum, and heat is strongly influenced by
buoyancy effects; in particular, the eddy viscosity and diffusivity are reduced by stable
stratification (Rodi, 1993). To account for the buoyancy effects, damping functions
are usually applied to the eddy viscosity and diffusivity:

νt = νt0(1 + α1Ri)α2 (12.13)

εt = εt0(1 + β1Ri)β2 (12.14)

where Ri is the gradient Richardson number:

Ri = − g
ρ

∂ρ/∂z
(∂U/∂z)2

(12.15)

which is the ratio of gravity to inertial forces and characterizes the importance of
buoyancy effects. νt0 and εt0 are the eddy viscosity and diffusivity, respectively, for
the neutrally stratified flow (Ri = 0). According to Munk and Anderson (1948), the
values of coefficients α1 = 10, α2 = −0.5, β1 = 3.33, and β2 = −1.5.

From Eqs. (12.13) and (12.14), the effect of buoyancy on the turbulent Prandtl/
Schmidt number σt = νt/εt can be determined.

The mixing length is also altered by buoyancy effects. For the stably stratified flow
(Ri > 0), the following Monin-Obukhov relation is mostly used:

lm = lm0(1 − γ1Ri) (12.16)

where lm0 is the mixing length for the neutrally stratified flow, and γ1 is a coefficient
ranging from 5 to 10 and having a mean value of about 7 (Busch, 1972). For the
unstably stratified flow (Ri < 0), the following relation is usually employed:

lm = lm0(1 − γ2Ri)−1/4 (12.17)

with γ2 ≈ 14 (Busch, 1972).
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The 3-D k- and ε-equations considering the buoyancy effects are written as
(Rodi, 1993)

∂k
∂t

+ ui
∂k
∂xi

= ∂

∂xi

(
νt

σk

∂k
∂xi

)
+ Pk + Gk − ε (12.18)
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ε

k
(Pk + cε3Gk)− cε2

ε2

k
(12.19)

where cε3 is a coefficient; and Gk is the buoyancy product of turbulence,
determined by

Gk = βgiεφ
∂φ

∂xi
(12.20)

where β is the volumetric expansion coefficient; gi is the gravitational body force per
unit mass in the xi -direction; and φ denotes the scalar quantity, such as temperature
and salinity.

When Gk > 0, cε3 is given a value of 1.0; and when Gk < 0, cε3 is in the range of
0–0.2 (ASCE Task Committee, 1988).

12.1.3 Effective diffusivities

The 1-D and 2-D heat and salinity transport equations should have dispersion terms
when they are derived by integrating the corresponding 3-D transport equations.
These dispersion terms are herein combined with the turbulent diffusion terms, so
the effective diffusivity (mixing coefficient) includes the molecular diffusivity εm, tur-
bulent diffusivity εt, and dispersion coefficient εd. Usually, the molecular diffusivity
is approximately equal to the kinematic viscosity of water. The turbulent diffusivity
is related to flow conditions, as described in Section 6.1. Normally, we have εt ∝ νt.
The dispersion effect results from the non-uniformity of flow velocity and constituent
concentration along the flow depth and/or the channel width. Elder (1959) estimated
the longitudinal dispersivity as

εd = 5.86hU∗ (12.21)

It can be seen that εm � εt � εd. The magnitude of the longitudinal effective
diffusivity E is

E = εm + εt + εd ≈ 6.0hU∗ (12.22)

Iwasa and Aya (1991) related the longitudinal effective diffusivity to the channel
width/depth ratio, B/h, as

E
hU∗

= 2.0
(

B
h

)1.5

(12.23)
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which applies in the range of 2 < B/h < 20 for laboratory channels and 10 < B/h <
100 in waterways.

Fischer et al. (1979) proposed the following relation for natural waterways:

E = 0.011
B2U2

hU∗
(12.24)

Eqs. (12.22)–(12.24) give the magnitude of the longitudinal effective diffusivity,
which may be used in the 1-D model. However, the effective diffusivity usually is
anisotropic. In particular, the dispersion effect is strongly related to the flow direc-
tion. Sladkevich et al. (2000) proposed a method to convert the longitudinal effective
diffusivity to the depth-averaged 2-D components in the Cartesian coordinate axes.
The effective diffusivity is treated as a tensor, Eij, which is determined by

Eij = εtδij + εd
qiqj

q2 (12.25)

where q is the flow discharge per unit width, qi is the component of q in the i-direction,
and δij is the Kronecker delta.

An alternative is the relation suggested by Holly and Usseglio-Polatera (1984):

Exx = Es cos2 θ + En sin2 θ

Exy = (Es − En) sin θ cos θ (12.26)

Eyy = Es sin2 θ + En cos2 θ

where Es and En are the longitudinal and transverse effective diffusivities, respectively;

and θ is the angle (positive counter-clockwise) of the longitudinal direction from the
x-axis. Note that Exy is applied in the cross-derivative diffusion terms, which need to
be added in Eqs. (12.8) and (12.9) for more general applications.

As described in Section 6.3, the helical flow motion in curved channels induces a kind
of dispersion and significantly affects the main flow, sediment transport, and channel
morphological change. It might also affect heat and salinity transport. Therefore, the
application of formulas (12.22)–(12.24) in strongly curved channels should be done
with caution. Estimation using on-site measurement data is recommended.

12.1.4 Heat transfer across water and bed surfaces

Surface heat exchange plays an important role in the thermodynamic processes in
aquatic systems. As shown in Fig. 12.1, heat generally transfers across the water surface
by short-wave radiation, long-wave radiation, evaporation, condensation, convection,
and conduction. The short-wave radiation is a penetrative effect that distributes its heat
through a significant range of the water column, while the others occur only at the
water surface.
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Figure 12.1 Heat budget in water column.

Short-wave radiation

Radiation emitted by the sun is termed short-wave or solar radiation. The net short-
wave radiation (W · m−2) penetrating the water can be determined by (TVA —
Tennessee Valley Authority, 1972; Jacquet, 1983)

JTsw = JTsw,clear(1 − 0.65C2
cloud)(1 − Rtsw)(1 − fshade) (12.27)

where JTsw,clear is the short-wave radiation (W · m−2) that would reach the water sur-
face in a clear day after atmospheric attenuation, Ccloud is the fractional cloud cover
between 0 and 1, Rtsw is the dimensionless surface reflexivity, and fshade is the shading
factor of riparian vegetation.

The short-wave radiation reaching the water surface on a clear day, JTsw,clear, is
related to the distance between the sun and earth, solar declination, and latitude of
the local meridian, and is affected by atmosphere scattering and absorption (TVA,
1972; Brown and Barwell, 1987; Deas and Lowney, 2000). Solar radiation may be
measured relatively inexpensively, and is reported by some weather stations. If the
measured data are available, the cloud cover term in Eq. (12.27) may be eliminated
(but not the reflectivity and shading factor).

The reflection coefficient Rtsw depends on cloud cover and altitude of the sun, and
the shading factor fshade depends on vegetation height, bearing of the sun, etc. The
details may be found in Brown and Barwell (1987) and Deas and Lowney (2000).

Long-wave radiation

Radiation emitted by terrestrial objects and atmosphere is termed long-wave radiation.
The net long-wave radiation at the water surface is the result of two processes: the
downward radiation from the atmosphere and the upward radiation emitted by the
water surface. The long-wave radiation largely depends on air temperature, humidity,
and cloud cover. Hodges (1998) rewrote the formulas of long-wave heat flux proposed
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by Fischer et al. (1979), Imberger and Patterson (1981), Jacquet (1983), and TVA
(1972) as

JTlw = εairσT4
air(1 + 0.17C2

cloud)(1 − Rtlw)− εwaterσT4
water (12.28)

where σ is the Stefan-Boltzman constant (5.669 × 10−8 W · m−2 · ◦K−4); Tair is the
air temperature in Kelvins (◦K = ◦C + 273.15), measured two meters above the
water surface; Twater is the water surface temperature in ◦K; Rtlw is the reflectivity
of the water surface for long-wave radiation, which is generally small and ≈ 0.03
(TVA, 1972; Brown and Barwell, 1987; Chapra, 1997); εwater is the emissivity of
water, which is between 0.95 and 0.963 corresponding to the temperature range of
0◦ and 100◦C (Reynolds and Perkins, 1977), but is given 0.97 by TVA; and εair is the
emissivity of air, determined by (Swinbank, 1963)

εair = 0.938 × 10−5T2
air (12.29)

Latent heat f lux

The latent heat flux per unit surface area (W · m−2) due to evaporation and conden-
sation can be modeled as

JTe = LE (12.30)

where L is the latent heat of evaporation (J · kg−1), which is related to temperature
(TVA, 1972; Jacquet, 1983; Blanc, 1985), but given a constant value of 2.5 × 106

J · kg−1 by Gill (1982); and E is the water vapor flux (kg · s−1m−2), determined by
(Imberger and Patterson, 1981)

E = CWUwindρair(qair − qsurface) (12.31)

where Uwind is the wind speed; CW is the dimensionless bulk transfer coefficient for
evaporation (primarily due to wind), given as 1.4 × 10−3; ρair is the density of air at
the surface; qair is the specific humidity in the air (unitless); and qsurface is the specific
humidity at the water surface (unitless). Note that 1 W = 1 J · s−1.

Edinger et al. (1974) determined the latent heat flux as a function of wind speed
and water vapor:

JTe = f (Uwind)(eair − es) (12.32)

where es is the saturation vapor pressure (mb) at the water surface temperature,
eair is the air vapor pressure (mb), and f (Uwind) is a function of wind speed. Var-
ious formulations were examined by Edinger et al. (1974), and one choice was
f (Uwind) = 6.9 + 0.345U2

wind,7 (W · m−2mb−1) with Uwind,7 being the wind speed

(m · s−1) measured 7 m above the water surface.
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The saturation vapor pressure es is the highest pressure of water vapor that can
exist in equilibrium with a plane, free water surface at a given temperature. It can be
approximated by the Tetens formula:

es = a∗ exp
(

b∗T
T + c∗

)
(12.33)

where T is the water temperature in ◦C. For temperatures above freezing, the
coefficients are a∗ = 6.108 mb, b∗ = 17.27, and c∗ = 237.3◦C. The air vapor
pressure eair can be calculated using Eq. (12.33) by substituting T with the dew point
temperature.

Sensible heat f lux

Sensible heat flux is due to conduction and convection. It can be in either direction,
depending on the temperature difference between air and water. Edinger et al. (1974)
determined the sensible heat flux as

JTs = Cbf (Uwind)(Tair − Twater) (12.34)

where Cb is the Bowen coefficient (0.62 mb · ◦K−1), and f (Uwind) is the wind speed
function defined in Eq. (12.32).

An alternative formula for the sensible heat flux is (Imberger and Patterson, 1981)

JTs = Chcp,airρairUwind(Tair − Twater) (12.35)

where Ch is the bulk coefficient of sensible heat flux, about 1.4 × 10−3; and cp,air is
the specific heat capacity at constant pressure, approximately 1003 J · kg−1· ◦C−1 for
typical air temperatures in the near surface region.

Net heat f lux in water column

It is generally presumed that the long-wave radiation (JTlw ), latent heat flux (JTe),
and sensible heat flux (JTs) are non-penetrative; thus, they would appropriately be
modeled by the surface boundary condition:

εT
∂T
∂z

= 1
ρcP
( JTlw + JTe + JTs) (12.36)

The short-wave radiation is penetrative and has an exponential decay distribution
along the flow depth:

JTsw(z) = JTsw(zs)e−λ(zs−z) (12.37)

where JTsw(z) is the short-wave radiation absorbed at height z, JTsw(zs) is the net
short-wave radiation penetrating the water surface, and λ is the bulk extinction
coefficient determined by Eqs. (12.69) and (12.70) in Section 12.2.2.
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Normally, there is very little heat transfer across the bed surface for deep-water
bodies. However, for shallow, transparent lakes and reservoirs, part of the heat flux
may penetrate into the sediment bed and should be excluded (Tsay et al., 1992).
A complete heat budget model in the sediment bed is preferable, which would consider
the absorption and reflection of the short-wave radiation by the sediment bed as well as
the heat exchange flux due to conduction, seepage flow, etc., at the wetted perimeter.
However, the following simple approach may be used (Hodges, 1998):

JBsw(z) = βrJTsw(zb)e
−λ(z−zb) (12.38)

where JBsw(z) is the heat flux returned to the water column at height z, JTsw(zb) is
the short-wave radiation that reaches the bottom boundary, βr represents the fraction
of the short-wave radiation returned to the water column, and zb is the bed surface
elevation.

For the heat source from short-wave radiation, qT is determined by

qT = ∂

∂z
[JTsw(z)− JBsw(z)] (12.39)

where JTsw(z) and JBsw(z) are determined using Eqs. (12.37) and (12.38), respectively.
Note that the heat fluxes JTsw(z) and JBsw(z) in Eq. (12.39) transfer in opposite direc-
tions. The determined qT is used in the source terms of Eqs. (12.4) and (12.6) in the
3-D and width-averaged 2-D models.

The net heat flux absorbed in the water column is

JT = JTlw + JTe + JTs + JTsw(zs)− (1 − βr)JTsw(zb) (12.40)

which is used as the heat source rate in Eqs. (12.8) and (12.10) in the depth-averaged
2-D and 1-D models. The last term on the right-hand side of Eq. (12.40) represents the
flux penetrating into the bed, which is excluded in the heat budget in the water column.

12.1.5 Numerical solutions

The numerical methods introduced in Chapters 4–7 can be extended to solve the afore-
mentioned flow, heat and salinity transport equations. For example, the SIMPLE(C)
algorithms described in Sections 6.1.3.1, 7.1.3.2 and 7.2.4 can be straightforwardly
applied to solve the 2-D and 3-D hydrodynamic equations here, since the flow density
has been considered in the formulations.

The heat and salinity transport equations are similar to the suspended sediment
transport equation. They are typical convection-diffusion equations and can be solved
easily. If the finite volume method is used, Eqs. (12.4) and (12.5) are discretized as

�VP

�t
(Tn+1

P − Tn
P) = aWTn+1

W + aETn+1
E + aSTn+1

S + aNTn+1
N + aBTn+1

B

+ aTTn+1
T − aPTn+1

P + 1
ρcp

[�At( JTsw,t − JBsw,t)

−�Ab( JTsw,b − JBsw,b)] (12.41)
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�VP

�t
(Cn+1

sa,P − Cn
sa,P) = aWCn+1

sa,W + aECn+1
sa,E + aSCn+1

sa,S + aNCn+1
sa,N + aBCn+1

sa,B

+ aTCn+1
sa,T − aPCn+1

sa,P + Ssa (12.42)

where �At and �Ab are the areas of cell faces t and b projected on the horizontal
plane, respectively; and JTsw,t and JBsw,t are the short-wave radiations penetrating to
the water surface and reflected from the bottom surface, respectively.

It should be noted that the finite volume method and finite difference method han-
dle the surface heat fluxes differently. In the finite volume method, when integrating
Eq. (12.4) over the control volume near the water surface shown in Fig. 4.22, the
long-wave radiation and latent and sensible heat fluxes are specified directly at t-
face and arranged into the source term, and then the coefficient aT is set to be
zero. In the finite difference method, Eq. (12.36) is often used to determine the
temperature at the water surface. However, Eq. (12.36) has been reported to be
inefficient. More recently, many finite difference models also arrange the surface
heat fluxes into the source term, following the approach used in the finite volume
method.

Because flow density is influenced by temperature and salinity, the above heat and
salinity transport equations should be solved with the flow model in a coupled form.
For example, the SIMPLE algorithm for the full 3-D hydrodynamic model is described
below:

(1) Guess the salinity, temperature, and pressure p∗;
(2) Calculate the flow density ρ∗ using the state equation (12.12);
(3) Solve the momentum equations to obtain u∗

i ;
(4) Solve the p′ equation (7.14);
(5) Calculate pn+1 by adding p′ to p∗;
(6) Calculate un+1

i using the velocity-correction relation (7.9) and the intercell fluxes
using Eqs. (7.10)–(7.12);

(7) Solve the transport equations (12.41) and (12.42);
(8) Treat the corrected pressure p as a new guessed p∗, and repeat the procedure from

step 2 to 6 until a converged solution is obtained;
(9) Calculate other water quality constituents, if needed; and

(10) Conduct the calculation of next time step if the unsteady flow is concerned.

Nevertheless, in the well-mixed cases, the effects of temperature and salinity on the
flow are often neglected so that the hydrodynamic model may be decoupled from the
computations of heat and salinity transport.

12.2 WATER QUALITY MODEL

Pollutants from municipal and industrial wastes (point sources) and from agricultural
fields, urban and suburban runoff, groundwater and atmosphere (nonpoint sources)
significantly affect the water quality in aquatic systems. They may be conservative or
non-conservative, transport through convection and diffusion, and transform through
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a large number of physical, chemical and biological processes that interact with one
another. Modeling the fate and transport of these pollutants and the resulting water
quality in aquatic systems is an important task in environmental engineering. Some
important aspects of water quality modeling are briefly described here. More details
may be found in Thomann and Mueller (1987), Huber (1993), and Chapra (1997).

12.2.1 Kinetics and rate coefficients

The production or loss of a constituent, with or without interaction with other
constituents, is a kinetic process (Huber, 1993). Examples of kinetic processes
include decay of bacteria, oxidation of carbonaceous materials, and oxidation of
nitrogen compounds. Such processes are usually quantified through the following
equation:

DCi

Dt
= Sc = f (Ci, Cj, T) j = 1, 2, . . . (12.43)

where Ci is the concentration of constituent i, T is the water temperature, DCi/Dt
denotes the rate of change in concentration of constituent i. In the 1-D model, DC/Dt
is defined as

DC
Dt

= 1
A

[
∂(AC)
∂t

+ ∂(QC)
∂x

− ∂

∂x

(
ELA

∂C
∂x

)]
(12.44)

where C is the constituent concentration averaged over the cross-section, and EL is
the longitudinal effective diffusivity (mixing coefficient).

In the depth-averaged 2-D model, DC/Dt is

DC
Dt

= 1
h

[
∂(hC)
∂t

+ ∂(hUxC)
∂x

+ ∂(hUyC)
∂y

− ∂

∂x

(
Exh
∂C
∂x

)
− ∂

∂y

(
Eyh
∂C
∂y

)]
(12.45)

where C is the depth-averaged constituent concentration, and Ei(i = x, y) are the
horizontal effective diffusivities.

In the width-averaged 2-D model, DC/Dt is

DC
Dt

= 1
b

[
∂(bC)
∂t

+ ∂(bUxC)
∂x

+ ∂(bUzC)
∂z

− ∂

∂x

(
E′

xb
∂C
∂x

)
− ∂

∂z

(
E′

zb
∂C
∂z

)]
(12.46)

where C is the width-averaged constituent concentration, and E′
i (i = x, z) are the

effective diffusivities in the longitudinal section.
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In the 3-D model, DC/Dt is

DC
Dt

= ∂C
∂t

+ ∂(uxC)
∂x

+ ∂(uyC)
∂y

+ ∂(uzC)
∂z

− ∂

∂x

(
εx
∂C
∂x

)
− ∂

∂y

(
εy
∂C
∂y

)
− ∂

∂z

(
εz
∂C
∂z

)
(12.47)

where C is the local constituent concentration, and εi (i = x, y, z) are the turbulent
diffusivities.

A common kinetic model that is adequate for many processes is the first-order
(linear) kinetics:

DC
Dt

= −KC (12.48)

where K is the first-order rate coefficient (day−1).
A more complex formulation is the Michaelis-Menten or Monod kinetics:

DC
Dt

= − ksC
k1/2 + C

(12.49)

where ks is the limiting reaction rate when C � k1/2; and k1/2 is called the half-
saturation constant, because DC/Dt is half the limiting value when C = k1/2.

The Michaelis-Menten kinetics may be written as Eq. (12.48), with the rate
coefficient:

K = ks

k1/2 + C
= K0

k1/2

k1/2 + C
(12.50)

where K0 is the first-order rate coefficient, defined as K0 = ks/k1/2. Both linear and
Michaelis-Menten kinetics are depicted in Fig. 12.2. One can see that when C � k1/2,
the Michaelis-Menten kinetics becomes the first-order kinetics.

Eq. (12.49) is the general formulation of the Michaelis-Menten kinetics. Its variants
for different species can be found in the next subsection.

The rate coefficient K usually depends on temperature. This is often described with
reference to the rate at 20◦C:

K(T) = K(20)θT−20 (12.51)

where T is in degree Celsius, and θ is a coefficient that is typically in the range of 1.01
to 1.10.

Eq. (12.51) implies that the reaction rate increases with temperature, as shown in the
dashed line (Theta) in Fig. 12.3. However, for many species, such as phytoplankton,
the temperature dependence is zero at a minimum temperature, increases to a peak
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Figure 12.2 Linear and Michaelis-Menten kinetics.

Figure 12.3 Rate coefficient as function of temperature.

growth rate at an optimal temperature, and then decreases at higher temperatures.
Several models have been used in the literature to represent this trend (Chapra, 1997,
p.605). For example, Cerco and Cole (1994) suggested the following formulation
based on the normal distribution:

K(T) =
{

Kopte−κ1(T−Topt)
2

T ≤ Topt

Kopte−κ2(Topt−T)2 T > Topt
(12.52)

where κ1 and κ2 are the shape factors for the relationships of growth to temperatures
blow and above the optimal temperature Topt, respectively; and Kopt is the optimal
rate coefficient at Topt. The relation of Eq. (12.52) is depicted in the solid line in
Fig. 12.3.
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12.2.2 Constituent reactions and interrelationships

Maintaining an adequate dissolved oxygen (DO) concentration is essential to aquatic
ecosystems. As shown in Fig. 12.4, the DO concentration is affected by many fac-
tors, such as atmospheric reaeration, photosynthesis, plant and animal respiration,
biochemical oxygen demand, nitrification, and benthal demand. These factors also
interact with one another. According to their interrelationships, the kinetic processes
in the water column are usually divided into DO cycle, carbon cycle, nitrogen cycle,
and phosphorus cycle. All cycles are more or less related to phytoplankton growth and
respiration in an eutrophication system. In addition, similar cycles exist in the ben-
thic sediment, and flux exchanges occur between the water column and the benthic
sediment.

Figure 12.4 Major kinetic processes in water column.

Dissolved oxygen balance

The dissolved oxygen in aquatic systems is reaerated through exchange with the atmo-
sphere, produced by photosynthesis of aquatic plants, and consumed by respiration
of plants, animals and bacteria, oxidation of carbonaceous matters, oxidation of
nitrogen compounds, and sediment oxygen demand. In the 1-D and depth-averaged
2-D models, the differential equation describing the effects of these processes on DO
concentration is

DCDO

Dt
= KL

h
(CsDO − CDO)+ P − R − KdCCBOD − KNCNBOD − SSOD

h
(12.53)

where CDO is the DO concentration (gO2 · m−3, i.e., gram of oxygen per cubic meter);
CsDO is the saturation DO concentration (gO2 · m−3); KL is the liquid-film coefficient
(m · day−1); P is the rate of DO production due to photosynthesis (gO2 · m−3day−1);



444 Computational River Dynamics

R is the rate of DO loss due to respiration (gO2 · m−3day−1); CCBOD is the
concentration of carbonaceous biochemical oxygen demand (CBOD) (gO2 · m−3); Kd
is the deoxygenation coefficient (day−1); CNBOD is the concentration of nitrogenous
biochemical oxygen demand (NBOD) (gO2 · m−3); KN is the rate coefficient for NBOD
(day−1); SSOD is the sediment oxygen demand (SOD), defined as the rate of DO loss
per unit (horizontal) bed area (gO2 · m−2day−1); and h is the flow depth (m).

The terms on the right-hand side of Eq. (12.53) represent atmospheric reaeration,
phytoplankton photosynthesis (P), respiration (R), CBOD oxidation, NBOD oxi-
dation, and sediment oxygen demand, respectively. Note that the exchanges fluxes
KL(CsDO − CDO) and SSOD at the water and bed surfaces are considered through
boundary conditions in the 3-D and width-averaged 2-D models; thus, the 3-D or
width-integrated DO balance equation is

DCDO

Dt
= P − R − KdCCBOD − KNCNBOD (12.54)

The determination of all terms in Eqs. (12.53) and (12.54) is discussed in the
following subsections.

Atmospheric reaeration

The exchange of oxygen across the water surface is affected by temperature, flow
conditions, and atmospheric conditions. The effect of temperature can be accounted
for using Eq. (12.51), with a value of about 1.024 for the coefficient θ .

In the absence of wind, O’Connor and Dobbins (1958) suggested the reaeration
coefficient of oxygen (day−1) as

Ka = KL

h
= 3.9

U1/2

h3/2 (12.55)

where U is the average flow velocity (m · s−1), and h is the average flow depth (m).
O’Connor and Dobbins’s relation may underestimate the reaeration coefficient for

small streams. Two equations that performed well in a comparison between predicted
and measured reaeration rates (Rathbun, 1977) are those by Padden and Gloyna
(1971):

Ka = 4.55
U0.703

h1.054 (12.56)

and by Tsivoglou and Wallace (1972):

Ka = 13648US (12.57)

where Ka is in day−1 at 20◦C, U is in m · s−1, h is in m, and S is the stream slope
(unitless).
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In small-roughness, uniform channels, the reaeration rate can be described by the
following formula derived from the small-eddy model for oxygen interfacial transfer
(Moog, 1995; Moog and Jirka, 1999):

KL = 0.161Sc−1/2(εν)1/4 (12.58)

where Sc is the Schmidt number; and ε is the turbulent dissipation rate per mass near
the water surface, which may be estimated as ε = u3∗/h.

In channels with large-scale form roughness, the reaeration rate is enhanced by
the large bed variations that produce depth-scale form drag. Moog and Jirka (1999)
proposed a modification for Eq. (12.58) to take this enhancement into account.

For standing water bodies, such as lakes, lagoons, and bays, reaeration is affected
by wind. Banks and Herrera (1977) suggested the following relationship:

KL = 0.728U1/2
w − 0.317Uw + 0.0372U2

w (12.59)

where KL has units of m · day−1, and Uw is the wind speed (m · s−1) at 10 m above the
water surface.

The saturation DO concentration, CsDO, is a function of temperature and salinity.
In fresh and saline waters, CsDO is approximated by (Benson and Krause, 1984; see
Huber, 1993)

CsDO = exp
[
c0 + c1

T
+ c2

T2 + c3

T3 + c4

T4 + Csa

(
c5 + c6

T
+ c7

T2

)]
(12.60)

where CsDO is in g · m−3; T is in ◦K; Csa is the salinity in ppt, which is related to
chlorinity or chloride concentration Cchl by Csa = 1.80655Cchl, with both in ppt; and
the coefficients: c0 = −139.34411, c1 = 1.575701 × 105, c2 = −6.642308 × 107,
c3 = 1.243800 × 1010, c4 = −8.621949 × 1011, c5 = −0.017674, c6 = 10.754, and
c7 = 2140.7.

Photosynthesis and respiration of phytoplankton

The presence of aquatic plants, such as phytoplankton, weeds, and algae, can
significantly affect the DO concentration in a water body through photosynthesis.
These plants containing chlorophyll can utilize the radiant energy from the sun, con-
vert water and carbon dioxide into glucose, and release oxygen. The photosynthesis
reaction can be written as

6CO2 + 6H2O
photosynthesis−−−−−−−−→ C6H12O6 + 6O2 (12.61)

Because the photosynthetic process is dependent on solar radiant energy, the
production of oxygen proceeds only during daylight hours. Concurrently with this
production, however, the algae require oxygen for respiration, which can be con-
sidered to proceed continuously. These two processes result in a diurnal variation
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in DO concentration. Minimum values of DO usually occur in the early morning,
predawn hours, and maximum values occur in the early afternoon. The likely mag-
nitude can be measured via light- and dark-bottle BOD tests, and simulated using
simple cosine source/sink functions (Dresnack and Dobbins, 1968) or a more compli-
cated model coupled with phytoplankton (or algae) growth and mortality. The latter
simulation approach is used in recent water quality models, such as QUAL2E (Brown
and Barnwell, 1987) and WASP (Wool et al., 1995). This is demonstrated below.

In the 1-D and depth-averaged 2-D models, the phytoplankton population is
governed by

DCphy

Dt
= KPhyCPhy − KMCPhy − ωPhy

h
CPhy (12.62)

where CPhy is the biomass concentration of phytoplankton, defined in carbon
(gC · m−3, i.e., gram of carbon per cubic meter) or chlorophyll; KPhy is the growth
rate coefficient of phytoplankton (day−1); KM is the mortality rate coefficient of phy-
toplankton (day−1), which is affected by temperature, as described in Eq. (12.51); and
ωPhy is the settling velocity of phytoplankton (m · day−1).

In the 3-D and width-averaged 2-D models, the settling term has a different
formulation, and thus the phytoplankton population equation is

DCphy

Dt
= KPhyCPhy − KMCPhy − ∂(ωPhyCPhy)

∂z
(12.63)

The growth of phytoplankton is affected by temperature, solar radiation (light), and
nutrient availability. Thus, the growth rate coefficient is assumed as

KPhy = KPhy,mθ
T−20
Phy fNfL (12.64)

where KPhy,m is the optimal growth rate coefficient of phytoplankton at 20◦C, θPhy
is the temperature coefficient for phytoplankton growth, fN is the nutrient limitation
factor, and fL is the light limitation factor.

An initial estimate of the optimal growth rate KPhy,m can be obtained from studies
of phytoplankton dynamics and refined through calibration. Low concentration of
either inorganic nitrogen or phosphorus would affect the growth of phytoplankton,
so the nutrient limitation factor is determined by

fN = min
[(

CNH3 + CNO3

kN,1/2 + CNH3 + CNO3

)
,
(

CPO4

kP,1/2 + CPO4

)]
(12.65)

or

fN =
(

CNH3 + CNO3

kN,1/2 + CNH3 + CNO3

)
·
(

CPO4

kP,1/2 + CPO4

)
(12.66)

where CNH3 is the ammonia nitrogen concentration (gN · m−3, i.e., gram of nitrogen
per cubic meter); CNO3 is the nitrate nitrogen concentration (gN · m−3); CPO4 is the
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inorganic (dissolved) phosphorus concentration (gP · m−3, i.e., gram of phosphorus per
cubic meter); and kN,1/2 and kP,1/2 are the Michaelis-Menten half-saturation nitrogen
and phosphorus concentrations for phytoplankton growth, respectively. CNH3 , CNO3,
and CPO4 are determined using Eqs. (12.78), (12.79), and (12.86), respectively.

Phytoplankton growth is a function of light intensity, until an optimal value is
reached. The light limitation factor can be determined by Smith’s (1936), Steele’s
(1962), or the half-saturation approach. The half-saturation approach gives

fL = Iz

kL,1/2 + Iz
(12.67)

where kL,1/2 is the Michaelis-Menten half-saturation light intensity for phytoplankton
growth; and Iz is the light intensity at a given height z and varies with z according to
Beer’s law:

Iz = I0 exp[−λ(zs − z)] (12.68)

where I0 is the light intensity at the water surface, and λ is the light extinction
coefficient. Note that the energy source for photosynthesis is the light in the range
of 400- to 700-nanometer wavelengths. It is called the photosynthetically active radi-
ation (PAR). PAR is different from the insolation JTsw in Eq. (12.27), which is in the
entire spectrum of wavelengths (see Rounds et al., 1999).

The light extinction coefficient λ is affected by phytoplankton, suspended sediments,
etc., in the water column. The following linear relation between λ and CPhy is often
used:

λ = λ0 + kraCChlCPhy (12.69)

where λ0 is the light extinction coefficient without phytoplankton, kr is a coefficient
for light attenuation by phytoplankton, and aCChl is the conversion factor of carbon
to chlorophyll of phytoplankton.

To consider the effects of both phytoplankton and suspended sediments on light
attenuation, Stefan et al. (1983) suggested the following relation:

λ = λ0 + 0.025aCChlCPhy + 0.043Cs (12.70)

where λ and λ0 are in l · m−1 , CPhy is in mgC · m−3, and Cs is the suspended sediment
concentration in g · m−3.

The depth-averaged light limitation factor is obtained by integrating Eq. (12.67)
over the flow depth as

fL,av = 1
λh

ln

(
kL,1/2 + I0

kL,1/2 + I0e−λh

)
(12.71)

A byproduct of phytoplankton growth is dissolved oxygen. An additional source
of oxygen from phytoplankton growth occurs when the available ammonia nutrient
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resource is exhausted and the phytoplankton begins to use the available nitrate. For
nitrate uptake, the initial step is a reduction to ammonia that produces oxygen. Thus,
the total rate of oxygen production rate due to phytoplankton growth is (Wool et al.,
1995)

P = KPhy

[
32
12

+ 48
14

aNC(1 − pNH3)

]
CPhy (12.72)

where pNH3 is the preference factor for ammonia uptake, determined by Eq. (12.81);
and aNC is the phytoplankton nitrogen-carbon ratio. The stoichiometric constant
32/12 arises because 32/12 g of oxygen corresponds to 1 g of phytoplankton pro-
duced by the growth, and the constant 48/14 arises because 48/14 g of oxygen is
produced for 1 g of phytoplankton nitrate reduced. Note that the P determined by
Eq. (12.72) is substituted into Eq. (12.53).

Oxygen is diminished in the water column as a result of phytoplankton respiration,
which is basically the reverse process of photosynthesis. Thus, the rate of oxygen loss
due to phytoplankton respiration is

R = 32
12

KMCPhy (12.73)

which is subsitiuted into Eq. (12.53).
In addition, phytoplankton may be predated by zooplankton. This can be modeled

by considering the predator-prey relation and the nutrients/food chain interaction. The
details can be found in Chapra (1997).

Carbonaceous BOD

CBOD represents the oxygen demand by bacteria in the oxidation of organic (carbona-
ceous) matters present in a waste. CBOD is exerted by the presence of heterotrophic
organisms that are capable of deriving the energy for oxidation from an organic carbon
substrate. A large number of these heterotrophic organisms are contained in municipal
sewage as well as most rivers, estuaries, and lakes.

CBOD may be particulate or dissolved in the water. The change in concentration of
CBOD usually results from both settling of the particulate CBOD and oxidation of the
dissolved CBOD. The oxidation of the dissolved CBOD can be represented by a first-
order kinetic process. In addition, CBOD is generated as a result of phytoplankton
death and loss due to denitrification reaction under low DO conditions. Thus, the
kinetic rate of CBOD can be determined by

DCCBOD

Dt
= 32

12
KMCPhy − ωCBOD

h
(1 − fCBOD,d)CCBOD

− K′
dfCBOD,dCCBOD − 5

4
32
14

KNO3CNO3 (12.74)

where fCBOD,d and 1−fCBOD,d are the fractions of the dissolved and particulate CBOD
in the total CBOD, respectively; ωCBOD is the settling velocity of particulate CBOD;
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K′
d is the CBOD decay rate coefficient; and KNO3 is the denitrification rate coefficient

of nitrate (day−1), determined by Eq. (12.84).
The terms on the right-hand side of Eq. (12.74) represent the production of CBOD

due to phytoplankton death, settling of the particulate CBOD, oxidation of the
dissolved CBOD, and sink of CBOD due to denitrification, respectively. The stoichio-
metric constant 32/12 arises from the conversion between oxygen and phytoplankton
(as carbon) concentration. The constant (5/4) · (32/14) appears because for each g
of nitrate nitrogen reduced, (5/4) · (12/14) g of carbon are consumed, which reduces
CBOD by (5/4) · (12/14) · (32/12) g.

Note that the settling term in Eq. (12.74) is valid only for the 1-D and depth-averaged
2-D models. In the 3-D and width-averaged 2-D models, the settling process should
be represented by the settling term similar to that in Eq. (12.63).

The effective deoxygenation coefficient Kd is usually used to replace K′
dfCBOD,d.

Typical values of Kd are in the range from 0.1 to 4.0 day−1, with larger values for
untreated wastewater and smaller values for treated wastewater and natural waters.
Wright and McDonnell (1979) suggested the following relationship for Kd (day−1) at
20◦C:

Kd(20) = 1.80Q−0.49 (12.75)

where Q is the flow discharge (m3s−1).
The deoxygenation coefficient Kd is also affected by water temperature and DO

concentration. These effects are considered by

Kd = Kd(20)θT−20
d

(
CDO

kBOD,1/2 + CDO

)
(12.76)

where θd is the temperature coefficient for deoxygenation, with a value of about
1.047; and kBOD,1/2 is the Michaelis-Menten half-saturation DO concentration for
deoxygenation, with a value of about 0.5 gO2 · m−3.

Nitrogen cycle

In natural aerobic waters, the nitrogen cycle consists of several steps of transformation.
Organic nitrogen (ON, contained in organic wastes and algae) is converted first to
ammonia nitrogen (NH3_N), which is then oxidized to nitrite (NO2_N) and nitrate
(NO3_N). Oxygen is required for the oxidation of ammonia to nitrite and then to
nitrate. In addition, phytoplankton utilize ammonia and nitrate nitrogen, and recycling
occurs to the organic forms as they die.

The sum of organic nitrogen and ammonia nitrogen is called the total Kjeldahl
nitrogen (TKN) in a laboratory analysis procedure. Most of the NBOD is due to TKN,
because the nitrite concentration in most wastewater streams and ambient waters is
very low, less than 0.1 mg · l−1. Early models simulate TKN collectively (Thomann
and Mueller, 1987; Huber, 1993); however, many recent models, such as QUAL2E
and WASP, compute the nitrogen components individually. Introduced below is a
modeling framework for the nitrogen cycle, which is essentially similar to the WASP
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model. Because the nitrite nitrogen usually changes to nitrate very quickly, a direct
process from ammonia nitrogen to nitrate nitrogen is assumed and only three states
(organic nitrogen, ammonia nitrogen, and nitrate nitrogen) are modeled. Their kinetic
processes are described by

DCON

Dt
= KMaNCfPhy,ONCPhy − KONCON − ωON

h
(1 − fON,d)CON − SON

h
(12.77)

DCNH3

Dt
= KMaNC(1 − fPhy,ON)CPhy + KONCON − KPhyaNCpNH3CPhy

− KNH3CNH3 − SNH3

h
(12.78)

DCNO3

Dt
= KNH3CNH3 − KPhyaNC(1 − pNH3)CPhy − KNO3CNO3 − SNO3

h
(12.79)

where CON is the concentration of organic nitrogen (gN · m−3); KON is the min-
eralization rate coefficient of organic nitrogen (day−1); KNH3 is the nitrification
rate coefficient of ammonia (day−1); fPhy,ON and 1 − fPhy,ON are the fractions of
respired phytoplankton recycled to the organic and ammonia nitrogen pools, respec-
tively; fON,d is the fraction of the dissolved organic nitrogen; and SON , SNH3, and
SNO3 are the organic nitrogen, ammonia, and nitrate fluxes from the sediment bed,
respectively.

The first terms on the right-hand sides of Eqs. (12.77) and (12.78) represent the
production of nitrogen due to phytoplankton death and respiration. fPhy,ON of the
produced nitrogen is organic, while 1 − fPhy,ON is in the inorganic form of ammonia.
DiToro and Matystik (1980) assigned 0.5 for fPhy,ON in the Great Lakes model.

The second terms on the right-hand sides of Eqs. (12.77) and (12.78) represent
the change of organic nitrogen to ammonia nitrogen due to mineralization. Nonliv-
ing organic nitrogen must undergo mineralization or bacterial decomposition into
ammonia nitrogen before utilization by phytoplankton. This process is affected by
temperature and phytoplankton population, and thus the following relation for KON
is often used

KON = KON(20)θT−20
ON

(
CPhy

kmPc + CPhy

)
(12.80)

where θON is the temperature coefficient for mineralization (about 1.08), and kmPc is
the half-saturation phytoplankton concentration for mineralization.

The third term on the right-hand side of Eq. (12.77) represents the settling of the
particulate organic nitrogen in the 1-D and depth-averaged 2-D models. Note that it
has a different formulation in the 3-D and width-averaged 2-D models, as shown in
Eq. (12.63).

The third term on the right-hand side of Eq. (12.78) and the second term on the
right-hand side of Eq. (12.79) represent the nitrogen uptake for phytoplankton growth.



Contaminant transport modeling 451

As phytoplankton grows, the dissolved inorganic nitrogen is taken up and incorporated
into biomass. Both ammonia and nitrate are available for uptake but, for physiological
reasons, the preferred form is ammonia nitrogen. The ammonia preference factor pNH3
is given as

pNH3 = CNH3CNO3

(kmN + CNH3)(kmN + CNO3)
+ CNH3kmN

(CNH3 + CNO3)(kmN + CNO3)

(12.81)

where kmN is the Michaelis-Menten limitation.
Eq. (12.81) shows that when the nitrate concentration is zero, the preference for

ammonia is 1.0; when the ammonia concentration is zero, the preference for ammonia
is zero. When both ammonia and nitrate are abundant, preference is given to ammonia
and the factor approaches 1.0.

The fourth term on the right-hand side of Eq. (12.78) and the first term on the
right-hand side of Eq. (12.79) represent the change of ammonia nitrogen to nitrate
nitrogen due to nitrification. Nitrification is a two-step reaction carried out by aerobic
autotrophs. Nitrosomonas bacteria catalyze the first reaction converting ammonia to
nitrite, and in the second reaction Nitrobactor bacteria convert nitrite to nitrate. The
process of nitrification in natural waters is complex, and depends on temperature,
DO, pH, and flow conditions. The following relation for KNH3 is often used:

KNH3 = KNH3(20)θT−20
NH3

(
CDO

kNIT + CDO

)
(12.82)

where θNH3 is the temperature coefficient for nitrification (about 1.08), and kNIT is
the half-saturation DO concentration for nitrification.

In the nitrification process, the dissolved oxygen is required. The NBOD concen-
tration is related to the ammonia nitrogen concentration by

CNBOD = 64
14

CNH3 (12.83)

where the stoichiometric constant 64/14 arises because 64/14 g of oxygen is required
to convert 1 g of ammonia to nitrate nitrogen. Eq. (12.83) is inserted into Eq. (12.53),
and KN is set as KNO3.

The third term on the right-hand side of Eq. (12.79) represents the loss of nitrate due
to denitrification. Denitrification refers to the reduction of nitrate (or nitrite) to N2 and
other gaseous products. This process is carried out by a large number of heterotrophic,
facultative anaerobes. Denitrification is not a significant loss in the water column,
but can be important in anaerobic benthic conditions. The denitrification process
depends on temperature, DO, etc.; thus, the denitrification rate coefficient KNO3 is
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determined by

KNO3 = KNO3(20)θT−20
NO3

(
kDNI

kDNI + CDO

)
(12.84)

where θNO3 is the temperature coefficient for denitrification (about 1.045), and kDNI

is the half-saturation DO concentration for denitrification (about 0.1 gO2 · m−3).
The last terms on the right-hand side of Eqs. (12.77)–(12.79) account for the organic,

ammonia, and nitrate nitrogen fluxes across the bed surface. Note that to be consis-
tent with the water/bed exchange fluxes in Eq. (12.53) a “–” sign is used in these
terms. This implies a positive value directs from the water column to the benthic
sediment.

Phosphorus cycle

Modeling the phosphorus cycle is essentially analogous to the approach used for
the nitrogen cycle. Phosphorus is divided into organic and inorganic forms. In some
models, the organic phosphorus is further partitioned into particulate and dissolved
forms that are separately simulated, and the inorganic phosphorus is partitioned into
dissolved and sorbed forms when sediment sorption is considered. Here, two sin-
gle kinetics equations are introduced for organic phosphorus (OP) and inorganic
phosphorus (orthophosphate, PO4) without further partition. Their kinetics are
described by

DCOP

Dt
= KMaPCfPhy,OPCPhy − KOPCOP − ωOP

h
(1 − fOP,d)COP − SOP

h
(12.85)

DCPO4

Dt
= KMaPC(1 − fPhy,OP)CPhy + KOPCOP − KPhyaPCCPhy − SPO4

h
(12.86)

where COP and CPO4 are the concentrations of organic and inorganic phosphorus
(gP · m−3), respectively; KOP is the mineralization rate coefficient of organic phos-
phorus (day−1); fPhy,OP and 1 − fPhy,OP are the fractions of dead and respired
phytoplankton recycled to the organic and inorganic phosphorus pools, respectively;
fOP,d is the fraction of the dissolved organic phosphorus; aPC is the phytoplankton
phosphorus-carbon ratio; and SOP and SPO4 are the organic and inorganic phosphorus
fluxes from the sediment bed (gP · m−2day−1), respectively.

The terms on the right-hand side of Eq. (12.85) represent the production of organic
phosphorus due to phytoplankton death and respiration, loss due to mineralization,
settling of the particulate organic nitrogen, and exchange at the bed surface, respec-
tively. The terms on the right-hand side of Eq. (12.86) represent the production of
inorganic phosphorus due to phytoplankton death and respiration, gaining due to
mineralization, uptake for phytoplankton growth, and exchange at the bed surface,
respectively.
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Mineralization from organic to inorganic phosphorus is affected by temper-
ature and phytoplankton population, and thus the following relation for KOP
is used:

KOP = KOP(20)θT−20
OP

(
CPhy

kmPc + CPhy

)
(12.87)

where θOP is the temperature coefficient for organic phosphorus mineralization,
about 1.08.

Again, the settling term in Eq. (12.85) is valid only in the 1-D and depth-averaged
2-D models, and it has a different form in the 3-D and width-averaged 2-D models,
as shown in Eq. (12.63).

Flux exchanges between water column and benthic sediment

Settled waste materials (sludge), phytoplankton, dead aquatic plant roots and leaves,
etc., that accumulate in the bed usually undergo decomposition, releasing nutrients to
the sediment interstitial water and removing oxygen from the overlying water. As a
result, the benthic sediment can be a substantial nutrient source and/or oxygen sink
to the overlying water column.

SOD and nutrient fluxes from the bed depend on the extent of organic materials
and the nature of the benthic community. Table 12.1 summarizes the range of SOD
values at 20◦C. Temperature effect in the 10–30◦C range can be accounted for by

SSOD(T) = SSOD(20)θT−20
sod (12.88)

where θ has a reported range of 1.040 to 1.130 (Zison et al., 1978) and a typical
value of 1.065. However, Eq. (12.88) probably overestimates below 10◦C, and SOD
approaches zero in 0–5◦C.

Many early models give lumped values for the oxygen and nutrient fluxes, without
resolving the details of the benthic processes. More recently, the following diffusion

Table 12.1 Sediment oxygen demand ranges (Huber, 1993)

Location SOD range Source
gO2 · m−2day−1

Municipal sewage sludge, outfall vicinity 2–10 Thomann and M. (1987)
Municipal sewage sludge, aged, d/s of outfall 1–2 Thomann and M. (1987)
Estuarine mud 1–2 Thomann and M. (1987)
Sandy bottom 0.2–1 Thomann and M. (1987)
Mineral soils 0.05–0.1 Thomann and M. (1987)
Measured in rivers and streams 0.02–44 Bowie (1985)
Measured in estuaries and ocean 0.1–11 Bowie (1985)
Measured in lakes and reservoirs 0.004–9 Bowie (1985)
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model has been adopted to quantify the exchange flux at the bed surface:

SBED = KBED(CW − CBED) (12.89)

where KBED is the diffusional exchange coefficient (m · day−1), CW denotes the con-
centration of a constituent (DO, NH3, PO4, etc.) in the water column, and CBED
is the concentration of the corresponding constituent in the sediment bed. This flux
exchange model is often used when the fate and transport of DO, nitrogen, phospho-
rus, etc., in the benthic sediment are computed. The details can be found in Wool et al.
(1995) and DiToro (2001).

Many experiments have been conducted to measure the coefficient KBED in lake sys-
tems (DiToro, 2001). Steinberger and Hondzo (1999) investigated the factors affecting
KBED of DO and established an empirical relation:

KBEDh
D

= 0.012
(

Uh
ν

)0.89 ( ν
D

)0.33
(12.90)

where D is the molecular diffusivity.
In addition, the development of bed forms, such as sand ripples and dunes, will

affect the mass transfer at the bed surface. Under unsteady flow conditions, the pore
water in the sediment bed will move in and out, and thus induce additional mass
transfer.

12.2.3 Other biochemical processes

Many other biochemical processes of non-conservative constituents can be modeled
by considering the first-order decay, gravitational settling, and flux exchange at the
bed surface as

DC
Dt

= −KC − ωc

h
C − SBED

h
(12.91)

where ωc is the settling velocity of the constituent, and SBED is the flux of the
constituent entering from the water column to the sediment bed.

For example, first-order decay has been a very good assumption in many modeling
studies of coliform bacteria. The decay coefficient ranges from 0.0004 to 1.1 hr−1

(Bowie, 1985), but most values are in the range from 0.02 to 0.1 hr−1 and a median
rate of 0.04 hr−1 for total coliforms (Huber, 1993). The decay of bacteria is affected
by temperature, salinity, light, etc. The effect of temperature can be accounted for
through Eq. (12.51), with θ being about 1.07. Mancini (1978) shows that coliform
mortality increases with the percent seawater:

Ksea

Kfresh
= 0.8 + 0.006psea (12.92)

where Ksea and Kfresh are the first-order decay coefficients in saline and fresh waters,
respectively; and psea is the percent seawater (e.g., psea = 100 percent in the ocean).
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12.3 SIMULATION OF SEDIMENT-BORNE
CONTAMINANT TRANSPORT

Sediment is a major source of pollutants in aquatic systems. Not only does sediment
itself significantly affect aquatic systems by erosion and deposition, but also it sorbs
contaminants that degrade the quality of receiving water bodies. Traditionally, mod-
eling of contaminant transport and water quality has mainly focused on the role of
water flow and paid less attention to the effect of sediment. It is necessary to establish
numerical models to investigate the transport of both water-borne and sediment-borne
contaminants and their impacts on water quality. This has been studied by Lang and
Chapra (1982) for lake systems. A generalized modeling framework for various aquatic
systems is presented in this section.

12.3.1 Sorption and desorption of contaminants
on sediment particles

Sorption is a process whereby a dissolved substance is transferred to and becomes asso-
ciated with solid materials (Chapra, 1997). It includes both adsorption and absorption.
Adsorption is a surface phenomenon in which the dissolved substance is accumulated
on the surface of solids, whereas absorption is a bulk phenomenon in which the dis-
solved substance interpenetrates or intermingles with solids. Desorption is the reverse
process of sorption, in which a sorbed substance is released from solid particles. Sorp-
tion and desorption are encountered in diverse situations of contaminant transport.
Many contaminant species, such as phosphorus, heavy metals, nuclides, bacteria, and
viruses, can be transferred from the dissolved phase to the sorbed phase associated
with sediment particles and then transported with sediment by the flow.

Consider a control volume consisting of a water and sediment mixture in the water
column or sediment bed, as shown in Fig. 2.4. A contaminant constituent is either
dissolved in water or sorbed on sediment particles. The concentrations of the dissolved
and sorbed parts are defined as

Cd = Md

Vt
, Cs = Ms

Vt
(12.93)

and the total contaminant concentration is

Ct = Cd + Cs = Md + Ms

Vt
(12.94)

where Vt is the total volume of the water and sediment mixture (m3); Md and Ms
are the masses (mg) of the dissolved and sorbed contaminants in the control volume,
respectively; Cd and Cs are the concentrations (mg · m−3) of the dissolved and sorbed
contaminants, respectively; and Ct is the total contaminant concentration (mg · m−3).

Note that some constituents, such as phosphorus, also exist in a separate particulate
form (not necessarily sorbed to sediment particles). This may be considered by adding
a particulate component in Eq. (12.94). However, for simplicity, only the dissolved
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and sorbed components are included here. The details of handling the particulate
contaminant can be found in Lang and Chapra (1982).

Sorption and desorption of contaminants on sediment particles are often described
by the linear isotherm:

Rad = kadρss
Cd

1 − s
= kadrswCd (12.95)

Rde = kdeCs (12.96)

where Rad and Rde are the sorption and desorption rates (mg · m−3s−1), respectively;
kad is the sorption rate coefficient (m3 · kg−1s−1); kde is the desorption rate coefficient
(s−1); ρs is the sediment density (kg · m−3); s is the volumetric concentration of sediment
(unitless); and rsw is the sediment-to-water phase ratio (kg · m−3), defined as rsw =
ρss/(1 − s). In the water column, usually s � 1, so rsw = ρss. In the sediment bed,
s is equal to 1 − p′

m, and thus rsw = ρs(1 − p′
m)/p

′
m. Here, p′

m is the porosity of bed
material.

In the equilibrium state, the sorption and desorption rates in Eqs. (12.95) and (12.96)
should be equal, thus yielding

Cs

Cd
= kadrsw

kde
= kDrsw (12.97)

where kD is the equilibrium partition coefficient, defined as kD = kad/kde (m3kg−1).
Using Eqs. (12.94) and (12.97) yields

fd = Cd

Ct
= 1

1 + kDrsw
, fs = Cs

Ct
= kDrsw

1 + kDrsw
(12.98)

where fd and fs are the fractions of the dissolved and sorbed contaminants in the
equilibrium state, respectively.

In fact, other models, such as the Langmuir isotherm and Freundlich isotherm, are
also commonly used. The sorption rate in Eq. (12.95) can be replaced by

Rad = kadrswCd

(
1 − Cs

Cs,max

)
(12.99)

where Cs,max is the maximum concentration of contaminant sorbed to sediment.
Eq. (12.99) implies that the sorption process is limited by the maximum concentra-

tion of the sorbed contaminant. In the equilibrium state, equating the sorption and
desorption rates in Eqs. (12.99) and (12.96) leads to

Cs = Cs,max
Cd

Cd + Cs,max/(kDrsw)
= Cs,max

aCd

1 + aCd
(12.100)

where a is the Langmuir sorption coefficient, defined as a = kDrsw/Cs,max.
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Figure 12.5 Linear and Langmuir isotherms of sorption.

Eq. (12.100) is the general form of the Langmuir isotherm. Both linear and Langmuir
isotherms are depicted in Fig. 12.5. One can see that when Cs � Cs,max, Eq. (12.99)
reduces to Eq. (12.95) and the Langmuir isotherm becomes the linear isotherm.

Using Eqs. (12.94) and (12.100) yields the fractions of the dissolved and sorbed
contaminants in the equilibrium state:

fd = 1
2

[
1 − Cs,max

Ct

(
1 + 1

kDrsw

)]

±
√

Cs,max

Ct

1
kDrsw

− 1
4

[
1 − Cs,max

Ct

(
1 + 1

kDrsw

)]2

fs = 1 − fd (12.101)

The parameters kad, kde, kD, and Cs,max vary with contaminant species, sedi-
ment properties, and water conditions. They are usually measured through sorption
and desorption experiments. The estimation of these parameters can be found in
Thomann and Mueller (1987), Chapra (1997), Furumai and Ohgaki (1989), Chao
et al. (2006), etc.

12.3.2 Contaminant transport in water column

12.3.2.1 Non-equilibrium partition model

Fig. 12.6 shows the general transport and transformation patterns of contaminant con-
stituents in both water column and sediment bed. Changes in concentrations of the
dissolved and sorbed contaminants in the water column are caused by advection, dif-
fusion, external loading, sorption, desorption, and decay. Additionally, the settling of
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Figure 12.6 Contaminant transport with water and sediment.

sediment particles also contributes to the variation of the sorbed contaminant concen-
tration. Adopting the linear sorption/desorption isotherm and the first-order kinetics
yields the following transport equations for the dissolved and sorbed contaminants in
the water column in the 1-D and depth-averaged 2-D models:

DCdw

Dt
= Jd,aw

h
+ qdw − kad,wrsw,wCdw + kde,wCsw − kdwCdw

+ kdbw

h
(Cdb − Cdw)+

qd,ex

h
(12.102)

DCsw

Dt
= qsw + kad,wrsw,wCdw − kde,wCsw − kswCsw + qs,ex

h
(12.103)

where Cdw and Csw are the cross-section-averaged or depth-averaged concentra-
tions of the dissolved and sorbed contaminants in the water column, respectively;
kad,w and kde,w are the sorption and desorption rate coefficients, respectively; rsw,w
is the sediment-to-water ratio; kdw and ksw are the decay coefficients of the dis-
solved and sorbed contaminants, respectively; qdw and qsw are the loading rates
of the dissolved and sorbed contaminants per unit volume, respectively; Jd,aw is
the flux across the water surface per unit surface area; Cdb is the concentration
of contaminant dissolved in the bed surface layer; kdbw is the diffusional transfer
coefficient of the dissolved contaminant across the bed surface; and qd,ex and qs,ex are
the exchange rates of the dissolved and sorbed contaminants due to sedimentation,
respectively.

In the 3-D and width-averaged 2-D models, the mass transfers at the water and bed
surfaces are handled through boundary conditions, so the transport equations of the
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dissolved and sorbed contaminants in the water column are

DCdw

Dt
= qdw − kad,wrswCdw + kde,wCsw − kdwCdw (12.104)

DCsw

Dt
= qsw + kad,wrswCdw − kde,wCsw − kswCsw − ∂(ωsCsw)

∂z
(12.105)

where ωs is the settling velocity of sediment particles.
In each of the above models, two differential equations are used to determine the

concentrations of the dissolved and sorbed contaminants. This approach is generally
applied to simulate the non-equilibrium sorption and desorption processes, and thus
is called the non-equilibrium partition model.

The loading rates qdw and qsw in Eqs. (12.102)–(12.105) account for external
loading or loss due to side inflow, rainfall, infiltration, seepage flow, biochemical
interaction with other constituents, etc.

Many toxic substances, such as PCBs, transfer across the water surface by
volatilization. The interfacial transfer rate of a dissolved gas is modeled by (see
Chapra, 1997)

Jd,aw = vν

(
pg

He
− Cdw

)
(12.106)

where vν is the net transfer velocity across the water surface (m · s−1), pg is the
partial pressure of gas in the air over the water (atm), and He is Henry’s constant
(atm · m3mg−1). As described in Section 12.2.2, for dissolved oxygen, Eq. (12.106)
can be rewritten as Jd,aw = KL(CsDO − CDO). For substances that are not abundant
in the atmosphere, pg can be assumed to be zero.

Mass may exchange at the bed surface through a variety of mechanisms. The most
common one is the diffusion flux across the bed surface. In particular, in the case of
lakes and reservoirs, the flow is slow, so diffusion is the main mode of bed release.
This diffusion flux across the bed surface is modeled in Eq. (12.102) by the term
kdbw(Cdb − Cdw), which is similar to Eq. (12.89).

The sorbed contaminant exchanges at the bed as sediment erosion or deposition
occurs. This exchange rate is determined by

qs,ex = max(Eb − Db, 0)
Csb

1 − p′
m

+ min(Eb − Db, 0)
Csw

s
(12.107)

where Db and Eb are the sediment deposition and erosion rates (m · s−1), defined in
Eqs. (11.14) and (11.19), respectively; s is the volumetric concentration of sediment in
the water column; and p′

m is the porosity of sediment in the bed surface layer. The two
terms on the right-hand side of Eq. (12.107) represent the cases of net erosion and net
deposition, respectively. The factors 1/(1 − p′

m) and 1/s are introduced in Eq. (12.107)
to convert the net sediment flux Eb − Db to the volumes of the corresponding water
and sediment mixtures in the sediment bed and water column, respectively, in which
Csb and Csw are defined.
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As sediment exchanges at the net rate Eb − Db at the bed, the pore water in the
sediment bed also exchanges with the water column at a rate (Eb − Db)p′

m/(1 − p′
m).

Consequently, the dissolved contaminant exchanges at a rate:

qd,ex = max(Eb − Db, 0)
Cdb

1 − p′
m

+ min(Eb − Db, 0)
p′

m

1 − p′
m

Cdw

1 − s

(12.108)

The factors 1/p′
m and 1/(1 − s) are used in Eq. (12.108) to convert the net water

flux (Eb − Db)p′
m/(1 − p′

m) to the volumes of the corresponding water and sediment
mixtures in the sediment bed and water column, respectively, in which Cdb and Cdw
are defined. The parameter p′

m is cancelled in the first term on the right-hand of
Eq. (12.108).

Note that the porosity p′
m of the bed surface layer in Eq. (12.108) is assumed to have

the same value in cases of erosion and deposition. However, different values might be
used, because the newly deposited material is unconsolidated and the eroded material
may be partially- or fully-consolidated in the case of cohesive sediment.

In addition, the expulsion of pore water due to consolidation of cohesive bed mate-
rial, infiltration, and seepage flow also results in the dissolved contaminant flux
between the water column and the sediment bed. These effects may be included in
the loading terms qdw and qsw, as discussed above.

12.3.2.2 Equilibrium partition model

In cases where the time scale of sorption and desorption processes is much faster than
that of flow and sediment transport, the sorption and desorption may be assumed
to reach the equilibrium state instantaneously. The fractions of the dissolved and
sorbed contaminants can then be determined using Eq. (12.98) or (12.101). This is
called the equilibrium partition model. Because Eq. (12.98) or (12.101) provides an
algebraic relation between Cdw and Csw, it is only necessary to compute the total
concentration of contaminant, which is determined in the 1-D and depth-averaged
2-D models by

DCtw

Dt
= Jd,aw

h
+ qtw − ktwCtw + kdbw

h
(fdbCtb − fdwCtw)+ qt,ex

h
(12.109)

where Ctw is the total concentration of contaminant in the water column, ktw
is the total contaminant decay coefficient, qtw is the total loading rate of con-
taminant per unit volume, fdw is the fraction of the dissolved contaminant
over the total contaminant in the water column, fdb is the fraction of the dis-
solved contaminant over the total contaminant in the bed surface layer, and
qt,ex is the total exchange rate of contaminant due to sediment erosion and
deposition.

Eq. (12.109) can be derived by summing Eqs. (12.102) and (12.103). Similarly, the
3-D or width-averaged 2-D equation for the total concentration of contaminant can
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be derived by summing Eqs. (12.104) and (12.105) as

DCtw

Dt
= qtw − ktwCtw − ∂(ωsfswCtw)

∂z
(12.110)

where fsw is the fraction of the sorbed contaminant over the total contaminant in the
water column. Thus, the following relations exist:

qtw = qdw + qsw (12.111)

ktw = fdwkdw + fswksw (12.112)

and

qt,ex = qd,ex + qs,ex

= max (Eb − Db, 0)
Ctb

1 − p′
m

+ min (Eb − Db, 0)
(

p′
m

1 − p′
m

fdw

1 − s
+ fsw

s

)
Ctw (12.113)

The equilibrium partition model has been used in many studies (Thomann et al.,
1991; Schrestha and Orlob, 1996; Ji et al., 2002), because it is simpler than the
non-equilibrium one.

12.3.3 Contaminant transport in sediment bed

In the sediment bed, contaminants are transported by the pore water flow. In general,
the pore water flow and contaminant transport can be simulated using a subsurface
flow model. It is of great interest to couple the surface and subsurface flow models
to investigate the flux exchanges between the water column and the sediment bed.
However, because the pore water velocity in the sediment bed is much slower than
the flow velocity in the water column, the transport of contaminants in the sediment
bed is often simulated using the multiple-layer flux model described below, which is
generalized from those of Lang and Chapra (1982) and DiToro (2001).

The sediment bed is divided into several layers. Definition of the layers in sedi-
ment and contaminant transport models may be different. However, for convenience,
the definition in the sediment model, which is shown in Fig. 2.9, is used directly in
the contaminant model. In the first layer, which is the mixing layer in the sediment
model and the aerobic layer in the contaminant model, the variation in concentration
of the dissolved contaminant is attributed to external loading, adsorption, desorp-
tion, decay, diffusional transfer at the bed surface, exchange due to sediment erosion
and deposition, diffusional transfer at the interface between bed layers 1 and 2, and
exchange due to burial and digging (rising and lowering) at the interface between bed
layers 1 and 2. The variation in concentration of the sorbed contaminant is attributed
to these effects, except for the diffusional transfers at the bed surface and between
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bed layers 1 and 2. The dissolved and sorbed contaminant balances in bed layer 1
are described by

∂(δ1Cdb,1)

∂t
= Qdb,1 − kad,b1rsw,b1δ1Cdb,1 + kde,b1δ1Csb,1 − kdb,1δ1Cdb,1

− kdbw(Cdb,1 − Cdw)− qd,ex + kdb12(Cdb,2 − Cdb,1)+ qdb12

(12.114)

∂(δ1Csb,1)

∂t
= Qsb,1 + kad,b1rsw,b1δ1Cdb,1 − kde,b1δ1Csb,1

− ksb,1δ1Csb,1 − qs,ex + qsb12 (12.115)

where Cdb,i and Csb,i are the concentrations of the dissolved and sorbed contaminants
in bed layer i (i = 1, 2, . . . ), respectively; Qdb,i and Qsb,i are the loading rates of the
dissolved and sorbed contaminants in bed layer i, respectively; kad,bi and kde,bi are
the adsorption and desorption rate coefficients in bed layer i, respectively; rsw,bi is
the sediment-to-water ratio in bed layer i; kdb,i and ksb,i are the decay coefficients
of the dissolved and sorbed contaminants in bed layer i, respectively; kdb12 is the
diffusional transfer coefficient of the dissolved contaminant between layers 1 and
2; qdb12 and qsb12 are the exchange rates of the dissolved and sorbed contaminants
between bed layers 1 and 2 due to interface lowering or rising; and δi is the thickness
of bed layer i.

The exchange rates qdb12 and qsb12 between bed layers 1 and 2 due to interface
lowering and rising are determined by

qdb12 = −
(
∂zb

∂t
− ∂δ1
∂t

)
Cdb,x, qsb12 = −

(
∂zb

∂t
− ∂δ1
∂t

)
Csb,x (12.116)

where Cdb,x = Cdb,1 and Csb,x = Csb,1, when ∂zb/∂t − ∂δ1/∂t ≥ 0, i.e., the interface
between layers 1 and 2 rises; Cdb,x = Cdb,2 and Csb,x = Csb,2, when ∂zb/∂t − ∂δ1/∂t <
0, i.e., the interface between layers 1 and 2 lowers.

The dissolved and sorbed contaminant balances in bed layer 2 are described by

∂(δ2Cdb,2)

∂t
= Qdb,2 − kad,b2rsw,b2δ2Cdb,2 + kde,b2δ2Csb,2 − kdb,2δ2Cdb,2

− kdb12(Cdb,2 − Cdb,1)− qdb12 + kdb23(Cdb,3 − Cdb,2)+ qdb23

(12.117)

∂(δ2Csb,2)

∂t
= Qsb,2 + kad,b2rsw,b2δ2Cdb,2 − kde,b2δ2Csb,2

− ksb,2δ2Csb,2 − qsb12 + qsb23 (12.118)

where kdb23 is the diffusional transfer coefficient of the dissolved contaminant between
bed layers 2 and 3; and qdb23 and qsb23 are the exchange rates of the dissolved and
sorbed contaminants between bed layers 2 and 3 due to interface lowering or rising.
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The contaminant mass balance equations for the underlying layers can be derived
similarly, which are not presented here.

Note that Eqs. (12.114), (12.115), (12.117), and (12.118) are the governing
equations of the non-equilibrium partition model in the sediment bed. In analogy
to the equilibrium partition model in the water column described in Section 12.3.2.2,
the equilibrium partition model in the sediment bed can be established for the cases
where the sorption and desorption processes proceed much faster than other processes.
Thus, the fractions of the dissolved and sorbed contaminants in the sediment bed are
determined using Eq. (12.98) or (12.101), and the equations for the total concentra-
tion of contaminant in bed layers 1 and 2 are obtained by summing Eqs. (12.114) and
(12.115) and summing Eqs. (12.117) and (12.118):

∂(δ1Ctb,1)

∂t
= Qtb,1 − ktb,1δ1Ctb,1 − kdbw(fdb,1Ctb,1 − fdwCtw)− qt,ex

+ kdb12(fdb,2Ctb,2 − fdb,1Ctb,1)+ qtb12 (12.119)

∂(δ2Ctb,2)

∂t
= Qtb,2 − ktb,2δ2Ctb,2 − kdb12(fdb,2Ctb,2 − fdb,1Ctb,1)− qtb12

+ kdb23(fdb,3Ctb,3 − fdb,2Ctb,2)+ qtb23 (12.120)

where Ctb,i is the total concentration of contaminant in bed layer i; Qtb,i is the total
contaminant loading rate in bed layer i; ktb,i is the total contaminant decay coefficient
in bed layer i; qtb12 and qtb23 are the total exchange rates of contaminant between
bed layers 1 and 2 and between layers 2 and 3, respectively, due to interface lowering
or rising; and fdb,i is the fraction of the dissolved contaminant in bed layer i. The
following relations exist:

qtb12 = qdb12 + qsb12 (12.121)

Qtb,i = Qdb,i + Qsb,i (12.122)

ktb,i = fdb,ikdb,i + fsb,iksb,i (12.123)

where fsb,i is the fraction of the sorbed contaminant in bed layer i.
Note that the above multiple-layer flux model is simple, but its application should

be limited to the situations where the effects of groundwater flow are neligible or can
be lumped into the diffusion process between the bed layers.
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